Science.gov

Sample records for climate change strategies

  1. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved

  2. GEF climate change operational strategy: Whither UNDP?

    SciTech Connect

    Hosier, R.

    1996-12-31

    The paper discusses aspects of the implementation of the program for climatic change which has been come about as part of the U.N. Framework Convention on Climate Change. Initial effort has focused on providing strategic information and help to countries, on achieving offsets in greenhouse gas emissions by energy conservation or carbon sinking, and an emphasis on development of renewable energy supplies. The U.N. Development Agency has limited funding to help support startup on projects submitted. Specific examples are discussed in the areas of energy conservation and energy efficiency, adoption of renewable energy sources, and reducing the long-term costs of low greenhouse gas-emitting energy technologies.

  3. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    PubMed Central

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  4. The Impacts of Climate Change Mitigation Strategies on Animal Welfare.

    PubMed

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  5. Climate Change Education Roundtable: A Coherent National Strategy

    NASA Astrophysics Data System (ADS)

    Storksdieck, M.; Feder, M.; Climate Change Education Roundtable

    2010-12-01

    The Climate Change Education (CCE) Roundtable fosters ongoing discussion of the challenges to and strategies for improving public understanding of climate science and climate change among federal agencies, the business community, non-profit, and academic sectors. The CCE Roundtable is provides a critical mechanism for developing a coherent, national strategy to advance climate change education guided by the best available research evidence. Through its meetings and workshops, the roundtable brings together 30 federal and state policymakers, educators, communications and media experts, and members from the business and scientific community. The roundtable includes a number of ex officio members from federal agencies with dedicated interests in climate change education, including officials from the National Science Foundation’s EHR Directorate and its collaborating partner divisions, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Interior, the Department of Energy, and the Department of Education. The issues that are addressed by the roundtable include: - ways to incorporate knowledge about learning and understanding in developing informative programs and materials for decision-makers who must cope with climate change - the design of educational programs for professionals such as local planners, water managers, and the like, to enable them to better understand the implications of climate change for their decisions - development of training programs for scientists to help them become better communicators to decision-makers about implications of, and solutions to climate change - coordinated and collaborative efforts at the national level between federal agencies and other stakeholders This presenation will describe how the roundtable is fostering a coherent direction for climate change education.

  6. Adaptive strategies to climate change in Southern Malawi

    NASA Astrophysics Data System (ADS)

    Chidanti-Malunga, J.

    Climate change poses a big challenge to rural livelihoods in the Shire Valley area of Southern Malawi, where communities have depended almost entirely on rain-fed agriculture for generations. The Shire Valley area comprises of low-altitude dambo areas and uplands which have been the main agricultural areas. Since early to mid 1980s, the uplands have experienced prolonged droughts and poor rainfall distribution, while the dambos have experienced recurrent seasonal floods. This study assessed some of the adaptive strategies exercised by small-scale rural farmers in response to climate change in the Shire Valley. The methodology used in collecting information includes group discussions, household surveys in the area, secondary data, and field observations. The results show that small-scale rural farmers exercise a number of adaptive strategies in response to climate change. These adaptive strategies include: increased use of water resources for small-scale irrigation or wetland farming, mostly using simple delivery techniques; increased management of residual moisture; and increased alternative sources of income such as fishing and crop diversity. It was also observed that government promoted the use of portable motorized pumps for small-scale irrigation in order to mitigate the effects of climate change. However, these external interventions were not fully adopted; instead the farmers preferred local interventions which mostly had indigenous elements.

  7. Global climate change is confounding species conservation strategies.

    PubMed

    Koopowitz, Harold; Hawkins, Bradford A

    2012-06-01

    Most organisms face similar problems with respect to their conservation in the face of global climate change. Here, we examine probable effects of climate change on the hyperdiverse plant family Orchidaceae. In the 20th century, the major concerns for orchid conservation revolved around unsustainable harvest for the orchid trade and, more importantly, land conversion from natural ecosystems to those unable to support wild orchid populations. Land conversion included logging, fire regimes and forest conversions to agricultural systems. Although those forms of degradation continue, an additional suite of threats has emerged, fueled by global climate change. Global climate change involves more than responses of orchid populations to increases in ambient temperature. Increasing temperature induces secondary effects that can be more significant than simple changes in temperature. Among these new threats are extended and prolonged fire seasons, rising sea levels, increases in cyclonic storms, seasonal climate shifts, changes in orthographic wind dew point and increased drought. The long-term outlook for orchid biodiversity in the wild is dismal, as it is for many animal groups, and we need to start rethinking strategies for conservation in a rapidly changing world. PMID:22691199

  8. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  9. Business Responses to Climate Change. Identifying Emergent Strategies

    SciTech Connect

    Kolk, A.; Pinkse, J.

    2005-07-01

    Companies face much uncertainty about the competitive effects of the recently adopted Kyoto Protocol on global climate change and the current and future regulations that may emerge from it. Companies have considerable discretion to explore different market strategies to address global warming and reduce greenhouse gas emissions. This article examines these strategic options by reviewing the market-oriented actions that are currently being taken by 136 large companies that are part of the Global 500. There are six different market strategies that companies use to address climate change and that consist of different combinations of the market components available to managers. Managers can choose between more emphasis on improvements in their business activities through innovation or employ compensatory approaches such as emissions trading. They can either act by themselves or work with other companies, NGOs, or (local) governments.

  10. 77 FR 76034 - National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... AGENCY National Water Program 2012 Strategy: Response to Climate Change AGENCY: Environmental Protection... publishing the final ``National Water Program 2012 Strategy: Response to Climate Change'' (2012 Strategy... light of climate change and charts key strategic actions to be taken to achieve the goals in 2012...

  11. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  12. Effective Strategies for Talking about Climate Change in the Classroom

    ERIC Educational Resources Information Center

    Busch, K. C.; Osborne, Jonathan

    2014-01-01

    Teaching about climate science presents some unique challenges. Unlike many other science topics, mitigation and adaptation to climate change will require students to take action. This article outlines five major challenges to communicating about climate change in the classroom, drawing on research in environmental psychology: scepticism,…

  13. Taking a climate chance: a procedural critique of Vietnam's climate change strategy.

    PubMed

    Fortier, François

    2010-01-01

    This article asks through what processes and for which interests the emerging Vietnamese climate change strategy is being designed, and if, ultimately, it is likely or not to be effective in the face of the looming threat. Through a review of an emerging body of literature and field observations, the paper finds the strategy partial and problematic in several ways. Its technocratic process prevents a pluralist representation of interests, obfuscating and perpetuating sectorial ones, at the expense of a more transparent and democratic resource allocation. The strategy therefore reflects and reinforces existing power relations in both politics and production. It feeds into a business-as-usual complacency, protecting national and international interests vested in unchallenged continuity, even when considering post-carbon technological fixes, which largely serve to expand capital accumulation opportunities. The article concludes that the national climate change strategy provides an illusion of intervention and security, but largely fails to identify and mitigate the underlying causes of climate change, or to lay the ground for a robust mid- and long-term adaptation strategy that can cope with yet unknown levels of climatic and other structural changes. PMID:21132943

  14. Adaptation strategies to climate change and climate variability: a comparative study between seven contrasting river basins.

    NASA Astrophysics Data System (ADS)

    Droogers, P.

    2003-04-01

    Climate change and climate variability is and will have a tremendous impact on hydrology and consequently on food security and environmental protection. From the four major components in climate change and climate variability studies, projection, mitigation, impact and adaptation, has the latter so far received less attention than the other three. An international collaboration of ten institutions is comparing adaptation strategies between contrasting basins ranging from wet to dry and from poor to rich. Basins included are: Mekong, Walawe (Sri Lanka), Rhine, Sacramento, Syr Darya, Volta, and Zayandeh (Iran). Simulation models at basin and field scale have been set up and possible adaptation strategies are explored by these models. Preliminary results indicate that appropriate adaptation strategies are different between these seven contrasting basins. It is also clear that these adaptation strategies should focus on increased variability rather than on the overall change of the mean. The focus was hereby not only on an increase in variation but especially on the number of successive dry and wet years. Results show that the studies on these adaptation strategies could not be performed only at one scale, but that a combination of field scale as well as basin scale analysis is essential.

  15. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  16. Incorporating climate change into corporate business strategies. Conference proceedings

    SciTech Connect

    1997-12-31

    This document contains the papers presented at the International Climate Change Conference and Technologies Exhibition June 12-13, 1997. Topics include energy supply and electricity generation; forestry and agriculture; and the chemical, energy, and manufacturing industries.

  17. Snowpack Estimates Improve Water Resources Climate-Change Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Lestak, L.; Molotch, N. P.; Guan, B.; Granger, S. L.; Nemeth, S.; Rizzardo, D.; Gehrke, F.; Franz, K. J.; Karsten, L. R.; Margulis, S. A.; Case, K.; Anderson, M.; Painter, T. H.; Dozier, J.

    2010-12-01

    Observed climate trends over the past 50 years indicate a reduction in snowpack water storage across the Western U.S. As the primary water source for the region, the loss in snowpack water storage presents significant challenges for managing water deliveries to meet agricultural, municipal, and hydropower demands. Improved snowpack information via remote sensing shows promise for improving seasonal water supply forecasts and for informing decadal scale infrastructure planning. An ongoing project in the California Sierra Nevada and examples from the Rocky Mountains indicate the tractability of estimating snowpack water storage on daily time steps using a distributed snowpack reconstruction model. Fractional snow covered area (FSCA) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were used with modeled snowmelt from the snowpack model to estimate snow water equivalent (SWE) in the Sierra Nevada (64,515 km2). Spatially distributed daily SWE estimates were calculated for 10 years, 2000-2009, with detailed analysis for two anamolous years, 2006, a wet year and 2009, an over-forecasted year. Sierra-wide mean SWE was 0.8 cm for 01 April 2006 versus 0.4 cm for 01 April 2009, comparing favorably with known outflow. Modeled SWE was compared to in-situ (observed) SWE for 01 April 2006 for the Feather (northern Sierra, lower-elevation) and Merced (central Sierra, higher-elevation) basins, with mean modeled SWE 80% of observed SWE. Integration of spatial SWE estimates into forecasting operations will allow for better visualization and analysis of high-altitude late-season snow missed by in-situ snow sensors and inter-annual anomalies associated with extreme precipitation events/atmospheric rivers. Collaborations with state and local entities establish protocols on how to meet current and future information needs and improve climate-change adaptation strategies.

  18. COMMUNICATING GLOBAL CLIMATE CHANGE: INVESTIGATING MESSAGE STRATEGIES FOR COMMUNICATING THE IMPACT OF GLOBAL CLIMATE CHANGE.

    EPA Science Inventory

    The research program is designed to generate findings that provide specific guidance to science communicators and government officials on how to best communicate knowledge about global climate change and other environmental issues to diverse lay audiences. Beyond providing gui...

  19. Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. Atmospheric carbon dioxide concentration has increased by about 30% since the mid-18th century. The increasing greenhouse gas emission and global warming during climate change clearly result in the increase ...

  20. One Strategy for Reducing Uncertainty in Climate Change Communications

    NASA Astrophysics Data System (ADS)

    Romm, J.

    2011-12-01

    Future impacts of climate change are invariably presented with a very wide range of impacts reflecting two different sets of uncertainties. The first concerns our uncertainty about precisely how much greenhouse gas emissions humanity will emit into the atmosphere. The second concerns our uncertainty about precisely what impact those emissions will have on the climate. By failing to distinguish between these two types of uncertainties, climate scientists have not clearly explained to the public and policymakers what the scientific literature suggests is likely to happen if we don't substantially alter our current emissions path. Indeed, much of climate communications has been built around describing the range of impacts from emissions paths that are increasingly implausible given political and technological constraints, such as a stabilization at 450 or 550 parts per million atmospheric of carbon dioxide. For the past decade, human emissions of greenhouse gases have trended near the worst-case scenarios of the Intergovernmental Panel on Climate Change, emissions paths that reach 800 ppm or even 1000 ppm. The current policies of the two biggest emitters, the United States and China, coupled with the ongoing failure of international negotiations to come to an agreement on restricting emissions, suggests that recent trends will continue for the foreseeable future. This in turn suggests that greater clarity in climate change communications could be achieved by more clearly explaining to the public what the scientific literature suggests the range of impacts are for our current high emissions path. This also suggests that more focus should be given in the scientific literature to better constraining the range of impacts from the high emissions scenarios.

  1. Farmers' Perceptions of Climate Change and Agricultural Adaptation Strategies in Rural Sahel

    NASA Astrophysics Data System (ADS)

    Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa

    2009-05-01

    Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate.

  2. Farmers' perceptions of climate change and agricultural adaptation strategies in rural Sahel.

    PubMed

    Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa

    2009-05-01

    Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate. PMID:18810526

  3. Identifying Effective Strategies for Climate Change Education: The Coastal Areas Climate Change Education (CACCE) Partnership Audiences and Activities

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.; Feldman, A.; Muller-Karger, F. E.; Gilbes, F.; Stone, D.; Plank, L.; Reynolds, C. J.

    2011-12-01

    Many past educational initiatives focused on global climate change have foundered on public skepticism and disbelief. Some key reasons for these past failures can be drawn directly from recognized best practices in STEM education - specifically, the necessity to help learners connect new knowledge with their own experiences and perspectives, and the need to create linkages with issues or concerns that are both important for and relevant to the audiences to be educated. The Coastal Areas Climate Change Education (CACCE) partnership has sought to follow these tenets as guiding principles in identifying critical audiences and developing new strategies for educating the public living in the low-lying coastal areas of Florida and the Caribbean on the realities, risks, and adaptation and mitigation strategies for dealing with the regional impacts of global climate change. CACCE is currently focused on three key learner audiences: a) The formal education spectrum, targeting K-12 curricula through middle school marine science courses, and student and educator audiences through coursework and participatory research strategies engaging participants in a range of climate-related investigations. b) Informal science educators and outlets, in particular aquaria and nature centers, as an avenue toward K-12 teacher professional development as well as for public education. c) Regional planning, regulatory and business professionals focused on the built environment along the coasts, many of whom require continuing education to maintain licensing and/or other professional certifications. Our current activities are focused on bringing together an effective set of educational, public- and private-sector partners to target the varied needs of these audiences in Florida and the U.S. Caribbean, and tailoring an educational plan aimed at these stakeholder audiences that starts with the regionally and topically relevant impacts of climate change, and strategies for effective adaptation and

  4. Developing tools and strategies for communicating climate change

    NASA Astrophysics Data System (ADS)

    Bader, D.; Yam, E. M.; Perkins, L.

    2011-12-01

    Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.

  5. Climate Change

    NASA Astrophysics Data System (ADS)

    Cowie, Jonathan

    2001-05-01

    In recent years climate change has become recognised as the foremost environmental problem of the twenty-first century. Not only will climate change potentially affect the multibillion dollar energy strategies of countries worldwide, but it also could seriously affect many species, including our own. A fascinating introduction to the subject, this textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. It will be of interest to a wide range of people, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, and environmental science students who need to understand the biological and human ecological implications of climate change. It will also be a valuable reference for those involved in environmental monitoring, conservation, policy-making and policy lobbying. The first book to cover not only the human impacts on climate, but how climate change will affect humans and the species that we rely on Written in an accessible style, with specialist terms used only when necessary and thoroughly explained The author has years of experience conveying the views of biological science learned societies to policy-makers

  6. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    ERIC Educational Resources Information Center

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  7. Climate Change

    MedlinePlus

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  8. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  9. 77 FR 19661 - Draft National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... AGENCY Draft National Water Program 2012 Strategy: Response to Climate Change AGENCY: Environmental... of water resource management, including how to: address risks to drinking water, wastewater and storm water infrastructure; protect quality of surface water, ground water and drinking water;...

  10. Managing for Climate Change in Western Forest Ecosystems; The Role of Refugia in Adaptation Strategies (Invited)

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Morelli, T.

    2009-12-01

    Managing forested ecosystems in western North America for adaptation to climate change involves options that depend on resource objectives, landscape conditions, sensitivity to change, and social desires. Strategies range from preserving species and ecosystems in the face of change (resisting change); managing for resilience to change; realigning ecosystems that have been severely altered so that they can adapt successfully; and enabling species to respond to climate changes. We are exploring one extreme in this range of strategies, that is, to manage locations, species, communities, or ecosystems as refugia. This concept is familiar from the Quaternary literature as isolated locations where climates remained warm during cold glacial intervals and wherein species contracted and persisted in small populations. References to refugia have been made in the climate-adaptation literature but little elaborated, and applications have not been described. We are addressing this gap conceptually and in case-studies from national forest and national park environments in California. Using a classification of refugium categories, we extend the concept beyond the original use to include diverse locations and conditions where plant or animal species, or ecosystems of concern, would persist during future changing climatic backgrounds. These locations may be determined as refugial for reasons of local microclimate, substrate, elevation, topographic context, paleohistory, species ecology, or management capacity. Recognizing that species and ecosystems respond to climate change differently, refugium strategies are appropriate in some situations and not others. We describe favorable conditions for using refugium strategies and elaborate specific approaches in Sierra Nevada case studies.

  11. Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

    USGS Publications Warehouse

    Sofaer, Helen; Skagen, Susan; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.

    2016-01-01

    complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change.

  12. Northwest regional climate hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This assessment draws from a large bank of information developed by scientists and extension specialists in the Northwest to describe where we need to focus when dealing with climate risks to working landscapes. The changing climate has many secondary effects, such as irrigation water loss, increase...

  13. Global Climate Change and Children’s Health: Threats and Strategies for Prevention

    PubMed Central

    Sheffield, Perry E.; Landrigan, Philip J.

    2011-01-01

    Background Global climate change will have multiple effects on human health. Vulnerable populations—children, the elderly, and the poor—will be disproportionately affected. Objective We reviewed projected impacts of climate change on children’s health, the pathways involved in these effects, and prevention strategies. Data sources We assessed primary studies, review articles, and organizational reports. Data synthesis Climate change is increasing the global burden of disease and in the year 2000 was responsible for > 150,000 deaths worldwide. Of this disease burden, 88% fell upon children. Documented health effects include changing ranges of vector-borne diseases such as malaria and dengue; increased diarrheal and respiratory disease; increased morbidity and mortality from extreme weather; changed exposures to toxic chemicals; worsened poverty; food and physical insecurity; and threats to human habitation. Heat-related health effects for which research is emerging include diminished school performance, increased rates of pregnancy complications, and renal effects. Stark variation in these outcomes is evident by geographic region and socioeconomic status, and these impacts will exacerbate health disparities. Prevention strategies to reduce health impacts of climate change include reduction of greenhouse gas emissions and adaptation through multiple public health interventions. Conclusions Further quantification of the effects of climate change on children’s health is needed globally and also at regional and local levels through enhanced monitoring of children’s environmental health and by tracking selected indicators. Climate change preparedness strategies need to be incorporated into public health programs. PMID:20947468

  14. Climate Change Predictions and Adaption Strategies for Coastal NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    De Young, R.

    2012-12-01

    Climate change could significantly impact the personal and operations of federal coastal laboratories. The Goddard Institute for Space Studies has made downscaled climate projections for Hampton Roads, Virginia a coastal region which includes NASA Langley Research Center (LaRC). These projections are being used to formulate adaptation and mitigation strategies to reduce climate change impacts at the center. Sea level rise and hurricanes will have significant impacts on LaRC and strategies such as surge modeling and tide gauge measurements and now underway. A proposed windbreak will reduce the impact of hurricane winds on center infrastructure. Disease vectors such as mosquitoes and ticks are being monitored and studied for their response to climate change. LaRC has significant forest and ecosystems which will be impacted by climate change and these impacts are being quantified. Mitigation strategies are being proposed such as the design of a 3 MW solar photovoltaic array to protect the center from brownouts and loss of power to critical missions. These and other programs will be discussed to reduce climate change impacts and allow LaRC to accomplish its mission into the next century.

  15. Impact of climate change and adaptation strategies on crop production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2012-04-01

    The vulnerability of agricultural to climate change is of particular interest to policy makers because the high social and economical importance of agriculture sector in Nigeria, which contributes approximately 40 percent to total GDP and support 70 percent of the population. It is necessary to investigate the potential climate change impacts in order to identify specific agricultural sectors and Agro-Ecological Zones that will be more vulnerable to changes in climatic conditions and implement and develop the most appropriate policies to cope with these changes. In this framework, this study aimed to assess the climate change impacts on Nigerian agricultural sector and to explore some of potential adaptation strategies for the most important crops in the food basket of the Country. The analysis was made using the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5. Crop simulation models included in DSSAT are tools that allows to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. In this analysis, for each selected crop, the models included into DSSAT-CSM software were ran, after a calibration phase, to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output were "perturbed" with 10 Global Climate Models in order to have a wide variety of possible climate projections for impact analysis. Multiple combinations of soils and climate conditions, crop management and varieties were considered for each Agro-Ecological Zone of Nigeria. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future changed climate conditions. The models ran by keeping

  16. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate

    PubMed Central

    Chapin, F. Stuart; Lovecraft, Amy L.; Zavaleta, Erika S.; Nelson, Joanna; Robards, Martin D.; Kofinas, Gary P.; Trainor, Sarah F.; Peterson, Garry D.; Huntington, Henry P.; Naylor, Rosamond L.

    2006-01-01

    Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social–ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously. PMID:17008403

  17. Tradeoff Analysis Between Economic Development and Climate Change Adaptation Strategies for River Nile Basin Water Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent Intergovernmental Panel on Climate Change (IPCC) briefings have declared that the growing population in the Nile river basin region (about 160 million, or 57% of the entire population of the basin’s ten riparian countries) is at risk of water scarcity. Adjustment strategies in response to cl...

  18. The impact of climate change on grain maize production over Europe - adaptation with different irrigation strategies

    NASA Astrophysics Data System (ADS)

    Ceglar, A.; Srivastava, A. K.; Chukaliev, O.; Duveiller, G.; Niemeyer, S.

    2013-12-01

    The spatial distribution of water deficit and maize yield deficit across Europe has been compared between current and expected climatic conditions in the near future (time window 2030). Maize yields and water requirements were simulated using the WOFOST (World Food Studies) crop growth model. In our study, the priority has been given to future projections of the A1B emission scenario produced within the ENSEMBLE project: HadRM3 RCM nested within the HADCM3 GCM (HADLEY) and HIRHAM5 RCM nested within ECHAM5 GCM (ECHAM). The two realizations can be considered as warm (HADLEY) and cold (ECHAM5) according to simulated temperature in the near future and therefore represent the extremes in air temperature change within those analyzed in ENSEMBLES project, allowing us to evaluate the largest range of uncertainty in weather inputs to the impact model. In addition, we also explored the advantages of different irrigation strategies for the target crop to offset climate change impacts. In wake of limited amount of water availability for agriculture purposes, we explored effectiveness of three different irrigation strategies on maize yield over Europe, namely full, deficit and supplemental irrigation. The results of our study indicate that the maize yield under rainfed conditions is expected to decrease over the Southern Europe as well as regions around the Black Sea during the 2030s under both climate model realizations. Water deficit is expected to increase especially in the Mediterranean, whereas slightly less in parts of Central and Western Europe. However, adaptation strategies followed in this study negate the detrimental effect of climate change and result in an increased maize yield. Three irrigation strategies have been simulated differing in timing of water application and in the total volume of water supplied during the growing season. The results show that yields, achieved using deficit and full irrigation strategies, are not significantly different. Hence, at least

  19. Assessment of impact of climate change and adaptation strategies on maize production in Uganda

    NASA Astrophysics Data System (ADS)

    Kikoyo, Duncan A.; Nobert, Joel

    2016-06-01

    Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially

  20. Influence of the management strategy model on estimating water system performance under climate change

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Hendrickx, Frederic

    2015-04-01

    The performance of water systems used worldwide for the management of water resources is expected to be influenced by future changes in regional climates and water uses. Anticipating possible performance changes of a given system requires a modeling chain simulating its management. Operational management is usually not trivial especially when several conflicting objectives have to be accounted for. Management models are therefore often a crude representation of the real system and they only approximate its performance. Estimated performance changes are expected to depend on the management model used, but this is often not assessed. This communication analyzes the influence of the management strategy representation on the performance of an Alpine reservoir (Serre-Ponçon, South-East of France) for which irrigation supply, hydropower generation and recreational activities are the main objectives. We consider three ways to construct the strategy named as clear-, short- and far-sighted management. They are based on different forecastability degrees of seasonal inflows into the reservoir. The strategies are optimized using a Dynamic Programming algorithm (deterministic for clear-sighted and implicit stochastic for short- and far-sighted). System performance is estimated for an ensemble of future hydro-meteorological projections obtained in the RIWER2030 research project (http://www.lthe.fr/RIWER2030/) from a suite of climate experiments from the EU - ENSEMBLES research project. Our results show that changes in system performance is much more influenced by changes in hydro-meteorological variables than by the choice of strategy modeling. They also show that a simple strategy representation (i.e. clear-sighted management) leads to similar estimates of performance modifications than those obtained with a representation supposedly closer to real world (i.e. the far-sighted management). The Short-Sighted management approach lead to significantly different results, especially

  1. Confronting Complexity: Adaptation Strategies for Managing Biodiversity in the Face of Rapid Climate Change

    NASA Astrophysics Data System (ADS)

    Graumlich, L.; Cross, M.; Tabor, G.; Enquist, C.; Rowland, E.

    2008-12-01

    There is no doubt that the montane landscapes of the Western US are being transformed by a complex interplay of changing climate, growing urban centers, altered disturbance regimes and invasive species. Among this suite of drivers of change, climate change has emerged as a critical concern of managers and agencies concerned with protected areas and protected species. These managers are under intensifying pressure to come up with scientifically robust and socially acceptable plans for adaptation to climate change. Those charged with managing biodiversity in the face of change have turned to the scientific community for decision support tools that they can implement immediately to proactively address adaptation. Broadly speaking, this is good news for that part of the scientific community that is keen to engage in translational science, even if the timeline is a bit breathtaking. A key challenge in this endeavor is to find common ground between all those issues that define complexity for the scientific community (e.g., nonlinearity, thresholds, cross-scale interactions) and a range of issues that define complexity for the management community (e.g., multiple jurisdictions, regulatory issues, values of diverse stakeholders). In this talk, we reflect on emerging strategies that seek to infuse adaptation into climate change into landscape scale conservation planning in the Greater Yellowstone Ecosystem and the Southwestern US. We describe how climate change challenges current adaptive management practices to 1) anticipate a broad range of climate trajectories, including no-analog scenarios, and 2) to actively incorporate new information from positive outcomes and negative consequences of management interventions. The success of such adaption hinges on public understanding and acceptance of the process of adaption, which, in turn, demands even greater attention to be paid to increasing public understanding of the intersection of climate change and the role of

  2. Combating the effects of climatic change on forests by mitigation strategies

    PubMed Central

    2010-01-01

    Background Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions. Results We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES). We used the scenarios A1B (rapid and successful economic development) and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development). Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management. Conclusions The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests. PMID:21118548

  3. GLOBAL CHANGE RESEARCH NEWS #15: WORKSHOP ON ANCILLARY BENEFITS AND COSTS OF CLIMATE CHANGE STRATEGIES

    EPA Science Inventory

    EPA's Global Change Research Program is co-sponsoring a three-day workshop to examine possible ancillary benefits of climate change adaptation and mitigation policies. The goals of the workshop are: (1)to establish a common basis of understanding about the conceptual and empiric...

  4. Beyond Individual Behaviour Change: The Role of Power, Knowledge and Strategy in Tackling Climate Change

    ERIC Educational Resources Information Center

    Kenis, Anneleen; Mathijs, Erik

    2012-01-01

    Individual behaviour change is fast becoming a kind of "holy grail" to tackle climate change, in environmental policy, the environmental movement and academic literature. This is contested by those who claim that social structures are the main problem and who advocate collective social action. The objective of the research presented in this paper…

  5. Using a social justice and health framework to assess European climate change adaptation strategies.

    PubMed

    Boeckmann, Melanie; Zeeb, Hajo

    2014-12-01

    Climate change puts pressure on existing health vulnerabilities through higher frequency of extreme weather events, changes in disease vector distribution or exacerbated air pollution. Climate change adaptation policies may hold potential to reduce societal inequities. We assessed the role of public health and social justice in European climate change adaptation using a three-fold approach: a document analysis, a critical discourse analysis of a subgroup of strategies, and a ranking of strategies against our social justice framework. The ranking approach favored planning that includes various adaptation types, social issues and infrastructure changes. Themes on values identified in the five subgroup documents showed that risks are perceived as contradictory, technology is viewed as savior, responsibilities need to be negotiated, and social justice is advocated by only a few countries. Of 21 strategy documents assessed overall, those from Austria, England and Sweden received the highest scores in the ranking. Our qualitative assessment showed that in European adaptation planning, progress could still be made through community involvement into adaptation decisions, consistent consideration of social and demographic determinants, and a stronger link between infrastructural adaptation and the health sector. Overall, a social justice framework can serve as an evaluation guideline for adaptation policy documents. PMID:25464133

  6. Using a Social Justice and Health Framework to Assess European Climate Change Adaptation Strategies

    PubMed Central

    Boeckmann, Melanie; Zeeb, Hajo

    2014-01-01

    Climate change puts pressure on existing health vulnerabilities through higher frequency of extreme weather events, changes in disease vector distribution or exacerbated air pollution. Climate change adaptation policies may hold potential to reduce societal inequities. We assessed the role of public health and social justice in European climate change adaptation using a three-fold approach: a document analysis, a critical discourse analysis of a subgroup of strategies, and a ranking of strategies against our social justice framework. The ranking approach favored planning that includes various adaptation types, social issues and infrastructure changes. Themes on values identified in the five subgroup documents showed that risks are perceived as contradictory, technology is viewed as savior, responsibilities need to be negotiated, and social justice is advocated by only a few countries. Of 21 strategy documents assessed overall, those from Austria, England and Sweden received the highest scores in the ranking. Our qualitative assessment showed that in European adaptation planning, progress could still be made through community involvement into adaptation decisions, consistent consideration of social and demographic determinants, and a stronger link between infrastructural adaptation and the health sector. Overall, a social justice framework can serve as an evaluation guideline for adaptation policy documents. PMID:25464133

  7. What Role Should Black Carbon Play in Climate Change Mitigation Strategies?

    NASA Astrophysics Data System (ADS)

    Deangelo, B. J.

    2006-12-01

    The uncertainties of the black carbon-climate linkage remain large with regard to emissions quantification, temporal and regional atmospheric concentrations, and net radiative and other climatic effects. Given these physical uncertainties plus other economic and emission control considerations, what is the appropriate role for BC and organic carbon in any climate change mitigation strategy? If the climate effects of BC are considered `large enough' (a judgment call) to warrant emission controls to mitigate climate change, additional considerations are necessary to determine how best to do this. First, BC cannot be singly targeted, as BC is co-emitted with OC in various ratios depending on fuel type and combustion technology. The climate effects of any control strategy will depend on the net BC and OC, plus possible greenhouse gas, co-effects, which in turn will vary by specific emission source, sector and region. Second, the extent to which air quality policies (primarily targeting particulate matter for health concerns) control BC and OC can determine whether additional emission mitigation is necessary, or if additional mitigation is best pursued within the context of air quality policies, rather than being introduced into the climate area. In the U.S., on-road and off-road diesel vehicles are the largest sources of BC, but these emissions are expected to decline substantially over the next few decades due to recently issued U.S. EPA standards. Third is the issue of costs of BC reductions relative to the costs of other mitigation strategies. Results will be presented on 1) near-term (out to 2020) emission projections for the U.S. taking into account recent air quality regulations; 2) emerging work from the Energy Modeling Forum Black Carbon Subgroup on global and regional projections by region and sector, and mitigation scenarios; and 3) the costs of potential BC mitigation options for the U.S.

  8. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    PubMed

    Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  9. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    PubMed Central

    Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  10. Climate Change Education: Goals, Audiences, and Strategies--A Workshop Summary

    ERIC Educational Resources Information Center

    Forest, Sherrie; Feder, Michael A.

    2011-01-01

    The global scientific and policy community now unequivocally accepts that human activities cause global climate change. Although information on climate change is readily available, the nation still seems unprepared or unwilling to respond effectively to climate change, due partly to a general lack of public understanding of climate change issues…

  11. Communicating the Urgency and Challenge of Global Climate Change: Lessons Learned and New Strategies

    NASA Astrophysics Data System (ADS)

    Dilling, L.; Moser, S. C.

    2004-12-01

    Climate change can sometimes be characterized as a "creeping environmental problem"--it is complex and long-term, involves long system lags, lacks the immediacy of everyday experience and thus is hard to perceive, and feels overwhelming to most individuals. Climate change thus does not typically attain the status of an urgent concern, taking priority over other matters for individuals, organizations or in the policy arena. We review the major reasons behind this lack of urgency, and document the observed consequences of previous communication strategies, including lack of public understanding, indifference, confusion, fear and uncertainty. We find that certain emotional motivators such as fear and guilt, while oft-employed, do not actually result in improved recognition of the urgency of the issue, nor do they typically result in action. Rather, positive and engaging approaches may be more likely to achieve this goal. We propose seven strategies to improve the communication of climate change and its urgency: 1) Abide by basic communication rules and heed the warnings of communication experts; 2) Address the emotional and the temporal components of "urgency"; 3) Increase the persuasiveness of the message; 4) Use trusted messengers-broaden the circle; 5) Use opportunities well; 6) Tap into individual and cultural strengths and values; and 7) Unite and Conquer. The multi-faceted nature of the proposed strategies reflects the unique challenges of the climate change issue as well as the need to engage all levels and sectors of societies in the solution, from individuals, to businesses, to governments. These strategies and results emerged from a multi-disciplinary, academic/practitioner workshop on the topic held at NCAR in summer 2004.

  12. Compromise-based Robust Prioritization of Climate Change Adaptation Strategies for Watershed Management

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Chung, E. S.

    2014-12-01

    This study suggests a robust prioritization framework for climate change adaptation strategies under multiple climate change scenarios with a case study of selecting sites for reusing treated wastewater (TWW) in a Korean urban watershed. The framework utilizes various multi-criteria decision making techniques, including the VIKOR method and the Shannon entropy-based weights. In this case study, the sustainability of TWW use is quantified with indicator-based approaches with the DPSIR framework, which considers both hydro-environmental and socio-economic aspects of the watershed management. Under the various climate change scenarios, the hydro-environmental responses to reusing TWW in potential alternative sub-watersheds are determined using the Hydrologic Simulation Program in Fortran (HSPF). The socio-economic indicators are obtained from the statistical databases. Sustainability scores for multiple scenarios are estimated individually and then integrated with the proposed approach. At last, the suggested framework allows us to prioritize adaptation strategies in a robust manner with varying levels of compromise between utility-based and regret-based strategies.

  13. Climate Change Adaptation and Climate Related Disaster Risk Reduction Strategies in Zimbabwe and Malawi

    NASA Astrophysics Data System (ADS)

    Mubaya, C. P.; Ngepah, N.; Seyama, W.

    2015-12-01

    Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR) have similar aims and mutual benefits, and there is a very strong rationale for adopting a more integrated approach to these issues rather than analysing each of them as distinct from the other. One of the gaps that have been noted in this context is the lack of evidence in systematic integration of CCA and DRR in Southern Africa. In this regard, this study builds on understanding CCA and DRR policies from the perspectives of vulnerable groups- women and smallholder farmers, and conducts institutional and policy analysis of CCA and DRR in southern Africa, with specific focus on Malawi and Zimbabwe. Both quantitative and qualitative methodologies were employed to collect data for this study in the two countries. The analysis is centred on the conceptualization of DRR in the context of recovery time and CCA on livelihood changes. Findings of the study show that drought is no longer viewed as a hazard as it is a perennial and chronic occurrence in selected climate hotspots, with heightened intensity in certain identified years. Households are able to quickly recover from slow onset hazards such as droughts and dry spells more than they are able to recover from sudden onset floods, implying more capacity towards CCA than DRR. Government programmes and policies are also focused more on CCA than on DRR efforts that appear not to be a priority. Findings point towards female vulnerability from perceptions and practice where males tend to dominate where they are set to benefit from external assistance. We need to strengthen government capacity in implementation of DRR programmes, which is currently limited and development initiatives must deliberately target building the resilience of women.

  14. Effects of climate change on rice production and strategies for adaptation in southern China

    SciTech Connect

    Jin, Z.; Ge, D.; Chen, H.; Fang, J.

    1995-12-31

    The CERES-rice (Oryza sativa L.) model was calibrated and validated for nine sites in southern China to examine its suitability to model rice production in this area, using agronomic data from more than three successive years. After determining the genetic coefficients for the cultivars, the CERES-rice model was run a second time for the same locations for a time period of 20 to 30 yr. The model used local climate data (1958--1986) and doubled-CO{sub 2} climate change scenarios generated from the Goddard Institute for Space Studies (GISS), Geophysical Fluid dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO) global climate models (GCMs), with and without supplemental irrigation(to model paddy and upland rice, respectively). The study estimated the potential impacts of climate change on rice production by comparing the base runs with the runs under the three doubled-CO{sub 2} GCM scenarios and it considered the physiological effects of CO{sub 2} on rice growth in each GCM scenario. Finally, the study examined several strategies for adapting to climate change.

  15. Forest adjacent households' voices on their perceptions and adaptation strategies to climate change in Kilombero District, Tanzania.

    PubMed

    Balama, Chelestino; Augustino, Suzana; Eriksen, Siri; Makonda, Fortunatus B S

    2016-01-01

    Climate change is a global and local challenge to both sustainable livelihoods and economic development. Tanzania as other countries of the world has been affected. Several studies have been conducted on farmers' perceptions and adaptation to climate change in the country, but little attention has been devoted to forest adjacent households in humid areas. This study assessed this gap through assessing forest adjacent households' voices on perceptions and adaptation strategies to climate change in Kilombero District, Tanzania. Data collection involved key informant interviews, focus group discussions and household questionnaires. Results showed that the majority of households perceived changed climate in terms of temperature increase, unpredictable rainfall, frequent occurrence of floods, increased dry spells during rainy season coupled with decreased water sources and emergence of new pests and diseases. The perceived change in climate has impacted agriculture productivity as the main livelihood source. Different coping and adaptation strategies are employed. These are; crop diversification, changing cropping calendar, adopting modern farming technologies, and increasing reliance on non-timber forest products. These strategies were positively and significantly influenced by socio-economic factors including household size, residence period, land ownership and household income. The study concludes that, there are changes in climatic conditions; and to respond to these climatic changes, forest adjacent households have developed numerous coping and adaptation strategies, which were positively and significantly influenced by some socio-economic factors. The study calls for actual implementation of local climate change policies and strategies in order to enhance adaptive capacity at household level. PMID:27390633

  16. Assessing effects of climate change and adaptation strategies on irrigated pastures using DAISY

    NASA Astrophysics Data System (ADS)

    Hagimoto, Y.; Cuenca, R. H.

    2013-12-01

    The DAISY ecological model was applied for the flood-irrigated cool-season pastures in the Upper Klamath Basin, Oregon to study 1) the current condition of the pastures in the semi-arid environment, 2) effects of projected climate change, and 3) effects of introducing white clover and a sprinkler system as a potential adaptation strategy. The calibrated model indicated that productivity of the cool-season pastures was limited primarily by nitrogen (N) availability and temperature. The results of our scenario analysis indicated that the projected climate change would increase seasonal forage production (YF) and crop water use (AET) due to longer and warmer growing season. This study also found that introduction of white clover would significantly increase YF without changing AET by improving N availability due to increased nutrients deposition by cattle and increased symbiotic N fixation by white clover. In consequence, the mixed pasture could significantly improve water use efficiency (YF/AET) and, therefore the adaptability of the pasture in an area with high value water. Installing sprinkler system to the mixed pasture would increase YF by increasing net N input by increasing N mineralization and reducing denitrification. Furthermore, upgraded irrigation systems could increase water availability of the area during growing season by releasing significant amount of subsurface water to nearby surface water pools. This study demonstrated that ecological models such as DAISY can be a useful tool to model pasture systems and assess effects of projected climate changes and adaptation strategies.

  17. Challenges for implementing the Marine Strategy Framework Directive in a climate of macroecological change.

    PubMed

    McQuatters-Gollop, Abigail

    2012-12-13

    Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing and pH is decreasing. These unparalleled changes present new challenges for managing our seas, as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve good environmental status (GES) in their seas by 2020; this means management towards GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so, an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring programme that has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European Seas. Thus, the continuation of long-term ecological time series such as the CPR survey is crucial for informing and supporting the sustainable management of European seas through policy mechanisms. PMID:23129715

  18. The Future of Food: Regional Adaptation Strategies for Optimizing Grain Yields Under Climate Change

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Chhetri, N.; Girvetz, E. H.; McCarthy, H. R.; Twine, T. E.; Ummenhofer, C. C.

    2010-12-01

    Current projections of crop yields under climate change generally neglect to account for the potential for farmer adaptation to counteract environmental drivers of yield decreases, but such adaptation will be increasingly important for food security. We used a process-based crop model (Agro-IBIS) and a suite of climate projections based on multiple IPCC AR4 models under three greenhouse gas emission scenarios to project climate change impacts to yield of maize in Free State, South Africa, and Iowa, USA, and of wheat in Victoria, Australia, and Punjab, India. We found, for example in Iowa, that projected substantial increases in temperatures and slight decreases in precipitation result in a compressed growing period, with peak productivity occurring in mid-May rather than mid-July and yield decreasing by up to 40% below current levels by the end of the century. We then used this information to identify regionally-specific adaptation strategies by examining climate-limiting factors on the timing of harvest and quantity of yields in each location, and the current growing practices and resource availability. These adaptation strategies were developed with the intention of replicating current yields at current timing (for example, by selecting longer-ripening cultivars) and also to optimize yields under the new climate regime (for example, by double-cropping a maize/soy rotation in the same growing season). All in all, this research shows that promising adaptation options exist in each region, and highlight the need for sophisticated and regionally-sensitive adaptation strategies to sustain and increase food production in the 21st century.

  19. When climate change is a fact! Adaptive strategies for drinking water production in a changing natural environment.

    PubMed

    Meuleman, A F M; Cirkel, G; Zwolsman, G J J

    2007-01-01

    Climate change increases water system dynamics through temperature changes, changes in precipitation patterns, evaporation, and water quality and water storage in ice packs. Water system dependent economical stakeholders, such as drinking water companies in the Netherlands, have to cope with consequences of climate change, e.g. floods and water shortages in river systems, upcoming of brackish ground water, salt water intrusion, increasing peak demands and microbiological activity due to temperature rise. In the past decades, however, both water systems and drinking water production have become more and more inflexible; water systems have been heavily regulated aiming at maximum security and economic functions and the drinking water supply in the Netherlands has grown into an inflexible, but cheap and reliable, system. At a water catchment scale, flexibility and adaptation are solutions to overcome climate change related consequences. Flexible adaptive strategies for drinking water production comprise new sources for drinking water production, application of storage concepts in the short term, and a redesign of large centralized systems, including flexible treatment plants, in the long term. Transition to flexible concepts will take decades because investment depreciation periods of assets are long. These strategies must be based on thorough knowledge of current assets to seize opportunities for change. PMID:17851214

  20. Climate Change Experiments in Arctic Ecosystems: Scientific Strategy and Design Criteria

    NASA Astrophysics Data System (ADS)

    Wullschleger, S. D.; Hinzman, L. D.; McGuire, A. D.; Oberbauer, S. F.; Oechel, W. C.; Norby, R. J.; Thornton, P. E.; Schuur, E. A.; Shugart, H. H.; Walsh, J. E.; Wilson, C. J.

    2010-12-01

    . Participants were asked how experiments could best be designed to address issues related to plant and ecosystem dynamics, permafrost degradation, carbon and methane emissions, landscape processes, and the many land-atmosphere feedbacks that are likely to arise as a result of global warming. Recommendations that address the scientific strategy and design criteria of future large-scale, long-term climate change experiments in Arctic ecosystems were contributed. This information will be summarized and evaluated in the context of existing and emerging efforts to better understand high-latitude ecosystems to climate warming.

  1. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    NASA Astrophysics Data System (ADS)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  2. Assessing indigenous knowledge systems and climate change adaptation strategies in agriculture: A case study of Chagaka Village, Chikhwawa, Southern Malawi

    NASA Astrophysics Data System (ADS)

    Nkomwa, Emmanuel Charles; Joshua, Miriam Kalanda; Ngongondo, Cosmo; Monjerezi, Maurice; Chipungu, Felistus

    In Malawi, production from subsistence rain fed agriculture is highly vulnerable to climate change and variability. In response to the adverse effects of climate change and variability, a National Adaptation Programme of Action is used as framework for implementing adaptation programmes. However, this framework puts limited significance on indigenous knowledge systems (IKS). In many parts of the world, IKS have shown potential in the development of locally relevant and therefore sustainable adaptation strategies. This study was aimed at assessing the role of IKS in adaptation to climate change and variability in the agricultural sector in a rural district of Chikhwawa, southern Malawi. The study used both qualitative data from focus group and key informant interviews and quantitative data from household interviews and secondary data to address the research objectives. The study established that the local communities are able to recognise the changes in their climate and local environment. Commonly mentioned indicators of changing climatic patterns included delayed and unpredictable onset of rainfall, declining rainfall trends, warming temperatures and increased frequency of prolonged dry spells. An analysis of empirical data corroborates the people's perception. In addition, the community is able to use their IKS to adapt their agricultural systems to partially offset the effects of climate change. Like vulnerability to climate change, IKS varies over a short spatial scale, providing locally relevant adaptation to impacts of climate change. This paper therefore advocates for the integration of IKS in programmes addressing adaptation to climate change and vulnerability. This will serve to ensure sustainable and relevant adaptation strategies.

  3. Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study

    USGS Publications Warehouse

    Mu, Jianhong E.; Wein, Anne; McCarl, Bruce

    2015-01-01

    We examine the effects of crop management adaptation and climate mitigation strategies on land use and land management, plus on related environmental and economic outcomes. We find that crop management adaptation (e.g. crop mix, new species) increases Greenhouse gas (GHG) emissions by 1.7 % under a more severe climate projection while a carbon price reduces total forest and agriculture GHG annual flux by 15 % and 9 %, respectively. This shows that trade-offs are likely between mitigation and adaptation. Climate change coupled with crop management adaptation has small and mostly negative effects on welfare; mitigation, which is implemented as a carbon price starting at $15 per metric ton carbon dioxide (CO2) equivalent with a 5 % annual increase rate, bolsters welfare carbon payments. When both crop management adaptation and carbon price are implemented the effects of the latter dominates.

  4. Polish country study to address climate change: Strategies of the GHG`s emission reduction and adaptation of the Polish economy to the changed climate. Final report

    SciTech Connect

    1996-01-01

    The Polish Country Study Project was initiated in 1992 as a result of the US Country Study Initiative whose objective was to grant the countries -- signatories of the United Nations` Framework Convention on Climate Change -- assistance that will allow them to fulfill their obligations in terms of greenhouse gases (GHG`s) inventory, preparation of strategies for the reduction of their emission, and adapting their economies to the changed climatic conditions. In February 1993, in reply to the offer from the United States Government, the Polish Government expressed interest in participation in this program. The Study proposal, prepared by the Ministry of Environmental Protection, Natural Resources and Forestry was presented to the US partner. The program proposal assumed implementation of sixteen elements of the study, encompassing elaboration of scenarios for the strategy of mission reduction in energy sector, industry, municipal management, road transport, forestry, and agriculture, as well as adaptations to be introduced in agriculture, forestry, water management, and coastal management. The entire concept was incorporated in macroeconomic strategy scenarios. A complementary element was the elaboration of a proposal for economic and legal instruments to implement the proposed strategies. An additional element was proposed, namely the preparation of a scenario of adapting the society to the expected climate changes.

  5. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  6. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    Climate projections produced with CMIP5 and applied by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report indicate that changes in precipitation and temperature are expected to occur throughout Europe in the 21th century, with a likely decrease of water availability in many regions. Besides, water demand is also expected to increase, in link with these expected climate modifications, but also due to socio-economic and demographic changes. In this respect, the use of future freshwater resources may not be sustainable from the current water management perspective. Therefore adaptation strategies will most likely be needed to cope with these evolutions. In this context, the main objective of the ClimAware project (2010-2013 - www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/, a project implemented within the IWRM-NET Funding Initiative) was to analyse the impacts of climate change (CC) on freshwater resources at the continental and regional scales and to identify efficient adaptation strategies to improve water management for various socio-economic sectors. This should contribute to a more effective implementation of the Water Framework Directive (WFD) and its instruments (river basin management plans, programmes of measures). The project developed integrated measures for improved freshwater management under CC constraints. More specifically, the objectives of the ClimAware project were to: • elaborate quantitative projections of changes in river flows and consequences such as flood frequency, drought occurrence and sectorial water uses. • analyse the effect of CC on the hydromorphological reference conditions of rivers and therefore the definition of "good status". • define management rules/strategies concerning dam management and irrigation practices on different time perspectives. • investigate uncertainties in climate model - scenario combinations. The research approach considered both European and regional perspectives, to get

  7. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2015-12-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  8. Communicating Urban Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  9. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current evidence and projected future climates indicate that climate change is likely to modify the function of and services supplied by rangeland ecosystems. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland system...

  10. Southwest regional climate hub and California subsidiary hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the potential vulnerability of specialty crops, field crops, forests, and animal agriculture to climate-driven environmental changes. Here, vulnerability is defined as a function of exposure to climate change effects, sensitivity to these effects, and adaptive capacity. The exp...

  11. Climate Change and Agriculture in Africa: Impact Assessment and Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Brown, Molly E.; McCusker, Brent

    2008-11-01

    As climate change has emerged as a significant threat, there is much concern about how vulnerable agricultural communities will adapt, particularly as global population continues to rise. Much of the current lack of productivity and economic marginalization of African agriculture arises from global trade regimes that give a competitive advantage to Western farmers, from low use of agricultural inputs, and from a dearth of infrastructure and services for the agriculture sector. For centuries, African farmers have used a wide variety of risk-reducing livelihood strategies, including diversifying income sources, switching crops, and investing in marketing. However, improving their productivity to ``modern'' levels has remained a distant dream, resulting in a continual reduction in investment in the sector over the past five decades.

  12. Conservation strategies to adapt to projected climate change impacts in Malawi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is potential for climate change to have negative effects on agricultural production via extreme events (Pruski and Nearing, 2002b; Zhang et al., 2012; Walthall 2012), and there is a need to implement conservation practices for climate change adaptation (Delgado et al. 2011; 2013). Recent repo...

  13. Climate Change: A Future of Less Water and More people - Strategies for a Water Constrained World

    NASA Astrophysics Data System (ADS)

    Nahai, D.

    2010-12-01

    Today, the fact that the Earth is warming is indisputable. The evidence of climate change is already all around us, with the occurence of ever more intense weather events, droughts, heat waves, floods and sea level rise. Predictions of greater calamities in the future without swift action must be taken seriously. However, while international summits have focused on means to reduce greenhouse gas emissions, these are largely strategies of containment, not of cure. Even if emissions were to cease today, the current effects of climate change would remain with us for millenia. This is clear from the 2007 report of the Intergovernmental Panel on Climate Change. The world must not only tackle the causes of global warming; it must adapt to the damage already done. This need is most acute where water supply is concerned. The world already faces daunting chalenges. According to United Nations' reports, even today 1.8 million children under 5 die from water related diseases every year; 900 million people lack access to safe drinking water; and 2.6 billion go without basic sanitation. In the developing world, 90% of sewage is discharged to water bodies without adequate treatment contributing to "dead zones". Population increases will make matters worse (an addition of around 3 billion people by 2050 is expected) and climate change will compound the crisis. It is forecast that, as the Earth warms, deserts will expand and droughts will intensify causing demographic shifts even as the world's population burgeons. We are already seeing different regions react to water shortages. Many countries are pursuing seawater desalination. However, seawater desalination has numerous drawbacks; it remains the most expensive of water treatment options and the most energy intensive. Some societies may have no choice but to turn to the sea; others should look to other alternatives first. Such frontrunners could include: (1) enhanced conservation, utilizing public education programs, price

  14. Diverging Plant and Ecosystem Strategies in Response to Climate Change in the High Arctic

    NASA Astrophysics Data System (ADS)

    Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.; Lupascu, M.; Lett, C.; Seibt, U. H.

    2014-12-01

    Increasing summer precipitation means Arctic growing seasons are becoming wetter as well as warmer, but the effect of these coupled changes on tundra ecosystem functioning remains largely unknown. We have determined how warmer and wetter summers affect coupled carbon-water cycling in a High Arctic polar semi-desert ecosystem in NW Greenland. Measurements of ecosystem CO2 and water fluxes throughout the growing season and leaf ecophysiological traits (gas exchange, morphology, leaf chemistry) were made at a long-term climate change experiment. After 9 years of exposure to warmer (+ 4°C) and / or wetter (+ 50% precipitation) treatments, we found diverging plant strategies between the responses to warming with or without an increase in summer precipitation. Warming alone resulted in an increase in leaf nitrogen, mesophyll conductance and leaf-mass per area and higher rates of leaf-level photosynthesis, but with warming and wetting combined leaf traits remain largely unchanged. However, total leaf area increased with warming plus wetting but was unchanged with warming alone. The combined effect of these leaf trait and canopy adjustments is a decrease in ecosystem water-use efficiency (the ratio of net productivity to evapotranspiration) with warming only, but a substantial increase with combined warming and wetting. We conclude that increasing summer precipitation will alter tundra ecohydrological responses to warming; that leaf-level changes in ecophysiological traits have an upward cascading consequence for ecosystem and land surface-climate interactions; and the current relative resistance of High Arctic ecosystems to warming may mask biochemical and carbon cycling changes already underway.

  15. Long-term strategies of climate change adaptation to manage flooding events in urban areas

    NASA Astrophysics Data System (ADS)

    Pouget, Laurent; Russo, Beniamino; Redaño, Angel; Ribalaygua, Jaime

    2010-05-01

    Heavy and sudden rainfalls regularly affect the Mediterranean area, so a great number of people and buildings are exposed to the risk of rain-generated floods. Climate change is expected to modify this risk and, in the case that extreme rainfalls increase in frequencies and intensity, this could result in important damages, particularly in urban areas. This paper presents a project that aims to determine adaptation strategies to future flood risks in urban areas. It has been developed by a panel of water companies (R+i Alliance funding), and includes the evaluation of the climate change impact on the extreme rainfall, the use of innovative modelling tools to accurately forecast the flood risk and, finally, the definition of a pro-active and long-term planning against floods. This methodology has been applied in the city of Barcelona. Current climate models give some projections that are not directly applicable for flood risk studies, either because they do not have an adequate spatial and temporal resolution, or because they do not consider some important local factors, such as orography. These points have been considered within the project, when developing the design storms corresponding to future climatic conditions (e.g. years 2030 or 2050). The methodology uses statistical downscaling techniques based on global climate models predictions, including corrections for extreme events and convective storms, as well as temporal downscaling based on historical observations. The design storms created are used in combination with the predictions of sea level rise and land use evolutions to determine the future risk of flooding in the area of study. Once the boundary conditions are known, an accurate flood hazard assessment is done. It requires a local knowledge of the flow parameters in the whole analyzed domain. In urban catchments, in order to fulfill this requirement, powerful hydrological and hydraulic tools and detailed topographic data represent the unique way for

  16. USDA Southwest climate hub for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...

  17. On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies

    PubMed Central

    Mumovic, D.

    2009-01-01

    Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216

  18. The closed city as a strategy to reduce vulnerability of urban areas for climate change.

    PubMed

    de Graaf, R E; van de Giesen, N C; van de Ven, F H M

    2007-01-01

    Urbanization, land subsidence and sea level rise will increase vulnerability to droughts in the urbanized low-lying areas in the western part of the Netherlands. In this paper a possibility is explored to decrease vulnerability of urban areas by implementing an alternative water supply option. A four component vulnerability framework is presented that includes threshold capacity, coping capacity, recovery capacity and adaptive capacity. By using the vulnerability framework it is elaborated that current water supply strategies in the Netherlands mainly focus on increasing threshold capacity by constructing improved water storage and delivery infrastructure. A complete vulnerability decreasing strategy requires measures that include all four components. Adaptive capacity can be developed by starting experiments with new modes of water supply. A concept which is symbolically called 'the closed city' uses local urban rainfall as the only source of water supply. The 'closed city' can decrease the water dependence of urban areas on (1) the surrounding rural areas that are diminishing in size and that are increasingly under strain and (2) river water resources that will probably be less constant and reliable as a result of climate change. PMID:17851217

  19. Adapting agriculture to climate change in Kenya: household strategies and determinants.

    PubMed

    Bryan, Elizabeth; Ringler, Claudia; Okoba, Barrack; Roncoli, Carla; Silvestri, Silvia; Herrero, Mario

    2013-01-15

    Countries in Sub-Saharan Africa are particularly vulnerable to climate change, given dependence on agricultural production and limited adaptive capacity. Based on farm household and Participatory Rural Appraisal data collected from districts in various agroecological zones in Kenya, this paper examines farmers' perceptions of climate change, ongoing adaptation measures, and factors influencing farmers' decisions to adapt. The results show that households face considerable challenges in adapting to climate change. While many households have made small adjustments to their farming practices in response to climate change (in particular, changing planting decisions), few households are able to make more costly investments, for example in agroforestry or irrigation, although there is a desire to invest in such measures. This emphasizes the need for greater investments in rural and agricultural development to support the ability of households to make strategic, long-term decisions that affect their future well-being. PMID:23201602

  20. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.

    PubMed

    Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oriana

    2014-01-01

    The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and

  1. An Integrated Framework for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica

    PubMed Central

    Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oriana

    2014-01-01

    The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and

  2. Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies

    ERIC Educational Resources Information Center

    Bofferding, Laura; Kloser, Matthew

    2015-01-01

    Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…

  3. Development of adaptation strategies of marshland water management to regional climate change

    NASA Astrophysics Data System (ADS)

    Bormann, Helge; Frank, Ahlhorn; Luise, Giani; Kirsten, Klaassen; Thomas, Klenke

    2010-05-01

    Since many centuries, low lying areas at the German North Sea coast are intensively managed by water boards and dike boards. Sophisticated water management systems have been developed in order to keep the water out of the low lying areas in wet periods, while in some regions additional water is needed in dry periods for agricultural and ecological purposes. For example in the Wesermarsch region, a water management system has been developed in historical times, draining the landscape in winter time by means of channels, ditches, gates, sluices and pumping stations. In contrast, in summer time water is conducted from Weser River into the Wesermarsch region to serve watering of animals, fencing grazing areas and ensuring a continuous flow in the marsh watercourses. Doing so, maintaining soil fertility is guaranteed for agriculture as well as protection against floods, sustaining river ecology and traditional livestock farming. Due to climate variability and river engineering, the water management of the Wesermarsch already runs into problems because watering in summer cannot be assured any longer in sufficient water quality. During high tides, salt water from the North Sea is flowing upstream into the Weser estuary, generating brackish conditions in the lower Weser River. In addition, soil subsidence and soil mineralization of marsh and peat soils as well as the sea level rise increase the necessary pumping frequency and the emerging energy costs. The expected future climate change will further aggravate those problems and require an adaptation of the current management system. This presentation introduces the concept behind and preliminary results of an integrative and participatory project, aiming at the development of a new water management strategy adapted to the regional climate change likely to occur until year 2050. In close cooperation with a number of regional stakeholders and based on the priorities with respect to the future development of the region

  4. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  5. A strategy for assessing potential future changes in climate, hydrology, and vegetation in the Western United States

    USGS Publications Warehouse

    Thompson, Robert Stephen; Hostetler, Steven W.; Bartlein, Patrick J.; Anderson, Katherine H.

    1998-01-01

    Historical and geological data indicate that significant changes can occur in the Earth's climate on time scales ranging from years to millennia. In addition to natural climatic change, climatic changes may occur in the near future due to increased concentrations of carbon dioxide and other trace gases in the atmosphere that are the result of human activities. International research efforts using atmospheric general circulation models (AGCM's) to assess potential climatic conditions under atmospheric carbon dioxide concentrations of twice the pre-industrial level (a '2 X CO2' atmosphere) conclude that climate would warm on a global basis. However, it is difficult to assess how the projected warmer climatic conditions would be distributed on a regional scale and what the effects of such warming would be on the landscape, especially for temperate mountainous regions such as the Western United States. In this report, we present a strategy to assess the regional sensitivity to global climatic change. The strategy makes use of a hierarchy of models ranging from an AGCM, to a regional climate model, to landscape-scale process models of hydrology and vegetation. A 2 X CO2 global climate simulation conducted with the National Center for Atmospheric Research (NCAR) GENESIS AGCM on a grid of approximately 4.5o of latitude by 7.5o of longitude was used to drive the NCAR regional climate model (RegCM) over the Western United States on a grid of 60 km by 60 km. The output from the RegCM is used directly (for hydrologic models) or interpolated onto a 15-km grid (for vegetation models) to quantify possible future environmental conditions on a spatial scale relevant to policy makers and land managers.

  6. Health coping strategies of the people vulnerable to climate change in a resource-poor rural setting in Bangladesh

    PubMed Central

    2013-01-01

    Background Among the many challenges faced by the people of Bangladesh, the effects of climate change are discernibly threatening, impacting on human settlement, agricultural production, economic development, and human health. Bangladesh is a low-income country with limited resources; its vulnerability to climate change has influenced individuals to seek out health coping strategies. The objectives of the study were to explore the different strategies/measures people employ to cope with climate sensitive diseases and sickness. Methods A cross-sectional study was conducted among 450 households from Rajshahi and Khulna districts of Bangladesh selected through multi-stage sampling techniques, using a semi-structured questionnaire supplemented by 12 focus group discussions and 15 key informant interviews. Results Respondents applied 22 types of primary health coping strategies to prevent climate related diseases and sickness. To cope with health problems, 80.8% used personal treatment experiences and 99.3% sought any treatments available at village level. The percentage of respondents that visited unqualified health providers to cope with climate induced health problems was quite high, namely 92.7% visited village doctors, 75.9% drug stores, and 67.3% self-medicated. Ninety per cent of the respondents took treatment from unqualified providers as their first choice. Public health facilities were the first choice of treatment for only 11.0% of respondents. On average, every household spent Bangladesh Currency Taka 9,323 per year for the treatment of climate sensitive diseases and sickness. Only 46% of health expenditure was managed from their savings. The rest, 54% expenditure, was supported by using 24 different sources, such as social capital and the selling of family assets. The rate of out-of-pocket payment was almost 100%. Conclusion People are concerned about climate induced diseases and sickness and sought preventive as well as curative measures to cope with

  7. The Impact of Integrative Planned Change Strategies on School Climate Factors.

    ERIC Educational Resources Information Center

    Blust, Ross S.; Dumaresq, Richard R.

    To test the effectiveness of an organizational development strategy to improve educational environments, data were gathered on the process and outcomes of a project for school climate improvement and school renewal. Data from two urban schools--a junior high school and a middle school--were drawn from interviews with participants, figures on…

  8. Time effects of climate change mitigation strategies for second generation biofuels and co-products with temporary carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Second generation biofuels that are under development to address the climate change impacts of transportation offer different means of reducing greenhouse gas emissions and storing or delaying carbon emissions relative to petroleum-based fuels depending upon the strategy used to synthesize the biofu...

  9. Climate change and waterborne diarrhoea in northern India: impacts and adaptation strategies.

    PubMed

    Moors, Eddy; Singh, Tanya; Siderius, Christian; Balakrishnan, Sneha; Mishra, Arabinda

    2013-12-01

    Although several studies show the vulnerability of human health to climate change, a clear comprehensive quantification of the increased health risks attributable to climate change is lacking. Even more complicated are assessments of adaptation measures for this sector. We discuss the impact of climate change on diarrhoea as a representative of a waterborne infectious disease affecting human health in the Ganges basin of northern India. A conceptual framework is presented for climate exposure response relationships based on studies from different countries, as empirical studies and appropriate epidemiological data sets for India are lacking. Four climate variables are included: temperature, increased/extreme precipitation, decreased precipitation/droughts and relative humidity. Applying the conceptual framework to the latest regional climate projections for northern India shows increases between present and future (2040s), varying spatially from no change to an increase of 21% in diarrhoea incidences, with 13.1% increase on average for the Ganges basin. We discuss three types of measures against diarrhoeal disease: reactive actions, preventive actions and national policy options. Preventive actions have the potential to counterbalance this expected increase. However, given the limited progress in reducing incidences over the past decade consorted actions and effective implementation and integration of existing policies are needed. PMID:23972324

  10. Adaptation strategies for health impacts of climate change in Western Australia: Application of a Health Impact Assessment framework

    SciTech Connect

    Spickett, Jeffery T.; Brown, Helen L.; Katscherian, Dianne

    2011-04-15

    Climate change is one of the greatest challenges facing the globe and there is substantial evidence that this will result in a number of health impacts, regardless of the level of greenhouse gas mitigation. It is therefore apparent that a combined approach of mitigation and adaptation will be required to protect public health. While the importance of mitigation is recognised, this project focused on the role of adaptation strategies in addressing the potential health impacts of climate change. The nature and magnitude of these health impacts will be determined by a number of parameters that are dependent upon the location. Firstly, climate change will vary between regions. Secondly, the characteristics of each region in terms of population and the ability to adapt to changes will greatly influence the extent of the health impacts that are experienced now and into the future. Effective adaptation measures therefore need to be developed with these differences in mind. A Health Impact Assessment (HIA) framework was used to consider the implications of climate change on the health of the population of Western Australia (WA) and to develop a range of adaptive responses suited to WA. A broad range of stakeholders participated in the HIA process, providing informed input into developing an understanding of the potential health impacts and potential adaptation strategies from a diverse sector perspective. Potential health impacts were identified in relation to climate change predictions in WA in the year 2030. The risk associated with each of these impacts was assessed using a qualitative process that considered the consequences and the likelihood of the health impact occurring. Adaptations were then developed which could be used to mitigate the identified health impacts and provide responses which could be used by Government for future decision making. The periodic application of a HIA framework is seen as an ideal tool to develop appropriate adaptation strategies to

  11. RISK ASSESSMENT FRAMEWORK FOR EVALUATING FOREST ADAPTATION STRATEGIES TO CLIMATE CHANGE

    EPA Science Inventory

    Under the stress of a changing climate, forest-vegetation composition, structure, and productivity may change. n some regions, vegetation productivity may be reduced while individual species migrate to new areas with suitable conditions at a rate likely to be much slower than the...

  12. Climate change and biodiversity conservation: impacts, adaptation strategies and future research directions

    PubMed Central

    Chan, Kai MA

    2009-01-01

    The impacts of climate change pose fundamental challenges for current approaches to biodiversity conservation. Changing temperature and precipitation regimes will interact with existing drivers such as habitat loss to influence species distributions despite their protection within reserve boundaries. In this report we summarize a suite of current adaptation proposals for conservation, and highlight some key issues to be resolved. PMID:20948670

  13. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. PMID:16512862

  14. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed Central

    Basso, Bruno; Hyndman, David W.; Kendall, Anthony D.; Grace, Peter R.; Robertson, G. Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability. PMID:26043188

  15. Climate Change Potential Impacts on the Built Environment and Possible Adaptation Strategies

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2014-01-01

    The built environment consists of components that exist at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. Thus, the impacts of climate change on the built environment may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, mechanisms may exist wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. This presentation surveys potential climate change impacts on the built environment from the perspective of the National Climate Assessment, and explores adaptation measures that can be employed to mitigate these impacts.

  16. Urban Impact Assessment and Adaptation Strategies to Climate Change in Europe: A Case Study for Antwerp, Berlin and Almada

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart

    2014-05-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heat waves. For example, the summer 2003 European heat wave caused up to 70.000 excess deaths over four months in Central and Western Europe. As around 75% of Europe's population resides in urban areas, it is of particular relevance to examine the impact of seasonal to decadal-scale climate variability on urban areas and their populations. This study aims at downscaling the spatially coarse resolution CMIP5 climate predictions to the local urban scale and investigating the relation between heat waves and the urban-rural temperature increment (urban heat island effect). The resulting heat stress effect is not only driven by climatic variables but also impacted by urban morphology. Moreover, the exposure varies significantly with the geographical location. All this information is coupled with relevant socio-economic datasets such as population density, age structure, etc. focussing on human health. The analyses are conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (BE), Berlin (DE) and Almada (PT) represented by different climate and urban characteristics. The end-user needs have been consolidated in a climate services plan including the production of heat risk exposure maps and the analysis of various scenarios considering e.g. the uncertainty of the global climate predictions, urban expansion over time and the impact of mitigation measures such as green roofs. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for the design and management of climate resilient cities.

  17. Methodology to determine the vulnerability of deltas to climate change and to identify adaptation strategies

    NASA Astrophysics Data System (ADS)

    Haasnoot, M.; Offermans, A. G. E.; Middelkoop, H.

    2009-04-01

    Development of sustainable water management strategies involves analysing current and future vulnerability, identification of adaptation possibilities, effect analysis and evaluation of the strategies under different possible futures. Recent studies on water management often followed the pressure-effect chain and compared the state of social, economic and ecological functions of water systems in one or two future situations. The future is, however, more complex and dynamic. Our approach starts at the end of the cause-effect chain by describing optimal conditions and critical thresholds for each water-related function in terms of their physical boundary conditions. This gives an indication of the current and future vulnerability. By comparing the optimal conditions with the physical conditions under the current and future climate and sea level we can identify mismatches. Where these occur are the vulnerable ‘hotspots' for which adaptation strategies should be defined. We developed a rapid assessment model to analyse the effectiveness of strategies for a large set of transient scenarios, in order to evaluate the strategies on robustness. This model describes the Pressure-State-Impact-Response chain of a delta system and exists of simple cause-effect relations based on outcomes of vulnerability analyses, complex hydrological models and studies on social responses. With the model transient scenarios are considered. These scenarios comprise time series that include trends, unexpected events, floods and droughts and the interaction between water system and society. We present the concept methodology for sustainable water management strategies by means of an imaginary case.

  18. Climate Change and Waterborne Diarrhoea in Northern India: Impact and Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Moors, Eddy; Singh, Tanya; Siderius, Christian; Balakrishnan, Sneha; Mishra, Arabinda

    2013-04-01

    Although some studies showed the vulnerability of human health to climate change (e.g. 22.000 to 45.000 excess mortality cases during the heat waves in Europe, or the association of malaria outbreaks with El Niño) a clear quantification of the increased risks attributable to climate change is often lacking. Even more complicated are the assessments of the adaptation measures for this sector. Adaptation measures are in most cases very site specific. We discuss the impact of climate change on diarrhoea as a representative of waterborne disease affecting human health in the Ganges basin of Northern India. India is by far the leading country when it comes to child mortality under five years caused by diarrhoea and accounted for 386.600 deaths in 2007. Estimates on the increased risk of diarrhoea as a result of increased temperature in the 2030ies range between 8-11%. Uncertainties around these estimates mainly relate to the few studies that have characterized the exposure-response relationship and inter-model discrepancy of climate models. The influence of other climate parameters than temperature on diarrhoea in the future has not been assessed. As empirical studies and surveillance data for India are lacking we developed a conceptual framework for climate exposure-response relationships based on a literature review and applied it to future climate projections for the Ganges basin. Four climate variables are analysed: temperature, increased/extreme precipitation, decreased precipitation/droughts and relative humidity. In an analysis of reports on diarrhoea outbreaks we show the spatial and temporal distribution over the subcontinent. Most cases of diarrhoea occur during the hot summer (23%) and the wet and humid monsoon (57%) months. These reports often suggest sewage and pipe leakage as the leading cause of the local outbreaks. We demonstrate the applicability of the conceptual framework for the two districts in West Bengal, North and South 24 Parganas. All climate

  19. Hearing Examines Climate Change Economics

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The Intergovernmental Panel on Climate Change has released its summary report on the science of climate change and will release subsequent reports on impacts and response strategies in coming months (see Eos 88(7), 2007). With this as backdrop, attention to issues related to climate change policy has been growing, particularly within the U.S. government where House and Senate committees continue to hold hearings each week on various aspects of climate change. One of these hearings, held 28 February by the House Ways and Means Committee, focused on the economic issues related to strategies for reducing levels of greenhouse gases in the atmosphere.

  20. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    SciTech Connect

    Koblinsky, C.J.; Gaspar, P.; Lagerloef, G.

    1992-03-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.

  1. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)

    1992-01-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.

  2. Strategies to address climate change in central and Eastern Euopean countries

    SciTech Connect

    Simeonova, K.

    1996-12-31

    The paper presents analyses based on information mainly from the National Communications of nine Central and Eastern European countries that are undertaking radical transition from centrally planned to market driven economics (EIT). It is designed primarily to provide an overview of the policies and measures to address climate change that have been implemented, or under implementation or planned. In order to better understand the objective of policies and measures and the way they have been implemented in EIT countries that analysis has been supplemented by a review of the national circumstances and overall policy contexts in EIT countries that are relevant to climate change policies and measures problems. Therefore, these issues will be discussed in the paper along with analysis of mitigation policies and measures by sector.

  3. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    NASA Astrophysics Data System (ADS)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-07-01

    This study presents an estimate of the effects of climate variables and CO2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  4. Gender Specific Reproductive Strategies of an Arctic Key Species (Boreogadus saida) and Implications of Climate Change

    PubMed Central

    Nahrgang, Jasmine; Varpe, Øystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain. PMID:24871481

  5. The NASA Innovations in Climate Education Project: 'Instructional Strategies for Expanding Climate Change Concepts within Readng/Literacy Skills

    NASA Astrophysics Data System (ADS)

    Walton-Jaggers, L. J.; Johnson, D.; Hayden, L. B.; Hale, S. R.

    2013-12-01

    The Common Core State Standards (CCSS) provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. In 2010 the standards were designed to be robust and relevant to the real world, reflecting the knowledge and skills that young people need for success in college and careers. In 2013 the Next Generation Science Standards (NGSS) in connection with the CCSS developed revised science standards in performance, prior standards documents listed what students should know or understand, foundations were each performance expectation incorporates all three dimensions from a science or engineering practice, a core disciplinary idea, and a crosscutting concept, and coherence that connects each set of performance expectations lists connections to other ideas within the disciplines of science and engineering. Elizabeth City State University (ECSU) in Elizabeth City, North Carolina has joined with the University of New Hampshire (UNH) in Durham, New Hampshire under the NASA Innovations in Climate Education (NICE) grant to empower faculty of education programs at Minority Serving Institutions (MSIs) to better engage their pre-service teachers in teaching and learning about global climate change through the use of NASA Earth observation sets. Specifically, professors from MSIs received training with Global Positioning Systems (GPS) and GES-DISC Interactive Online Visualization And aNalysis Infrastructure (GIOVANNI) to engage pre-service teachers in facets of climate education. Grambling State University faculty members served as participants of the NICE workshop for 2012 and were encouraged to develop lessons in climate education from information shared at the workshop. A corresponding project that incorporated the CCSS and NGSS at Grambling State University in Grambling, Louisiana was headed by Dr. Loretta Jaggers. This paper documents activities that pre-service students in the GSU Curriculum and

  6. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  7. Implementation of BMP strategies for adaptation to climate change and land use change in a pasture-dominated watershed.

    PubMed

    Chiang, Li-Chi; Chaubey, Indrajeet; Hong, Nien-Ming; Lin, Yu-Pin; Huang, Tao

    2012-10-01

    Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water quality in a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using the Soil and Water Assessment Tool (SWAT). These selected BMPs were further examined with future climate conditions (2010–2069) downscaled from three general circulation models (GCMs) for understanding how climate change may impact BMP performance. Simulation results indicate that total nitrogen (TN) and total phosphorus (TP) losses increase with increasing litter application rates. Alum-treated litter applications resulted in greater TN losses, and fewer TP losses than the losses from untreated poultry litter applications. For the same litter application rates, sediment and TP losses are greater for summer applications than fall and spring applications, while TN losses are greater for fall applications. Overgrazing management resulted in the greatest sediment and phosphorus losses, and VFS is the most influential management practice in reducing pollutant losses. Simulations also indicate that climate change impacts TSS losses the most, resulting in a larger magnitude of TSS losses. However, the performance of selected BMPs in reducing TN and TP losses was more stable in future climate change conditions than in the BMP performance in the historical climate condition. We recommend that selection of BMPs to reduce TSS losses should be a priority concern when multiple uses of BMPs that benefit nutrient reductions are considered in a watershed. Therefore, the BMP combination of spring

  8. Climate change adaptation via targeted ecosystem service provision: a sustainable land management strategy for the Segura catchment (SE Spain)

    NASA Astrophysics Data System (ADS)

    Zagaria, Cecilia; de Vente, Joris; Perez-Cutillas, Pedro

    2014-05-01

    Topical research investigating climate, land-use and management scenarios in the Segura catchment (SE Spain), depicts a landscape at high-risk of, quite literally, deserting agriculture. Land degradation in the semi-arid region of SE Spain is characterized by water shortage, high erosion rates and salinization, increasingly exacerbated by climatic changes, scarce vegetation cover and detrimental farming practices. Future climate scenarios predict increases in aridity, variability and intensity of rainfall events, leading to increasing pressure on scarce soil and water resources. This study conceptualized the impending crisis of agro-ecological systems of the Segura basin (18800 km2) as a crisis of ecosystem service deterioration. In light of existing land degradation drivers and future climate scenarios, the potential of Sustainable Land Management (SLM) strategies was evaluated to target three priority ecosystem services (water provision, sediment retention and carbon sequestration) as a means to achieve climate change adaptation and mitigation. A preceding thorough process of stakeholder engagement (as part of the EU funded DESIRE project) indicated five SLM technologies for potential implementation, all with a focus upon reducing soil erosion, increasing soil water holding capacity and soil organic matter content. These technologies have been tested for over four years in local experimental field plots, and have provided results on the local effects upon individual environmental parameters. Despite the growing emphasis witnessed in literature upon the context-specificity which characterizes adaptation solutions, the frequent analysis at the field scale is limited in both scope and utility. There is a need to investigate the effects of adaptive SLM solutions at wider, regional scales. Thus, this study modeled the cumulative effect of each of the five selected SLM technologies with InVEST, a spatial analyst tool designed for ecosystem service quantification and

  9. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

    PubMed

    Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2015-09-01

    Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. PMID:25366937

  10. Climate Variability and Change

    USGS Publications Warehouse

    U.S. Geological Survey

    2007-01-01

    In 2007, the U.S. Geological Survey (USGS) developed a science strategy outlining the major natural science issues facing the Nation in the next decade. The science strategy consists of six science directions of critical importance, focusing on areas where natural science can make a substantial contribution to the well-being of the Nation and the world. This fact sheet focuses on climate variability and change and how USGS research can strengthen the Nation with information needed to meet the challenges of the 21st century.

  11. Renewable energy to develop adaptation strategies to the climate change conditions

    NASA Astrophysics Data System (ADS)

    Servadio, Pieranna; Bergonzoli, Simone

    2013-04-01

    Changes in land use and combustion of fossil fuels have been largest human impact on the global carbon cycle and without a complete accounting of net greenhouse-gas (GHG) fluxes, developing and evaluating adaptation strategies are not possible. The major source of GHG fluxes associated with crop production are soil N2O emissions, soil CO2 and methane (CH4) fluxes, and CO2 emission associated with agricultural inputs and farm equipment operation. This study points out the main principles which are at the base of solar energy use for sustainability of irrigated agriculture. Field tests were carried out in order to compare crop yield and solar pump plant performance, for the photovoltaic conversion of solar energy, connected to drip irrigation and sprinkler system plants during the irrigation season. The system mainly consists of the parts listed here: set of flat photovoltaic panels consisting of 150 panels for a total of 3000 W peak value once installed, connected in serial-parallel to obtain a 120 Vdc operating voltage rating. The panels utilize 36 serially connected single-crystal silicon cells providing a 12 V voltage rating. The serial connection of 10 panels generates the system's operating voltage rating (120 Vdc). The total 3000 W peak value power is obtained by connecting in parallel 15 serial-strings. When the circuit is open, the voltage at the ends of the panels can reach 210 Volts. The photovoltaic system supplies, through an inverter, a three-phase 1.6 kW canned pump located in the artesian well. The relevant hydraulic line connects this pump to the various utilities. The hydraulic capacity of the helium pump has been used during the irrigation season in order to meet the water needs of a corn crop. Therefore, along with the solar pump was used a dispersing wing type drip irrigation system with double chamber hosing (70 kPa operating pressure), with external holes spaced 0.3 m apart, 0.75 m distance between the wings, wing length 120 m and placed

  12. Climate change, variability and extreme events : risk assessment and management strategies in a Peach cultivated area in Italy.

    NASA Astrophysics Data System (ADS)

    Alfieri, Silvia Maria; De Lorenzi, Francesca; Basile, Angelo; Bonfante, Antonello; Missere, Daniele; Menenti, Massimo

    2014-05-01

    Climate change in Mediterranean area is likely to reduce precipitation amounts and to increase temperature thus affecting the timing of development stages and the productivity of crops. Further, extreme weather events are expected to increase in the future leading to significant increase in agricultural risk. Some strategies for effectively managing risks and adapting to climate change involve adjustments to irrigation management and use of different varieties. We quantified the risk on Peach production in an irrigated area of "Emilia Romagna" region ( Italy) taking into account the impact on crop yield due to climate change and variability and to extreme weather events as well as the ability of the agricultural system to modulate this impact (adaptive capacity) through changes in water and crop management. We have focused on climatic events causing insufficient water supply to crops, while taking into account the effect of climate on the duration and timing of phenological stages. Further, extreme maximum and minimum temperature events causing significant reduction of crop yield have been considered using phase-specific critical temperatures. In our study risk was assessed as the product of the probability of a damaging event (hazard), such as drought or extreme temperatures, and the estimated impact of such an event (vulnerability). To estimate vulnerability we took into account the possible options to reduce risk, by combining estimates of the sensitivity of the system (negative impact on crop yield) and its adaptive capacity. The latter was evaluated as the relative improvement due to alternate management options: the use of alternate varieties or the changes in irrigation management. Vulnerability was quantified using cultivar-specific thermal and hydrologic requirements of a set of cultivars determined by experimental data and from scientific literature. Critical temperatures determining a certain reduction of crop yield have been estimated and used to assess

  13. Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment.

    PubMed

    Collet, Lila; Ruelland, Denis; Estupina, Valérie Borrell; Dezetter, Alain; Servat, Eric

    2015-12-01

    Assessing water supply sustainability is crucial to meet stakeholders' needs, notably in the Mediterranean. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km2, France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need to evaluate possible future changes in water allocation capacity in the catchment, using climate change, dam management and water use scenarios. A modelling framework that was already calibrated and validated on this catchment over the last 50 years was used to assess whether water resources could meet water demands at the 2030 horizon for the domestic, agricultural and environmental sectors. Water supply sustainability was evaluated at the sub-basin scale according to priority allocations using a water supply capacity index, frequency of unsatisfactory years as well as the reliability, resilience and sustainability metrics. Water use projections were based on the evolution of population, per-unit water demand, irrigated areas, water supply network efficiency, as well as on the evaluation of a biological flow. Climate projections were based on an increase in temperature up to 2°C and a decrease in daily precipitation by 20%. Adaptation strategies considered reducing per-unit water demand for the domestic sector and the importation of water volume for the agricultural sector. The dissociated effects of water use and climatic constraints on water supply sustainability were evaluated. Results showed that the downstream portions would be the more impacted as they are the most exploited ones. In the domestic sector, sustainability indicators would be more degraded by climate change scenarios than water use constraints. In the agricultural sector the negative impact of water use scenarios would be

  14. An innovative cross-sectoral method for implementation of trade-off adaptation strategy assessment under climate change

    NASA Astrophysics Data System (ADS)

    Tsao, Jung-Hsuan; Tung, Ching-Pin; Liu, Tzu-Ming

    2014-05-01

    Climate change will increase sharp risks to the water and food supply in coming decades. Although impact assessment and adaptation evaluation has been discussed a lot in recent years, the importance of adaptation implement should not be ignored. In Taiwan, and elsewhere, fallow is an option of adaptation strategy under climate change. Fallow would improve the water scarcity of domestic use, but the food security might be threatened. The trade-off effects of adaptation actions are just like the side effects of medicine which cannot be avoided. Thus, managing water resources with an integrated approach will be urgent. This study aims to establish a cross-sectoral framework for implementation the trade-off adaptation strategy. Not only fallow, but also other trade-off strategy like increasing the percentage of national grain self-sufficiency would be analyzed by a rational decision process. The recent percentage of grain self-sufficiency in Taiwan is around 32, which was decreasing from 53 thirty years ago. Yet, the goal of increasing grain self-sufficiency means much more water must be used in agriculture. In that way, domestic users may face the water shortage situation. Considering the conflicts between water supply and food security, the concepts from integrative negotiation are appropriate to apply. The implementation of trade-off adaptation strategies needs to start by quantifying the utility of water supply and food security were be quantified. Next, each side's bottom line can be found by BATNA (Best Alternative to a Negotiated Agreement) and ZOPA (Zone of Possible Agreement). ZOPA provides the entire possible outcomes, and BATNA ensures the efficiency of adaptation actions by moving along with Pareto frontier. Therefore, the optimal percentage of fallow and grain self-sufficiency can be determined. Furthermore, BATNA also provides the pathway step by step which can be a guideline of adaptation strategies. This framework allows analysts and stakeholder to

  15. Sustainability of forest management under changing climatic conditions in the southern United States: adaptation strategies, economic rents and carbon sequestration.

    PubMed

    Susaeta, Andres; Carter, Douglas R; Adams, Damian C

    2014-06-15

    The impacts of climate change on profitability and carbon storage in even-aged forest stands of two dominant commercial pine species, loblolly and slash pine, in the southern United States were assessed under alternative assumptions about the impact of climate change on forest productivity and catastrophic disturbance rates. Potential adaptation strategies to reduce losses from disturbance included: 1) alternative planting densities, and 2) planting slash pine instead of loblolly pine. In addition, the amount of sequestered carbon was used to develop an index of economic efficiency for carbon sequestration, which further helps rank the suitability of alternative adaptation strategies. Our results indicate that greater economic rents from forests occur with lower planting densities and the substitution of slash pine for high density loblolly pine. However, less carbon is sequestered by low density loblolly pine compared to slash pine and high density loblolly pine. Both adaptation strategies are economically more effective in terms of carbon sequestration compared to the baseline since they generate more economic revenues per Mg of sequestered carbon. PMID:24681367

  16. Atmospheric Extremes in a Changing Climate: A Strategy for Improved Understanding Driven by International Security Concerns

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Kao, C. J.

    2001-05-01

    critical threshold crossing. So extreme atmospheric phenomena are of the essence yet they are poorly understood, even in a steady climate, because they challenge both dynamical modelers and statisticians. The authors will describe a preliminary proposal to harness some of the unique human, computational and observational resources at LANL that could lead to a significant breakthrough in our understanding of extreme weather mechanisms and how they relate to climate and climate change. If implemented, this program could open new relationships between the laboratory and presently unsuspecting client-agencies such as FEMA, CDC, EPA, State Department, and so on.

  17. A National Strategy for Advancing Climate Modeling

    SciTech Connect

    Dunlea, Edward; Elfring, Chris

    2012-12-04

    Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation's capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee's report is a high level analysis, providing a strategic framework to guide progress in the nation's climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

  18. Climate Change and Health

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  19. Fiddling with climate change

    NASA Astrophysics Data System (ADS)

    2012-01-01

    Composer and string musician, turned award-winning environmentalist, Aubrey Meyer tells Nature Climate Change why he is campaigning for countries to adopt his 'contraction and convergence' model of global development to avoid dangerous climate change.

  20. USDA Midwest and Northern Forests Regional Climate Hub: Assessment of climate change vulnerability and adaptation and mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Midwest Regional Climate Hub covers the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and represents one of the most extensive and intensive agricultural systems in the world. The Northern Forests Climate Sub Hub shares this footprint and represents people...

  1. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  2. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  3. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  4. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  5. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  6. Responses to climate and economic risks and opportunities across national and ecological boundaries: changing household strategies on the Mongolian plateau

    PubMed Central

    Brown, Daniel G.; Agrawal, Arun; Sass, Daniel A.; Wang, Jun; Hua, Jin; Xie, Yichun

    2013-01-01

    Climate changes on the Mongolian Plateau are creating new challenges for the households and communities of the region. Much of the existing research on household choices in response to climate variability and change focuses on environmental risks and stresses. In contrast, our analysis highlights the importance of taking into account environmental and economic opportunities in explaining household adaptation choices. We surveyed over 750 households arrayed along an ecological gradient and matched across the national border in Mongolia and the Inner Mongolia Autonomous Region, China, asking what changes in livelihoods strategies households made over the last ten years, and analyzed these choices in two broad categories of options: diversification and livestock management. We combined these data with remotely sensed information about vegetation growth and self-reported exposure to price fluctuations. Our statistical results showed that households experiencing lower ecological and economic variability, higher average levels of vegetation growth, and with greater levels of material wealth, were often those that undertook more actions to improve their conditions in the face of variability. The findings have implications both for how interventions aimed at supporting ongoing choices might be targeted and for theory construction related to social adaptation. PMID:24910710

  7. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data.

    PubMed

    Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J

    2015-12-15

    An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries. PMID:26318682

  8. Responses to climate and economic risks and opportunities across national and ecological boundaries: changing household strategies on the Mongolian plateau

    NASA Astrophysics Data System (ADS)

    Brown, Daniel G.; Agrawal, Arun; Sass, Daniel A.; Wang, Jun; Hua, Jin; Xie, Yichun

    2013-12-01

    Climate changes on the Mongolian Plateau are creating new challenges for the households and communities of the region. Much of the existing research on household choices in response to climate variability and change focuses on environmental risks and stresses. In contrast, our analysis highlights the importance of taking into account environmental and economic opportunities in explaining household adaptation choices. We surveyed over 750 households arrayed along an ecological gradient and matched across the national border in Mongolia and the Inner Mongolia Autonomous Region, China, asking what changes in livelihoods strategies households made over the last ten years, and analyzed these choices in two broad categories of options: diversification and livestock management. We combined these data with remotely sensed information about vegetation growth and self-reported exposure to price fluctuations. Our statistical results showed that households experiencing lower ecological and economic variability, higher average levels of vegetation growth, and with greater levels of material wealth, were often those that undertook more actions to improve their conditions in the face of variability. The findings have implications both for how interventions aimed at supporting ongoing choices might be targeted and for theory construction related to social adaptation.

  9. Local Farmers' Perceptions of Climate Change and Local Adaptive Strategies: A Case Study from the Middle Yarlung Zangbo River Valley, Tibet, China

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and government

  10. A systems approach to identify adaptation strategies for Midwest US cropping systems under increased climate variability and change.

    NASA Astrophysics Data System (ADS)

    Basso, B.; Dumont, B.

    2015-12-01

    A systems approach was implemented to assess the impact of management strategies and climate variability on crop yield, nitrate leaching and soil organic carbon across the the Midwest US at a fine scale spatial resolution. We used the SALUS model which designed to simulated yield and environmental outcomes of continous crop rotations under different agronomic management, soil, weather. We extracted soil parameters from the SSURGO (Soil Survey Geographic) data of nine Midwest states (IA, IL, IN, MI, MN, MO, OH, SD, WI) and weather from NARR (North American Regional Reanalysis). State specific management itineraries were extracted from USDA-NAS. We present the results different cropping systems (continuous corn, corn-soybean and extended rotations) under different management practices (no-tillage, cover crops and residue management). Simulations were conducted under both the baseline (1979-2014) and projected climatic projections (RCP2.5, 6). Results indicated that climate change would likely have a negative impact on corn yields in some areas and positive in others. Soil N, and C losses can be reduced with the adoption of conservation practices.

  11. Messaging climate change uncertainty

    NASA Astrophysics Data System (ADS)

    Cooke, Roger M.

    2015-01-01

    Climate change is full of uncertainty and the messengers of climate science are not getting the uncertainty narrative right. To communicate uncertainty one must first understand it, and then avoid repeating the mistakes of the past.

  12. Climate Change Policy

    NASA Astrophysics Data System (ADS)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  13. Soil erosion, climate change and global food security: challenges and strategies.

    PubMed

    Rhodes, Christopher J

    2014-01-01

    An overview is presented of the determined degree of global land degradation (principally occurring through soil erosion), with some consideration of its possible impact on global food security. Most determinations of the extent of land degradation (e.g. GLASOD) have been made on the basis of "expert judgement" and perceptions, as opposed to direct measurements of this multifactorial phenomenon. More recently, remote sensing measurements have been made which indicate that while some regions of the Earth are "browning" others are "greening". The latter effect is thought to be due to fertilisation of the growth of biomass by increasing levels of atmospheric CO2, and indeed the total amount of global biomass was observed to increase by 3.8% during the years 1981-2003. Nonetheless, 24% of the Earth's surface had occasioned some degree of degradation in the same time period. It appears that while long-term trends in NDVI (normalised difference vegetation index) derivatives are only broad indicators of land degradation, taken as a proxy, the NDVI/NPP (net primary productivity) trend is able to yield a benchmark that is globally consistent and to illuminate regions in which biologically significant changes are occurring. Thus, attention may be directed to where investigation and action at the ground level is required, i.e. to potential "hot spots" of land degradation and/or erosion. The severity of land degradation through soil erosion, and an according catastrophic threat to the survival of humanity may in part have been overstated, although the rising human population will impose inexorable demands for what the soil can provide. However the present system of industrialised agriculture would not be possible without plentiful provisions of cheap crude oil and natural gas to supply fuels, pesticides, herbicides and fertilisers. It is only on the basis of these inputs that it has been possible for the human population to rise above 7 billion. Hence, if the cheap oil and gas

  14. Developing Coastal Adaptation to Climate Change in the New York City Infrastructure-Shed: Process, Approach, Tools, and Strategies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Solecki, William D.; Blake, Reginald; Bowman, Malcolm; Faris, Craig; Gornitz, Vivien; Horton, Radley; Jacob, Klaus; LeBlanc, Alice; Leichenko, Robin; Linkin, Megan; Major, David; O'Grady, Megan; Patrick, Lesley; Sussman, Edna; Yohe, Gary; Zimmerman, Rae

    2010-01-01

    While current rates of sea level rise and associated coastal flooding in the New York City region appear to be manageable by stakeholders responsible for communications, energy, transportation, and water infrastructure, projections for sea level rise and associated flooding in the future, especially those associated with rapid icemelt of the Greenland and West Antarctic Icesheets, may be beyond the range of current capacity because an extreme event might cause flooding and inundation beyond the planning and preparedness regimes. This paper describes the comprehensive process, approach, and tools developed by the New York City Panel on Climate Change (NPCC) in conjunction with the region s stakeholders who manage its critical infrastructure, much of which lies near the coast. It presents the adaptation approach and the sea-level rise and storm projections related to coastal risks developed through the stakeholder process. Climate change adaptation planning in New York City is characterized by a multi-jurisdictional stakeholder-scientist process, state-of-the-art scientific projections and mapping, and development of adaptation strategies based on a risk-management approach.

  15. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?

    PubMed Central

    Singer, Michael C.; Parmesan, Camille

    2010-01-01

    Climate change alters phenological relations between interacting species. We might expect the historical baseline, or starting-point, for such effects to be precise synchrony between the season at which a consumer most requires food and the time when its resources are most available. We synthesize evidence that synchrony was not the historical condition in two insect–plant interactions involving Edith's checkerspot butterfly (Euphydryas editha), the winter moth (Operophtera brumata) and their host plants. Initial observations of phenological mismatch in both systems were made prior to the onset of anthropogenically driven climate change. Neither species can detect the phenology of its host plants with precision. In both species, evolution of life history has involved compromise between maximizing fecundity and minimizing mortality, with the outcome being superficially maladaptive strategies in which many, or even most, individuals die of starvation through poor synchrony with their host plants. Where phenological asynchrony or mismatch with resources forms the starting point for effects of anthropogenic global warming, consumers are particularly vulnerable to impacts that exacerbate the mismatch. This vulnerability likely contributed to extinction of a well-studied metapopulation of Edith's checkerspot, and to the skewed geographical pattern of population extinctions underlying a northward and upward range shift in this species. PMID:20819810

  16. Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy

    SciTech Connect

    Hepple, Robert P.; Benson, Sally M.

    2002-07-30

    The probability that long-term geologic storage or sequestration of carbon dioxide (CO{sub 2}) will become an important climate change mitigation strategy will depend on a number of factors, namely (1) availability, capacity and location of suitable sites, (2) the cost of geologic storage compared to other climate change mitigation options, and (3) public acceptance. Whether or not a site is suitable will be determined by establishing that it can meet a set of performance requirements for safe and effective geologic storage (PRGS). To date, no such PRGS have been developed. Establishing effective PRGS must start with an evaluation of how much CO{sub 2} might be stored and for how long the CO{sub 2} must remain underground to meet goals for controlling atmospheric CO{sub 2} concentrations. These requirements then provide a context for addressing the issue of what, if any, is an ''acceptable surface seepage rate''? This paper provides a preliminary evaluation of CO{sub 2} storage amounts, time-scales, and concordant performance requirements.

  17. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  18. Farmers' perceptions of and adaptation strategies to climate change and their determinants; the case of Punjab province, Pakistan

    NASA Astrophysics Data System (ADS)

    Abid, M.; Scheffran, J.; Schneider, U. A.; Ashfaq, M.

    2014-10-01

    Climate change is a global environmental threat to all economic sectors, particularly the agricultural sector. Pakistan is one of the negatively affected countries from climate change due to its high exposure to extreme events and low adaptive capacity. In Pakistan, farmers are the primary stakeholders in agriculture and are more at risk due to climate vulnerability. Based on farm household data of 450 households collected from three districts in three agro-ecological zones in Punjab province of Pakistan, this study examined how farmers perceive climate change and how they adapt their farming in response to perceived changes in climate. The results demonstrate that awareness to climate change persists in the area, and farm households make adjustments to adapt their agriculture in response to climatic change. Overall 58% of the farm households adapted their farming to climate change. Changing crop varieties, changing planting dates, plantation of trees and changing fertilizer were the main adaptation methods implemented by farm households in the study area. Results from the binary logistic model revealed that education, farm experience, household size, land area, tenancy status, ownership of tube-well, access to market information, information on weather forecasting and extension all influence the farmers' choice of adaptation measures. Results also indicate that adaptation to climate change is constrained by several factors such as lack of information; lack of money; resource constraint and shortage of irrigation water in the study area. Findings of the study suggest the need of greater investment in farmer education and improved institutional setup for climate change adaptation to improve farmers' wellbeing.

  19. Farmers' perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province, Pakistan

    NASA Astrophysics Data System (ADS)

    Abid, M.; Scheffran, J.; Schneider, U. A.; Ashfaq, M.

    2015-05-01

    Climate change is a global environmental threat to all economic sectors, particularly the agricultural sector. Pakistan is one of the countries negatively affected by climate change due to its high exposure to extreme events and low adaptive capacity. In Pakistan, farmers are the primary stakeholders in agriculture and are more at risk due to climate vulnerability. Based on farm household data from 450 households collected from three districts in three agroecological zones in the Punjab province of Pakistan, this study examines how farmers perceive climate change and how they adapt their farming in response to perceived changes in climate. The results demonstrate that awareness of climate change is widespread throughout the area, and farm households make adjustments to adapt their agriculture in response to climatic change. Overall 58% of the farm households adapted their farming to climate change. Changing crop varieties, changing planting dates, planting of shade trees and changing fertilizers were the main adaptation methods implemented by farm households in the study area. The results from the binary logistic model reveal that education, farm experience, household size, land area, tenancy status, ownership of a tube well, access to market information, information on weather forecasting and agricultural extension services all influence farmers' choices of adaptation measures. The results also indicate that adaptation to climate change is constrained by several factors such as lack of information, lack of money, resource constraints and shortage of irrigation water in the study area. Findings of the study suggest the need for greater investment in farmer education and improved institutional setup for climate change adaptation to improve farmers' wellbeing.

  20. Coping with climate change

    USGS Publications Warehouse

    Prato, Tony; Fagre, Daniel B.

    2006-01-01

    Climate is not the only factor in the deterioration of natural systems.We are making big changes to the landscape, altering land use and land cover in major ways. These changes combined present a challenge to environmental management. Adaptive management is a scientific approach to managing the adverse impacts of climate and landscape change.

  1. Development and sustainability of NSF-funded climate change education efforts: lessons learned and strategies used to develop the Reconstructing Earth's Climate History (REaCH) curriculum (Invited)

    NASA Astrophysics Data System (ADS)

    St John, K. K.; Jones, M. H.; Leckie, R. M.; Pound, K. S.; Krissek, L. A.

    2013-12-01

    The context for understanding modern global climate change lies in the records of Earth's past. This is demonstrated by decades of paleoclimate research by scientists in organizations such as IODP and ANDRILL, yet making that science accessible to educators has been a long-standing challenge. Furthermore, content transfer is not enough; in science education, addressing how we know is as important as addressing what we know about science. To that end, our initial NSF-CCLI/TUES objective of Teaching Anchor Concepts of Climate Change (NSF #0737335) was to put authentic data and published case studies of past climate change at students' fingertips in a series of 7 multipart inquiry-based exercise modules for undergraduate classroom and lab use. After 4 years of funding (incl. 2 no-cost extensions) we surpassed our project objective and established an avenue for sustainability that is proving successful. The purpose of this presentation is to share (1) the process by which we developed the curriculum and (2) the strategies used to ensure sustainability. The curriculum development process reflected many of the same successful strategies used in scientific research. It drew on the knowledge and skills of the team; it was collaborative, iterative, and primarily distributive, yet at times directive. The team included paleoclimate researchers and educators from a broad range of undergraduate institutions. We evaluated published data from scientific reports and peer-reviewed journal articles, and used these as the foundation for writing curriculum that was data-rich and inquiry-based. In total 14 multipart exercise modules were developed. The feedback from early and frequent meeting presentations, from formative evaluation by students in courses and by faculty in workshops, and from peer-review by paleoclimate scientists and undergraduate educators helped us fine-tune the materials to the needs of the education and paleoclimate science communities. It additionally helped us

  2. Our Changing Climate

    ERIC Educational Resources Information Center

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  3. Using ethnographic, landscape history and climate data to identify smallholder adaptation strategies to tidal regime changes in the Amazon Estuary

    NASA Astrophysics Data System (ADS)

    Vogt, N. D.; Fernandes, K. D.; Pinedo-Vasquez, M.

    2013-12-01

    Although climate change is predicted to negatively impact production of smallholder farmers in tropical estuaries, how changes in the local climate will impact tidal dynamics specifically relevant to the Amazon River estuarine populations is not clear. We argue that using ethnographic and landscape history data can improve the linkages between climate studies and changes in tidal patterns relevant to local populations. Survey data collected from local elders describe spatial and temporal variations in the local hydro-climatic conditions over recent decades and how farmers are adapting their resource-use patterns to these changes. We also analyze how they adapt resource-use system to unpredictable events. The ethnographic and landscape history information are then used to guide climate studies by identifying how to aggregate climate and tidal data to seasons of production relevant to the study population. Climate studies often aggregate data into astronomical seasons not taking into account local production calendars, which may mask long term trends or patterns of extreme events underway that affect local production. The climate deviations are then correlated to large-scale forcings, such as the El Niño Southern Oscillation (ENSO), to verify whether seasonal climate forecast can be used to predict events to which local populations are most vulnerable. We have applied this approach to identify and analyze extremes changes in the local climate regimens in the Amazon Estuary in both north and south channels using over 40 years of river heightand precipitation data. We present the most significant changes underway, climate drivers of them, and discuss how smallholder farmers are able to adapt to the challenges and opportunities produced by ongoing changes in the local hydro-climatic patterns.

  4. The Northeastern United States Energy-Water Nexus: Climate Change Impacts and Alternative Water Management Strategies for the Power Sector

    NASA Astrophysics Data System (ADS)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Cohen, S. M.; Rosenzweig, B.

    2014-12-01

    The Northeastern United States (NE) relies heavily on thermoelectric power plants (90% of total capacity) to provide electricity to more than 70 million people. This region's power plants require consistent, large volumes of water at sufficiently cold temperatures to generate electricity efficiently, and withdraw approximately 10.5 trillion gallons of water annually. Previous findings indicate that assessments of future electricity pathways must account for water availability, water temperature and the changing climate, as changes in these conditions may limit operational efficiency in the future. To account for such electric system vulnerabilities, we have created a link between an electricity system capacity expansion model (ReEDS) and a hydrologic model that is coupled to a power plant simulation model (FrAMES-TP2M) that allows for a new approach to analyze electricity system development, performance, and environmental impacts. Together, these coupled tools allow us to estimate electricity development and operations in the context of a changing climate and impacts on the seasonal spatial and temporal variability of water resources, downstream thermal effluents that cause plant-to-plant interferences and harm aquatic habitat, economic costs of water conservation methods and associated carbon emissions. In this study, we test and compare a business-as-usual strategy with three alternative water management scenarios that include changes in cooling technologies and water sources utilized for the years 2014-2050. Results of these experiments can provide useful insight into the feasibility of the electricity expansion scenarios in terms of associated water use and thermal impacts, carbon emissions, the cost of generating electricity, and also highlight the importance of accounting for water resources in future power sector planning and performance assessments.

  5. Adapting agriculture to climate change

    PubMed Central

    Howden, S. Mark; Soussana, Jean-François; Tubiello, Francesco N.; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists. PMID:18077402

  6. Schneider lecture: From climate change impacts to climate change risks

    NASA Astrophysics Data System (ADS)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  7. Climate Change in Prehistory

    NASA Astrophysics Data System (ADS)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  8. Climate change 2007 - mitigation of climate change

    SciTech Connect

    Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L.

    2007-07-01

    This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

  9. Climate change and mitigation.

    PubMed

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate. PMID:20873680

  10. As Climate Changes

    NASA Astrophysics Data System (ADS)

    Strzepek, Kenneth M.; Smith, Joel B.

    1996-01-01

    This book is the result of the first comprehensive study of world wide climate fluctuations that is not primarily based on pre-existing literature reviews. The authors, employing original analysis, model runs, and data sets, use common climate change scenarios to examine the impacts on agriculture, water resources, coastal resources, forests and human health. The studies focus on the impacts of climate change in the developing countries around the world. In addition, the editors use Egypt as a case study, providing the first integrated analysis of a single country. This book will enable well-informed and up-to-date decisions by climate change researchers and policy makers.

  11. GestAqua.AdaPT - Mediterranean river basin modeling and reservoir operation strategies for climate change adaptation

    NASA Astrophysics Data System (ADS)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Marco, Machado; Aal, Carlo; Carmona Rodrigues, António; Beça, Pedro; Casanova Lino, Rafael; Rocha, João; Carvalho Santos, Cláudia

    2016-04-01

    Climate change (CC) scenarios for the Mediterranean region include an increase in the frequency and intensity of extreme weather events such as drought periods. higher average temperatures and evapotranspiration, combined with the decrease of annual precipitation may strongly affect the sustainability of water resources. In face of these risks, improving water management actions? by anticipating necessary operational measures is required to insure water quantity and quality according to the needs of the populations and irrigation in agriculture. This is clearly the case of the Alentejo region, southern Portugal, where present climatic conditions already pose significant challenges to water resources stakeholders, mainly from the agricultural and the urban supply sectors. With this in mind, the GestAqua.AdaPT project is underway during 2015 and 2016, aiming at analyzing CC impacts until 2100 and develop operational procedures to ensure water needs are adequately satisfied in the Monte Novo and Vigia reservoirs, which supply water for the city of Évora and nearby irrigation systems. Specific project objectives include: a) defining management and operational adaptation strategies aiming to ensure resource sustainability, both quantitatively and qualitatively; b) evaluate future potential costs and available alternatives to the regional water transfer infrastructure linked with the large Alqueva reservoir implemented in 2011; c) defining CC adaptation strategies to reduce irrigation water needs and d) identification of CC adaptation strategies which can be suitable also to other similar water supply systems. The methodology is centered on the implementation of a cascade of modeling tools, allowing the integrated simulation of the multiple variables under analysis. The project is based on CC scenarios resulting from the CORDEX project for 10 combinations of Global and regional climate models (GCMs and RCMs). The study follows by using two of these combinations

  12. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or

  13. Unmanned Aerial Systems as Part of a Multi-Component Assessment Strategy to Address Climate Change and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Vrekoussis, Mihalis; Sciare, Jean; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos

    2015-04-01

    Unmanned Aerial Systems (UAS) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They offer an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. UAS have the proven potential to contribute to a multi-component assessment strategy that combines remote-sensing, numerical modelling and surface measurements in order to elucidate important atmospheric processes. This includes physical and chemical transformations related to ongoing climate change as well as issues linked to aerosol-cloud interactions and air quality. The distinct advantages offered by UAS comprise, to name but a few: (i) their ability to operate from altitudes of a few meters to up to a few kilometers; (ii) their capability to perform autonomously controlled missions, which provides for repeat-measurements to be carried out at precisely defined locations; (iii) their relative ease of operation, which enables flexible employment at short-term notice and (iv) the employment of more than one platform in stacked formation, which allows for unique, quasi-3D-observations of atmospheric properties and processes. These advantages are brought to bear in combining in-situ ground based observations and numerical modeling with UAS-based remote sensing in elucidating specific research questions that require both horizontally and vertically resolved measurements at high spatial and temporal resolutions. Employing numerical atmospheric modelling, UAS can provide survey information over spatially and temporally localized, focused areas of evolving atmospheric phenomena, as they become identified by the numerical models. Conversely, UAS observations offer urgently needed data for model verification and provide boundary conditions for numerical models. In this presentation, we will

  14. Incorporating Climate Change Predictions into Watershed Restoration and Protection Strategies (WRAPS) in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2014-12-01

    Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.

  15. Cuba confronts climate change.

    PubMed

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions. PMID:26027581

  16. What Is Climate Change?

    ERIC Educational Resources Information Center

    Beswick, Adele

    2007-01-01

    Weather consists of those meteorological events, such as rain, wind and sunshine, which can change day-by-day or even hour-by-hour. Climate is the average of all these events, taken over a period of time. The climate varies over different parts of the world. Climate is usually defined as the average of the weather over a 30-year period. It is when…

  17. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  18. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate.

    PubMed

    Hoving, Henk-Jan T; Gilly, William F; Markaida, Unai; Benoit-Bird, Kelly J; -Brown, Zachary W; Daniel, Patrick; Field, John C; Parassenti, Liz; Liu, Bilin; Campos, Bernardita

    2013-07-01

    Dosidicus gigas (jumbo or Humboldt squid) is a semelparous, major predator of the eastern Pacific that is ecologically and commercially important. In the Gulf of California, these animals mature at large size (>55 cm mantle length) in 1-1.5 years and have supported a major commercial fishery in the Guaymas Basin during the last 20 years. An El Niño event in 2009-2010, was accompanied by a collapse of this fishery, and squid in the region showed major changes in the distribution and life-history strategy. Large squid abandoned seasonal coastal-shelf habitats in 2010 and instead were found in the Salsipuedes Basin to the north, an area buffered from the effects of El Niño by tidal upwelling and a well-mixed water column. The commercial fishery also relocated to this region. Although large squid were not found in the Guaymas Basin from 2010 to 2012, small squid were abundant and matured at an unusually small mantle-length (<30 cm) and young age (approximately 6 months). Juvenile squid thus appeared to respond to El Niño with an alternative life-history trajectory in which gigantism and high fecundity in normally productive coastal-shelf habitats were traded for accelerated reproduction at small size in an offshore environment. Both small and large mature squid, were present in the Salsipuedes Basin during 2011, indicating that both life- history strategies can coexist. Hydro-acoustic data, reveal that squid biomass in this study area nearly doubled between 2010 and 2011, primarily due to a large increase in small squid that were not susceptible to the fishery. Such a climate-driven switch in size-at-maturity may allow D. gigas to rapidly adapt to and cope with El Niño. This ability is likely to be an important factor in conjunction with longerterm climate-change and the potential ecological impacts of this invasive predator on marine ecosystems. PMID:23505049

  19. 2012 NEHA/UL sabbatical report: vulnerability to potential impacts of climate change: adaptation and risk communication strategies for environmental health practitioners in the United Kingdom.

    PubMed

    Ratnapradipa, Dhitinut

    2014-04-01

    Climate change risk assessment, adaptation, and mitigation planning have become increasingly important to environmental health practitioners (EHPs). The NEHA/UL Sabbatical Exchange Award allowed me to investigate how EHPs in the UK are incorporating climate change planning and communication strategies into their work. Projected climate change risks in the UK include flooding, extreme heat, water shortages, severe weather, decreased air quality, and changes in vectors. Despite public perception and funding challenges, all the local government representatives with whom I met incorporated climate change risk assessment, adaptation, and mitigation planning into their work. The mandated Community Risk Register serves as a key planning document developed by each local government authority and is a meaningful way to look at potential climate change health risks. Adaptation and sustainability were common threads in my meetings. These often took the form of "going green" with transportation, energy efficiency, conserving resources, and building design because the efforts made sense monetarily as future cost savings. Communication strategies targeted a variety of audiences (EHPs, non-EHP government employees, politicians, and the general public) using a broad range of communication channels (professional training, lobbying, conferences and fairs, publications, print materials, Internet resources, social media, billboards, etc). PMID:24749223

  20. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  1. Climate Change Made Simple

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Harrison, Tim G.

    2007-01-01

    The newly revised specifications for GCSE science involve greater consideration of climate change. This topic appears in either the chemistry or biology section, depending on the examination board, and is a good example of "How Science Works." It is therefore timely that students are given an opportunity to conduct some simple climate modelling.…

  2. Site-specific water-use strategies of mountain pine and larch to cope with recent climate change.

    PubMed

    Churakova Sidorova, Olga V; Saurer, Matthias; Bryukhanova, Marina V; Siegwolf, Rolf T W; Bigler, Christof

    2016-08-01

    We aim to achieve a mechanistic understanding of the eco-physiological processes in Larix decidua and Pinus mugo var. uncinata growing on north- and south-facing aspects in the Swiss National Park in order to distinguish the short- and long-term effects of a changing climate. To strengthen the interpretation of the δ(18)O signal in tree rings and its coherence with the main factors and processes driving evaporative δ(18)O needle water enrichment, we analyzed the δ(18)O in needle, xylem and soil water over the growing season in 2013 and applied the mechanistic Craig-Gordon model (1965) for the short-term responses. We found that δ(18)O needle water strongly reflected the variability of relative humidity mainly for larch, while only δ(18)O in pine xylem water showed a strong link to δ(18)O in precipitation. Larger differences in offsets between modeled and measured δ(18)O needle water for both species from the south-facing aspects were detected, which could be explained by the high transpiration rates. Different soil water and needle water responses for the two species indicate different water-use strategies, further modulated by the site conditions. To reveal the long-term physiological response of the studied trees to recent and past climate changes, we analyzed δ(13)C and δ(18)O in wood chronologies from 1900 to 2013. Summer temperatures as well as summer and annual amount of precipitations are important factors for growth of both studied species from both aspects. However, mountain pine trees reduced sensitivity to temperature changes, while precipitation changes come to play an important role for the period from 1980 to 2013. Intrinsic water-use efficiency (WUEi) calculated for larch trees since the 1990s reached a saturation point at elevated CO2 Divergent trends between pine WUEi and δ(18)O are most likely indicative of a decline of mountain pine trees and are also reflected in decoupling mechanisms in the isotope signals between needles and tree

  3. Reservoir Systems in Changing Climate

    NASA Astrophysics Data System (ADS)

    Lien, W.; Tung, C.; Tai, C.

    2007-12-01

    Climate change may cause more climate variability and further results in more frequent extreme hydrological events which may greatly influence reservoir¡¦s abilities to provide service, such as water supply and flood mitigation, and even danger reservoir¡¦s safety. Some local studies have identified that climate change may cause more flood in wet period and less flow in dry period in Taiwan. To mitigate climate change impacts, more reservoir space, i.e. less storage, may be required to store higher flood in wet periods, while more reservoir storage may be required to supply water for dry periods. The goals to strengthen adaptive capacity of water supply and flood mitigation are conflict under climate change. This study will focus on evaluating the impacts of climate change on reservoir systems. The evaluation procedure includes hydrological models, a reservoir water balance model, and a water supply system dynamics model. The hydrological models are used to simulate reservoir inflows under different climate conditions. Future climate scenarios are derived from several GCMs. Then, the reservoir water balance model is developed to calculate reservoir¡¦s storage and outflows according to the simulated inflows and operational rules. The ability of flood mitigation is also evaluated. At last, those outflows are further input to the system dynamics model to assess whether the goal of water supply can still be met. To mitigate climate change impacts, the implementing adaptation strategies will be suggested with the principles of risk management. Besides, uncertainties of this study will also be analyzed. The Feitsui reservoir system in northern Taiwan is chosen as a case study.

  4. Population and Climate Change

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  5. Criminality and climate change

    NASA Astrophysics Data System (ADS)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  6. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  7. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  8. Position Statement On Climate Change.

    PubMed

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people. PMID:26920851

  9. Rapid climate change

    SciTech Connect

    Morantine, M.C.

    1995-12-31

    Interactions between insolation changes due to orbital parameter variations, carbon dioxide concentration variations, the rate of deep water formation in the North Atlantic and the evolution of the northern hemisphere ice sheets during the most recent glacial cycle will be investigated. In order to investigate this period, a climate model is being developed to evaluate the physical mechanisms thought to be most significant during this period. The description of the model sub-components will be presented. The more one knows about the interactions between the sub-components of the climate system during periods of documented rapid climate change, the better equipped one will be to make rational decisions on issues related to impacts on the environment. This will be an effort to gauge the feedback processes thought to be instrumental in rapid climate shifts documented in the past, and their potential to influence the current climate. 53 refs.

  10. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  11. Global climate change

    PubMed Central

    Alley, Richard B.; Lynch-Stieglitz, Jean; Severinghaus, Jeffrey P.

    1999-01-01

    Most of the last 100,000 years or longer has been characterized by large, abrupt, regional-to-global climate changes. Agriculture and industry have developed during anomalously stable climatic conditions. New, high-resolution analyses of sediment cores using multiproxy and physically based transfer functions allow increasingly confident interpretation of these past changes as having been caused by “band jumps” between modes of operation of the climate system. Recurrence of such band jumps is possible and might be affected by human activities. PMID:10468545

  12. Global climate change.

    PubMed

    Alley, R B; Lynch-Stieglitz, J; Severinghaus, J P

    1999-08-31

    Most of the last 100,000 years or longer has been characterized by large, abrupt, regional-to-global climate changes. Agriculture and industry have developed during anomalously stable climatic conditions. New, high-resolution analyses of sediment cores using multiproxy and physically based transfer functions allow increasingly confident interpretation of these past changes as having been caused by "band jumps" between modes of operation of the climate system. Recurrence of such band jumps is possible and might be affected by human activities. PMID:10468545

  13. Classifying climate change adaptation frameworks

    NASA Astrophysics Data System (ADS)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  14. Adopting public values and climate change adaptation strategies in urban forest management: A review and analysis of the relevant literature.

    PubMed

    Ordóñez Barona, Camilo

    2015-12-01

    Urban trees are a dominant natural element in cities; they provide important ecosystem services to urban citizens and help urban areas adapt to climate change. Many rationales have been proposed to provide a purpose for urban forest management, some of which have been ineffective in addressing important ecological and social management themes. Among these rationales we find a values-based perspective, which sees management as a process where the desires of urban dwellers are met. Another perspective is climate change adaptation, which sees management as a process where urban forest vulnerability to climate change is reduced and resilience enhanced. Both these rationales have the advantage of complementing, enhancing, and broadening urban forest management objectives. A critical analysis of the literature on public values related to urban forests and climate change adaptation in the context of urban forests is undertaken to discuss what it means to adopt these two issues in urban forest management. The analysis suggests that by seeing urban forest management as a process by which public values are satisfied and urban-forest vulnerabilities to climate change are reduced, we can place issues such as naturalization, adaptive management, and engaging people in management at the centre of urban forest management. Focusing urban forest management on these issues may help ensure the success of programs focused on planting more trees and increasing citizen participation in urban forest management. PMID:26410091

  15. Observed climate change hotspots

    NASA Astrophysics Data System (ADS)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  16. Global Energy Technology Strategy: Addressing Climate Change Phase 2 Findings from an international Public-Private Sponsored Research Program

    SciTech Connect

    Edmonds, James A.; Wise, Marshall A.; Dooley, James J.; Kim, Son H.; Smith, Steven J.; Runci, Paul J.; Clarke, Leon E.; Malone, Elizabeth L.; Stokes, Gerald M.

    2007-05-01

    This book examines the role of global energy technology in addressing climate change. The book considers the nature of the climate change challenge and the role of energy in the issue. It goes on to consider the implications for the evolution of the global energy system and the potential value of technology availability, development and deployment. Six technology systems are identified for special consideration: CO2 capture and storage, Biotechnology, Hydrogen systems, Nuclear energy, Wind and solar energy, and End-use energy technologies. In addition, consideration is given to the role of non-CO2 gases in climate change as well as the potential of technology development and deployment to reduce non-CO2 emissions. Present trends in energy R&D are examined and potentially fruitful avenues for research. The book concludes with a set of key findings.

  17. Renewable Energy and Climate Change

    SciTech Connect

    Chum, H. L.

    2012-01-01

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

  18. The emerging climate change regime

    SciTech Connect

    Bodansky, D.M.

    1995-11-01

    The emerging climate change regime--with the UN Framework Convention on Climate Change (FCCC) at its core--reflects the substantial uncertainties, high stakes and complicated politics of the greenhouse warming issue. The regime represents a hedging strategy. On the one hand, it treats climate change as a potentially serious problem, and in response, creates a long-term, evolutionary process to encourage further research, promote national planning, increase public awareness, and help create a sense of community among states. But it requires very little by way of substantive--and potentially costly--mitigation or adaptation measures. Although the FCCC parties have agreed to negotiate additional commitments, substantial progress is unlikely without further developments in science, technology, and public opinion. The FCCC encourages such developments, and is capable of evolution and growth, should the political will to take stronger international action emerge. 120 refs., 3 tabs.

  19. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  20. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  1. Preparing for climate change.

    PubMed

    Holdgate, M

    1989-01-01

    chlorofluorocarbons (CFCs) have been released in great quantities through their use in aerosol sprays, refrigerator fluids, and insulating foams. We can get rid of CFCs and curb the pollutants generating ozone, but it will be difficult to put the brake on either methane or nitrous oxide. And the reduction in carbon dioxide emissions will demand major changes in energy policy as well as action to slow deforestation. It appears that we are already committed to rising temperatures and sea levels. The question is by how much, in which areas? A number of things can be done to prepare for these changes: Governments must recognize that there is a problem; Better models must be worked out, especially to define where the greatest impacts from climate change and sea level rise will hit; Reference scenarios must be developed to see what the impacts are likely to be in ecological, agricultural, social and economic terms; Every country should develop "avoidance strategies" to minimize risk (for example, by not building on land likely to be flooded); We must cut down on the amount of greenhouse gases released into the atmosphere from human activities, by eliminating CFCs and adopting energy conservation programs and other measures to minimize CO2 release; Global agreements to protect the atmosphere are needed. PMID:12285901

  2. Current Climate Variability & Change

    NASA Astrophysics Data System (ADS)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  3. Costing climate change

    NASA Astrophysics Data System (ADS)

    Reay, David S.

    2002-12-01

    Debate over how, when, and even whether man-made greenhouse-gas emissions should be controlled has grown in intensity even faster than the levels of greenhouse gas in our atmosphere. Many argue that the costs involved in reducing emissions outweigh the potential economic damage of human-induced climate change. Here, existing cost-benefit analyses of greenhouse-gas reduction policies are examined, with a view to establishing whether any such global reductions are currently worthwhile. Potential for, and cost of, cutting our own individual greenhouse-gas emissions is then assessed. I find that many abatement strategies are able to deliver significant emission reductions at little or no net cost. Additionally, I find that there is huge potential for individuals to simultaneously cut their own greenhouse-gas emissions and save money. I conclude that cuts in global greenhouse-gas emissions, such as those of the Kyoto Protocol, cannot be justifiably dismissed as posing too large an economic burden.

  4. Avoiding dangerous climate change

    SciTech Connect

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic; Tom Wigley; Gary Yohe

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41 papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.

  5. Debating Climate Change

    SciTech Connect

    Malone, Elizabeth L.

    2009-11-01

    Debating Climate Change explores, both theoretically and empirically, how people argue about climate change and link to each other through various elements in their arguments. As science is a central issue in the debate, the arguments of scientists and the interpretations and responses of non-scientists are important aspects of the analysis. The book first assesses current thinking about the climate change debate and current participants in the debates surrounding the issue, as well as a brief history of various groups’ involvements. Chapters 2 and 3 distill and organize various ways of framing the climate change issue. Beginning in Chapter 4, a modified classical analysis of the elements carried in an argument is used to identify areas and degrees of disagreement and agreement. One hundred documents, drawn from a wide spectrum of sources, map the topic and debate space of the climate change issue. Five elements of each argument are distilled: the authority of the writer, the evidence presented, the formulation of the argument, the worldview presented, and the actions proposed. Then a social network analysis identifies elements of the arguments that point to potential agreements. Finally, the book suggests mechanisms by which participants in the debate can build more general agreements on elements of existing agreement.

  6. Canadian/US update: The emerging visibility and role of agroforestry in national and international climate change strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their continued capability to provide these services under potential climate change (CC) is being questioned. Addressing both concerns requires a broader approach of des...

  7. The Atlantic Climate Change Program

    SciTech Connect

    Molinari, R.L. ); Battisti, D. ); Bryan, K. ); Walsh, J. )

    1994-07-01

    The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and progress in four ACCP elements are described. Advances include (1) descriptions of decadal and longer-term variability in the coupled ocean-atmosphere-ice system of the North Atlantic; (2) development of tools needed to perform long-term model runs of coupled simulations of North Atlantic air-sea interaction; (3) definition of mean and time-dependent characteristics of the thermohaline circulation; and (4) development of monitoring strategies for various elements of the thermohaline circulation. 20 refs., 4 figs., 1 tab.

  8. AMS and climate change

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter

    2010-04-01

    This paper attempts to draw a connection between information that can be gained from measurements with accelerator mass spectrometry (AMS) and the study of climate change on earth. The power of AMS to help in this endeavor is demonstrated by many contributions to these proceedings. Just like in archaeology, we are entering a phase of an 'integrated approach' to understand the various components of climate change. Even though some basic understanding emerged, we are still largely in a situation of a phenomenological description of climate change. Collecting more data is therefore of paramount interest. Based on a recent suggestion of 'geo-engineering' to take out CO 2 from the atmosphere, this radical step will also be briefly discussed.

  9. Climate change and food security.

    PubMed

    Gregory, P J; Ingram, J S I; Brklacich, M

    2005-11-29

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  10. Climate change matters.

    PubMed

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world. PMID:23665996

  11. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, F.H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.

    2003-01-01

    In 1991, the United States Congress passed the Global Change Research Act directing the Executive Branch of government to assess the potential effects of predicted climate change and variability on the nation. This congressional action followed formation of the Intergovernmental Panel on Climate Change (IPCC) in 1988 by the United Nations Environmental Program and World Meteorological Organization. Some 2,000 scientists from more than 150 nations contribute to the efforts of the IPCC. Under coordination of the U.S. Global Change Research Program, the congressionally ordered national assessment has divided the country into 19 regions and five socio-economic sectors that cut across the regions: agriculture, coastal and marine systems, forests, human health, and water. Potential climate-change effects are being assessed in each region and sector, and those efforts collectively make up the national assessment. This document reports the assessment of potential climate-change effects on the Rocky Mountain/Great Basin (RMGB) region which encompasses parts of nine western states. The assessment began February 16-18, 1998 with a workshop in Salt Lake City co-convened by Frederic H. Wagner of Utah State University and Jill Baron of the U.S. Geological Survey Biological Resources Division (BRD). Invitations were sent to some 300 scientists and stakeholders representing 18 socio-economic sectors in nine statesa?|

  12. Anthropogenic climate change

    SciTech Connect

    Budyko, M.I.; Izreal, Yu.A.

    1991-01-01

    The climate modeling community would agree that the present generation of theoretical models cannot adequately answer important question about the climatic implications of increasing concentrations of CO[sub 2] and other greenhouse gases. Society, however, is presently deciding by its action, or inaction, the policies that will deal with the extent and results of our collective flatulence. In this situation, an engineering approach to estimating the developing pattern of anthropogenic climate change is appropriate. For example, Budyko has argued that, while scientists may have made great advances in modelling the flow around an airfoil, engineers make extensive use of empirical equations and measurements to design airplanes that fly. Budyko and Izreal have produced an encyclopedic treatise summarizing the results of Soviet researchers in applying empirical and semiempirical methods to estimating future climatic patterns, and some of their ensuring effects. These techniques consist mainly of statistical relationships derived from 1850-1950 network data and of patterns revealed by analysis of paleoclimatic data. An important part of the Soviet effort in anthropogenic climate-change studies is empirical techniques that represent independent verification of the results of theoretical climate models.

  13. Adaption strategies to the effect of climate change on a coastal area in Northwest Germany with different land management scenarios

    NASA Astrophysics Data System (ADS)

    Graeff, Thomas; Krause, Stefan; Maier, Martin; Oswald, Sascha

    2015-04-01

    Coastal areas are highly vulnerable to the impact of climate change and handling is difficult. Adaption to two different situations has to be taken into account. On the one hand, increasing global sea level in combination with increased precipitation and higher storm surge frequency has to be handled. On the other hand, in summer periods due to the increase of temperature, enhanced evapotranspiration and an increase of salty seawater intrusion into groundwater have to be managed. In this study we present different landuse management scenarios on a coastal area in Northwest Germany, East Frisia, and their effect on the hydrological response. Landuse is dominated by dairy farming and intensive crop farming. 30 percent of the area lies below sea level. A dense channel network in combination with several pumping stations allows permeant drainage. The soils are characterised by marsh soils and impermeable layers which prevent an interaction with the confined brackish aquifer. Observations in those areas indicate a high salinity with concentrations peaking during the summer period. The landuse strategies include a scenario that the technological level of the management will be adapted to rainfall and sea level but without additional drainage from the hinterland to reduce salt water concentration. A second scenario includes the adaptation to increasing precipitation and the sea level with a polder system and wetland areas designated as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods. Two scenarios use large polder areas in the future as potential buffer for winter storm surges and inland floods and as freshwater storage for dry summer periods, additional usage for nature conservation and as the storage of carbon sequestration or extensive farming are planned. Also, stakeholders have developed a system of several smaller polders in combination with an intensification of the water resource management, and this is

  14. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  15. Harnessing Homophily to Improve Climate Change Education

    ERIC Educational Resources Information Center

    Monroe, Martha C.; Plate, Richard R.; Adams, Damian C.; Wojcik, Deborah J.

    2015-01-01

    The Cooperative Extension Service (Extension) in the United States is well positioned to educate the public, particularly farmers and foresters, about climate change and to encourage responsible adoption of adaptation and mitigation strategies. However, the climate change attitudes and perceptions of Extension professionals have limited…

  16. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  17. Climate change velocity underestimates climate change exposure in mountainous regions

    NASA Astrophysics Data System (ADS)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  18. Climate change velocity underestimates climate change exposure in mountainous regions.

    PubMed

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  19. Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives

    NASA Astrophysics Data System (ADS)

    Loboda, Tatiana V.

    2014-11-01

    Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.

  20. Climate Change? When? Where?

    ERIC Educational Resources Information Center

    Boon, Helen

    2009-01-01

    Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city. The comparison was conducted to investigate whether more awareness and understanding of these issues is…

  1. Learning Progressions & Climate Change

    ERIC Educational Resources Information Center

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  2. Emissions versus climate change

    EPA Science Inventory

    Climate change is likely to offset some of the improvements in air quality expected from reductions in pollutant emissions. A comprehensive analysis of future air quality over North America suggests that, on balance, the air will still be cleaner in coming decades.

  3. Confronting Climate Change

    ERIC Educational Resources Information Center

    Roach, Ronald

    2009-01-01

    The Joint Center for Political and Economic Studies, an African-American think tank based in Washington, D.C., convenes a commission to focus on the disparate impact of climate change on minority communities and help involve historically Black institutions in clean energy projects. Launched formally in July 2008, the Commission to Engage…

  4. Aging, Climate Change, and Legacy Thinking

    PubMed Central

    Fried, Linda; Moody, Rick

    2012-01-01

    Climate change is a complex, long-term public health challenge. Older people are especially susceptible to certain climate change impacts, such as heat waves. We suggest that older people may be a resource for addressing climate change because of their concern for legacy—for leaving behind values, attitudes, and an intact world to their children and grandchildren. We review the theoretical basis for “legacy thinking” among older people. We offer suggestions for research on this phenomenon, and for action to strengthen the sense of legacy. At a time when older populations are growing, understanding and promoting legacy thinking may offer an important strategy for addressing climate change. PMID:22698047

  5. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  6. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:26504134

  7. Chemical Extraction of Carbon Dioxide From Air: A Strategy to Avoid Climate Change and Sustain Fossil Energy?

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Ziock, H.; Rueff, G.; Colman, J.; Smith, W. S.

    2002-12-01

    analyzed by X ray diffraction and thermal gravimetric analysis. We identify the atmospheric sub-laminar boundary layer and the stagnant liquid surface as potential barriers to CO2 uptake. Strategies to overcome these limits are developed. We discuss other renewable, energy efficient, and effective CO2 scrubbers with lower binding energies. High-resolution simulations are also being performed to characterize the effects of atmospheric mixing, size and geometry of extractors on the collection efficiency. Capture of CO2 from air is a promising long term strategy to sustain fossil energy use by avoiding climate change but much research and development is needed to implement it. [1] Elliott S. et al.,Compensation of atmospheric CO2 buildup through engineered chemical sinkage, Geophys. Res. Lett., 28(7), 1235-1238, 2001. [2] Dubey, M. K. et al., Extraction of carbon dioxide from the atmosphere through engineered chemical sinkage, 2002 American Chemical Society, Division of Fuel Chemistry Preprints, 47(1), 81-84, 2002. [3] Johnston, et al. Chemical Transport Modeling of Potential Atmospheric Carbon Dioxide Sinks, in press Energy Conversion & Management, 2002.

  8. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  9. Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges

    ERIC Educational Resources Information Center

    Owen, Rochelle; Fisher, Erica; McKenzie, Kyle

    2013-01-01

    Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review…

  10. Ecological Impact of Climate Change on Leaf Economic Strategies Across the Paleocene- Eocene Thermal Maximum, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Royer, D. L.; Currano, E. D.; Wilf, P.; Wing, S. L.; Labandeira, C. C.; Lovelock, E. C.

    2007-12-01

    Deciphering the ecological impacts of climate change is a key priority for paleontologists and ecologists alike. An important ecological metric in vegetated settings is the leaf economics spectrum, which represents an adaptive continuum running from rapid resource acquisition to maximized resource retention. This spectrum is comprised of a large number of coordinated traits, including leaf mass per area (LMA), leaf lifespan, photosynthetic rate, nutrient concentration, and palatability to herbivores. Here we apply a recently developed technique for reconstructing LMA to a suite of four isotaphonomic fossil plant sites spanning the Paleocene-Eocene thermal maximum (PETM) in the Bighorn Basin, Wyoming, USA. This technique is based on the biomechanical scaling between petiole width and leaf mass, and it has been calibrated with 65 present-day sites from five continents and tested on two well-known Eocene fossil localities (Bonanza, Utah and Republic, Washington). There are no significant differences in LMA among plants across the PETM. This stasis is present despite a backdrop of extreme climate change during the PETM in this region, including a three-to-four-fold increase in atmospheric CO2, an ~5 °C rise in temperature, and possible drying. Moreover, quantitative measurements of insect herbivory show, on average, a two-fold increase during the PETM relative to before and after the event. We interpret our results to suggest that leaf-economic relationships can, in some situations, partially decouple. More specifically, our documented increase in insect herbivory during the PETM with no concomitant decrease in LMA implies that during this interval less carbon was being captured by plants per unit of investment. Because the rate and magnitude of climate change during the PETM is similar to present-day anthropogenic changes, our results may provide clues for predictions of ecological impacts in the near future.

  11. Climate Change and Climate Modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin

    2011-06-01

    In long-established fields like fluid mechanics or quantum theory, the contents of introductory textbooks are mostly predictable: The basics are covered in more or less the same order, and while cutting-edge research occasionally gets a look-in (depending on the inclinations of the authors), the contents are far more frequently reworkings of previous textbooks than a synthesis of recent primary literature. In a field like climate science, however, where there is a much shorter history of textbook writing, much of the subject matter is extracted directly from papers published in the past 10 years. This makes the resulting textbooks far more varied and interesting.

  12. Projections of Future Climate Change

    SciTech Connect

    Cubasch, U.; Meehl , G.; Boer, G. J.; Stouffer, Ron; Dix, M.; Noda, A.; Senior, C. A.; Raper, S.; Yap, K. S.; Abe-Ouchi, A.; Brinkop, S.; Claussen, M.; Collins, M.; Evans, J.; Fischer-Bruns, I.; Flato, G.; Fyfe, J. C.; Ganopolski, A.; Gregory, J. M.; Hu, Z. Z.; Joos, Fortunat; Knutson, T.; Knutti, R.; Landsea, C.; Mearns, L. O.; Milly, C.; Mitchell, J. F.; Nozawa, T.; Paeth, H.; Raisanen, J.; Sausen, R.; Smith, Steven J.; Stocker, T.; Timmermann, A.; Ulbrich, U.; Weaver, A.; Wegner, J.; Whetton, P.; Wigley, T. M.; Winton, M.; Zwiers, F.; Kim, J. W.; Stone, J.

    2001-10-01

    Contents: Executive Summary 9.1 Introduction 9.2 Climate and Climate Change 9.3 Projections of Climate Change 9.4 General Summary Appendix 9.1: Tuning of a Simple Climate Model toAOGCM Results References

  13. Perception of climate change.

    PubMed

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-09-11

    "Climate dice," describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3σ) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change. PMID:22869707

  14. Climate change and Arctic parasites.

    PubMed

    Dobson, Andy; Molnár, Péter K; Kutz, Susan

    2015-05-01

    Climate is changing rapidly in the Arctic. This has important implications for parasites of Arctic ungulates, and hence for the welfare of Arctic peoples who depend on caribou, reindeer, and muskoxen for food, income, and a focus for cultural activities. In this Opinion article we briefly review recent work on the development of predictive models for the impacts of climate change on helminth parasites and other pathogens of Arctic wildlife, in the hope that such models may eventually allow proactive mitigation and conservation strategies. We describe models that have been developed using the metabolic theory of ecology. The main strength of these models is that they can be easily parameterized using basic information about the physical size of the parasite. Initial results suggest they provide important new insights that are likely to generalize to a range of host-parasite systems. PMID:25900882

  15. Confronting Climate Change

    NASA Astrophysics Data System (ADS)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  16. Outchasing climate change

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  17. NASA Nice Climate Change Education

    NASA Astrophysics Data System (ADS)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  18. Climate change and the permafrost carbon feedback

    USGS Publications Warehouse

    Schuur, E.A.G.; McGuire, Anthony; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, S.M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  19. Climate change and the permafrost carbon feedback.

    PubMed

    Schuur, E A G; McGuire, A D; Schädel, C; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Koven, C D; Kuhry, P; Lawrence, D M; Natali, S M; Olefeldt, D; Romanovsky, V E; Schaefer, K; Turetsky, M R; Treat, C C; Vonk, J E

    2015-04-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics. PMID:25855454

  20. Statistical principles for climate change studies

    SciTech Connect

    Levine, R.A.; Berliner, L.M. |

    1999-02-01

    Predictions of climate change due to human-induced increases in greenhouse gas and aerosol concentrations have been an ongoing arena for debate and discussion. A major difficulty in early detection of changes resulting from anthropogenic forcing of the climate system is that the natural climate variability overwhelms the climate change signal in observed data. Statistical principles underlying fingerprint methods for detecting a climate change signal above natural climate variations and attributing the potential signal to specific anthropogenic forcings are discussed. The climate change problem is introduced through an exposition of statistical issues in modeling the climate signal and natural climate variability. The fingerprint approach is shown to be analogous to optimal hypothesis testing procedures from the classical statistics literature. The statistical formulation of the fingerprint scheme suggests new insights into the implementation of the techniques for climate change studies. In particular, the statistical testing ideas are exploited to introduce alternative procedures within the fingerprint model for attribution of climate change and to shed light on practical issues in applying the fingerprint detection strategies.

  1. Climate changes, shifting ranges

    USGS Publications Warehouse

    Romanach, Stephanie

    2015-01-01

    Even a fleeting mention of the Everglades conjures colorful images of alligators, panthers, flamingos, and manatees. Over the centuries, this familiar cast of characters has become synonymous with life in south Florida. But the workings of a changing climate have the potential to significantly alter the menagerie of animals that call this area home. Global projections suggest south Florida wildlife will need to contend with higher temperatures, drier conditions, and rising seas in the years ahead. Recent modeling efforts shed new light on the potential outcomes these changes may have for threatened and endangered species in the area.

  2. Climate adaptation strategy for natural resources released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-04-01

    The National Fish, Wildlife, and Plants Climate Adaptation Strategy, released on 26 March by the Obama administration, calls for a series of measures to help public and private decision makers better address the effects of climate change on living natural resources. The measures include conserving habitat to support healthy fish, wildlife, and plant populations and ecosystem functions; managing species and habitats to protect ecosystem functions and provide sustainable commercial, subsistence, recreational, and cultural use; increasing knowledge and information about effects on and responses of fish, wildlife, and plants; and reducing nonclimate stressors to help fish, wildlife, plants, and ecosystems adapt.

  3. The velocity of climate change.

    PubMed

    Loarie, Scott R; Duffy, Philip B; Hamilton, Healy; Asner, Gregory P; Field, Christopher B; Ackerly, David D

    2009-12-24

    The ranges of plants and animals are moving in response to recent changes in climate. As temperatures rise, ecosystems with 'nowhere to go', such as mountains, are considered to be more threatened. However, species survival may depend as much on keeping pace with moving climates as the climate's ultimate persistence. Here we present a new index of the velocity of temperature change (km yr(-1)), derived from spatial gradients ( degrees C km(-1)) and multimodel ensemble forecasts of rates of temperature increase ( degrees C yr(-1)) in the twenty-first century. This index represents the instantaneous local velocity along Earth's surface needed to maintain constant temperatures, and has a global mean of 0.42 km yr(-1) (A1B emission scenario). Owing to topographic effects, the velocity of temperature change is lowest in mountainous biomes such as tropical and subtropical coniferous forests (0.08 km yr(-1)), temperate coniferous forest, and montane grasslands. Velocities are highest in flooded grasslands (1.26 km yr(-1)), mangroves and deserts. High velocities suggest that the climates of only 8% of global protected areas have residence times exceeding 100 years. Small protected areas exacerbate the problem in Mediterranean-type and temperate coniferous forest biomes. Large protected areas may mitigate the problem in desert biomes. These results indicate management strategies for minimizing biodiversity loss from climate change. Montane landscapes may effectively shelter many species into the next century. Elsewhere, reduced emissions, a much expanded network of protected areas, or efforts to increase species movement may be necessary. PMID:20033047

  4. Understanding recent climate change.

    PubMed

    Serreze, Mark C

    2010-02-01

    The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most. PMID:20121837

  5. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  6. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    PubMed

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands. PMID:21750695

  7. Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change

    PubMed Central

    Redman, Regina S.; Kim, Yong Ok; Woodward, Claire J. D. A.; Greer, Chris; Espino, Luis; Doty, Sharon L.; Rodriguez, Rusty J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands. PMID:21750695

  8. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    USGS Publications Warehouse

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  9. Agriculture and climate change

    SciTech Connect

    Abelson, P.H.

    1992-07-03

    How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

  10. Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk.

    PubMed

    Bird, David Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; Koeberl, Judith; La Jeunesse, Isabelle; Meyer, Swen; Prettenthaler, Franz; Soddu, Antonino; Woess-Gallasch, Susanne

    2016-02-01

    In Europe, there is concern that climate change will cause significant impacts around the Mediterranean. The goals of this study are to quantify the economic risk to crop production, to demonstrate the variability of yield by soil texture and climate model and to investigate possible adaptation strategies. In the Rio Mannu di San Sperate watershed, located in Sardinia (Italy) we investigate production of wheat, a rainfed crop. In the Chiba watershed located in Cap Bon (Tunisia), we analyze irrigated tomato production. We find, using the FAO model AquaCrop that crop production will decrease significantly in a future climate (2040-2070) as compared to the present without adaptation measures. Using "value-at-risk", we show that production should be viewed in a statistical manner. Wheat yields in Sardinia are modelled to decrease by 64% on clay loams, and to increase by 8% and 26% respectively on sandy loams and sandy clay loams. Assuming constant irrigation, tomatoes sown in August in Cap Bon are modelled to have a 45% chance of crop failure on loamy sands; a 39% decrease in yields on sandy clay loams; and a 12% increase in yields on sandy loams. For tomatoes sown in March; sandy clay loams will fail 81% of the time; on loamy sands the crop yields will be 63% less while on sandy loams, the yield will increase by 12%. However, if one assume 10% less water available for irrigation then tomatoes sown in March are not viable. Some adaptation strategies will be able to counteract the modelled crop losses. Increasing the amount of irrigation one strategy however this may not be sustainable. Changes in agricultural management such as changing the planting date of wheat to coincide with changing rainfall patterns in Sardinia or mulching of tomatoes in Tunisia can be effective at reducing crop losses. PMID:26187862

  11. Undocumented migration in response to climate change

    PubMed Central

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  12. Practical resilience to climate change.

    PubMed

    2010-06-01

    With the NHS generating around 18 million tonnes of carbon and CO2 annually, estates personnel face a considerable challenge in meeting tough Government and EU energy reduction targets while maintaining patient safety/comfort amid predictions of, for instance, hotter summers. A three-year research project, which builds on the conclusions of two recent academic papers examining low energy design and refurbishment strategies for NHS buildings, and the opportunities for low energy ventilation and cooling, is investigating practical ways to adapt the NHS Retained Estate to increase its climate change resilience while simultaneously reducing its carbon footprint. PMID:20597384

  13. Insects and climate change

    SciTech Connect

    Elias, S.A. )

    1991-09-01

    In this article the author describes some of the significant late glacial and Holocene changes that occurred in the Rocky Mountains, including the regional extirpation of certain beetle species. The fossil data presented here summarize what is known about regional insect responses to climate change in terms of species stability and geographic distribution. To minimize potential problems of species interactions (i.e., insect-host plant relationships, host-parasite relationships, and other interactions that tie a particular insect species' distribution to that of another organism), only predators and scavengers are discussed. These insects respond most rapidly to environmental changes, because for the most part they are not tied to any particular type of vegetation.

  14. Modeling Climate Change and Thermal Restoration Strategies in a Northern California Stream Using HEAT SOURCE and Distributed Temperature Sensing Fiber-optics

    NASA Astrophysics Data System (ADS)

    Bond, R. M.; Stubblefield, A. P.

    2013-12-01

    and stream channelization were investigated as possible thermal restoration strategies to buffer streams from elevated temperatures resulting from climate change.

  15. Assessing climate change over the Marche Region (central Italy) from 1951 to 2050: toward an integrated strategy for climate impacts reduction

    NASA Astrophysics Data System (ADS)

    Sangelantoni, Lorenzo; Russo, Aniello; Marincioni, Fausto; Appiotti, Federica

    2013-04-01

    This study investigates consequences and future impacts of climate change on the social and natural systems of the Marche Region (one of the 20 administrative divisions of Italy). This Region, is located in central part of the peninsula and borders the Adriatic Sea on the East and the Apennine mountains on the West. The Region extends for about 60 km E-W, and has a NW-SE coastline of about 170 km, covering a total area of 9366 km2. Multimodel projections over the Marche Regions, on daily, monthly and seasonal temperature and precipitation parameters, have been extracted from the outputs of a set of Regional Climate Models (RCMs) over Europe run by several research institutes participating to the EU ENSEMBLE project. These climate simulations refer to the boundary conditions of the IPCC A1B emission scenario, and have a horizontal resolution of 25km × 25km covering a time period from 1951 to 2050. Results detail a significant increase of daily, monthly and seasonal mean temperatures, especially in summer, with anomaly values reaching +3°C after the year 2025, referring to the model CliNo 1981-2010. Mountain areas show higher values of temperature anomalies than coastal ones of approximately 0.5 °C. Concurrently, a widespread decrease of seasonal precipitation appears to affect all seasons, except for autumn. Rainfall decrease and temperature increase could reduce the Region's aquifer recharge and overall availability of hydro resources. These alterations could affect human health, agricultural productivity, forest fires, coastal erosion, algal blooms and water quality. Ongoing analysis of extreme climatological indices (e.g. frequency of maximum daily temperature exceeding comfort thresholds) are expected to quantify such impacts. A first analysis, linking climate change to the hydrologic cycle, studied through the computation of the hydro-climatic intensity index (as defined by Giorgi et al., 2012), suggests for the Marche Region an increase of the intensity of

  16. Ruminants, climate change and climate policy

    NASA Astrophysics Data System (ADS)

    Ripple, William J.; Smith, Pete; Haberl, Helmut; Montzka, Stephen A.; McAlpine, Clive; Boucher, Douglas H.

    2014-01-01

    Greenhouse gas emissions from ruminant meat production are significant. Reductions in global ruminant numbers could make a substantial contribution to climate change mitigation goals and yield important social and environmental co-benefits.

  17. Permafrost and Climate Change

    NASA Astrophysics Data System (ADS)

    Basnet, S.; Shahroudi, N.

    2012-12-01

    This paper examines the effects of climate change on Permafrost. Climate change has been shown to have a global correlation with decreased snow cover in high latitudes. In the current research station and satellite data were used to detect the location of permafrost. Permafrost is dependent on the temperature of the ground surface. Air temperature and snow cover from Integrated Surface Database (ISD) downloaded from National Climatic Data Center (NCDC) were observed for six consecutive years (1999-2004). The research was carried out over the entire globe to study the trend between fluctuating temperature and snow cover. Number of days with temperature below zero (freezing) and above zero (melting) was counted over a 6-year period. It was observed that each year the area of ice cover decreased by 0.3% in the Northern Hemisphere; a 1% increase in air temperature was also observed. Furthermore, the results from station data for snow cover and air temperature were compared with the snow cover and skin temperature from the satellite data. The skin temperature was retrieved from infrared (IR) radiance at International Satellite Cloud Climatology Project (ISCCP) and the snow cover is derived from visible satellite data at The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA). Both dataset projected that the higher latitudes had the highest number of days with temperature below zero degree Celsius and these locations will be able to house permafrost. In order to improve the data quality as well as for more accurate results, in the future ISD data and satellite skin temperature will be analyzed for longer period of time (1979-2011) and (1983-2007) respectively also, two additional station data will be studied. The two datasets for future studies are Integrated Global Radiosonde Archive (IGRA) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The results outputted by

  18. Climate Change on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

  19. Integrating climate change mitigation, adaptation, communication and education strategies in Matanzas Province, Cuba: A Citizen Science Approach

    NASA Astrophysics Data System (ADS)

    Rodriguez Bueno, R. A.; Byrne, J. M.

    2015-12-01

    The Environment Service Center of Matanzas (ESCM), Cuba and the University of Lethbridge are collaborating on the development of climate mitigation and adaptation programs in Matanzas province. Tourism is the largest industry in Matanzas. Protecting that industry means protecting coastal zones and conservation areas of value to tourism. These same areas are critical to protecting the landscape from global environmental change: enhanced tropical cyclones, flooding, drought and a range of other environmental change impacts. Byrne (2014) adapted a multidisciplinary methodology for climate adaptation capacity definition for the population of Nicaragua. A wide array of adaptive capacity skills and resources were integrated with agricultural crop modeling to define regions of the country where adaptive capacity development were weakest and should be improved. In Matanzas province, we are developing a series of multidisciplinary mitigation and adaptation programs that builds social science and science knowledge to expand capacity within the ESCM and the provincial population. We will be exploring increased risk due to combined watershed and tropical cyclone flooding, stresses on crops, and defining a range of possibilities in shifting from fossil fuels to renewable energy. The program will build ongoing interactions with thousands of Matanzas citizens through site visits carried out by numerous Cuban and visiting students participating in a four-month education semester with a number of Lethbridge and Matanzas faculty. These visits will also provide local citizens with better access to web-based interactions. We will evaluate mitigation and adaptive capacities in three municipalities and some rural areas across the province. Furthermore, we will explore better ways and means to communicate between the research and conservation staff and the larger population of the province.

  20. Water Access, Water Scarcity, and Climate Change

    NASA Astrophysics Data System (ADS)

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  1. Communicating Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2009-12-01

    I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

  2. Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change

    NASA Astrophysics Data System (ADS)

    Yousefpour, Rasoul; Hanewinkel, Marc; Le Moguédec, Gilles

    2010-02-01

    The study deals with the problem of evaluating management strategies for pure stands of Norway spruce ( Picea abies Karst) to balance adaptation to and mitigation of climate change, taking into account multiple objectives of a forest owner. A simulation and optimization approach was used to evaluate the management of a 1000 ha model Age-Class forest, representing the age-class distribution of an area of 66,000 ha of pure Norway spruce forests in the Black Forest region of Southwest Germany. Eight silvicultural scenarios comprising five forest conversion schemes which were interpreted as “adaptation” strategies which aims at increasing the proportion of Beech, that is expected to better cope with climate change than the existing Norway spruce, and three conventional strategies including a “Do-nothing” alternative classified as “mitigation”, trying to keep rather higher levels of growing stock of spruce, were simulated using the empirical growth simulator BWINPro-S. A linear programming approach was adapted to simultaneously maximize the net present values of carbon sequestration and timber production subject to the two constraints of wood even flow and partial protection of the oldest (nature protection). The optimized plan, with the global utility of 11,687 €/ha in forty years, allocated a combination of silvicultural scenarios to the entire forest area. Overall, strategies classified as “mitigation” were favored, while strategies falling into the “adaptation”-category were limited to the youngest age-classes in the optimal solution. Carbon sequestration of the “Do-nothing” alternative was between 1.72 and 1.85 million tons higher than the other alternatives for the entire forest area while the differences between the adaptation and mitigation approaches were approximately 133,000 tons. Sensitivity analysis showed that a carbon price of 21 €/ t is the threshold at which carbon sequestration is promoted, while an interest rate of above 2

  3. Climate Change: Prospects for Nature

    SciTech Connect

    Thomas Lovejoy

    2008-03-12

    Thomas Lovejoy, President of The H. John Heinz III Center for Science, Economics and the Environment, explores the impact of climate change on the natural world. He also discusses the implications of climate change for climate policy and natural resource management.

  4. America's Climate Choices: Advancing the Science of Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Matson, P. A.; Dietz, T.; Kraucunas, I.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies the nation can take to respond to climate change. This suite of activities included a panel report on Advancing the Science of Climate Change. The report concludes that a strong, credible body of scientific evidence shows that climate change is occurring, is caused largely by human activities, and poses significant risks for a broad range of human and natural systems. As decision makers respond to these risks, the nation's scientific enterprise can contribute both by continuing to improve understanding of the causes and consequences of climate change, and by improving and expanding the options available to limit the magnitude of climate change and adapt to its impacts. To make this possible, the nation needs a comprehensive, integrated, and flexible climate change research enterprise that is closely linked with action-oriented programs at all levels. The report recommends that a single federal entity or program be given the authority and resources to coordinate a national research effort integrated across many disciplines and aimed at improving both understanding and responses to climate change. The U.S. Global Change Research Program, established in 1990, could fulfill this role, but it would need to address weaknesses in the current program and form partnerships with action-oriented programs at all levels. A comprehensive climate observing system, improved climate models and other analytical tools, investment in human capital, and better linkages between research and decision making are also essential for advancing the science of climate change.

  5. Scenarios of climate change

    NASA Astrophysics Data System (ADS)

    Graßl, H.

    2009-09-01

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8°C, and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere’s greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2°C is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun’s supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action.

  6. Climate change and agriculture in developing countries

    SciTech Connect

    Antle, J.M.

    1995-08-01

    Most analysts agree that the poorest countries` agricultures are likely to be the most vulnerable to-and least capable of adapting to-climate change or other environmental disruptions. Research has only recently begun to assess what the likely impacts of climate change on developing countries` agricultures may be, how these agricultures might adapt to climate change, and how policies might be designed to facilitate adaptation. This paper begins with a discussion of what researchers currently believe the impacts of climate change could be on developing country agriculture, principally tropical agriculture. Climate changes are expected to occur from thirty to more than one hundred years in the future. These time horizons mean that predictions of the key factors determining impacts and adaptation-population, income, institutions, and technology-are probably as uncertain as predictions of climate change itself. Rates of productivity growth and technological adaptation will be critical to future food supplies, with or without climate change. Continuation of the trend of the past forty years could make so abundant that climate change effects would be inconsequential, but lower rates of growth could result in population growth outstripping food supplies. The second section of this paper addresses the critical issue of predicting the long-term trend in productivity by building on the substantial knowledge we have about the economic factors determining agricultural innovation and adaptation. Considering the time horizons and uncertainties involved in climate change, the wise policy strategy is to pursue investments that are economically justified, whether or not climate change occurs. A better understanding of managed ecosystems would improve our understanding of agricultural sustainability as well as climate change impacts and adaptation. The third section of this paper outlines an economic approach to modeling managed ecosystems. 21 refs.

  7. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  8. Climate change and marine life

    PubMed Central

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith; Bruno, John F.; Buckley, Lauren; Burrows, Michael T.; Duarte, Carlos M.; Halpern, Benjamin S.; Hoegh-Guldberg, Ove; Holding, Johnna; Kappel, Carrie V.; Kiessling, Wolfgang; Moore, Pippa J.; O'Connor, Mary I.; Pandolfi, John M.; Parmesan, Camille; Schoeman, David S.; Schwing, Frank; Sydeman, William J.; Poloczanska, Elvira S.

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change. PMID:22791706

  9. Self-enforcing strategies to deter free-riding in the climate change mitigation game and other repeated public good games

    PubMed Central

    Heitzig, Jobst; Lessmann, Kai; Zou, Yong

    2011-01-01

    As the Copenhagen Accord indicates, most of the international community agrees that global mean temperature should not be allowed to rise more than two degrees Celsius above preindustrial levels to avoid unacceptable damages from climate change. The scientific evidence distilled in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change and recent reports by the US National Academies shows that this can only be achieved by vast reductions of greenhouse gas emissions. Still, international cooperation on greenhouse gas emissions reductions suffers from incentives to free-ride and to renegotiate agreements in case of noncompliance, and the same is true for other so-called “public good games.” Using game theory, we show how one might overcome these problems with a simple dynamic strategy of linear compensation when the parameters of the problem fulfill some general conditions and players can be considered to be sufficiently rational. The proposed strategy redistributes liabilities according to past compliance levels in a proportionate and timely way. It can be used to implement any given allocation of target contributions, and we prove that it has several strong stability properties. PMID:21903930

  10. Introduction: food crops in a changing climate.

    PubMed

    Slingo, Julia M; Challinor, Andrew J; Hoskins, Brian J; Wheeler, Timothy R

    2005-11-29

    Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given. PMID:16433087

  11. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century

    NASA Astrophysics Data System (ADS)

    Gabaldón, Clara; Lorite, Ignacio J.; Inés Mínguez, M.; Dosio, Alessandro; Sánchez-Sánchez, Enrique; Ruiz-Ramos, Margarita

    2013-04-01

    The objective of this work is to generate and analyse adaptation strategies to cope with impacts of climate change on cereal cropping systems in Andalusia (Southern Spain) in a semi-arid environment, with focus on extreme events. In Andalusia, located in the South of the Iberian Peninsula, cereals crops may be affected by the increase in average temperatures, the precipitation variability and the possible extreme events. Those impacts may cause a decrease in both water availability and the pollination rate resulting on a decrease in yield and the farmer's profitability. Designing local and regional adaptation strategies to reduce these negative impacts is necessary. This study is focused on irrigated maize on five Andalusia locations. The Andalusia Network of Agricultural Trials (RAEA in Spanish) provided the experimental crop and soil data, and the observed climate data were obtained from the Agroclimatic Information Network of Andalusia and the Spanish National Meteorological Agency (AEMET in Spanish). The data for future climate scenarios (2013-2050) were generated by Dosio and Paruolo (2011) and Dosio et al. (2012), who corrected the bias of ENSEMBLES data for maximum and minimum temperatures and precipitation. ENSEMBLES data were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). Crop models considered were CERES-maize (Jones and Kiniry, 1986) under DSSAT platform, and CropSyst (Stockle et al., 2003). Those crop models were applied only on locations were calibration and validation were done. The effects of the adaptations strategies, such as changes in sowing dates or choice of cultivar, were evaluated regarding water consumption; changes in phenological dates were also analysed to compare with occurrence of extreme events of maximum temperature. These events represent a threat on summer crops due to the reduction on the duration of

  12. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  13. Climate Change Influences on Antarctic Bird Populations

    NASA Astrophysics Data System (ADS)

    Korczak-Abshire, Małgorzata

    2010-01-01

    Rapid changes in the major environmental variables like: temperature, wind and precipitation have occurred in the Antarctic region during the last 50 years. In this very sensitive region, even small changes can potentially lead to major environmental perturbations. Then the climate change poses a new challenge to the survival of Antarctic wildlife. As important bioindicators of changes in the ecosystem seabirds and their response to the climate perturbations have been recorded. Atmospheric warming and consequent changes in sea ice conditions have been hypothesized to differentially affect predator populations due to different predator life-history strategies and substantially altered krill recruitment dynamics.

  14. Natural and anthropogenic climate changes

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D. ); Li, K.; Wang, S. . Inst. of Geography)

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO[sub 2]-doubled global and regional climates; and studies of desertification in the United States and China.

  15. Cinematic climate change, a promising perspective on climate change communication.

    PubMed

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. PMID:24916195

  16. Climate change and maize yield in Iowa

    DOE PAGESBeta

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-05-24

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output frommore » six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.« less

  17. Climate Change and Maize Yield in Iowa.

    PubMed

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century. PMID:27219116

  18. Climate Change and Maize Yield in Iowa

    PubMed Central

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10–20% by the end of the 21st century. PMID:27219116

  19. Some guidelines for helping natural resources adapt to climate change

    USGS Publications Warehouse

    Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad

    2008-01-01

    The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.

  20. Scaling Climate Change Communication for Behavior Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  1. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  2. Climate Change and National Security

    SciTech Connect

    Malone, Elizabeth L.

    2013-02-01

    Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities – with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

  3. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  4. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. PMID:26432813

  5. Water use strategies of a young Eucalyptus urophylla forest in response to seasonal change of climatic factors in South China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Z.; Zhao, P.; Oren, R.; McCarthy, H. R.; Niu, J. F.; Zhu, L. W.; Ni, G. Y.; Huang, Y. Q.

    2015-07-01

    To depict the wet (April with a soil water content, SWC, of 37 %) and dry (October with a SWC of 24.8 %) seasonal changes in the water use and physiological response of a Eucalyptus urophylla plantation in subtropical South China characterized by monsoon climate, the whole-year (June 2012 to May 2013) transpiration of E. urophylla was monitored using the TDP method. Daily transpiration (ET) in October averaged 5.7 ± 2.9 kg d-1 and was 58.0 % higher than that in April (3.6 ± 2.3 kg d-1). The difference is consistent with that of the radiation and evaporative demand of the two months, while the nocturnal transpiration (ET-NOC) in the wet season (0.18 ± 0.021 kg d-1) was almost twice that in the dry season (0.11 ± 0.01 kg d-1). Trees displayed a higher stomatal conductance (GS) (53.4-144.5 mmol m-2 s-1) in the wet season and a lower GS (45.7-89.5 mmol m-2 s-1) in the dry season. The leaf-soil water potentials (ΨL) of the two months (April and October) were -0.62 ± 0.66 and -1.22 ± 0.10 MPa, respectively. A boundary line analysis demonstrated that the slight improvement in the GS by SWC in wet season was offset by a significant decrease in D, and the slope of GS sensitivity to D (dGS/dlnD) in response to GSref (references GS at D = 1 kPa) was affected by the variance of radiation instead of SWC. Specific hydraulic conductivity (ks) of trees of different sizes decreased by 45.3-65.6 % from the wet to the dry season. Combining the decreased maximum reference GS at D = 1 kPa (GSref-max) by 22.4 % with the constant max GS (GSmax) when ΨL < -1.2 MPa, we shed some light on the mechanism underlying the high water-use efficiency (WUE) of this Eucalyptus specie. With a slight change in GSref-max and high sensitivity of ks to decreasing ΨL, large trees used water more efficiently than small ones did. In addition, the -m in the dry season (0.53 ± 0.007) was lower than that in the wet season (0.58 ± 0.01) due to the difference in the ratio of GS to the boundary

  6. How does climate change cause extinction?

    PubMed Central

    Cahill, Abigail E.; Aiello-Lammens, Matthew E.; Fisher-Reid, M. Caitlin; Hua, Xia; Karanewsky, Caitlin J.; Yeong Ryu, Hae; Sbeglia, Gena C.; Spagnolo, Fabrizio; Waldron, John B.; Warsi, Omar; Wiens, John J.

    2013-01-01

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies. PMID:23075836

  7. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  8. The International Climate Change Regime

    NASA Astrophysics Data System (ADS)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  9. Geomorphic responses to climatic change

    SciTech Connect

    Bull, W.B.

    1991-01-01

    The primary focus of this book is the response of landscapes to Pleistocene and Holocene climatic changes. During the past 40 ky the global climate has varied from full-glacial to interglacial. Global temperatures decreased between 40 and 20 ka culminating in full-glacial climatic conditions at 20 ka. This resulted in a sea level decline of 130 m. Only 8 to 14 ky later the global temperature had reversed itself and the climate was the warmest of the past 120 ky. These dramatic changes in climate imposed significant controls on fluvial systems and impacted land forms and whole landscapes worldwide. Chapter 1, Conceptual Models for Changing landscapes, presents numerous concepts related to erosional and depositional processes controlling landscape development. Each of the next four chapters of the book, 2, 3, 4, and 5, examine different aspects of climatic change on fluvial systems. The conceptual models are used to analyze landscape response in four different climatic and geologic settings. In each setting the present and past climatic conditions, the climatically induced changes in vegetation and soil development, and geochronology are considered in assessing the influence of climatic changes on geomorphic processes. Chapter 2, investigates the influence of climatic change on the geomorphic processes operating in desert watersheds in the southwestern US and northern Mexico. The study sites for Chapter 3, are small desert drainage basins in the southwestern US and near the Sinai Peninsula in the Middle East. Chapter 4, investigates fill terraces in several drainage basins of the San Gabrial Mountains of the central Transverse Ranges of coastal southern California. The study site for Chapter 5 is the Charwell River watershed in the Seaward Kaikoura Range of New Zealand. Chapter 6, Difference Responses of Arid and Humid Fluvial Systems, compares the effects of changing climates in basins that range from extremely arid to humid.

  10. Climate change, conflict and health.

    PubMed

    Sondorp, Egbert; Patel, Preeti

    2003-01-01

    Both conflict and climate change may produce serious negative health consequences. However, there is insufficient evidence that climate change, e.g. through environmental degradation or fresh water shortages, leads to conflict as is often claimed. Also, current theory on cause of conflict would refute this hypothesis. PMID:14584364

  11. FRAMEWORK CONVENTION ON CLIMATE CHANGE

    EPA Science Inventory

    The United Nations Framework Convention on ClimateChange is the first binding international legal instrument that deals directly with climate change. The Convention was adopted on 9 May 1992 after negotiations by the UN-sponsored Intergovernmental Negotiating Committee for aFra...

  12. Congress Assesses Climate Change Paleodata

    NASA Astrophysics Data System (ADS)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  13. Climate change, responsibility, and justice.

    PubMed

    Jamieson, Dale

    2010-09-01

    In this paper I make the following claims. In order to see anthropogenic climate change as clearly involving moral wrongs and global injustices, we will have to revise some central concepts in these domains. Moreover, climate change threatens another value ("respect for nature") that cannot easily be taken up by concerns of global justice or moral responsibility. PMID:19847671

  14. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  15. Generating Arguments about Climate Change

    ERIC Educational Resources Information Center

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  16. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  17. Food security under climate change

    NASA Astrophysics Data System (ADS)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  18. Impact assessment of climate change on wheat (Triticum aestivum L.) and mustard (Brassica spp.) production and its adaptation strategies in different districts of Gujarat, India

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Patel, H. R.; Yadav, S. B.; Patil, D. D.

    2015-12-01

    Gujarat is the western-most state of India with a long (1600 km) sea coast on the Arabian Sea. Average annual rainfall ranges from as high as 1900 mm in the sub-humid southeast to as low as 250 mm in the arid north. There are three distinct crop seasons- rainy (June to September), winter (Oct.-Nov. through Feb.-March) and summer (Feb-March through May-June). Wheat and mustard are grown during winter seasons. The past climatic records suggested increasing trends in rainfall( 2 to 5 mm per year), maximum (0.03 to 0.05 0C per year) and minimum temperatures (0.02 to 0.05 0C per year) at most of places in Gujarat. But the minimum temperature is fould to be increasing significantly at all the locations. This affects the winter season crops viz. wheat and mustard adversely. Simulation results with DSSAT CERES-wheat model revealed that with increase in temperature by 2 0C in different months (November to February) the decrease in wheat yield is observed between 7 to 29 per cent. The impact of increase in maximum temperature during early (November) and late (February) is less (<12.5 %) than that during active vegetative and reproductive period (December and January; >24.8 %). The climate change projections during 2071-2100 using PRECIS output suggested that there would be increase in maximum temperature by 3.2 to 5.2 0C in different districts of Gujarat over baseline period of 1961-1990 while minimum temperature is project to increase by 2.8 to 5.8 0C. Rainfall is also projected to increase by 28 to 70 per cent in different districts. The impact of climate change on wheat would be reduction in its duration by 14-20 days and the grain yield would be reduced by 20-55 per cent in different districts. In case of mustard crops the duration of crop would be reduced by 11 to 16 days and seed yield would be reduced by 32-50 per cent. In order to mitigate the ill effect of climate change, various adaptation strategies vis change in dates of sowing, change in variety, additional

  19. Navigating Negative Conversations in Climate Change

    NASA Astrophysics Data System (ADS)

    Mandia, S. A.; Abraham, J. P.; Dash, J. W.; Ashley, M. C.

    2012-12-01

    Politically charged public discussions of climate change often lead to polarization as a direct result of many societal, economic, religious and other factors which form opinions. For instance, the general public views climate change as a political discussion rather than a scientific matter. Additionally, many media sources such as websites and mainstream venues and persons have served to promote the "controversy". Scientists who engage in a public discourse of climate change often encounter politically charged environments and audiences. Traditional presentations of the science without attention paid to political, social, or economic matters are likely to worsen the existing divide. An international organization, the Climate Science Rapid Response Team (CSRRT) suggests a strategy that can be used to navigate potentially troublesome situations with divided audiences. This approach can be used during live lecture presentations, and radio, print, or television interviews. The strategy involves identifying alternative motivations for taking action on climate change. The alternative motivations are tailored to the audience and can range from national defense, economic prosperity, religious motivation, patriotism, energy independence, or hunting/fishing reasons. Similar messaging modification can be used to faithfully and accurately convey the importance of taking action on climate change but present the motivations in a way that will be received by the audience.

  20. Implications of abrupt climate change.

    PubMed Central

    Alley, Richard B.

    2004-01-01

    Records of past climates contained in ice cores, ocean sediments, and other archives show that large, abrupt, widespread climate changes have occurred repeatedly in the past. These changes were especially prominent during the cooling into and warming out of the last ice age, but persisted into the modern warm interval. Changes have especially affected water availability in warm regions and temperature in cold regions, but have affected almost all climatic variables across much or all of the Earth. Impacts of climate changes are smaller if the changes are slower or more-expected. The rapidity of abrupt climate changes, together with the difficulty of predicting such changes, means that impacts on the health of humans, economies and ecosystems will be larger if abrupt climate changes occur. Most projections of future climate include only gradual changes, whereas paleoclimatic data plus models indicate that abrupt changes remain possible; thus, policy is being made based on a view of the future that may be optimistic. PMID:17060975

  1. Malaria ecology and climate change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  2. Climate change and marine vertebrates.

    PubMed

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  3. Changing human landscapes under a changing climate: considerations for climate assessments.

    PubMed

    Perdinan; Winkler, Julie A

    2014-01-01

    Climate change is a fundamental aspect of the Anthropocene. Climate assessments are frequently undertaken to evaluate climate change impacts, vulnerability, and adaptive capacity. Assessments are complex endeavors with numerous challenges. Five aspects of a climate assessment that can be particularly challenging are highlighted: choice of assessment strategy, incorporation of spatial linkages and interactions, the constraints of climate observations, interpretation of a climate projection ensemble, uncertainty associated with weather/climate dependency models, and consideration of landscape-climate influences. In addition, a climate assessment strategy that incorporates both traditional "top-down" and "bottom-up" methods is proposed for assessments of adaptation options at the local/regional scale. Uncertainties associated with climate observations and projections and with weather/climate dependency (i.e., response) models are incorporated into the assessment through the "top-down" component, and stakeholder knowledge and experience are included through the "bottom-up" component. Considerable further research is required to improve assessment strategies and the usefulness and usability of assessment findings. In particular, new methods are needed which better incorporate spatial linkages and interactions, yet maintain the fine grain detail needed for decision making at the local and regional scales. Also, new methods are needed which go beyond sensitivity analyses of the relative contribution of land use and land cover changes on local/regional climate to more explicitly consider landscape-climate interactions in the context of uncertain future climates. Assessment teams must clearly communicate the choices made when designing an assessment and recognize the implications of these choices on the interpretation and application of the assessment findings. PMID:23884355

  4. Climate change and plant disease management.

    PubMed

    Coakley, S M; Scherm, H; Chakraborty, S

    1999-09-01

    ▪ Abstract  Research on impacts of climate change on plant diseases has been limited, with most work concentrating on the effects of a single atmospheric constituent or meteorological variable on the host, pathogen, or the interaction of the two under controlled conditions. Results indicate that climate change could alter stages and rates of development of the pathogen, modify host resistance, and result in changes in the physiology of host-pathogen interactions. The most likely consequences are shifts in the geographical distribution of host and pathogen and altered crop losses, caused in part by changes in the efficacy of control strategies. Recent developments in experimental and modeling techniques offer considerable promise for developing an improved capability for climate change impact assessment and mitigation. Compared with major technological, environmental, and socioeconomic changes affecting agricultural production during the next century, climate change may be less important; it will, however, add another layer of complexity and uncertainty onto a system that is already exceedingly difficult to manage on a sustainable basis. Intensified research on climate change-related issues could result in improved understanding and management of plant diseases in the face of current and future climate extremes. PMID:11701829

  5. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  6. Multinationals' Political Activities on Climate Change

    SciTech Connect

    Kolk, A.; Pinkse, J.

    2007-06-15

    This article explores the international dimensions of multinationals' corporate political activities, focusing on an international issue - climate change - being implemented differently in a range of countries. Analyzing data from Financial Times Global 500 firms, it examines the influence on types and process of multinationals' political strategies, reckoning with institutional contexts and issue saliency. Findings show that the type of political activities can be characterized as an information strategy to influence policy makers toward market-based solutions, not so much withholding action on emission reduction. Moreover, multinationals pursue self-regulation, targeting a broad range of political actors. The process of political strategy is mostly one of collective action. International differences particularly surface in the type of political actors aimed at, with U.S. and Australian firms focusing more on non-government actors (voluntary programs) than European and Japanese firms. Influencing home-country (not host-country) governments is the main component of international political strategy on climate change.

  7. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. PMID:25385668

  8. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  9. Agroforestry, climate change, and food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  10. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  11. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  12. Economic Consequences Of Climate Change

    NASA Astrophysics Data System (ADS)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  13. Assessing Climate Change

    NASA Astrophysics Data System (ADS)

    Covey, Curt; Gleckler, null

    Large-scale climatic patterns, rather than a growing “heat island” effect, are the overriding influence on weather in the Potomac River area, and temperature data in the area can therefore be validly compared to global trends. At least temporarily, however, the area, which includes Washington, D.C., has lost its coupling with global temperature trends.Short-term regional anomalies in the Potomac River area's weather, especially high summer temperatures, may promote legislative action in the U.S. Congress on long-term global climate research. However, the current benign weather conditions in the political center of the United States tend to divert attention away from global climate research, diminishing the likelihood of significant expansion of research funding and greenhouse gas legislation.

  14. Diverse views on climate change

    NASA Astrophysics Data System (ADS)

    Garrett, Timothy; Dubey, Manvendra; Schwartz, Stephen

    2012-04-01

    Third Santa Fe Conference on Global and Regional Climate Change; Santa Fe, New Mexico, 30 October to 4 November 2011 At the Third Santa Fe Conference on Global and Regional Climate Change, hosted by the Los Alamos National Laboratory's Center for Nonlinear Studies, researchers offered some of the latest thinking on how to observe and model the driving forces as well as the impacts of regional and global climate change, climate system responses, and societal impacts. It was the third in a series of conferences held at 5-year intervals. More than 140 climate science experts from the United States and foreign universities and research centers attended the conference, held at the La Fonda Hotel in historic downtown Santa Fe. The conference program included more than 80 invited and contributed oral presentations and about 30 posters. The oral sessions were grouped by topic into sessions of four or five talks, with discussion occurring at the end of each session

  15. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  16. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  17. Ground water and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  18. Media communication strategies for climate-friendly lifestyles - Addressing middle and lower class consumers for social-cultural change via Entertainment-Education

    NASA Astrophysics Data System (ADS)

    Lubjuhn, S.; Pratt, N.

    2009-11-01

    This paper argues that Entertainment-Education (E-E) is a striking communication strategy for reaching middle and lower socio-economic classes with climate-friendly lifestyle messages. On the international level (e.g. in the US and the Netherlands) E-E approaches are being theoretically grounded, whereas in Germany they are not yet. Therefore further theoretical discussion and mapping of E-E approaches is central for future research. As a first step towards providing further theoretical foundations for E-E in the field of sustainability, the authors suggest a threefold mapping of E-E approaches. The threefold mapping of E-E approaches for communicating climate-friendly lifestyles to middle and lower class consumers is based on recent results from academic research and practical developments on the media market. The commonalities among the three is that they all promote pro-sustainability messages in an affective-orientated rather than cognitive-orientated, factual manner. Differences can be found in: the sender of the sustainability message, the targeted consumer groups and the media approach in use. Based on this, the paper draws the conclusion that two new paths for further research activities in the field of Entertainment-Education can be proposed: (1) Improving the existing approaches in practice by using theoretical foundation from the E-E field. This comprises at its core (A) to do formative, process and summative effect research on the messages and (B) to use E-E theory from the field of social psychology, sociology and communication science for further improvement and (2) Generating new E-E theories by analyzing the existing practical approaches in the media to communicate climate change.

  19. Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for "source water supply and protection" strategies.

    PubMed

    Emelko, Monica B; Silins, Uldis; Bladon, Kevin D; Stone, Micheal

    2011-01-01

    Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship

  20. Natural and anthropogenic climate change

    SciTech Connect

    Ko, M.K.W.; Clough, S.A.; Molnar, G.I.; Iacono, M. ); Wang, W.C. State Univ. of New York, Albany, NY . Atmospheric Sciences Research Center)

    1992-03-01

    This report consists of two parts: (1) progress for the period 9/1/91--3/31/92 and (2) the plan for the remaining period 4/1/92--8/31/92. The project includes two tasks: atmospheric radiation and improvement of climate models to evaluate the climatic effects of radiation changes. The atmospheric radiation task includes four subtasks: (1) Intercomparison of Radiation Codes in Climate Models (ICRCCM), (2) analysis of the water vapor continuum using line-by-line calculations to develop a parameterization for use in climate models, (3) parameterization of longwave radiation and (4) climate/radiation interactions of desert aerosols. Our effort in this period is focused on the first three subtasks. The improvement of climate models to evaluate the subtasks: (1) general circulation model study and (2) 2- D model development and application.

  1. Cities lead on climate change

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  2. Climate change: Unattributed hurricane damage

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  3. Climate Change Database Development and Learning Networks Establishment

    NASA Astrophysics Data System (ADS)

    Zganjar, C.; Deblieu, J.; Bachelet, D.; Stanley, B.

    2007-12-01

    The Nature Conservancy is developing a comprehensive database that includes the most relevant climate change data for its conservation practitioners. The database is developed in close collaboration with the field. Data mining tools and web base interface are refined to simplify the acquisition and analysis of the relevant information such as future climate change scenarios. Significant challenges arise when local strategies to address climate change issues require land managers to develop new strategies to manage preserves or purchase properties. The resolution of future climate projections are usually too coarse and too uncertain to be considered as useful by practical land stewards. The Conservancy Climate Change Science Team is working in collaboration with government agencies, academia and other NGOs to quantify the uncertainty and package climate change information to help on the ground actions around the world. The team is also developing a climate change learning network to bridge the gap between scientific knowledge and on the ground expertise.

  4. iSeeChange: Crowdsourced Climate Change Reporting

    NASA Astrophysics Data System (ADS)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  5. Linking climate change and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Projected global change includes groundwater systems, which are linked with changes in climate over space and time. Consequently, global change affects key aspects of subsurface hydrology (including soil water, deeper vadose zone water, and unconfined and confined aquifer waters), surface-groundwat...

  6. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  7. Climate Change: Basic Information

    MedlinePlus

    ... produce energy, although deforestation, industrial processes, and some agricultural practices also emit gases into the atmosphere. Greenhouse ... change. By making choices that reduce greenhouse gas pollution, and preparing for the changes that are already ...

  8. Engineering plants to reflect light: strategies for engineering water-efficient plants to adapt to a changing climate.

    PubMed

    Zamft, Bradley M; Conrado, Robert J

    2015-09-01

    Population growth and globally increasing standards of living have put a significant strain on the energy-food-water nexus. Limited water availability particularly affects agriculture, as it accounts for over 70% of global freshwater withdrawals (Aquastat). This study outlines the fundamental nature of plant water consumption and suggests a >50% reduction in renewable freshwater demand is possible by engineering more reflective crops. Furthermore, the decreased radiative forcing resulting from the greater reflectivity of crops would be equivalent to removing 10-50 ppm CO2 from the atmosphere. Recent advances in engineering optical devices and a greater understanding of the mechanisms of biological reflectance suggest such a strategy may now be viable. Here we outline the challenges involved in such an effort and suggest three potential approaches that could enable its implementation. While the local benefits may be straightforward, determining the global externalities will require careful modelling efforts and gradually scaled field trials. PMID:25923193

  9. Campus Sustainability: Climate Change, Transport and Paper Reduction

    ERIC Educational Resources Information Center

    Atherton, Alison; Giurco, Damien

    2011-01-01

    Purpose: This paper aims to detail the design of a campus climate change strategy, transport strategy and paper reduction strategy at the University of Technology, Sydney (Australia). Design/methodology/approach: The approach to strategy development used desktop research and staff/student consultation to inform the development of objectives,…

  10. Innovative Climate Communication Strategies: What Sticks?

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M. F.; Heid, M.; Spanger-Siegfried, E.; Sideris, J.; Sanford, T. J.; Nurnberger, L.; Huertas, A.; Ekwurzel, B.; Cleetus, R.; Cell, K.

    2013-12-01

    A unique aspect of our work at the Union of Concerned Scientists (UCS) is the melding of scientific research and a robust communications initiative to bring salient information to decision makers and the public. Over the years, we have tried many different strategies to convey complex scientific information in an effective and appealing way, from movie stars to hope psychology, from dire warnings to academic appeals. But now that we are seeing climate impacts locally and climate change is no longer a future reality, what new vision do we need to support ongoing education? In this session we will present some of the techniques we have used to convey climate science concepts including our use of metaphors, data visualization, photography, blogs, social media, video, and public outreach events. Realizing that messages that stick are those that contain powerful narrative and speak to the emotional centers of our brains, we use innovative infographics as well as personal stories to encourage people to care about creating a healthier, cleaner planet. Reaching new audiences using unexpected messengers is a key focus. Some of the questions we will explore are: What metrics can we use to determine the efficacy of these tools? What are the best ways to convey urgency without a sense of hopelessness? How can we improve our communication at a time when action on climate is a necessity? Research shows infographics convey concepts much more easily and quickly than text alone, as our brains are wired to process visual scenes. Making complex scientific information accessible to the non-specialist public involves creativity and excellent data visualization.

  11. Ocean Observations of Climate Change

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  12. Engaging the public on climate change issues

    NASA Astrophysics Data System (ADS)

    Bean, Alice

    2016-03-01

    As a Jefferson Science Fellow from August 2014-August 2015, Alice Bean worked with the Office of Religion and Global Affairs at the U.S. Department of State on climate change and environmental issues. The Office of Religion and Global Affairs works to implement the National Strategy on Religious Leader and Faith Community Engagement which includes building partnerships on environmental issues. With the United Nations Framework Convention on Climate Change Conference of the Parties meeting 21 in December, 2015 in Paris, there were and continue to be great opportunities for physicists to interact with policy makers and the general public. As an experimental particle physicist, much was learned about climate change science, how the public views scientists, how science can influence policy, but most especially how to communicate about science.

  13. Climate change and parasitic disease: farmer mitigation?

    PubMed

    Morgan, Eric R; Wall, Richard

    2009-07-01

    Global climate change predictions suggest that far-ranging effects might occur in the population dynamics and distributions of livestock parasites, provoking fears of widespread increases in disease incidence and production loss. However, several biological mechanisms (including increased parasite mortality and more rapid acquisition of immunity), in tandem with changes in husbandry practices (including reproduction, housing, nutrition, breed selection, grazing patterns and other management interventions), might act to mitigate increased parasite development rates, preventing dramatic rises in overall levels of disease. Such changes might, therefore, counteract predicted climate-driven increases in parasite challenge. Optimum mitigation strategies will be highly system specific and depend on detailed understanding of interactions between climate, parasite abundance, host availability and the cues for and economics of farmer intervention. PMID:19540163

  14. Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System

    NASA Astrophysics Data System (ADS)

    Nyarko, B. K.

    2013-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and

  15. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.

    PubMed

    Kerr, Jeremy T; Pindar, Alana; Galpern, Paul; Packer, Laurence; Potts, Simon G; Roberts, Stuart M; Rasmont, Pierre; Schweiger, Oliver; Colla, Sheila R; Richardson, Leif L; Wagner, David L; Gall, Lawrence F; Sikes, Derek S; Pantoja, Alberto

    2015-07-10

    For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species. PMID:26160945

  16. Urban sites in climate change

    NASA Astrophysics Data System (ADS)

    Früh, B.; Kossmann, M.

    2010-09-01

    For the 21st century a significant rise of near surface air temperature is expected from IPCC global climate model simulations. The additional heat load associated with this warming will especially affect cities since it adds to the well-known urban heat island effect. With already more than half of the world's population living in cities and continuing urbanization highly expected, managing urban heat load will become even more important in future. To support urban planners in their effort to maintain or improve the quality of living in their city, detailed information on future urban climate on the residential scale is required. To pursue this question the 'Umweltamt der Stadt Frankfurt am Main' and the 'Deutscher Wetterdienst' (DWD, German Meteorological Service) built a cooperation. This contribution presents estimates of the impact of climate change on the heat load in Frankfurt am Main, Germany, using the urban scale climate model MUKLIMO3 and climate projections from different regional climate models for the region of Frankfurt. Ten different building structures were considered to realistically represent the spatial variability of the urban environment. The evaluation procedure combines the urban climate model simulations and the regional climate projections to calculate several heat load indices based on the exceedance of a temperature threshold. An evaluation of MUKLIMO3 results is carried out for the time period 1971 - 2000. The range of potential future heat load in Frankfurt is statistically analyzed using an ensemble of four different regional climate projections. Future work will examine the options of urban planning to mitigate the enhanced heat load expected from climate change.

  17. Science questions for implementing climate refugia for salmon as a conservation strategy

    EPA Science Inventory

    The recognition and protection of climate refugia has been proposed as a potential adaptation strategy that may be useful for protecting the biotic integrity of watersheds under a changing climate. Climate refugia are areas that are buffered from climate change effects relative t...

  18. Climate change impacts on forestry

    PubMed Central

    Kirilenko, Andrei P.; Sedjo, Roger A.

    2007-01-01

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO2 are likely to drive significant modifications in natural and modified forests. Our review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. We concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand. PMID:18077403

  19. Climate change impacts on forestry

    SciTech Connect

    Kirilenko, A.P.; Sedjo, R.A.

    2007-12-11

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

  20. Simulating Climate Change in Ireland

    NASA Astrophysics Data System (ADS)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  1. Indigenous Health and Climate Change

    PubMed Central

    2012-01-01

    Indigenous populations have been identified as vulnerable to climate change. This framing, however, is detached from the diverse geographies of how people experience, understand, and respond to climate-related health outcomes, and overlooks nonclimatic determinants. I reviewed research on indigenous health and climate change to capture place-based dimensions of vulnerability and broader determining factors. Studies focused primarily on Australia and the Arctic, and indicated significant adaptive capacity, with active responses to climate-related health risks. However, nonclimatic stresses including poverty, land dispossession, globalization, and associated sociocultural transitions challenge this adaptability. Addressing geographic gaps in existing studies alongside greater focus on indigenous conceptualizations on and approaches to health, examination of global–local interactions shaping local vulnerability, enhanced surveillance, and an evaluation of policy support opportunities are key foci for future research. PMID:22594718

  2. Tracking of climatic niche boundaries under recent climate change.

    PubMed

    La Sorte, Frank A; Jetz, Walter

    2012-07-01

    1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation

  3. Greenhouse gas induced climate change.

    PubMed

    Hegerl, G C; Cubasch, U

    1996-06-01

    Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence. PMID:24234957

  4. Land Use, climate change and BIOdiversity in cultural landscapes (LUBIO): Assessing feedbacks and promoting land-use strategies towards a viable future

    NASA Astrophysics Data System (ADS)

    Dullinger, Iwona; Bohner, Andreas; Dullinger, Stefan; Essl, Franz; Gaube, Veronika; Haberl, Helmut; Mayer, Andreas; Plutzar, Christoph; Remesch, Alexander

    2016-04-01

    Land-use and climate change are important, pervasive drivers of global environmental change and pose major threats to global biodiversity. Research to date has mostly focused either on land-use change or on climate change, but rarely on the interactions between both drivers, even though it is expected that systemic feedbacks between changes in climate and land use will have important effects on biodiversity. In particular, climate change will not only alter the pool of plant and animal species capable of thriving in a specific area, it will also force land owners to reconsider their land use decisions. Such changes in land-use practices may have major additional effects on local and regional species composition and abundance. In LUBIO, we will explore the anticipated systemic feedbacks between (1) climate change, (2) land owner's decisions on land use, (3) land-use change, and (4) changes in biodiversity patterns during the coming decades in a regional context which integrates a broad range of land use practices and intensity gradients. To achieve this goal, an integrated socioecological model will be designed and implemented, consisting of three principal components: (1) an agent based model (ABM) that simulates decisions of important actors, (2) a spatially explicit GIS model that translates these decisions into changes in land cover and land use patterns, and (3) a species distribution model (SDM) that calculates changes in biodiversity patterns following from both changes in climate and the land use decisions as simulated in the ABM. Upon integration of these three components, the coupled socioecological model will be used to generate scenarios of future land-use decisions of landowners under climate change and, eventually, the combined effects of climate and land use changes on biodiversity. Model development of the ABM will be supported by a participatory process intended to collect regional and expert knowledge through a series of expert interviews, a series

  5. Invasive species and climate change

    USGS Publications Warehouse

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  6. FY 2002 GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    PRA Goal 6: Reducing Global and Transboundary Environmental Risks

    Objective 6.2: Greenhouse Gas Emissions

    Sub-Objective 6.2.3: Global Climate Change Research

    Activity F55 - Assessing the Consequences of Global Change on Ecosystem Health

    NRMRL

    R...

  7. Climate Change: Meeting the Challenge

    ERIC Educational Resources Information Center

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  8. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  9. Projected change in global fisheries revenues under climate change.

    PubMed

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  10. Changes in C-N metabolism under elevated CO2 and temperature in Indian mustard (Brassica juncea L.): an adaptation strategy under climate change scenario.

    PubMed

    Seth, Chandra Shekhar; Misra, Virendra

    2014-11-01

    The present study was performed to investigate the possible role of carbon (C) and nitrogen (N) metabolism in adaptation of Indian mustard (Brassica juncea L.) growing under ambient (370 ± 15 ppm) and elevated CO2 (700 ± 15 ppm), and jointly in elevated CO2 and temperature (30/22 °C for day/night). The key enzymes responsible for C-N metabolism were studied in different samples of Brassica juncea L. collected from ambient (AMB), elevated (ELE) and ELExT growth conditions. Total percent amount of C and N in leaves were particularly estimated to establish a clear understanding of aforesaid metabolism in plant adaptation. Furthermore, key morphological and physiological parameters such as plant height, leaf area index, dry biomass, net photosynthetic rate, stomatal conductance, transpiration, total protein and chlorophyll contents were also studied in relation to C/N metabolism. The results indicated that the C-metabolizing enzymes, such as (ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, NAD-malic enzyme, NADP-malic enzyme and citrate synthase) and the N-metabolizing enzymes, such as (aspartate amino transferase, glutamine synthetase, nitrate reductase and nitrite reductase) showed significantly (P < 0.05) higher activities along with the aforesaid physiological and biochemical parameters in order of ELE > ELExT > AMB growth conditions. This is also evident by significant (P < 0.05) increase in percent contents of C and N in leaves as per said order. These findings suggested that improved performance of C-N metabolism could be a possible approach for CO2 assimilation and adaptation in Brassica juncea L. against elevated CO2 and temperature prevailing in climate change scenarios. PMID:25246072

  11. Dislocated interests and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615–24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  12. Aggregate Models of Climate Change

    NASA Astrophysics Data System (ADS)

    Hooss, G.; Voss, R.; Hasselmann, K.; Maier-Reimer, E.; Joos, F.

    Integrated assessment of climate change generally requires the evaluation of many transient scenario simulations of century-timescale changes in atmospheric compo- sition and climate, desirably with the accuracy of state-of-the-art three-dimensional (3D) coupled atmosphere-ocean general circulation models (GCMs). Such multi- scenario GCM computations are possible through appropriate representation of the models in aggregate forms. For this purpose, we developed Nonlinear Impulse- response projections of 3D models of the global (oceanic and terrestrial) Carbon cycle and the atmosphere-ocean Climate System (NICCS). For higher CO2 forcing, appli- cability is extended beyond the linear response domain through explicit treatment of dominant nonlinear effects. The climate change module was furthermore augmented with spatial patterns of change in some of the most impact-relevant fields. Applied to three long-term CO2 emission scenarios, the model demonstrates (a) the minor rela- tive role of the terrestrial carbon sink through CO2 fertilization, and (b) the necessity to reduce fossil carbon emissions to a very small fraction of today's rates within the next few decades if a major climate change is to be avoided.

  13. Climate Change and Water Resources Management: A Federal Perspective

    USGS Publications Warehouse

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  14. Western water and climate change.

    PubMed

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  15. Species richness changes lag behind climate change.

    PubMed

    Menéndez, Rosa; Megías, Adela González; Hill, Jane K; Braschler, Brigitte; Willis, Stephen G; Collingham, Yvonne; Fox, Richard; Roy, David B; Thomas, Chris D

    2006-06-22

    Species-energy theory indicates that recent climate warming should have driven increases in species richness in cool and species-poor parts of the Northern Hemisphere. We confirm that the average species richness of British butterflies has increased since 1970-82, but much more slowly than predicted from changes of climate: on average, only one-third of the predicted increase has taken place. The resultant species assemblages are increasingly dominated by generalist species that were able to respond quickly. The time lag is confirmed by the successful introduction of many species to climatically suitable areas beyond their ranges. Our results imply that it may be decades or centuries before the species richness and composition of biological communities adjusts to the current climate. PMID:16777739

  16. NASA's Role in Understanding Climate Change

    NASA Video Gallery

    Earth's climate is changing because of human activity. Learn about NASA's role in understanding climate and climate change with Gilberto Colón, special assistant to the deputy director of NASA's Go...

  17. Climate change, air quality, and human health.

    PubMed

    Kinney, Patrick L

    2008-11-01

    Weather and climate play important roles in determining patterns of air quality over multiple scales in time and space, owing to the fact that emissions, transport, dilution, chemical transformation, and eventual deposition of air pollutants all can be influenced by meteorologic variables such as temperature, humidity, wind speed and direction, and mixing height. There is growing recognition that development of optimal control strategies for key pollutants like ozone and fine particles now requires assessment of potential future climate conditions and their influence on the attainment of air quality objectives. In addition, other air contaminants of relevance to human health, including smoke from wildfires and airborne pollens and molds, may be influenced by climate change. In this study, the focus is on the ways in which health-relevant measures of air quality, including ozone, particulate matter, and aeroallergens, may be affected by climate variability and change. The small but growing literature focusing on climate impacts on air quality, how these influences may play out in future decades, and the implications for human health is reviewed. Based on the observed and anticipated impacts, adaptation strategies and research needs are discussed. PMID:18929972

  18. Changing the intellectual climate

    NASA Astrophysics Data System (ADS)

    Castree, Noel; Adams, William M.; Barry, John; Brockington, Daniel; Büscher, Bram; Corbera, Esteve; Demeritt, David; Duffy, Rosaleen; Felt, Ulrike; Neves, Katja; Newell, Peter; Pellizzoni, Luigi; Rigby, Kate; Robbins, Paul; Robin, Libby; Rose, Deborah Bird; Ross, Andrew; Schlosberg, David; Sörlin, Sverker; West, Paige; Whitehead, Mark; Wynne, Brian

    2014-09-01

    Calls for more broad-based, integrated, useful knowledge now abound in the world of global environmental change science. They evidence many scientists' desire to help humanity confront the momentous biophysical implications of its own actions. But they also reveal a limited conception of social science and virtually ignore the humanities. They thereby endorse a stunted conception of 'human dimensions' at a time when the challenges posed by global environmental change are increasing in magnitude, scale and scope. Here, we make the case for a richer conception predicated on broader intellectual engagement and identify some preconditions for its practical fulfilment. Interdisciplinary dialogue, we suggest, should engender plural representations of Earth's present and future that are reflective of divergent human values and aspirations. In turn, this might insure publics and decision-makers against overly narrow conceptions of what is possible and desirable as they consider the profound questions raised by global environmental change.

  19. Approaching the Edge of Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Ramadhin, C.; Yi, C.

    2015-12-01

    The phenomenon of Abrupt Climate Change (ACC) became evident as paleoclimate data analyses began revealing that Earth's climate has the ability to rapidly switch from one state to the next in just a few decades after thresholds are crossed. Previously paleo-climatologists thought these switches were gradual but now there is growing concern to identify thresholds and the dominant feedback mechanisms that propel systems toward thresholds. Current human civilization relies heavily on climate stability and ACC threatens immense disruption with potentially disastrous consequences for all ecosystems. Therefore, prediction of the climate system's approach to threshold values would prove vital for the resilience of civilization through development of appropriate adaptation strategies when that shift occurs. Numerous studies now establish that earth systems are experiencing dramatic changes both by system interactions and anthropogenic sources adding urgency for comprehensive knowledge of tipping point identification. Despite this, predictions are difficult due to the immensity of interactions among feedback mechanisms. In this paper, we attempt to narrow this broad spectrum of critical feedback mechanisms by reviewing several publications on role of feedbacks in initiating past climate transitions establishing the most critical ones and significance in current climate changes. Using a compilation of paleoclimate datasets we compared the rates of deglaciations with that of glacial inceptions, which are approximately 5-10 times slower. We hypothesize that the critical feedbacks are unique to each type of transition such that warmings are dominated by the ice-albedo feedback while coolings are a combination of temperature - CO2 and temperature-precipitation followed by the ice-albedo feedbacks. Additionally, we propose the existence of a commonality in the dominant trigger feedbacks for astronomical and millennial timescale abrupt climate shifts and as such future studies

  20. The Climates of Change.

    ERIC Educational Resources Information Center

    Renaud, Harriet

    There is increasing evidence that significant personality changes take place during adolescence and early adulthood. Among 10,000 high school seniors tested, the group intending to go to college differed in ability, socioeconomic background, parental encouragement, academic motivation and attitudes from those going on to jobs or homemaking.…

  1. Climate change and game theory.

    PubMed

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely. PMID:21332497

  2. Assessing urban climate change resilience

    NASA Astrophysics Data System (ADS)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  3. Interacting Effects of Land Management Strategies and Climate Change on the Ecohydrologic Systems of the Semi-Arid Santa Fe Municipal Watershed

    NASA Astrophysics Data System (ADS)

    Dugger, A. L.; Tague, C.; Allen, C. D.; Ringler, T.

    2009-12-01

    Current regional climate models predict overall warming in the Southwest U.S. along with increased drying and potential shifts in the timing and intensity of precipitation events. While climate controls on the water budget through precipitation inputs and the timing of snow accumulation and melt are critical in semi-arid mountain watersheds, we also expect vegetation water use and productivity changes to exert a strong control on the distribution, timing, and quantity of water availability. Given that management practices can significantly alter the structure and density of vegetation, land management has the potential to either mitigate or exacerbate certain climate change impacts on the water system. Our main goal is to examine climate, subsurface, and vegetation interactions in the semi-arid Santa Fe Municipal Watershed to determine the dominant controls on streamflow as well as the envelope of expected hydrologic behavior under potential climate and land management changes. We use a process-based, spatially distributed, integrated hydro-ecological model (RHESSys) to simulate water and vegetation carbon cycling. Specifically, we build a physically-based model calibrated for soil and effective drainage parameters and apply a range of climate inputs based on historical variability and forced with extremes in projected climate shifts. We then investigate the spatially and seasonally variable responses of vegetation, the timing and amounts of streamflow, and the interactions between these processes under different land management and disturbance schemes. This modeling exercise produces a series of probability distributions for annual and seasonal streamflow yields under various conditions, which under a statistical lens reveals the dominant controls on the magnitude and timing of streamflow. Results from this analysis highlight confounding (or mitigating) impacts on the vulnerability of water yields to climate change.

  4. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration. PMID:11087028

  5. [Climate changes caused by man].

    PubMed

    Kaas, Eigil

    2009-10-26

    This article provides a brief overview over some of the main findings in the most recent IPCC WG I report and in articles published after the report. It is argued that the conclusions in the report on observed climate variations and trends during the last 100 years have been largely confirmed or even reinforced by the most recent studies. Concerning future climate change, new analyses of possible changes in sea-level, which take melting land ice into account, indicate that the global sea level may rise as much as one meter within the present century. PMID:19857392

  6. Climate change and animal health in Africa.

    PubMed

    Van den Bossche, P; Coetzer, J A W

    2008-08-01

    Climate change is expected to have direct and indirect impacts on African livestock. Direct impacts include increased ambient temperature, floods and droughts. Indirect impacts are the result of reduced availability of water and forage and changes in the environment that promote the spread of contagious diseases through increased contact between animals, or increased survival or availability of the agent or its intermediate host. The distribution and prevalence of vector-borne diseases may be the most significant effect of climate change. The potential vulnerability of the livestock industry will depend on its ability to adapt to such changes. Enhancing this adaptive capacity presents a practical way of coping with climate change. Adaptive capacity could be increased by enabling the African livestock owner to cope better with animal health problems through appropriate policy measures and institutional support. Developing an effective and sustainable animal health service, associated surveillance and emergency preparedness systems and sustainable disease control and prevention programmes is perhaps the most important strategy for dealing with climate change in many African countries. PMID:18819677

  7. Public Engagement on Climate Change

    NASA Astrophysics Data System (ADS)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically

  8. The Climate Change--Social Change Relationship.

    ERIC Educational Resources Information Center

    Russell, David

    1992-01-01

    Argues that the scientific community cannot evoke the desired response from the general community concerning environmental problems, such as climate change, simply by warning the community of its dangers. Discusses the need for new meaning systems arising out of new ways of relating and communicating with each other about our ecology. (MDH)

  9. The origin of climate changes.

    PubMed

    Delecluse, P

    2008-08-01

    Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world. PMID:18819661

  10. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  11. Mapping Climate Change: Six U.S. Case Studies

    ERIC Educational Resources Information Center

    Holmberg, Marjorie O.

    2010-01-01

    This research focuses on the current role of mapping practices in communicating climate change in the United States. This includes maps used in monitoring climate change, projecting its potential impacts, and identifying potential adaptation strategies at particular scales. Since few, if any, studies have been done specifically on mapping…

  12. Leishmaniasis emergence and climate change.

    PubMed

    Ready, P D

    2008-08-01

    Spatio-temporal modelling of the distributions of the leishmaniases and their sandfly vectors is reviewed in relation to climate change. Many leishmaniases are rural zoonoses, and so there is a foundation of descriptive ecology and qualitative risk assessment. Dogs are widespread reservoir hosts of veterinary importance. Recent statistical modelling has not always produced novel general conclusions, exemplifying the difficulty of applying models outside the original geographical region. Case studies are given for transmission cycles involving both cutaneous and visceral leishmaniasis in the Old World and the Americas. An important challenge is to integrate statistical spatial models based mainly on climate with more explanatory biological models. Ecological niche models pose difficulties because of the number of assumptions. A positive association has been reported between the El Niño cycle and the annual incidence of visceral leishmaniasis in Brazil, but more basic research is needed before tackling other climate-change scenarios, including leishmaniasis emergence in northern Europe. PMID:18819668

  13. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  14. Solar Changes and Climate Changes. (Invited)

    NASA Astrophysics Data System (ADS)

    Feynman, J.

    2009-12-01

    During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.

  15. Creating a New Model for Mainstreaming Climate Change Adaptation for Critical Infrastructure: The New York City Climate Change Adaptation Task Force and the NYC Panel on Climate Change

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Solecki, W. D.; Freed, A. M.

    2008-12-01

    The New York City Climate Change Adaptation Task Force, launched in August 2008, aims to secure the city's critical infrastructure against rising seas, higher temperatures and fluctuating water supplies projected to result from climate change. The Climate Change Adaptation Task Force is part of PlaNYC, the city's long- term sustainability plan, and is composed of over 30 city and state agencies, public authorities and companies that operate the region's roads, bridges, tunnels, mass transit, and water, sewer, energy and telecommunications systems - all with critical infrastructure identified as vulnerable. It is one of the most comprehensive adaptation efforts yet launched by an urban region. To guide the effort, Mayor Michael Bloomberg has formed the New York City Panel on Climate Change (NPCC), modeled on the Intergovernmental Panel on Climate Change (IPCC). Experts on the panel include climatologists, sea-level rise specialists, adaptation experts, and engineers, as well as representatives from the insurance and legal sectors. The NPCC is developing planning tools for use by the Task Force members that provide information about climate risks, adaptation and risk assessment, prioritization frameworks, and climate protection levels. The advisory panel is supplying climate change projections, helping to identify at- risk infrastructure, and assisting the Task Force in developing adaptation strategies and guidelines for design of new structures. The NPCC will also publish an assessment report in 2009 that will serve as the foundation for climate change adaptation in the New York City region, similar to the IPCC reports. Issues that the Climate Change Adaptation Task Force and the NPCC are addressing include decision- making under climate change uncertainty, effective ways for expert knowledge to be incorporated into public actions, and strategies for maintaining consistent and effective attention to long-term climate change even as municipal governments cycle

  16. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  17. CLIMATE CHANGE AND N DEPOSITION

    EPA Science Inventory

    This project investigates the potential influence of climate change on wet deposition of reduced nitrogen across the U.S. The concentration of ammonium-nitrogen in precipitation is known to increase with temperature, owing to temperature dependent ammonia source strengths (natur...

  18. Climatic Change and Human Evolution.

    ERIC Educational Resources Information Center

    Garratt, John R.

    1995-01-01

    Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

  19. Conservation practices for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change presents a major challenge to sustainable land management (USDA NRCS 2010). Several reports have reported that over the last few decades rainfall intensities have also increased in many parts of the world, including in the United States. Without good productive soils and the ecosyste...

  20. Climate Change and Respiratory Infections.

    PubMed

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future. PMID:27300144

  1. Organizational Climate Changes over Time

    ERIC Educational Resources Information Center

    Walden, John C.; Taylor, Thomas N.; Watkins, J. Foster

    1975-01-01

    As the basis for his doctoral dissertation, Taylor explored some of the conjectures advanced by Halpin and Croft relative to the possible directional changes in the organizational climate of schools over time. Taylor limited his study to elementary school based upon the question raised by Watkins in his dissertation relative to the validity of the…

  2. Climate change primer for respirologists.

    PubMed

    Takaro, Tim K; Henderson, Sarah B

    2015-01-01

    Climate change is already affecting the cardiorespiratory health of populations around the world, and these impacts are expected to increase. The present overview serves as a primer for respirologists who are concerned about how these profound environmental changes may affect their patients. The authors consider recent peer-reviewed literature with a focus on climate interactions with air pollution. They do not discuss in detail cardiorespiratory health effects for which the potential link to climate change is poorly understood. For example, pneumonia and influenza, which affect >500 million people per year, are not addressed, although clear seasonal variation suggests climate-related effects. Additionally, large global health impacts in low-resource countries, including migration precipitated by environmental change, are omitted. The major cardiorespiratory health impacts addressed are due to heat, air pollution and wildfires, shifts in allergens and infectious diseases along with respiratory impacts from flooding. Personal and societal choices about carbon use and fossil energy infrastructure should be informed by their impacts on health, and respirologists can play an important role in this discussion. PMID:25664458

  3. A Lesson on Climate Change.

    ERIC Educational Resources Information Center

    Lewis, Jim

    This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

  4. Climate change - creating watershed resilience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is likely to intensify the circulation of water, which will shift spatial and temporal availability of snowmelt and runoff. In addition, drought and floods are likely to be more frequent, severe and widespread. Higher air temperatures will lead to higher ocean temperatures, elevating ...

  5. Climate Change: Evidence and Causes

    ERIC Educational Resources Information Center

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  6. Climate change and trace gases.

    PubMed

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment. PMID:17513270

  7. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  8. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  9. Agriculture and climate change: Mitigation opportunities and adaptation imperatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintenance of critical agroecosystem functions will require proactive responses through the strategic application of management practices that mitigate greenhouse gas (GHG) emissions and/or adapt to impacts from climate change. Numerous management strategies currently exist to mitigate GHG emissio...

  10. Harnessing nature to help people adapt to climate change

    NASA Astrophysics Data System (ADS)

    Jones, Holly P.; Hole, David G.; Zavaleta, Erika S.

    2012-07-01

    Adapting to climate change is among the biggest challenges humanity faces in the next century. An overwhelming focus of adaptation strategies to reduce climate change-related hazards has been on hard-engineering structures such as sea walls, irrigation infrastructure and dams. Closer attention to a broader spectrum of adaptation options is urgently needed. In particular, ecosystem-based adaptation approaches provide flexible, cost-effective and broadly applicable alternatives for buffering the impacts of climate change, while overcoming many drawbacks of hard infrastructure. As such, they are a critical tool at adaptation planners' disposal for tackling the threats that climate change poses to peoples' lives and livelihoods.

  11. A risk-based strategy for climate change adaptation in dryland systems based on an understanding of potential production, soil resistance and resilience, and social stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is expected to increase the intensity and temporal variability of storm events in many areas while reducing their frequency, resulting in increased runoff, and drought frequency and severity. Soil degradation can exacerbate these impacts by reducing both infiltration and plant-availab...

  12. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    NASA Astrophysics Data System (ADS)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  13. Risk management and climate change

    NASA Astrophysics Data System (ADS)

    Kunreuther, Howard; Heal, Geoffrey; Allen, Myles; Edenhofer, Ottmar; Field, Christopher B.; Yohe, Gary

    2013-05-01

    The selection of climate policies should be an exercise in risk management reflecting the many relevant sources of uncertainty. Studies of climate change and its impacts rarely yield consensus on the distribution of exposure, vulnerability or possible outcomes. Hence policy analysis cannot effectively evaluate alternatives using standard approaches, such as expected utility theory and benefit-cost analysis. This Perspective highlights the value of robust decision-making tools designed for situations such as evaluating climate policies, where consensus on probability distributions is not available and stakeholders differ in their degree of risk tolerance. A broader risk-management approach enables a range of possible outcomes to be examined, as well as the uncertainty surrounding their likelihoods.

  14. Asia's changing role in global climate change.

    PubMed

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested. PMID:18991898

  15. A common-sense climate index: Is climate changing noticeably?

    PubMed Central

    Hansen, James; Sato, Makiko; Glascoe, Jay; Ruedy, Reto

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than “business-as-usual” scenarios. PMID:9539699

  16. Climate Change and Civil Violence

    NASA Astrophysics Data System (ADS)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  17. Severe thunderstorms and climate change

    NASA Astrophysics Data System (ADS)

    Brooks, H. E.

    2013-04-01

    As the planet warms, it is important to consider possible impacts of climate change on severe thunderstorms and tornadoes. To further that discussion, the current distribution of severe thunderstorms as a function of large-scale environmental conditions is presented. Severe thunderstorms are much more likely to form in environments with large values of convective available potential energy (CAPE) and deep-tropospheric wind shear. Tornadoes and large hail are preferred in high-shear environments and non-tornadic wind events in low shear. Further, the intensity of tornadoes and hail, given that they occur, tends to be almost entirely a function of the shear and only weakly depends on the thermodynamics. Climate model simulations suggest that CAPE will increase in the future and the wind shear will decrease. Detailed analysis has suggested that the CAPE change will lead to more frequent environments favorable for severe thunderstorms, but the strong dependence on shear for tornadoes, particularly the strongest ones, and hail means that the interpretation of how individual hazards will change is open to question. The recent development of techniques to use higher-resolution models to estimate the occurrence of storms of various kinds is discussed. Given the large interannual variability in environments and occurrence of events, caution is urged in interpreting the observational record as evidence of climate change.

  18. Climate change and hydropower generation

    NASA Astrophysics Data System (ADS)

    Robinson, Peter J.

    1997-07-01

    Many electric utilities use small reservoirs in mountainous regions to generate hydropower to meet peak energy demands. Water input depends on the water budget of the catchment, whereas output depends on user demand, which is influenced by temperature. Hence reservoir performance depends on climatic factors and is sensitive to climate change. A model, based on the systems of Duke Power and Virginia Power in the south-eastern USA, was developed to simulate performance. The annual maximum draw-down of the reservoir, which represents the minimum dam size needed to maintain continuous energy generation, is considered here. The model was tested for four regions in the eastern USA using 1951-1995 observations. The amount of draw-down depended on the linked daily sequences of precipitation and temperature, the former dictating the water available, the latter influencing both evaporation and energy demand. The time and level of the annual extreme emphasized that small changes in the timing of a dry spell had a major impact on the draw-down. Climatic changes were simulated by uniformly increasing temperatures by 2°C and decreasing precipitation by 10 per cent. The resultant draw-down increased from current simulated values by about 10 per cent to 15 per cent with extremes up to 50 per cent. This was of the same order, but in the opposite direction, as the change created by a 10 per cent increase in the efficiency of energy generation. Without such an efficiency increase, many utilities will face the prospect of reduced or less reliable hydroelectric generation if climate changes in the manner examined here.

  19. Wave and tidal level analysis, maritime climate change, navigation's strategy and impact on the costal defences - Study case of São Paulo State Coastline Harbour Areas (Brazil)

    NASA Astrophysics Data System (ADS)

    Alfredini, P.; Pezzoli, A.; Cristofori, E. I.; Dovetta, A.; Arasaki, E.

    2012-04-01

    São Paulo State Coastline Harbour Area concentrates around of 40% of Brazilian GNP, Santos Harbour is the America South Atlantic Hub Port and São Sebastião Oil Maritime Terminal is the most important oil and gas facility of PETROBRAS, the Brazilian National Petroleum Company. Santos Harbour had in the last decade increased rapidly the container handling rate, being the first in Latin America. In the last decade important oil and gas reserves were discovered in the Santos Oceanic Basin and São Paulo Coastline received a big demand for supplier ships harbours for the petroleum industry. Santos Metropolitan Region is one of the most important of Brazilian Coastline, also considering the turism. For that great economic growth scenario it is very important to have the main maritime hydrodynamics forcing processes, wave climate and tidal levels, well known, considering the sea hazards influence in ship operations. Since the hindcast just represents the deep water wave climate, to make time-series of the waves parameters in coastal waters, for evaluation of sea hazards and ship operations, it is necessary to take into acount the variations of those parameters in shallow waters with coastal instrumental data. Analysis of long term wave data-base (1957-2002) generated by a comparison between wave's data modeled by a "deep water model" (ERA40-ECMWF) and measured wave's data in the years 1982-1984 by a coastal buoy in Santos littoral (São Paulo State, Brazil) was made. Calibration coefficients according to angular sectors of wave's direction were obtained by the comparison of the instrument data with the modeled ones, and applied to the original scenarios. Validation checking procedures with instrumental measurements of storm surges made in other years than 1982-1984 shows high level of confidence. The analysis of the wave climate change on the extreme storm surge wave's conditions, selecting cases of Hs > 3,0 m, using that virtual data-base shows an increase in the Hs

  20. Novel communities from climate change

    PubMed Central

    Lurgi, Miguel; López, Bernat C.; Montoya, José M.

    2012-01-01

    Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species. PMID:23007079

  1. Novel communities from climate change.

    PubMed

    Lurgi, Miguel; López, Bernat C; Montoya, José M

    2012-11-01

    Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species. PMID:23007079

  2. Phenological changes reflect climate change in Wisconsin

    PubMed Central

    Bradley, Nina L.; Leopold, A. Carl; Ross, John; Huffaker, Wellington

    1999-01-01

    A phenological study of springtime events was made over a 61-year period at one site in southern Wisconsin. The records over this long period show that several phenological events have been increasing in earliness; we discuss evidence indicating that these changes reflect climate change. The mean of regressions for the 55 phenophases studied was −0.12 day per year, an overall increase in phenological earliness at this site during the period. Some phenophases have not increased in earliness, as would be expected for phenophases that are regulated by photoperiod or by a physiological signal other than local temperature. PMID:10449757

  3. Phenological changes reflect climate change in Wisconsin.

    PubMed

    Bradley, N L; Leopold, A C; Ross, J; Huffaker, W

    1999-08-17

    A phenological study of springtime events was made over a 61-year period at one site in southern Wisconsin. The records over this long period show that several phenological events have been increasing in earliness; we discuss evidence indicating that these changes reflect climate change. The mean of regressions for the 55 phenophases studied was -0.12 day per year, an overall increase in phenological earliness at this site during the period. Some phenophases have not increased in earliness, as would be expected for phenophases that are regulated by photoperiod or by a physiological signal other than local temperature. PMID:10449757

  4. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian

  5. Focus on climate projections for adaptation strategies

    NASA Astrophysics Data System (ADS)

    Feijt, Arnout; Appenzeller, Christof; Siegmund, Peter; von Storch, Hans

    2016-01-01

    Most papers in this focus issue on ‘climate and climate impact projections for adaptation strategies’ are solicited by the guest editorial team and originate from a cluster of projects that were initiated 5 years ago. These projects aimed to provide climate change and climate change adaptation information for a wide range of societal areas for the lower parts of the deltas of the Rhine and Meuse rivers, and particularly for the Netherlands. The papers give an overview of our experiences, methods, approaches, results and surprises in the process to developing scientifically underpinned climate products and services for various clients. Although the literature on interactions between society and climate science has grown over the past decade both with respect to policy-science framing in post-normal science (Storch et al 2011 J. Environ. Law Policy 1 1-15, van der Sluijs 2012 Nature and Culture 7 174-195), user-science framing (Berkhout et al 2014 Regional Environ. Change 14 879-93) and joint knowledge production (Hegger et al 2014 Regional Environ. Change 14 1049-62), there is still a lot to gain. With this focus issue we want to contribute to best practices in this quickly moving field between science and society.

  6. Changes in Benefits of Flood Protection Standard under Climate Change

    NASA Astrophysics Data System (ADS)

    Lim, W. H.; Koirala, S.; Yamazaki, D.; Hirabayashi, Y.; Kanae, S.

    2014-12-01

    Understanding potential risk of river flooding under future climate scenarios might be helpful for developing risk management strategies (including mitigation, adaptation). Such analyses are typically performed at the macro scales (e.g., regional, global) where the climate model output could support (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014). To understand the potential benefits of infrastructure upgrading as part of climate adaptation strategies, it is also informative to understand the potential impact of different flood protection standards (in terms of return periods) on global river flooding under climate change. In this study, we use a baseline period (forced by observed hydroclimate conditions) and CMIP5 model output (historic and future periods) to drive a global river routing model called CaMa-Flood (Yamazaki et al., 2011) and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the potential risk of river flooding and changes in the benefits of flood protection standard (e.g., 100-year flood of the baseline period) from the past into the future (represented by the representative concentration pathways). In this presentation, we show our preliminary results. References: Arnell, N.W, Gosling, S., N., 2014. The impact of climate change on river flood risk at the global scale. Climatic Change 122: 127-140, doi: 10.1007/s10584-014-1084-5. Hirabayashi et al., 2013. Global flood risk under climate change. Nature Climate

  7. Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-09-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-08-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-Radiative Forcing of Climate Change

    SciTech Connect

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  8. Challenges and Possibilities in Climate Change Education

    ERIC Educational Resources Information Center

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  9. Lifelines for High School Climate Change Education

    NASA Astrophysics Data System (ADS)

    Gould, A.

    2012-08-01

    Lifelines for High School Climate Change Education is a project to establish a network of practicing high school teachers actively teaching climate change in their courses. The key aim of the project is creation of professional learning communities (PLCs) of teachers who meet mainly through teleconferences or webinar meetings to share best practices, strengthen knowledge, share resources, and promote effective teaching strategies. This is a NASA-funded project that incorporates analysis of NASA Earth observation data by students in classrooms. The project is exploring techniques to achieve the most effective teleconference meetings and workshops. This promotes not only teaching about minimizing environmental impacts of human activity, but minimizes environmental impacts of professional development - practicing what we preach. This poster summarizes project progress to date in this first year of a 3-year grant project. A number of PLCs are established and have ongoing meetings. There are openings for addition PLC Leaders to join and form PLCs in their regions.

  10. Teaching Climate Change Through Music

    NASA Astrophysics Data System (ADS)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  11. Climate change, zoonoses and India.

    PubMed

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review. PMID:22435190

  12. Climate change, environment and allergy.

    PubMed

    Behrendt, Heidrun; Ring, Johannes

    2012-01-01

    Climate change with global warming is a physicometeorological fact that, among other aspects, will also affect human health. Apart from cardiovascular and infectious diseases, allergies seem to be at the forefront of the sequelae of climate change. By increasing temperature and concomitant increased CO(2) concentration, plant growth is affected in various ways leading to prolonged pollination periods in the northern hemisphere, as well as to the appearance of neophytes with allergenic properties, e.g. Ambrosia artemisiifolia (ragweed), in Central Europe. Because of the effects of environmental pollutants, which do not only act as irritants to skin and mucous membranes, allergen carriers such as pollen can be altered in the atmosphere and release allergens leading to allergen-containing aerosols in the ambient air. Pollen has been shown not only to be an allergen carrier, but also to release highly active lipid mediators (pollen-associated lipid mediators), which have proinflammatory and immunomodulating effects enhancing the initiation of allergy. Through the effects of climate change in the future, plant growth may be influenced in a way that more, new and altered pollens are produced, which may affect humans. PMID:22433365

  13. Past and Current Climate Change

    NASA Astrophysics Data System (ADS)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  14. Mars Recent Climate Change Workshop

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  15. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  16. Lack of Climate Expertise Among Climate Change Educators

    NASA Astrophysics Data System (ADS)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  17. Strategies for Change.

    ERIC Educational Resources Information Center

    Trohanis, Pascal L., Ed.

    Information for planners, administrators, and advocates on the promotion of comprehensive services for preschool handicapped children is presented in seven papers. The first chapter, "The Process of Change" (G. Lambour, Ed., et al.) discusses steps for institutionalizing educational innovations and is based on four meetings of the Invisible…

  18. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.

    2008-12-01

    The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across

  1. Climate Change Education for Sustainability in Brazil: A Status Report

    ERIC Educational Resources Information Center

    Trajber, Rachel; Mochizuki, Yoko

    2015-01-01

    This article maps and explains Brazil's policies, strategies, plans and initiatives related to Climate Change Education (CCE), in the overall context of Environmental Education (EE) and Education for Sustainable Development (ESD). The case of Brazil offers useful insights on how to enhance climate response through education because of its unique…

  2. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  3. Study Links Climate Change to Kidney Disease

    MedlinePlus

    ... medlineplus.gov/news/fullstory_158680.html Study Links Climate Change to Kidney Disease Rising temperatures, less rain seen ... 5, 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Climate change may boost rates of chronic kidney disease worldwide ...

  4. Doctors Issue Call to Combat Climate Change

    MedlinePlus

    ... fullstory_158362.html Doctors Issue Call to Combat Climate Change They say respiratory illnesses, heat stroke and infectious ... 18, 2016 MONDAY, April 18, 2016 (HealthDay News) -- Climate change is already harming people's health by promoting illnesses ...

  5. Characterizing loss and damage from climate change

    NASA Astrophysics Data System (ADS)

    James, Rachel; Otto, Friederike; Parker, Hannah; Boyd, Emily; Cornforth, Rosalind; Mitchell, Daniel; Allen, Myles

    2014-11-01

    Policymakers are creating mechanisms to help developing countries cope with loss and damage from climate change, but the negotiations are largely neglecting scientific questions about what the impacts of climate change actually are.

  6. Study Links Climate Change to Kidney Disease

    MedlinePlus

    ... gov/medlineplus/news/fullstory_158680.html Study Links Climate Change to Kidney Disease Rising temperatures, less rain ... 5, 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Climate change may boost rates of chronic kidney disease ...

  7. Doctors Issue Call to Combat Climate Change

    MedlinePlus

    ... fullstory_158362.html Doctors Issue Call to Combat Climate Change They say respiratory illnesses, heat stroke and ... 18, 2016 MONDAY, April 18, 2016 (HealthDay News) -- Climate change is already harming people's health by promoting ...

  8. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  9. GLOBAL CLIMATE CHANGE: POLICY IMPLICATIONS FOR FISHERIES

    EPA Science Inventory

    Several government agencies are evaluating policy options for addressing global climate change. hese include planning for anticipated effects and developing mitigation options where feasible if climate does change as predicted. or fisheries resources, policy questions address eff...

  10. RISKS, OPPORTUNITIES, AND ADAPTATION TO CLIMATE CHANGE

    EPA Science Inventory

    Adaptation is an important approach for protecting human health, ecosystems, and economic systems from the risks posed by climate variability and change, and to exploit beneficial opportunities provided by a changing climate. This paper presents nine fundamental principles that ...

  11. Insect overwintering in a changing climate.

    PubMed

    Bale, J S; Hayward, S A L

    2010-03-15

    Insects are highly successful animals inhabiting marine, freshwater and terrestrial habitats from the equator to the poles. As a group, insects have limited ability to regulate their body temperature and have thus required a range of strategies to support life in thermally stressful environments, including behavioural avoidance through migration and seasonal changes in cold tolerance. With respect to overwintering strategies, insects have traditionally been divided into two main groups: freeze tolerant and freeze avoiding, although this simple classification is underpinned by a complex of interacting processes, i.e. synthesis of ice nucleating agents, cryoprotectants, antifreeze proteins and changes in membrane lipid composition. Also, in temperate and colder climates, the overwintering ability of many species is closely linked to the diapause state, which often increases cold tolerance ahead of temperature-induced seasonal acclimatisation. Importantly, even though most species can invoke one or both of these responses, the majority of insects die from the effects of cold rather than freezing. Most studies on the effects of a changing climate on insects have focused on processes that occur predominantly in summer (development, reproduction) and on changes in distributions rather than winter survival per se. For species that routinely experience cold stress, a general hypothesis would be that predicted temperature increases of 1 degree C to 5 degrees C over the next 50-100 years would increase winter survival in some climatic zones. However, this is unlikely to be a universal effect. Negative impacts may occur if climate warming leads to a reduction or loss of winter snow cover in polar and sub-polar areas, resulting in exposure to more severe air temperatures, increasing frequency of freeze-thaw cycles and risks of ice encasement. Likewise, whilst the dominant diapause-inducing cue (photoperiod) will be unaffected by global climate change, higher temperatures may

  12. The science of climate change.

    SciTech Connect

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  13. A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change

    SciTech Connect

    Bolin, B.

    2007-11-15

    In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a serious change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.

  14. Terrestrial ecosystems and climatic change

    SciTech Connect

    Emanuel, W.R. ); Schimel, D.S. . Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  15. Behavior change communication strategies.

    PubMed

    Aggleton, P

    1997-04-01

    Appropriate and effective communication is central to the success of interventions to reduce the risk of HIV infection. This paper reviews what has been learned about the nature of communication in the behavior change process. It examines the contexts in which communication occurs, as well as the contribution of communication theory, social marketing theory, and structural intervention theory to intervention development. Guidance is offered on the most appropriate ways in which to communicate with different groups and audiences, and future priorities for research and intervention are identified. PMID:9167797

  16. GLOBAL CLIMATE CHANGE: GOVERNMENT OF CANADA

    EPA Science Inventory

    The Government of Canada Climate Change Site was developed to inform Canadians about climate change and how it affects our environment. The site explains what the Government of Canada is doing about climate change and how individuals, communities, businesses, industries, and ever...

  17. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  18. Climate Change Ignorance: An Unacceptable Legacy

    ERIC Educational Resources Information Center

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  19. Physiological ecology meets climate change

    PubMed Central

    Bozinovic, Francisco; Pörtner, Hans-Otto

    2015-01-01

    In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms. PMID:25798220

  20. Recent Climatic Changes over Kazakhstan

    NASA Astrophysics Data System (ADS)

    Akhmadiyeva, Z. K.; Groisman, P. Y.

    2008-12-01

    We used a comprehensive archive of daily in situ meteorological information for Republic of Kazakhstan created by joint efforts of the Kazakh Scientific Research Institute of Ecology and Climate of the Ministry of Environment Protection of the Republic of Kazakhstan, All-Russian Research Institute for Hydrometeorological Information-World Data Center of the Federal Service for Hydrometeorology and Environmental Monitoring, Obninsk, Russian Federation, and the NOAA National Climatic Data Center, Asheville, North Carolina. Archive includes the data of 351 synoptic stations and spans the period of instrumental observations with the best data coverage during the 1936-2006 period. This period was used to assess climatology and the latest (since 1990) climatic changes in surface air temperature, precipitation, relative humidity, and the near surface wind speed and atmospheric pressure over Kazakhstan. We found that during the last two decades (1990-2006) compared to the previous three decades, surface air temperature, T, in Kazakhstan increased by 1 to 2 K in winter, spring, and autumn (with the maximum warming in the autumn) but not in summers where a cooling was observed in the central parts of the nation. Changes in relative humidity were symmetric and negatively correlated with T: reporting drier surface air conditions in winter, spring, and autumn and an increase in the mean summer relative humidity values. Countrywide, annual precipitation did not change substantially (it somewhat increased in winter and summer, but mostly decreased in the intermediate seasons). The largest change signal found is a substantial nationwide decrease of the wind speed at 10 m above the ground in all seasons.

  1. Physiological ecology meets climate change.

    PubMed

    Bozinovic, Francisco; Pörtner, Hans-Otto

    2015-03-01

    In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms. PMID:25798220

  2. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  3. Climate variability and vulnerability to climate change: a review.

    PubMed

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-11-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  4. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  5. Impacts of Climate Change and Climate Variability on Hydrological Regimes

    NASA Astrophysics Data System (ADS)

    van Dam, Jan C.

    2003-10-01

    Water is going to be one of the key, if not the most critical, environmental issues in the twenty-first century because of the escalation in socio-economic pressures on the environment in general. Any future climate change or climate variability will only accentuate such pressures. This volume initially follows the perspective of the Intergovernmental Panel on Climate Change (IPCC) to infer possible changes in hydrological regimes and water quality based on the outputs from various scenarios of General Circulation Models (GCMs). In subsequent chapters, the possible effects of climate change on the hydrology of each of the continents is examined. The book concludes with an overview of hydrological models for use in the evaluation of the impacts of climate change. It will provide a valuable guide for environmental planners and policy-makers, and will also be of use to all students and researchers interested in the possible effects of climate change.

  6. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  7. Climate change, migration and health.

    PubMed

    Carballo, Manuel

    2008-01-01

    In summary, climate change of the magnitude that is now being talked about promises to invoke major changes in the nature of the world we live in. From an agricultural and food production perspective new challenges are already emerging and many countries, regional organizations and international agencies are ill-prepared to deal with them. From the perspective of the forced emergence of new diseases. There may also be complex struggles for scarce resources including land, water, food and housing. To what extent these will translate into social and political instability is not clear, but the potential for instability within and between countries should not be under-estimated; nor should the scarcity of selected commodities. Understanding these complex dynamics and planning for them in timely and comprehensive ways is essential. Preparedness by governments, the international community and the private sector, will help accommodate some of the changes that are already taking place and many others which are still to materialize. PMID:18795506

  8. Public perceptions of climate change and extreme weather events

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    as flooding and heavy rainfall than in ';hot' events such as heatwaves, (b) perceptions of these ';wet' weather events are more strongly associated with climate-change beliefs than were extremely ';hot' weather events, and (c) personal experiences with the negative consequences of specific extreme weather events are associated with stronger climate-change beliefs. Hence, which specific weather events people interpret as evidence of climate change may depend on their personal perceptions and experiences - which may not involve the temperature increases that are commonly the focus of climate-change communications. Overall, these findings suggest that climate experts should consider focusing their public communications on extreme weather events that are relevant to their intended audience. We will discuss strategies for designing and evaluating communications about climate change and adaptation.

  9. Understanding climate: A strategy for climate modeling and predictability research, 1985-1995

    NASA Technical Reports Server (NTRS)

    Thiele, O. (Editor); Schiffer, R. A. (Editor)

    1985-01-01

    The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.

  10. Global Climate Change and Agriculture

    SciTech Connect

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

  11. Using Satellites to Understand Climate and Climate Change

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric

    2007-01-01

    This viewgraph presentation reviews the measurement of climate with the use of satellites. The basic greenhouse effect, Ice-albedo feedback, climate models and observations, aerosol-cloud interactions, and the Antarctic are discussed, along with the human effect on climate change.

  12. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  13. Virgin's Knight tackles climate change

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2008-11-01

    "There is no greater or more immediate challenge than that posed by climate change," said Sir Richard Branson, chairman of the Virgin group, via video-link at the 59th International Astronautical Congress (IAC) held in Glasgow in the UK at the end of September. That grand statement may seem like a lot of hot air for the entrepreneur best known for his attempt to circumnavigate the globe by balloon. But Branson went on to reveal that Virgin Galactic, which aims to fly passengers 100 km into space for 200 000 per trip, will also provide room on its craft for a series of scientific experiments to study the Earth's atmosphere.

  14. Climate Change: A Controlled Experiment

    SciTech Connect

    Wullschleger, Stan D; Strahl, Maya

    2010-01-01

    Researchers are altering temperature, carbon dioxide and precipitation levels across plots of forests, grasses and crops to see how plant life responds. Warmer temperatures and higher CO{sub 2} concentrations generally result in more leaf growth or crop yield, but these factors can also raise insect infestation and weaken plants ability to ward off pests and disease. Future field experiments that can manipulate all three conditions at once will lead to better models of how long-term climate changes will affect ecosystems worldwide.

  15. Adapting to Climate Change in the Great Lakes Region: The Wisconsin Initiative on Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Vimont, D.; Liebl, D.

    2012-12-01

    The mission of the Wisconsin Initiative on Climate Change Impacts (WICCI; http://www.wicci.wisc.edu) is to assess the impacts of climate change on Wisconsin's natural, human, and built environments; and to assist in developing, recommending, and implementing climate adaptation strategies in Wisconsin. WICCI originated in 2007 as a partnership between the University of Wisconsin Nelson Institute and the Wisconsin Department of Natural Resources, and has since grown to include numerous other state, public, and private institutions. In 2011, WICCI released its First Assessment Report, which documents the efforts of over 200 individuals around the state in assessing vulnerability and estimating the risk that regional climate change poses to Wisconsin. The success of WICCI as an organization can be traced to its existence as a partnership between academic and state institutions, and as a boundary organization that catalyzes cross-disciplinary efforts between science and policy. WICCI's organizational structure and its past success at assessing climate impacts in Wisconsin will be briefly discussed. As WICCI moves into its second phase, it is increasing its emphasis on the second part of its mission: development, and implementation of adaptation strategies. Towards these goals WICCI has expanded its organizational structure to include a Communications and Outreach Committee that further ensures a necessary two-way communication of information between stakeholders / decision makers, and scientific efforts. WICCI is also increasing its focus on place-based efforts that include climate change information as one part of an integrated effort at sustainable development. The talk will include a discussion of current outreach and education efforts, as well as future directions for WICCI efforts.

  16. Connecting Stakeholders and Climate Science: A Summary of Farmer, Rancher, and Forester Climate Data Needs and Climate Change Attitudes

    NASA Astrophysics Data System (ADS)

    Rango, A.; Crimmins, M.; Elias, E.; Steele, C. M.; Weiss, J. L.

    2015-12-01

    The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes about climate change is required. Here we present a summary of results from 17 peer-reviewed articles on studies pertaining to landowner needs and attitudes towards climate change adaptation and mitigation that span much of the continental U.S. and ideally represent a cross-section of different geographies. In general, approximately 75% of landowners and farm advisors believe climate change is occurring, but disagree on the human contribution. Studies found that most farmers were supportive of adaptation responses, but fewer endorsed farm-based greenhouse gas reduction mitigation strategies. Adaptation is often driven by local concerns and requires locally specific strategies. Perceiving weather variability increased belief in human-caused climate change. Presently farmers and ranchers rely on past experience and short-range forecasts (weeks to seasons) whereas some foresters are requesting long-term predictions on the order of years to decades. Foresters indicated that most of them (74%) are presently unable to find needed long-term information. We augment peer-reviewed literature with observations from landowner workshops conducted in Nevada and Arizona during 2014, the first year of Climate Hub operation. To better collect information about climate change needs and attitudes of farmers, ranchers and foresters across the globe, we created a Climate Change Attitudes collection in JournalMap (https://journalmap.org/usda-southwest-regional-climate-hub/climate-change-attitudes). Users anywhere can add articles to this collection, ultimately generating a comprehensive spatial resource in support of adaptation and mitigation efforts on working lands.

  17. Effective strategies for behavior change.

    PubMed

    Coleman, Mary Thoesen; Pasternak, Ryan H

    2012-06-01

    Strategies that are most effective in both prevention and management of chronic disease consider factors such as age, ethnicity, community, and technology. Most behavioral change strategies derive their components from application of the health belief model, the theory of reasoned action/theory of planned behavior, transtheoretical model, and social cognitive theory. Many tools such as the readiness ruler and personalized action plan form are available to assist health care teams to facilitate healthy behavior change. Primary care providers can support behavior changes by providing venues for peer interventions and family meetings and by making new partnerships with community organizations. PMID:22608867

  18. An Interface between Law and Science: The Climate Change Regime

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Grandbois, M.; Kaniaha, S.

    2012-04-01

    Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific

  19. Climate Change in the Preservice Teacher's Mind

    NASA Astrophysics Data System (ADS)

    Lambert, Julie L.; Bleicher, Robert E.

    2013-10-01

    Given the recent media attention on the public’s shift in opinion toward being more skeptical about climate change, 154 preservice teachers’ participated in an intervention in an elementary science methods course. Findings indicated that students developed a deeper level of concern about climate change. Their perceptions on the evidence for climate change, consensus of scientists, impacts of climate change, and influence of politics also changed significantly. The curriculum and instruction appear to be an important factor in increasing understanding of climate change and developing perceptions more aligned to those of climate scientists. More broadly, this study provides preliminary support for the value of providing a careful framing of the topic of climate change within the context of science methods courses.

  20. Contrasting Controversies: Fracking and Climate Change

    NASA Astrophysics Data System (ADS)

    Duggan-Haas, D.; Zabel, I. H. H.; Ross, R. M.

    2014-12-01

    Slickwater high-volume hydraulic fracturing (commonly known as "fracking") is highly controversial. So is global warming, and the two issues are closely related, but the natures of these two controversies have substantial and important differences. Building upon years of experience in teaching and developing resources and strategies for teaching about evolution and climate change, staff at the Paleontological Research Institution have engaged in public outreach and educator professional development to help nurture understanding of fracking and the broader energy system. How are these controversies similar to and different from one another, and how should understanding these similarities and differences inform educational programming (and about how you talk about these issues with your Uncle Fred at the family holiday dinner?). It is nearly universally agreed amongst scientists who study climate that changes now underway are real and human caused, and are posing or likely to pose very serious problems for humanity. Scientists who study slickwater high-volume hydraulic fracturing agree that it causes environmental damage, but there is no consensus as to whether fracking causes more or less harm (e.g., among different kinds of environment harm, across different temporal and spatial scales, and among different social contexts) than other ways of producing energy on a large scale. In other words, the basic tenets of climate change are not a matter of scientific controversy, though the implications for policy making obviously remain politically controversial, while fracking is an issue of both scientific and political controversy. Without advocating for or against fracking, we help audiences disentangle scientific and political issues, better understand the energy resources used in their own communities, and consider issues of scale, systems, and complexity. We will compare and contrast the overlapping controversies surrounding climate change and fracking and highlight

  1. The 2008 California climate change assessment

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2008-12-01

    In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.

  2. Developing Climate Change Literacy With the Humanities: A Narrative Approach

    NASA Astrophysics Data System (ADS)

    Siperstein, S.

    2015-12-01

    Teaching the science and policy of climate change is necessary but insufficient for helping students to develop a robust climate literacy. Climate change educators must also teach students how to evaluate historical trends, to unpack the assumptions in shared cultural narratives, to grapple with ethical dilemmas, and more generally to traverse the turbulence of feeling that is a hallmark of living in a time of global climate chaos. In short, climate literacy must include the skills and strategies of the humanities, and specifically literary and cultural studies. After providing an overview of how literary and cultural studies scholars from around the world are developing innovative pedagogical methods for addressing climate change (drawing on the presenter's experience editing the forthcoming volume Teaching Climate Change in the Humanities), the presentation will then report on a specific Literary Genres course taught at the University of Oregon. The course, offered to undergraduate non-majors who entered the class with little or no knowledge of climate change, constituted a case study of action research into the transdisciplinary teaching of climate change. The presentation will thus draw on quantitative course assessments, student coursework, and the instructor's own experiences in arguing that three key narratives underpin the work we do as multidisciplinary climate change educators: narratives of observation, narratives of speculation, and narratives of conversion. That is, we guide students through the processes of witnessing climate change, imagining more just and sustainable futures, and by so doing, transforming themselves and their communities. In the particular Literary Genres course under consideration, students used the tools of literary and cultural studies first to analyze existing versions of these narratives and then to compose their own versions of these narratives based on their local communities and ecologies. In the context of multidisciplinary

  3. Rapid adaptation to climate change.

    PubMed

    Hancock, Angela M

    2016-08-01

    In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations. PMID:27463237

  4. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  5. ECOLOGICAL CONSEQUENCES OF RECENT CLIMATE CHANGE

    EPA Science Inventory

    Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5 degrees C over the past century, and recent studies show that it is possible to detect the effects of a changing climate on ecological systems.

  6. Impacts of Climate Change on Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...

  7. CLIMATE CHANGE AND INFECTIOUS DISEASES IN WILDLIFE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large and growing body of scientific evidence indicates the Earth’s climate is changing, and the recent International Panel on Climate Change (IPCC) declared that “warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean tempera...

  8. Contributions of Psychology to Limiting Climate Change

    ERIC Educational Resources Information Center

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  9. Science Teachers' Perspectives about Climate Change

    ERIC Educational Resources Information Center

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  10. Nantucket, Ma. Climate Protection Action Plan: A Public Outreach Strategy

    NASA Astrophysics Data System (ADS)

    Petrik, C.; Stephenson, A.; Petsch, S.

    2009-12-01

    As communities and municipalities gain a better understanding of climate change, they are exploring the ways in which to work towards adaptation and mitigation. One strategy that the Island of Nantucket, Massachusetts turned toward is the drafting of a Climate Protection Action Plan (CPAP). The CPAP was developed during the summer of 2009 to meet three goals: (1) assist the Town of Nantucket in creating a framework to help them reduce CO2 emissions; (2) educate the municipality and community in techniques that promote energy efficiency and sustainability on the island; and (3) document past, present and future approaches adopted by the Town towards emissions reduction and energy sustainability. In particular, this project focused on using local strengths and natural resources identified by island stakeholders that may help the island to mitigate carbon emissions and adapt to climate change.. Drafting the CPAP provided community members and politicians with an opportunity to become better educated in the science of climate change and to learn how climate change will affect their community. On the island of Nantucket, leaders in the religious, civic, and political communities were brought into a conversation about how each group could contribute to reducing greenhouse gas emissions. A geosciences graduate student was brought into the CPAP team as a climate fellow to facilitate this conversation. This provided the foundation for stakeholder recommendations incorporated into the CPAP. This capacity-building model served as an effective way to create an informal learning environment about climate change that allowed members of the island community to directly participate in developing their locally appropriate climate protection strategy. The draft CPAP developed through this study and presented to the Town of Nantucket comprises assessments and recommendations in public research and education; building and energy efficiency; transportation; renewable energy; and carbon

  11. Organizational change strategies within healthcare.

    PubMed

    Steinke, Claudia; Dastmalchian, Ali; Blyton, Paul; Hasselback, Paul

    2013-01-01

    This study explores ways in which healthcare organizations can improve their organizational fitness for change using Beer and Nohria's framework of Theory E (concentrating on the economic value of change) and Theory O (concentrating on the organization's long-term capabilities for change). Data were collected from senior leaders/medical directors from health regions in Alberta. The results show that even though there is a tendency for reliance on Theory E change strategies, the respondents demonstrated other preferred approaches to change. PMID:24409580

  12. Uncertainty in Simulating Wheat Yields Under Climate Change

    SciTech Connect

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  13. Is climate change modifying precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Montanari, Alberto; Papalexiou, Simon Michael

    2016-04-01

    The title of the present contribution is a relevant question that is frequently posed to scientists, technicians and managers of local authorities. Although several research efforts were recently dedicated to rainfall observation, analysis and modelling, the above question remains essentially unanswered. The question comes from the awareness that the frequency of floods and the related socio-economic impacts are increasing in many countries, and climate change is deemed to be the main trigger. Indeed, identifying the real reasons for the observed increase of flood risk is necessary in order to plan effective mitigation and adaptation strategies. While mitigation of climate change is an extremely important issue at the global level, at small spatial scales several other triggers may interact with it, therefore requiring different mitigation strategies. Similarly, the responsibilities of administrators are radically different at local and global scales. This talk aims to provide insights and information to address the question expressed by its title. High resolution and long term rainfall data will be presented, as well as an analysis of the frequency of their extremes and its progress in time. The results will provide pragmatic indications for the sake of better planning flood risk mitigation policies.

  14. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  15. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  16. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  17. How Does Drought Change With Climate Change

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.

    2014-12-01

    Large disparities among published studies have led to considerable confusion over the question of how drought is changing and how it is expected to change with global warming. As a result the IPCC AR5 assessment has watered down statements, and failed to carry out an adequate assessment of the sources of the discrepancies. Quite aside from the different definitions of drought related to meteorological (absence of precipitation), hydrological (lack of water in lakes and rivers), and agricultural (lack of soil moisture) drought, there are many indices that measure drought. Good homogeneous datasets are essential to assess changes over time, but are often not available. Simpler indices may miss effects of certain physical processes, such as evapotranspiration (ET). The Palmer Drought Severity Index (PDSI) has been much maligned but has considerable merit because it can accommodate different ET formulations (e.g., Thornthwaite vs Penman-Monteith), it can be self calibrating to accommodate different regions, and it carries out a crude moisture balance. This is in contrast to simpler indices, such as the Standardized Precipitation Index, which provides only a measure of moisture supply, or the Standardized Precipitation Evapotranspiration Index, which also includes potential (but not actual) ET. The largest source of drought variations is ENSO: during La Niña more rain falls on land while during El Niño most precipitation is over the Pacific Ocean, exposing more land to drought conditions. It is essential to account for interannual and inter-decadal variability in assessing changes in drought with climate change. Yet drought is one time on land when effects accumulate, with huge consequences for wild fire risk. It is important to ask the right questions in dealing with drought.

  18. Climate Effects of Global Land Cover Change

    SciTech Connect

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  19. Climate Change Hastens the Conservation Urgency of an Endangered Ungulate

    PubMed Central

    Hu, Junhua; Jiang, Zhigang

    2011-01-01

    Global climate change appears to be one of the main threats to biodiversity in the near future and is already affecting the distribution of many species. Currently threatened species are a special concern while the extent to which they are sensitive to climate change remains uncertain. Przewalski's gazelle (Procapra przewalskii) is classified as endangered and a conservation focus on the Qinghai-Tibetan Plateau. Using measures of species range shift, we explored how the distribution of Przewalski's gazelle may be impacted by projected climate change based on a maximum entropy approach. We also evaluated the uncertainty in the projections of the risks arising from climate change. Modeling predicted the Przewalski's gazelle would be sensitive to future climate change. As the time horizon increased, the strength of effects from climate change increased. Even assuming unlimited dispersal capacity of gazelles, a moderate decrease to complete loss of range was projected by 2080 under different thresholds for transforming the probability prediction to presence/absence data. Current localities of gazelles will undergo a decrease in their occurrence probability. Projections of the impacts of climate change were significantly affected by thresholds and general circulation models. This study suggests climate change clearly poses a severe threat and increases the extinction risk to Przewalski's gazelle. Our findings 1) confirm that endangered endemic species is highly vulnerable to climate change and 2) highlight the fact that forecasting impacts of climate change needs an assessment of the uncertainty. It is extremely important that conservation strategies consider the predicted geographical shifts and be planned with full knowledge of the reliability of projected impacts of climate change. PMID:21826214

  20. Living with climate change: avoiding conflict through adaptation in Malawi

    NASA Astrophysics Data System (ADS)

    Jørstad, H.; Webersik, C.

    2015-11-01

    In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated impacts of climate change and avoid conflict over the loss of resources. The empirical part of the paper answers the question to what extent local communities in the Chilwa Basin in Malawi have experienced climate change and how they are affected by it. Further, it assesses one of Malawi's adaptation projects designed to build resilience to a warmer and more variable climate, and points to some of its limitations. This research shows that not all adaptation strategies are suited to cope with a warmer and more variable climate.

  1. Covering Climate Change in Wikipedia

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  2. Implications of climate change for crop production in Japan

    SciTech Connect

    Seino, Hiroshi

    1995-12-31

    This study uses climate change scenarios derived from three global climate models (GCMs) to assess the possible impacts of climate change on rice (Oryza sativa L. japonica), maize (Zea mays L.), and wheat (Triticum spp.) production in Japan. Crop models were used to simulate the possible changes in crop yields under different climate change scenarios. Increased temperatures resulted in decreases in simulated crop yield in many regions under the present management systems. While the direct beneficial effects of CO{sub 2} may compensate for the yield decreases in central and northern Japan, the effects did not compensate for the larger yield decreases in southwestern japan, especially in Kyushu. Early planting and irrigation are possible adaptation strategies of the management systems to climate change. In most cases, simulated yields increased under climate change conditions if an earlier planting date was adopted; however, in Kyushu because of high temperature stress, an earlier planting did not improve simulated yields, and the introduction of new cultivars better adapted to the climate change conditions would be required. In Hokkaido, the major upland production area of Japan, climate change increased simulated crop yields under some conditions, depending on the scenario precipitation and irrigation systems.

  3. Climate change and health research in the Eastern Mediterranean Region.

    PubMed

    Habib, Rima R; Zein, Kareem El; Ghanawi, Joly

    2010-06-01

    Anthropologically induced climate change, caused by an increased concentration of greenhouse gases in the atmosphere, is an emerging threat to human health. Consequences of climate change may affect the prevalence of various diseases and environmental and social maladies that affect population health. In this article, we reviewed the literature on climate change and health in the Eastern Mediterranean Region. This region already faces numerous humanitarian crises, from conflicts to natural hazards and a high burden of disease. Climate change is likely to aggravate these emergencies, necessitating a strengthening of health systems and capacities in the region. However, the existing literature on climate change from the region is sparse and informational gaps stand in the way of regional preparedness and adaptation. Further research is needed to assess climatic changes and related health impacts in the Eastern Mediterranean Region. Such knowledge will allow countries to identify preparedness vulnerabilities, evaluate capacity to adapt to climate change, and develop adaptation strategies to allay the health impacts of climate change. PMID:20658168

  4. Shaping the Public Dialogue on Climate Change

    NASA Astrophysics Data System (ADS)

    Spitzer, W.; Anderson, J. C.

    2012-12-01

    In order to broaden the public dialogue about climate change, climate scientists need to leverage the potential of informal science education and recent advances in social and cognitive science. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Given that we spend less than 5% of our lifetime in a classroom, and only a fraction of that is focused on science, informal science venues will continue to play a critical role in shaping public understanding of environmental issues in the years ahead. Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. The New England Aquarium is leading a national effort to enable informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine ecosystems. This NSF-funded partnership, the National Network for Ocean and Climate Change Interpretation (NNOCCI), involves the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. We believe that skilled interpreters can serve as "communication strategists" by

  5. Educating Local Audiences about Climate Change

    NASA Astrophysics Data System (ADS)

    Cullen, H. M.; Satterfield, D.; Allen, M. R.

    2014-12-01

    This talk will focus on best practices for educating local audiences about climate science and the importance of providing the larger climate context during extreme weather events, when audiences are particularly interested in the climate connection. In their role as Station Scientists, local television meteorologists serve an important function in educating viewers about climate change and its' associated impacts. Through its' Climate Matters program, Climate Central works to support local television meteorologists in their outreach efforts. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 150 weathercasters from across the country. Climate Matters delivers information on climate at the regional and local level, providing ready-to-use, broadcast quality graphics and analyses that put climate change into a local context.

  6. Geomagnetic excursions and climate change

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1983-01-01

    Rampino argues that although Kent (1982) demonstrated that the intensity of natural remanent magnetism (NRM) in deep-sea sediments is sensitive to changes in sediment type, and hence is not an accurate indicator of the true strength of the geomagnetic field, it does not offer an alternative explanation for the proposed connections between excursions, climate, and orbital parameters. Kent replies by illustrating some of the problems associated with geomagnetic excursions by considering the record of proposed excursions in a single critical core. The large departure from an axial dipole field direction seen in a part of the sample is probably due to a distorted record; the drawing and storage of the sample, which is described, could easily have led to disturbance and distortion of the record.

  7. Agricultural Adaptations to Climate Changes in West Africa

    NASA Astrophysics Data System (ADS)

    Guan, K.; Sultan, B.; Lobell, D. B.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.

    2014-12-01

    Agricultural production in West Africa is highly vulnerable to climate variability and change and a fast growing demand for food adds yet another challenge. Assessing possible adaptation strategies of crop production in West Africa under climate change is thus critical for ensuring regional food security and improving human welfare. Our previous efforts have identified as the main features of climate change in West Africa a robust increase in temperature and a complex shift in the rainfall pattern (i.e. seasonality delay and total amount change). Unaddressed, these robust climate changes would reduce regional crop production by up to 20%. In the current work, we use two well-validated crop models (APSIM and SARRA-H) to comprehensively assess different crop adaptation options under future climate scenarios. Particularly, we assess adaptations in both the choice of crop types and management strategies. The expected outcome of this study is to provide West Africa with region-specific adaptation recommendations that take into account both climate variability and climate change.

  8. Climate Change and Coastal Eutrophication

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2014-12-01

    The world's climate has changed and human activities will continue to contribute to the acceleration of greenhouse gases and temperature rise. The major drivers of these changes are increased temperature, altered hydrological cycles and shifts in wind patterns that might alter coastal currents. Increasing temperatures alone have the potential to strengthen pycnoclines in estuarine and coastal waters, but lower surface salinity (e.g., from increased freshwater runoff) would be more of a factor in stratifying the water column. The combination of increased nutrient loads (from human activities) and increased freshwater discharge (from GCC) will aggravate the already high loads of nutrients from the Mississippi River to the northern Gulf of Mexico, strengthen stratification (all other factors remaining the same), and worsen the hypoxia situation. Reduced precipitation, on the other hand, would lower the amount of nutrients and water reaching the coastal zone and, perhaps, lead to oligotrophication and reduced fisheries productivity, or perhaps alleviate hypoxia. The increase or decrease in flow (whichever occurs), flux of nutrients and water temperature are likely to have important, but as yet not clearly identifiable, influences on hypoxia. In anticipation of the negative effects of global change, nutrient loadings to coastal waters need to be reduced now, so that further water quality degradation is prevented.

  9. Potential Impacts of Climatic Change on European Breeding Birds

    PubMed Central

    Huntley, Brian; Collingham, Yvonne C.; Willis, Stephen G.; Green, Rhys E.

    2008-01-01

    Background Climatic change is expected to lead to changes in species' geographical ranges. Adaptation strategies for biodiversity conservation require quantitative estimates of the magnitude, direction and rates of these potential changes. Such estimates are of greatest value when they are made for large ensembles of species and for extensive (sub-continental or continental) regions. Methodology/Principal Findings For six climate scenarios for 2070–99 changes have been estimated for 431 European breeding bird species using models relating species' distributions in Europe to climate. Mean range centroid potentially shifted 258–882 km in a direction between 341° (NNW) and 45° (NE), depending upon the climate scenario considered. Potential future range extent averaged 72–89% of the present range, and overlapped the present range by an average of 31–53% of the extent of the present range. Even if potential range changes were realised, the average number of species breeding per 50×50 km grid square would decrease by 6·8–23·2%. Many species endemic or near-endemic to Europe have little or no overlap between their present and potential future ranges; such species face an enhanced extinction risk as a consequence of climatic change. Conclusions/Significance Although many human activities exert pressures upon wildlife, the magnitude of the potential impacts estimated for European breeding birds emphasises the importance of climatic change. The development of adaptation strategies for biodiversity conservation in the face of climatic change is an urgent need; such strategies must take into account quantitative evidence of potential climatic change impacts such as is presented here. PMID:18197250

  10. Wealth reallocation and sustainability under climate change

    NASA Astrophysics Data System (ADS)

    Fenichel, Eli P.; Levin, Simon A.; McCay, Bonnie; St. Martin, Kevin; Abbott, Joshua K.; Pinsky, Malin L.

    2016-03-01

    Climate change is often described as the greatest environmental challenge of our time. In addition, a changing climate can reallocate natural capital, change the value of all forms of capital and lead to mass redistribution of wealth. Here we explain how the inclusive wealth framework provides a means to measure shifts in the amounts and distribution of wealth induced by climate change. Biophysical effects on prices, pre-existing institutions and socio-ecological changes related to shifts in climate cause wealth to change in ways not correlated with biophysical changes. This implies that sustainable development in the face of climate change requires a coherent approach that integrates biophysical and social measurement. Inclusive wealth provides a measure that indicates sustainability and has the added benefit of providing an organizational framework for integrating the multiple disciplines studying global change.

  11. Global climate change and international security

    SciTech Connect

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  12. Climate Change, Health, and Communication: A Primer.

    PubMed

    Chadwick, Amy E

    2016-06-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects. PMID:26580230

  13. Climate Change and Older Americans: State of the Science

    PubMed Central

    Hurley, Bradford J.; Schultz, Peter A.; Jaglom, Wendy S.; Krishnan, Nisha; Harris, Melinda

    2012-01-01

    Background: Older adults make up 13% of the U.S. population, but are projected to account for 20% by 2040. Coinciding with this demographic shift, the rate of climate change is accelerating, bringing rising temperatures; increased risk of floods, droughts, and wildfires; stronger tropical storms and hurricanes; rising sea levels; and other climate-related hazards. Older Americans are expected to be located in places that may be relatively more affected by climate change, including coastal zones and large metropolitan areas. Objective: The objective of this review is to assess the vulnerability of older Americans to climate change and to identify opportunities for adaptation. Methods: We performed an extensive literature survey and summarized key findings related to demographics; climate stressors relevant to older adults; factors contributing to exposure, sensitivity, and adaptive capacity; and adaptation strategies. Discussion: A range of physiological and socioeconomic factors make older adults especially sensitive to and/or at risk for exposure to heat waves and other extreme weather events (e.g., hurricanes, floods, droughts), poor air quality, and infectious diseases. Climate change may increase the frequency or severity of these events. Conclusions: Older Americans are likely to be especially vulnerable to stressors associated with climate change. Although a growing body of evidence reports the adverse effects of heat on the health of older adults, research gaps remain for other climate-related risks. We need additional study of the vulnerability of older adults and the interplay of vulnerability, resilience, and adaptive responses to projected climate stressors. PMID:23033457

  14. A Systematic Approach for Climate Change Decision Support

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cantrell, S. J.; Higgins, G. J.; Vanwijngaarden, F.

    2010-12-01

    To effectively predict and prepare for the effects of global climate change on the worldwide population, infrastructure and economy, we need to take a quantum leap forward in how we deal with the issue. Those who must make climate-sensitive decisions need access to the best available climate science information and analysis. To overcome barriers and change behavior, the information must be credible, robust, unbiased, and based on research results that are broadly accepted by the climate science community. Moreover, the process for delivery of information must be tailored to the users’ needs and practices. Unfortunately, much of climate science data today is in the “science domain”, and not available to end users in a form they can use to take action. So there is a need to bridge the gap and take a systematic approach driven by user requirements to sharing climate change science research and analysis with decision makers that would enable them to develop adaptation and mitigation strategies. These needs will become all the more pressing as climate change information is used in real world decisions involving the commitment of large resources and with potential liability and litigation. In this paper, we describe an approach that involves multidisciplinary cooperation and systematic integration of climate change data acquisition and management, climate modeling and projections, uncertainty quantification and risk assessments, economic analysis, and decision support delivered through customized user interfaces.

  15. Sensitivity of evapotranspiration to climatic change in different climates

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; Hosseinzadeh Talaee, P.

    2014-04-01

    This paper presents a study of the sensibility of evapotranspiration (ET) to climatic change in four types of climates (i.e., humid, cold semi-arid, warm semi-arid and arid). The use of a reference crop ET (ETo) permits the standardization of ET estimates across varying conditions. So, ETo was estimated with the FAO-56 Penman-Monteith equation using data from eight Iranian sites over a 41-year period (1965-2005). The sensitivity analyses were carried out for air temperature, wind speed and sunshine hours within a possible range of ± 20% (i.e., - 5%, - 10%, - 20%, + 5%, + 10%, + 20%) from the normal long-term climatic variables. The sensitivity of ETo to the same climatic variables revealed significant differences among climates. From the comparison of the sensitivity of ETo to climatic change in different climates, it can be inferred that the sensitivity of ETo to wind speed and air temperature decreased from arid to humid climate, whereas its sensitivity to sunshine hours increased from arid to humid environment. Furthermore, the greatest change in ETo (about ± 9%) was found in arid climate in response to ± 20 change in wind speed.

  16. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  17. Climate Change and Agriculture: Effects and Adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document is a synthesis of science literature on the effects of climate change on agriculture and issues associated with agricultural adaptation to climate change. Information is presented on how long-term changes in air temperatures, precipitation, and atmospheric levels of carbon dioxide wi...

  18. A Model for Collaborative Learning in Undergraduate Climate Change Courses

    NASA Astrophysics Data System (ADS)

    Teranes, J. L.

    2008-12-01

    Like several colleges and universities across the nation, the University of California, San Diego, has introduced climate change topics into many existing and new undergraduate courses. I have administered a program in this area at UCSD and have also developed and taught a new lower-division UCSD course entitled "Climate Change and Society", a general education course for non-majors. This class covers the basics of climate change, such as the science that explains it, the causes of climate change, climate change impacts, and mitigation strategies. The teaching methods for this course stress interdisciplinary approaches. I find that inquiry-based and collaborative modes of learning are particularly effective when applied to science-based climate, environmental and sustainability topics. Undergraduate education is often dominated by a competitive and individualistic approach to learning. In this approach, individual success is frequently perceived as contingent on others being less successful. Such a model is at odds with commonly stated goals of teaching climate change and sustainability, which are to equip students to contribute to the debate on global environmental change and societal adaptation strategies; and to help students become better informed citizens and decision makers. I present classroom-tested strategies for developing collaborative forms of learning in climate change and environmental courses, including team projects, group presentations and group assessment exercises. I show how critical thinking skills and long-term retention of information can benefit in the collaborative mode of learning. I find that a collaborative learning model is especially appropriate to general education courses in which the enrolled student body represents a wide diversity of majors, class level and expertise. I also connect collaborative coursework in interdisciplinary environmental topics directly to applications in the field, where so much "real-world" achievement in

  19. Climate change: The IPCC scientific assessment

    SciTech Connect

    Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J.

    1990-01-01

    Book review of the intergovernmental panel on climate change report on global warming and the greenhouse effect. Covers the scientific basis for knowledge of the future climate. Presents chemistry of greenhouse gases and mathematical modelling of the climate system. The book is primarily for government policy makers.

  20. Natural and anthropogenic climate changes. Progress report

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D.; Li, K.; Wang, S.

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO{sub 2}-doubled global and regional climates; and studies of desertification in the United States and China.

  1. Fostering Hope in Climate Change Educators

    ERIC Educational Resources Information Center

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  2. Should the United Nations Framework Convention on Climate Change recognize climate migrants?

    NASA Astrophysics Data System (ADS)

    Gibb, Christine; Ford, James

    2012-12-01

    Climate change is expected to increase migration flows, especially from socially and environmentally vulnerable populations. These ‘climate migrants’ do not have any official protection under international law, which has implications for the human security of migrants. This work argues that the United Nations Framework Convention on Climate Change (UNFCCC) can and should recognize climate migrants, and is the most relevant international framework for doing so. While not legally binding, the acknowledgment of climate displacement, migration and planned relocation issues in the UNFCCC’s Cancun Adaptation Framework indicates a willingness to address the issue through an adaptation lens. Herein, the paper proposes a framework for setting the institutional groundwork for recognizing climate migrants, focusing on the most vulnerable, promoting targeted research and policy agendas, and situating policies within a comprehensive strategy.

  3. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  4. Adapting to the Effects of Climate Change on Inuit Health

    PubMed Central

    Ford, James D.; Willox, Ashlee Cunsolo; Chatwood, Susan; Furgal, Christopher; Harper, Sherilee; Mauro, Ian; Pearce, Tristan

    2014-01-01

    Climate change will have far-reaching implications for Inuit health. Focusing on adaptation offers a proactive approach for managing climate-related health risks—one that views Inuit populations as active agents in planning and responding at household, community, and regional levels. Adaptation can direct attention to the root causes of climate vulnerability and emphasize the importance of traditional knowledge regarding environmental change and adaptive strategies. An evidence base on adaptation options and processes for Inuit regions is currently lacking, however, thus constraining climate policy development. In this article, we tackled this deficit, drawing upon our understanding of the determinants of health vulnerability to climate change in Canada to propose key considerations for adaptation decision-making in an Inuit context. PMID:24754615

  5. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  6. Climate Change: The Public Health Response

    PubMed Central

    Frumkin, Howard; Hess, Jeremy; Luber, George; Malilay, Josephine; McGeehin, Michael

    2008-01-01

    There is scientific consensus that the global climate is changing, with rising surface temperatures, melting ice and snow, rising sea levels, and increasing climate variability. These changes are expected to have substantial impacts on human health. There are known, effective public health responses for many of these impacts, but the scope, timeline, and complexity of climate change are unprecedented. We propose a public health approach to climate change, based on the essential public health services, that extends to both clinical and population health services and emphasizes the coordination of government agencies (federal, state, and local), academia, the private sector, and nongovernmental organizations. PMID:18235058

  7. The psychological distance of climate change.

    PubMed

    Spence, Alexa; Poortinga, Wouter; Pidgeon, Nick

    2012-06-01

    Avoiding dangerous climate change is one of the most urgent social risk issues we face today and understanding related public perceptions is critical to engaging the public with the major societal transformations required to combat climate change. Analyses of public perceptions have indicated that climate change is perceived as distant on a number of different dimensions. However, to date there has been no in-depth exploration of the psychological distance of climate change. This study uses a nationally representative British sample in order to systematically explore and characterize each of the four theorized dimensions of psychological distance--temporal, social, and geographical distance, and uncertainty--in relation to climate change. We examine how each of these different aspects of psychological distance relate to each other as well as to concerns about climate change and sustainable behavior intentions. Results indicate that climate change is both psychologically distant and proximal in relation to different dimensions. Lower psychological distance was generally associated with higher levels of concern, although perceived impacts on developing countries, as an indicator of social distance, was also significantly related to preparedness to act on climate change. Our findings clearly point to the utility of risk communication techniques designed to reduce psychological distance. However, highlighting the potentially very serious distant impacts of climate change may also be useful in promoting sustainable behavior, even among those already concerned. PMID:21992607

  8. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J