Sample records for climate facade energy

  1. Optimizing lighting, thermal performance, and energy production of building facades by using automated blinds and PV cells

    NASA Astrophysics Data System (ADS)

    Alzoubi, Hussain Hendi

    Energy consumption in buildings has recently become a major concern for environmental designers. Within this field, daylighting and solar energy design are attractive strategies for saving energy. This study seeks the integrity and the optimality of building envelopes' performance. It focuses on the transparent parts of building facades, specifically, the windows and their shading devices. It suggests a new automated method of utilizing solar energy while keeping optimal solutions for indoor daylighting. The method utilizes a statistical approach to produce mathematical equations based on physical experimentation. A full-scale mock-up representing an actual office was built. Heat gain and lighting levels were measured empirically and correlated with blind angles. Computational methods were used to estimate the power production from photovoltaic cells. Mathematical formulas were derived from the results of the experiments; these formulas were utilized to construct curves as well as mathematical equations for the purpose of optimization. The mathematical equations resulting from the optimization process were coded using Java programming language to enable future users to deal with generic locations of buildings with a broader context of various climatic conditions. For the purpose of optimization by automation under different climatic conditions, a blind control system was developed based on the findings of this study. This system calibrates the blind angles instantaneously based upon the sun position, the indoor daylight, and the power production from the photovoltaic cells. The functions of this system guarantee full control of the projected solar energy on buildings' facades for indoor lighting and heat gain. In winter, the system automatically blows heat into the space, whereas it expels heat from the space during the summer season. The study showed that the optimality of building facades' performance is achievable for integrated thermal, energy, and lighting

  2. Evaluating economic and environmental aspects of using solar panels on multi-angled facades of office buildings

    NASA Astrophysics Data System (ADS)

    Hannoudi, Loay Akram; Lauring, Michael; Christensen, Jørgen Erik

    2017-09-01

    This paper is concerned with using solar panels as high-tech cladding materials on multi-angled facades for office buildings. The energy produced by the solar panels will be consumed inside the office rooms by cooling compressors, ventilation, lighting and office equipment. Each multi-angled facade unit is directed into two different orientations on a vertical axis (right and left), but not tilted up and down. The different facade orientations will optimize the use of solar radiation to produce the needed energy from the solar panels when placing them on the parapets of these facades. In this regard, four scenarios with different facade configurations and orientations are evaluated and discussed. The method for the simulations and calculations depends on two main programs: first, IDA ICE program to calculate the energy consumption and evaluate the indoor climate of the building; and second, PVBAT to calculate the cost of the electricity produced by the solar panels and evaluate the total amount of energy produced from these panels along with the ratio to the energy bought directly from the electricity grid. There is also an environmental evaluation for the system by calculating the CO2 emissions in the different scenarios.

  3. High Performance Building Facade Solutions - PIER Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    California and the US.A collaborative test, monitoring, and reporting protocol was also formulated via the Windows Testbed Facility in collaboration with industry partners, transitioning industry to focus on the importance of expecting measured performance to consistently achieve design performance expectations. The facility enables accurate quantification of energy use, peak demand, and occupant comfort impacts of synergistic facade-lighting-HVAC systems on an apples-to-apples comparative basis and its data can be used to verify results from simulations. Emerging interior and exterior shading technologies were investigated as potential near-term, low-cost solutions with potential broad applicability in both new and retrofit construction. Commercially-available and prototype technologies were developed, tested, and evaluated. Full-scale, monitored field tests were conducted over solstice-to-solstice periods to thoroughly evaluate the technologies, uncover potential risks associated with an unknown, and quantify performance benefits. Exterior shading systems were found to yield net zero energy levels of performance in a sunny climate and significant reductions in summer peak demand. Automated interior shading systems were found to yield significant daylighting and comfort-related benefits.In support of an integrated design process, a PC-based commercial fenestration (COMFEN) software package, based on EnergyPlus, was developed that enables architects and engineers to quickly assess and compare the performance of innovative facade technologies in the early sketch or schematic design phase. This tool is publicly available for free and will continue to improve in terms of features and accuracy. Other work was conducted to develop simulation tools to model the performance of any arbitrary complex fenestration system such as common Venetian blinds, fabric roller shades as well as more exotic innovative facade systems such as optical louver systems.« less

  4. 2. View southwest of north facade elevation. Natick Research ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View southwest of north facade elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  5. Perspective view of the Fifteenth Street facade; this facade stretches ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the Fifteenth Street facade; this facade stretches almost three city blocks but is partially masked by trees and relieved by four pedimented pavilions. At the time of its construction, this was the largest office building in the world. - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC

  6. Occupant-responsive optimal control of smart facade systems

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Soo

    Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the

  7. How To Maintain Your Masonry Facade.

    ERIC Educational Resources Information Center

    Jones, Ralph C.

    2000-01-01

    Discusses facade maintenance procedures that will help protect the facility and its structure, building systems, interior finishes, and occupants from inclement weather. Facade assessment methods and maintenance solutions are described. (GR)

  8. Modeling of facade leaching in urban catchments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  9. Facading in transcultural interactions: examples from pediatric cancer care in Sweden.

    PubMed

    Pergert, Pernilla

    2017-07-01

    The aims of the study were to generate a grounded theory explaining the latent pattern of behavior in transcultural care interactions in the context of pediatric cancer care and to unify previously performed studies. The basic tenets of classic grounded theory were applied on a theoretical sample of data from previous studies that included 5 focus group interviews with health care professionals (n = 35) and individual interviews with nurses (n = 12) and foreign-born parents (n = 11). Facading emerged as the core category and is the act of showing an outer appearance that will influence other people's interpretations. In transcultural interactions, facading might be misinterpreted related to different obstacles. Examples are given of different facades explored in pediatric cancer care including strength facading. Facading is a strategy aiming to protect oneself and others emotionally in care and includes: emotional facading and facading-sensitive issues. This grounded theory could help make health care professionals aware of different meanings of facading across cultures in health care. Also, awareness is needed of different views on emotional facading and facading-sensitive issues to provide a congruent care. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Facades structure detection by geometric moment

    NASA Astrophysics Data System (ADS)

    Jiang, Diqiong; Chen, Hui; Song, Rui; Meng, Lei

    2017-06-01

    This paper proposes a novel method for extracting facades structure from real-world pictures by using local geometric moment. Compared with existing methods, the proposed method has advantages of easy-to-implement, low computational cost, and robustness to noises, such as uneven illumination, shadow, and shade from other objects. Besides, our method is faster and has a lower space complexity, making it feasible for mobile devices and the situation where real-time data processing is required. Specifically, a facades structure modal is first proposed to support the use of our special noise reduction method, which is based on a self-adapt local threshold with Gaussian weighted average for image binarization processing and the feature of the facades structure. Next, we divide the picture of the building into many individual areas, each of which represents a door or a window in the picture. Subsequently we calculate the geometric moment and centroid for each individual area, for identifying those collinear ones based on the feature vectors, each of which is thereafter replaced with a line. Finally, we comprehensively analyze all the geometric moment and centroid to find out the facades structure of the building. We compare our result with other methods and especially report the result from the pictures taken in bad environmental conditions. Our system is designed for two application, i.e, the reconstruction of facades based on higher resolution ground-based on imagery, and the positional system based on recognize the urban building.

  11. 84. South Oregon St., 621 (residential), south and east facades, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    84. South Oregon St., 621 (residential), south and east facades, facade on right is South Oregon St., and facade on left is on Fifth Ave. - South El Paso Street Historic District, South El Paso, South Oregon & South Santa Fe Streets, El Paso, El Paso County, TX

  12. Design and Optimization of Slot Aluminum Alloy Connectors of Photovoltaics Applied to High-rise Building Facades

    NASA Astrophysics Data System (ADS)

    Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua

    2016-05-01

    Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.

  13. Dynamic facade module prototype development for solar radiation prevention in high rise building

    NASA Astrophysics Data System (ADS)

    Sega Sufia Purnama, Muhammad; Sutanto, Dalhar

    2018-03-01

    Solar radiation is an aspect that high rise building must avoid. The problem is, if high rise building facade can’t overcome, the solar thermal will come in the building, and its affects on the increasing of room temperature above comfort range. A type of additional facade element that could solve solar thermal in high rise building is adding a sun shading. A dynamic facade is a shade plane in high rise building that can moved or changed on outside condition such as solar movement and intensity. This research will discuss the dynamic facade module prototype development in high rise building in Jakarta. This research will be finish through some step. (1) Static shading shadow simulation. (2) Dynamic facade concept design development. (3) Dynamic shading shadow simulation. (4) Making of dynamic facade module prototype. (5) Field test for the dynamic facade module prototype. The dynamic facade in Jakarta case will be effective to solve solar transmission in high rise building rather than static facade.

  14. LPT. Low power test control building (TAN641) east facade. Sign ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Low power test control building (TAN-641) east facade. Sign says "Energy and Systems Technology Laboratory, INEL" (Post-ANP-use). Camera facing west. INEEL negative no. HD-40-3-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. LPT. Shield test control building (TAN645), north facade. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test control building (TAN-645), north facade. Camera facing south. Obsolete sign dating from post-1970 program says "Energy and Systems Technology Experimental Facility, INEL." INEEL negative no. HD-40-5-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  16. A hierarchical methodology for urban facade parsing from TLS point clouds

    NASA Astrophysics Data System (ADS)

    Li, Zhuqiang; Zhang, Liqiang; Mathiopoulos, P. Takis; Liu, Fangyu; Zhang, Liang; Li, Shuaipeng; Liu, Hao

    2017-01-01

    The effective and automated parsing of building facades from terrestrial laser scanning (TLS) point clouds of urban environments is an important research topic in the GIS and remote sensing fields. It is also challenging because of the complexity and great variety of the available 3D building facade layouts as well as the noise and data missing of the input TLS point clouds. In this paper, we introduce a novel methodology for the accurate and computationally efficient parsing of urban building facades from TLS point clouds. The main novelty of the proposed methodology is that it is a systematic and hierarchical approach that considers, in an adaptive way, the semantic and underlying structures of the urban facades for segmentation and subsequent accurate modeling. Firstly, the available input point cloud is decomposed into depth planes based on a data-driven method; such layer decomposition enables similarity detection in each depth plane layer. Secondly, the labeling of the facade elements is performed using the SVM classifier in combination with our proposed BieS-ScSPM algorithm. The labeling outcome is then augmented with weak architectural knowledge. Thirdly, least-squares fitted normalized gray accumulative curves are applied to detect regular structures, and a binarization dilation extraction algorithm is used to partition facade elements. A dynamic line-by-line division is further applied to extract the boundaries of the elements. The 3D geometrical façade models are then reconstructed by optimizing facade elements across depth plane layers. We have evaluated the performance of the proposed method using several TLS facade datasets. Qualitative and quantitative performance comparisons with several other state-of-the-art methods dealing with the same facade parsing problem have demonstrated its superiority in performance and its effectiveness in improving segmentation accuracy.

  17. FACADE OF THE CLUB MODERNE, SHOWING THE ORIGINAL CURVED CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACADE OF THE CLUB MODERNE, SHOWING THE ORIGINAL CURVED CORNER PROFILE AND TRI-COLOR CARRERE GLASS FACADE. - Anaconda Historic District, Club Moderne, 801 East Park Avenue, Anaconda, Deer Lodge County, MT

  18. Original blackandwhite print, VIEW OF UNFINISHED FACADE AND PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Original black-and-white print, VIEW OF UNFINISHED FACADE AND PORTION OF CURVED FACADE AT TWELFTH STREET - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  19. 1. Cold Storage Warehouse, east facade. Northeast corner of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Cold Storage Warehouse, east facade. Northeast corner of the north facade of the Ice Plant is visible on the left. Far left, the Creamery. - Curtis Wharf, Cold Storage Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  20. 1. Ninth Street (west) facade. Adjacent on the north is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Ninth Street (west) facade. Adjacent on the north is the 9th Street facade of 816 E Street. Both buildings were originally one property. - Riley Building, Rendezvous Adult Magazines & Films, 437 Ninth Street, Northwest, Washington, District of Columbia, DC

  1. Building Facade Modeling Under Line Feature Constraint Based on Close-Range Images

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Sheng, Y. H.

    2018-04-01

    To solve existing problems in modeling facade of building merely with point feature based on close-range images , a new method for modeling building facade under line feature constraint is proposed in this paper. Firstly, Camera parameters and sparse spatial point clouds data were restored using the SFM , and 3D dense point clouds were generated with MVS; Secondly, the line features were detected based on the gradient direction , those detected line features were fit considering directions and lengths , then line features were matched under multiple types of constraints and extracted from multi-image sequence. At last, final facade mesh of a building was triangulated with point cloud and line features. The experiment shows that this method can effectively reconstruct the geometric facade of buildings using the advantages of combining point and line features of the close - range image sequence, especially in restoring the contour information of the facade of buildings.

  2. Impact Verification of Aerogel Insulation Paint on Historic Brick Facades

    NASA Astrophysics Data System (ADS)

    Ganobjak, Michal; Kralova, Eva

    2017-10-01

    Increasing the sustainability of existing buildings is being motivated by reduction of their energy demands. It is the above all the building envelope and its refurbishment by substitution or addition of new materials that makes the opportunity for reduction of energy consumption. A special type of refurbishment is conservation of historical buildings. Preservation of historic buildings permits also application of innovative methods and materials in addition to the original materials if their effects are known and the gained experience ensures their beneficial effect. On the market, there are new materials with addition of silica aerogel in various forms of products. They are also potentially useful in conservation of monuments. However, the effects of aerogel application in these cases are not known. For refurbishment is commercially available additional transparent insulation paint - Nansulate Clear Coat which is containing aerogel and can be used for structured surfaces such as bricks. A series of experiments examined the thermo-physical manifestation of an ultra-thin insulation coating of Nansulate Clear Coat containing silica aerogel on a brick facade. The experiments of active and passive thermography have observed effects of application on the small-scale samples of the brick façade of a protected historical building. Through a series of experiments were measured thermal insulation effect and influence on the aesthetic characteristics such as change in colour and gloss. The treated samples were compared to a reference. Results have shown no thermal-insulating manifestation of the recommended three layers of insulation paint. The three layers recommended by the manufacturer did not significantly affect the appearance of the brick facade. Color and gloss were not significantly changed. Experiments showed the absence of thermal insulation effect of Nansulate transparent triple coating. The thermal insulation effect could likely be reached by more layers of

  3. [Assessment of the potential for urban facade greening in Xinjiekou District, Nanjing, China.

    PubMed

    Shi, Bao Gang; Yin, Hai Wei; Kong, Fan Hua

    2018-05-01

    Green facade is an important strategy to improve the urban eco-environment and reduce the negative effects of human activities in central districts of cities which are land-scarce and lack green spaces. We first summarized the limiting factors for the construction of green facades locally and internationally. Then, we used the Xinjiekou District of Nanjing City in China as a case study area, and selected the wind environment, solar environment, and physical build environment that might impact the potential development of green facades as key factors to quantitatively analyze singlely by geographic information systems (GIS) and computational fluid dynamics (CFD). Finally, the potential area to develop green facades was assessed through a multi-factor overlay analysis. The results showed that 17726 m 2 of wall spaces in the Xinjiekou District had a high potential for facade greening, accounting for 30.8% of all exterior wall space under a height of 12 m and 17.3% of the entire study area. Sunlight was a key limiting factor in determining whether a green facade should be developed. Irrigation was identified as another important factor that might strongly affect the growth of vertical vegetation in urban environment. The spatial distribution of walls suitable for facade greening was uneven, with an "inner-high and south-high" spatial pattern. Our results would help to guide the design and development of green facades in Xinjiekou, and also provide a reference for planning and utilizing green wall space projects in other built and dense urban areas.

  4. The acoustic performance of double-skin facades: A design support tool for architects

    NASA Astrophysics Data System (ADS)

    Batungbakal, Aireen

    This study assesses and validates the influence of measuring sound in the urban environment and the influence of glass facade components in reducing sound transmission to the indoor environment. Among the most reported issues affecting workspaces, increased awareness to minimize noise led building designers to reconsider the design of building envelopes and its site environment. Outdoor sound conditions, such as traffic noise, challenge designers to accurately estimate the capability of glass facades in acquiring an appropriate indoor sound quality. Indicating the density of the urban environment, field-tests acquired existing sound levels in areas of high commercial development, employment, and traffic activity, establishing a baseline for sound levels common in urban work areas. Composed from the direct sound transmission loss of glass facades simulated through INSUL, a sound insulation software, data is utilized as an informative tool correlating the response of glass facade components towards existing outdoor sound levels of a project site in order to achieve desired indoor sound levels. This study progresses to link the disconnection in validating the acoustic performance of glass facades early in a project's design, from conditioned settings such as field-testing and simulations to project completion. Results obtained from the study's facade simulations and facade comparison supports that acoustic comfort is not limited to a singular solution, but multiple design options responsive to its environment.

  5. 12. NORTH FACADE, OPERATOR'S COTTAGE, SILK STOCKING ROW, NEWHALEM. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NORTH FACADE, OPERATOR'S COTTAGE, SILK STOCKING ROW, NEWHALEM. THE HOUSES WERE CONSTRUCTED SO THAT WHAT APPEARS TO BE THE FRONT OF THE HOUSE FACES THE RIVER AND THE FACADE FACING THE STREET LOOKS LIKE A BACK, 1989. - Skagit Power Development, Skagit River & Newhalem Creek Hydroelectric Project, On Skagit River, Newhalem, Whatcom County, WA

  6. Installation of ventilated facades without scaffolding in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Gnedina, Lyubov; Muchkina, Arina; Labutin, Alexander

    2018-03-01

    This article consider the use of polystyrene concrete blocks during assembling enclosing structure of ventilated facades in high-rise monolithic housing construction. Comparing with traditional technology devices hinged ventilated facade the main advantage of the proposed design is an exception of using scaffold, that leads to a cheapening of the enclosing structure. Proposed solutions are confirmed by patents of the Russian Federation.

  7. Beyond information and utility: Transforming public spaces with media facades.

    PubMed

    Fischer, Patrick Tobias; Zöllner, Christian; Hoffmann, Thilo; Piatza, Sebastian; Hornecker, Eva

    2013-01-01

    Media facades (often characterized as a building's digital skin) are public displays that substitute dynamic details and information for usually static structures. SMSlingshot is a media facade system at the confluence of art, architecture, and technology design in the context of urban human-computer interaction. It represents a participative approach to public displays that enlivens public spaces and fosters civic and social dialogue as an alternative to advertising and service-oriented information displays. Observations from SMSlingshot's implementation at festival exhibitions provide insight into the roles of scale, distance, and the spatial situation of media facade contexts. The lessons learned apply to most public-display situations and will be useful for designers and developers of this new medium in urban spaces.

  8. Corrosion products of carbonation induced corrosion in existing reinforced concrete facades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köliö, Arto; Honkanen, Mari; Lahdensivu, Jukka

    Active corrosion in reinforced concrete structures is controlled by environmental conditions and material properties. These factors determine the corrosion rate and type of corrosion products which govern the total achieved service life. The type and critical amount of corrosion products were studied by electron microscopy and X-ray diffractometry on concrete and reinforcement samples from existing concrete facades on visually damaged locations. The corrosion products in outdoor environment exposed concrete facades are mostly hydroxides (Feroxyhite, Goethite and Lepidocrocite) with a volume ratio to Fe of approximately 3. The results can be used to calibrate calculation of the critical corrosion penetration ofmore » concrete facade panels.« less

  9. Costless Platform for High Resolution Stereoscopic Images of a High Gothic Facade

    NASA Astrophysics Data System (ADS)

    Héno, R.; Chandelier, L.; Schelstraete, D.

    2012-07-01

    In October 2011, the PPMD specialized master's degree students (Photogrammetry, Positionning and Deformation Measurement) of the French ENSG (IGN's School of Geomatics, the Ecole Nationale des Sciences Géographiques) were asked to come and survey the main facade of the cathedral of Amiens, which is very complex as far as size and decoration are concerned. Although it was first planned to use a lift truck for the image survey, budget considerations and taste for experimentation led the project to other perspectives: images shot from the ground level with a long focal camera will be combined to complementary images shot from what higher galleries are available on the main facade with a wide angle camera fixed on a horizontal 2.5 meter long pole. This heteroclite image survey is being processed by the PPMD master's degree students during this academic year. Among other type of products, 3D point clouds will be calculated on specific parts of the facade with both sources of images. If the proposed device and methodology to get full image coverage of the main facade happen to be fruitful, the image acquisition phase will be completed later by another team. This article focuses on the production of 3D point clouds with wide angle images on the rose of the main facade.

  10. 1. 185/189D in center, north end west facades (190D front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 185/189-D in center, north end west facades (190-D front left and west facade; 195-D rear right). Looking south. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  11. Accurate facade feature extraction method for buildings from three-dimensional point cloud data considering structural information

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia

    2018-05-01

    Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.

  12. The risks associated with falling parts of glazed facades in case of fire

    NASA Astrophysics Data System (ADS)

    Sędłak, Bartłomiej; Kinowski, Jacek; Sulik, Paweł; Kimbar, Grzegorz

    2018-05-01

    Arguably, one of the most important requirement a building have to meet in case of fire is to ensure the safe evacuation of its users and the work of rescue teams. Consequently, issues related to the risks associated with falling parts of facades are fairly well known around Europe. Even though not equally well defined as other fire safety requirements concerning glazed facades, there is plenty of test methods for assessment of facades regarding falling parts, mostly based on an approach related to fire spread. In this paper selection of test method for assessment of facades regarding falling parts is briefly presented. However, focus of this work is on fire test of typical glazed segment of façade performed in ITB Laboratory. Results of the test positively verifies conjecture that solutions with glass units configured with thin, tempered glass panes on the outer side should pose no threat. However, the question has been raised whether the behaviour of other glass unit solutions (with additional coatings or laminated) would be similar.

  13. Intelligent Facades for High Performance Green Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyson, Anna

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, wemore » have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic

  14. The effect of building facade reflectivity on urban dwellers in tropics.

    NASA Astrophysics Data System (ADS)

    Ishak, N. M.; Hien, W. N.; Jenatabadi, H. S.; Ignatius, M.; Yaman, R.

    2018-02-01

    With the rapid growth and use of modern architecture practices for high-rise buildings, highly reflective materials have been adopted extensively for aesthetical reasons. However, outdoor glare from highly reflective facades might cause thermal and visual problems towards the occupants of neighbouring buildings and outdoor dwellers, particularly pedestrians. In tropical countries, this negative impact can be greater due to the higher solar radiation received throughout the year. At the present, there are few building guidelines limiting outdoor glare, or daylight reflectance from a building facade. This study aims to introduce a framework for outdoor glare studies that focus on perceived glare from highly reflective facades by pedestrians in Singapore. The introduced framework includes age, glare time, glare duration, avoidance and sensitiveness. For this study, the survey is carried out with the application of Structural Equation Modelling (SEM). This paper is helpful for planners, designers, and engineers to estimate the sensitivity of pedestrians’ discomfort glare and towards the creation of sustainable architecture in Singapore.

  15. Sap flow measurements to determine the transpiration of facade greenings

    NASA Astrophysics Data System (ADS)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  16. Perspective view of south facade from southeast National Home ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of south facade from southeast - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  17. Perspective view of east facade from northeast National Home ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of east facade from northeast - National Home for Disabled Volunteer Soldiers, Pacific Branch, Main Mental Health Building, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  18. Perspective view of #158 east facade from southeast National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of #158 east facade from southeast - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  19. DETAIL, WINDOW ON THE NORTH FACADE, LOOKING SOUTH Eglin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, WINDOW ON THE NORTH FACADE, LOOKING SOUTH - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  20. View northwest; south and east facades and context Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest; south and east facades and context - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  1. View southeast; west and north facades and context Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southeast; west and north facades and context - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  2. View of breezeway and #157 south facade from southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of breezeway and #157 south facade from southeast - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  3. Elevation of north facades of #156158 (triple wards) National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of north facades of #156-158 (triple wards) - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  4. 16. UPPER STATION, WEST FACADE, LOOKING EAST SOUTHEAST. Monongahela ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. UPPER STATION, WEST FACADE, LOOKING EAST SOUTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  5. SOUTHWEST FACADE AS SEEN FROM FLIGHTLINE, VIEW FACING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHWEST FACADE AS SEEN FROM FLIGHTLINE, VIEW FACING NORTHEAST - Naval Air Station Barbers Point, Control Tower & Aviation Operations Building, Near intersection of runways between Hangar 110 & Building 115, Ewa, Honolulu County, HI

  6. 14. UPPER STATION, FRONT AND WEST FACADES, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. UPPER STATION, FRONT AND WEST FACADES, LOOKING NORTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  7. 15. UPPER STATION, FRONT AND EAST FACADES, LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. UPPER STATION, FRONT AND EAST FACADES, LOOKING NORTH. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  8. NORTHEAST FACADE AND ONESTORY WING, VIEW FACING SOUTHSOUTHWEST. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST FACADE AND ONE-STORY WING, VIEW FACING SOUTH-SOUTHWEST. - Naval Air Station Barbers Point, Control Tower & Aviation Operations Building, Near intersection of runways between Hangar 110 & Building 115, Ewa, Honolulu County, HI

  9. Biocide Runoff from Building Facades: Degradation Kinetics in Soil.

    PubMed

    Bollmann, Ulla E; Fernández-Calviño, David; Brandt, Kristian K; Storgaard, Morten S; Sanderson, Hans; Bester, Kai

    2017-04-04

    Biocides are common additives in building materials. In-can and film preservatives in polymer-resin render and paint, as well as wood preservatives are used to protect facade materials from microbial spoilage. Biocides leach from the facade material with driving rain, leading to highly polluted runoff water (up to several mg L -1 biocides) being infiltrated into the soil surrounding houses. In the present study the degradation rates in soil of 11 biocides used for the protection of building materials were determined in laboratory microcosms. The results show that some biocides are degraded rapidly in soil (e.g., isothiazolinones: T 1/2 < 10 days) while others displayed higher persistence (e.g., terbutryn, triazoles: T 1/2 ≫ 120 days). In addition, mass balances of terbutryn and octylisothiazolinone were determined, including nine (terbutryn) and seven (octylisothiazolinone) degradation products, respectively. The terbutryn mass balance could be closed over the entire study period of 120 days and showed that relative persistent metabolites were formed, while the mass balances for octylisothiazolinone could not be closed. Octylisothiazolinone degradation products did not accumulate over time suggesting that the missing fraction was mineralized. Microtox-tests revealed that degradation products were less toxic toward the bacterium Aliivibrio fischeri than their parent compounds. Rain is mobilizing these biocides from the facades and transports them to the surrounding soils; thus, rainfall events control how often new input to the soil occurs. Time intervals between rainfall events in Northern Europe are shorter than degradation half-lives even for many rapidly degraded biocides. Consequently, residues of some biocides are likely to be continuously present due to repeated input and most biocides can be considered as "pseudo-persistent"-contaminants in this context. This was verified by (sub)urban soil screening, where concentrations of up to 0.1 μg g -1 were

  10. FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EASTSOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EAST-SOUTHEAST. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-ARMCO Hut, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  11. 4. DETAIL VIEW OF ADMINISTRATION BUILDING SHOWING WEST FACADE. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF ADMINISTRATION BUILDING SHOWING WEST FACADE. VIEW TO NORTHEAST. - VA Medical Center, Aspinwall Division, Administration Building, 5103 Delafield Avenue, Aspinwall, Allegheny County, PA

  12. Energy Switching Threshold for Climatic Benefits

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cao, L.; Caldeira, K.

    2013-12-01

    Climate change is one of the great challenges facing humanity currently and in the future. Its most severe impacts may still be avoided if efforts are made to transform current energy systems (1). A transition from the global system of high Greenhouse Gas (GHG) emission electricity generation to low GHG emission energy technologies is required to mitigate climate change (2). Natural gas is increasingly seen as a choice for transitions to renewable sources. However, recent researches in energy and climate puzzled about the climate implications of relying more energy on natural gas. On one hand, a shift to natural gas is promoted as climate mitigation because it has lower carbon per unit energy than coal (3). On the other hand, the effect of switching to natural gas on nuclear-power and other renewable energies development may offset benefits from fuel-switching (4). Cheap natural gas is causing both coal plants and nuclear plants to close in the US. The objective of this study is to measure and evaluate the threshold of energy switching for climatic benefits. We hypothesized that the threshold ratio of energy switching for climatic benefits is related to GHGs emission factors of energy technologies, but the relation is not linear. A model was developed to study the fuel switching threshold for greenhouse gas emission reduction, and transition from coal and nuclear electricity generation to natural gas electricity generation was analyzed as a case study. The results showed that: (i) the threshold ratio of multi-energy switching for climatic benefits changes with GHGs emission factors of energy technologies. (ii)The mathematical relation between the threshold ratio of energy switching and GHGs emission factors of energies is a curved surface function. (iii) The analysis of energy switching threshold for climatic benefits can be used for energy and climate policy decision support.

  13. View northwest; south and east facades Naval Base PhiladelphiaPhiladelphia ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest; south and east facades - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  14. View southwest; north and east facades Naval Base PhiladelphiaPhiladelphia ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southwest; north and east facades - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  15. Original blackandwhite print, VIEW OF UNFINISHED FACADE AT TWELFTH STREET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Original black-and-white print, VIEW OF UNFINISHED FACADE AT TWELFTH STREET FROM COURTYARD - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  16. 1. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING FACADE OF FISH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW LOOKING SOUTH, SHOWING FACADE OF FISH HATCHERY BUILDING. - Bonneville Project, Fish Hatchery, On Columbia River bordered on South by Union Pacific, Bonneville, Multnomah County, OR

  17. Original blackandwhite print, VIEW OF UNFINISHED FACADE AT PENNSYLVANIA AVENUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Original black-and-white print, VIEW OF UNFINISHED FACADE AT PENNSYLVANIA AVENUE AND ELEVENTH STREET - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  18. [Energy policy rather than climate policy].

    PubMed

    Kroonenberg, Salomon B

    2009-01-01

    Energy policy and climate policy are two different issues and should not be treated as if they were the same. Whether the climate gets warmer or colder, saving energy and developing sustainable forms of energy production remain of paramount importance because fossil hydrocarbons are likely to be exhausted soon. But climate policy is a fallacy: it is human arrogance to think we can control the climate by reducing emissions and by storing CO2 underground. In spite of rising CO2 levels, the climate has cooled down slightly over the past decade. Since the International Panel on Climate Change (IPCC) did not predict this, it is questionable whether they can reliably predict warming. Other factors such as solar activity are probably more important for climate than greenhouse gases. The danger of coupling energy policy to climate policy is evident: if the climate cools down, people will lose belief in the greenhouse effect and therefore also lose interest in saving energy.

  19. Leaching of biocides from building facades: Upscaling of a local two-region leaching model to the city scale

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Rota, C.; Rossi, L.; Barry, D. A.

    2011-12-01

    Facades are protected by paints that contain biocides as protection against degradation. These biocides are leached by rainfall (albeit at low concentrations). At the city scale, however, the surface area of building facades is significant, and leached biocides are a potential environmental risk to receiving waters. A city-scale biocide-leaching model was developed based on two main steps. In the first step, laboratory experiments on a single facade were used to calibrate and validate a 1D, two-region phenomenological model of biocide leaching. The same data set was analyzed independently by another research group who found empirically that biocide leachate breakthrough curves were well represented by a sum of two exponentials. Interestingly, the two-region model was found analytically to reproduce this functional form as a special case. The second step in the method is site-specific, and involves upscaling the validated single facade model to a particular city. In this step, (i) GIS-based estimates of facade heights and areas are deduced using the city's cadastral data, (ii) facade flow is estimated using local meteorological data (rainfall, wind direction) and (iii) paint application rates are modeled as a stochastic process based on manufacturers' recommendations. The methodology was applied to Lausanne, Switzerland, a city of about 200,000 inhabitants. Approximately 30% of the annually applied mass of biocides was estimated to be released to the environment.

  20. 13. DETAIL SOUTH FACADE, ENTRANCE Copy photograph of photogrammetric plate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL- SOUTH FACADE, ENTRANCE Copy photograph of photogrammetric plate LC-HABS-GS07-1116-102R. - Provident Life & Trust Company Bank, 407-409 Chestnut Street, Philadelphia, Philadelphia County, PA

  1. Close view of the south facade on Constitution Avenue to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close view of the south facade on Constitution Avenue to show main entrance - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  2. DETAIL, NORTHEAST POST SUPPORTING SHED PORCH ROOF ON NORTH FACADE; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, NORTHEAST POST SUPPORTING SHED PORCH ROOF ON NORTH FACADE; VIEW TO EAST - Fort Bragg, Noncommissioned Officers' Service Club, Guest House Building, South of Butner Road, Fayetteville, Cumberland County, NC

  3. 7. Front facade of main entrance, Awing, Minuteman circle looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Front facade of main entrance, A-wing, Minuteman circle looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  4. 3. Cement and Plaster Warehouse, north facade. Loading ramp on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  5. Detail, corner pilaster remnant, gable return on facade, Our Corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, corner pilaster remnant, gable return on facade, Our Corner Saloon, view to northeast (210mm lens with electronic flash fill) - Our Corner Saloon, 301 First Street, Eureka, Humboldt County, CA

  6. 1. Oil House, Southern Pacific Railroad Carlin Shops, southwest facade, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Oil House, Southern Pacific Railroad Carlin Shops, southwest facade, view to northeast (135mm lens). - Southern Pacific Railroad, Carlin Shops, Oil House, Foot of Sixth Street, Carlin, Elko County, NV

  7. OBLIQUE VIEW OF WEST (FRONT) FACADE, LOOKING EAST/NORTHEAST Eglin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF WEST (FRONT) FACADE, LOOKING EAST/NORTHEAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  8. West facade of clubhouse. Showing first and second floor loggais ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West facade of clubhouse. Showing first and second floor loggais - Clubhouse Verandah and citation statue in foreground: CD-E. - Hialeah Park Race Track, East Fourth Avenue, Hialeah, Miami-Dade County, FL

  9. 1. SOUTH FACADE. CONSTRUCTED (ca. 1895) OF INDIGENOUS LIMESTONE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTH FACADE. CONSTRUCTED (ca. 1895) OF INDIGENOUS LIMESTONE AND USED AS LOCKPORTS CENTRAL HIGH SCHOOL FOR MORE THAN SIXTY YEARS. - Lockport Historic District, Central High School, Lockport, Will County, IL

  10. Detail view of Spanish tower on south facade of #157 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Spanish tower on south facade of #157 - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  11. 4. EXTERIOR ELEVATION OF THE NORTH FACADE OF BUILDING 104, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR ELEVATION OF THE NORTH FACADE OF BUILDING 104, LOOKING SOUTHEAST. - Mill Valley Air Force Station, Motor Repair & Auto Hobby Shop, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  12. OBLIQUE VIEW OF WEST (FRONT) AND NORTH FACADES, LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF WEST (FRONT) AND NORTH FACADES, LOOKING SOUTHEAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  13. Original blackandwhite print, VIEW OF UNFINISHED FACADE AT ELEVENTH STREET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Original black-and-white print, VIEW OF UNFINISHED FACADE AT ELEVENTH STREET AND STEPS FROM OLD POST OFFICE - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  14. Detail of north facades of (left to right) Building 86813 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of north facades of (left to right) Building 8-6813 and Building 8-6811; view to southeast - Fort Bragg, Noncommissioned Officers' Service Club, South of Butner Road, Fayetteville, Cumberland County, NC

  15. 16. VIEW OF THE NORTHWEST FACADE OF THE GENERATOR HOUSE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE NORTHWEST FACADE OF THE GENERATOR HOUSE. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  16. DETAILS, EAVES AND WINDOWS OF THE EAST (REAR) FACADE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAILS, EAVES AND WINDOWS OF THE EAST (REAR) FACADE, LOOKING NORTH - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  17. VIEW OF TYPICAL WINDOW ON THE WEST (FRONT) FACADE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TYPICAL WINDOW ON THE WEST (FRONT) FACADE, LOOKING EAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  18. 9. VIEW NORTHEAST (32 DEGREES) OF SOUTHWEST FACADE AT RCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW NORTHEAST (32 DEGREES) OF SOUTHWEST FACADE AT RCA COMMUNICATION REC. STATION. BRACKETS WERE FOR LEADS ON TERMINATION FRAMES THAT WERE REMOVED. - Marconi Radio Sites, Receiving, Point Reyes Station, Marin County, CA

  19. EXTERIOR VIEW, LOOKING EAST, FRONT FACADE AND ENTRANCE TO COMPANY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING EAST, FRONT FACADE AND ENTRANCE TO COMPANY SCHOOL FOR CHILDREN OF BLACK TCI-US STEEL RED ORE MINE WORKERS - Company School for Blacks, 413 Morgan Road, Bessemer, Jefferson County, AL

  20. 15. HISTORIC PHOTOGRAPH. ENGINE TEST CELL BUILDING FRONT FACADE DATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. HISTORIC PHOTOGRAPH. ENGINE TEST CELL BUILDING FRONT FACADE DATED CA. 1975. LOOKING NORTH. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  1. 4. FRONT FACADE OF ENGINE TEST CELL BUILDING. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FRONT FACADE OF ENGINE TEST CELL BUILDING. DETAIL OF MAIN ENTRY. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  2. 3. FRONT FACADE OF ENGINE TEST CELL BUILDING. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FRONT FACADE OF ENGINE TEST CELL BUILDING. VIEW OF NORTHEAST WING. LOOKING WEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  3. Photocopy of original blackandwhite silver gelatin print, C STREET FACADE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, C STREET FACADE, October 3, 1929, photographer Commercial Photo Company - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  4. Detail view of bronze light fixture on on north facade, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of bronze light fixture on on north facade, lower level - Blue Ridge Sanatorium, Building No. 1902, East side of State Route 20, .25 mile south of I-64, Charlottesville, Independent City, VA

  5. 4. PRESERVED FACADE OF PENNSYLVANIA FIRE INSURANCE COMPANY BEING REINSTALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PRESERVED FACADE OF PENNSYLVANIA FIRE INSURANCE COMPANY BEING RE-INSTALLED IN ITS ORIGINAL SITE AMID THE NEW 21-STORY OFFICE BUILDING - Pennsylvania Fire Insurance Company, 508-510 Walnut Street, Philadelphia, Philadelphia County, PA

  6. 3. PRESERVED FACADE OF PENNSYLVANIA FIRE INSURANCE COMPANY BEING REINSTALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. PRESERVED FACADE OF PENNSYLVANIA FIRE INSURANCE COMPANY BEING RE-INSTALLED IN ITS ORIGINAL SITE AMID THE NEW 21-STORY OFFICE BUILDING - Pennsylvania Fire Insurance Company, 508-510 Walnut Street, Philadelphia, Philadelphia County, PA

  7. 2. EXTERIOR ELEVATIONAL VIEW OF THE WEST FACADE OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR ELEVATIONAL VIEW OF THE WEST FACADE OF THE MESS HALL, BUILDING 220, LOOKING NORTH-NORTHEAST. - Mill Valley Air Force Station, Mess Hall, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  8. 1. GENERAL VIEW SHOWING FRONT EAST FACADE, FROM SOUTHEAST. Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW SHOWING FRONT EAST FACADE, FROM SOUTHEAST. Photo supplied by the Florida Division of Archives, History and Records Management, Tallahasse, Florida. - Sulphur Springs Hotel, 8122 North Nebraska Avenue, Tampa, Hillsborough County, FL

  9. View from water showing south facade and adjacent boat slips ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from water showing south facade and adjacent boat slips (Facility Nos. S375 & S376) - U.S. Naval Base, Pearl Harbor, Boat House, Hornet Avenue at Independence Street, Pearl City, Honolulu County, HI

  10. 1. Ice Plant, south facade, two central bays. On the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Ice Plant, south facade, two central bays. On the right, the Creamery; to the left, loading dock of Hay and Grain Warehouse. - Curtis Wharf, Ice Plant, O & Second Streets, Anacortes, Skagit County, WA

  11. NORTHEAST FACADE AND ONESTORY WING FROM ENTRY DRIVE, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST FACADE AND ONE-STORY WING FROM ENTRY DRIVE, VIEW FACING SOUTHWEST. - Naval Air Station Barbers Point, Control Tower & Aviation Operations Building, Near intersection of runways between Hangar 110 & Building 115, Ewa, Honolulu County, HI

  12. 6. VIEW NORTHWEST OF SOUTHEAST FACADE AND STACK BASE; LOCKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW NORTHWEST OF SOUTHEAST FACADE AND STACK BASE; LOCKER ROOM AT LEFT, COAL CONVEYOR REMAINS AT UPPER RIGHT - Turners Falls Power & Electric Company, Hampden Station, East bank of Connecticut River, Chicopee, Hampden County, MA

  13. 3. PERSPECTIVE VIEW OF THE NORTH FACADE AND WEST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. PERSPECTIVE VIEW OF THE NORTH FACADE AND WEST SIDE OF THE SOUTHERN-MOST CAR BARN AT CENTRAL AVENUE AND BOND STREET - Johnstown Passenger Railway Company, Car Barns, 726 Central Avenue, Johnstown, Cambria County, PA

  14. 71. South El Paso St., 911 (commercial), east facade, warehouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. South El Paso St., 911 (commercial), east facade, warehouse to left in background - South El Paso Street Historic District, South El Paso, South Oregon & South Santa Fe Streets, El Paso, El Paso County, TX

  15. North and west facades of crucible steel building; looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North and west facades of crucible steel building; looking southeast - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  16. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  17. NORTHEAST FACADE AND ONESTORY WING, VIEW FACING SOUTHSOUTHWEST (with scale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST FACADE AND ONE-STORY WING, VIEW FACING SOUTH-SOUTHWEST (with scale stick). - Naval Air Station Barbers Point, Control Tower & Aviation Operations Building, Near intersection of runways between Hangar 110 & Building 115, Ewa, Honolulu County, HI

  18. 19. View of main entrance and front (east) facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of main entrance and front (east) facade of H-wing from Comstat Drive, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  19. 2. GENERAL VIEW LOOKING NORTH, SHOWING THE SOUTHERN FACADE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW LOOKING NORTH, SHOWING THE SOUTHERN FACADE OF THE NORTHERN-MOST CAR BARN (CONSTRUCTED 1893) AT CENTRAL AVENUE AND BOND STREET - Johnstown Passenger Railway Company, Car Barns, 726 Central Avenue, Johnstown, Cambria County, PA

  20. 7. ELEVATION OF STREET (NORTH) FACADE FROM DRIVEWAY OF LOWELL'S ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ELEVATION OF STREET (NORTH) FACADE FROM DRIVEWAY OF LOWELL'S FORMER RESIDENCE. NOTE BUILDERS VERTICALLY ALIGNED STEM OF BOATS WITH CORNER OF HOUSE BEHIND CAMERA POSITION. - Lowell's Boat Shop, 459 Main Street, Amesbury, Essex County, MA

  1. 2. General view of east facade of 1887 addition to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. General view of east facade of 1887 addition to Wilder Mill, Building No. 6: view to northwest. - Champion-International Paper Company, Wilder Mill, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  2. Credit BG. Northwest and southwest facades of Administration Building for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Northwest and southwest facades of Administration Building for Building 4505 area. Construction began on this building in 1967 - Edwards Air Force Base, North Base, Administration Building, Northeast of A Street, Boron, Kern County, CA

  3. 12. Oblique view of northeast facade, showing missing rain gutter, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Oblique view of northeast facade, showing missing rain gutter, deteriorated slate roof, broken windows in tower; view west-northwest, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  4. 2. Perspective view showing most of east facade including steps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Perspective view showing most of east facade including steps and door at north end. Camera pointed NW. - Puget Sound Naval Shipyard, Munitions Storage Bunker, Naval Ammunitions Depot, North of Campbell Trail, Bremerton, Kitsap County, WA

  5. Documental Studio and 3d Recreation of the San Ildefonso's School Facade, Alcala de Henares

    NASA Astrophysics Data System (ADS)

    Echeverría, E.; Castaño, E.; Casa, F.; Celis, F.; Chias, P.

    2017-02-01

    In order to make the last important restoration of the University of Alcala's facade, an important documentation work and 3D recreation has been done, under three premises: historical documental study, study of the materials and, finally, 3D recreation of the facade. Part of these competences have been assumed by our research group under the safety net of the project that we come to tell in this communication.

  6. NORTHEAST FACADE AND ONESTORY WING FROM PARKING LOT SIDE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST FACADE AND ONE-STORY WING FROM PARKING LOT SIDE, VIEW FACING SOUTH-SOUTHEAST. - Naval Air Station Barbers Point, Control Tower & Aviation Operations Building, Near intersection of runways between Hangar 110 & Building 115, Ewa, Honolulu County, HI

  7. 2. D Street facade and rear (east) blank wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC

  8. FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EASTSOUTHEAST (with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 4, ARMCO HUT, ENTRANCE FACADE, VIEW FACING EAST-SOUTHEAST (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-ARMCO Hut, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  9. Use of Daylight and Aesthetic Image of Glass Facades in Contemporary Buildings

    NASA Astrophysics Data System (ADS)

    Roginska-Niesluchowska, Malgorzata

    2017-10-01

    The paper deals with the architecture of contemporary buildings in respect to their aesthetic image created by the use of natural light. Sustainability is regarded as a governing principle of contemporary architecture, where daylighting is an important factor as it affects energy consumption and environmental quality of the space inside a building. Environmental awareness of architecture, however, involves a much wider and more holistic view of design. The quality of sustainable architecture can be considered in its aesthetic and cultural context with regard to landscape, local tradition, and connection to the surrounding world. This approach is associated with the social mission of architecture, i.e. providing appropriate space for living, facilitating social relations and having positive impact on people. The purpose of the research is to study the use of daylight in creating an aesthetic image of contemporary buildings. The author focuses mainly on public buildings largely dedicated to art and culture which satisfy high functional and aesthetic requirements. The paper examines the genesis and current trends in the aesthetic image of modern buildings which use daylight as the main design strategy, focusing on the issues of glass facades. The main attention is given to the shaping of representative public areas which feature the glass facades. The research has been based on a case study, critical review of literature review, observation and synthesis. The study identifies and classifies different approaches to using daylight in these areas and highlights changes in the aesthetics of architecture made of glass, which uses daylight as the main design strategy. These changes are primarily caused by the development and spreading of new glazing materials and the use of digital method of design. The influence of light and its mode depends on glass materials but also on the local conditions of the site, and has a significant impact on the relationship between

  10. 10. WIDE GENERAL VIEW OF SHED SHOWING SOUTHWEST FACADE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. WIDE GENERAL VIEW OF SHED SHOWING SOUTHWEST FACADE AND TRUCK PLATFORM/STAGING AREA AT SOUTHWEST END OF BUILDING, LOOKING NORTHWEST - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  11. 1. General view of south facade of Wilder Mill, Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of south facade of Wilder Mill, Building No.2 from south side of canal; view to northwest. - Champion-International Paper Company, Wilder Mill, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  12. 1. VIEW NORTHWEST OF MILL STREET GATE AND WEST FACADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHWEST OF MILL STREET GATE AND WEST FACADE OF BUILDINGS 1 (c. 1896), CENTER, AND 2 (c. 1876); EXECUTIVE AND FINANCE OFFICES WERE LOCATED HERE. - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  13. 3. OBLIQUE PERSPECTIVE OF EASTERN FACADE OF UNITY PLANT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OBLIQUE PERSPECTIVE OF EASTERN FACADE OF UNITY PLANT SHOWING LANDSCAPING AND HILL. NOTE THE CORBELED BRICK SUPPORT FOR THE FIRE WALL BETWEEN SECTIONS OF THE MILL. - Unity Spinning Mill, 1402 Austin Street, La Grange, Troup County, GA

  14. NORTHEAST SIDE, PARTIAL FRONT FACADE. NOTE: A MORE COMPLETE ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST SIDE, PARTIAL FRONT FACADE. NOTE: A MORE COMPLETE ELEVATION WAS NOT POSSIBLE DUE TO VEGETATION, SEE OBLIQUE SHOTS 2 AND 5. VIEW FACING SOUTHWEST. - Hickam Field, Officers' Housing Type G, 205 Seventh Street, Honolulu, Honolulu County, HI

  15. 1. View to south showing facade (northeast elevation) and northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View to south showing facade (northeast elevation) and northwest elevation, with Carpenter & Paint Shop (HABS No. VA-1287-L) at left - Portsmouth Naval Hospital, Medical Storage Building, South corner of The Circle & Barton Avenue, Portsmouth, Portsmouth, VA

  16. 7. West and south facades of the store's two outbuildings: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. West and south facades of the store's two outbuildings: a fertilizer shed at the left of the view and the outhouse on the right - Horsepasture Store, U.S. Route 58 & State Route 687, Horse Pasture, Henry County, VA

  17. OBLIQUE VIEW OF EAST (REAR) AND NORTH FACADES, WITH BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF EAST (REAR) AND NORTH FACADES, WITH BUILDING 792 VISIBLE IN BACKGROUND RIGHT, LOOKING WEST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  18. Perspective view looking along the Constitution Avenue facade, showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view looking along the Constitution Avenue facade, showing the twenty-seven bays and the three central arches that mark the entrance to the building - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  19. 12. Copy of early 20th century photograph showing facade, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Copy of early 20th century photograph showing facade, looking west. Photograph owned by Parker-Hannifin Corporation. - Cleveland-Chandler Motors Corporation, 300 East 131st Street, Cleveland, Cuyahoga County, OH

  20. Credit BG. Southeast and northeast facades of concrete block structure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Southeast and northeast facades of concrete block structure built in the late 1960s. It is now used to store miscellaneous equipment - Edwards Air Force Base, North Base, Liquid Oxygen Storage Facility, Second Street, Boron, Kern County, CA

  1. 4. REAR (NORTH) FACADE OF THE UPPER FALLS GATE HOUSE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. REAR (NORTH) FACADE OF THE UPPER FALLS GATE HOUSE. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  2. 9. CLOSER VIEW OF SOUTHWEST FACADE FEATURING STATUE, BATHER PUTTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. CLOSER VIEW OF SOUTHWEST FACADE FEATURING STATUE, BATHER PUTTING UP HER HAIR, 1930, BY ARISTIDE MAILLOL, IN BRONZE, AFTER A SMALLER FIGURE CAST IN 1898 - Kykuit, John D. Rockefeller, Sr. House, 200 Lake Road, Pocantico Hills, Westchester County, NY

  3. 5. General view of rear (north) facade of Wilder Mill, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. General view of rear (north) facade of Wilder Mill, Building No 6 (1873 and 1928 segments, left to right): view to south. - Champion-International Paper Company, Wilder Mill, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  4. 34. Historic American Buildings Survey Original Drawing, East Facade (From ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Historic American Buildings Survey Original Drawing, East Facade (From the original in the office of the Vice President For Development and Physical Plant, Georgetown University - Georgetown University, Healy Building, Thirty-seventh & O Streets, Northwest, Washington, District of Columbia, DC

  5. 90. View of east facade of powerhouse, and abandoned lightning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. View of east facade of powerhouse, and abandoned lightning arrester houses on hillside above powerhouse; looking west. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  6. 5. NORTHWEST FACADE OF JAPANESE TEA HOUSE, 1950s, BY YOSHIMIERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. NORTHWEST FACADE OF JAPANESE TEA HOUSE, 1950s, BY YOSHIMIERA IN SUKIYA SHOIN STYLE AFTER THE KATSURA IMPERIAL VILLA - Kykuit, Japanese Tea House, 200 Lake Road, Pocantico Hills, Westchester County, NY

  7. Concept for Classifying Facade Elements Based on Material, Geometry and Thermal Radiation Using Multimodal Uav Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ilehag, R.; Schenk, A.; Hinz, S.

    2017-08-01

    This paper presents a concept for classification of facade elements, based on the material and the geometry of the elements in addition to the thermal radiation of the facade with the usage of a multimodal Unmanned Aerial Vehicle (UAV) system. Once the concept is finalized and functional, the workflow can be used for energy demand estimations for buildings by exploiting existing methods for estimation of heat transfer coefficient and the transmitted heat loss. The multimodal system consists of a thermal, a hyperspectral and an optical sensor, which can be operational with a UAV. While dealing with sensors that operate in different spectra and have different technical specifications, such as the radiometric and the geometric resolution, the challenges that are faced are presented. Addressed are the different approaches of data fusion, such as image registration, generation of 3D models by performing image matching and the means for classification based on either the geometry of the object or the pixel values. As a first step towards realizing the concept, the result from a geometric calibration with a designed multimodal calibration pattern is presented.

  8. SPERTI, Instrument Cell Building (PER606). North facade. Date: August 2003. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I, Instrument Cell Building (PER-606). North facade. Date: August 2003. INEEL negative no. HD-35-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Climate Leadership webinar on Integrating Energy and Climate Risk Management

    EPA Pesticide Factsheets

    Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.

  10. 1. MAIN FACADE OR EAST ELEVATION, LOOKING WEST. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MAIN FACADE OR EAST ELEVATION, LOOKING WEST. NOTE THE OPENINGS FOR THE VERTICAL FOUR-LIGHT WINDOWS ARE COVERED BY PLYWOOD. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  11. 4. View northwest at the southeast facade of the dewatered ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View northwest at the southeast facade of the dewatered culvert inlet headwall. Part of canal bank has been removed above the headwall. - Delaware & Raritan Canal, Ten Mile Run Culvert, 1.5 miles South of Blackwells Road, East Millstone, Somerset County, NJ

  12. 8. LEFT FACADE VIEW OF THE OLD SWITCHING BUILDING, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LEFT FACADE VIEW OF THE OLD SWITCHING BUILDING, WITH THE POWERHOUSE AND DAM IN LEFT BACKGROUND, LOOKING NORTHWEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  13. WEST END OF SOUTH FACADE OF MACHINE SHOP No. 1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST END OF SOUTH FACADE OF MACHINE SHOP No. 1. BRICK SECTION ON THE LEFT IS THE FORMER OFFICE OF THE ARMOR PLATE DIVISION BUILT IN 1899 - U.S. Steel Homestead Works, Machine Shop No. 1, Along Monongahela River, Homestead, Allegheny County, PA

  14. 3. OVERALL FRONTAL VIEW NORTH, SOUTH FACADES OF BUILDINGS 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL FRONTAL VIEW NORTH, SOUTH FACADES OF BUILDINGS 2 AND 3, RIGHT TO LEFT. NO. 2 HAS AN ALIQUIPPA FORGE SIGN. NO 3 IS THE DOUBLE BUILDING TO THE LEFT. - Vulcan Crucible Steel Company, 100 First Street, Aliquippa, Beaver County, PA

  15. 3. DETAIL VIEW OF STATION GARAGE SHOWING SOUTHEAST FACADE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL VIEW OF STATION GARAGE SHOWING SOUTHEAST FACADE WITH WATER SOFTENER BUILDING (BUILDING NO. 42) TO LEFT AND ANIMAL HOUSE (BUILDING NO. 26) TO REAR. VIEW TO WEST. - VA Medical Center, Aspinwall Division, Station Garage, 5103 Delafield Avenue, Aspinwall, Allegheny County, PA

  16. Detail view of the Fifteenth Street facade to show the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Fifteenth Street facade to show the entrance; above the doorway is inscribed a quote attributed to George Washington - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC

  17. 89. View of west and south facades of powerhouse, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. View of west and south facades of powerhouse, and abandoned lightning arrester houses on hillside above powerhouse; looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  18. Health, Energy Efficiency and Climate Change

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  19. Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images

    PubMed Central

    Pu, Shi; Vosselman, George

    2009-01-01

    Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539

  20. Climate-Energy Nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, Gary; Gentry, Randall; Zhuang, Jie

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit futuremore » cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of

  1. Elevation of waterfront facade looking west. The twostory structure at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of waterfront facade looking west. The two-story structure at the left houses the F. & H. Benning Company Mill and is not part of the J.C. Lore Oyster House. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  2. Elevation of south facade. The twostory structure to the right ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of south facade. The two-story structure to the right of the J.C. Lore Oyster House houses the F. & H. Benning Company Oyster Mill, see HAER No. MD-135. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  3. 31. DETAIL OF SOUTH FACADE FROM SOUTHWEST, SHOWING TYPICAL BUTTRESSES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL OF SOUTH FACADE FROM SOUTHWEST, SHOWING TYPICAL BUTTRESSES, FENESTRATION, AND GUTTERS; FRAMED AREA ON WALL IS EXHIBIT OF UNDERLYING LAYERS OF CREPE WALL COATINGS AND RAMMED EARTH CORE OF WALL - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC

  4. 1. GENERAL VIEW LOOKING NORTH, SHOWING SOUTH FACADE OF COTTAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW LOOKING NORTH, SHOWING SOUTH FACADE OF COTTAGE NO. 60 AND TWO ADJACENT COTTAGES (Nos. 59 and 61, see site plan included with historical data) - South Seaville Methodist Camp Meeting Grounds, Cottage 60, 2 Morris Avenue, South Seaville, Cape May County, NJ

  5. Close view along the Fourteenth Street facade; the exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close view along the Fourteenth Street facade; the exterior wall of the building is recessed several feet behind the colonnade of twenty-four Doric columns - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC

  6. 14. Detail, northeast facade, arched main window of waiting room; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, northeast facade, arched main window of waiting room; note quality of stonework and mortar joint tooling beneath window, representing a ca. 1937 alteration; view to southwest, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  7. SPERTI, Instrument Cell Building (PER606). West facade. Camera facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I, Instrument Cell Building (PER-606). West facade. Camera facing northeast. Date: August 2003. INEEL negative no. HD-35-3-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. SPERTI, Instrument Cell Building (PER606). East facade. Camera facing southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I, Instrument Cell Building (PER-606). East facade. Camera facing southwest. Date: August 2003. INEEL negative no. HD-35-3-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Meeting the Energy-Climate Challenge

    DTIC Science & Technology

    2010-04-21

    e.g., cogeneration , wind, some biofuels incl waste-to- energy . • The “win-win” approaches will not be enough. Adequate mitigation will...Meeting the  EnergyClimate Challenge John P. Holdren Science and Technology Advisor to President Obama and Director...DATE 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Meeting the Energy -Climate Challenge 5a. CONTRACT

  10. Perspective view of the south elevation; this facade faces Constitution ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the south elevation; this facade faces Constitution Avenue and is nineteen bays long with twelve single columns and two sets of paired columns - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC

  11. 19. Detail, southwest facade, typical deterioration of lower courses of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Detail, southwest facade, typical deterioration of lower courses of sandstone and mortar joints, apparently caused by waiting patrons resting feet against stone, causing mechanical abrading of surface, view to northeast, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  12. Credit PSR. This view shows the north and west facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows the north and west facades of the building as seen when looking east southeast (1100). This structure was used to test regenerative fuel cells in 1995 - Jet Propulsion Laboratory Edwards Facility, Weigh & Test Preparation Building, Edwards Air Force Base, Boron, Kern County, CA

  13. 1. GENERAL VIEW OF MAIN (SOUTH AND EAST) FACADES OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF MAIN (SOUTH AND EAST) FACADES OF SCHOOL, LOOKING NORTHWEST (For a brief history of Boswell and a description of St. Stanislaus Catholic Church see TOWN OF BOSWELL, HAER PA-367) - Saint Stanislaus Roman Catholic Church School, Stonycreek Street & Hower Avenue, Boswell, Somerset County, PA

  14. 4. General oblique view of rear (north) facade of Wilder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. General oblique view of rear (north) facade of Wilder Mill, Building No. 6 (1887, 1873 and 1928 segments, left to right) with Clay Storage Silos in background; view to southeast. - Champion-International Paper Company, Wilder Mill, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  15. PBF (PER620) west facade. Camera facing east. Note 1980 addition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) west facade. Camera facing east. Note 1980 addition on south side of west wall. Date: March 2004. INEEL negative no. HD-41-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Renewable Energy and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.

    2012-01-01

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as theirmore » integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.« less

  17. 3. VIEW OF THE NORTH FACADE, LOOKING SOUTH. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF THE NORTH FACADE, LOOKING SOUTH. NOTE THE OPENINGS FOR THE THREE VERTICAL FOUR-LIGHT WINDOWS ARE COVERED BY PLYWOOD. ALSO NOTE THE LEAF MOTIFS ABOVE THE WINDOWS. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  18. 5. VIEW OF THE WEST FACADE WITH THE END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF THE WEST FACADE WITH THE END OF THE PUMP DISCHARGE VISIBLE IN THE FOREGROUND. LOOKING EAST. NOTE THE FLAP VALVE OF THE NO. 1 PUMPING UNIT. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  19. 3. EAST FACADE OF THE UPPER FALLS GATE HOUSE, FOREBAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAST FACADE OF THE UPPER FALLS GATE HOUSE, FOREBAY IN LEFT FOREGROUND, SPOKANE CITY HALL IN LEFT BACKGROUND, LOOKING WEST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  20. 1. GENERAL VIEW OF MAIN (SOUTH) FACADE OF CHURCH, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF MAIN (SOUTH) FACADE OF CHURCH, LOOKING NORTH (For a brief history of Boswell and a description of Sts. Peter and Paul Russian Orthodox Greek Catholic Church see TOWN OF BOSWELL, HAER PA-367) - Saints Peter & Paul Russian Orthodox Greek Catholic Church, Quemahoning Street, Boswell, Somerset County, PA

  1. 13. Detail, northeast facade, original door from platform to waiting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, northeast facade, original door from platform to waiting room, now non-functional; note holes in mortar joints used to hold masonry anchors for mounting advertising signs for previous building tenants; view to southwest, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  2. EXTERIOR VIEW, LOOKING SOUTHEAST, WITH FRONT FACADE AND PORCH. FREE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING SOUTHEAST, WITH FRONT FACADE AND PORCH. FREE STANDING BRICK GABLED ROOF SHOWS EVIDENCE OF RECENT FIRE WHICH PARTIALLY DESTROYED THE PROPERTY WHICH WAS BUILT IN THE 1840S FOR THE THEN IRON MASTER HORACE WARE. - Shelby Iron Works, Iron Master's House, County Road 42, Shelby, Shelby County, AL

  3. 2. AERIAL VIEW OF EAST/REAR AND SOUTH/SIDE FACADES, LOOKING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. AERIAL VIEW OF EAST/REAR AND SOUTH/SIDE FACADES, LOOKING NORTHWEST (FROM LEFT TO RIGHT, OPPOSITE OF ABOVE) - Lawyers' Row Block, North Court House Road between Fourteenth & Fifteenth Streets, Arlington, Arlington County, VA

  4. 1. West facade of Plutonium Concentration Facility (Building 233S), ReductionOxidation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West facade of Plutonium Concentration Facility (Building 233-S), Reduction-Oxidation Building (REDOX-202-S) to the right. Looking east. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  5. PBF Control Building (PER619) south facade. Camera faces north. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619) south facade. Camera faces north. Note buried tanks with bollards protecting their access hatches. Date: July 2004. INEEL negative no. HD-41-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. Debris Hazards Due to Overloaded Conventional Construction Facades

    DTIC Science & Technology

    2015-12-01

    NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8...Park, CA, USA Abstract Large blast events will fail building components, such as the façade and supporting structure. Facades present the...largest loading surface, are relatively weak, and will fail first and most violently when subjected to blast loads. The range of façade and structural

  7. Energy & Climate: Getting Quantitative

    NASA Astrophysics Data System (ADS)

    Wolfson, Richard

    2011-11-01

    A noted environmentalist claims that buying an SUV instead of a regular car is energetically equivalent to leaving your refrigerator door open for seven years. A fossil-fuel apologist argues that solar energy is a pie-in-the-sky dream promulgated by na"ive environmentalists, because there's nowhere near enough solar energy to meet humankind's energy demand. A group advocating shutdown of the Vermont Yankee nuclear plant claims that 70% of its electrical energy is lost in transmission lines. Around the world, thousands agitate for climate action, under the numerical banner ``350.'' Neither the environmentalist, the fossil-fuel apologist, the antinuclear activists, nor most of those marching under the ``350'' banner can back up their assertions with quantitative arguments. Yet questions about energy and its environmental impacts almost always require quantitative answers. Physics can help! This poster gives some cogent examples, based on the newly published 2^nd edition of the author's textbook Energy, Environment, and Climate.

  8. Credit PSR. Northeast and southwest facades of Sewage Pumping Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. Northeast and southwest facades of Sewage Pumping Station (Building 4330). Building retains its World War II construction materials and character. In the background at the extreme left is Building 4305 (Unicon Portable Hangar) - Edwards Air Force Base, North Base, Sewage Pumping Station, Southwest of E Street, Boron, Kern County, CA

  9. GENERAL VIEW OF SOUTH AND WEST FACADES OF PACKING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SOUTH AND WEST FACADES OF PACKING AND JOB SHOP; BUILDING TO LEFT IS PRODUCTION FACILITY FOR ALCOA, SMALL BRICK BUILDING AT FAR RIGHT ON HIGHER GROUND IS THE FORMER ELECTRIC LIGHT PLANT FOR ALLEGHENY VALLEY LIGHT COMPANY - Alcoa-New Kensington Works, Packing & Job Shop, New Kensington, Westmoreland County, PA

  10. Cleopatra's Bedroom west facade with 12' scale (in tenths) with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cleopatra's Bedroom west facade with 12' scale (in tenths) with picture tube wall along walkway. Structure is made solely of amber colored bottles. Roof supported by telephone poles. Areas of wall collapsed in the 1994 Northridge earthquake. Camera facing east. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  11. Credit PSR. This view shows the south and east facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows the south and east facades of this concrete block facility as seen when looking northwest (320°). Note the outdoor emergency shower; the roof has lightning rods installed at corners - Jet Propulsion Laboratory Edwards Facility, Oxidizer Weigh & Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  12. PBF (PER620) north facade. Camera facing south. Small metal shed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) north facade. Camera facing south. Small metal shed at right is Stack Gas Monitor Building, PER-629. Date: March 2004. INEEL negative no. HD-41-2-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. 4. WEST FACADE, DOOR LEADING TO THE ELECTRICAL ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WEST FACADE, DOOR LEADING TO THE ELECTRICAL ROOM ON RIGHT. THE DOOR TO THE LEFT IS THE WEST ENTRANCE TO THE CATWALK LOCATED OVER THE STORAGE TANKS. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  14. Using Lattice Topology Information to Investigate Persistent Scatterers at Facades in Urban Areas

    NASA Astrophysics Data System (ADS)

    Schack, L.; Soergel, U.

    2013-05-01

    Modern spaceborne SAR sensors like TerraSAR-X offer ground resolution of up to one meter in range and azimuth direction. Buildings, roads, bridges, and other man-made structures appear in such data often as regular patterns of strong and temporally stable points (Persistent Scatterer, PS). As one step in the process of unveiling what object structure actually causes the PS (i.e., physical nature) we compare those regular structures in SAR data to their correspondences in optical imagery. We use lattices as a common data representation for visible facades. By exploiting the topology information given by the lattices we can complete gaps in the structures which is one step towards the understanding of the complex scattering characteristics of distinct facade objects.

  15. PBF (PER620) south facade. Camera facing north. Note pedestrian bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) south facade. Camera facing north. Note pedestrian bridge crossing over conduit. Central high bay contains reactor room and canal. Date: March 2004. INEEL negative no. HD-41-2-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. 1. View southeast at northwest facade of dewatered culvert outlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View southeast at northwest facade of dewatered culvert outlet headwall, above which part of the canal bank has been removed. Buttresses and upper portion of headwall (above arches) are nineteenth-century additions to the lower, original headwall. - Delaware & Raritan Canal, Ten Mile Run Culvert, 1.5 miles South of Blackwells Road, East Millstone, Somerset County, NJ

  17. 2. View looking southeast at north and west facades of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View looking southeast at north and west facades of Test Stand 'D' workshop 4222/E-23, with Test Stand 'D' tower in background and tunnel access shed to the right. Equipment on 4222/E-23 roof is for air conditioning. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA

  18. 16. Detail, northeast facade, operator's bow window and tower; note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, northeast facade, operator's bow window and tower; note condition of slates on tower skirt roof, missing section of gutter at left side of skirt roof, missing window panes; note also knee braces carried on masonry ancons; view to southwest, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  19. 13. EAST FACADE OF THE FREQUENCY CHANGER HOUSE. IT WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EAST FACADE OF THE FREQUENCY CHANGER HOUSE. IT WAS IN THIS BUILDING THAT 60 CYCLE AC POWER WAS CONVERTED TO 25 CYCLE DC POWER FOR USE IN CHICAGO'S TRANSIT SYSTEM; THE FREQUENCY CHANGER HOUSE IS PRESENTLY USED FOR STORAGE. LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  20. Credit BG. Northeast and northwest facades of Building 4496 (Security ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Northeast and northwest facades of Building 4496 (Security Facility) as seen when looking south (178°) from entrance to secured area. The Control Tower (Building 4500) appears in background. The Security Facility is part of the secured Building 4505 complex - Edwards Air Force Base, North Base, Security Facility, Northeast of A Street, Boron, Kern County, CA

  1. 4. VIEW OF THE WEST FACADE. NOTE THE BRIDGES FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF THE WEST FACADE. NOTE THE BRIDGES FROM THE D.L. & W. R.R. WOODWARD SIDING AND MAIN LINE IN THE LEFT FOREGROUND. PHOTO IS FROM THE LEVEE CROSSING TOBY CREEK FACING EAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  2. Climate Indicators for Energy and Infrastructure

    NASA Astrophysics Data System (ADS)

    Wilbanks, T. J.

    2014-12-01

    Two of the key categories of climate indicators are energy and infrastructure. For energy supply and use, many indicators are available for energy supply and consumption; and some indicators are available to assess implications of climate change, such as changes over time in heating and cooling days. Indicators of adaptation and adaptive capacity are more elusive. For infrastructure, which includes more than a dozen different sectors, general indicators are not available, beyond counts of major disasters and such valuable contributions as the ASCE "report cards." In this case, research is needed, for example to develop credible metrics for assessing the resilience of built infrastructures to climate change and other stresses.

  3. Realtime Compositing of Procedural Facade Textures on the Gpu

    NASA Astrophysics Data System (ADS)

    Krecklau, L.; Kobbelt, L.

    2011-09-01

    The real time rendering of complex virtual city models has become more important in the last few years for many practical applications like realistic navigation or urban planning. For maximum rendering performance, the complexity of the geometry or textures can be reduced by decreasing the resolution until the data set can fully reside on the memory of the graphics card. This typically results in a low quality of the virtual city model. Alternatively, a streaming algorithm can load the high quality data set from the hard drive. However, this approach requires a large amount of persistent storage providing several gigabytes of static data. We present a system that uses a texture atlas containing atomic tiles like windows, doors or wall patterns, and that combines those elements on-the-fly directly on the graphics card. The presented approach benefits from a sophisticated randomization approach that produces lots of different facades while the grammar description itself remains small. By using a ray casting apporach, we are able to trace through transparent windows revealing procedurally generated rooms which further contributes to the realism of the rendering. The presented method enables real time rendering of city models with a high level of detail for facades while still relying on a small memory footprint.

  4. 5. Credit BG. View looking northeast at southwest facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Credit BG. View looking northeast at southwest facade of Building 4505 as seen from top of Building 4500 (Control Tower). A warehouse wing adjoins southeast side of hangar at right. In far right background is Building 4511, Jet Fuel Depot for grade JP-5 fuel. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  5. Detail view of the sculpted pediment on the south facade ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the sculpted pediment on the south facade entitled Recorder of the Archives; the artist was James Earle Fraser. The great danes in the corner were based on sketches by Fraser's assistant Bruce Moore and the dogs behind the great danes are modeled after Fraser's own dogs. - National Archives, Constitution Avenue, between Seventh & Ninth Streets Northwest, Washington, District of Columbia, DC

  6. 1. View looking northeast at the west and south facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking northeast at the west and south facades of Test Stand 'D' workshop 4222/E-23. Test Stand 'D' tower nitrogen tanks, television camera platform and access stairs are at right of image. Ductwork atop roof is for air conditioning system. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA

  7. 4. Credit PSR. View east at west and south facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit PSR. View east at west and south facades of Unicon Portable Hangar with immediate ancillary structures. Building 4307 (Supply & Equipment Warehouse) appears at left, Building 4303 (Air Compressor Plant) in middle foreground, and Building 4306 (Boiler House) at the southwest corner of the hangar. - Edwards Air Force Base, North Base, Unicon Portable Hangar, First & C Streets, Boron, Kern County, CA

  8. 11. SOUTH FACADE (FRONT) OF AN OPERATOR'S COTTAGE ON SILK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SOUTH FACADE (FRONT) OF AN OPERATOR'S COTTAGE ON SILK STOCKING ROW. THESE COTTAGES WERE THE FIRST PERMANENT HOUSING CONSTRUCTED ON THE SKAGIT AND FOR MANY YEARS WERE CONSIDERED TO BE THE BEST. THEY WERE RESERVED FOR POWERHOUSE OPERATORS AND SUPERVISORS AND THEIR FAMILIES, 1989. - Skagit Power Development, Skagit River & Newhalem Creek Hydroelectric Project, On Skagit River, Newhalem, Whatcom County, WA

  9. 2. CLOSEUP OF SOUTH FACADE OF UPPER FALLS GATE HOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CLOSEUP OF SOUTH FACADE OF UPPER FALLS GATE HOUSE, SHOWING TRASH RACKS, REMOVABLE STEEL DOORS, TRASH RAKE STRUCTURE, AND DERRICK, WINCH AND CABLE GATE LIFTING DEVICE, LOOKING SOUTH/SOUTHWEST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  10. Credit BG. Northwest facade of Building 4504 (Deluge Water Booster ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Northwest facade of Building 4504 (Deluge Water Booster Station) is in view at left, with 500,000 gallon water tank (Building 4503) at right. Fenced electrical substation in view between the above structures is Building 4510. Building 4505 is in background - Edwards Air Force Base, North Base, Deluge Water Booster Station, Northeast of A Street, Boron, Kern County, CA

  11. Photodegradation of octylisothiazolinone and semi-field emissions from facade coatings

    NASA Astrophysics Data System (ADS)

    Bollmann, Ulla E.; Minelgaite, Greta; Schlüsener, Michael; Ternes, Thomas A.; Vollertsen, Jes; Bester, Kai

    2017-01-01

    Amongst others, 2-octyl-isothiazol-3(2 H)-one (OIT) is used as film preservative in water-based polymer resin paints and renders to prevent the growth of moulds and bacteria. It is known that biocides leach from facades with rainwater and end up in the environment via stormwater runoff. In the present study the leaching and fate of OIT used in facade coatings was determined under natural conditions. Potential phototransformation products were initially identified in laboratory experiments using UV-light. Afterwards, the leaching of OIT and seven degradation products were studied on artificial walls equipped with organic top coatings formulated with OIT. A mass balance, including the leached and remaining amounts of OIT and its seven transformation products, can explain up to 40% of the initial amount of OIT. The OIT remaining in the material after 1.5 yr is by far the largest fraction. The study shows that in the assessment of biocides in coating material, transformation products need to be taken into account both in leachate and remaining in the material. Furthermore, in case of volatile degradation products, the emissions to air might be relevant.

  12. Photodegradation of octylisothiazolinone and semi-field emissions from facade coatings.

    PubMed

    Bollmann, Ulla E; Minelgaite, Greta; Schlüsener, Michael; Ternes, Thomas A; Vollertsen, Jes; Bester, Kai

    2017-01-27

    Amongst others, 2-octyl-isothiazol-3(2 H)-one (OIT) is used as film preservative in water-based polymer resin paints and renders to prevent the growth of moulds and bacteria. It is known that biocides leach from facades with rainwater and end up in the environment via stormwater runoff. In the present study the leaching and fate of OIT used in facade coatings was determined under natural conditions. Potential phototransformation products were initially identified in laboratory experiments using UV-light. Afterwards, the leaching of OIT and seven degradation products were studied on artificial walls equipped with organic top coatings formulated with OIT. A mass balance, including the leached and remaining amounts of OIT and its seven transformation products, can explain up to 40% of the initial amount of OIT. The OIT remaining in the material after 1.5 yr is by far the largest fraction. The study shows that in the assessment of biocides in coating material, transformation products need to be taken into account both in leachate and remaining in the material. Furthermore, in case of volatile degradation products, the emissions to air might be relevant.

  13. Photodegradation of octylisothiazolinone and semi-field emissions from facade coatings

    PubMed Central

    Bollmann, Ulla E.; Minelgaite, Greta; Schlüsener, Michael; Ternes, Thomas A.; Vollertsen, Jes; Bester, Kai

    2017-01-01

    Amongst others, 2-octyl-isothiazol-3(2 H)-one (OIT) is used as film preservative in water-based polymer resin paints and renders to prevent the growth of moulds and bacteria. It is known that biocides leach from facades with rainwater and end up in the environment via stormwater runoff. In the present study the leaching and fate of OIT used in facade coatings was determined under natural conditions. Potential phototransformation products were initially identified in laboratory experiments using UV-light. Afterwards, the leaching of OIT and seven degradation products were studied on artificial walls equipped with organic top coatings formulated with OIT. A mass balance, including the leached and remaining amounts of OIT and its seven transformation products, can explain up to 40% of the initial amount of OIT. The OIT remaining in the material after 1.5 yr is by far the largest fraction. The study shows that in the assessment of biocides in coating material, transformation products need to be taken into account both in leachate and remaining in the material. Furthermore, in case of volatile degradation products, the emissions to air might be relevant. PMID:28128314

  14. 3/4 view of waterfront facade looking southwest from across the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3/4 view of waterfront facade looking southwest from across the creek. Note the 1965 concrete block addition to the main oyster house. Lifting derrick can be seen at left in front of the building and next to the hoist house. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  15. Examination of Deteriogenic Biofilms on Building Facades with Scanning Electron Microscopy / Badanie Deteriogennych Nalotów Biologicznych Na Elewacjach Budynków Metodą Elektronowej Mikroskopii Skaningowej

    NASA Astrophysics Data System (ADS)

    Piontek, Marlena; Lechów, Hanna; Paradowska, Ewa; Nycz, Marta

    2016-03-01

    Destruction of facades is a complex process in which technical material changes its properties, and which is caused by depositing biological agents. The examination of biofilms from building facades is difficult because sampling for tests may result in the damage to the structure of the facade's material. Also biological analysis of the material obtained from a biofilm is arduous. Some species of microorganisms are impossible to be isolated and their pure cultures cannot be cultivated in laboratory conditions. It is multispecies cultures that most frequently develop on the surfaces of the facade's technical material. Clustered in a group, they cooperate with each other and reveal different features than single cells. It is essential to identify organisms present in the biofilms, since they may initiate deterioration processes. The aim of the research was the observation of the biofilm, collected from two facades, in a micrometer scale with the use of a scanning electron microscope.

  16. On the selection of significant variables in a model for the deteriorating process of facades

    NASA Astrophysics Data System (ADS)

    Serrat, C.; Gibert, V.; Casas, J. R.; Rapinski, J.

    2017-10-01

    In previous works the authors of this paper have introduced a predictive system that uses survival analysis techniques for the study of time-to-failure in the facades of a building stock. The approach is population based, in order to obtain information on the evolution of the stock across time, and to help the manager in the decision making process on global maintenance strategies. For the decision making it is crutial to determine those covariates -like materials, morphology and characteristics of the facade, orientation or environmental conditions- that play a significative role in the progression of different failures. The proposed platform also incorporates an open source GIS plugin that includes survival and test moduli that allow the investigator to model the time until a lesion taking into account the variables collected during the inspection process. The aim of this paper is double: a) to shortly introduce the predictive system, as well as the inspection and the analysis methodologies and b) to introduce and illustrate the modeling strategy for the deteriorating process of an urban front. The illustration will be focused on the city of L’Hospitalet de Llobregat (Barcelona, Spain) in which more than 14,000 facades have been inspected and analyzed.

  17. PBF Reactor Building (PER620). Camera facing north toward south facade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera facing north toward south facade. Note west-wing siding on concrete block; high-bay siding of metal. Excavation and forms for signal and cable trenches proceed from building. Photographer: Kirsh. Date August 20, 1968. INEEL negative no. 68-3332 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. Credit BG. View looks west (286°) at the east facade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks west (286°) at the east facade. This structure stands between two blast barricades, which protect surrounding structures from damage in case an explosion were to occur while propellants were being mixed in the 150 gallon Baker-Perkins mixer - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  19. Interdisciplinary research in climate and energy sciences

    DOE PAGES

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; ...

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over timemore » and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge

  20. Credit PSR. This photograph displays the south and east facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This photograph displays the south and east facades of the storage facility as seen when looking to the west northwest (288°). The concrete pit in the foreground is a catch basin designed to hold run-off from spilled oxidizers or clean-up operations, thus preventing them from contaminating the soil - Jet Propulsion Laboratory Edwards Facility, Solid Oxidizer Storage, Edwards Air Force Base, Boron, Kern County, CA

  1. Assessing the Impacts of Climate Change on the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Mo, W.; Jacobs, J. M.

    2014-12-01

    Water-energy nexus refers to the fact that a lot of energy is used for treating and delivering water, and a large amount of water is needed for energy production. This interrelation reinforces water and energy consumptions and challenges the sustainable management of both resources in light of growing population, developing economy, and dwindling resources. Climate change often exacerbates the negative effects of the water-energy nexus by intervening water and energy allocation, availability, and quality, forcing communities to seek more energy dependent alternative water sources and/or more water dependent alternative energy sources. The climate-water-energy interrelations play an important role in water and energy management, yet our understandings on the interactions between climate and the water-energy nexus are still very limited. Therefore, this study aims at qualitatively and quantitatively assessing the impacts of climate change from the water-energy nexus perspective by investigating previous literatures, case studies, climate change patterns, and recent extreme climate events. Management difficulties resulted from climate related source shifts as well as policy and regulation changes will be illustrated and discussed. Research needs and gaps on the climate-water-energy interrelations will be addressed.

  2. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric

  3. The climate change and energy security nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Marcus Dubois; Gulledge, Jay

    2013-01-01

    The study of the impacts of climate change on national and interna-tional security has grown as a research field, particularly in the last five years. Within this broad field, academic scholarship has concentrated primarily on whether climate change is, or may become, a driver of violent conflict. This relationship remains highly contested. However, national security policy and many non-governmental organizations have identified climate change as a threat multiplier in conflict situations. The U.S. Department of Defense and the United Kingdom's Ministry of Defense have incorporated these findings into strategic planning documents such as the Quadrennial Defense Review and the Strategicmore » Defence and Security Review. In contrast to the climate-conflict nexus, our analysis found that academic scholarship on the climate change and energy security nexus is small and more disciplinarily focused. In fact, a search of social science litera-ture found few sources, with a significant percentage of these works attribut-able to a single journal. Assuming that policymakers are more likely to rely on broader social science literature than technical or scientific journals, this leaves a limited foundation. This then begged the question: what are these sources? We identified a body of grey literature on the nexus of climate change and energy security of a greater size than the body of peer-reviewed social science literature. We reviewed fifty-eight recent reports, issue briefs, and transcripts to better understand the nexus of climate change and energy security, as well as to gain insight about the questions policymakers need answered by those undertaking the research. In this article, we describe the nature of the sources reviewed, highlight possible climate change and energy security linkages found within those sources, identify emerging risks, and offer conclusions that can guide further research.« less

  4. Climate and Southern Africa's Water-Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Conway, D.; Osborn, T.; Dorling, S.; Ringler, C.; Lankford, B.; Dalin, C.; Thurlow, J.; Zhu, T.; Deryng, D.; Landman, W.; Archer van Garderen, E.; Krueger, T.; Lebek, K.

    2014-12-01

    Numerous challenges coalesce to make Southern Africa emblematic of the connections between climate and the water-energy-food nexus. Rainfall and river flows in the region show high levels of variability across a range of spatial and temporal scales. Physical and socioeconomic exposure to climate variability and change is high, for example, the contribution of electricity produced from hydroelectric sources is over 30% in Madagascar and Zimbabwe and almost 100% in the DRC, Lesotho, Malawi, and Zambia. The region's economy is closely linked with that of the rest of the African continent and climate-sensitive food products are an important item of trade. Southern Africa's population is concentrated in regions exposed to high levels of hydro-meteorological variability, and will increase rapidly over the next four decades. The capacity to manage the effects of climate variability tends, however, to be low. Moreover, with climate change annual precipitation levels, soil moisture and runoff are likely to decrease and rising temperatures will increase evaporative demand. Despite high levels of hydro-meteorological variability, the sectoral and cross-sectoral water-energy-food linkages with climate in Southern Africa have not been considered in detail. Lack of data and questionable reliability are compounded by complex dynamic relationships. We review the role of climate in Southern Africa's nexus, complemented by empirical analysis of national level data on climate, water resources, crop and energy production, and economic activity. Our aim is to examine the role of climate variability as a driver of production fluctuations in the nexus, and to improve understanding of the magnitude and temporal dimensions of their interactions. We first consider national level exposure of food, water and energy production to climate in aggregate economic terms and then examine the linkages between interannual and multi-year climate variability and economic activity, focusing on food and

  5. SPERTI contextual view of instrument cell building, PER606. South facade. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I contextual view of instrument cell building, PER-606. South facade. Camera facing northwest. PBF Cooling Tower in view at right. High bay of PBF Reactor Building, PER-602, is further to right. PBF-625 at left edge of view. Date: August 2003. INEEL negative no. HD-35-3-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. Climate, Water and Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2003-04-01

    In light of the recent IPCC Climate Change Assessment and recent progress made in meteorological and hydrological modelling, the directors of the Nordic hydrological institutes (CHIN) initiated a research project "Climate, Water and Energy" (CWE) with funding from the Nordic Energy Research and the Nordic Council of Ministers focusing on climatic impact assessment in the energy sector. Climatic variability and change affect the hydrological systems, which in turn affect the energy sector, this will increase the risk associated with the development and use of water resources in the Nordic countries. Within the CWE project four thematic groups work on this issue of climatic change and how changes in precipitation and temperature will have direct influences on runoff. A primary aim of the CWE climate group is to derive a common scenario or a "best-guess" estimate of climate change in northern Europe and Greenland, based on recent regional climate change experiments and representing the change from 1990 to 2050 under the IPCC SRES B2 emission scenario. A data set, along with the most important information for using the scenario is available at the project web site. The glacier group has chosen 8 glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. The long time series group has reported on the status of time series analysis in the Nordic countries. The group will select and quality control time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. The hydrological modelling group has reported on "Climate change impacts on water resources in the

  7. 3. View east at south end of west facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View east at south end of west facade of culvert outlet headwall with part of canal bank removed. Foreground to background: dewatered streambed with coffer dam (left) and pump intake (right); outlet headwall with partially intact voussoirs; horizontal masonry cutoff wall extending above the culvert outlet partially up the canal bank (exposed in trenches to left and right). - Delaware & Raritan Canal, Six Mile Run Culvert, .2 mile South of Blackwells Mills Road, East Millstone, Somerset County, NJ

  8. 2. View east at north end of west facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View east at north end of west facade of culvert outlet headwall with part of canal bank removed. Foreground to background: dewatered streambed with pump intake (left) and coffer dam (right); outlet headwall with partially intact voussoirs; partially removed canal bank revealing horizontal masonry cutoff wall (exposed in trenches to left and right); towpath at top of canal bank. - Delaware & Raritan Canal, Six Mile Run Culvert, .2 mile South of Blackwells Mills Road, East Millstone, Somerset County, NJ

  9. Credit BG. View shows the north and west facades of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View shows the north and west facades of the building as seen when looking east southeast (124°). Igniters for solid rocket motors were built and tested here. This building was rated for a maximum of 20 pounds (9.1 Kg) of class 1.1 materials and four personnel. Note the lightning rods on roof corners and the exterior electrical system - Jet Propulsion Laboratory Edwards Facility, Igniter Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  10. (Un)certainty in climate change impacts on global energy consumption

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  11. ADM. Service Building (TAN603). Elevations of all facades with door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Service Building (TAN-603). Elevations of all facades with door details and detail of kitchen. Section through garage area shows second level of steel decking. Equipment and laboratory furniture schedule. Ralph M. Parsons 902-2-ANP-603-A 44. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 033-0603-00-693-106719 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. Energy Structure and Energy Security under Climate Mitigation Scenarios in China

    PubMed Central

    Matsumoto, Ken’ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  13. Urban climate and energy demand interaction in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.

    2017-11-01

    The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.

  14. Credit BG. View looks southeast at west and south facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks southeast at west and south facades of Building 4311. This is one of the World War II structures built in the second phase of North Base construction; it accompanied the Unicon Portable Hangar, situated behind the well house in this view. Function of metal rod with ball on end near ground in lower right corner of view not determined - Edwards Air Force Base, North Base, Well No. 2, East of Second Street, Boron, Kern County, CA

  15. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    NASA Astrophysics Data System (ADS)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  16. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis

  17. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less

  18. Climate and Offshore Energy Resources.

    DTIC Science & Technology

    1980-12-30

    SECuRITY CL.ASSIPIcaTIoN OF, TIns PA@elm VaeVa CLMATE ANID OFFSHORE ENERGY RESOUACES A distinguished group of government officials, scientists, engineers...about the mech- anisms of climatic systems, and gaining a better understanding of the impact of climatic change on human resources.* He continued by...atmospheric constit- uents, but he particularly emphasized " changes " in C02. He suggested that the atmospheric conditions may be better now than they were half

  19. 4. OVERALL VIEW OF THE SOUTHEAST FACADE. THE BRICK MASONRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. OVERALL VIEW OF THE SOUTHEAST FACADE. THE BRICK MASONRY WALLS ARE LAID IN COMMON BOND WITH A BRICK DETAIL SURROUNDING THE FLAT ARCHED WOODEN DOORS. THE SYMMETRICAL PLACEMENT OF DOORS HAS BEEN VISUALLY AFFECTED BY THE ADDITION OF A WOOD FIRE STAIR. A BEAM USED TO LOAD HAY INTO THE UPPER LOFT AREA PROTRUDES THROUGH THE MASONRY WALL JUST BELOW THE ROOF LINE. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA

  20. 1. View toward south, facade (north side or "A" wall) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View toward south, facade (north side or "A" wall) of perimeter acquisition radar building. The globe on the upper left is a shelter housing the Hercules tracker antenna. To the right is the utility tunnel leading to the par power plant. The antennae for the par are contained in the large lighter-toned shape covering most of the wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with

  2. Climate change helplessness and the (de)moralization of individual energy behavior.

    PubMed

    Salomon, Erika; Preston, Jesse L; Tannenbaum, Melanie B

    2017-03-01

    Although most people understand the threat of climate change, they do little to modify their own energy conservation behavior. One reason for this gap between belief and behavior may be that individual actions seem unimpactful and therefore are not morally relevant. This research investigates how climate change helplessness-belief that one's actions cannot affect climate change-can undermine the moralization of climate change and personal energy conservation. In Study 1, climate change efficacy predicted both moralization of energy use and energy conservation intentions beyond individual belief in climate change. In Studies 2 and 3, participants read information about climate change that varied in efficacy message, that is, whether individual actions (e.g., using less water, turning down heat) make a difference in the environment. Participants who read that their behavior made no meaningful impact reported weaker moralization and intentions (Study 2), and reported more energy consumption 1 week later (Study 3). Moreover, effects on intentions and actions were mediated by changes in moralization. We discuss ways to improve climate change messages to foster environmental efficacy and moralization of personal energy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. NGSS, Climate & Energy: Teaching About Climate Change Without Teaching About Energy Is Like Teaching About Lung Cancer Without Teaching About Smoking

    NASA Astrophysics Data System (ADS)

    Duggan-Haas, D.

    2013-12-01

    The ideas of systems pervade the Next Generation Science Standards, and well they should. The title of this abstract, paraphrased from commentator Chris Hayes, bluntly summarizes what should be central to the design of curriculum and instruction in the era of climate change and NGSS. It reflects a systems perspective, highlighting that the relationship between and among scientific topics are as important as the topics themselves. The centrality of systems and of human impacts within systems is highlighted by the fact that within the NGSS, the most connected Disciplinary Core Idea is Earth and Space Sciences - 3: Earth and Human Activity. 'ESS3' appears 457 times and on more than a third of the pages in the pdf of all the performance expectations. The lion's share of these appearances are in the connections boxes below the performance indicators, showing the connections -- the relationships within the Earth system -- of this topic to a multitude of expectations. Deep understandings of climate and climate change require understandings relationships between the atmosphere and human activity, and especially the impacts of energy use. As energy is needed for essentially everything we do, this is a big deal. Yet, in the typical high school science programs today, energy and its relation to climate is not prominent. NGSS has the potential to change that. The Crosscutting Concepts clearly reflect a systems approach, with four of the seven including the word 'system' within their one sentence description. This presentation will address systems in NGSS generally and use the examples from our changing energy system, to highlight ways to address climate and energy in multiple courses at different grade levels. Energy use varies across time and space, and the study of energy ties directly to all of Crosscutting Concepts. We will consider the map, showing aspects of the geography of energy, and historical energy transitions, such as the move from dependence of wood for fuel to

  4. Impact of Climate Change on Energy Demand in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yan, M. B.; Zhang, F.; Franklin, M.; Kotamarthi, V. R.

    2008-12-01

    The impact of climate change on energy demand and use is a significant issue for developing future GHG emission scenarios and developing adaptation and mitigation strategies. A number of studies have evaluated the increase in GHG emissions as a result of changes in energy production from fossil fuels, but the consequences of climate change on energy consumption have not been the focus of many studies. Here we focus on the impacts of climate change on energy use at a regional scale using the Midwestern USA as a test. The paper presents results of analyzing energy use in response to ambient temperature changes in a 17-year period from 1989 to 2006 and projection of energy use under future climate scenarios (2010-2061). This study consisted of a two-step procedure. In the first step, sensitivity of historic energy demand, specifically electricity and natural gas in residential and commercial sectors (42% of end-use energy), with respect to many climatic and non-climatic variables was examined. State-specific regression models were developed to quantify the relationship between energy use and climatic variables using degree days. We found that model parameters and base temperatures for estimating heating and cooling days varied by state and energy sector, mainly depending on climate conditions, infrastructure, economic factors, and seasonal change in energy use. In the second step, we applied these models to predict future energy demand using output data generated by the Community Climate System Model (CCSM) for the SRES A1B scenario used in the IPCC AR-4. The annual demands of electricity and natural gas were predicted for each state from 2010 to 2061. The model results indicate that the average annual electricity demand will increase 3%-5% for the southern states and 1%-3% for the northern states in the region by 2061 and that the demand for natural gas is expected to be reduced in all states. A seasonal analysis of energy distribution in response to climate

  5. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  6. Credit PSR. This view shows the east and north facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows the east and north facades of the storage facility as seen when looking south southwest. This fireproof all-metal structure was rated for a maximum of 50,000 pounds (22,730 Kg) of class 1.4 materials and four personnel. The concrete catch basin at left was designed to retain any spilled chemicals, preventing them from contaminating the soil. Spills were collected from the building and apron via a concrete lined gutter - Jet Propulsion Laboratory Edwards Facility, Solid Fuel Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  7. Climate Impacts on Extreme Energy Consumption of Different Types of Buildings

    PubMed Central

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  8. Energy, environment and climate assessment using the MARKAL energy system model

    EPA Science Inventory

    As part of EPA ORD’s efforts to develop an understanding of the potential environmental impacts of future changes in energy use, the Energy and Climate Assessment Team has developed a database representation of the U.S. energy system for use with the MARKet ALlocation (MARK...

  9. Exploring Elementary Students' Understanding of Energy and Climate Change

    ERIC Educational Resources Information Center

    Boylan, Colin

    2008-01-01

    As environmental changes become a significant societal issue, elementary science curricula need to develop students' understanding about the key concepts of energy and climate change. For teachers, developing quality learning experiences involves establishing what their students' prior understanding about energy and climate change are. A survey…

  10. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  11. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  12. The effects of climate change on heating energy consumption of office buildings in different climate zones in China

    NASA Astrophysics Data System (ADS)

    Meng, Fanchao; Li, Mingcai; Cao, Jingfu; Li, Ji; Xiong, Mingming; Feng, Xiaomei; Ren, Guoyu

    2017-06-01

    Climate plays an important role in heating energy consumption owing to the direct relationship between space heating and changes in meteorological conditions. To quantify the impact, the Transient System Simulation Program software was used to simulate the heating loads of office buildings in Harbin, Tianjin, and Shanghai, representing three major climate zones (i.e., severe cold, cold, and hot summer and cold winter climate zones) in China during 1961-2010. Stepwise multiple linear regression was performed to determine the key climatic parameters influencing heating energy consumption. The results showed that dry bulb temperature (DBT) is the dominant climatic parameter affecting building heating loads in all three climate zones across China during the heating period at daily, monthly, and yearly scales (R 2 ≥ 0.86). With the continuous warming climate in winter over the past 50 years, heating loads decreased by 14.2, 7.2, and 7.1 W/m2 in Harbin, Tianjin, and Shanghai, respectively, indicating that the decreasing rate is more apparent in severe cold climate zone. When the DBT increases by 1 °C, the heating loads decrease by 253.1 W/m2 in Harbin, 177.2 W/m2 in Tianjin, and 126.4 W/m2 in Shanghai. These results suggest that the heating energy consumption can be well predicted by the regression models at different temporal scales in different climate conditions owing to the high determination coefficients. In addition, a greater decrease in heating energy consumption in northern severe cold and cold climate zones may efficiently promote the energy saving in these areas with high energy consumption for heating. Particularly, the likely future increase in temperatures should be considered in improving building energy efficiency.

  13. Geothermal Energy | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Geothermal Energy Geothermal Energy Research campuses can take advantage of geothermal resources sections that describe how examining geothermal energy may fit into your climate action plans. Campus Options Considerations Sample Project Related Links Campus Geothermal Energy Options Campuses can use

  14. Space-time dependence between energy sources and climate related energy production

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  15. Visualisation and communication of probabilistic climate forecasts to renewable-energy policy makers

    NASA Astrophysics Data System (ADS)

    Steffen, Sophie; Lowe, Rachel; Davis, Melanie; Doblas-Reyes, Francisco J.; Rodó, Xavier

    2014-05-01

    Despite the strong dependence on weather and climate variability of the renewable-energy industry, and the existence of several initiatives towards demonstrating the added benefits of integrating probabilistic forecasts into energy decision-making processes, weather and climate forecasts are still under-utilised within the sector. Improved communication is fundamental to stimulate the use of climate forecast information within decision-making processes, in order to adapt to a highly climate dependent renewable-energy industry. This work focuses on improving the visualisation of climate forecast information, paying special attention to seasonal time scales. This activity is central to enhance climate services for renewable energy and to optimise the usefulness and usability of inherently complex climate information. In the realm of the Global Framework for Climate Services (GFCS) initiative, and subsequent European projects: Seasonal-to-Decadal Climate Prediction for the Improvement of European Climate Service (SPECS) and the European Provision of Regional Impacts Assessment in Seasonal and Decadal Timescales (EUPORIAS), this paper investigates the visualisation and communication of seasonal forecasts with regards to their usefulness and usability, to enable the development of a European climate service. The target end user is the group of renewable-energy policy makers, who are central to enhance climate services for the energy industry. The overall objective is to promote the wide-range dissemination and exchange of actionable climate information based on seasonal forecasts from Global Producing Centres (GPCs). It examines the existing main barriers and deficits. Examples of probabilistic climate forecasts from different GPC's are used to make a catalogue of current approaches, to assess their advantages and limitations and, finally, to recommend better alternatives. Interviews have been conducted with renewable-energy stakeholders to receive feedback for the

  16. Response of corn markets to climate volatility under alternative energy futures.

    PubMed

    Diffenbaugh, Noah S; Hertel, Thomas W; Scherer, Martin; Verma, Monika

    2012-07-01

    Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.

  17. a Range Based Method for Complex Facade Modeling

    NASA Astrophysics Data System (ADS)

    Adami, A.; Fregonese, L.; Taffurelli, L.

    2011-09-01

    3d modelling of Architectural Heritage does not follow a very well-defined way, but it goes through different algorithms and digital form according to the shape complexity of the object, to the main goal of the representation and to the starting data. Even if the process starts from the same data, such as a pointcloud acquired by laser scanner, there are different possibilities to realize a digital model. In particular we can choose between two different attitudes: the mesh and the solid model. In the first case the complexity of architecture is represented by a dense net of triangular surfaces which approximates the real surface of the object. In the other -opposite- case the 3d digital model can be realized by the use of simple geometrical shapes, by the use of sweeping algorithm and the Boolean operations. Obviously these two models are not the same and each one is characterized by some peculiarities concerning the way of modelling (the choice of a particular triangulation algorithm or the quasi-automatic modelling by known shapes) and the final results (a more detailed and complex mesh versus an approximate and more simple solid model). Usually the expected final representation and the possibility of publishing lead to one way or the other. In this paper we want to suggest a semiautomatic process to build 3d digital models of the facades of complex architecture to be used for example in city models or in other large scale representations. This way of modelling guarantees also to obtain small files to be published on the web or to be transmitted. The modelling procedure starts from laser scanner data which can be processed in the well known way. Usually more than one scan is necessary to describe a complex architecture and to avoid some shadows on the facades. These have to be registered in a single reference system by the use of targets which are surveyed by topography and then to be filtered in order to obtain a well controlled and homogeneous point cloud of

  18. Does Interdisciplinarity Exist behind the Facade of Traditional Disciplines? A Study of Natural Resource Management Teaching

    ERIC Educational Resources Information Center

    Pharo, Emma; Bridle, Kerry

    2012-01-01

    We investigated the hypothesis that interdisciplinarity is being explicitly taught behind the facade of traditional disciplines. We interviewed 14 academics (seven geographers and seven agricultural scientists) about their teaching in the inherently interdisciplinary field of natural resource management. Our teachers were generally well informed…

  19. Credit PSR. This image depicts the southwest and southeast facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This image depicts the southwest and southeast facades as seen when looking north. The concrete block lean-to in the foreground is the facility control room. Between this room and the X-ray room is a four foot thick concrete wall (which can be seen as a "step" between the lowest and highest roof planes) intended as X-ray shielding for operators. The X-ray chamber faces away from the JPL Edwards Facility toward a fenced desert area - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA

  20. Credit PSR. This view shows the west and north facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows the west and north facades of the storage facility as seen when approaching from Circle Drive, looking east (92°). The metal shed at right was the original structure; the second shed is a later addition. All structures are metal frame covered with metal cladding, grounding them electrically and rendering them fireproof. The entire facility was rated for a maximum of 100,000 pounds (45,450 Kg) of class 1.3 materials, and four personnel - Jet Propulsion Laboratory Edwards Facility, Solid Oxidizer Storage, Edwards Air Force Base, Boron, Kern County, CA

  1. Credit PSR. This view shows the southeast and northeast facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows the southeast and northeast facades of building as seen when looking west (264°). The open double doors reveal the curing room, which was kept at ambient temperatures. A maximum of 10,000 pounds (4,545 Kg) of class 1.1 propellants were permitted in this room, along with a maximum of 4 people. A separate room at the west end of the building housed temperature control equipment. Note the lightning rods on roof corners - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA

  2. Regional Analysis of Energy, Water, Land and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  4. Climate information for the wind energy industry in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Calmanti, Sandro; Davis, Melanie; Schmidt, Peter; Dell'Aquila, Alessandro

    2013-04-01

    According to the World Wind Energy Association the total wind generation capacity worldwide has come close to cover 3% of the world's electricity demand in 2011. Thanks to the enormous resource potential and the relatively low costs of construction and maintenance of wind power plants, the wind energy sector will remain one of the most attractive renewable energy investment options. Studies reveal that climate variability and change pose a new challenge to the entire renewable energy sector, and in particular for wind energy. Stakeholders in the wind energy sector mainly use, if available, site-specific historical climate information to assess wind resources at a given project site. So far, this is the only source of information that investors (e.g., banks) are keen to accept for decisions concerning the financing of wind energy projects. However, one possible wind energy risk at the seasonal scale is the volatility of earnings from year to year investment. The most significant risk is therefore that not enough units of energy (or megawatt hours) can be generated from the project to capture energy sales to pay down debt in any given quarter or year. On the longer time scale the risk is that a project's energy yields fall short of their estimated levels, resulting in revenues that consistently come in below their projection, over the life of the project. The nature of the risk exposure determines considerable interest in wind scenarios, as a potential component of both the planning and operational phase of a renewable energy project. Fundamentally, by using climate projections, the assumption of stationary wind regimes can be compared to other scenarios where large scale changes in atmospheric circulation patterns may affect local wind regimes. In the framework of CLIM-RUN EU FP7 project, climate experts are exploring the potential of seasonal to decadal climate forecast techniques (time-frame 2012-2040) and regional climate scenarios (time horizon 2040+) over the

  5. Response of corn markets to climate volatility under alternative energy futures

    PubMed Central

    Diffenbaugh, Noah S.; Hertel, Thomas W.; Scherer, Martin; Verma, Monika

    2012-01-01

    Recent price spikes1,2 have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades3,4. However, commodity price volatility is also influenced by other factors5,6, which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change. PMID:23243468

  6. Analysis of defects of overhead facade systems and other light thin-walled structures

    NASA Astrophysics Data System (ADS)

    Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.

    2017-04-01

    This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.

  7. Exploring Air-Climate-Energy Impacts with GCAM-USA

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change and energy (ACE) goals. My research focuseson integration of impact factors in GCAM-USA and a...

  8. Climate and southern Africa's water-energy-food nexus

    NASA Astrophysics Data System (ADS)

    Conway, Declan; van Garderen, Emma Archer; Deryng, Delphine; Dorling, Steve; Krueger, Tobias; Landman, Willem; Lankford, Bruce; Lebek, Karen; Osborn, Tim; Ringler, Claudia; Thurlow, James; Zhu, Tingju; Dalin, Carole

    2015-09-01

    In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven, for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and gross domestic product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose: the Southern African Development Community, the Southern African Power Pool and trade of agricultural products amounting to significant transfers of embedded water.

  9. The future of energy and climate

    ScienceCinema

    Steinberger, Jack

    2018-04-26

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  10. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  11. 1. AERIAL VIEW OF WEST/FRONT AND NORTH/SIDE FACADES, LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW OF WEST/FRONT AND NORTH/SIDE FACADES, LOOKING SOUTHEAST (FROM LEFT TO RIGHT): VA-1272 Ball Building, 1437 N. Court House Road. VA-1273 Jesse Building, 1423-27 N. Court House Road. VA-1276 Jesse-Hosmer Building, 1419 N. Court House Road. VA-1275 Moncure (Adams, Porter, Radigan) Building, N. 1415 Court House Road. VA-1274 Rucker Building, N. 1403 Court House Road. - Lawyers' Row Block, North Court House Road between Fourteenth & Fifteenth Streets, Arlington, Arlington County, VA

  12. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    NASA Astrophysics Data System (ADS)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  13. Global Gathering Addresses PV Role in Energy Prosperity and Climate Change

    Science.gov Websites

    Mitigation | News | NREL Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation News Release: Global Gathering Addresses PV Role in Energy Prosperity and Climate Laboratory (NREL), along with their counterparts from solar energy research institutes in Germany and Japan

  14. The Climate Literacy and Energy Awareness Network (CLEAN) - Enabling Collective Impact on Climate and Energy Literacy

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Gold, A. U.; Niepold, F., III

    2015-12-01

    Numerous climate change education efforts exist that aim to enable citizens and society to make informed decisions addressing environmental and societal issues arising from climate change. To extend the reach and impact of these efforts, it is necessary to coordinate them in order to reach a greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network, as an example of a rudimentary form of such an organization, engages in continuous communication through weekly teleconferences, an active listserv and other activities to share resources, activities, and ideas that is moving the network to develop common understandings that will likely lead to the development of effective collective impact on increasing climate and energy literacy. A Spring 2013 survey of the CLEAN Network provided insight as to how the CLEAN Network was addressing member needs and identified what other support was needed to increase its collective impact. In addition, community discussions identified the components needed for an effective overarching backbone support organization. A Fall 2015 survey of the CLEAN Network and the broader climate change education community is being conducted to examine 1) how the CLEAN Network make up and needs have evolved and how they compare to the broader community, and 2) to gather further input into the shaping of the elements of collective impact on climate and energy literacy. This presentation will describe the results from the 2015 survey and compare them to the 2013 survey and the community discussions. This will include describing the CLEAN Network's evolving professional make up, engagement of its members network activities, the importance of the network to members; how the findings compare with the broader climate

  15. 1. View east at west facade of culvert outlet headwall, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View east at west facade of culvert outlet headwall, above which part of the canal bank has been removed. Foreground to background: streambed and coffer dam (mound in center) that was used in dewatering the culvert; intake pipes (extreme left and right) for dewatering pumps; deteriorated culvert outlet headwall with upper portion of wall fallen away; horizontal masonry cutoff wall extending above the culvert outlet partially up the canal bank (cutoff wall was exposed by removal of part of canal bank); towpath at top of canal bank. - Delaware & Raritan Canal, Six Mile Run Culvert, .2 mile South of Blackwells Mills Road, East Millstone, Somerset County, NJ

  16. Credit PSR. This view shows southeast and southwest facades as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows southeast and southwest facades as seen when looking east northeast (70°). This steel frame building is clad in "Transite" board (fire- resistant, pressed asbestos composition board). This structure was built as a back-up to Building 4237/E-38, but no equipment was ever installed. It was equipped instead to conduct tensile tests on propellant samples. In 1984, it was converted into a back-up structure supporting Building 4283/E-84, Propellant Processing Building. Small amounts of HMX propellants were processed and dried here - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Blender Building, Edwards Air Force Base, Boron, Kern County, CA

  17. Perspective view. notes on reverse: The main facade of Mount ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view. notes on reverse: The main facade of Mount Atlas was built by Peter B. Whiting in 1790. All exterior woodwork except the cornice is said to be carved by Mr. Foley. Some original frames and casings around transom window over front door. Front door is also original. Some original beaded weatherboards on wall protected by basement entrance (poplar weatherboards). Porch added after 1900. Original mantelpiece with painting of girl above (may be a late eighteenth-century painting). Smokehouse to left is original. Charles B. Carter owned the house from 1801-35 and is buried in the cemetery nearby. - Mount Atlas, State Route 731 vicinity, Waterfall, Prince William County, VA

  18. 4. Credit BG. View looking northeast at west facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit BG. View looking northeast at west facade of Test Stand 'E' 4259/E-60, solid rocket motor test facility. Wooden barricades to north and south of 4259/E-60 protect personnel and other facilities from flying debris in case of inadvertent explosions. Test Stand 'E' is accessed from the tunnel system by the inclined tube shown at the center of the image adjacent to a ladder. Racks running to the north (having the appearance of a low fence) carry electrical cables to Test Stand 'G' (Building 4271/E-72). - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA

  19. 5. Credit BG. View looking northwest at eastern facade of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Credit BG. View looking northwest at eastern facade of Test Stand 'E' (Building 4259/E-60), solid rocket motor test facility. Central bay (high concrete walls) was used for testing large solid motors in a vertical position. A second smaller bay to the north fired smaller motors horizontally. Just south of the large bay is an equipment room with access to the tunnel system; entrance is by small single door on east side. The large double doors lead to a third bay used for X-raying solid rocket motors before testing. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA

  20. Credit BG. The southeast and northeast facades appear as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. The southeast and northeast facades appear as seen when looking due west (270°). Doors to the mixer room are open; the smaller closed doors lead to a building equipment room containing heating and refrigeration units for temperature control of the mixer and its contents. The mixer room doors and sidewalls are filled with foam and constructed to blow out in case of an explosion in the mixer. Note the lightning rods and two exterior emergency showers. The two tanks at the eastern corner of the building are unidentified - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA

  1. Release of silver nanoparticles from outdoor facades.

    PubMed

    Kaegi, Ralf; Sinnet, Brian; Zuleeg, Steffen; Hagendorfer, Harald; Mueller, Elisabeth; Vonbank, Roger; Boller, Markus; Burkhardt, Michael

    2010-09-01

    In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 micro Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly <15 nm and are released as composite colloids attached to the organic binders of the paint. Microscopic results indicate that the Ag-NP are likely transformed to considerably less toxic forms such as Ag2S. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Energy Balance, Climate, and Life \\-- Work of M. Budyko

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.

    2003-12-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at the age of 81 in St. Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth's biosphere.

  3. Energy Balance, Climate, and Life - Work of M. Budyko

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  4. How much should we know about energy to better implement climate change education?

    NASA Astrophysics Data System (ADS)

    Silva-Send, N.; Anders, S.

    2011-12-01

    Anthropogenic climate change requires us to understand complex and multidisciplinary aspects of climate science. But without also grasping the connection between our lifestyles, behavior, and energy use, it will be difficult for many of us to make changes to contribute to climate change mitigation and energy conservation. A deeper understanding of the energy-climate relationship related to our behavior is thus warranted because, as the internet-based EnergyLiteracy.org points out, albeit within a different but related context of national security and development, "The vast majority of Americans simply don't adequately understand the magnitude and urgency of our national energy crisis ..." and "That lack of understanding deprives our democracy of the political will that must be generated in order to adequately address...." these issues. Our NSF Climate Change Education Program Project, the San Diego Regional Climate Education Partnership (SDRCEP), has as its overarching aim to inform citizens to make balanced decisions based on climate change and energy literacy. The project targets a selected group of 30 key influential persons in the region, and their audiences, representing, for example, the banking sector, the construction industry, the health sector, and commercial real estate. Interviews carried out so far suggest that the connection between climate change and energy use is not easily made. On the other hand, the interviews indicate that a connection is easily made, in this region, between climate change and water availability. Therefore, the purpose of this presentation is to discuss what specific knowledge about personal and societal energy use might be useful to (a) inform and empower key decision-makers responsible for energy-use decisions that significantly affect our lives in the next decades, and (b) empower people to contribute to reducing the impacts of climate change through behavioral or even life-style changes.

  5. Budgeting for Climate Neutrality, Colleges Consider Energy Credits

    ERIC Educational Resources Information Center

    Carlson, Scott

    2008-01-01

    More and more colleges are grappling with issues on budgeting for climate neutrality. Around 40 percent of colleges' greenhouse-gas emissions come from purchased electricity. Through the American College and University Presidents Climate Commitment, which originated in 2007, hundreds of colleges have vowed to buy energy from green sources. In…

  6. Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick

    2009-01-01

    Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.

  7. Buying Green Power and Renewable Energy Certificates | Climate Neutral

    Science.gov Websites

    following links go to sections that describe how green power and RECs may fit into your climate action plans your climate action plans. Visible Commitment to Renewable Energy Perhaps because of its immediate

  8. The visualisation and communication of probabilistic climate forecasts to renewable energy policy makers

    NASA Astrophysics Data System (ADS)

    Doblas-Reyes, F.; Steffen, S.; Lowe, R.; Davis, M.; Rodó, X.

    2013-12-01

    Despite the strong dependence of weather and climate variability on the renewable energy industry, and several initiatives towards demonstrating the added benefits of integrating probabilistic forecasts into energy decision making process, they are still under-utilised within the sector. Improved communication is fundamental to stimulate the use of climate forecast information within decision-making processes, in order to adapt to a highly climate dependent renewable energy industry. This paper focuses on improving the visualisation of climate forecast information, paying special attention to seasonal to decadal (s2d) timescales. This is central to enhance climate services for renewable energy, and optimise the usefulness and usability of inherently complex climate information. In the realm of the Global Framework for Climate Services (GFCS) initiative, and subsequent European projects: Seasonal-to-Decadal Climate Prediction for the Improvement of European Climate Service (SPECS) and the European Provision of Regional Impacts Assessment in Seasonal and Decadal Timescales (EUPORIAS), this paper investigates the visualisation and communication of s2d forecasts with regards to their usefulness and usability, to enable the development of a European climate service. The target end user will be renewable energy policy makers, who are central to enhance climate services for the energy industry. The overall objective is to promote the wide-range dissemination and exchange of actionable climate information based on s2d forecasts from Global Producing Centres (GPC's). Therefore, it is crucial to examine the existing main barriers and deficits. Examples of probabilistic climate forecasts from different GPC's were used to prepare a catalogue of current approaches, to assess their advantages and limitations and finally to recommend better alternatives. In parallel, interviews were conducted with renewable energy stakeholders to receive feedback for the improvement of existing

  9. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  10. Energy Efficient Building Management | Climate Neutral Research Campuses |

    Science.gov Websites

    NREL Efficient Building Management Energy Efficient Building Management As campuses complete generate the greatest climate impact. Energy efficient management in the existing stock of buildings is the following links go to sections that describe how an energy buildings management and maintenance program may

  11. Potential impacts of climate change on the built environment: ASHRAE climate zones, building codes and national energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Kumar, Jitendra; Hoffman, Forrest M.

    Statement of the Problem: ASHRAE releases updates to 90.1 “Energy Standard for Buildings except Low-Rise Residential Buildings” every three years resulting in a 3.7%-17.3% increase in energy efficiency for buildings with each release. This is adopted by or informs building codes in nations across the globe, is the National Standard for the US, and individual states elect which release year of the standard they will enforce. These codes are built upon Standard 169 “Climatic Data for Building Design Standards,” the latest 2017 release of which defines climate zones based on 8, 118 weather stations throughout the world and data frommore » the past 8-25 years. This data may not be indicative of the weather that new buildings built today, will see during their upcoming 30-120 year lifespan. Methodology & Theoretical Orientation: Using more modern, high-resolution datasets from climate satellites, IPCC climate models (PCM and HadGCM), high performance computing resources (Titan) and new capabilities for clustering and optimization the authors briefly analyzed different methods for redefining climate zones. Using bottom-up analysis of multiple meteorological variables which were the subject matter, experts selected as being important to energy consumption, rather than the heating/cooling degree days currently used. Findings: We analyzed the accuracy of redefined climate zones, compared to current climate zones and how the climate zones moved under different climate change scenarios, and quantified the accuracy of these methods on a local level, at a national scale for the US. Conclusion & Significance: There is likely to be a significant annual, national energy and cost (billions USD) savings that could be realized by adjusting climate zones to take into account anticipated trends or scenarios in regional weather patterns.« less

  12. Color constrasts in advertising: facade colors of food and drink consumption venues

    NASA Astrophysics Data System (ADS)

    Hutchings, John

    2002-06-01

    The building facade has a visually defined impact and there are numerous forces driving the choice of colors used. Commercial premises such as pubs, restaurants and bars are normally but not always clearly marked as such. Although we human beings can have the option of free choice in the colors we use around the home there are numerous positive driving forces dictating those we use in business life. Many of these factors have been identified. They depend on the type of population these venues serve, their geography and their traditions.

  13. The contrasting climate response to tropical and extratropical energy perturbations

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matt; Haywood, Jim M.; Collins, Mat; Jones, Andy

    2018-01-01

    The link between cross-equatorial energy transport, the double-intertropical convergence zone (DI) problem and biases in tropical and extratropical albedo and energy budgets in climate models have been investigated in multiple studies, though DI biases persist in many models. Here, a coupled climate model, HadGEM2-ES, is used to investigate the response to idealised energy perturbations in the tropics and extratropics, in both the northern and southern hemispheres, through the imposition of stratospheric aerosols that reflect incoming radiation. The impact on the tropical climate of high and low latitude forcing strongly contrasts, with large changes in tropical precipitation and modulation of the DI bias when the tropics are cooled as precipitation moves away from the cooled hemisphere. These responses are muted when the extratropics are cooled, as the meridional energy transport anomalies that are excited by these energy budget anomalies are partitioned between the atmosphere and ocean. The results here highlight the persistence of the DI bias in HadGEM2-ES, indicating why little progress has been made in rectifying these problems through many generations of climate models. A highly linear relationship between cross-equatorial atmospheric energy transport, tropical precipitation asymmetry and tropical sea surface temperature biases is also demonstrated, giving some suggestion as to where improvements in these large scale, persistent biases may be achieved.

  14. Industrial waste utilization in the panels production for high buildings facade and socle facing

    NASA Astrophysics Data System (ADS)

    Vitkalova, Irina; Torlova, Anastasiya; Pikalov, Evgeniy; Selivanov, Oleg

    2018-03-01

    The research presents comprehensive utilization of such industrial waste as galvanic sludge, broken window glass as functional additives for producing ceramics for facade and socle paneling in high-rise construction. The basic charge component is low-plasticity clay, which does not allow producing high-quality products if used without any functional additives. The application of the mentioned above components broadens the resource base, reduces production cost and the mass of the products in comparison with the currently used facing ceramics. The decrease of product mass helps to reduce the load on the basement and to use ceramic material in high-rise construction more effectively. Additional advantage of the developed composition is the reducing of production energy intensity due to comparatively low pressing pressure and firing temperature thus reducing the overall production cost. The research demonstrates the experimental results of determining density, compressive strength, water absorption, porosity and frost resistance of the produced ceramic material. These characteristics prove that the material can be applied for high buildings outdoor paneling. Additional research results prove ecologic safety of the produced ceramic material.

  15. A Strategy for American Power: Energy, Climate and National Security

    DTIC Science & Technology

    2008-06-01

    principle applies to the suppliers of energy, particularly oil, since the United States gets...outlined four principles : • Human-induced climate change is real; • The consequences of climate change will be significant and will hit the poor...savings, in terms of higher macroeconomic output in times of energy price volatility, associated with the development of nuclear capacity in Japan.

  16. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    NASA Astrophysics Data System (ADS)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  17. Health and Climate Impacts of Rural Residential Energy Transition in China

    NASA Astrophysics Data System (ADS)

    Tao, Shu; Ru, Muye; Du, Wei; Zhu, Xi; Zhong, Qirui

    2017-04-01

    Over the last two to three decades, energy mix in rural China transit dramatically owing to rapid socioeconomic development. It is expected that such transition can result in changes in emissions of climate forcing components and air pollutants, consequently environmental and climate impacts. Such impacts were quantified by a nationwide survey on rural residential energy consumption, compilation of a series of emission inventories, modeling of atmospheric transport of pollutants, assessment on health risk induced by exposure to ambient air pollutants, and evaluation on rural residential emission originated climate forcing components. Co-benefit of the transition on both health and climate is demonstrated.

  18. Comparison and interactions between the long-term pursuit of energy independence and climate policies

    NASA Astrophysics Data System (ADS)

    Jewell, Jessica; Vinichenko, Vadim; McCollum, David; Bauer, Nico; Riahi, Keywan; Aboumahboub, Tino; Fricko, Oliver; Harmsen, Mathijs; Kober, Tom; Krey, Volker; Marangoni, Giacomo; Tavoni, Massimo; van Vuuren, Detlef P.; van der Zwaan, Bob; Cherp, Aleh

    2016-06-01

    Ensuring energy security and mitigating climate change are key energy policy priorities. The recent Intergovernmental Panel on Climate Change Working Group III report emphasized that climate policies can deliver energy security as a co-benefit, in large part through reducing energy imports. Using five state-of-the-art global energy-economy models and eight long-term scenarios, we show that although deep cuts in greenhouse gas emissions would reduce energy imports, the reverse is not true: ambitious policies constraining energy imports would have an insignificant impact on climate change. Restricting imports of all fuels would lower twenty-first-century emissions by only 2-15% against the Baseline scenario as compared with a 70% reduction in a 450 stabilization scenario. Restricting only oil imports would have virtually no impact on emissions. The modelled energy independence targets could be achieved at policy costs comparable to those of existing climate pledges but a fraction of the cost of limiting global warming to 2 ∘C.

  19. Sun/Earth: how to use solar and climatic energies today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.

    1976-01-01

    This book graphically presents many concepts that are cost-effective today for the utilization of free natural energy sources in homes and other buildings. All of the natural energy concepts presented are in a process of continuing development. Many of them are immediately economic and practical, while some are not. It takes the application of money to construct devices to harness natural energy or to construct energy efficient forms of architecture. In numerous cases operational energy is not required to employ the Sun, wind, water, and Earth as free anti-inflationary energy sources. In other cases a very small input of operationalmore » energy in comparison to the total energy output is required. All land and buildings are solar collectors. The problem is how to cost effectively make them efficient collectors of solar radiation in winter and how to use natural forms of energy to cool and ventilate them during summer and other seasons of the year. Regional and microclimatic conditions vary throughout the world. Topography and landscaping can play an important role in climatic control and climatic effect upon architecture. The examples presented for optimized energy conservation and solar active and passive systems are generic to most northern latitudes, but need modification or adaption to specific locations and climates. An annotated bibliography, containing additional reference, is included.« less

  20. Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate

    NASA Astrophysics Data System (ADS)

    Bouabdallah, Nabila; M'sellem, Houda; Alkama, Djamel

    2016-07-01

    This paper aims to study the problem of thermal comfort inside buildings located in hot and arid climates. The principal idea behind this research is using concepts based on the potential of nature as an instrument that helps creating appropriate facades with the environment "building skin". The biomimetic architecture imitates nature through the study of form, function, behaviour and ecosystems of biological organisms. This research aims to clarify the possibilities that can be offered by biomimicry architecture to develop architectural bio-inspired building's design that can help to enhance indoor thermal ambiance in buildings located in hot and dry climate which helps to achieve thermal comfort for users.

  1. Moving toward Collective Impact in Climate Change Literacy: The Climate Literacy and Energy Awareness Network (CLEAN)

    ERIC Educational Resources Information Center

    Ledley, Tamara Shapiro; Gold, Anne U.; Niepold, Frank; McCaffrey, Mark

    2014-01-01

    In recent years, various climate change education efforts have been launched, including federally (National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, National Science Foundation, etc.) and privately funded projects. In addition, climate literacy and energy literacy frameworks have been developed and…

  2. 2. Credit BG. Looking west at east facade of Steam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit BG. Looking west at east facade of Steam Generator Plant, Building 4280/E-81; steam generators have been removed as part of dismantling program for Test Stand 'D.' Metal cylindrical objects to left of door were roof vents. The steam-driven ejector system for Dv Cell is clearly visible on the east side of Test Stand 'D' tower. The X-stage ejector is vertically installed at the bottom left of the tower, Y-stage is horizontally positioned close to the tower top, and the Z- and Z-1 stages are attached to the top of the interstage condenser. Light-colored piping is thermally insulated steam line. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA

  3. Action strategy paper : climate change and energy

    DOT National Transportation Integrated Search

    2008-10-01

    This strategy paper considers how the Chicago Metropolitan Agency for Planning (CMAP) might incorporate goals to reduce greenhouse gas (GHG) emissions, prepare for climate change impacts on transportation systems, and reduce energy with in the GO TO ...

  4. Impact of climatic factors on energy consumption during the heating season

    NASA Astrophysics Data System (ADS)

    Ginzburg, A. S.; Reshetar, O. A.; Belova, I. N.

    2016-09-01

    Global and regional climate changes produce a significant effect on energy production and consumption, especially on heating and air conditioning in residential, industrial, commercial, and office rooms. In Russia, with its contracting climate conditions, energy consumption varies a lot in different regions. Thus, we have to review the dynamics of energy consumption during the cold season individually for each region of the country. We analyzed the dynamics of duration and temperature of the heating season in Moscow region and completed a comparative study of heat energy consumption, actual and calculated based on the 'degreedays' concept, in the municipal economy of Moscow during the last decade. Based on the actual data analysis, we proved that conservation of energy resources in a large city relies not so much on a shortening of the heating period as on the growth of atmospheric air temperature in winter. The projected climate warming in the Moscow region in the nearest decades, along with measures of energy conservation, will promote a significant reduction in energy consumption of the municipal economy in winter. The results shown in this article were obtained in the process of preparing and implementing project no. 16-17-00114 by the Russian Science Foundation "Analysis of an impact of the regional climate change on the residential and commercial energy consumption of Russian megacities," within the main area of focus of the Russian Science Foundation, which is "Fundamental Research and Exploration in Main Topical Areas of Focus." The project was implemented within the framework of the scientific area of focus, which is "Reduction of the Risk and Mitigation of Consequences of Natural and Man-made Disasters" ("Studying Economical, Political, and Social Consequences of Global Climate Changes" problem).

  5. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity andmore » solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.« less

  6. Energy Choices and Climate Change: A New Interactive Feature on Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Russell, R. M.; Ward, D.; Johnson, R. M.; Henderson, S.; Foster, S. Q.

    2009-12-01

    We have developed a new, self-paced online module to foster understanding of how choices made about energy production and energy use affect greenhouse gas emissions and climate change. The module, entitled “Energy Choices and Climate Change” is available on Windows to the Universe (www.windows.ucar.edu), an extensive educational Web site used by over 20 million people each year. “Energy Choices and Climate Change” provides a new way to look at issues related to energy and climate change, emphasizing the climate implications of the choices we make. “Energy Choices and Climate Change” allows users to explore two different scenarios through which they make decisions about energy production or use. In the “Ruler of the World” scenario, the user is given the authority to make decisions about the mix of energy sources that will be used worldwide with the aim of reducing emissions while meeting global energy demand and monitoring costs and societal implications. In “The Joules Family” scenario, the user makes decisions about how to change the way a hypothetical family of four uses energy at home and for transportation with the aim of reducing the family’s carbon emissions and fossil fuel use while keeping costs less than long-term savings. While this module is intended for a general public audience, an associated teacher’s guide provides support for secondary educators using the module with students. Windows to the Universe is a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Funding for the Energy Choices and Climate Change online module was provided by the National Center for Atmospheric Research.

  7. Distributed Energy Planning for Climate Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, Sherry R; Hotchkiss, Elizabeth L; Day, Megan H

    At various levels of government across the United States and globally climate resilient solutions are being adopted and implemented. Solutions vary based on predicted hazards, community context, priorities, complexity, and available resources. Lessons are being learned through the implementation process, which can be replicated regardless of level or type of government entity carrying out the resiliency planning. Through a number of analyses and technical support across the world, NREL has learned key lessons related to resilience planning associated with power generation and water distribution. Distributed energy generation is a large factor in building resilience with clean energy technologies and solutions.more » The technical and policy solutions associated with distributed energy implementation for resilience fall into a few major categories, including spatial diversification, microgrids, water-energy nexus, policy, and redundancy.« less

  8. Impact of Climate Change on Energy Production, Distribution, and Consumption in Russia

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.; Fedotova, E. V.

    2018-05-01

    An assessment of the overall impact of the observed and expected climatic changes on energy production, distribution, and consumption in Russia is presented. Climate model results of various complexity and evaluation data on the vulnerability of various energy production sectors to climate change are presented. It is shown that, due to the increase of air temperature, the efficiency of electricity production at thermal and nuclear power plants declines. According to the climate model results, the production of electricity at TPPs and NPPs by 2050 could be reduced by 6 billion kW h due to the temperature increase. At the same time, as a result of simulation, the expected increase in the rainfall amount and river runoff in Russia by 2050 could lead to an increase in the output of HPP by 4-6% as compared with the current level, i.e., by 8 billion kW h. For energy transmission and distribution, the climate warming will mean an increase in transmission losses, which, according to estimates, may amount to approximately 1 billion kW h by 2050. The increase of air temperature in summer will require higher energy consumption for air conditioning, which will increase by approximately 6 billion kW h by 2050. However, in total, the optimal energy consumption in Russia, corresponding to the postindustrial level, will decrease by 2050 by approximately 150 billion kW h as a result of climate- induced changes. The maximum global warming impact is focused on the heat demand sector. As a result of a decrease in the heating degree-days by 2050, the need for space heating is expected to fall by 10-15%, which will cause a fuel conservation sufficient for generating approximately 140 billion kW h of electricity. Hence, a conclusion about the positive direct impact of climate change on the Russia's energy sector follows, which is constituted in the additional available energy resource of approximately 300 billion kW h per year.

  9. Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter

    2012-03-01

    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.

  10. Climate impacts of energy technologies depend on emissions timing

    NASA Astrophysics Data System (ADS)

    Edwards, Morgan R.; Trancik, Jessika E.

    2014-05-01

    Energy technologies emit greenhouse gases with differing radiative efficiencies and atmospheric lifetimes. Standard practice for evaluating technologies, which uses the global warming potential (GWP) to compare the integrated radiative forcing of emitted gases over a fixed time horizon, does not acknowledge the importance of a changing background climate relative to climate change mitigation targets. Here we demonstrate that the GWP misvalues the impact of CH4-emitting technologies as mid-century approaches, and we propose a new class of metrics to evaluate technologies based on their time of use. The instantaneous climate impact (ICI) compares gases in an expected radiative forcing stabilization year, and the cumulative climate impact (CCI) compares their time-integrated radiative forcing up to a stabilization year. Using these dynamic metrics, we quantify the climate impacts of technologies and show that high-CH4-emitting energy sources become less advantageous over time. The impact of natural gas for transportation, with CH4 leakage, exceeds that of gasoline within 1-2 decades for a commonly cited 3 W m-2 stabilization target. The impact of algae biodiesel overtakes that of corn ethanol within 2-3 decades, where algae co-products are used to produce biogas and corn co-products are used for animal feed. The proposed metrics capture the changing importance of CH4 emissions as a climate threshold is approached, thereby addressing a major shortcoming of the GWP for technology evaluation.

  11. Barriers to Incorporating Climate Change Science into High School and Community College Energy Course Offerings

    NASA Astrophysics Data System (ADS)

    Howell, C.

    2013-05-01

    In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions

  12. Climate Literacy and Energy Awareness Network (CLEAN) - Supporting the Scientists and Citizens of Tomorrow

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; McCaffrey, M. S.; Gold, A. U.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Kirk, K. B.; Grogan, M.; Niepold, F.; Lynds, S. E.; Howell, C.

    2011-12-01

    The US Global Change Research Program and a consortium of science and education partners in 2009 concluded "climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both." In order for citizens to achieve that understanding there is a clear need to support teachers, students, and the public in becoming climate and energy literate and to enable them to make responsible decisions about the environment and energy use for themselves and for society. However, to pursue climate and energy literacy it is necessary to identify and access educational materials that are scientifically accurate, pedagogically effective, and technically robust, and to use them effectively. The CLEAN Pathway (http://cleanet.org) is a National Science Digital Library (http://www.nsdl.org) project that is stewarding a collection of materials for teaching climate and energy science in grades 6-16. The collection contains classroom activities, lab demonstrations, visualizations, simulations and more. Each resource is extensively reviewed for scientific accuracy, pedagogical effectiveness, and technical quality. Once accepted into the CLEAN collection, a resource is aligned with the Climate Literacy Essential Principles for Climate Science, the AAAS Project 2061 Benchmarks for Science Literacy and other national standards. The CLEAN website hosts a growing collection of currently 300+ resources that represent the leading edge of climate and energy science resources for the classroom. In this presentation we will demonstrate the various avenues of how the CLEAN portal that can help educators improve their own climate and energy literacy, help them determine why and how to effectively integrate the climate and energy principles into their teaching, and facilitate educators successfully using the resources with their students. This will include a brief overview of the: a

  13. Accelerated Climate Modeling for Energy (ACME) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Aashish

    Seven Department of Energy (DOE) national laboratories, Universities, and Kitware, undertook a coordinated effort to build an Earth system modeling capability tailored to meet the climate change research strategic objectives of the DOE Office of Science, as well as the broader climate change application needs of other DOE programs.

  14. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    NASA Astrophysics Data System (ADS)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  15. Understanding the influence of climate change on the embodied energy of water supply.

    PubMed

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health

    PubMed Central

    Erickson, Larry E.; Jennings, Merrisa

    2017-01-01

    The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure. PMID:29922702

  17. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health.

    PubMed

    Erickson, Larry E; Jennings, Merrisa

    2017-01-01

    The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.

  18. Energy performance of semi-transparent PV modules for applications in buildings

    NASA Astrophysics Data System (ADS)

    Fung, Yu Yan

    well-insulated calorimeter box and an adjustable steady-state type solar simulator which can provide up to 1600 W/m2 have been used in the tests. Energy that transmitted through the semi-transparent BIPV modules and entered the calorimeter box was evaluated. It was found that the experimental results and the simulated results support each other. The SPVHG model is validated and can be used for further studies. Other than heat transfer, power production and the daylight utilization are also the vital parts in the energy performance assessment of the semi-transparent BIPV module for applications in building facades. Power generation models of both opaque and semi-transparent BIPV modules are investigated in this study. In order to test the validity of the power generation model, measurements on a BIPV system of an existing building are carried out. The measurement results reveal a good validity of the power generation model. Only a minor modification to the model is required. The daylight utilization is evaluated by using an indoor illuminance model. The model estimates the mean internal illuminance on the working plane of a room when there is both sunlight and skylight. Consequently, the power saving due to the daylight utilization can be determined. By using the SPVHG model together with the power generation model and the indoor illuminance model, the energy performance, in terms of electricity benefit, of building facades that incorporated with semi-transparent BIPV modules is evaluated. Different scenarios are studied by changing various parameters such as the window to wall ratios, thickness and efficiency of the solar cells. The results show that the solar cells within the semi-transparent BIPV modules significantly reduce the solar heat gain and thus reduce the power consumption of air-conditioning systems. Taking into account the impacts of PV electricity generation and daylight utilization, the optimum solar cell area ratio in the PV modules varies from 0.7 to 0

  19. Energy demand of the German and Dutch residential building stock under climate change

    NASA Astrophysics Data System (ADS)

    Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.

    2014-05-01

    In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics

  20. Transportation Energy Security and Climate Change Mitigation Act of 2007

    DOT National Transportation Integrated Search

    2008-09-29

    The Committee on Transportation and Infrastructure, to whom was referred the bill (H.R. 2701) to strengthen our Nations energy security and mitigate the effects of climate change by promoting energy efficient transportation and public buildings, c...

  1. Carbon Offsets and Renewable Energy Certificates | Climate Neutral Research

    Science.gov Websites

    Campuses | NREL Carbon Offsets and Renewable Energy Certificates Carbon Offsets and Renewable Energy Certificates Carbon offsets are typically less expensive than installing hardware or undertaking climate reduction targets. While research campuses should not rely on carbon offsets long term, they can

  2. Energy, climate, food and health.

    PubMed

    Erwin, Patricia J

    2008-01-01

    On June 3-5, 2008, international organizations and heads of state met in Rome to discuss the critical situation in global food supplies and prices during the World Food Crisis Summit. The intent of this column is to provide approaches to identifying the complex issues that impact public health, public safety, and nutrition on a global basis. The Web sites selected provide a background for the complex issues involved (energy, climate and environment, agriculture, and politics) and reveal controversial and competing agendas with many far-reaching implications.

  3. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  4. Energy Literacy: A Natural and Essential Part of a Solutions-Based Approach to Climate Literacy

    NASA Astrophysics Data System (ADS)

    Inman, M. M.

    2011-12-01

    As with climate science topics, many Americans have misconceptions or gaps in understanding related to energy topics. Recent literacy efforts are geared to address these gaps in understanding. The U.S. Global Change Research Program's recently published "Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education" offers a welcome complement to the Climate Literacy Essential Principles released in 2008. Research and experience suggest that education, communication and outreach about global climate change and related topics is best done using a solutions-based approach. Energy is a natural and effective topic to frame these solutions around. Used as a framework for designing curricula, Energy Literacy naturally leads to solutions-based approaches to Climate Change education. An inherently interdisciplinary topic, energy education must happen in the context of both the natural and social sciences. The Energy Literacy Essential Principles reflect this and open the door to curriculum that integrates the two.

  5. Earth's changing global atmospheric energy cycle in response to climate change

    PubMed Central

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324

  6. Energy efficiency in waste-to-energy and its relevance with regard to climate control.

    PubMed

    Ragossnig, Arne M; Wartha, Christian; Kirchner, Andreas

    2008-02-01

    This article focuses on systematically highlighting the ways to optimize waste-to-energy plants in terms of their energy efficiency as an indicator of the positive effect with regard to climate control. Potentials for increasing energy efficiency are identified and grouped into categories. The measures mentioned are illustrated by real-world examples. As an example, district cooling as a means for increasing energy efficiency in the district heating network of Vienna is described. Furthermore a scenario analysis shows the relevance of energy efficiency in waste management scenarios based on thermal treatment of waste with regard to climate control. The description is based on a model that comprises all relevant processes from the collection and transportation up to the thermal treatment of waste. The model has been applied for household-like commercial waste. The alternatives compared are a combined heat and power incinerator, which is being introduced in many places as an industrial utility boiler or in metropolitan areas where there is a demand for district heating and a classical municipal solid waste incinerator producing solely electrical power. For comparative purposes a direct landfilling scenario has been included in the scenario analysis. It is shown that the energy efficiency of thermal treatment facilities is crucial to the quantity of greenhouse gases emitted.

  7. Integrated modeling for assessment of energy-water system resilience under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Veselka, T.; Zhou, Z.; Koritarov, V.; Mahalik, M.; Qiu, F.; Mahat, V.; Betrie, G.; Clark, C.

    2016-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. The IWESAF currently includes an extreme climate event generator to predict future extreme weather events, hydrologic and reservoir models, riverine temperature model, power plant water use simulator, and power grid operation and cost optimization model. The IWESAF can facilitate the interaction among the modeling systems and provide insights of the sustainability and resilience of the energy-water system under extreme climate events and economic consequence. The regional case demonstration in the Midwest region will be presented. The detailed information on some of individual modeling components will also be presented in several other abstracts submitted to AGU this year.

  8. Credit PSR. This view depicts the southwest and southeast facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view depicts the southwest and southeast facades as seen when looking west southwest (260°). The building consists of a small lean-to control room and a two-story space containing a large casting pit. The pit, which can be seen through the open doors, was never used due to changes in JPL's mission. This steel frame structure is clad in "Transite" board (a fire resistant pressed asbestos composite material) and interior lighting consists of individual explosion proof lamps mounted around the walls. The building was rated for 10,000 pounds (4,545 Kg) of class 2 materials and four personnel. It was licensed 5 June 1989 for ammonium perchlorate (NH4C10,), ammonium nitrate (NH4NO3), and sodium nitrate (NaNO3) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  9. Credit PSR. The northwest and southwest facades appear as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The northwest and southwest facades appear as seen when looking northeast (460). Doors have been opened to show the interiors of the oxidizer dust receiver room at left; the building equipment room (air conditioning) is on the right. The dust receiver is a Roto-Clone Type N hydrostatic precipitator, which uses a 5 horsepower vacuum motor. Refrigeration units are mounted on pads immediately to the right of the building in this view. The grinder room is at the far end of the building; access to it is gained via double doors on the left where a hoist beam projects out from the top of the door opening. Building 4284/E85 (Oxidizer Dryer Blender) appears in the left background; 4283/E-84 (Oxidizer Grinder) appears in the right background - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA

  10. Genetic Resources of Energy Crops: Biological Systems to Combat Climate Change

    USDA-ARS?s Scientific Manuscript database

    Biological systems are expected to contribute to renewable energy production, help stabilize rising levels of green house gases (GHG), and mitigate the risk of global climate change (GCC). Bioenergy crop plants that function as solar energy collectors and thermo-chemical energy storage systems are t...

  11. Energy and Climate Change Report Provides Options for the White House

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    A newly approved energy and climate change report prepared by the President's Council of Advisors on Science and Technology (PCAST) provides a menu of options for President Barack Obama to consider in dealing with climate change and includes components for a national climate preparedness strategy. The report was approved at a 15 March PCAST meeting in Washington, D. C., and is subject to final edits. It is the first report by the advisory council that focuses exclusively on climate, according to PCAST member Daniel Schrag, who provided a presentation about the document at the meeting.

  12. Energy-based and process-based constraints on aerosol-climate interaction

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Sato, Y.; Takemura, T.; Michibata, T.; Goto, D.; Oikawa, E.

    2017-12-01

    Recent advance in both satellite observations and global modeling provides us with a novel opportunity to investigate the long-standing aerosol-climate interaction issue at a fundamental process level, particularly with a combined use of them. In this presentation, we will highlight our recent progress in understanding the aerosol-cloud-precipitation interaction and its implication for global climate with a synergistic use of a state-of-the-art global climate model (MIROC), a global cloud-resolving model (NICAM) and recent satellite observations (A-Train). In particular, we explore two different aspects of the aerosol-climate interaction issue, i.e. (i) the global energy balance perspective with its modulation due to aerosols and (ii) the process-level characteristics of the aerosol-induced perturbations to cloud and precipitation. For the former, climate model simulations are used to quantify how components of global energy budget are modulated by the aerosol forcing. The moist processes are shown to be a critical pathway that links the forcing efficacy and the hydrologic sensitivity arising from aerosol perturbations. Effects of scattering (e.g. sulfate) and absorbing (e.g. black carbon) aerosols are compared in this context to highlight their distinctively different impacts on climate and hydrologic cycle. The aerosol-induced modulation of moist processes is also investigated in the context of the second aspect above to facilitate recent arguments on possible overestimates of the aerosol-cloud interaction in climate models. Our recent simulations with NICAM are shown to highlight how diverse responses of cloud to aerosol perturbation, which have been failed to represent in traditional climate models, are reproduced by the high-resolution global model with sophisticated cloud microphysics. We will discuss implications of these findings for a linkage between the two aspects above to aid advance process-based understandings of the aerosol-climate interaction and

  13. Impact of climate change on runoff pollution in urban environments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Kramer, S.; Barry, D. A.; Roudier, P.

    2012-12-01

    Runoff from urban environments is generally contaminated. These contaminants mostly originate from road traffic and building envelopes. Facade envelopes generate lead, zinc and even biocides, which are used for facade protection. Road traffic produces particles from tires and brakes. The transport of these pollutants to the environment is controlled by rainfall. The interval, duration and intensity of rainfall events are important as the dynamics of the pollutants are often modeled with non-linear buildup/washoff functions. Buildup occurs during dry weather when pollution accumulates, and is subsequently washed-off at the time of the following rainfall, contaminating surface runoff. Climate predictions include modified rainfall distributions, with changes in both number and intensity of events, even if the expected annual rainfall varies little. Consequently, pollutant concentrations in urban runoff driven by buildup/washoff processes will be affected by these changes in rainfall distributions. We investigated to what extent modifications in future rainfall distributions will impact the concentrations of pollutants present in urban surface runoff. The study used the example of Lausanne, Switzerland (temperate climate zone). Three emission scenarios (time horizon 2090), multiple combinations of RCM/GCM and modifications in rain event frequency were used to simulate future rainfall distributions with various characteristics. Simulated rainfall events were used as inputs for four pairs of buildup/washoff models, in order to compare future pollution concentrations in surface runoff. In this way, uncertainty in model structure was also investigated. Future concentrations were estimated to be between ±40% of today's concentrations depending on the season and, importantly, on the choice of the RCM/GCM model. Overall, however, the dominant factor was the uncertainty inherent in buildup/washoff models, which dominated over the uncertainty in future rainfall distributions

  14. The impacts of climate changes in the renewable energy resources in the Caribbean region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson III, David J

    2010-02-01

    Assessment of renewable energy resources such as surface solar radiation and wind current has great relevance in the development of local and regional energy policies. This paper examines the variability and availability of these resources as a function of possible climate changes for the Caribbean region. Global climate changes have been reported in the last decades, causing changes in the atmospheric dynamics, which affects the net solar radiation balance at the surface and the wind strength and direction. For this investigation, the future climate changes for the Caribbean are predicted using the parallel climate model (PCM) and it is coupledmore » with the numerical model regional atmospheric modeling system (RAMS) to simulate the solar and wind energy spatial patterns changes for the specific case of the island of Puerto Rico. Numerical results from PCM indicate that the Caribbean basin from 2041 to 2055 will experience a slight decrease in the net surface solar radiation (with respect to the years 1996-2010), which is more pronounced in the western Caribbean sea. Results also indicate that the easterly winds have a tendency to increase in its magnitude, especially from the years 2070 to 2098. The regional model showed that important areas to collect solar energy are located in the eastern side of Puerto Rico, while the more intense wind speed is placed around the coast. A future climate change is expected in the Caribbean that will result in higher energy demands, but both renewable energy sources will have enough intensity to be used in the future as alternative energy resources to mitigate future climate changes.« less

  15. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    NASA Astrophysics Data System (ADS)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  16. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    This guide contains recommendations for designing high performance, energy efficient schools located in hot and dry climates. A high performance checklist for designers is included along with several case studies of projects that successfully demonstrated high performance design solutions for hot and dry climates. The guide's 10 sections…

  17. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    PubMed

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  18. Energy efficiency to reduce residential electricity and natural gas use under climate change

    NASA Astrophysics Data System (ADS)

    Reyna, Janet L.; Chester, Mikhail V.

    2017-05-01

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  19. Energy efficiency to reduce residential electricity and natural gas use under climate change

    PubMed Central

    Reyna, Janet L.; Chester, Mikhail V.

    2017-01-01

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41–87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand. PMID:28504255

  20. Marginalization of end-use technologies in energy innovation for climate protection

    NASA Astrophysics Data System (ADS)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  1. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  2. Urbanization, Extreme Climate Hazards and Food, Energy Water Security

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, P.; Davidson, D.; McPhearson, T.

    2016-12-01

    Research is urgently needed that incorporates the interconnected nature of three critical resources supporting our cities: food, energy and water. Cities are increasing demands for food, water and energy resources that in turn stress resource supplies, creating risks of negative impacts to human and ecological wellbeing. Simultaneously, shifts in climatic conditions, including extremes such as floods, heat, and droughts, threaten the sustainable availability of adequate quantities and qualities of food, energy and water (FEW) resources needed for resilient cities and ecosystems. These resource flows cannot be treated in isolation simply because they are interconnected: shifts in food, energy or water dynamics in turn affect the others, affecting the security of the whole - i.e., FEW nexus security. We present a framework to examine the dynamic interactions of urbanization, FEW nexus security and extreme hazard risks, with two overarching research questions: Do existing and emerging actions intended to enhance a population's food, water and energy security have the capacity to ensure FEW nexus security in the face of changing climate and urban development conditions? Can we identify a common set of social, ecological and technological conditions across a diversity of urban-regions that support the emergence of innovations that can lead to structural transformations for FEW nexus security?

  3. Games That Teach Concepts Around the Nexus of Energy, Water, and Climate

    NASA Astrophysics Data System (ADS)

    Mayhew, M. A.; Hall, M.; Balaban, S.

    2013-12-01

    Three manifestations of the extreme amplification of the human population--exploding worldwide demand for energy, increasing exploitation of and competition for water resources, and alteration of the planet's climate--are tightly intertwined. All processes for generating energy require consumption of water, for some processes enormous quantities. It takes water to get energy. The inverse is also true: it takes energy to get water. It takes energy to move water from where it is stored to where it is needed. Burning fossil fuels for energy has increased greenhouse gasses in the atmosphere, resulting in increases in the average temperature of the Earth. But the response of the climate system is exceedingly complex. Changes in atmospheric circulation due to global warming are altering weather patterns and changing the distribution of water on the planet. Climate-related weather events alter availability of water and impact energy supply and demand. This is the nexus of energy, water, and climate. We have created two lively card games that convey the nexus concepts. They have been extensively play-tested with groups from middle school to adult; they have been found to be both educational and fun. A distinguished advisory committee, including representatives of the national labs, has insured the scientific accuracy of the games. In the first game, Thirst For Power, each player is the governor of a region; a GOAL card specifies the amount of General and Transportation energy needed for the region, achieved via ENERGY SOURCE cards. WATER cards are used as currency for obtaining energy sources. Each energy source has an associated 'environmental impact' penalty, meaning greenhouse gas emissions, but also other things like water and air pollution. ACTION cards (TECHNOLOGY, POLICY, AND CLIMATE) act much like 'Chance' cards in Monopoly to change the course of the game. The first player to achieve energy goals without exceeding an environmental impact limit for the region wins

  4. Quantifying conditional risks for water and energy systems using climate information

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2016-12-01

    There has been a growing recognition of the multi-scale spatio-temporal organization of climate dynamics, and its implications for predictable, structured risk exposure to populations and infrastructure systems. At the most base level is an understanding that there are some identifiable climate modes, such as ENSO, that are associated with such outcomes. This has led to the emergence of a small cottage industry of analysts who relate different "climate indices" to specific regional outcomes. Such efforts and the associated media interest in these simplified "stories" have led to an increasing appreciation of the phenomenon, and some formal and informal efforts at decision making using such information. However, as was demonstrated through the 2014-16 El Nino forecasting season, many climate scientists over-emphasized the potential risks, while others cautioned the media as to the caveats and uncertainties associated with assuming that the forecasts of ENSO and the expected teleconnections may pan out. At least in certain sectors and regions, significant efforts or expectations as to outcomes were put in place, and some were beneficial, while others failed to manifest. Climate informed predictions for water and energy systems can be thought of as efforts to infer conditional distributions of specific outcomes given information on climate state. Invariably, the climate state may be presented as a very high dimensional spatial set of variables, with limited temporal sampling, while the water and energy attributes may be regional and constitute a much smaller dimension. One may, of course, be interested in the fact that the same climate state may lead to synchronous positive and negative effects across many locations, as may be expected under mid-latitude stationary and transient wave interaction. In this talk, I will provide examples of a few modern statistical and machine learning tools that allow a decomposition of the high dimensional climate state and its relation

  5. Recent trends in energy flows through the Arctic climate system

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  6. A decision science approach for integrating social science in climate and energy solutions

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle; Krishnamurti, Tamar; Davis, Alex; Schwartz, Daniel; Fischhoff, Baruch

    2016-06-01

    The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

  7. Teaching About The Nexus of Energy, Water and Climate Through Traditional Games

    NASA Astrophysics Data System (ADS)

    Hall, M. K.; Mayhew, M. A.; Kaminsky, A.

    2011-12-01

    Getting to a sustainable energy economy, while conserving water resources and mitigating climate change, will involve myriad choices. Thus, it is important that the American public have an improved science-based understanding to form a strong basis for decision-making and to understand the trade-offs. To address this need, we are developing compelling, resource management style games that convey the intimate inter-relationships among energy demand, water consumption, and climate change and the importance of these inter-relationships to society. We have developed a card game with the help of professional game developer and an advisory group consisting of high school students and scientists involved with different aspects of energy-climate-water research as well as experts from the energy utilities and regulatory sectors. We have developed the card game based on real world data on energy production and consumption, regional climate information, and knowledge of emerging technologies that would mitigate the demand for energy, consumption of water with energy production, or climate change. The game is being played within the setting of our Cafe Scientifique program, now in its fifth year of serving high school age teens. One of the important aspects of the game is to find the right balance of energy output for various sources, water use by these sources, and amount of "pollution" generated (CO2 impacting climate, but also other kinds, such a radioactive waste and ground water contamination). Each player acts as "governor" of a specific region of the country, and no region has an a priori advantage. At the same time, it is important that the energy-water-pollution values we use correspond as closely as possible to real-world values. Data gathered from a combination of focus groups, surveys, and observations strongly suggest that this game, grounded in real life problems, stimulates authentic, meaningful learning. There is also some evidence that if games, such as this

  8. A Climate Change Vulnerability Assessment Report for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, J.; O'Grady, M.; Renfrow, S.

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), in Golden, Colorado, focuses on renewable energy and energy efficiency research. Its portfolio includes advancing renewable energy technologies that can help meet the nation's energy and environmental goals. NREL seeks to better understand the potential effects of climate change on the laboratory--and therefore on its mission--to ensure its ongoing success. Planning today for a changing climate can reduce NREL's risks and improve its resiliency to climate-related vulnerabilities. This report presents a vulnerability assessment for NREL. The assessment was conducted in fall 2014 to identify NREL's climate change vulnerabilities andmore » the aspects of NREL's mission or operations that may be affected by a changing climate.« less

  9. Thermal Simulation of a Zero Energy Glazed Pavilion in Sofia, Bulgaria. New Strategies for Energy Management by Means of Water Flow Glazing

    NASA Astrophysics Data System (ADS)

    del Ama Gonzalo, Fernando; Hernandez Ramos, Juan A.; Moreno, Belen

    2017-10-01

    The building sector is primarily responsible for a major part of total energy consumption. The European Energy Performance of Buildings Directives (EPBD) emphasized the need to reduce the energy consumption in buildings, and put forward the rationale for developing Near to Zero Energy Buildings (NZEB). Passive and active strategies help architects to minimize the use of active HVAC systems, taking advantage of the available natural resources such as solar radiation, thermal variability and daylight. The building envelope plays a decisive role in passive and active design strategies. The ideal transparent façade would be one with optical properties, such as Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT), that could readily adapt in response to changing climatic conditions or occupant preferences. The aim of this article consists of describing the system to maintain a small glazed pavilion located in Sofia (Bulgaria) at the desired interior temperature over a whole year. The system comprises i) the use of Water Flow Glazing facades (WFG) and Radiant Interior Walls (RIW), ii) the use of free cooling devices along with traditional heat pump connected to photo-voltaic panels and iii) the use of a new Energy Management System that collects data and acts accordingly by controlling all components. The effect of these strategies and the use of active systems, like Water Flow Glazing, are analysed by means of simulating the prototype over one year. Summer and Winter energy management strategies are discussed in order to change the SHGC value of the Water Flow Glazing and thus, reduce the required energy to maintain comfort conditions.

  10. Water-Energy Nexus Challenges & Opportunities in the Arabian Peninsula under Climate Change

    NASA Astrophysics Data System (ADS)

    Flores-Lopez, F.; Yates, D. N.; Galaitsi, S.; Binnington, T.; Dougherty, W.; Vinnaccia, M.; Glavan, J. C.

    2016-12-01

    Demand for water in the GCC countries relies mainly on fossil groundwater resources and desalination. Satisfying water demand requires a great deal of energy as it treats and moves water along the supply chain from sources, through treatment processes, and ultimately to the consumer. Hence, there is an inherent connection between water and energy and with climate change, the links between water and energy are expected to become even stronger. As part of AGEDI's Local, National, and Regional Climate Change Programme, a study of the water-energy nexus of the countries in the Arabian Peninsula was implemented. For water, WEAP models both water demand - and its main drivers - and water supply, simulating policies, priorities and preferences. For energy, LEAP models both energy supply and demand, and is able to capture the impacts of low carbon development strategies. A coupled WEAP-LEAP model was then used to evaluate the future performance of the energy-water system under climate change and policy scenarios. The coupled models required detailed data, which were obtained through literature reviews and consultations with key stakeholders in the region. As part of this process, the outputs of both models were validated for historic periods using existing data The models examined 5 policy scenarios of different futures of resource management to the year 2060. A future under current management practices with current climate and a climate projection based on the RCP8.5; a High Efficiency scenario where each country gradually implements policies to reduce the consumption of water and electricity; a Natural Resource Protection scenario with resource efficiency and phasing out of groundwater extraction and drastic reduction of fossil fuel usage in favor of solar; and an Integrated Policy scenario that integrates the prior two policy scenarios Water demands can mostly be met in any scenario through supply combinations of groundwater, desalination and wastewater reuse, with some

  11. Effects of long-term climate change on global building energy expenditures

    DOE PAGES

    Clarke, Leon; Eom, Jiyong; Marten, Elke Hodson; ...

    2018-01-06

    Our paper explores potential future implications of climate change on building energy expenditures around the globe. Increasing expenditures result from increased electricity use for cooling, and are offset to varying degrees, depending on the region, by decreased energy consumption for heating. WE conducted an analysis using a model of the global buildings sector within the GCAM integrated assessment model. The integrated assessment framework is valuable because it represents socioeconomic and energy system changes that will be important for understanding building energy expenditures in the future. Results indicate that changes in net expenditures are not uniform across the globe. Net expendituresmore » decrease in some regions, such as Canada and Russia, where heating demands currently dominate, and increase the most in areas with less demand for space heating and greater demand for space cooling. We explain these results in terms of the basic drivers that link building energy expenditures to regional climate.« less

  12. Effects of long-term climate change on global building energy expenditures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Leon; Eom, Jiyong; Marten, Elke Hodson

    Our paper explores potential future implications of climate change on building energy expenditures around the globe. Increasing expenditures result from increased electricity use for cooling, and are offset to varying degrees, depending on the region, by decreased energy consumption for heating. WE conducted an analysis using a model of the global buildings sector within the GCAM integrated assessment model. The integrated assessment framework is valuable because it represents socioeconomic and energy system changes that will be important for understanding building energy expenditures in the future. Results indicate that changes in net expenditures are not uniform across the globe. Net expendituresmore » decrease in some regions, such as Canada and Russia, where heating demands currently dominate, and increase the most in areas with less demand for space heating and greater demand for space cooling. We explain these results in terms of the basic drivers that link building energy expenditures to regional climate.« less

  13. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and

  14. 40% Whole-House Energy Savings in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  15. 40% Whole-House Energy Savings in the Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, T. L.; Hefty, M. G.

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  16. Climate Change Resilience Planning at the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Johnson, A.

    2015-12-01

    The Savannah River National Laboratory (SRNL) is developing a site sustainability plan for the Department of Energy's Savannah River Site (SRS) in South Carolina in accordance with Executive Order 13693, which charges each DOE agency with "identifying and addressing projected impacts of climate change" and "calculating the potential cost and risk to mission associated with agency operations". The plan will comprise i) projections of climate change, ii) surveys of site managers to estimate the effects of climate change on site operations, and iii) a determination of adaptive actions. Climate change projections for SRS are obtained from multiple sources, including an online repository of downscaled global climate model (GCM) simulations of future climate and downscaled GCM simulations produced at SRNL. Taken together, we have projected data for temperature, precipitation, humidity, and wind - all variables with a strong influence on site operations. SRNL is working to engage site facility managers and facilitate a "bottom up" approach to climate change resilience planning, where the needs and priorities of stakeholders are addressed throughout the process. We make use of the Vulnerability Assessment Scoring Tool, an Excel-based program designed to accept as input various climate scenarios ('exposure'), the susceptibility of assets to climate change ('sensitivity'), and the ability of these assets to cope with climate change ('adaptive capacity'). These are combined to produce a series of scores that highlight vulnerabilities. Working with site managers, we have selected the most important assets, estimated their expected response to climate change, and prepared a report highlighting the most endangered facilities. Primary risks include increased energy consumption, decreased water availability, increased forest fire danger, natural resource degradation, and compromised outdoor worker safety in a warmer and more humid climate. Results of this study will aid in driving

  17. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  18. An Analysis of Home Energy Score and REM/Rate Energy Simulation Results for Homes in Three Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merket, Noel D

    Energy ratings and scores for homes attempt to give homeowners a understandable metric to compare the energy efficiency of homes. Two rating systems in the marketplace include RESNET's Home Energy Rating System (HERS) and DOE's Home Energy Score (HEScore) and include differing energy calculation methodologies. This report compares the energy predictions from both REM/Rate and Home Energy Score for populations of real homes in three climates and determines some features of homes that lead to the greatest differences between energy predictions.

  19. The Effectiveness of Taiwan Building Energy Regulation under the influence of Future Climate

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Teng; Huang, Kuo-Tsang

    2017-04-01

    Building energy consumption comprises circa 40% of the national annual energy usage in Taiwan, and the majority proportion is attributed to the cooling apparatus usage. As cooling energy is closely related to the outdoor climate, it is expected that the future global climate change would amplify its demand. Considering the building energy regulation criteria are the minimum requirements that the building has to be complied with, this study tried to investigate whether the current building energy regulation in Taiwan, initiated in 2013, would still be capable of maintaining the energy use in the future as today's level. The research adopted EnergyPlus to simulate the annual cooling energy use of several virtual office building cases with the constructed hourly future weather data under future climate change scenarios of RCP45 and RCP85 defined by IPCC. The virtual building cases are generated by a structured orthogonal array with each case is constituted by 10 building design parameters. The results revealed that the building energy consumption based on the current regulation criteria failed to maintain at the same level in the future as oppose to nowadays. By comparing to the current cooling energy usage, it would rise by 13% and 22% in RCP45 and RCP85, respectively, at the end of this century. This research further parametrically studied the potential cooling energy mitigation strategies and proposed effective building envelope design schemes in order to neutralize the future building energy increase.

  20. Two Billion Cars: What it Means for Climate and Energy Policy

    ScienceCinema

    Daniel Sperling

    2017-12-09

    April 13, 2009: Daniel Sperling, director of the Institute of Transportation Studies at UC Davis, presents the next installment of Berkeley Lab's Environmental Energy Technologies Divisions Distinguished Lecture series. He discusses Two Billion Cars and What it Means for Climate and Energy Policy.

  1. Two Billion Cars: What it Means for Climate and Energy Policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Sperling

    2009-04-15

    April 13, 2009: Daniel Sperling, director of the Institute of Transportation Studies at UC Davis, presents the next installment of Berkeley Lab's Environmental Energy Technologies Divisions Distinguished Lecture series. He discusses Two Billion Cars and What it Means for Climate and Energy Policy.

  2. In-School Sustainability Action: Climate Clever Energy Savers

    ERIC Educational Resources Information Center

    Buchanan, John; Schuck, Sandy; Aubusson, Peter

    2016-01-01

    The mandate for living sustainably is becoming increasingly urgent. This article reports on the Climate Clever Energy Savers (CCES) Program, a student-centred, problem- and project-based program in New South Wales, Australia, aimed at enabling school students to identify ways of reducing their schools' electricity consumption and costs. As part of…

  3. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    NASA Astrophysics Data System (ADS)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  4. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  5. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  6. High Quality Facade Segmentation Based on Structured Random Forest, Region Proposal Network and Rectangular Fitting

    NASA Astrophysics Data System (ADS)

    Rahmani, K.; Mayer, H.

    2018-05-01

    In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  7. A multi-paradigm framework to assess the impacts of climate change on end-use energy demand.

    PubMed

    Nateghi, Roshanak; Mukherjee, Sayanti

    2017-01-01

    Projecting the long-term trends in energy demand is an increasingly complex endeavor due to the uncertain emerging changes in factors such as climate and policy. The existing energy-economy paradigms used to characterize the long-term trends in the energy sector do not adequately account for climate variability and change. In this paper, we propose a multi-paradigm framework for estimating the climate sensitivity of end-use energy demand that can easily be integrated with the existing energy-economy models. To illustrate the applicability of our proposed framework, we used the energy demand and climate data in the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use demand trends as well as downscaled future climate scenarios to generate probabilistic estimates of the future end-use demand for space cooling, space heating and water heating, at the individual household and building level, in the residential and commercial sectors. Our results indicated that the residential load is much more sensitive to climate variability and change than the commercial load. Moreover, since the largest fraction of the residential energy demand in Indiana is attributed to heating, future warming scenarios could lead to reduced end-use demand due to lower space heating and water heating needs. In the commercial sector, the overall energy demand is expected to increase under the future warming scenarios. This is because the increased cooling load during hotter summer months will likely outpace the reduced heating load during the more temperate winter months.

  8. A multi-paradigm framework to assess the impacts of climate change on end-use energy demand

    PubMed Central

    Nateghi, Roshanak

    2017-01-01

    Projecting the long-term trends in energy demand is an increasingly complex endeavor due to the uncertain emerging changes in factors such as climate and policy. The existing energy-economy paradigms used to characterize the long-term trends in the energy sector do not adequately account for climate variability and change. In this paper, we propose a multi-paradigm framework for estimating the climate sensitivity of end-use energy demand that can easily be integrated with the existing energy-economy models. To illustrate the applicability of our proposed framework, we used the energy demand and climate data in the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use demand trends as well as downscaled future climate scenarios to generate probabilistic estimates of the future end-use demand for space cooling, space heating and water heating, at the individual household and building level, in the residential and commercial sectors. Our results indicated that the residential load is much more sensitive to climate variability and change than the commercial load. Moreover, since the largest fraction of the residential energy demand in Indiana is attributed to heating, future warming scenarios could lead to reduced end-use demand due to lower space heating and water heating needs. In the commercial sector, the overall energy demand is expected to increase under the future warming scenarios. This is because the increased cooling load during hotter summer months will likely outpace the reduced heating load during the more temperate winter months. PMID:29155862

  9. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  10. Common Ground - Kansas Climate and Energy Project Connects with the Heartland

    ScienceCinema

    None

    2018-01-11

    In 2010, Lawrence Berkeley National Laboratory (LBNL) electricity-market, policy and consumer behavior expert Merrian Fuller singled out a small environmental organization in Kansas-- the Climate and Energy Project (CEP)-- as an outstanding example of how you change behavior on energy efficiency and reduce carbon emissions through an apolitical emphasis on heartland values. In the summer of 2011, a team from LBNL, seeking to capture what Fuller had featured in her report Driving Demand for Home Energy Improvement, visited Kansas. Speaking with CEP's Nancy Jackson and Dorothy Barnett, as well as farmers, small business owners, politicians and others, the team produced this video, which shows how and why CEP has become an inspiration to other environmental organizations that are seeking to change behavior where climate-change skepticism abounds.

  11. Climate change impact on wave energy in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  12. Teaching about Climate Change and Energy with Online Materials and Workshops from On the Cutting Edge

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.

    2009-12-01

    Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role

  13. Tooth-to-Tail Greening: Energy and Climate Leadership and Policy Change at the Department of Defense

    DTIC Science & Technology

    2016-10-24

    66 Tooth-to-Tail Greening Energy and Climate Leadership and Policy Change at the Department of Defense Rebecca Pincus Abstract: For decades, the...awareness of climate change emerged at the end of the twentieth century, this environmental concern was added to such longstanding issues as...therefore more likely to effect institutional change . Keywords: climate , energy, carbon footprint, security, military, green fleet, or- ganizational culture

  14. Girltalk: Energy, Climate and Water in the 21ST Century

    NASA Astrophysics Data System (ADS)

    Olson, H. C.; Osborne, V.; Bush, R.; Bauer, S.; Bourgeois, E.; Brownlee, D.; Clark, C.; Ellins, K. K.; Hempel-Medina, D.; Hernandez, A.; Hovorka, S. D.; Olson, J. E.; Romanak, K.; Smyth, R. C.; Tinker, S.; Torres-Verdin, C.; Williams, I. P.

    2011-12-01

    In preparation for Earth Science Week, The University of Texas at Austin, Striker Communications and Ursuline Academy of Dallas partnered on a GirlTalk event ("Energy, Climate and Water in the 21st Century") to create a two-day (Fri-Sat), community science symposium and open house on critical issues surrounding energy, water and climate. On Friday, over 800 high school girls and 100 teachers from Ursuline participated in hands-on activities (led by faculty, researchers and graduate students from UT Austin and professionals from the surrounding Dallas community), films and discussions, plenary sessions and an expert panel discussion. An opening talk by Dr. Hilary Olson on "Energy, Water and Climate in the 21st Century: Critical Issues for the Global Community" began the day. A series of hands-on activities, and science and technology films with discussion followed. Each girl had an individualized, modular schedule for the day, completing four of the over twenty modules offered. During lunch, Dr. Scott Tinker, Director of the Bureau of Economic Geology, presented a compelling talk on "Time, Technology and Transition", and afterwards girls attended another round of hands-on activities in the afternoon. The day ended with a panel discussion where girls could submit questions to the various participants from the day's activities. The exciting experience of a full day of GirlTalk led many high school girls to volunteer for the middle school event on the following morning (Sat.), when 150 middle school girls and their mentors (parents, teachers) attended a community-wide public event to learn about the energy, water and climate nexus. "Breakfast with a Pro" was hosted by the various professionals. Girls and their mentors enjoyed breakfast and discussion about topics and careers in the earth sciences and engineering with presenters, followed by an informal discussion with a panel of professionals. Next, girls and their mentors were each given a pre-assigned individual

  15. Infusing Climate and Energy Literacy Throughout the Curriculum: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    McCaffrey, M. S.

    2012-12-01

    Climate change and human activities, particularly fossil fuel energy consumption-- both related and crosscutting concepts vital to addressing 21st century societal challenges-- are largely missing from traditional science education curriculum and standards. Whether due to deliberate misinformation, efforts to "teach the controversy", lack of teacher training and professional development or availability of engaging resources, students have for decades graduated from high school and even college without learning the basics of how human activities, particularly our reliance on fossil fuels, impact the environment in general and climate system in particular. The Climate Literacy, Energy Literacy and related frameworks and curriculum, as well as the Next Generation Science Standards (NGSS) and other innovative initiatives, provide new tools for educators and learners that hold strong potential for helping infuse these important topics across the curriculum and thereby better prepare society to minimize human impacts on the planet and prepare for changes that are already well underway.

  16. Climatic correlates of tree mortality in water- and energy-limited forests

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  17. Climatic correlates of tree mortality in water- and energy-limited forests.

    PubMed

    Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  18. Zwischen "Fassade" und "wirklicher Absicht": Eine Betrachtung uber die dritte Erziehungsreform in Japan = Between "Facade" and "Real Intent": Observations on Japan's Third Educational Reform.

    ERIC Educational Resources Information Center

    Ito, Toshiko

    1997-01-01

    Asserts that the Japanese educational system consists of the "facade" of ministerially-decreed harmony and the "real intent" of competition. Argues that the balance between the two has been endangered by recent reforms that seek to promote "creativity and diversification." Suggests that policymakers did not analyze…

  19. The underestimated potential of solar energy to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  20. Energy use and climate change improvements of Li/S batteries based on life cycle assessment

    NASA Astrophysics Data System (ADS)

    Arvidsson, Rickard; Janssen, Matty; Svanström, Magdalena; Johansson, Patrik; Sandén, Björn A.

    2018-04-01

    We present a life cycle assessment (LCA) study of a lithium/sulfur (Li/S) cell regarding its energy use (in electricity equivalents, kWhel) and climate change (in kg carbon dioxide equivalents, CO2 eq) with the aim of identifying improvement potentials. Possible improvements are illustrated by departing from a base case of Li/S battery design, electricity from coal power, and heat from natural gas. In the base case, energy use is calculated at 580 kWhel kWh-1 and climate change impact at 230 kg CO2 eq kWh-1 of storage capacity. The main contribution to energy use comes from the LiTFSI electrolyte salt production and the main contribution to climate change is electricity use during the cell production stage. By (i) reducing cell production electricity requirement, (ii) sourcing electricity and heat from renewable sources, (iii) improving the specific energy of the Li/S cell, and (iv) switching to carbon black for the cathode, energy use and climate change impact can be reduced by 54 and 93%, respectively. For climate change, our best-case result of 17 kg CO2 eq kWh-1 is of similar magnitude as the best-case literature results for lithium-ion batteries (LIBs). The lithium metal requirement of Li/S batteries and LIBs are also of similar magnitude.

  1. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    NASA Astrophysics Data System (ADS)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  2. Energy conservation in the earth's crust and climate change.

    PubMed

    Mu, Yao; Mu, Xinzhi

    2013-02-01

    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  3. Enabling Responsible Energy Decisions: What People Know, Want to Know, and Need to Know about Climate Change

    NASA Astrophysics Data System (ADS)

    PytlikZillig, L. M.; Tomkins, A. J.; Harrington, J. A.

    2012-12-01

    As part of a broader regional effort focused on climate change education and rural communities, this paper focuses on a specific effort to understand effective approaches to two presumably complementary goals: The goal of increasing knowledge about climate change and climate science in a community, and the goal of having communities use climate change and climate science information when making decisions. In this paper, we explore the argument that people do not need or want to know about climate change, in order to make responsible and sustainable energy decisions. Furthermore, we hypothesize that involvement in making responsible and sustainable energy decisions will increase openness and readiness to process climate science information, and thus increase learning about climate change in subsequent exposures to such information. Support for these hypotheses would suggest that rather than encouraging education to enable action (including engagement in attempts to make responsible decisions), efforts should focus on encouraging actions first and education second. To investigate our hypotheses, we will analyze and report results from efforts to engage residents from a medium-sized Midwestern city to give input on future programs involving sustainable energy use. The engagement process (which will not be complete until after the AGU deadline) involves an online survey and an optional face-to-face discussion with city officials and experts in energy-related areas. The online survey includes brief information about current local energy programs, questions assessing knowledge of climate change, and an open-ended question asking what additional information residents need in order to make good decisions and recommendations concerning the energy programs. To examine support for our hypotheses, we will report (1) relationships between subjective and objective knowledge of climate science and willingness to attend the face-to-face discussion about the city's energy decisions

  4. Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.

    2015-12-01

    This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.

  5. Evaluating Programs That Promote Climate and Energy Education-Meeting Teacher Needs for Online Resources

    NASA Astrophysics Data System (ADS)

    Lynds, S. E.; Buhr, S. M.

    2011-12-01

    The Climate Literacy and Energy Awareness Network (CLEAN) Pathway, is a National Science Digital Library (NSDL) Pathways project that was begun in 2010. The main goal of CLEAN is to generate a reviewed collection of educational resources that are aligned with the Essential Principles of Climate Science (EPCS). Another goal of the project is to support a community that will assist students, teachers, and citizens in climate literacy. A complementary program begun in 2010 is the ICEE (Inspiring Climate Education Excellence) program, which is developing online modules and courses designed around the climate literacy principles for use by teachers and other interested citizens. In these projects, we learn about teacher needs through a variety of evaluation mechanisms. The programs use evaluation to assist in the process of providing easy access to high quality climate and energy learning resources that meet classroom requirements. The internal evaluation of the CLEAN program is multidimensional. At the CLEAN resource review camps, teachers and scientists work together in small groups to assess the value of online resources for use in the classroom. The review camps are evaluated using observation and feedback surveys; the resulting evaluation reports provide information to managers to fine-tune future camps. In this way, a model for effective climate resource development meetings has been refined. Evaluation methods used in ICEE and CLEAN include teacher needs assessment surveys, teacher feedback at professional development opportunities, scientist feedback at resource review workshops, and regular analysis of online usage of resources, forums, and education modules. This paper will review the most successful strategies for evaluating the effectiveness of online climate and energy education resources and their use by educators and the general public.

  6. Angular selective window systems: Assessment of technical potential for energy savings

    DOE PAGES

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; ...

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less

  7. Air, Climate, and Energy Strategic Research Action Plan, 2012 - 2016

    EPA Pesticide Factsheets

    As the U.S. Environmental Protection Agency (EPA) moves forward, it is necessary to more fully understand the interplay between air, climate change, and the changing energy landscape to develop innovative and sustainable solutions to improve air quality

  8. Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia

    NASA Astrophysics Data System (ADS)

    Klavs, G.; Rekis, J.

    2016-12-01

    The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).

  9. The Use of Statistical Downscaling to Project Regional Climate Changes as they Relate to Future Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; O'Steen, L.; Chen, K.; Altinakar, M. S.; Garrett, A.; Aleman, S.; Ramalingam, V.

    2010-12-01

    Global climate change has the potential for profound impacts on society, and poses significant challenges to government and industry in the areas of energy security and sustainability. Given that the ability to exploit energy resources often depends on the climate, the possibility of climate change means we cannot simply assume that the untapped potential of today will still exist in the future. Predictions of future climate are generally based on global climate models (GCMs) which, due to computational limitations, are run at spatial resolutions of hundreds of kilometers. While the results from these models can predict climatic trends averaged over large spatial and temporal scales, their ability to describe the effects of atmospheric phenomena that affect weather on regional to local scales is inadequate. We propose the use of several optimized statistical downscaling techniques that can infer climate change at the local scale from coarse resolution GCM predictions, and apply the results to assess future sustainability for two sources of energy production dependent on adequate water resources: nuclear power (through the dissipation of waste heat from cooling towers, ponds, etc.) and hydroelectric power. All methods will be trained with 20th century data, and applied to data from the years 2040-2049 to get the local-scale changes. Models of cooling tower operation and hydropower potential will then use the downscaled data to predict the possible changes in energy production, and the implications of climate change on plant siting, design, and contribution to the future energy grid can then be examined.

  10. Hemispheric symmetry of the Earth's Energy Balance as a fundamental constraint on the Earth's climate

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Webster, P. J.; OBrien, D. M.

    2013-12-01

    We currently lack a quantitative understanding of how the Earth's energy balance and the poleward energy transport adjust to different forcings that determine climate change. Currently, there are no constraints that guide this understanding. We will demonstrate that the Earth's energy balance exhibits a remarkable symmetry about the equator, and that this symmetry is a necessary condition of a steady state climate. Our analysis points to clouds as the principal agent that highly regulates this symmetry and sets the steady state. The existence of this thermodynamic steady-state constraint on climate and the symmetry required to sustain it leads to important inferences about the synchronous nature of climate changes between hemispheres, offering for example insights on mechanisms that can sustain global ice ages forced by asymmetric hemispheric solar radiation variations or how climate may respond to increases in greenhouse gas concentration. Further inferences regarding cloud effects on climate can also be deduced without resorting to the complex and intricate processes of cloud formation, whose representation continues to challenge the climate modeling community. The constraint suggests cloud feedbacks must be negative buffering the system against change. We will show that this constraint doesn't exist in the current CMIP5 model experiments and the lack of such a constraint suggests there is insufficient buffering in models in response to external forcings

  11. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lee, Xuhui; Xiao, Wei; Liu, Shoudong; Schultz, Natalie; Wang, Yongwei; Zhang, Mi; Zhao, Lei

    2018-06-01

    Lake evaporation is a sensitive indicator of the hydrological response to climate change. Variability in annual lake evaporation has been assumed to be controlled primarily by the incoming surface solar radiation. Here we report simulations with a numerical model of lake surface fluxes, with input data based on a high-emissions climate change scenario (Representative Concentration Pathway 8.5). In our simulations, the global annual lake evaporation increases by 16% by the end of the century, despite little change in incoming solar radiation at the surface. We attribute about half of this projected increase to two effects: periods of ice cover are shorter in a warmer climate and the ratio of sensible to latent heat flux decreases, thus channelling more energy into evaporation. At low latitudes, annual lake evaporation is further enhanced because the lake surface warms more slowly than the air, leading to more long-wave radiation energy available for evaporation. We suggest that an analogous change in the ratio of sensible to latent heat fluxes in the open ocean can help to explain some of the spread among climate models in terms of their sensitivity of precipitation to warming. We conclude that an accurate prediction of the energy balance at the Earth's surface is crucial for evaluating the hydrological response to climate change.

  12. Functional materials for energy-efficient buildings

    NASA Astrophysics Data System (ADS)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  13. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, andmore » end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability

  14. The GLIMPSE project: Exploring strategies for meeting energy, environmental and climate objectives

    EPA Science Inventory

    Many of Chinas cities are struggling with high levels of air pollution. At the same time, Chinese planners are seeking to meet growing demands for energy in a manner that meets climate goals. In this presentation, Dr. Loughlin describes the linkages between energy, the environmen...

  15. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  16. Air, Climate, and Energy Strategic Research Action Plan, 2016 – 2019

    EPA Pesticide Factsheets

    ACE research projects are organized into 5 topics: Climate Impacts, Vulnerability, and Adaptation; Emissions and Measurements; Atmospheric and Integrated Modeling Systems; Protecting Environmental Public Health; and Sustainable Energy and Mitigation

  17. Hourly test reference weather data in the changing climate of Finland for building energy simulations.

    PubMed

    Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim

    2015-09-01

    Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

  18. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    NASA Astrophysics Data System (ADS)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are

  19. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    PubMed

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  20. Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests

    PubMed Central

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118

  1. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    NASA Astrophysics Data System (ADS)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  2. Critical Watersheds: Climate Change, Tipping Points, and Energy-Water Impacts

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Brown, M.; Coon, E.; Linn, R.; McDowell, N. G.; Painter, S. L.; Xu, C.

    2014-12-01

    Climate change, extreme climate events, and climate-induced disturbances will have a substantial and detrimental impact on terrestrial ecosystems. How ecosystems respond to these impacts will, in turn, have a significant effect on the quantity, quality, and timing of water supply for energy security, agriculture, industry, and municipal use. As a community, we lack sufficient quantitative and mechanistic understanding of the complex interplay between climate extremes (e.g., drought, floods), ecosystem dynamics (e.g., vegetation succession), and disruptive events (e.g., wildfire) to assess ecosystem vulnerabilities and to design mitigation strategies that minimize or prevent catastrophic ecosystem impacts. Through a combination of experimental and observational science and modeling, we are developing a unique multi-physics ecohydrologic framework for understanding and quantifying feedbacks between novel climate and extremes, surface and subsurface hydrology, ecosystem dynamics, and disruptive events in critical watersheds. The simulation capability integrates and advances coupled surface-subsurface hydrology from the Advanced Terrestrial Simulator (ATS), dynamic vegetation succession from the Ecosystem Demography (ED) model, and QUICFIRE, a novel wildfire behavior model developed from the FIRETEC platform. These advances are expected to make extensive contributions to the literature and to earth system modeling. The framework is designed to predict, quantify, and mitigate the impacts of climate change on vulnerable watersheds, with a focus on the US Mountain West and the energy-water nexus. This emerging capability is used to identify tipping points in watershed ecosystems, quantify impacts on downstream users, and formally evaluate mitigation efforts including forest (e.g., thinning, prescribed burns) and watershed (e.g., slope stabilization). The framework is being trained, validated, and demonstrated using field observations and remote data collections in the

  3. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    NASA Astrophysics Data System (ADS)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form

  4. Analyzing the effect of the longwave emissivity and solar reflectance of building envelopes on energy-saving in buildings in various climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhiyang; Zhang, Xiong

    A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends ofmore » each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)« less

  5. High-resolution integration of water, energy, and climate models to assess electricity grid vulnerabilities to climate change

    NASA Astrophysics Data System (ADS)

    Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.

    2017-12-01

    The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50

  6. U. S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather

    DTIC Science & Technology

    2013-07-01

    required for enhanced oil recovery, hydraulic fracturing , and refining • Renewable energy resources, particularly hydropower, bioenergy, and...regarding risks, vulnerabilities, and opportunities to build climate-resilient energy systems • Effective coordination mechanisms with federal, state and...oil via hydraulic fracturing faced higher water costs or were denied access to water for 6 weeks or more in several states, including Kansas, Texas

  7. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America.

    PubMed

    McDonald, Robert I; Fargione, Joseph; Kiesecker, Joe; Miller, William M; Powell, Jimmie

    2009-08-26

    Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9-2.8 km(2)/TW hr/yr for nuclear power to 788-1000 km(2)/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km(2) will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km(2) per TW hr of electricity conserved annually and 27.5 km(2) per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets.

  8. A computational framework for supporting environmental-climate-energy decision-making

    EPA Science Inventory

    GLIMPSE is a effort in which the U.S. EPA Office of Research and Development is developing tools to support long-term, coordinated environmental, climate, and energy planning. The purpose of this presentation is to discuss the underlying science questions; provide an overview of ...

  9. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    PubMed

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Air-climate-energy investigations with a state-level Integrated Assessment Model: GCAM-USA

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals.  GCAM includes technology-rich representations of the energy, transportatio...

  11. Toward Quantitative Analysis of Water-Energy-Urban-Climate Nexus for Urban Adaptation Planning

    EPA Science Inventory

    Water and energy are two interwoven factors affecting environmental management and urban development planning. Meanwhile, rapid urban development and a changing climate exacerbate the magnitude and effects of water-energy interactions in what nexus defines. These factors and th...

  12. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most

  13. Integrating U.S. climate, energy, and transportation policies : RAND workshops address challenges and potential solutions

    DOT National Transportation Integrated Search

    2009-01-01

    There is growing consensus among policymakers that bold government action is needed : to mitigate climate change, particularly through integrated climate, energy, and transportation : policy initiatives. In an effort to share different perspectives o...

  14. Climate, Energy, Water, Land and the Spill-Over Effect (Invited)

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Backus, G.; Bier, A.; Brune, N.; Brown, T. J.

    2013-12-01

    Developing nations incur a greater risk to climate stress than the developed world due to poorly managed natural resources, unreliable infrastructure and brittle governing/economic institutions. When fragile states are stressed these vulnerabilities are often manifest in a 'domino effect' of reduced natural resource production-leading to economic hardship-followed by desperate emigration, social unrest, and humanitarian crises. The impact is not limited to a single nation or region but 'spills over' to adjoining areas with even broader impact on global markets and security. Toward this problem we are developing a model of climate aggravated spill-over that couples social, economic, infrastructure and resource dynamics and constraints. The model integrates system dynamics and agent based simulation to identify regions vulnerable to the spill-over effect and to explore potential mitigating and/or adaptive measures. At the heart of the analysis is human migration which is modeled by combining aspects of the Protection Motivation Theory and Theory of Planned Behavior within the mechanistic framework of Fick's first law of diffusion. Agents in the current model are distinguished at the country level by country of residence, country of origin, gender, education/skill, age, and rural/urban roots. The model of the environment in which the agents operate endogenously simulates economy, labor, population, disease, violence, energy, water, and food sectors. Various climate scenarios distinguished by differences in temperature, precipitation and extreme events, are simulated over a 50 year time horizon. Results allow exploration of the nexus between climate change, resource provisioning, especially energy, water and land, and the resultant adaptive response of the impacted population. Current modeling efforts are focused on the developing nations of West Africa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly

  15. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    NASA Astrophysics Data System (ADS)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  16. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Thomas D.; Cort, Katherine A.

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN modelmore » calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.« less

  17. The Climate Literacy and Energy Awareness Network (clean) Pathway: Integrating Science and Solutions

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; McCaffrey, M. S.; Buhr, S.; Manduca, C. A.; Fox, S.; Niepold, F.; Gold, A. U.

    2010-12-01

    Changes in the climate system are underway, largely due to human impacts, and it is essential that citizens understand what these changes are, what is causing them, and the potential implications in order for them to make responsible decisions for themselves, their communities and society. The Climate Literacy Network (CLN) comprised of a broad spectrum of ~200 stakeholders, has virtual meetings weekly (since January 2008) to provide a forum to share information and leverage efforts to address the complex issues involved in making climate and energy literacy real in formal and informal educational contexts as well as for all citizens. The discussions of the CLN have led to 1) coordinated efforts to support the implementation of the Climate Literacy Essential Principles of Climate Science (CLEP, http://www.climatescience.gov/Library/Literacy/), 2) the establishment of the CLEAN Pathway collection (http://cleanet.org) of reviewed resources that directly support the CLEP, and 3) the development of a model for CLEAN-Regional Networks that facilitate increasing climate and energy literacy at the local level. In this presentation we will describe the ongoing activities of the CLN and provide an overview of the new and recently launched CLEAN Pathway collection. The CLEAN Pathway is a project to steward an on-line collection of digital teaching materials that directly address the CLEP as well as a set of energy awareness principles. All teaching materials are aligned with the NAAEE Guidelines for Excellence in Environmental Education, the AAAS Project 2061 Benchmarks for Science Literacy, and the National Science Education Standards. With a goal of vetting ~500 educational materials at the 6-16 grade levels, we have just completed our first round of identifying, reviewing and annotating ~100 excellent teaching activities. We will demonstrate the current capabilities of the CLEAN Pathway portal, describe plans for additional functionality, and provide a vision for others

  18. On the Edge: the Impact of Climate Change, Climate Extremes, and Climate-driven Disturbances on the Food-Energy-Water Nexus in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; McDowell, N. G.; Tidwell, V. C.; Xu, C.; Solander, K.; Jonko, A. K.; Wilson, C. J.; Middleton, R. S.

    2016-12-01

    The Colorado River Basin (CRB) is a critical watershed in terms of vulnerability to climate change and supporting the food-energy-water nexus. Climate-driven disturbances in the CRB—including wildfire, drought, and pests—threaten the watershed's ability to reliably support a wide array of ecosystem services while meeting the interrelated demands of the food-energy-water nexus. Our work illustrates future changes for upper Colorado River headwater basins using the Variable Infiltration Capacity hydrologic model driven by downscaled CMIP5 global climate data coupled with pseudo-dynamic vegetation shifts associated with changing fire and drought conditions. We examine future simulated streamflow within the context of an operational model framework to consider the impacts on water operators and managers who rely upon the timely and continual delivery of streamflow. We focus on results for a large case study basin within the CRB—the San Juan River—showing future scenarios where this ecosystem is pushed towards the extremes. Our findings illustrate that landscape change in the CRB cause delayed snowmelt and increased evapotranspiration from shrublands, which leads to increases in the frequency and magnitude of both droughts and floods within disturbed systems. By 2080, coupled climate and landscape change produces a dramatically altered hydrograph resulting in larger peak flows, reduced lower flows, and lower overall streamflow. Operationally, this results in increased future water delivery challenges and lower reservoir storages driven by changes in the headwater basins. Ultimately, our work shows that the already-stressed CRB ecosystem could, in the future, be pushed over a tipping point, significantly impacting the basin's ability to reliably supply water for food, energy, and urban uses.

  19. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario

    PubMed Central

    Gross, Markus; Magar, Vanesa

    2016-01-01

    provide some guidance for wind power developers and policy makers to prepare and adapt for climate change impacts on wind energy production. Although offshore locations around Mexico were used as a case study, the dataset is global and hence the methodology presented can be readily applied at any desired location. PMID:27788208

  20. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario.

    PubMed

    Gross, Markus; Magar, Vanesa

    2016-01-01

    some guidance for wind power developers and policy makers to prepare and adapt for climate change impacts on wind energy production. Although offshore locations around Mexico were used as a case study, the dataset is global and hence the methodology presented can be readily applied at any desired location.

  1. Environmental Technology Verification Report: Climate Energy freewatt™ Micro-Combined Heat and Power System

    EPA Science Inventory

    The EPA GHG Center collaborated with the New York State Energy Research and Development Authority (NYSERDA) to evaluate the performance of the Climate Energy freewatt Micro-Combined Heat and Power System. The system is a reciprocating internal combustion (IC) engine distributed e...

  2. Energy Sprawl or Energy Efficiency: Climate Policy Impacts on Natural Habitat for the United States of America

    PubMed Central

    McDonald, Robert I.; Fargione, Joseph; Kiesecker, Joe; Miller, William M.; Powell, Jimmie

    2009-01-01

    Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9–2.8 km2/TW hr/yr for nuclear power to 788–1000 km2/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km2 will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km2 per TW hr of electricity conserved annually and 27.5 km2 per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets. PMID:19707570

  3. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  4. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  5. Climate, Land-, Energy-, Water-use simulations (CLEWs) in Mauritius - an integrated optimisation approach

    NASA Astrophysics Data System (ADS)

    Alfstad, Thomas; Howells, Mark; Rogner, Holger; Ramos, Eunice; Zepeda, Eduardo

    2016-04-01

    The Climate, Land, Energy and Water (CLEW) framework is a set of methodologies for integrated assessment of resource systems. It was developed to provide a means to simultaneously address matters pertaining to energy, water and food security. This is done while both considering the impact that the utilization of these resources have on our climate, as well as how our ability to continue using these resources could be impacted by climate change. CLEW is being applied in Mauritius to provide policy relevant analysis for sustainable development. The work aims to explore the interplay among the different elements of a national sustainable development strategy. A driving motivation is to address issues pertaining to policy cohesion, by exploring cross-sectoral impacts of individual policies and measures. The analysis explores how policies and actions intended to promote sustainability, have ramifications beyond the sector of the economy where it is applied. A primary concern is to ensure that efforts undertaken in pursuit of one policy goal do not inadvertently compromise progress towards attaining goals in other areas. Conversely there may be instances where an action has multiple benefits across various areas. Identifying such trade-offs and synergies can provide additional insights into development policy and support formulation of robust sustainable development strategies. The agreed sustainable development goals clearly illustrate the multi-faceted and multi-dimensional nature of the development challenge, with many overlapping and interlinked concerns. This work focuses on the link between food, energy, water and climate policy, which has shown to be particularly closely intertwined. In Mauritius, the highly interlinked and interdependent nature of the energy and sugar industries for example, highlights the need for coherent and integrated assessment of the role of these sectors in support of sustainable development in the country. Promoting energy self

  6. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  7. Energy and Global Climate Change: The Road from Paris to Denver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Jeffrey

    This presentation provides an overview of the National Renewable Energy Laboratory; a snapshot of U.S. power sector transformation; a brief history of climate negotiations; an overview of the Paris Agreement; and what the Paris Agreement means for Colorado and beyond.

  8. Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frozyna, K.; Badger, L.

    2013-04-01

    This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls,more » and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.« less

  9. Climate Change, the Energy-water-food Nexus, and the "New" Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Bennett, K. E.; Solander, K.; Hopkins, E.

    2017-12-01

    Climate change, extremes, and climate-driven disturbances are anticipated to have substantial impacts on regional water resources, particularly in the western and southwestern United States. These unprecedented conditions—a no-analog future—will result in challenges to adaptation, mitigation, and resilience planning for the energy-water-food nexus. We have analyzed the impact of climate change on Colorado River flows for multiple climate and disturbance scenarios: 12 global climate models and two CO2 emission scenarios (RCP 4.5 and RCP 8.5) from the Intergovernmental Panel on Climate Change's Coupled Model Intercomparison Study, version 5, and multiple climate-driven forest disturbance scenarios including temperature-drought vegetation mortality and insect infestations. Results indicate a wide range of potential streamflow projections and the potential emergence of a "new" Colorado River basin. Overall, annual streamflow tends to increase under the majority of modeled scenarios due to projected increases in precipitation across the basin, though a significant number of scenarios indicate moderate and potentially substantial reductions in water availability. However, all scenarios indicate severe changes in seasonality of flows and strong variability across headwater systems. This leads to increased fall and winter streamflow, strong reductions in spring and summer flows, and a shift towards earlier snowmelt timing. These impacts are further exacerbated in headwater systems, which are key to driving Colorado River streamflow and hence water supply for both internal and external basin needs. These results shed a new and important slant on the Colorado River basin, where an emergent streamflow pattern may result in difficulties to adjust to these new regimes, resulting in increased stress to the energy-water-food nexus.

  10. Climate Change Projection for the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Werth, D. W.

    2014-12-01

    As per recent Department of Energy (DOE) sustainability requirements, the Savannah River National Laboratory (SRNL) is developing a climate projection for the DOE's Savannah River Site (SRS) near Aiken, SC. This will comprise data from both a statistical and a dynamic downscaling process, each interpolated to the SRS. We require variables most relevant to operational activities at the site (such as the US Forest Service's forest management program), and select temperature, precipitation, wind, and humidity as being most relevant to energy and water resource requirements, fire and forest ecology, and facility and worker safety. We then develop projections of the means and extremes of these variables, estimate the effect on site operations, and develop long-term mitigation strategies. For example, given that outdoor work while wearing protective gear is a daily facet of site operations, heat stress is of primary importance to work planning, and we use the downscaled data to estimate changes in the occurrence of high temperatures. For the statistical downscaling, we use global climate model (GCM) data from the Climate Model Intercomparison Project, version 5 (CMIP-5), which was used in the IPCC Fifth Assessment Report (AR5). GCM data from five research groups was selected, and two climate change scenarios - RCP 4.5 and RCP 8.5 - are used with observed data from site instruments and other databases to produce the downscaled projections. We apply a quantile regression downscaling method, which involves the use of the observed cumulative distribution function to correct that of the GCM. This produces a downscaled projection with an interannual variability closer to that of the observed data and allows for more extreme values in the projections, which are often absent in GCM data. The statistically downscaled data is complemented with dynamically downscaled data from the NARCCAP database, which comprises output from regional climate models forced with GCM output from the

  11. Using Games To Explore The Nexus of Climate, Energy, and Water

    NASA Astrophysics Data System (ADS)

    Hall, M. K.; Mayhew, M. A.

    2012-12-01

    We have developed a set of card games to teach teens and adults about the interdependency of energy demand, water consumption, and climate change, which we term the nexus of energy, water, and climate. The latest game challenges players to construct arguments around issues related to the nexus, such as the benefits of carbon sequestration or the negative impacts of consuming corn biofuel. The game has been through several rounds of playtesting, both with teens and adults, and in formal and informal learning environments, such as our ongoing teen Cafe Scientifique program (www.cafenm.org). The card game consists of two types of cards, "Challenge" and "Policy." Each round, one player acting as the Judge draws a Challenge card and reads the adjective—for example, dangerous, clean, catastrophic, awesome— and its definition displayed on the card. The other players hold Policy cards containing 3 or 4 facts related to nexus concepts. For example, the Algae bio-diesel fuel policy card contains the fact, "Algae can produce 100 times more fuel per acre that any other biofuel crop". A fact on the Tight shale gas policy card reads, "Chemicals used in 'fracking' can contaminate water supplies." Using the facts on a single Policy card, each player constructs an argument aligned with the adjective—and presents it to the Judge. This requires players to synthesize the given facts and any prior knowledge about the topic into a coherent argument. As players make their arguments, everyone is challenged to think about the nuances and implications of the myriad choices we have in balancing the needs for water and energy resources with the challenge of minimizing climate change. The Judge decides which player makes the policy argument that best aligns with the adjective, and that player wins the round. Players take turns being the Judge. The first player to win three rounds wins the game. The game has been well received by both teen and adult audiences. It is a highly social game

  12. Energy and Water Resources in a Changing Climate: Towards Adaptation Options in Colorado and the Western US

    NASA Astrophysics Data System (ADS)

    Averyt, K. B.; Pulwarty, R. S.; Udall, B.

    2008-12-01

    Greater energy demands are driving development of domestic energy resources and advancement of fossil- fuel independent energy technologies. However, water is necessary for most energy production. Greenhouse gas emissions are increasing global temperatures, impacting the quality and quantity of water resources. Warming temperatures are also altering the timing and nature of energy demand. As water is necessary for energy production, and energy is needed for the water supply, climate change will further exacerbate the interplay between these two sectors and create additional challenges in adaptive planning. The geology of Colorado is such that it has both carbon (oil shale, coal, coal-bed methane) and non-fossil-fuel (geothermal, winds) energy resources. There is an increasing need to develop these resources, but the impact on the region's water supply is often neglected, as is the energy required to support the water infrastructure. The Western US is prone to drought, and Colorado has experienced periodic drought throughout the observational record. Temperatures in Colorado have risen by about 1°C in the past 30 years, and are projected to increase an additional 2°C by 2050. Precipitation is highly variable and will continue to be in the future, but more severe and persistent droughts are anticipated. To investigate the impact of climate change on the energy-water nexus, in order to evaluate the information necessary to undertake more comprehensive regional impact and adaptation studies, the energy intensity of Colorado's water systems, and water usage by energy sector, are presented. The interdependence of water and energy necessitates that scientists work with decision-makers and consider both sectors when developing climate adaptation strategies. This work represents initial efforts towards a more comprehensive, collaborative analysis of climate change impacts on water and energy supply in support of adaptive management approaches in the Western US.

  13. The Policy Trade-off Between Energy Security and Climate Change in the GCC States

    NASA Astrophysics Data System (ADS)

    Shahbek, Shaikha Ali

    Developing policies for energy security and climate change simultaneously can be very challenging as there is a trade-off. This research project strives to analyze the policies regarding the same that should be developed in the Gulf Co-operation Council (GCC) States which are; Saudi Arabia, Kuwait, Qatar, United Arab Emirates, Bahrain and Oman. Energy security is important in these countries because it is the prominent sector of their economies. Yet, the environment is being negatively impacted because of the energy production. There has been lot of international pressure on the GCC to divert its production and move towards clean energy production. It needs more research and development, as well as better economic diversification to maintain and improve the economic growth. Along with the literature review that has been used to study the cases and impacts of the GCC states, six in-depth interviews were conducted with professors, scholars and specialists in the environment and natural science fields to discuss about the GCC's situation. It has been alluded that the GCC states cannot be held solely responsible about the climate change because they are not the only energy producing nations in the world. Based on OPEC, there are 14 countries including the United States and China that also have prominent energy sectors. They should also be held accountable for the causes of environmental and climate change. This research provides recommendations for the GCC states to follow and apply in order to move forward with clean energy production, economic diversification and develop better policies.

  14. Renewable Energies and Enhanced Energy Efficiencies: Mitigation/Adaptation Measures to Climate Change Impacts on Cyprus and in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lange, Manfred

    2010-05-01

    The Eastern Mediterranean in general and Cyprus in particular are considered "hot spots" of future climate change. This will become manifest through an increase in the number and duration of drought events and extended hot-spells. The need to cope with the impacts of climate change will lead to enhanced requirements for cooling of private and public housing and growing demands for potable water derived from seawater desalination. This in turn will cause increasing pressures on electricity production and will result in additional strain on the energy sector in the region. For Cyprus, the current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of petroleum products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to about 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. The current building stock on Cyprus lacks basic measures for energy efficiency. This is particularly noteworthy with regard to insufficient insulation of buildings, which causes significant amounts of energy to be expanded for cooling. In light of these facts, an increased use of renewable energies and measures to enhance energy efficiencies in the built environment constitute important elements of a stringent and effective mitigation/adaptation strategy to climate change. The Eastern Mediterranean is among the most suitable location for the utilization of solar energy in Europe. A global direct normal irradiance of more than 1 800 kWh/m2 on Cyprus offers a renewable electricity potential of app. 20 to 23 TWh/yr when concentrated solar power (CSP) technology is employed. With regard to enhanced energy efficiency

  15. An energy and cost analysis of residential heat pumps in northern climates

    NASA Astrophysics Data System (ADS)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  16. A flexible tool for diagnosing water, energy, and entropy budgets in climate models

    NASA Astrophysics Data System (ADS)

    Lembo, Valerio; Lucarini, Valerio

    2017-04-01

    We have developed a new flexible software for studying the global energy budget, the hydrological cycle, and the material entropy production of global climate models. The program receives as input radiative, latent and sensible energy fluxes, with the requirement that the variable names are in agreement with the Climate and Forecast (CF) conventions for the production of NetCDF datasets. Annual mean maps, meridional sections and time series are computed by means of Climate Data Operators (CDO) collection of command line operators developed at Max-Planck Institute for Meteorology (MPI-M). If a land-sea mask is provided, the program also computes the required quantities separately on the continents and oceans. Depending on the user's choice, the program also calls the MATLAB software to compute meridional heat transports and location and intensities of the peaks in the two hemispheres. We are currently planning to adapt the program in order to be included in the Earth System Model eValuation Tool (ESMValTool) community diagnostics.

  17. Current-day matters of administration and law in the field of high-rise construction

    NASA Astrophysics Data System (ADS)

    Voskresenskaya, Elena; Snetkov, Vitaly; Tebryaev, Alexander

    2018-03-01

    The article touches upon main reasons for high-rise construction: increase in energy consumption and limited availability of site in the big cities of Russia. Increase in energy consumption is related with construction, transportation and applying of ventilation and air conditioning systems. Nowadays, there are developed a lot of design and engineer solutions, that include autonomous systems as well as passive methods with low energy consumption rate, which are interrelated with local climate conditions. Certain architectural solutions contribute to energy consumption decrease: building orientation with respect to the cardinal directions, taking into account the prevailing cold wind directions, maximum glazing of the southern facades and minimum glazing of the northern ones, what plays a big role in hard climate conditions. Limited availability of site for construction in the big cities resulted in rapid development of the high-rise construction, which today prevails in terms of quantitative indicators of civil engineering.

  18. Steady-state solutions of a diffusive energy-balance climate model and their stability

    NASA Technical Reports Server (NTRS)

    Ghil, M.

    1975-01-01

    A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.

  19. NCSE's 15th National Conference and Global Forum on Science, Policy, and the Environment: Energy and Climate Change, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Ellen

    The National Council for Science and the Environment (NCSE) held its 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change, on January 27-29, 2015, at the Hyatt Regency Hotel, Crystal City, VA. The National Conference: Energy and Climate Change developed and advanced partnerships that focused on transitioning the world to a new “low carbon” and “climate resilient” energy system. It emphasized advancing research and technology, putting ideas into action, and moving forward on policy and practice. More than 900 participants from the scientific research, policy and governance, business and civil society, and educationmore » communities attended. The Conference was organized around four themes: (1) a new energy system (including energy infrastructure, technologies and efficiencies, changes in distribution of energy sources, and low carbon transportation); (2) energy, climate and sustainable development; (3) financing and markets; and (4) achieving progress (including ideas for the 21st Conference of Parties to the United Nations Framework Convention on Climate Change). The program featured six keynote presentations, six plenary sessions, 41 symposia and 20 workshops. Conference participants were involved in the 20 workshops, each on a specific energy and climate-related issue. The workshops were designed as interactive sessions, with each workshop generating 10-12 recommendations on the topic. The recommendations were prepared in the final conference report, were disseminated nationally, and continue to be available for public use. The conference also featured an exhibition and poster sessions. The National Conference on Energy and Climate Change addressed a wide range of issues specific to the U.S. Department of Energy’s programs; involved DOE’s scientists and program managers in sessions and workshops; and reached out to a broad array of DOE stakeholders.« less

  20. Administration proposals on climate change and energy independence : hearings before the Committee on Transportation and Infrastructure

    DOT National Transportation Integrated Search

    2007-05-01

    This memorandum briefly summarizes climate change and its potential impacts. It then focuses in more detail on administration proposals and policies regarding climate change and energy independence. It will also look at legislative branch proposals a...

  1. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    PubMed

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  2. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  3. Energy technologies evaluated against climate targets using a cost and carbon trade-off curve.

    PubMed

    Trancik, Jessika E; Cross-Call, Daniel

    2013-06-18

    Over the next few decades, severe cuts in emissions from energy will be required to meet global climate-change mitigation goals. These emission reductions imply a major shift toward low-carbon energy technologies, and the economic cost and technical feasibility of mitigation are therefore highly dependent upon the future performance of energy technologies. However, existing models do not readily translate into quantitative targets against which we can judge the dynamic performance of technologies. Here, we present a simple, new model for evaluating energy-supply technologies and their improvement trajectories against climate-change mitigation goals. We define a target for technology performance in terms of the carbon intensity of energy, consistent with emission reduction goals, and show how the target depends upon energy demand levels. Because the cost of energy determines the level of adoption, we then compare supply technologies to one another and to this target based on their position on a cost and carbon trade-off curve and how the position changes over time. Applying the model to U.S. electricity, we show that the target for carbon intensity will approach zero by midcentury for commonly cited emission reduction goals, even under a high demand-side efficiency scenario. For Chinese electricity, the carbon intensity target is relaxed and less certain because of lesser emission reductions and greater variability in energy demand projections. Examining a century-long database on changes in the cost-carbon space, we find that the magnitude of changes in cost and carbon intensity that are required to meet future performance targets is not unprecedented, providing some evidence that these targets are within engineering reach. The cost and carbon trade-off curve can be used to evaluate the dynamic performance of existing and new technologies against climate-change mitigation goals.

  4. The Precession Index and a Nonlinear Energy Balance Climate Model

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  5. Teaching to the Next Generation Science Standards with Energy, Climate, and Water Focused Games

    NASA Astrophysics Data System (ADS)

    Mayhew, M. A.; Hall, M.; Civjan, N.

    2015-12-01

    We produced two fun-to-play card games with the theme, The Nexus of Energy, Water, and Climate, that directly support teaching to the NGSS. In the games, players come to understand how demand for energy, water use, and climate change are tightly intertwined. Analysis by scientists from the national laboratories ensured that the games are reflect current data and research. The games have been tested with high school and informal science educators and their students and have received a formal evaluation. The games website http://isenm.org/games-for-learning shows how the games align with the NGSS, the Common Core, and the NRC's Strands of Science Learning. It also contains an extensive collection of accessible articles on the nexus to support use of the games in instruction. Thirst for Power is a challenging resource management game. Players, acting as governors of regions, compete to be the first to meet their citizens' energy needs. A governor can choose from a variety of carbon-based or renewable energy sources, but each source uses water and has an environmental—including climate change—impact. Energy needs must be met using only the water resources allocated to the region and without exceeding the environmental impact limit. "ACTION" cards alter game play and increase competition. Challenge and Persuade is a game of scientific argumentation, using evidence on nexus-related fact cards. Players must evaluate information, develop fact-based arguments, and communicate their findings. One card deck contains a set of adjectives, a second a series of fact cards. Players use their fact cards to make the best argument that aligns with an adjective selected by the "Judge". Players take turns being the "Judge," who determines who made the best argument. The games particularly align with NGSS elements: Connections to Engineering, Technology, and Application of Science. Players come to understand the science and engineering behind many energy sources and their impacts

  6. Office-like Test Chambers to Measure Cool Roof Energy Savings in Four Indian Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Rathish; B, Sasank; T, Rajappa

    Selecting a high albedo (solar reflectance) waterproofing layer on the top of a roof helps lower the roof’s surface temperature and reduce the air conditioning energy consumption in the top floor of a building. The annual energy savings depend on factors including weather, internal loads, and building operation schedule. To demonstrate the energy saving potential of high albedo roofs, an apparatus consisting of two nearly identical test chambers (A and B) has been built in four Indian climates: Chennai (hot & humid), Bangalore (temperate), Jhagadia (Hot & dry) and Delhi (composite). Each chamber has well-insulated walls to mimic the coremore » of an office building. Both chambers have the same construction, equipment, and operating schedule, differing only in roof surface. The reinforced cement concrete roof of Chamber A is surfaced with a low-albedo cement layer, while that of Chamber B is surfaced with a high-albedo water proof membrane (change in solar reflectance of 0.28). The experiment will be carried out for one year to explore seasonal variations in energy savings. Initial results in the month of July (post summer) shows that savings from high albedo roof ranges from 0.04 kWh/m2/day in temperate climates, to 0.08 kWh/m2/day in hot & dry climate.« less

  7. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  8. Application of an Integrated Assessment Model with state-level resolution for examining strategies for addressing air, climate and energy goals

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals. GCAM includes technology-rich representations of the energy, transportati...

  9. Optimization of Domestic-Size Renewable Energy System Designs Suitable for Cold Climate Regions

    NASA Astrophysics Data System (ADS)

    Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru

    Five different kinds of domestic-size renewable energy system configurations for very cold climate regions were investigated. From detailed numerical modeling and system simulations, it was found that the consumption of fuel oil for the auxiliary boiler in residential-type households can almost be eliminated with a renewable energy system that incorporates photovoltaic panel arrays for electricity generation and two storage tanks: a well-insulated electric water storage tank that services the hot water loads, and a compact boiler/geothermal heat pump tank for room heating during very cold seasons. A reduction of Greenhouse Gas Emissions (GHG) of about 28% was achieved for this system compared to an equivalent conventional system. The near elimination of the use of fuel oil in this system makes it very promising for very cold climate regions in terms of energy savings because the running cost is not so dependent on the unstable nature of global oil prices.

  10. Dynamic modeling of potentially conflicting energy reduction strategies for residential structures in semi-arid climates.

    PubMed

    Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John

    2012-04-30

    Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.

  11. Defining climate change scenario characteristics with a phase space of cumulative primary energy and carbon intensity

    NASA Astrophysics Data System (ADS)

    Ritchie, Justin; Dowlatabadi, Hadi

    2018-02-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.

  12. Integrating solar energy and climate research into science education

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Hamilton, James; Ligon, Sam; Mahar, Ann Marie

    2016-01-01

    This paper analyzes multi-year records of solar flux and climate data from two solar power sites in Vermont. We show the inter-annual differences of temperature, wind, panel solar flux, electrical power production, and cloud cover. Power production has a linear relation to a dimensionless measure of the transmission of sunlight through the cloud field. The difference between panel and air temperatures reaches 24°C with high solar flux and low wind speed. High panel temperatures that occur in summer with low wind speeds and clear skies can reduce power production by as much as 13%. The intercomparison of two sites 63 km apart shows that while temperature is highly correlated on daily (R2=0.98) and hourly (R2=0.94) timescales, the correlation of panel solar flux drops markedly from daily (R2=0.86) to hourly (R2=0.63) timescales. Minimum temperatures change little with cloud cover, but the diurnal temperature range shows a nearly linear increase with falling cloud cover to 16°C under nearly clear skies, similar to results from the Canadian Prairies. The availability of these new solar and climate datasets allows local student groups, a Rutland High School team here, to explore the coupled relationships between climate, clouds, and renewable power production. As our society makes major changes in our energy infrastructure in response to climate change, it is important that we accelerate the technical education of high school students using real-world data.

  13. Beaufort Sea Methane Hydrate Exploration: Energy and Climate Change

    DTIC Science & Technology

    2011-05-27

    2 Diesel Engine /Shaft 6,000 hp Continuous 1 Gas Turbine/Shaft 20,000 hp Continuous 25,000 hp demand boost 16 APPENDIX 2 : Science team and...Archive (3 ml) ICP, 3 ml total alkalinity (1 ml) nutrients (7 ml) cations Ca , Mg, Na, K, Sr ( 2 ml) δ 18 O (1ml) 26 APPENDIX 7: Porewater...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --11-9330 Beaufort Sea Methane Hydrate Exploration: Energy and Climate Change May 27

  14. California's 2050 travel demand : anticipating an era of climate change and energy constraints.

    DOT National Transportation Integrated Search

    2008-05-30

    The long-term context for Californias transportation systems is one of significant transformation. Neither business as usual or slow incremental change are likely to represent the future because of climate change mitigation and energy supply...

  15. Energy-Water-Land-Climate Nexus: Modeling Impacts from the Asset to Regional Scale

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Bennett, K. E.; Middleton, R. S.; Behery, S.; Macknick, J.; Corning-Padilla, A.; Brinkman, G.; Meng, M.

    2016-12-01

    A critical challenge for the energy-water-land nexus is understanding and modeling the connection between the natural system—including changes in climate, land use/cover, and streamflow—and the engineered system including water for energy, agriculture, and society. Equally important is understanding the linkage across scales; that is, how impacts at the asset level aggregate to influence behavior at the local to regional scale. Toward this need, a case study was conducted featuring multi-sector and multi-scale modeling centered on the San Juan River basin (a watershed that accounts for one-tenth of the Colorado River drainage area). Simulations were driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. The Variable Infiltration Capacity (VIC) hydrologic model was fitted with a custom vegetation mortality sub-model and used to estimate tributary inflows to the San Juan River and estimate reservoir evaporation. San Juan River operations, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries out to the year 2100. Major water demands included two large coal-fired power plants, a local electric utility, river-side irrigation, the Navajo Indian Irrigation Project and instream flows managed for endangered aquatic species. Also tracked were basin exports, including water (downstream flows to the Colorado River and interbasin transfers to the Rio Grande) and interstate electric power transmission. Implications for the larger western electric grid were assessed using PLEXOS, a sub-hourly dispatch, electric production-cost model. Results highlight asset-level interactions at the energy-water-land nexus driven by climate and population dynamics; specifically, growing vulnerabilities to shorted water deliveries. Analyses also explored linkages across geographic scales from the San Juan to the larger

  16. Producing an integrated climate-land-energy-water (CLEW) model for glaciated regions in the developing world

    NASA Astrophysics Data System (ADS)

    Delman, E. M.; Thomas, B. F.; Famiglietti, J. S.

    2013-12-01

    Growing concern over the impact of climate change on global freshwater resources has spurred a demand for practical, basin-specific adaptation tools. The potential for water stress is particularly inflated in the glaciated watersheds of the developing world; widespread and rapid glacial retreat has forced regional resource managers to reconcile the reality of a diminishing supply with an overall increase in demand, while accounting for the underlying geopolitical and cultural context. An integrated approach, such as the development of a Climate-Land-Energy-Water (CLEW) model that examines relationships among climate, land-use, and the energy and water sectors, can be used to assess the impact of different climate change scenarios on basin sustainability and vulnerability. This study will first constrain the hydrologic budget in the Río Santa Watershed of Peru using satellite imagery, historical and contemporary stream discharge data, hydrologic modeling, climatic data analysis, and isotopic and chemical tracers. Ultimately, glacier retreat will be examined at the watershed scale and be used as an input in the CLEW model framework to assess hydrologic budget scenarios and the subsequent impact on regional economic and environmental sustainability.

  17. Modeling the water-energy nexus under changing energy market and climate conditions: a case study in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Anghileri, Daniela; Castelletti, Andrea; Fumagalli, Elena; Giuliani, Matteo

    2015-04-01

    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Many river basins, especially in the Mediterranean region, are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the environment, and the economy, thus emphasizing the need to rethink the way water resources are distributed, managed, and used at the regional and river basin scale. This paradigm shift will be essential to cope with the undergoing global change, characterized by growing water demands and by increasingly uncertain hydrologic regimes. Most of the literature traditionally focused on predicting the impacts of climate change on water resources, while our understanding of the human footprint on the hydrological cycle is limited. For example, changes in the operation of the Alpine hydropower reservoirs induced by socio-economic drivers (e.g., development of renewable energy) have been already observed over the last few years and have produced relevant impacts on multiple water uses due to the altered distribution of water volumes in time and space. Modeling human decisions as well as the links between society and environmental systems becomes key to develop reliable projections on the co-evolution of the coupled human-water systems and deliver robust adaptation strategies. This work contributes a preliminary model-based analysis of the behaviour of hydropower operators under changing energy market and climate conditions. The proposed approach is developed for the San Giacomo-Cancano reservoir system located in the Lake Como catchment. The identification of the current operating policy is supported by input variable selection methods to select the most relevant hydrological and market based drivers to explain the observed release time series. The identified model is then simulated under a set of future scenarios, accounting for both climate and socio-economic change (e

  18. Seasonality of eddy kinetic energy in an eddy permitting global climate model

    NASA Astrophysics Data System (ADS)

    Uchida, Takaya; Abernathey, Ryan; Smith, Shafer

    2017-10-01

    We examine the seasonal cycle of upper-ocean mesoscale turbulence in a high resolution CESM climate simulation. The ocean model component (POP) has 0.1° resolution, mesoscale resolving at low and middle latitudes. Seasonally and regionally resolved wavenumber power spectra are calculated for sea-surface eddy kinetic energy (EKE). Although the interpretation of the spectral slopes in terms of turbulence theory is complicated by the strong presence of dissipation and the narrow inertial range, the EKE spectra consistently show higher power at small scales during winter throughout the ocean. Potential hypotheses for this seasonality are investigated. Diagnostics of baroclinc energy conversion rates and evidence from linear quasigeostrophic stability analysis indicate that seasonally varying mixed-layer instability is responsible for the seasonality in EKE. The ability of this climate model, which is not considered submesoscale resolving, to produce mixed layer instability although damped by dissipation, demonstrates the ubiquity and robustness of this process for modulating upper ocean EKE.

  19. Temperature and velocity conditions of air flow in vertical channel of hinged ventilated facade of a multistory building.

    NASA Astrophysics Data System (ADS)

    Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey

    2018-03-01

    This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).

  20. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or

  1. Common challenge, collaborative response: a roadmap for US-China cooperation on energy and climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2009-01-15

    This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level,more » bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.« less

  2. Measuring the impact of energy consumption and air quality indicators on climate change: evidence from the panel of UNFCC classified countries.

    PubMed

    Ozturk, Ilhan

    2015-10-01

    This study examines the relationship between energy consumption, air pollution, and climate change in the panel of six economically diversified countries classified by the United Nations Framework Convention on Climate Change (UNFCC) as industrialized countries and economies in transition nations by using the panel econometric techniques for the period of 1990-2012. The results of pooled least square regression show that both the energy consumption and air quality indicators have a positive and significant relationship with the climate change, i.e., 1 % increase in energy consumption increases greenhouse gas emissions by 0.124 %, carbon dioxide emissions increase by 0.652 %, methane emissions increase by 0.123 %, and nitrous oxide emissions increase greenhouse gas emissions by 0.105 % age points. The results of fixed-effect regression and random-effect regression confirmed the deteriorating impact of air quality indicators on climate change; however, the results failed to show any significant association between energy consumption and climate change when absorbing country-specific shocks and time-variant shocks during the study time period.

  3. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    NASA Astrophysics Data System (ADS)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  4. The effect of building façade on natural lighting (Case study: Building of phinisi tower UNM)

    NASA Astrophysics Data System (ADS)

    Jamala, Nurul

    2017-04-01

    Utilization of natural lighting is one factor to lower the energy consumption of a building. Model building facade effect on natural light sources that can be absorbed into the building. UNM Phinisi Tower Building is a metaphor for the display of boats phinisi using Hiperbolic paraboloid facade which is futuristic sophistication of the application of science and technology, so that this object that is the focus of research on the effects on the building facade natural lighting. A quantitative research methods using Autodesk Echotech program to determine the value of the building into the natural lighting illuminance, either by using the facade and do not. The aim of research is to determine the percentage utilization of natural light into the building using a building facade. The study concluded the decline percentage in the value of the illuminance after the building using the building facade is 49% -74% and a mean value of 60.3%, so it can be concluded that the building facade effects on the natural lighting.

  5. Public opinion on renewable energy: The nexus of climate, politics, and economy

    NASA Astrophysics Data System (ADS)

    Olson-Hazboun, Shawn K.

    Increased use of renewable energy sources in the generation of electricity is a crucial component of transitioning to a less polluting energy system in the United States. Technologies like solar photovoltaic cells and wind turbines are being deployed at a rapid rate around the country, which means that an increasing portion of the public is becoming aware of renewable energy systems. The construction of these new industrial facilities has resulted in a variety of public reactions, positive and negative. Citizen opposition has been widely observed toward a variety of renewable energy facilities, and citizen groups can influence policy-making at the national, state, and local levels. Further research is needed to understand under what circumstances the public may take oppositional stances. To examine this topic, I analyze public perceptions of renewable energy using three different datasets. First, I used data from a survey conducted in 2014 in five communities in Utah, Wyoming, and Idaho experiencing renewable energy development (n=906). This dataset allowed me to untangle what factors help explain both individual as well as community-level variation in support for renewable energy. Second, I employed nationally representative survey data (n=13, 322) collected from 2008 to 2015 to examine the influence of a number of factors hypothesized to shape individuals' level of support for renewable energy policies including socio-demographic characteristics, political beliefs, belief in anthropogenic climate change, and nearby extractive industry activities. Last, I analyzed discourse about renewable energy in sixty-one semi-structured interviews with individuals representing various community sectors in three energy-producing rural communities in Utah. My research findings, on a whole, suggest that several place-based factors are significant in shaping public opinion about renewable energy, including community experience with renewable energy and local economic reliance on

  6. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  7. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    EPA Science Inventory

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  8. Applying simple water-energy balance frameworks to predict the climate sensitivity of streamflow over the continental United States

    NASA Astrophysics Data System (ADS)

    Renner, M.; Bernhofer, C.

    2012-08-01

    The prediction of climate effects on terrestrial ecosystems and water resources is one of the major research questions in hydrology. Conceptual water-energy balance models can be used to gain a first order estimate of how long-term average streamflow is changing with a change in water and energy supply. A common framework for investigation of this question is based on the Budyko hypothesis, which links hydrological response to aridity. Recently, Renner et al. (2012) introduced the climate change impact hypothesis (CCUW), which is based on the assumption that the total efficiency of the catchment ecosystem to use the available water and energy for actual evapotranspiration remains constant even under climate changes. Here, we confront the climate sensitivity approaches (the Budyko approach of Roderick and Farquhar, 2011, and the CCUW) with data of more than 400 basins distributed over the continental United States. We first estimate the sensitivity of streamflow to changes in precipitation using long-term average data of the period 1949 to 2003. This provides a hydro-climatic status of the respective basins as well as their expected proportional effect to changes in climate. Next, we test the ability of both approaches to predict climate impacts on streamflow by splitting the data into two periods. We (i) analyse the long-term average changes in hydro-climatology and (ii) derive a statistical classification of potential climate and basin change impacts based on the significance of observed changes in runoff, precipitation and potential evapotranspiration. Then we (iii) use the different climate sensitivity methods to predict the change in streamflow given the observed changes in water and energy supply and (iv) evaluate the predictions by (v) using the statistical classification scheme and (vi) a conceptual approach to separate the impacts of changes in climate from basin characteristics change on streamflow. This allows us to evaluate the observed changes in

  9. The resilience of Australian wind energy to climate change

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Kay, Merlinde; Prasad, Abhnil; Pitman, Andy

    2018-02-01

    The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future.

  10. Local Climate and Energy Program Model Design Guide: Enhancing Value and Creating Lasting Programs

    EPA Pesticide Factsheets

    Created for local climate and clean energy program implementers, learn how programs create and deliver value to target audiences and partners, how to raise revenue, and how they can operate cost effectively.

  11. A multi-model study of energy supply investments in Latin America under climate control policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kober, Tom; Falzon, James; van der Zwaan, Bob

    In this article we investigate energy supply investment requirements in Latin America until 2050 through a multi-model approach as jointly applied in the CLIMACAP-LAMP research project. We compare a business-as-usual scenario needed to satisfy anticipated future energy demand with a set of scenarios that aim to significantly reduce CO 2 emissions in the region. We find that more than a doubling of annual investments, in absolute terms, occurs in the business-as-usual scenario between 2010 and 2050, while investments may treble over the same time horizon when climate policies are introduced. However, investment costs as a share of GDP decline overmore » time in the business-as-usual scenario, as well as the climate policy scenarios, due to the fast economic growth in that region. Business-as-usual cumulative investments of 1.4 trillion US$ are anticipated between 2010 and 2050 in energy supply, and increase when additional climate policies are introduced: under a carbon tax of 50 $/tCO 2e in 2020 increasing with a rate of 4% per year, an additional 0.6 trillion US$ (+45%) investment is needed. Climate control measures lead to increased investment in low-carbon electricity technologies, primarily wind, solar, and CCS applied to fossil fuels and biomass. Our analysis suggests that compared to the business-as-usual case an average additional 21 billion US$ per year of electricity supply investments is required in Latin America until 2050 under a climate policy aiming at 2°C climate stabilization. Conversely, there is a disinvestment in fossil fuels. For oil production, a growth from 58 billion US$ to 130 billion US$ annual investment by 2050 is anticipated in a business-as-usual scenario: ambitious climate policy reduces this to 28 billion US$. Finally, mobilizing necessary additional investment capital, in particular for low-carbon technologies, will be a challenge, and suitable frameworks and enabling environments for a scale-up in public and private investment

  12. A multi-model study of energy supply investments in Latin America under climate control policy

    DOE PAGES

    Kober, Tom; Falzon, James; van der Zwaan, Bob; ...

    2016-05-01

    In this article we investigate energy supply investment requirements in Latin America until 2050 through a multi-model approach as jointly applied in the CLIMACAP-LAMP research project. We compare a business-as-usual scenario needed to satisfy anticipated future energy demand with a set of scenarios that aim to significantly reduce CO 2 emissions in the region. We find that more than a doubling of annual investments, in absolute terms, occurs in the business-as-usual scenario between 2010 and 2050, while investments may treble over the same time horizon when climate policies are introduced. However, investment costs as a share of GDP decline overmore » time in the business-as-usual scenario, as well as the climate policy scenarios, due to the fast economic growth in that region. Business-as-usual cumulative investments of 1.4 trillion US$ are anticipated between 2010 and 2050 in energy supply, and increase when additional climate policies are introduced: under a carbon tax of 50 $/tCO 2e in 2020 increasing with a rate of 4% per year, an additional 0.6 trillion US$ (+45%) investment is needed. Climate control measures lead to increased investment in low-carbon electricity technologies, primarily wind, solar, and CCS applied to fossil fuels and biomass. Our analysis suggests that compared to the business-as-usual case an average additional 21 billion US$ per year of electricity supply investments is required in Latin America until 2050 under a climate policy aiming at 2°C climate stabilization. Conversely, there is a disinvestment in fossil fuels. For oil production, a growth from 58 billion US$ to 130 billion US$ annual investment by 2050 is anticipated in a business-as-usual scenario: ambitious climate policy reduces this to 28 billion US$. Finally, mobilizing necessary additional investment capital, in particular for low-carbon technologies, will be a challenge, and suitable frameworks and enabling environments for a scale-up in public and private investment

  13. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and

  14. Use of NARCCAP Model Projections to Develop a Future Typical Meteorological Year and Estimate the Impact of a Changing Climate on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.

    2013-12-01

    Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of

  15. The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades.

    PubMed

    Karsten, U; Lembcke, S; Schumann, R

    2007-03-01

    The effects of artificial ultraviolet radiation [UVR; 8 W m(-2) ultraviolet-A (UVA), 0.4 W m(-2) ultraviolet-B (UVB)] on photosynthetic performance, growth and the capability to synthesise mycosporine-like amino acids (MAAs) was investigated in the aeroterrestrial green algae Stichococcus sp. and Chlorella luteoviridis forming biofilms on building facades, and compared with the responses of two green algae, from soil (Myrmecia incisa) and brackish water (Desmodesmus subspicatus). All species exhibited decreasing quantum efficiency (Fv/Fm) after 1-3 days exposure to UVR. After 8-12 days treatment, however, all aeroterrestrial isolates exhibited full recovery under UVA and UVA/B. In contrast, D. subspicatus showed only 80% recovery after treatment with UVB. While Stichococcus sp. and C. luteoviridis exhibited a broad tolerance in growth under all radiation conditions tested, M. incisa showed a significant decrease in growth rate after exposure to UVA and UVA/B. Similarly D. subspicatus grew with a reduced rate under UVA, but UVA/B led to full inhibition. Using HPLC, an UV-absorbing MAA (324 nm-MAA) was identified in Stichococcus sp. and C. luteoviridis. While M. incisa contained a specific 322 nm-MAA, D. subspicatus lacked any trace of such compounds. UV-exposure experiments indicated that all MAA-containing species are capable of synthesizing and accumulating these compounds, thus supporting their function as an UV-sunscreen. All data well explain the conspicuous ecological success of aeroterrestrial green algae in biofilms on facades. Biosynthesis and accumulation of MAAs under UVR seem to result in a reduced UV-sensitivity of growth and photosynthesis, which consequently may enhance survival in the environmentally harsh habitat.

  16. Climate Change and its Impact on the Energy Sector in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lange, M. A.

    2009-04-01

    It is anticipated that the Eastern Mediterranean and Cyprus will be disproportionally and adversely affected by future climate change. Impacts of these changes include rising summer temperatures and decreasing annual precipitation thereby causing strains on the energy sector in the region. Increases in the frequency of heat waves and tropical nights will lead to rising demands for air-conditioning of private and public housing on the one hand and to growing water scarcity, which will have to be satisfied by additional seawater desalination, on the other, to name just two of the repercussions of climate change on energy demand. Coping with these impacts will require additional electricity generation and will lead to enhanced energy demands. In the case of Cyprus, this will add to an already strained sector of the economy. The current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of hydrocarbon products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to app. 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. Possible remedies, which will be relevant for other countries in the Eastern Mediterranean, as well include energy saving measures in the building sector and the use of renewable energy sources. With regard to sustainable building technologies, new and innovative building materials will have to be introduced. This includes advanced thermochromic materials based on nanotechnology techniques combined with phase change microcapsules, photochromic coatings able to present very high or low solar reflectance, chameleon coatings presenting very low emissivity and time varying

  17. AEERL (AIR AND ENERGY ENGINEERING RESEARCH LABORATORY) RESEARCH PLAN ON THE GLOBAL CLIMATE EMISSIONS ASSESSMENT AND STABILIZATION PROGRAM

    EPA Science Inventory

    The paper discusses the Environmental Protection Agency's (EPA) Air and Energy Engineering Research Laboratory (AEERL) research plan for work in the global climate area. The plan, written for discussion with senior scientists and program managers at EPA's Global Climate Change Re...

  18. Essays on equity-efficiency trade offs in energy and climate policies

    NASA Astrophysics Data System (ADS)

    Sesmero, Juan P.

    Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences

  19. Applying a simple water-energy balance framework to predict the climate sensitivity of streamflow over the continental United States

    NASA Astrophysics Data System (ADS)

    Renner, M.; Bernhofer, C.

    2011-12-01

    The prediction of climate effects on terrestrial ecosystems and water resources is one of the major research questions in hydrology. Conceptual water-energy balance models can be used to gain a first order estimate of how long-term average streamflow is changing with a change in water and energy supply. A common framework for investigation of this question is based on the Budyko hypothesis, which links hydrological response to aridity. Recently, Renner et al. (2011) introduced the CCUW hypothesis, which is based on the assumption that the total efficiency of the catchment ecosystem to use the available water and energy for actual evapotranspiration remains constant even under climate changes. Here, we confront the climate sensitivity approaches (including several versions of Budyko's approach and the CCUW) with data of more than 400 basins distributed over the continental United States. We first map an estimate of the sensitivity of streamflow to changes in precipitation using long-term average data of the period 1949-2003. This provides a hydro-climatic status of the respective basins as well as their expected proportional effect on changes in climate. Next, by splitting the data in two periods, we (i) analyse the long-term average changes in hydro-climatolgy, we (ii) use the different climate sensitivity methods to predict the change in streamflow given the observed changes in water and energy supply and (iii) we apply a quantitative approach to separate the impacts of changes in the long-term average climate from basin characteristics change on streamflow. This allows us to evaluate the observed changes in streamflow as well as to evaluate the impact of basin changes on the validity of climate sensitivity approaches. The apparent increase of streamflow in the majority of basins in the US is dominated by a climate trend towards increased humidity. It is further evident that impacts of changes in basin characteristics appear in parallel with climate changes. There

  20. A Multi-Sector Assessment of the Effects of Climate Change at the Energy-Water-Land Nexus in the US

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Sarofim, M. C.; Martinich, J.

    2017-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  1. Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models

    USGS Publications Warehouse

    Susong, D.; Marks, D.; Garen, D.

    1999-01-01

    Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited

  2. Novel Methods to Explore Building Energy Sensitivity to Climate and Heat Waves Using PNNL's BEND Model

    NASA Astrophysics Data System (ADS)

    Burleyson, C. D.; Voisin, N.; Taylor, T.; Xie, Y.; Kraucunas, I.

    2017-12-01

    The DOE's Pacific Northwest National Laboratory (PNNL) has been developing the Building ENergy Demand (BEND) model to simulate energy usage in residential and commercial buildings responding to changes in weather, climate, population, and building technologies. At its core, BEND is a mechanism to aggregate EnergyPlus simulations of a large number of individual buildings with a diversity of characteristics over large spatial scales. We have completed a series of experiments to explore methods to calibrate the BEND model, measure its ability to capture interannual variability in energy demand due to weather using simulations of two distinct weather years, and understand the sensitivity to the number and location of weather stations used to force the model. The use of weather from "representative cities" reduces computational costs, but often fails to capture spatial heterogeneity that may be important for simulations aimed at understanding how building stocks respond to a changing climate (Fig. 1). We quantify the potential reduction in temperature and load biases from using an increasing number of weather stations across the western U.S., ranging from 8 to roughly 150. Using 8 stations results in an average absolute summertime temperature bias of 4.0°C. The mean absolute bias drops to 1.5°C using all available stations. Temperature biases of this magnitude translate to absolute summertime mean simulated load biases as high as 13.8%. Additionally, using only 8 representative weather stations can lead to a 20-40% bias of peak building loads under heat wave or cold snap conditions, a significant error for capacity expansion planners who may rely on these types of simulations. This analysis suggests that using 4 stations per climate zone may be sufficient for most purposes. Our novel approach, which requires no new EnergyPlus simulations, could be useful to other researchers designing or calibrating aggregate building model simulations - particularly those looking at

  3. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  4. Encouraging climate-friendly behaviors through a community energy challenge: The effects of information, feedback, and shared stories

    NASA Astrophysics Data System (ADS)

    Wolske, Kimberly S.

    Research suggests that changes in household behavior can play a significant role in mitigating climate change. While surveys indicate that many Americans care about climate change and believe something should be done to reduce it, a number of real and perceived barriers prevent them from acting on that concern. This research investigated two strategies to promote engagement in climate-friendly behaviors: (1) providing feedback about the positive impact of participants' energy-saving efforts on their carbon footprint; and (2) sharing stories about other participants' conservation successes. A random sample of residents in a Midwest college town were invited to participate in a month-long community Energy Challenge that asked households to try to reduce their carbon footprint by 2 percent. Participants were randomly assigned to one of three treatment groups: monthly feedback, weekly feedback, and weekly feedback + stories. All participants received a booklet that gave procedural guidance and estimated carbon savings for 34 behaviors related to personal transportation, household energy use, and dietary choices. In addition, all participants were asked to track their efforts in an online log. For participants in the weekly feedback conditions, these logs estimated their total carbon savings for each week of the challenge. Weekly e-mails were sent to all groups to encourage completion of the logs. For participants in the weekly feedback + stories condition, these reminders included anecdotes about other participants' conservation experiences. Overall, the results suggest that the basic format of the Energy Challenge provided a supportive setting for developing new climate-friendly behaviors and increasing existing ones. The majority of participants (78 percent), regardless of treatment condition, achieved the Energy Challenge goal, with a median carbon savings of 6 percent. For some participants, weekly feedback helped reduce perceived barriers related to driving less

  5. Thermal Impacts of Vertical Greenery Systems

    NASA Astrophysics Data System (ADS)

    Safikhani, Tabassom; Abdullah, Aminatuzuhariah Megat; Ossen, Dilshan Remaz; Baharvand, Mohammad

    2014-12-01

    - Using vertical greenery systems to reduce heat transmission is becoming more common in modern architecture. Vertical greenery systems are divided into two main categories; green facades and living walls. This study aims to examine the thermal performance of vertical greenery systems in hot and humid climates. An experimental procedure was used to measure indoor temperature and humidity. These parameters were also measured for the gap between the vertical greenery systems and wall surfaces. Three boxes were used as small-scale rooms. Two boxes were provided with either a living wall or a green facade and one box did not have any greenery (benchmark). Blue Trumpet Vine was used in the vertical greenery systems. The data were recorded over the course of three sunny days in April 2013. An analyses of the results showed that the living wall and green facade reduced indoor temperature up to 4.0 °C and 3.0 °C, respectively. The living wall and green facade also reduced cavity temperatures by 8.0 °C and 6.5 °C, respectively.

  6. Is there a need for government interventions to adapt energy infrastructures to climate change? A German case study

    NASA Astrophysics Data System (ADS)

    Groth, Markus; Cortekar, Jörg

    2015-04-01

    The option of adapting to climate change is becoming more and more important in climate change policy. Hence, responding to climate change now involves both mitigation to address the cause and adaptation as a response to already ongoing and expected changes. These changes also have relevance for the current and future energy sector in Germany. An energy sector that in the course of the German Energiewende also has to deal with a fundamental shift in energy supply from fossil fuel to renewable energies in the next decades. Thereby it needs to be considered that the energy sector is one critical infrastructure in the European Union that needs to be protected. Critical infrastructures can be defined as organisations or facilities of special importance for the country and its people where failure or functional impairment would lead to severe supply bottlenecks, significant disturbance of public order or other dramatic consequences. Regarding the adaptation to climate change, the main question is, whether adaptation options will be implemented voluntarily by companies or not. This will be the case, when the measure is considered a private good and is economically beneficial. If, on the contrary, the measure is considered a public good, additional incentives are needed. Based on a synthesis of the current knowledge regarding the possible impacts of climate change on the German energy sector along its value-added chain, the paper points out, that the power distribution and the grid infrastructure is consistently attributed the highest vulnerability. Direct physical impacts and damages to the transmission and distribution grids, utility poles, power transformers, and relay stations are expected due to more intense extreme weather events like storms, floods or thunderstorms. Furthermore fundaments of utility poles can be eroded and relay stations or power transformers can be flooded, which might cause short circuits etc. Besides these impacts causing damage to the physical

  7. Interlocal collaboration on energy efficiency, sustainability and climate change issues

    NASA Astrophysics Data System (ADS)

    Chen, Ssu-Hsien

    Interlocal energy collaboration builds upon network structures among local policy actors dealing with energy, climate change and sustainability issues. Collaboration efforts overcome institutional collective action (ICA) dilemmas, and cope with the problems spanning jurisdictional boundaries, externalities, and free-rider problems. Interlocal energy collaboration emerges as the agreements in greenhouse gas (GHG) emission reduction, pollution control, land use, purchasing, retrofits, transportation, and so forth. Cities work collaboratively through contractual mechanisms (i.e. formal/informal agreements) and collective mechanisms (i.e. regional partnerships or membership organizations) on a variety of energy issues. What factors facilitate interlocal energy collaboration? To what extent is collaboration through interlocal contractual mechanisms different from collective mechanisms? This dissertation tries to answer these questions by examining: city goal priority on energy related issues as well as other ICA explanatory factors. Research data are drawn mainly from the 2010 national survey "Implementation of energy efficiency and sustainability program" supported by National Science Foundation and the IBM Endowment for the Business of Government. The research results show that city emphasis on common pool resource, scale economies and externality issues significantly affect individual selection of tools for energy collaboration. When expected transaction costs are extremely high or low, the contractual mechanism of informal agreement is more likely to be selected to preserve most local autonomy and flexibility; otherwise, written and formal tools for collaboration are preferred to impose constraints on individual behavior and reduce the risks of defection.

  8. A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.

    2016-12-01

    Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.

  9. Impacts of past and future climate change on wind energy resources in the United States

    NASA Astrophysics Data System (ADS)

    McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.

    2009-12-01

    The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.

  10. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  11. A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies

    NASA Astrophysics Data System (ADS)

    Bonetti, F.; McInnes, C. R.

    2016-12-01

    Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.

  12. Modeling high resolution space-time variations in energy demand/CO2 emissions of human inhabited landscapes in the United States under a changing climate

    NASA Astrophysics Data System (ADS)

    Godbole, A. V.; Gurney, K. R.

    2010-12-01

    With urban and exurban areas now accounting for more than 50% of the world's population, projected to increase 20% by 2050 (UN World Urbanization Prospects, 2009), urban-climate interactions are of renewed interest to the climate change scientific community (Karl et. al, 1988; Kalnay and Cai, 2003; Seto and Shepherd, 2009). Until recently, climate modeling efforts treated urban-human systems as independent of the earth system. With studies pointing to the disproportionately large influence of urban areas on their surrounding environment (Small et. al, 2010), modeling efforts have begun to explicitly account for urban processes in land models, like the CLM 4.0 urban layer, for example (Oleson.et. al, 2008, 2010). A significant portion of the urban energy demand comes from the space heating and cooling requirement of the residential and commercial sectors - as much as 51% (DOE, RECS 2005) and 11% (Belzer, D. 2006) respectively, in the United States. Thus, these sectors are both responsible for a significant fraction of fossil fuel CO2 emissions and will be influenced by a changing climate through changes in energy use and energy supply planning. This points to the possibility of interactive processes and feedbacks with the climate system. Space conditioning energy demand is strongly driven by external air temperature (Ruth, M. et.al, 2006) in addition to other socio-economic variables such as building characteristics (age of structure, activity cycle, weekend/weekday usage profile), occupant characteristics (age of householder, household income) and energy prices (Huang, 2006; Santin et. al, 2009; Isaac and van Vuuren, 2009). All of these variables vary both in space and time. Projections of climate change have begun to simulate changes in temperature at much higher resolution than in the past (Diffenbaugh et. al, 2005). Hence, in order to understand how climate change and variability will potentially impact energy use/emissions and energy planning, these two

  13. Labs21 Approach to Climate Neutral Campuses | Climate Neutral Research

    Science.gov Websites

    Campuses | NREL Labs21 Approach to Climate Neutral Campuses Labs21 Approach to Climate Neutral included a whole-building approach to energy efficiency in laboratory buildings. This website takes that approach a step further in carrying out campus-wide energy- and carbon-reduction strategies. The

  14. Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development

    DOE PAGES

    Zhang, Xiao; Li, Hong-Yi; Deng, Zhiqun Daniel; ...

    2017-10-10

    We report that hydropower plays an important role as the global energy system moves towards a less carbon-intensive and sustainable future as promoted under the Sustainable Development Goals (SDGs). This article provides a systematic review of the impacts from policy, climate change and Water-Energy-Food (W-E-F) nexus on hydropower development at global scale. Asia, Africa and Latin America are hotspots promoting hydropower development with capacity expansion, while Europe and North America focus on performance improvement and environment impacts mitigation. Climate change is projected to improve gross hydropower potential (GHP) at high latitude of North Hemisphere and tropical Africa and decrease thatmore » in the US, South Africa and south and central Europe. Analysis from W-E-F nexus highlights the importance of integrated approaches as well as cross-sectoral coordination so as to improve resources use efficiency and achieve sustainable hydropower development. In conclusion, these three factors together shape the future of hydropower and need to be considered for planning and operation purpose.« less

  15. Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Li, Hong-Yi; Deng, Zhiqun Daniel

    We report that hydropower plays an important role as the global energy system moves towards a less carbon-intensive and sustainable future as promoted under the Sustainable Development Goals (SDGs). This article provides a systematic review of the impacts from policy, climate change and Water-Energy-Food (W-E-F) nexus on hydropower development at global scale. Asia, Africa and Latin America are hotspots promoting hydropower development with capacity expansion, while Europe and North America focus on performance improvement and environment impacts mitigation. Climate change is projected to improve gross hydropower potential (GHP) at high latitude of North Hemisphere and tropical Africa and decrease thatmore » in the US, South Africa and south and central Europe. Analysis from W-E-F nexus highlights the importance of integrated approaches as well as cross-sectoral coordination so as to improve resources use efficiency and achieve sustainable hydropower development. In conclusion, these three factors together shape the future of hydropower and need to be considered for planning and operation purpose.« less

  16. Impacts of climate change and renewable energy development on habitat of an endemic squirrel, Xerospermophilus mohavensis, in the Mojave Desert, USA

    USGS Publications Warehouse

    Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.

    2016-01-01

    Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.

  17. Avoided economic impacts of energy demand changes by 1.5 and 2 °C climate stabilization

    NASA Astrophysics Data System (ADS)

    Park, Chan; Fujimori, Shinichiro; Hasegawa, Tomoko; Takakura, Jun’ya; Takahashi, Kiyoshi; Hijioka, Yasuaki

    2018-04-01

    Energy demand associated with space heating and cooling is expected to be affected by climate change. There are several global projections of space heating and cooling use that take into consideration climate change, but a comprehensive uncertainty of socioeconomic and climate conditions, including a 1.5 °C global mean temperature change, has never been assessed. This paper shows the economic impact of changes in energy demand for space heating and cooling under multiple socioeconomic and climatic conditions. We use three shared socioeconomic pathways as socioeconomic conditions. For climate conditions, we use two representative concentration pathways that correspond to 4.0 °C and 2.0 °C scenarios, and a 1.5 °C scenario driven from the 2.0 °C scenario with assumption in conjunction with five general circulation models. We find that the economic impacts of climate change are largely affected by socioeconomic assumptions, and global GDP change rates range from +0.21% to ‑2.01% in 2100 under the 4.0 °C scenario, depending on the socioeconomic condition. Sensitivity analysis that differentiates the thresholds of heating and cooling degree days clarifies that the threshold is a strong factor that generates these differences. Meanwhile, the impact of the 1.5 °C is small regardless of socioeconomic assumptions (‑0.02% to ‑0.06%). The economic loss caused by differences in socioeconomic assumption under the 1.5 °C scenario is much smaller than that under the 2 °C scenario, which implies that stringent climate mitigation can work as a risk hedge to socioeconomic development diversity.

  18. Climate and Physical Disturbance Effects on the Spectral Signatures of Biological Soil Crusts: Implications for Future Dryland Energy Balance

    NASA Astrophysics Data System (ADS)

    Rutherford, W. A.; Flagg, C.; Painter, T. H.; Okin, G. S.; Belnap, J.; Reed, S.

    2014-12-01

    Drylands comprise ≈40% of the terrestrial Earth surface and observations suggest they can respond markedly to climate change. A vital component of dryland ecosystems are biological soil crusts (biocrusts) - a network of surface soil lichens, mosses, and cyanobacteria - that perform critical ecosystem functions, such as stabilizing soil and fixing carbon and nitrogen. Yet, our understanding of the role biocrusts play in dryland energy balance remains poor. Changes in climate can rapidly affect biocrust communities and we have long known that biocrusts respond dramatically to physical disturbance, such as human trampling and grazing animals. Associated changes in biocrust cover often result in increased bare soil; creating higher surface reflectance. We used spectral solar reflectance measurements in two manipulative experiments to compare the effects of climate and physical disturbance on biocrusts of the Colorado Plateau We measured reflectance at two heights: at crust surface and 1 m above. The climate disturbance site has four treatments: control, warming (4°C), altered precipitation, and warming plus altered precipitation. The physical disturbance site was trampled by foot annually since 1998. At the climate experiment, the largest change in reflectance was in the altered precipitation treatment (35% increase) at the surface-level, and the smallest difference was in the warmed (17% increase) at the meter-level. Physical disturbance differences were 10% at meter-level and 25% at surface-level. Unexpectedly, these results suggest that, via effects on biocrust communities, climate change could have a larger effect on dryland energy balance relative to physical disturbance, and result in more radiation from drylands returned to the atmosphere. Biocrusts cover large portions of the Earth's surface and, to our knowledge, these are the first data showing climate-induced changes to biocrust reflectance, with negative feedback in the global energy balance.

  19. Effectiveness of state climate and energy policies in reducing power-sector CO2 emissions

    NASA Astrophysics Data System (ADS)

    Martin, Geoff; Saikawa, Eri

    2017-12-01

    States have historically been the primary drivers of climate change policy in the US, particularly with regard to emissions from power plants. States have implemented policies designed either to directly curb greenhouse gas (GHG) emissions from power plants, or to encourage energy efficiency and renewable energy growth. With the federal government withdrawing from the global climate agreement, understanding which state-level policies have successfully mitigated power-plant emissions is urgent. Past research has assessed policy effectiveness using data for periods before the adoption of many policies. We assess 17 policies using the latest data on state-level power-sector CO2 emissions. We find that policies with mandatory compliance are reducing power-plant emissions, while voluntary policies are not. Electric decoupling, mandatory GHG registry/reporting and public benefit funds are associated with the largest reduction in emissions. Mandatory GHG registry/reporting and public benefit funds are also associated with a large reduction in emissions intensity.

  20. Climate Action Planning Process | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Action Planning Process Climate Action Planning Process For research campuses, NREL has developed a five-step process to develop and implement climate action plans: Determine baseline energy consumption Analyze technology options Prepare a plan and set priorities Implement the climate action plan Measure and

  1. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua B.; Ramaswami, Anu

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as

  2. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE PAGES

    Sperling, Joshua B.; Ramaswami, Anu

    2017-11-03

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as

  3. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    NASA Astrophysics Data System (ADS)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  4. Comparison of tropical cyclogenesis processes in climate model and cloud-resolving model simulations using moist static energy budget analysis

    NASA Astrophysics Data System (ADS)

    Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming

    2017-04-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.

  5. First Experiences with the Trimble SX10 Scanning Total Station for Building Facade Survey

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2017-02-01

    The use of Terrestrial Laser Scanner (TLS) tends to become a solution in many research areas related to large scale surveying. Meanwhile, the technological advances combined with the investigation of user needs have brought to the design of innovative devices known as scanning total stations. Such instruments merge in a unique hardware both scanning and surveying facilities. Even if their scanning rate is often reduced compared to conventional TLS, they make it possible to directly georeference laser scanning projects and to complete them with measurements of individual points of interest. The recent Trimble SX10 which was launched on the market in early October 2016 has been tested and some experiences carried out with it are reported in this paper. The analyses mainly focus on the survey of a building facade. Next to laser scanning survey, a photogrammetry campaign using an Unmanned Aerial Vehicle (UAV) has been carried out. These different datasets are used to assess the Trimble SX10 issued point clouds through a set of comparisons. Since georeferencing is possible either directly or indirectly using this device, data processed both ways are also compared to conclude about the more reliable method.

  6. Health, climate change and energy vulnerability: a retrospective assessment of strategic health authority policy and practice in England.

    PubMed

    Richardson, J; Kagawa, F; Nichols, A

    2008-11-17

    A number of policy documents suggest that health services should be taking climate change and sustainability seriously and recommendations have been made to mitigate and adapt to the challenges health care providers will face. Actions include, for example, moving towards locally sourced food supplies, reducing waste, energy consumption and travel, and including sustainability in policies and strategies. A Strategic Health Authority (SHA) is part of the National Health Service (NHS) in England. They are responsible for developing strategies for the local health services and ensuring high-quality performance. They manage the NHS locally and are a key link between the U.K. Department of Health and the NHS. They also ensure that national priorities are integrated into local plans. Thus they are in a key position to influence policies and practices to mitigate and adapt to the impact of climate change and promote sustainability. The aim of this study was to review publicly available documents produced by Strategic Health Authorities (SHA) to assess the extent to which current activity and planning locally takes into consideration climate change and energy vulnerability. A retrospective thematic content analysis of publicly available materials was undertaken by two researchers over a six month period in 2008. These materials were obtained from the websites of the 10 SHAs in England. Materials included annual reports, plans, policies and strategy documents. Of the 10 SHAs searched, 4 were found to have an absence of content related to climate change and sustainability. Of the remaining 6 SHAs that did include content related to climate change and energy vulnerability on their websites consistent themes were seen to emerge. These included commitment to a regional sustainability framework in collaboration with other agencies in the pursuit and promotion of sustainable development. Results indicate that many SHAs in England have yet to embrace sustainability, or to integrate

  7. An assessment of wind energy potential in Iberia under climate change

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Santos, João A.; Rochinha, Carlos; Reyers, Mark; Pinto, Joaquim G.

    2015-04-01

    Wind energy potential in Iberia is assessed for recent-past (1961-2000) and future (2041-2070) climates. For recent-past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent-past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day-1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (<15% of mean output), but exacerbated in winter (40%). Climate change projections show significant decreases over most of Iberia (<2 MWh day-1). The strong enhancement of autumn potentials in Southern Andalucía is noteworthy (>2 MWh day-1). The northward displacement of North Atlantic westerly winds (autumn-spring) and the strengthening of easterly flows (summer) are key drivers of future projections. Santos, J.A.; Rochinha, C.; Liberato, M.L.R.; Reyers, M.; Pinto, J.G. (2015) Projected changes in wind energy potentials over Iberia. Renewable Energy, 75, 1: 68-80. doi: 10.1016/j.renene.2014.09.026 Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

  8. Centring radiological protection on today's global challenges in energy, climate change, environment and health--with nuclear energy playing a key role.

    PubMed

    Saint-Pierre, Sylvain

    2011-07-01

    The climate change issue includes meeting the growing demand for electricity while reducing the impacts from energy sources. Applying carbon capture and storage technology to fossil fuel energy and increasing renewable energy pose greater challenges than increasing nuclear energy. International Energy Agency's (IEA) electricity demand of 30 000 TWh by 2030 can be met with 10 000 TWh each from renewable, nuclear and fossil fuel energy. However, the ill-imposed very strict control of tiny public exposure to ionising radiation from nuclear energy continues to pose a serious hindrance. Effort needs to be re-balanced to produce an even-handed control of public exposure with emphasis on the most significant sources (i.e. natural background radiation and medical use) and vice versa. The on-going revision of the International Atomic Energy Agency Basic Safety Standards (BSS) provides an opportunity to achieve this internationally so that national regulations can be subsequently remediated. There can be no urgency in a BSS revision that fails to encompass such perspective.

  9. Energy Market and Economic Impacts of S. 280, the Climate Stewardship and Innovation Act of 2007, Supplement to

    EIA Publications

    2007-01-01

    This paper responds to a September 18, 2007, letter from Senators Barrasso, Inhofe, and Voinovich, seeking further energy and economic analysis to supplement information presented in the Energy Information Administration's (EIA) recent analysis of S.280, the Climate Stewardship and Innovation Act of 2007.

  10. Three empirical essays on consumer behavior related to climate change and energy

    NASA Astrophysics Data System (ADS)

    Jacobsen, Grant Douglas

    This dissertation consists of three essays. All of the chapters address a topic in the area of household and consumer behavior related to climate change or energy. The first chapter is titled "The Al Gore Effect: An Inconvenient Truth and Voluntary Carbon Offsets". This chapter examines the relationship between climate change awareness and household behavior by testing whether Al Gore's documentary An Inconvenient Truth caused an increase in the purchase of voluntary carbon offsets. The analysis shows that in the two months following the film's release, zip codes within a 10-mile radius of a zip code where the film was shown experienced a 50 percent relative increase in the purchase of voluntary carbon offsets. The second chapter is titled "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida". The analysis shows that Florida's energy-code change that took effect in 2002 is associated with a 4-percent decrease in electricity consumption and a 6-percent decrease in natural-gas consumption in Gainesville, FL. The estimated private payback period for the average residence is 6.4 years and the social payback period ranges between 3.5 and 5.3 years. The third chapter in this dissertation is titled "Do Environmental Offsets Increase Demand for Dirty Goods? Evidence from Residential Electricity Demand". This study evaluates the relationship between green products and existing patterns of consumer behavior by examining the relationship between household enrollment in a green electricity program and consumption of residential electricity. The results suggest there are two different types of green consumers. One type makes a small monthly donation and partially views the donation as a substitute for a previously existing pattern of green behavior, in this case, energy conservation. The other type makes a larger monthly donation and views the donation as a way to make strictly additional improvements in environmental quality.

  11. Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets

    USDA-ARS?s Scientific Manuscript database

    Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...

  12. The impacts of climate change on irrigation and crop production in Northeast China and implications for energy use and GHG Emission

    NASA Astrophysics Data System (ADS)

    Yan, Tingting; Wang, Jinxia; Huang, Jikun; Xie, Wei; Zhu, Tingju

    2018-06-01

    The water-food-energy-GHG nexus under climate change has been gaining increasing attention from both the research and policy communities, especially over the past several years. However, most existing nexus studies are qualitative and explorative in nature. So far, very few studies provide integrated analysis of this nexus across all the four sectors. The purpose of this paper is to examine this nexus by assessing the effects of climate change on agricultural production through the change in water availability, evaluating the adjustment responses and resulting energy consumption and GHG emission, with the Northeast China as a case study. Based on our simulation results, by 2030, climate change is projected to increase water supply and demand gap for irrigation in Northeast China. Due to the increase in water scarcity, irrigated areas will decrease, and the cropping pattern will be adjusted by increasing maize sown areas and decreasing rice sown areas. As a result, the total output of crops and profits will clearly be reduced. Finally, energy consumption and GHG emission from irrigation will be reduced. This study suggests that climate change impact assessment fully consider the nexus among water, food, energy and GHG; however, more studies need to be conducted in the future.

  13. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.

    PubMed

    van der Hoek, J P

    2012-01-01

    Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.

  14. Three-Dimensional Reconstruction and Solar Energy Potential Estimation of Buildings

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, M.; Cheng, L.; Xu, H.; Li, S.; Liu, X.

    2017-12-01

    In the context of the construction of low-carbon cities, green cities and eco-cities, the ability of the airborne and mobile LiDAR should be explored in urban renewable energy research. As the main landscape in urban environment, buildings have large regular envelopes could receive a huge amount of solar radiation. In this study, a relatively complete calculation scheme about building roof and façade solar utilization potential is proposed, using building three-dimensional geometric feature information. For measuring the city-level building solar irradiance, the precise three-dimensional building roof and façade models should be first reconstructed from the airborne and mobile LiDAR, respectively. In order to obtaining the precise geometric structure of building facades from the mobile LiDAR data, a new method for structure detection and the three-dimensional reconstruction of building façades from mobile LiDAR data is proposed. The method consists of three steps: the preprocessing of façade points, the detection of façade structure, the restoration and reconstruction of building façade. As a result, the reconstruction method can effectively deal with missing areas caused by occlusion, viewpoint limitation, and uneven point density, as well as realizing the highly complete 3D reconstruction of a building façade. Furthermore, the window areas can be excluded for more accurate estimation of solar utilization potential. After then, the solar energy utilization potential of global building roofs and facades is estimate by using the solar irradiance model, which combine the analysis of the building shade and sky diffuse, based on the analysis of the geometrical structure of buildings.

  15. Approaches to 30% Energy Savings at the Community Scale in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas-Rees, S.; Beal, D.; Martin, E.

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the BA Program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. The scope of this report is to demonstrate achievement of these goals though the documentation of production-scale homes built cost-effectively at the community scale, and modeledmore » to reduce whole-house energy use by 30% in the Hot Humid climate region. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.« less

  16. Weighing the Risks of Nuclear Energy and Climate Change: Trust in Different Information Sources, Perceived Risks, and Willingness to Pay for Alternatives to Nuclear Power.

    PubMed

    Vainio, Annukka; Paloniemi, Riikka; Varho, Vilja

    2017-03-01

    We examined how individuals perceive nuclear energy in the context of climate change mitigation and how their perceptions are associated with trust in different risk information sources. We analyzed the interrelationships between trust, perceived risk of nuclear power, climate change concern, perception of nuclear energy as an acceptable way to mitigate climate change, and willingness to pay (WTP) for alternatives to nuclear power. A nationwide survey (N = 967) collected in Finland was analyzed with structural equation modeling. The associations between trust and perceived risk of nuclear power, climate change concern, and perception of nuclear power as a way to mitigate climate change varied by the type of information source. Political party support and other background variables were associated with trust in different information sources. The effect of trust in information sources on WTP was mediated by perceived risks and benefits. The results will increase our understanding of how individuals perceive nuclear energy as a way to cut CO 2 emissions and the role of trust in different information sources in shaping nuclear risk perceptions and energy choices. © 2016 Society for Risk Analysis.

  17. How can small hydro energy and other renewable energy mitigate impact of climate change in remote Central Africa: Cameroon case study.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Central Africa owns important renewable energy potential, namely hydro, solar and biomass. This important potential is still suffering from poor development up to the point where the sub region is still abundantly using the fossil energy and biomass as main power source. This is harmful to the climate and the situation is still ongoing. The main cause of the poor use of renewable energy is the poor management of resources by governments who have not taken the necessary measures to boost the renewable energy sector. Since the region is experiencing power shortage, thermal plants are among other solutions planned or under construction. Firewood is heavily used in remote areas without a sustainability program behind. This solution is not environment friendly and hence is not a long term solution. Given the fact that the region has the highest hydro potential of the continent, up to one-quarter of the world's tropical forest, important oil production with poor purchase power, the aim of this paper is to identify actions for improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure in Central Africa and the promotion of small hydro and other renewable energy. The work will show at first the potential for the three primary energy sources which are solar, biomass and hydro while showing where available the level of development, with an emphasis on small hydro. Then identified obstacles for the promotion of clean energy will be targeted. From lessons learned, suggestions will be made to help the countries develop an approach aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon has a great renewable energy potential and some data are available on energy. From the overview of institutional structure reform of the Cameroon power sector and assessments, specific suggestions based on the weaknesses

  18. Climate Change, Indoor Environment and Health

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  19. Climate Leadership Awards Frequent Questions

    EPA Pesticide Factsheets

    Provides answers to frequently asked questions regarding the Climate Leadership Awards, sponsored by EPA's Center for Corporate Climate Leadership with co-sponsorship from the Center for Climate and Energy Solutions and The Climate Registry.

  20. The seasonal CO2 cycle on Mars - An application of an energy balance climate model

    NASA Technical Reports Server (NTRS)

    James, P. B.; North, G. R.

    1982-01-01

    Energy balance climate models of the Budyko-Sellers variety are applied to the carbon-dioxide cycle on Mars. Recent data available from the Viking mission, in particular the seasonal pressure variations measured by Viking landers, are used to constrain the models. No set of parameters was found for which a one-dimensional model parameterized in terms of ground temperature gave an adequate fit to the observed pressure variations. A modified, two-dimensional model including the effects of dust storms and the polar hood reasonably reproduces the pressure curve, however. The implications of these results for Martian climate changes are discussed.