Science.gov

Sample records for climate impact assessment

  1. Developing perturbations for Climate Change Impact Assessments

    NASA Astrophysics Data System (ADS)

    Hewitson, Bruce

    Following the 2001 Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report [TAR; IPCC, 2001], and the paucity of climate change impact assessments from developing nations, there has been a significant growth in activities to redress this shortcoming. However, undertaking impact assessments (in relation to malaria, crop stress, regional water supply, etc.) is contingent on available climate-scale scenarios at time and space scales of relevance to the regional issues of importance. These scales are commonly far finer than even the native resolution of the Global Climate Models (GCMs) (the principal tools for climate change research), let alone the skillful resolution (scales of aggregation at which GCM observational error is acceptable for a given application) of GCMs.Consequently, there is a growing demand for regional-scale scenarios, which in turn are reliant on techniques to downscale from GCMs, such as empirical downscaling or nested Regional Climate Models (RCMs). These methods require significant skill, experiential knowledge, and computational infrastructure in order to derive credible regional-scale scenarios. In contrast, it is often the case that impact assessment researchers in developing nations have inadequate resources with limited access to scientists in the broader international scientific community who have the time and expertise to assist. However, where developing effective downscaled scenarios is problematic, it is possible that much useful information can still be obtained for impact assessments by examining the system sensitivity to largerscale climate perturbations. Consequently, one may argue that the early phase of assessing sensitivity and vulnerability should first be characterized by evaluation of the first-order impacts, rather than immediately addressing the finer, secondary factors that are dependant on scenarios derived through downscaling.

  2. Climate impact assessment, United States

    SciTech Connect

    Not Available

    1981-02-01

    This report considers unusual or abnormal meteorological or geophysical events (unusual in time, location, intensity, frequency or persistence) that will likely have an impact on societal or economic activities in a special and significant manner. This report considers: 1) violent meteorological events such as damaging thunderstorms, tornadoes, and tropical and winter storms, 2) non-violent meteorological events, including mild, unusually pleasant weather, lack of precipitation, and temperature extremes, 3) meteorologically related events, particularly drought, floods, forest fires and ice jams, and 4) geophysical events such as avalanches, landslides, earthquakes, volcanoes, tsunamies, waves, tides and shoreline erosion.

  3. Integrated Climate Change Impacts Assessment in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  4. Impacts of a Warming Arctic - Arctic Climate Impact Assessment

    NASA Astrophysics Data System (ADS)

    Arctic Climate Impact Assessment

    2004-12-01

    The Arctic is now experiencing some of the most rapid and severe climate change on earth. Over the next 100 years, climate change is expected to accelerate, contributing to major physical, ecological, social, and economic changes, many of which have already begun. Changes in arctic climate will also affect the rest of the world through increased global warming and rising sea levels. Impacts of a Warming Arctic is a plain language synthesis of the key findings of the Arctic Climate Impact Assessment (ACIA), designed to be accessible to policymakers and the broader public. The ACIA is a comprehensively researched, fully referenced, and independently reviewed evaluation of arctic climate change. It has involved an international effort by hundreds of scientists. This report provides vital information to society as it contemplates its responses to one of the greatest challenges of our time. It is illustrated in full color throughout.

  5. Assessing the impacts of climate change on natural resource systems

    SciTech Connect

    Frederick, K.D.; Rosenberg, N.J.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  6. STRATEGIES FOR THE DEVELOPMENT OF CLIMATE SCENARIOS FOR IMPACT ASSESSMENT

    EPA Science Inventory

    In order to create a strategy for the development of climate scenarios for use in impact assessment, potential techniques of development were reviewed and the information needs of potential users assessed. vailable techniques were assessed through literature reviews and consultat...

  7. Assessment of climate change impact on Eastern Washington agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An assessment of the potential impact of climate change and the concurrent increase of atmospheric CO2 concentration on eastern Washington State agriculture was conducted. Climate projections from four selected general circulation models (GCM) were chosen, and the assessment included the crops with ...

  8. Assessing the observed impact of anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Hansen, Gerrit; Stone, Dáithí

    2016-05-01

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.

  9. Impact of weather and climate scenarios on conservation assessment outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews selected watershed studies of the Conservation Effects Assessment Project (CEAP) and interprets findings from the perspective of potential climate change impacts on conservation outcomes. Primary foci are runoff, soil erosion, sediment transport, watershed sediment yield, and asso...

  10. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  11. Methodology for qualitative uncertainty assessment of climate impact indicators

    NASA Astrophysics Data System (ADS)

    Otto, Juliane; Keup-Thiel, Elke; Rechid, Diana; Hänsler, Andreas; Pfeifer, Susanne; Roth, Ellinor; Jacob, Daniela

    2016-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing an integrated platform of climate data services to provide a single point of access for authoritative scientific information on climate change and climate change impacts. In this project, the Climate Service Center Germany (GERICS) has been in charge of the development of a methodology on how to assess the uncertainties related to climate impact indicators. Existing climate data portals mainly treat the uncertainties in two ways: Either they provide generic guidance and/or express with statistical measures the quantifiable fraction of the uncertainty. However, none of the climate data portals give the users a qualitative guidance how confident they can be in the validity of the displayed data. The need for such guidance was identified in CLIPC user consultations. Therefore, we aim to provide an uncertainty assessment that provides the users with climate impact indicator-specific guidance on the degree to which they can trust the outcome. We will present an approach that provides information on the importance of different sources of uncertainties associated with a specific climate impact indicator and how these sources affect the overall 'degree of confidence' of this respective indicator. To meet users requirements in the effective communication of uncertainties, their feedback has been involved during the development process of the methodology. Assessing and visualising the quantitative component of uncertainty is part of the qualitative guidance. As visual analysis method, we apply the Climate Signal Maps (Pfeifer et al. 2015), which highlight only those areas with robust climate change signals. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Reference Pfeifer, S., Bülow, K., Gobiet, A., Hänsler, A., Mudelsee, M., Otto, J., Rechid, D., Teichmann, C. and Jacob, D.: Robustness of Ensemble Climate Projections

  12. Integrated economic and climate projections for impact assessment

    EPA Science Inventory

    We designed scenarios for impact assessment that explicitly address policy choices and uncertainty in climate response. Economic projections and the resulting greenhouse gas emissions for the “no climate policy” scenario and two stabilization scenarios: at 4.5 W/m2 and 3.7 W/m2 b...

  13. Criteria for assessing climate change impacts on ecosystems

    PubMed Central

    Loehle, Craig

    2011-01-01

    There is concern about the potential impacts of climate change on species and ecosystems. To address this concern, a large body of literature has developed in which these impacts are assessed. In this study, criteria for conducting reliable and useful assessments of impacts of future climate are suggested. The major decisions involve: clearly defining an emissions scenario; selecting a climate model; evaluating climate model skill and bias; quantifying General Circulation Model (GCM) between-model variability; selecting an ecosystem model and assessing uncertainty; properly considering transient versus equilibrium responses; including effects of CO2 on plant response; evaluating implications of simplifying assumptions; and considering animal linkage with vegetation. A sample of the literature was surveyed in light of these criteria. Many of the studies used climate simulations that were >10 years old and not representative of best current models. Future effects of elevated CO2 on plant drought resistance and productivity were generally included in growth model studies but not in niche (habitat suitability) studies, causing the latter to forecast greater future adverse impacts. Overly simplified spatial representation was frequent and caused the existence of refugia to be underestimated. Few studies compared multiple climate simulations and ecosystem models (including parametric uncertainty), leading to a false impression of precision and potentially arbitrary results due to high between-model variance. No study assessed climate model retrodictive skill or bias. Overall, most current studies fail to meet all of the proposed criteria. Suggestions for improving assessments are provided. PMID:22393483

  14. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  15. Uncertainty assessment tool for climate change impact indicators

    NASA Astrophysics Data System (ADS)

    Otto, Juliane; Keup-Thiel, Elke; Jacob, Daniela; Rechid, Diana; Lückenkötter, Johannes; Juckes, Martin

    2015-04-01

    A major difficulty in the study of climate change impact indicators is dealing with the numerous sources of uncertainties of climate and non-climate data . Its assessment, however, is needed to communicate to users the degree of certainty of climate change impact indicators. This communication of uncertainty is an important component of the FP7 project "Climate Information Portal for Copernicus" (CLIPC). CLIPC is developing a portal to provide a central point of access for authoritative scientific information on climate change. In this project the Climate Service Center 2.0 is in charge of the development of a tool to assess the uncertainty of climate change impact indicators. The calculation of climate change impact indicators will include climate data from satellite and in-situ observations, climate models and re-analyses, and non-climate data. There is a lack of a systematic classification of uncertainties arising from the whole range of climate change impact indicators. We develop a framework that intends to clarify the potential sources of uncertainty of a given indicator and provides - if possible - solutions how to quantify the uncertainties. To structure the sources of uncertainties of climate change impact indicators, we first classify uncertainties along a 'cascade of uncertainty' (Reyer 2013). Our cascade consists of three levels which correspond to the CLIPC meta-classification of impact indicators: Tier-1 indicators are intended to give information on the climate system. Tier-2 indicators attempt to quantify the impacts of climate change on biophysical systems (i.e. flood risks). Tier-3 indicators primarily aim at providing information on the socio-economic systems affected by climate change. At each level, the potential sources of uncertainty of the input data sets and its processing will be discussed. Reference: Reyer, C. (2013): The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable

  16. Assessing regional and warming level dependent differences in climate impacts

    NASA Astrophysics Data System (ADS)

    Wohland, Jan; Schleussner, Carl-Friedrich; Lissner, Tabea; Fischer, Erich M.; Frieler, Katja

    2015-04-01

    Differentiation between climate impacts at different levels of warming is of great relevance for scientists and policy makers. Knowledge of the consequences of different development and temperature pathways is essential to inform international climate negotiations and regional adaptation planning alike. At the same time, not only the warming dimension but also the regional dimension of changes in impacts is of interest, since regional changes might not be linearly related to global mean temperature increase. A detailed understanding of regionally differentiated impacts is an important basis on which to develop suitable coping strategies and adaptation options. Here we present a framework that allows for a differentiation of regional changes in climate impacts at different levels of temperature increase. Based on data from the CMIP5 archive as well as output from the AgMIP project, we assess the climate impact projections for an increase in global mean surface air temperature of 1.5 and 2 °C above pre-industrial levels for the 26 regions used in the IPCC SREX report. We show results for several extreme event indices as well as projections of water availability and agricultural yields. Based on a method developed by Fischer et al. (2013), we are able to test for statistical significance of changes in climate impact projections between the different warming levels across the model ensemble. References: Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nature Climate Change 3, 1033-1038 (2013).

  17. Choosing and Using Climate Scenarios for Climate Impacts Assessment and Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Alexander, M. A.; Mantua, N. J.; Littell, J. S.; Nye, J.

    2011-12-01

    Increased concern over climate change and its implications for human and natural systems is evidenced by the many efforts to assess climate impacts and develop adaptation strategies underway at a wide range of levels of governance in the United States. Scientists, resource managers and decision makers are increasingly expected to use climate information in assessment and planning, but struggle with the uncertainty associated with this information. This has lead to increasing requests for the climate modeling community to define the best climate model(s) and downscaling approach(es) for use in impacts analyses. However, choosing the "best" model may be very difficult and counter productive. Many of the barriers associated with the (real and perceived) uncertainty of projected climate change could be overcome by reassessing assumptions about what can and cannot be projected about future climate and by reorienting methods by which likely climate impacts are assessed. We propose that climate impacts assessment begin not with an examination of climate models, but with an introspective look at the system of interest, i.e., a vulnerability assessment framework that includes (1) understanding the system's climate sensitivity, (2) carefully specifying analytical time and space scales, (3) assessing "model" skill at projecting the parameter(s) of interest, and (4) using ensembles/bracketing scenarios instead of choosing the "best" model. We provide examples for application in marine and aquatic environments.

  18. Assessing the Assessment Methods: Climate Change and Hydrologic Impacts

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.

    2014-12-01

    The Bureau of Reclamation, the U.S. Army Corps of Engineers, and other water management agencies have an interest in developing reliable, science-based methods for incorporating climate change information into longer-term water resources planning. Such assessments must quantify projections of future climate and hydrology, typically relying on some form of spatial downscaling and bias correction to produce watershed-scale weather information that subsequently drives hydrology and other water resource management analyses (e.g., water demands, water quality, and environmental habitat). Water agencies continue to face challenging method decisions in these endeavors: (1) which downscaling method should be applied and at what resolution; (2) what observational dataset should be used to drive downscaling and hydrologic analysis; (3) what hydrologic model(s) should be used and how should these models be configured and calibrated? There is a critical need to understand the ramification of these method decisions, as they affect the signal and uncertainties produced by climate change assessments and, thus, adaptation planning. This presentation summarizes results from a three-year effort to identify strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic conditions. Methods were evaluated from two perspectives: historical fidelity, and tendency to modulate a global climate model's climate change signal. On downscaling, four methods were applied at multiple resolutions: statistically using Bias Correction Spatial Disaggregation, Bias Correction Constructed Analogs, and Asynchronous Regression; dynamically using the Weather Research and Forecasting model. Downscaling results were then used to drive hydrologic analyses over the contiguous U.S. using multiple models (VIC, CLM, PRMS), with added focus placed on case study basins within the Colorado Headwaters. The presentation will identify which types of climate changes are

  19. Arctic Cities and Climate Change: A Geographic Impact Assessment

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Streletskiy, D. A.

    2014-12-01

    Arctic climate change is a concern for the engineering community, land-use planners and policy makers as it may have significant impacts on socio-economic development and human activities in the northern regions. A warmer climate has potential for a series of positive economic effects, such as development of maritime transportation, enhanced agricultural production and decrease in energy consumption. However, these potential benefits may be outwaited by negative impacts related to transportation accessibility and stability of existing infrastructure, especially in permafrost regions. Compared with the Arctic zones of other countries, the Russian Arctic is characterized by higher population, greater industrial development and urbanization. Arctic urban areas and associated industrial sites are the location of some of intense interaction between man and nature. However, while there is considerable research on various aspects of Arctic climate change impacts on human society, few address effects on Arctic cities and their related industries. This presentation overviews potential climate-change impacts on Russian urban environments in the Arctic and discusses methodology for addressing complex interactions between climatic, permafrost and socio-economic systems at the range of geographical scales. We also provide a geographic assessment of selected positive and negative climate change impacts affecting several diverse Russian Arctic cities.

  20. Assessment of the Health Impacts of Climate Change in Kiribati

    PubMed Central

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452

  1. Assessment of the health impacts of climate change in Kiribati.

    PubMed

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-05-01

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452

  2. Using climate model output to assess the impacts of climate change on water resources

    SciTech Connect

    Cushman, R.M.

    1990-01-01

    The use of general circulation models (GCMs) to provide climate data for regional assessments of the impacts of changing climate on water resources stretches the limits of what the models were designed for. Problems that must be addressed include disagreement on a regional scale among GCMs and between the modeled and observed climate; coarse spatial resolution of the models; and simplistic representation of surface hydrology. It is important that continued progress be made in developing the methodology for using GCM output in climate-impact assessments. 18 refs.

  3. Climate Change Impact Assessment of Food- and Waterborne Diseases.

    PubMed

    Semenza, Jan C; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas

    2012-04-01

    The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998-2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options. PMID:24808720

  4. Climate Change Impact Assessment of Food- and Waterborne Diseases

    PubMed Central

    Semenza, Jan C.; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas

    2011-01-01

    The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998–2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options. PMID:24808720

  5. Watershed Model Parameterization for Assessing Impacts due to Climate Change

    NASA Astrophysics Data System (ADS)

    Yactayo, G. A.; Bhatt, G.

    2014-12-01

    The Chesapeake Bay (CB) Total Maximum Daily Load (TMDL) program drives water quality policy and management in parts of six states — Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia — along with the District of Columbia to achieve water quality standards in the Bay through reductions in nutrient and sediment pollution. The HSPF Watershed Model (WSM) is used as an accounting tool in the development of the TMDL to track progress and guide implementations of best management practices. Published research has shown that precipitation has increased in the US during 20th century by about ten percent, and half of the increase is due to changes in frequency and intensity in the upper tenth percentile of the distribution. Projections from global climate models suggest that these trends are anticipated to continue over the next century. Our analysis of climate data over the last three decades show similar trends in observed precipitation in the CB Watershed. The impact of climate change on the CB TMDL will be examined in a 2017 assessment of progress in the State and Federal partnership of the Chesapeake Bay Program. This is consistent with the CB Executive Order of May 12, 2009 mandates assessment of the impacts of climate change on the CB TMDL. The WSM has a simulation period of more than 3 decades from 1985 to 2011. Over the simulation period precipitation intensity, temperatures, and CO2 levels are increasing. A study conducted by Najjar et al. (2010) that included regional climate projections suggests that pollutant loads in the CB region will increase over the next century. Butcher et al. (2014) demonstrated that a watershed model parameter needs to be adjusted to compensate for the effect of elevated CO2 concentrations on plant transpiration in climate projection applications. This raises the question of whether parameters within a watershed model calibrated using historical climate data are sufficient for assessing hydrologic and water

  6. Assessing Climate Impacts on Air Pollution from Models and Measurements

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  7. Cost Analysis of Water Transport for Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  8. Assessing the impacts of climatic change on mountain water resources.

    PubMed

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades. PMID:24360916

  9. Assessing climate change impact by integrated hydrological modelling

    NASA Astrophysics Data System (ADS)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  10. Recent Extremes in European Climate: Assessment, Case Studies and Impacts

    NASA Astrophysics Data System (ADS)

    Yiou, P.; Vautard, R.; D'Andrea, F.; Cattiaux, J.; Naveau, P.; Ciais, P.; Garnier, E.

    2008-12-01

    During the last centuries and up to the present decade, extreme climate events have certainly had larger economic impacts than any trend of temperature in Europe. In addition to an intrinsic scientific interest, their study is thus essential for society. One of the challenges of their investigation is that, depending on their definition, extreme climate events potentially have a behavior that is not connected to the secular temperature trend in a simple fashion. This presentation will review the statistical assessments of extremes in Europe, focusing on surface temperature, precipitation, and their connections with large-scale features of the atmospheric circulation. In particular, the questions of modeling their severity and frequency will be discussed in the first part of the presentation. I will then give two kinds of examples of European climate extremes: summer heatwaves and droughts, and winter warm waves. The mechanisms leading to such phenomena will be explored, and I will examine some of the impacts on the biosphere that were recently observed. In order to provide a long term perspective of those events, examples of historical droughts in France will be presented and connected with proxy records of temperature. It appears that the mechanisms that are favored for present-day climate might still have been valid during the past centuries. To conclude, new challenges for dynamical and statistical modeling will be explored.

  11. Regional Risk Assessment for climate change impacts on coastal aquifers.

    PubMed

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems. PMID:26282744

  12. Parametric assessment of climate change impacts of automotive material substitution.

    PubMed

    Geyer, Roland

    2008-09-15

    Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction. PMID:18853818

  13. Health impact assessment of climate change in Bangladesh

    SciTech Connect

    Nelson, Deborah Imel

    2003-05-01

    Global climate change (GCC) may have serious and irreversible impacts. Improved methods are needed to predict and quantify health impacts, so that appropriate risk management strategies can be focused on vulnerable areas. The disability-adjusted life year (DALY) is proposed as an effective tool in environmental health impact assessment (HIA). The DALY accounts for years of life lost to premature death and/or morbidity. Both the DALY and the determinants-of-health approach are applied to HIA of GCC in Bangladesh. Based on historical data, a major storm event may result in approximately 290 DALY per 1000 population, including both deaths and injuries, compared to a current all-cause rate of about 280 per 1000 in the region. A more precise result would require a large input of data; however, this level of analysis may be sufficient to rank risks, and to motivate and target risk management efforts.

  14. An Assessment of the Impact of Climate Change in India

    NASA Astrophysics Data System (ADS)

    Nair, K. S.

    2009-09-01

    adaptation, mitigation and post-hazard recovery and resettlement measures. Providing basic necessities such as water, food and power, maintaining public health, implementing protective measures in the coastal zones and modifications in the urban infrastructure, especially in the coastal megacities become expensive. Impact of extremes on rails, roads and building are also becoming a major issue in the coastal zones and urban centres. Industrial sector is facing a threat from the falling reliable supply of water and power. However, procedure for the implementation of the strategies to mitigate the climate change impact and of the policy for the adaptation to climate change is slow. There are several hurdles for this, including various ecological, socio-economic, technical and political issues, alterations of the physical environment, inability of certain habitats and species to adapt to a new environment, abject poverty, lack of awareness, and the inefficient administrative mechanism. A comprehensive assessment of the shifts in regional climate and the impact of climate change on different facets of life in India, and of the current strategies and polices to face such challenges is made in this study. Suggestions for the improvement of the climate policy and adaptation strategy have been provided.

  15. Climate and Agriculture: Model Inter-Comparison for Evaluating the Uncertainties in Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, V.; Lakshmanan, A.; Bhuvaneswari, K.; Rajalakshmi, D.; Sekhar, N. U.; Anbhazhagan, R.; Gurusamy, L.

    2011-12-01

    Presence of large uncertainties in climate models (CM) and in future emission scenarios makes it difficult to predict the long-term climate changes at regional scales. Climate models do a reasonable job of capturing the large-scale aspects of current climate but still contain systematic model errors adding uncertainty to the future projections. Using CM outputs in impact models also cascade the uncertainty in climate change research. A study was undertaken with the objective of evaluating the uncertainty of climate change predictions by comparing the outputs from Regional Climate Models (RCM) and their resultant impact on rice productivity in Bhavani basin of Tamil Nadu, India. Current and future climate data were developed using RCMs viz., RegCM3 and PRECIS considering SRES A1B scenario for 130 years (1971-2100). The RCM outputs were used in DSSAT and EPIC models for assessing the impact of climate change. Results were compared to assess the magnitude of uncertainty in predicting the future climate and the resultant impacts. Comparison of predicted current climate with observed data indicated that RegCM3 under estimates maximum temperature by 1.8 °C while, PRECIS over estimates by 1.1°C over 40 years (1971 - 2010). The minimum temperature was under estimated by both the models, but with varying magnitude (3.8 °C for RegCM3 and 1 °C for PRECIS). RegCM3 over predicted rainfall (14 %), in contrast, PRECIS underpredicted (30.9 %) the same. Future climate projections indicated gradual increase in maximum and minimum temperatures with progress of time. Increase of maximum and minimum temperatures in PRECIS was 3.7oC and 4.2oC respectively and in RegCM3, it was 3.1oC and 3.7oC by 2100. No clear trend could be observed for rainfall other than increase in the quantum compared to current rainfall. Rice yield simulated over Bhavani basin for current and future climate by DSSAT, without CO2 fertilization effect, indicated reduction of 356 and 217 Kg ha-1decade-1 for

  16. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  17. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment

    EPA Science Inventory

    This assessment strengthens and expands our understanding of climate-related health impacts by providing a more definitive description of climate-related health burdens in the United States. It builds on the 2014 USGCRP National Climate Assessment and reviews and synthesizes key ...

  18. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    USGS Publications Warehouse

    Amy K. Snover; Nathan J. Mantua; Littell, Jeremy; Michael A. Alexander; Michelle M. McClure; Janet Nye

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  19. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at

  20. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    PubMed

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  1. A Health Impact Assessment framework for assessing vulnerability and adaptation planning for climate change.

    PubMed

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such,aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25587609

  2. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    PubMed Central

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  3. Downscaling climate model output for water resources impacts assessment (Invited)

    NASA Astrophysics Data System (ADS)

    Maurer, E. P.; Pierce, D. W.; Cayan, D. R.

    2013-12-01

    Water agencies in the U.S. and around the globe are beginning to wrap climate change projections into their planning procedures, recognizing that ongoing human-induced changes to hydrology can affect water management in significant ways. Future hydrology changes are derived using global climate model (GCM) projections, though their output is at a spatial scale that is too coarse to meet the needs of those concerned with local and regional impacts. Those investigating local impacts have employed a range of techniques for downscaling, the process of translating GCM output to a more locally-relevant spatial scale. Recent projects have produced libraries of publicly-available downscaled climate projections, enabling managers, researchers and others to focus on impacts studies, drawing from a shared pool of fine-scale climate data. Besides the obvious advantage to data users, who no longer need to develop expertise in downscaling prior to examining impacts, the use of the downscaled data by hundreds of people has allowed a crowdsourcing approach to examining the data. The wide variety of applications employed by different users has revealed characteristics not discovered during the initial data set production. This has led to a deeper look at the downscaling methods, including the assumptions and effect of bias correction of GCM output. Here new findings are presented related to the assumption of stationarity in the relationships between large- and fine-scale climate, as well as the impact of quantile mapping bias correction on precipitation trends. The validity of these assumptions can influence the interpretations of impacts studies using data derived using these standard statistical methods and help point the way to improved methods.

  4. Health impact assessment of global climate change: expanding on comparative risk assessment approaches for policy making.

    PubMed

    Patz, Jonathan; Campbell-Lendrum, Diarmid; Gibbs, Holly; Woodruff, Rosalie

    2008-01-01

    Climate change is projected to have adverse impacts on public health. Cobenefits may be possible from more upstream mitigation of greenhouse gases causing climate change. To help measure such cobenefits alongside averted disease-specific risks, a health impact assessment (HIA) framework can more comprehensively serve as a decision support tool. HIA also considers health equity, clearly part of the climate change problem. New choices for energy must be made carefully considering such effects as additional pressure on the world's forests through large-scale expansion of soybean and oil palm plantations, leading to forest clearing, biodiversity loss and disease emergence, expulsion of subsistence farmers, and potential increases in food prices and emissions of carbon dioxide to the atmosphere. Investigators must consider the full range of policy options, supported by more comprehensive, flexible, and transparent assessment methods. PMID:18173382

  5. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  6. Assessing Human Impacts on Climate System over Global Urban Areas

    NASA Astrophysics Data System (ADS)

    Jin, M.; Dickinson, R. E.

    2002-12-01

    Urbanization as a form of rapid change in global land cover will contribute to changes of the climate system. Although the climate impacts of urban growth has been studied since the 1950s, it has only been observed through changes of surface air temperature. The past use of remote sensing to look at small areas suggests that such an approach could be very useful on larger scales. However, what is best to observe in such a context and how it might be related to the simulations of global climate models should first be addressed. Recent observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) on the NASA terra satellite can be applied to monitor urban land surface and atmospheric disturbances caused by human activities. Analyzing all of the global urban pixels for land surface skin temperature, albedo, emissivity, land cover, as well as clouds and aerosol properties, we observe that climae is modified over urban areas from the decrease of surface albedo and emissivity, and from the increase of clouds and sulfate aerosol optical depth. The unique strengths of MODIS data (global coverage, fine resolution, simultaneous measurements of various important surface and atmospheric variables) make it possible to investigate all the cities over the globe, and so advance the understanding of what is the range of urbanization effects, what determine these effects, and so suggest how impacts of urban physical processes may be addressed through use of global climate models.

  7. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect

    Bright, Ryan M. Cherubini, Francesco; Stromman, Anders H.

    2012-11-15

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black

  8. Assessing Impacts of Climate Change on Food Security Worldwide

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  9. The use of multi-model ensembles from global climate models for impact assessment of climate change

    NASA Astrophysics Data System (ADS)

    Semenov, M. A.

    2009-04-01

    The IPCC 4th Assessment Report was based on large datasets of projections of future climate produced by eighteen modelling groups worldwide who performed a set of coordinated climate experiments in which numerous global climate models (GCMs) have been run for a common set of experiments and various emission scenarios. These datasets are freely available form the IPCC Data Distribution Centre (www.ipcc-data.org) and can be used by the research community to assess the impact of changing climate on various systems of interest including impacts on agricultural crops and natural ecosystems, biodiversity and plant diseases. Multi-model ensembles (MME) emphasize the uncertainty in climate predictions resulting from structural differences in the global climate model design as well as uncertainty to variations of initial conditions or model parameters. This paper describes a methodology based on a stochastic weather generator for linking MME of predictions from GCMs with process-based impact models to assess impacts of climate change on biological or ecological systems. The latest version of the LARS-WG weather generator is described which allows seamlessly generating daily site-specific climate scenarios worldwide by utilising local daily weather and MME from GCMs. Examples of impacts on wheat in Europe, based on MME, are discussed, including changes in severity of drought and heat stress around flowering.

  10. Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Guest editorial

    USGS Publications Warehouse

    Franco, G.; Cayan, D.R.; Moser, S.; Hanemann, M.; Jones, M.A.

    2011-01-01

    Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered. ?? 2011 Springer Science+Business Media B.V.

  11. A climate robust integrated modelling framework for regional impact assessment of climate change

    NASA Astrophysics Data System (ADS)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  12. Multi-model approach to assess the impact of climate change on runoff

    NASA Astrophysics Data System (ADS)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a

  13. Basin-wide Assessment of Climate Change Impacts on Ecosystems and Biodiversity

    EPA Science Inventory

    Mekong ecosystems are under pressure from a number of "drivers", including rapid economic development, population growth, unsustainable resource use, and climate change. Ecological modeling can help assess vulnerability and impacts of these drivers on the Lower Mekong Basin.

  14. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    PubMed

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. PMID:24299081

  15. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    NASA Astrophysics Data System (ADS)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  16. The sensitivity of agricultural impacts assessment to climate data and scenario methodologies

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Assessments of climate change impacts on the agricultural sector are crucially important from the farm- to global levels. While impacts assessments have made wide and creative use of data products, climate models, and methods for downscaling and scenario generation, this variety also hinders our ability to compare impacts from one study to other assessments. The unique nature of many impacts assessments is especially problematic when evaluating the impacts of climate change on large agricultural regions and global production; a crucial scale in understanding the economic impacts and market influence on food security and land use. This presentation examines the influence of methodological choices on agricultural impacts assessment by describing results from several projects. First, the utility of a wide variety of global and regional observational data products are compared for an agricultural system in the Florida Panhandle to determine the influence of observational uncertainties, reanalysis products, remotely sensed information, and downscaled models on impacts assessment. Second, the role of future climate scenarios is isolated by running the same Panhandle station with scenarios generated through a variety of generation methods with a focus on downscaling methodologies and the climate statistics allowed to change. Finally, an ensemble of weather generators are compared across an ensemble of wheat models in a variety of major agricultural regions, isolating important sensitivities in the crop models and corresponding strengths and weaknesses in the weather generators.

  17. Climate change impact assessment on food security in Indonesia

    NASA Astrophysics Data System (ADS)

    Ettema, Janneke; Aldrian, Edvin; de Bie, Kees; Jetten, Victor; Mannaerts, Chris

    2013-04-01

    As Indonesia is the world's fourth most populous country, food security is a persistent challenge. The potential impact of future climate change on the agricultural sector needs to be addressed in order to allow early implementation of mitigation strategies. The complex island topography and local sea-land-air interactions cannot adequately be represented in large scale General Climate Models (GCMs) nor visualized by TRMM. Downscaling is needed. Using meteorological observations and a simple statistical downscaling tool, local future projections are derived from state-of-the-art, large-scale GCM scenarios, provided by the CMIP5 project. To support the agriculture sector, providing information on especially rainfall and temperature variability is essential. Agricultural production forecast is influenced by several rain and temperature factors, such as rainy and dry season onset, offset and length, but also by daily and monthly minimum and maximum temperatures and its rainfall amount. A simple and advanced crop model will be used to address the sensitivity of different crops to temperature and rainfall variability, present-day and future. As case study area, Java Island is chosen as it is fourth largest island in Indonesia but contains more than half of the nation's population and dominates it politically and economically. The objective is to identify regions at agricultural risk due to changing patterns in precipitation and temperature.

  18. Delivering CMIP5-based climate scenarios for impact assessments in Europe

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail

    2014-05-01

    Local-scale climate scenarios are required as input to impact models for assessment of climate change impacts. These scenarios incorporate changes in climatic variability as well as extreme events which are particularly important when used in conjunctions with process-based non-linear impact models. ELPIS is a repository of climate scenarios for Europe, which is based on the LARS-WG weather generator and future climate projections. Recently, projections from 18 global climate models (GCMs) from the CMIP5 multi-model ensembles used in the latest IPCC AR5 were incorporated into ELPIS. In ELPIS, the site parameters for climatic variables for the baseline period, 1980-2010, were estimated by LARS-WG from the European Crop Growth Monitoring System (CGMS) daily weather which were interpolated from observed sites over 25-km grid in Europe. Using change-factors derived from GCMs, LARS-WG perturbed site distributions for the baseline climate to generate local-scale daily weather for the future under RCP4.5 and RCP8.5 concentration pathways. The ability of LARS-WG to reproduce daily weather time series for 1980-2010 was assessed using statistical tests. Baseline site parameters, derived from CGMS, were validated against independent dataset obtained from the ECA&D archive. ELPIS represents a unique resource for impact assessments of climate change in Europe.

  19. Challenges in using probabilistic climate change information for impact assessments: an example from the water sector.

    PubMed

    New, Mark; Lopez, Ana; Dessai, Suraje; Wilby, Rob

    2007-08-15

    Climate change impacts and adaptation assessments have traditionally adopted a scenario-based approach, which precludes an assessment of the relative risks of particular adaptation options. Probabilistic impact assessments, especially if based on a thorough analysis of the uncertainty in an impact forecast system, enable adoption of a risk-based assessment framework. However, probabilistic impacts information is conditional and will change over time. We explore the implications of a probabilistic end-to-end risk-based framework for climate impacts assessment, using the example of water resources in the Thames River, UK. We show that a probabilistic approach provides more informative results that enable the potential risk of impacts to be quantified, but that details of the risks are dependent on the approach used in the analysis. PMID:17569650

  20. Data driven approaches vs. qualitative approaches in climate change impact and vulnerability assessment.

    NASA Astrophysics Data System (ADS)

    Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello

    2015-04-01

    In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.

  1. A New Framework for Spatio-temporal Climate Change Impact Assessment for Terrestrial Wildlife.

    PubMed

    Lankford-Bingle, Amber J; Svancara, Leona K; Vierling, Kerri

    2015-12-01

    We describe a first step framework for climate change species' impact assessments that produces spatially and temporally heterogeneous models of climate impacts. Case study results are provided for great gray owl (Strix nebulosa) in Idaho as an example of framework application. This framework applies species-specific sensitivity weights to spatial and seasonal models of climate exposure to produce spatial and seasonal models of climate impact. We also evaluated three methods of calculating sensitivity by comparing spatial models of combined exposure and sensitivity. We found the methods used to calculated sensitivity showed little difference, except where sensitivity was directional (i.e., more sensitive to an increase in temperature than a decrease). This approach may assist in the development of State Wildlife Action Plans and other wildlife management plans in the face of potential future climate change. PMID:26164841

  2. A New Framework for Spatio-temporal Climate Change Impact Assessment for Terrestrial Wildlife

    NASA Astrophysics Data System (ADS)

    Lankford-Bingle, Amber J.; Svancara, Leona K.; Vierling, Kerri

    2015-12-01

    We describe a first step framework for climate change species' impact assessments that produces spatially and temporally heterogeneous models of climate impacts. Case study results are provided for great gray owl ( Strix nebulosa) in Idaho as an example of framework application. This framework applies species-specific sensitivity weights to spatial and seasonal models of climate exposure to produce spatial and seasonal models of climate impact. We also evaluated three methods of calculating sensitivity by comparing spatial models of combined exposure and sensitivity. We found the methods used to calculated sensitivity showed little difference, except where sensitivity was directional (i.e., more sensitive to an increase in temperature than a decrease). This approach may assist in the development of State Wildlife Action Plans and other wildlife management plans in the face of potential future climate change.

  3. Assessing climate impacts of planning policies-An estimation for the urban region of Leipzig (Germany)

    SciTech Connect

    Schwarz, Nina Bauer, Annette Haase, Dagmar

    2011-03-15

    Local climate regulation by urban green areas is an important urban ecosystem service, as it reduces the extent of the urban heat island and therefore enhances quality of life. Local and regional planning policies can control land use changes in an urban region, which in turn alter local climate regulation. Thus, this paper describes a method for estimating the impacts of current land uses as well as local and regional planning policies on local climate regulation, using evapotranspiration and land surface emissivity as indicators. This method can be used by practitioners to evaluate their policies. An application of this method is demonstrated for the case study Leipzig (Germany). Results for six selected planning policies in Leipzig indicate their distinct impacts on climate regulation and especially the role of their spatial extent. The proposed method was found to easily produce a qualitative assessment of impacts of planning policies on climate regulation.

  4. NCEA RELEASING TWO DRAFT ASSESSMENTS ON THE POTENTIAL IMPACT OF CLIMATE CHANGE ON WATER QUALITY

    EPA Science Inventory

    NCEA has released for External Review two draft assessments: “A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Reg...

  5. Global water resources assessment at a sub-annual timescale: Application to climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2010-12-01

    Several reports have assessed water scarcity globally using the widely accepted withdrawal-to-water resources ratio (hereafter WWR). This index is defined as the ratio of annual withdrawal to the annual renewable water resources (runoff). The index has also been used widely to assess the impact of climate change on global water resources. Here, we ask whether it is appropriate to use the WWR to assess the impact of climate change. Global warming is projected to increase the mean annual runoff in many parts of the world. Therefore, in these regions, the WWR decreases, by definition. However, water scarcity may not always be alleviated in these regions. Global warming is also projected to increase the temporal and spatial variability of precipitation, decrease snowfall, and change the timing of snowmelt. These phenomena may increase the temporal gap between water availability and water demand, which might worsen local water scarcity, even if the mean annual runoff is increased. To assess the impact of climate change on global water resources incorporating subannual time-scale phenomena, this study applies a new water scarcity index, the cumulative withdrawal-to-demand ratio (hereafter CWD). This index is defined as the ratio of the accumulation of daily water withdrawal from local water resources to the accumulation of daily water demand. To estimate daily water withdrawal and water demand, we used the state-of-the-art H08 global water resources model. Our results indicated that global warming increased the mean annual runoff in 52% of the total land area globally. However, in 22% of the area where runoff increased, the CWD showed increased water stress. Those regions included India, northern China, and northern Europe. For India, the increase in water stress was attributed to the seasonal gap between runoff increase and water demand. The increased runoff was concentrated in a few months, while the high water demand months differed and were much longer. For Europe

  6. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080.

    PubMed

    Fischer, Günther; Shah, Mahendra; Tubiello, Francesco N; van Velhuizen, Harrij

    2005-11-29

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological-economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5' X 5' latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change. PMID:16433094

  7. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080

    PubMed Central

    Fischer, Günther; Shah, Mahendra; N. Tubiello, Francesco; van Velhuizen, Harrij

    2005-01-01

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological–economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5′×5′ latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change. PMID:16433094

  8. A regional level multi-hazard impact assessment based on indicators of climatic and non-climatic change

    NASA Astrophysics Data System (ADS)

    Lung, T.; Lavalle, C.; Hiederer, R.; Bouwer, L. M.

    2012-04-01

    Over the coming decades, Europe is expected to be confronted with major impacts due to anthropogenic climate change, with an increase in the frequency of some extreme weather events. Across the different European regions, impacts and vulnerability will vary in intensity and effect, according to changes in exposure to specific climatic stimuli and changes in non-climatic factors (sensitivity and vulnerability). To better prioritise adaptation strategies, there is a need for quantitative pan-European regional level assessments that are systematic and comparable across multiple hydro-meteorological hazards. This study presents an indicator-based impact assessment framework at NUTS-2 level that quantifies potential regional changes related to four weather-driven hazards: heat stress, river flood risk, drought proneness, and forest fire danger. This is done by comparing the current (baseline) situation with two scenarios, for the periods 2011-2040 and 2041-2070. For each hazard individually, the method integrates outcomes of a set of coherent high-resolution regional climate models from the ENSEMBLES project, based on the SRES A1B emission scenario, with current and projected non-climatic parameters such as land use and socio-economic factors, in order to quantify shifts in potential regional climate change impacts. In addition, an index of regional adaptive capacity is developed and compared with the impact indicators to identify regions of potentially high vulnerability. The results project strongest increases for heat stress, in particular in central Europe, and for forest fire danger, which not only rises considerably in the southern European regions but also shows a northwards shift. For drought proneness and flood risk the sign and magnitude of change vary across regions. An overall assessment combining all four hazards shows a clear trend towards increasing impact from climate-related natural hazards for most parts of Europe in the coming decades. The most

  9. Assessing the Impacts of Climate Change on Drinking Water Treatment

    EPA Science Inventory

    Climate change may affect both surface water and ground water quality. Increases (or decreases) in precipitation and related changes in flow can result in problematic turbidity levels, increased levels of organic matter, high levels of bacteria, virus and parasites and increased...

  10. Assessing Climate Change Impacts on Electric Power Generation in the Western Interconnection

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Chester, M.

    2014-12-01

    In recent years, concerns have grown over the potential impacts of climate change on electricity generation. Water resources are integral to the production of thermoelectric and hydroelectric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. Many generation technologies—including gas turbines and solar cells—are also vulnerable to changes in local climatic conditions like ambient air temperature. As extreme weather becomes more common, methods are needed to assess the impacts of climate change on regional power systems. However, these methods must also account for (1) heterogeneity in generation technologies, and (2) local variation in climatic conditions. This study uses a physically-based modeling system to assess the vulnerability of electric power infrastructure in the Western Interconnection. Climatic and hydrologic parameters relevant to power generation are identified for six generation technologies. Downscaled climate forcings are then used as inputs to a physically-based modeling system, consisting of the Variable Infiltration Capacity (VIC) hydrological model and the RBM one-dimensional stream temperature model. Impacts to generating capacity are estimated directly from changes in modeled climatic and hydrologic parameters, using functional relationships unique to each generating technology. A preliminary analysis of 1,302 power stations in the Western Interconnection reveals decreases in summertime generating capacity of 8-22%, with the largest impacts occurring at thermoelectric and hydroelectric facilities in the Pacific Northwest and California. Impacts to base-load thermoelectric plants are mitigated by recirculating cooling systems, which reduce the performance penalty of low flows and high water temperatures. Climate impacts on solar and wind capacity are relatively small, indicating that these energy sources may play a more prominent role as conventional generation

  11. An Integrated Hydro-Economic Model for Economy-Wide Climate Change Impact Assessment for Zambia

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Thurlow, J.; Diao, X.

    2008-12-01

    Zambia is a landlocked country in Southern Africa, with a total population of about 11 million and a total area of about 752 thousand square kilometers. Agriculture in the country depends heavily on rainfall as the majority of cultivated land is rain-fed. Significant rainfall variability has been a huge challenge for the country to keep a sustainable agricultural growth, which is an important condition for the country to meet the United Nations Millennium Development Goals. The situation is expected to become even more complex as climate change would impose additional impacts on rainwater availability and crop water requirements, among other changes. To understand the impacts of climate variability and change on agricultural production and national economy, a soil hydrology model and a crop water production model are developed to simulate actual crop water uses and yield losses under water stress which provide annual shocks for a recursive dynamic computational general equilibrium (CGE) model developed for Zambia. Observed meteorological data of the past three decades are used in the integrated hydro-economic model for climate variability impact analysis, and as baseline climatology for climate change impact assessment together with several GCM-based climate change scenarios that cover a broad range of climate projections. We found that climate variability can explain a significant portion of the annual variations of agricultural production and GDP of Zambia in the past. Hidden beneath climate variability, climate change is found to have modest impacts on agriculture and national economy of Zambia around 2025 but the impacts would be pronounced in the far future if appropriate adaptations are not implemented. Policy recommendations are provided based on scenario analysis.

  12. Adaptation strategies for health impacts of climate change in Western Australia: Application of a Health Impact Assessment framework

    SciTech Connect

    Spickett, Jeffery T.; Brown, Helen L.; Katscherian, Dianne

    2011-04-15

    Climate change is one of the greatest challenges facing the globe and there is substantial evidence that this will result in a number of health impacts, regardless of the level of greenhouse gas mitigation. It is therefore apparent that a combined approach of mitigation and adaptation will be required to protect public health. While the importance of mitigation is recognised, this project focused on the role of adaptation strategies in addressing the potential health impacts of climate change. The nature and magnitude of these health impacts will be determined by a number of parameters that are dependent upon the location. Firstly, climate change will vary between regions. Secondly, the characteristics of each region in terms of population and the ability to adapt to changes will greatly influence the extent of the health impacts that are experienced now and into the future. Effective adaptation measures therefore need to be developed with these differences in mind. A Health Impact Assessment (HIA) framework was used to consider the implications of climate change on the health of the population of Western Australia (WA) and to develop a range of adaptive responses suited to WA. A broad range of stakeholders participated in the HIA process, providing informed input into developing an understanding of the potential health impacts and potential adaptation strategies from a diverse sector perspective. Potential health impacts were identified in relation to climate change predictions in WA in the year 2030. The risk associated with each of these impacts was assessed using a qualitative process that considered the consequences and the likelihood of the health impact occurring. Adaptations were then developed which could be used to mitigate the identified health impacts and provide responses which could be used by Government for future decision making. The periodic application of a HIA framework is seen as an ideal tool to develop appropriate adaptation strategies to

  13. Uncertainties in assessing climate change impacts on the hydrology of Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Ludwig, Ralf

    2013-04-01

    There is substantial evidence in historical and recent observations that the Mediterranean and neighboring regions are especially vulnerable to the impacts of climate change. Numerous climate projections, stemming from ensembles of global and regional climate models, agree on severe changes in the climate forcing which are likely to exacerbate subsequent ecological, economic and social impacts. Many of these causal connections are closely linked to the general expectation that water availability will decline in the already water-stressed basins of Africa, the Mediterranean region and the Near East, even though considerable regional variances must be expected. Consequently, climate change impacts on water resources are raising concerns regarding their possible management and security implications. Decreasing access to water resources and other related factors could be a cause or a 'multiplier' of tensions within and between countries. Whether security threats arise from climate impacts or options for cooperation evolve does not depend only on the severity of the impacts themselves, but on social, economic, and institutional vulnerabilities or resilience as well as factors that influence local, national and international relations. However, an assessment of vulnerability and risks hinges on natural, socio-economic, and political conditions and responses, all of which are uncertain. Multidisciplinary research is needed to tackle the multi-facet complexity of climate change impacts on water resources in the Mediterranean and neighboring countries. This is particularly true in a region of overall data scarcity and poor data management and exchange structures. The current potential to develop appropriate regional adaptation measures towards climate change impacts suffers heavily from large uncertainties. These spread along a long chain of components, starting from the definition of emission scenarios to global and regional climate modeling to impact models and a

  14. Environmental Monitoring in the Northeast US: Foundation for Assessing the Impact of Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Frumhoff, P.; Spanger-Siegfried, E.; Hayhoe, K.

    2007-12-01

    Regional assessment of the impacts of climate change have proven to be a valuable tool for providing scientists, policymakers, private sector decision makers, not-for-profit organizations, and the general public with the best available science upon which to base informed choices concerning adaptation and mitigation strategies. Recent examples include a set of regional assessments that were undertaken as part of the US Global Climate Change Research Program in the late 1990s, and more recently four regional assessments that were performed by independent scientists working in collaboration with the Union of Concerned Scientists. The most recent of these the Northeast Climate Impacts Assessment (NECIA), relied upon environmental monitoring of key aspects of our climate system (e.g., temperature, precipitation, snow cover, streamflow, sea level rise, first leaf out dates, etc.) to track changes in the past and provide data sets for evaluating the regional performance of global and regional circulation model simulations. These types of environmental data sets also provide the basis for analyzing the impacts of climate change on society over the past several decades.

  15. Toward a Simple Probabilistic GCM Emulator for Integrated Assessment of Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Sue Wing, I.; Tebaldi, C.; Nychka, D. W.; Winkler, J.

    2014-12-01

    Climate emulators can bridge spatial scales in integrated assessment in ways that allow us to take advantage of the evolving understanding of the impacts of climate change. The spatial scales at which climate impacts occur are much finer than those of the "damage functions" in integrated assessment models (IAMs), which incorporate reduced form climate models to project changes in global mean temperature, and estimate aggregate damages directly from that. Advancing the state of IA modeling requires methods to generate—in a flexible and computationally efficient manner—future changes in climate variables at the geographic scales at which individual impact endpoints can be resolved. The state of the art uses outputs of global climate models (GCMs) forced by warming scenarios to drive impact calculations. However, downstream integrated assessments are perforce "locked-in" to the particular GCM x warming scenario combinations that generated the meteorological fields of interest—it is not possible assess risk due to the absence of probabilities over warming scenarios or model uncertainty. The availability of reduced-form models which can efficiently simulate the envelope of the response of multiple GCMs to a given amount of warming provides us with capability to create probabilistic projections of fine-scale of meteorological changes conditional on global mean temperature change to drive impact calculations in ways that permit risk assessments. This presentation documents a prototype probabilistic climate emulator for use as a GCM diagnostic tool and a driver of climate change impact assessments. We use a regression-based approach to construct multi-model global patterns for changes in temperature and precipitation from the CMIP3 archive. Crucially, regression residuals are used to derive a spatial covariance function of the model- and scenario-dependent deviations from the average pattern. By sampling from this manifold we can rapidly generate many realizations of

  16. Climate Change Impact Assessment and Adaptation Options in Vulnerable Agro-Landscapes in East-Africa

    NASA Astrophysics Data System (ADS)

    Manful, D.; Tscherning, K.; Kersebaum, K.; Dietz, J.; Dietrich, O.; Gomani, C.; Böhm, H.; Büchner, M.; Lischeid, G.,; Ojoyi, M.,

    2009-04-01

    Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.

  17. Assessing climate variability impact on thermotolerant coliform bacteria in surface water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the impacts of climate variability on fecal coliform bacteria (FCB) transport in the Upper Pearl River Watershed (UPRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) was applied to the UPRW using observed flow and FCB concentrations. The SWAT hydrologic model was ...

  18. ASSESSING THE WATER QUALITY IMPACTS OF GLOBAL CLIMATE CHANGE IN SOUTHWESTERN OHIO, U.S.A

    EPA Science Inventory

    This paper uses a watershed-scale hydrologic model (Soil and Water Assessment Tool) to simulate the water quality impacts of future climate change in the Little Miami River (LMR) watershed in southwestern Ohio. The LMR watershed, the principal source of drinking water for 1.6 mi...

  19. Climate Change Education: Quantitatively Assessing the Impact of a Botanical Garden as an Informal Learning Environment

    ERIC Educational Resources Information Center

    Sellmann, Daniela; Bogner, Franz X.

    2013-01-01

    Although informal learning environments have been studied extensively, ours is one of the first studies to quantitatively assess the impact of learning in botanical gardens on students' cognitive achievement. We observed a group of 10th graders participating in a one-day educational intervention on climate change implemented in a botanical…

  20. ASSESSING IMPACT OF SEASONAL AND INTERANNUAL CLIMATE VARIATIONS USING CLIGEN AND WEPP MODELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physically based response models are useful tools for assessing impacts of climate variations on hydrological and plant growth processes. Most response models require daily weather, which is often synthesized using stochastic daily weather generators. The objectives were to evaluate the ability of...

  1. USGCRP 2016: The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment

    EPA Science Inventory

    This assessment strengthens and expands our understanding of climate-related health impacts by providing a more definitive description of climate-related health burdens in the United States. It builds on the 2014 USGCRP National Climate Assessment and reviews and synthesizes key ...

  2. Health impacts of climate change in Vanuatu: an assessment and adaptation action plan.

    PubMed

    Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan

    2013-05-01

    Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involved the participation of a broad range of stakeholders including expert sector representatives in the areas of bio-physical, socio-economic, infrastructure, environmental diseases and food, who provided informed comment and input into the understanding of the potential health impacts and development of adaptation strategies. The risk associated with each of these impacts was assessed with the application of a qualitative process that considered both the consequences and the likelihood of each of the potential health impacts occurring. Potential adaptation strategies and actions were developed which could be used to mitigate the identified health impacts and provide responses which could be used by the various sectors in Vanuatu to contribute to future decision making processes associated with the health impacts of climate change. PMID:23618474

  3. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart, III; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  4. Using Different Spatial Scales of Climate Data for Regional Climate Impact Assessment: Effect on Crop Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Trabucco, A.; Montesarchio, M.; Mercogliano, P.; Spano, D.

    2015-12-01

    The high vulnerability of the agricultural sector to climate conditions causes serious concern regarding climate change impacts on crop development and production, particularly in vulnerable areas like the Mediterranean Basin. Crop simulation models are the most common tools applied for the assessment of such impacts on crop development and yields, both at local and regional scales. However, the use of these models in regional impact studies requires spatial input data for weather, soil, management, etc, whose resolution could affect simulation results. Indeed, the uncertainty in projecting climate change impacts on crop phenology and yield at the regional scale is affected not only by the uncertainty related to climate models and scenarios, but also by the downscaling methods and the resolution of climate data. The aim of this study was the evaluation of the effects of spatial resolutions of climate projections in estimating maturity date and grain yield for different varieties of durum wheat, common wheat and maize in Italy. The simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models included in the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, parameterized and evaluated in different experimental sites located in Italy. Dynamically downscaled climate data at different resolutions and different RCP scenarios were used as input in the crop models. A spatial platform, DSSAT-CSM based, developed in R programming language was applied to perform the simulation of maturity date and grain yield for durum wheat, common wheat and maize in each grid cell. Results, analyzed at the national and regional level, will be discussed.

  5. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  6. Research highlights: modelling to assess climate change impacts and promote development.

    PubMed

    Luxem, Katja E; Lin, Vivian S

    2015-08-01

    We highlight four recent articles on biophysical modelling for the Ecosystem Services and Poverty Alleviation (ESPA) Deltas project in the Ganges-Brahmaputra-Meghna (GBM) delta system. These publications are part of a themed collection in Environmental Science: Processes & Impacts and contribute to a larger body of collaborative work that aims to assess the impacts of changing climate, policy, and development efforts on vulnerable populations in the GBM delta. PMID:26186156

  7. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    PubMed

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. PMID:26331624

  8. Calibration of a Hydrologic Model Considering Input Uncertainty in Assessing Climate Change Impact on Streamflow

    NASA Astrophysics Data System (ADS)

    Bolisetti, T.; Datta, A. R.; Balachandar, R.

    2009-05-01

    Studies on impact assessment and the corresponding uncertainties in hydrologic regime predictions is of paramount in developing water resources management plans under climate change scenarios,. The variability in hydrologic model parameters is one of the major sources of uncertainties associated with climate change impact on streamflow. Uncertainty in hydrologic model parameters may arise from the choice of model calibration technique, model calibration period, model structure and response variables. The recent studies show that consideration of uncertainties in input variables (precipitation, evapotranspiration etc.) during calibration of a hydrologic model has resulted in decrease in prediction uncertainty. The present study has examined the significance of input uncertainty in hydrologic model calibration for climate change impact studies. A physically distributed hydrologic model, Soil and Water Assessment Tool (SWAT), is calibrated considering uncertainties in (i) model parameters only, and (ii) both model parameters and precipitation input. The Markov chain Monte Carlo algorithm is used to estimate the posterior probability density function of hydrologic model parameters. The observed daily precipitation and streamflow data of the Canard River watershed of Essex region, Ontario, Canada are used as input and output variables, respectively, during calibration. The parameter sets of the 100 most skillful hydrologic model simulations obtained from each calibration technique are used for predicting streamflow by 2070s under climate change conditions. In each run, the climate predictions of the Canadian Regional Climate Model (CRCM) for SRES scenario A2 are used as input to the hydrologic model for streamflow prediction. The paper presents the results of uncertainty in seasonal and annual streamflow prediction. The outcome of the study is expected to contribute to the assessment of uncertainty in climate change impact studies and better management of available

  9. Health Impacts of Climate Change in the Solomon Islands: An Assessment and Adaptation Action Plan

    PubMed Central

    Spickett, Jeffery T; Katscherian, Dianne

    2014-01-01

    The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of the Solomon Islands were assessed through the use of a Health Impact Assessment framework. The process used a collaborative and consultative approach with local experts to identify the impacts to health that could arise from local environmental changes, considered the risks associated with these and proposed appropriate potential adaptive responses. Participants included knowledgeable representatives from the biophysical, socio-economic, infrastructure, environmental diseases and food sectors. The risk assessments considered both the likelihood and consequences of the health impacts occurring using a qualitative process. To mitigate the adverse effects of the health impacts, an extensive range of potential adaptation strategies were developed. The overall process provided an approach that could be used for further assessments as well as an extensive range of responses which could be used by sectors and to assist future decision making associated with the Solomon Islands’ responses to climate change. PMID:25168977

  10. Health impacts of climate change in the Solomon Islands: an assessment and adaptation action plan.

    PubMed

    Spickett, Jeffery T; Katscherian, Dianne

    2014-09-01

    The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of the Solomon Islands were assessed through the use of a Health Impact Assessment framework. The process used a collaborative and consultative approach with local experts to identify the impacts to health that could arise from local environmental changes, considered the risks associated with these and proposed appropriate potential adaptive responses. Participants included knowledgeable representatives from the biophysical, socio-economic, infrastructure, environmental diseases and food sectors. The risk assessments considered both the likelihood and consequences of the health impacts occurring using a qualitative process. To mitigate the adverse effects of the health impacts, an extensive range of potential adaptation strategies were developed. The overall process provided an approach that could be used for further assessments as well as an extensive range of responses which could be used by sectors and to assist future decision making associated with the Solomon Islands' responses to climate change. PMID:25168977

  11. The impact of climate change on water resources: Assessment at the scale of the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; Olsson, Jonas; Bosshard, Thomas; Sharma, Devesh; Sharma, Kc; Arheimer, Berit

    2015-04-01

    The large increase in the atmospheric concentrations of greenhouse gases has led to the global climate change phenomenon which is expected to have a strong impact on water resources on local, regional and global scales. The Indian subcontinent is vulnerable to climate change since the region is characterized by a strong hydro-climatic gradient due to monsoon and the geographic features, and hence poses extraordinary challenges to understand, quantify and predict future availability in water resources. In here, the impact of climate change on the hydro-climatology of the subcontinent is investigated by comparing statistics of current and projected future fluxes resulting from three emission scenarios (RCP2.6, RCP4.5, and RCP8.5). The use of different emission scenarios allows for the definition of uncertainty of future impacts. Climate projections from the CORDEX-South Asia framework have been bias-corrected using the DBS (Distribution Based Scaling) method and used to force the HYPE (HYdrological Predictions for the Environment) hydrological model to generate projections of evapotranspiration, runoff, soil moisture deficit, snow depth, and applied irrigation water to soil. In addition, we assess the changes on high and low flows from all river systems as well as the changes in the annual cycles. Overall, the high uncertainty in the climate projections is propagated in the hydrological impact model, and as a result the spatiotemporal distribution of change is subject to the climate projection. In general, results from all scenarios indicate a -20 to +50% change in long-term average precipitation and evapotranspiration, yet a higher change (-100 to +100%) in runoff. Analysis of annual cycles showed that climate change impacts vary between seasons whereas the effect is dependent on the region's hydro-climatic gradient. Future scenarios project a graduate increase in temperature from 1 up to 76°C on average, which further affects the need for irrigation and snow

  12. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    NASA Astrophysics Data System (ADS)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed

  13. Can comprehensive climate impact assessment of terrestrial ecosystems be included in Life Cycle Assessment to support policy decisions?

    NASA Astrophysics Data System (ADS)

    Bright, R. M.; Cherubini, F.; Strømman, A. H.

    2014-12-01

    Decisions resulting in land use change (LUC) or land management change (LMC) rarely consider the changes to surface biophysical properties that lead to immediate land-atmosphere feedbacks and subsequent local- to regional-scale climate changes. This is likely because the sign and magnitude of the various feedback mechanisms depend largely on a multitude of highly site-specific meteorological, eco-physiological, structural, and topographic factors, making them difficult to quantify in the absence of sophisticated models with high spatial and temporal resolution. In a world increasingly dependent on biomass (and thus land) resources for energy and materials, it is unacceptable to continue ignoring important biogeophysical factors linked to land use activities in climate impact assessment studies. Although a number of useful land-atmosphere impact assessment methodologies and metrics have been proposed in recent years, they are rarely applied in the decision making process. Over the last 10-15 years, Life Cycle Assessment (LCA) has emerged as a prominent decision-support tool that relies on well-established IPCC climate metrics, yet land-atmosphere climate metrics are rarely applied. Here, we present a review of the literature enveloping methods and metrics for quantifying or characterizing climate change impacts in terrestrial ecosystems. We highlight their merits and discuss practical limitations with respect to their integration into the LCA framework. We conclude by proposing some solutions for overcoming the integration barrier and suggest some practical ways forward for both climate modelers/metric developers and LCA practitioners.

  14. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    NASA Astrophysics Data System (ADS)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  15. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    PubMed

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. PMID:26057724

  16. Assessing the impact of climate variability and human activity to streamflow variation

    NASA Astrophysics Data System (ADS)

    Chang, J.; Zhang, H.; Wang, Y.; Zhu, Y.

    2015-06-01

    Water resources in river systems have been changing under the impacts of both climate variability and human activities. Assessing the respective impacts on decadal streamflow variation is important for water resources management. By using an elasticity-based method, calibrated TOPMODEL and VIC hydrologic models, we have quantitatively isolated the relative contributions that human activity and climate variability made to decadal streamflow changes in Jinhe basin located in northwest of China. This is an important watershed of Shaanxi Province that supplies drinking water for a population of over 6 million. The results from the three methods show that both human activity and climatic differences can have major effects on catchment streamflow, and the estimates of climate variability impacts from the hydrological models are similar to those from the elasticity-based method. Compared with the baseline period of 1960-1970, streamflow greatly decreased during 2001-2010. The change impacts of human activity and climate variability in 2001-2010 were about 83.5 and 16.5% of the total reduction respectively when averaged over the three methods. The maximum contribution value of human activity was appeared in 1981-1990 due to the effects of soil and water conservation measures and irrigation water withdrawal, which was 95, 112.5 and 92.4% from TOPMODEL, VIC model and elasticity-based method respectively. The maximum value of the aridity index (E0/P) was 1.91 appeared in 1991-2000. Compared with 1960-1970 baseline period, climate variability made the greatest contributions reduction in 1991-2000, which was 47.4, 43.9 and 29.9% from TOPMODEL, VIC model and elasticity-based method respectively. We emphasized various source of errors and uncertainties that may occurre in the hydrological model (parameter and structural uncertainty) and elasticity-based method (model parameter) in climate change impact studies.

  17. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    DOE R&D Accomplishments Database

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  18. Assessing impacts of climate change on forests: The state of biological modeling

    SciTech Connect

    Dale, V.H.; Rauscher, H.M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  19. Enhancing Communication of Climate Impacts Assessments: Examples of Local Stories, Animations and Video.

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M. F.; Grigholm, B. O.

    2014-12-01

    Comprehensive climate impacts assessments are important vehicles for conveying salient information to the public and policy makers. However, over the last few decades communication of this important information has been hampered for a number of reasons. Firstly, we have a rapidly changing social media landscape, where there are fewer opportunities for in-depth treatment of issues. To compete in this arena, climate information needs to be packaged in sound bites, and much of the nuance and complexity may be lost. Secondly, scientific literacy among the general U.S. population is not particularly high, which creates a barrier to understanding and limits the audiences that can be reached. Thirdly, climate science has been undermined by misinformation over many years often funded by fossil fuel interests. While this latter obstacle is clearly diminishing - largely in the face of evidence from the undeniable climate impacts that are already being seen by communities - there has been much confusion generated to date. Despite the fact that 97% of active climate scientists agree that the planet is warming as a result of human greenhouse gas emission, only 42% of the U.S. population agrees (Pew Research, 2013). In the face of these challenges, much of the work that the Union of Concerned Scientists does to translate climate impacts assessments has shifted to visuals, animations, and videos that people can relate to and connect with more readily. In this session we will share some of the general design features, discuss target audiences, and outline production limitations of several local stories involving videos and animations, as well as present some recent infographics. One example of this work are case studies that focus on sea level rise and involve a local personality who can speak to climate impacts at the community level. We understand the power of visual images and stories in creating messages that stick, and we use this in designing animations that explain the

  20. Assessment of climate change impacts on diffuse nutrient and pesticide fluxes at the watershed scale

    NASA Astrophysics Data System (ADS)

    Arabi, M.; Records, R.; Ahmadi, M.

    2012-12-01

    The study aims to assess the potential impacts of the changing climate on pollutant fluxes including sediment, phosphorus, nitrogen, and atrazine at the watershed scale over the 21st century. Specific objectives are (i) to understand changes in climatic conditions under a comprehensive set of 112 climate projections consistent with Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC-SRES) emission pathways and models; (ii) to fully enumerate and synthesize hydrologic and water quality responses to projected climate scenarios; and (iii) to investigate changes in dissolved and particulate water quality constituents. These objectives were investigated in a predominantly agricultural watershed in the Midwestern United States. The hydrologic model Soil and Water Assessment Tool (SWAT) was utilized to represent processes governing hydrology and water quality within the watershed. The SWAT model was driven with a suite of 112 distinct dynamically downscaled climate projections representing IPCC-SERES low, moderate, and high greenhouse gas emission pathways. Statistical downscaling procedures were used to derive daily climatic values for meteorological stations in the study area from grid-based dynamically downscaled monthly predictions. Predicted changes in hydroclimatic, nutrient, and pesticide fluxes under the 112 distinct simulations were then analyzed by emission pathway ensemble and characterized over early-, mid-, and late-century assessment periods (2015-2034, 2045-2064, and 2080-2099). Clear warming trends were apparent for temperature, while increases in precipitation were insignificant. Stream discharge, sediment yield, and total nutrient yields did not differ significantly between assessment periods, although atrazine yields were predicted to be slightly greater by late-century. However, the proportion of dissolved to total nutrients increased, with nitrate and soluble phosphorus yields increasing significantly between early

  1. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    NASA Astrophysics Data System (ADS)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  2. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    NASA Technical Reports Server (NTRS)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  3. Assessing Climate Change Impacts on the Performance of Major Water Projects over China

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Liu, X.; Yin, Y. Y.; Zhang, C.; Zhang, X.

    2014-12-01

    The terrestrial water cycle has been largely altered by water projects in China. Since 1950, half of the world's large dams over 15 m height have been built in China. The installed hydropower capacity in China was 249 GW in 2012, accounting for about one-fifth of the total installed hydropower capacity of the world. China has also pursued an ambitious effort, the South-North Water Diversion Project, to transfer 44.8 billion m3 of freshwater annually from southern China to the drier north. Climate change is expected to result in changes in land surface hydrology, thus pose a huge challenge to water management. The potential impacts of climate change on the performance of the major water projects are yet to be assessed. We used a land surface hydrological model together with a simple treatment of reservoir operation to assess the impact of hydrological change on the functions of the major water projects under the Intergovernmental Panel on Climate Change (IPCC) climate and socio-economic scenarios. The bias-corrected climate data from global climate models under different Representative Concentration Pathways (RCPs) were used to drive the hydrological model. The operation of 474 major reservoirs was considered with an operating rule to generate maximum possible hydroelectricity and to fulfill water diversion demands. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement and leverage the water diversion. The modeling results suggest that climate change would have negative impacts on hydropower production and water supply reliability in China. This research highlights the need to evaluate the performance change of existing water infrastructures and to develop adaptation strategy in sustainable water management in a changing environment.

  4. Assessments of regional climate change and its impacts in Northern Europe

    NASA Astrophysics Data System (ADS)

    Omstedt, Anders; von Storch, Hans; Reckermann, Marcus; Quante, Markus

    2015-04-01

    Regional climate change assessments are urgently needed to complement the big picture with regional results and scenarios of higher resolution and with relevance for local decision makers and stakeholders. A new type of assessment report originated in the original BACC report of 2008 (BALTEX Assessment of Climate Change for the Baltic Sea region) which has served as role model for other assessments published or in preparation. It represents an approach to assessing and making available current knowledge on regional climate change and its regional impacts on the physical, biogeochemical and biological environment (ecosystems, socio-economic sphere). Reports of this type which are available or underway are the original BACC book (2008), the second BACC book (2015), the climate report for the greater Hamburg area (2011), and the NOSCCA report (North Sea Climate Change Assessment) which is expected to be published in 2016. The assessments are produced by teams of scientists from the region, led by lead authors who recruit experts from relevant topics to contribute. The process is not externally funded and completely based on published scientific evidence, and not biased by political or economic interest groups. The BACC-type reports aim to bring together consolidated knowledge that has broad consensus in the scientific community, but also acknowledging issues for which contradicting opinions are found in the literature, so that no consensus can be reached ("consensus on dissensus"). An international steering committee is responsible for overlooking the process, and all manuscripts are anonymously peer-reviewed by independent international experts. An outstanding outreach aspect of these reports is the close collaboration with regional stakeholders (for the BACC reports: HELCOM, the intergovernmental Baltic Marine Environment Protection Commission and the major regional science-policy interface in the Baltic Sea region; for the Hamburg climate report: the Hamburg city

  5. Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain)

    NASA Astrophysics Data System (ADS)

    Candela, Lucila; von Igel, Wolf; Javier Elorza, F.; Aronica, Giuseppe

    2009-10-01

    SummaryClimate change impact on a groundwater dependent wetland and natural recharge has been investigated in the Inca-Sa Pobla coastal aquifer for the year 2025. Temperature and precipitation based on the downscaled output from a general circulation model (GCM) was coupled to a groundwater model to estimate the impacts of climate change and management practices on groundwater. Management practices were based on changes in the volume of water extracted for agricultural and domestic purposes. Climate change impacts on the hydrogeological system were based on downscaled HadCM3 outputs for future medium-high (A2) and medium-low (B2) greenhouse gas scenarios developed by the IPCC [IPCC, 2001. Climate change 2001: the scientific basis. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van Der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Contribution of Working Group I to the Third Assessment Reports of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp]. Assessment of the impacts on the water level of the wetland were carried out by estimating the flow rate of springs discharging from the aquifer obtained by changes of agricultural land use and water supply allocation and variation of recharge according climate scenarios. The greatest reduction in recharge was observed in scenario A2 (-21%), while recharge in scenario B2 remained relatively unchanged (-4%). However, as uncertainties arising from GCM outputs maybe greater than the differences simulated here results are only indicative of the system response. In order to preserve the spring discharge at its current level (17 Mm 3/yr), which successfully prevents the wetland from drying up, a decrease in groundwater extraction is needed. In addition, the reallocation of agricultural wells is recommended under both scenarios. Spring discharge was affected the most by agricultural wells located near the wetland, as indicated by

  6. Assessing Portuguese Guadiana Basin water management impacts under climate change and paleoclimate variability

    NASA Astrophysics Data System (ADS)

    Maia, Rodrigo; Oliveira, Bruno; Ramos, Vanessa; Brekke, Levi

    2014-05-01

    The water balance in each reservoir and the subsequent, related, water resource management decisions are, presently, highly information dependent and are therefore often limited to a reactive response (even if aimed towards preventing future issues regarding the water system). Taking advantage of the availability of scenarios for climate projections, it is now possible to estimate the likely future evolution of climate which represents an important stepping stone towards proactive, adaptative, water resource management. The purpose of the present study was to assess the potential effects of climate change in terms of temperature, precipitation, runoff and water availability/scarcity for application in water resource management decisions. The analysis here presented was applied to the Portuguese portion of the Guadiana River Basin, using a combination of observed climate and runoff data and the results of the Global Climate Models. The Guadiana River Basin was represented by its reservoirs on the Portuguese portion of the basin and, for the future period, an estimated value of the inflows originating in the Spanish part of the Basin. The change in climate was determined in terms of relative and absolute variations of climate (precipitation and temperature) and hydrology (runoff and water balance related information). Apart from the previously referred data, an hydrological model and a water management model were applied so as to obtain an extended range of data regarding runoff generation (calibrated to observed data) and water balance in the reservoirs (considering the climate change impacts in the inflows, outflows and water consumption). The water management model was defined in order to represent the reservoirs interaction including upstream to downstream discharges and water transfers. Under the present climate change context, decision-makers and stakeholders are ever more vulnerable to the uncertainties of climate. Projected climate in the Guadiana basin

  7. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO): Science at Your Fingertips

    NASA Astrophysics Data System (ADS)

    Jennings, L. N.; Treasure, E.; Moore Myers, J.; McNulty, S.

    2012-12-01

    There is an ever-increasing volume of useful scientific knowledge about climate change effects and management options for natural ecosystems. Agencies such as the USDA Forest Service have been charged with the need to evaluate this body of knowledge and if necessary adapt to the impacts of climate change in their forest planning and management. However, the combined volume of existing information and rate of development of new information, lack of climate change specialists, and limited technology transfer mechanisms make efficient access and use difficult. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) addresses this difficulty through its publically accessible web-based tool that puts current and concise climate change science at the fingertips of forest planners and managers. A collaborative product of the USDA Forest Service Research Stations and the National Forest System, TACCIMO integrates peer-reviewed research with management and planning options through search and reporting tools that connect land managers with information they can trust. TACCIMO highlights elements from the wealth of climate change science with attention to what natural resource planners and managers need through a searchable repository of over 4,000 effects of climate change and close to 1,000 adaptive management options, all excerpted from a growing body of peer-reviewed scientific literature. A geospatial mapping application provides downscaled climate data for the nation and other spatially explicit models relevant to evaluating climate change impacts on forests. Report generators assist users in capturing outputs specific to a given location and resource area in a consistent and organized manner. For USDA Forest Service users, science findings can be readily linked with management conditions and capabilities from national forest management plans. The development of TACCIMO was guided by interactions with natural resource professionals, resulting

  8. Satellite remote sensing assessment of climate impact on forest vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2009-04-01

    Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and

  9. Predicting Low Flow Conditions from Climatic Indices - Indicator-Based Modeling for Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Fangmann, Anne; Haberlandt, Uwe

    2014-05-01

    In the face of climate change, the assessment of future hydrological regimes has become indispensable in the field of water resources management. Investigation of potential change is vital for proper planning, especially with regard to hydrological extremes. Commonly, projection of future streamflow is done applying process-based hydrological models, using climate model data as input, whose complex model structures generally require excessive amounts of time and effort for set-up and computation. This study aims at identifying practical alternatives to the employment of sophisticated models by considering simpler, yet sufficiently accurate methods for modeling rainfall-runoff relations with regard to hydrological extremes. The focus is thereby put on the prediction of low flow periods, which are, in contrast to flood events, characterized by extended durations and spatial dimensions. The models to be established in this study base on indicators, which characterize both meteorological and hydrological conditions within dry periods. This approach makes direct use of the coupling between atmospheric driving forces and streamflow response with the underlying presumption that low-precipitation and high-evaporation periods result in diminished flow, implying that relationships exist between the properties of both meteorological and hydrological events (duration, volume, severity etc.). Eventually, optimal combinations of meteorological indicators are sought that are suitable to predict various low flow characteristics with satisfactory accuracy. Two approaches for model specification are tested: a) multiple linear regression, and b) Fuzzy logic. The data used for this study are daily time series of mean discharge obtained from 294 gauges with variable record length situated in the federal state of Lower Saxony, Germany, as well as interpolated climate variables available for a period from 1951 to 2011. After extraction of a variety of indicators from the available

  10. Towards an integrated economic assessment of climate change impacts on agriculture

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, H.; Piontek, F.; Stevanovic, M.; Popp, A.; Bauer, N.; Dietrich, J.; Mueller, C.; Schmitz, C.

    2012-12-01

    For a detailed understanding of the effects of climate change on global agricultural production systems, it is essential to consider the variability of climate change patterns as projected by General Circulation Models (GCMs), their bio-physical impact on crops and the response in land-use patterns and markets. So far, approaches that account for the interaction of bio-physical and economic impacts are largely lacking. We present an integrative analysis by using a soft-coupled system of a biophysical impact model (LPJmL, Bondeau et al. 2007), an economically driven land use model (MAgPIE, Lotze-Campen et al. 2008) and an integrated assessment model (ReMIND-R, Leimbach et al. 2010) to study climate change impacts and economic damages in the agricultural sector. First, the dynamic global vegetation and hydrology model LPJmL is used to derive climate change impacts on crop yields for wheat, maize, soy, rice and other major crops. A range of different climate projections is used, taken from the dataset provided by the Intersectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org), which bias-corrected the latest CMIP5 climate data (Taylor et al. 2011). Crop yield impacts cover scenarios with and without CO2 fertilization as well as different Representative Concentration Pathways (RCPs) and different GCMs. With increasing temperature towards the end of the century yields generally decrease in tropical and subtropical regions, while they tend to benefit in higher latitudes. LPJmL results have been compared to other global crop models in the Agricultural Model Intercomparison and Improvement Project (AgMIP, www.agmip.org). Second, changes in crop yields are analysed with the spatially explicit agro-economic model MAgPIE, which covers their interaction with economic development and changes in food demand. Changes in prices as well as welfare changes of producer and consumer surplus are taken as economic indicators. Due to climate-change related reductions in

  11. Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, M. R.; Swart, R.

    2009-12-01

    Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that

  12. The AgMIP Wheat Pilot: A multi-model approach for climate change impact assessments.

    NASA Astrophysics Data System (ADS)

    Asseng, S.

    2012-12-01

    Asseng S., F. Ewert, C. Rosenzweig, J.W. Jones, J.L. Hatfield, A. Ruane, K.J. Boote, P. Thorburn, R.P. Rötter, D. Cammarano, N. Brisson, B. Basso, P. Martre, D. Ripoche, P. Bertuzzi, P. Steduto, L. Heng, M.A. Semenov, P. Stratonovitch, C. Stockle, G. O'Leary, P.K. Aggarwal, S. Naresh Kumar, C. Izaurralde, J.W. White, L.A. Hunt, R. Grant, K.C. Kersebaum, T. Palosuo, J. Hooker, T. Osborne, J. Wolf, I. Supit, J.E. Olesen, J. Doltra, C. Nendel, S. Gayler, J. Ingwersen, E. Priesack, T. Streck, F. Tao, C. Müller, K. Waha, R. Goldberg, C. Angulo, I. Shcherbak, C. Biernath, D. Wallach, M. Travasso, A. Challinor. Abstract: Crop simulation models have been used to assess the impact of climate change on agriculture. These assessments are often carried out with a single model in a limited number of environments and without determining the uncertainty of simulated impacts. There is a need for a coordinated effort bringing together multiple modeling teams which has been recognized by the Agricultural Model Intercomparison and Improvement Project (AgMIP; www.agmip.org). AgMIP aims to provide more robust estimates of climate impacts on crop yields and agricultural trade, including estimates of associated uncertainties. Here, we present the AgMIP Wheat Pilot Study, the most comprehensive model intercomparison of the response of wheat crops to climate change to date, including 27 wheat models. Crop model uncertainties in assessing climate change impacts are explored and compared with field experimental and Global Circulation Model uncertainties. Causes of impact uncertainties and ways to reduce these are discussed.

  13. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands

    NASA Astrophysics Data System (ADS)

    Reidsma, Pytrik; Wolf, Joost; Kanellopoulos, Argyris; Schaap, Ben F.; Mandryk, Maryia; Verhagen, Jan; van Ittersum, Martin K.

    2015-04-01

    Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.

  14. Assessing the Climate Change Impact on Rainfall IDF Curves in the Apalachicola River Basin, Florida

    NASA Astrophysics Data System (ADS)

    Wang, D.; Hagen, S. C.; Yeh, G.; Bacopoulos, P.

    2010-12-01

    To model the climate change impact on the hydrology of the coastal area, both sea level rise and the inland precipitation and temperature change need to be considered. The change of rainfall characteristics especially for extreme events, which are represented by rainfall intensity-duration-frequency (IDF) curves, is important for the water flow and sediment transport to and within coastal ecosystems. Predicted future climate change impacts for Florida include higher temperatures and increases in precipitation, leading to an intensification of the hydrologic cycle. There are several challenges to predict the IDF curves under future climate change scenarios: 1) GCMs (general circulation models) or RCMs (regional climate models) perform well for general statistics (such as annual or monthly rainfall) but not for extreme rainfall events at the local scale; 2) the temporal disaggregation of rainfall from GCM or RCM may be needed, e.g., from daily to hourly. Taking the Apalachicola River Basin in Florida as an example, this study assesses the change of IDF curves from baseline (e.g., current condition) to the future (e.g., 2070-2100) by two methods. One method is to construct a statistical IDF model based on the long-term rainfall records where the change of IDF curves is investigated from a retrospective view. The statistical model is applied to predict the IDF curves in the future. The other method is to assess the IDF curve changes using an ensemble of RCMs. The results from each approach will be compared and contrasted, and shown to be beneficial for simulating hydrodynamics and sediment transport over inland areas when assessing impacts of climate change.

  15. Assessing the impact of future land use and land cover changes on climate over Brazilian semiarid

    NASA Astrophysics Data System (ADS)

    Cunha, A. M.; Alvalá, R. S.; Kubota, P. Y.; Vieira, R.

    2013-12-01

    The continental surface vegetal cover has been considerably changed by human activities, mainly through natural vegetation conversion in grasslands. Such changes in surface cover may impact the regional and global climates, through of the changes in biophysical processes and CO2 exchanges between vegetation and atmosphere. In recent decades, most of the Brazilian territory has been presenting transformation in the land use/cover spatial patterns. The typical vegetation of the Brazilian semiarid, known as caatinga (closed shrubland) had been replaced by pasture lands. Based on that, the main objective of this work was to investigate the impacts of future land cover and land use changes (LCLUC) on surface processes and on the climate of Brazilian semiarid region. Numerical experiments using the AGCM/CPTEC/IBIS were performed in order to investigate the impacts of LCLUC on the climate of Brazilian semiarid due to the replacement of natural vegetation by pasture and degraded areas. The climate impacts of LUCC were assessed using climate simulations considering two scenarios of vegetation distribution: i) Potential Vegetation (Control) and ii) Future scenario of the vegetation: maximum pasture limited by areas of desert and semidesert. These degraded areas were obtained from the future projection of the biome distribution in South America developed by Salazar Velasquez (2009) using CPTEC PVMReg and emission scenarios A2 of the Intergovernmental Panel on Climate Change (IPCC). In general, the simulation results showed that the LCLUC, due to the changes in relevant surface variables, has caused alterations in local and neighborhood regions climate. The LCLUC leads to a decrease in mean rainfall during dry season at study area. A meridional dipole pattern with near surface temperature increase (reduction) in the northern (southern) areas of semiarid was found. The results also highlight that LUCC led to changes in the components of the surface energy and carbon balance

  16. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.

    PubMed

    Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A

    2012-12-01

    Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant

  17. Rising to the Challenge of Climate Impact Assessment in the Arctic (Invited)

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.

    2013-12-01

    The environmental changes ongoing in Arctic Regions have clearly demonstrated the climate is changing however assessing and predicting the impacts upon the physical and biological systems remains an important research challenge. To truly understand the evolution of the environment in response to a warming climate, we cannot investigate single components in isolation. We must change our perspective to include the dynamic linkages and feedbacks among system components, including physical and biological processes and in some cases societal interactions. The land areas of the Arctic are changing rapidly. The permafrost is degrading, lakes are draining, soils are getting drier, plant and animal species are migrating northward, snow is melting earlier and returning later. The marine system is also experiencing marked changes, most notably loss of sea ice, warming of deeper layers, changes in cloudiness and weather, acidification and migration of species. Trends of decreasing sea ice and increased open-water fetch, combined with warming air and ground temperatures, result in higher wave energy, increased seasonal thaw, and accelerated coastal retreat along large parts of circum-Arctic coast. All of these changes are having a significant impact upon local environment, but these changes are occurring over such a large area, they are beginning to affect regional and perhaps even global climate. We will not be able accurately forecast the impacts of changing climate conditions until we can accurately incorporate the processes of those dynamics in the integrated system.

  18. European monitoring systems and data for assessing environmental and climate impacts on human infectious diseases.

    PubMed

    Nichols, Gordon L; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C

    2014-04-01

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden. PMID:24722542

  19. European Monitoring Systems and Data for Assessing Environmental and Climate Impacts on Human Infectious Diseases

    PubMed Central

    Nichols, Gordon L.; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C.

    2014-01-01

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden. PMID:24722542

  20. Assessing climate impacts and risks of ocean albedo modification in the Arctic

    NASA Astrophysics Data System (ADS)

    Mengis, N.; Martin, T.; Keller, D. P.; Oschlies, A.

    2016-05-01

    The ice albedo feedback is one of the key factors of accelerated temperature increase in the high northern latitudes under global warming. This study assesses climate impacts and risks of idealized Arctic Ocean albedo modification (AOAM), a proposed climate engineering method, during transient climate change simulations with varying representative concentration pathway (RCP) scenarios. We find no potential for reversing trends in all assessed Arctic climate metrics under increasing atmospheric CO2 concentrations. AOAM only yields an initial offset during the first years after implementation. Nevertheless, sea ice loss can be delayed by 25(60) years in the RCP8.5(RCP4.5) scenario and the delayed thawing of permafrost soils in the AOAM simulations prevents up to 40(32) Pg of carbon from being released by 2100. AOAM initially dampens the decline of the Atlantic Meridional Overturning and delays the onset of open ocean deep convection in the Nordic Seas under the RCP scenarios. Both these processes cause a subsurface warming signal in the AOAM simulations relative to the default RCP simulations with the potential to destabilize Arctic marine gas hydrates. Furthermore, in 2100, the RCP8.5 AOAM simulation diverts more from the 2005-2015 reference state in many climate metrics than the RCP4.5 simulation without AOAM. Considering the demonstrated risks, we conclude that concerning longer time scales, reductions in emissions remain the safest and most effective way to prevent severe changes in the Arctic.

  1. Assessing the impacts of climate change on river basin management: A new method with application to the Nile River

    NASA Astrophysics Data System (ADS)

    Tidwell, Amy C.

    A framework is developed for the assessment of climate change impacts on water resources systems. The applied techniques include: quantifying global climate model (GCM) skill over a range of time scales; developing future climate scenarios based on GCM data that are found to skillfully represent the observed climate over an historical baseline period; and using the climate scenarios together with hydrologic and water resources models to make assessments of the potential impacts and implications of climate change on water resources systems. A statistical analysis of GCM skill in East Africa shows that temperature is well represented in the GCMs at monthly to annual time scales. Precipitation is found to be much less reliable in the models and shows skill in fewer seasons and nodes than temperature. Eight climate scenarios, stemming from three global climate models and two atmospheric emissions scenarios, project temperature increases between 2 and 5° Celsius by the year 2080. Precipitation projections vary widely across models as well as regionally. The scenarios project changes in precipitation from -38% to +42%. The climate change impact methodology is applied to the Nile River Basin. It is shown that, in spite of widely varying precipitation projections, the major sub-basins of the Nile River will experience decreases in watershed runoff under all eight climate scenarios. Detailed water resources models are employed to assess the system wide response to the climate-induced hydrologic changes. The assessments indicate that water supply deficits will emerge by 2030 and continue to grow in frequency and magnitude by 2080. Additional impacts include reservoir depletion and reduced hydropower generation. An assessment of the river system response to basin development projects, including additional water storage and wetlands water conservation, indicates that adverse climate impacts may be mitigated for 30 to 40 years. The assessments demonstrate the relevance of

  2. Phenology as an Integrative Science for Assessment of Global Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Weltzin, J.; Losleben, M. V.

    2007-12-01

    Phenology is the study of periodic plant and animal life cycle events and how these are influenced by seasonal and interannual variations in climate. Examples include the timing of leafing and flowering, agricultural crop stages, insect emergence, and animal migration. All of these events are sensitive measures of climatic variation and change, are relatively simple to record and understand, and are vital to both the scientific and public interest. Integration of spatially-extensive phenological data and models with both short and long-term climatic forecasts offer a powerful agent for human adaptation to ongoing and future climate change. However, a new data resource of national scale is needed to capture the valuable information potential of phenological responses to climate change; to study its nature, pace and the effects of ecosystem function; and to understand connectivity and synchrony among species. The USA National Phenology Network (USA-NPN) is being designed and organized to engage federal agencies, environmental networks and field stations, educational institutions, and mass participation by citizen scientists to create this data resource, and develop phenology research potential. This presentation illustrates the variety of source, scale, and use of phenology in assessing current and future global climate change impacts.

  3. Assessing climate change impacts on water resources in remote mountain regions

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  4. Assessment of climate change impacts on meteorological and hydrological droughts in the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Marcos-Garcia, Patricia; Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio

    2016-04-01

    Extreme natural phenomena, and more specifically droughts, constitute a serious environmental, economic and social issue in Southern Mediterranean countries, common in the Mediterranean Spanish basins due to the high temporal and spatial rainfall variability. Drought events are characterized by their complexity, being often difficult to identify and quantify both in time and space, and an universally accepted definition does not even exist. This fact, along with future uncertainty about the duration and intensity of the phenomena on account of climate change, makes necessary increasing the knowledge about the impacts of climate change on droughts in order to design management plans and mitigation strategies. The present abstract aims to evaluate the impact of climate change on both meteorological and hydrological droughts, through the use of a generalization of the Standardized Precipitation Index (SPI). We use the Standardized Flow Index (SFI) to assess the hydrological drought, using flow time series instead of rainfall time series. In the case of the meteorological droughts, the Standardized Precipitation and Evapotranspiration Index (SPEI) has been applied to assess the variability of temperature impacts. In order to characterize climate change impacts on droughts, we have used projections from the CORDEX project (Coordinated Regional Climate Downscaling Experiment). Future rainfall and temperature time series for short (2011-2040) and medium terms (2041-2070) were obtained, applying a quantile mapping method to correct the bias of these time series. Regarding the hydrological drought, the Témez hydrological model has been applied to simulate the impacts of future temperature and rainfall time series on runoff and river discharges. It is a conceptual, lumped and a few parameters hydrological model. Nevertheless, it is necessary to point out the time difference between the meteorological and the hydrological droughts. The case study is the Jucar river basin

  5. A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario

    NASA Astrophysics Data System (ADS)

    Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.

    2014-12-01

    It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.

  6. Assessing the impact of climate variability and human activities on streamflow variation

    NASA Astrophysics Data System (ADS)

    Chang, Jianxia; Zhang, Hongxue; Wang, Yimin; Zhu, Yuelu

    2016-04-01

    Water resources in river systems have been changing under the impact of both climate variability and human activities. Assessing the respective impact on decadal streamflow variation is important for water resource management. By using an elasticity-based method and calibrated TOPMODEL and VIC hydrological models, we quantitatively isolated the relative contributions that human activities and climate variability made to decadal streamflow changes in the Jinghe basin, located in the northwest of China. This is an important watershed of the Shaanxi province that supplies drinking water for a population of over 6 million people. The results showed that the maximum value of the moisture index (E0/P) was 1.91 and appeared in 1991-2000, and the decreased speed of streamflow was higher since 1990 compared with 1960-1990. The average annual streamflow from 1990 to 2010 was reduced by 26.96 % compared with the multiyear average value (from 1960 to 2010). The estimates of the impacts of climate variability and human activities on streamflow decreases from the hydrological models were similar to those from the elasticity-based method. The maximum contribution value of human activities was 99 % when averaged over the three methods, and appeared in 1981-1990 due to the effects of soil and water conservation measures and irrigation water withdrawal. Climate variability made the greatest contribution to streamflow reduction in 1991-2000, the values of which was 40.4 %. We emphasized various source of errors and uncertainties that may occur in the hydrological model (parameter and structural uncertainty) and elasticity-based method (model parameter) in climate change impact studies.

  7. Assessing the impact of climate variability and human activities on streamflow variation

    NASA Astrophysics Data System (ADS)

    Chang, J.; Zhang, H.; Wang, Y.; Zhu, Y.

    2015-12-01

    Water resources in river systems have been changing under the impact of both climate variability and human activities. Assessing the respective impact on decadal streamflow variation is important for water resource management. By using an elasticity-based method and calibrated TOPMODEL and VIC hydrological models, we quantitatively isolated the relative contributions that human activities and climate variability made to decadal streamflow changes in Jinghe basin, located in the northwest of China. This is an important watershed of Shaanxi Province that supplies drinking water for a population of over 6 million people. The results showed that the maximum value of the moisture index (E0/P) was 1.91 and appeared in 1991-2000 and that the decreased speed of streamflow was higher since 1990. The average annual streamflow from 1990 to 2010 was reduced by 26.96 % compared with the multi-year average value. The estimates of climate variability and the impact of human activities on streamflow decreases from the hydrological models were similar to those from the elasticity-based method. The maximum contribution value of human activities was appeared in 1981-1990 due to the effects of soil and water conservation measures and irrigation water withdrawal. Climate variability made the greatest contribution to reduction in 1991-2000, the values of which were 99 and 40.4 % when averaged over the three methods. We emphasized various source of errors and uncertainties that may occur in the hydrological model (parameter and structural uncertainty) and elasticity-based method (model parameter) in climate change impact studies.

  8. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    NASA Astrophysics Data System (ADS)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  9. Assessing very long-range impacts from a rapid climate change

    SciTech Connect

    Markley, O.W.; Hall, P.R.

    1982-01-01

    A variety of anthropogenic, or human-generated forces are gradually changing global climate. These include effects due to slash and burn agriculture, industrial particulates, waste heat and gasses such as chlorofluoromethanes, nitrous oxide, and carbon dioxide. Although the short-range effects of these forces may seem to be relatively minor from a long-range perspective, climatologists warn that the long-range effects - especially of increases in atmospheric carbon dioxide resulting from widespread fossil fuel use - will be great, bringing significant alterations in atmospheric temperature, wind and ocean currents, precipitation patterns, and other ecological phenomena. From a geological time perspective, the resulting climate changes will occur quite rapidly, and will affect human concerns in a number of ways. Besides being important for long-range social planning, these effects are of intrinsic interest to futures research and impact assessment methodologists. Although many uncertainties exist in long-range climate forecasting, climate change comprises one of the very few classes of phenomena where the nature of very long-range (i.e., 30 to 3000 years) impact-producing changes are feasible to forecast in reasonably rigorous, quantitative terms.

  10. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    NASA Astrophysics Data System (ADS)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2016-02-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2 ), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  11. The Future of Hydropower: Assessing the Impacts of Climate Change, Energy Prices and New Storage Technologies

    NASA Astrophysics Data System (ADS)

    Gaudard, Ludovic; Madani, Kaveh; Romerio, Franco

    2016-04-01

    The future of hydropower depends on various drivers, and in particular on climate change, electricity market evolution and innovation in new storage technologies. Their impacts on the power plants' profitability can widely differ in regards of scale, timing, and probability of occurrence. In this respect, the risk should not be expressed only in terms of expected revenue, but also of uncertainty. These two aspects must be considered to assess the future of hydropower. This presentation discusses the impacts of climate change, electricity market volatility and competing energy storage's technologies and quantifies them in terms of annual revenue. Our simulations integrate a glacio-hydrological model (GERM) with various electricity market data and models (mean reversion and jump diffusion). The medium (2020-50) and long-term (2070-2100) are considered thanks to various greenhouse gas scenarios (A1B, A2 and RCP3PD) and the stochastic approach for the electricity prices. An algorithm named "threshold acceptance" is used to optimize the reservoir operations. The impacts' scale, and the related uncertainties are presented for Mauvoisin, which is a storage-hydropower plant situated in the Swiss Alps, and two generic pure pumped-storage installations, which are assessed with the prices of 17 European electricity markets. The discussion will highlight the key differences between the impacts brought about by the drivers.

  12. Integrated regional assessment of global climatic change: lessons from the Mackenzie Basin Impact Study (MBIS)

    NASA Astrophysics Data System (ADS)

    Cohen, Stewart J.

    1996-04-01

    This paper outlines the potential role integrated regional assessments of global climatic change scenarios could play in building better links between science and related policy concerns. The concept is illustrated through description of an ongoing case study from Canada—the Mackenzie Basin Impact Study (MBIS). As part of the Government of Canada's Green Plan, the Global Warming Science Program includes a study of regional impacts of global warming scenarios in the Mackenzie Basin, located in northwestern Canada. The MBIS is a six-year program focussing on potential climate-induced changes in the land and water resource base, and the implications of four scenarios of global climatic change on land use and economic policies in this region. These policy issues include interjurisdictional water management, sustainability of native lifestyles, economic development opportunities (agriculture, forestry, tourism, etc.), sustainability of ecosystems and infrastructure maintenance. MBIS is due to be completed in 1997. MBIS represents an attempt to address regional impacts by incorporating a "family of integrators" into the study framework, and by directly involving stakeholders in planning and research activities. The experience in organizing and carrying out this project may provide some lessons for others interested in organizing regional or country studies.

  13. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  14. Northwest Regional Climate Assessment

    NASA Technical Reports Server (NTRS)

    Lipschultz, Fred

    2011-01-01

    Objectives are to establish a continuing, inclusive National process that: 1) synthesizes relevant science and information 2) increases understanding of what is known & not known 3) identifies information needs related to preparing for climate variability and change, and reducing climate impacts and vulnerability 4) evaluates progress of adaptation & mitigation activities 5) informs science priorities 6) builds assessment capacity in regions and sectors 7) builds understanding & skilled use of findings

  15. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    NASA Technical Reports Server (NTRS)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates

  16. The Arctic as a test case for an assessment of climate impacts on national security.

    SciTech Connect

    Taylor, Mark A.; Zak, Bernard Daniel; Backus, George A.; Ivey, Mark D.; Boslough, Mark Bruce Elrick

    2008-11-01

    The Arctic region is rapidly changing in a way that will affect the rest of the world. Parts of Alaska, western Canada, and Siberia are currently warming at twice the global rate. This warming trend is accelerating permafrost deterioration, coastal erosion, snow and ice loss, and other changes that are a direct consequence of climate change. Climatologists have long understood that changes in the Arctic would be faster and more intense than elsewhere on the planet, but the degree and speed of the changes were underestimated compared to recent observations. Policy makers have not yet had time to examine the latest evidence or appreciate the nature of the consequences. Thus, the abruptness and severity of an unfolding Arctic climate crisis has not been incorporated into long-range planning. The purpose of this report is to briefly review the physical basis for global climate change and Arctic amplification, summarize the ongoing observations, discuss the potential consequences, explain the need for an objective risk assessment, develop scenarios for future change, review existing modeling capabilities and the need for better regional models, and finally to make recommendations for Sandia's future role in preparing our leaders to deal with impacts of Arctic climate change on national security. Accurate and credible regional-scale climate models are still several years in the future, and those models are essential for estimating climate impacts around the globe. This study demonstrates how a scenario-based method may be used to give insights into climate impacts on a regional scale and possible mitigation. Because of our experience in the Arctic and widespread recognition of the Arctic's importance in the Earth climate system we chose the Arctic as a test case for an assessment of climate impacts on national security. Sandia can make a swift and significant contribution by applying modeling and simulation tools with internal collaborations as well as with outside

  17. Towards Supporting Climate Scientists and Impact Assessment Analysts with the Big Data Europe Platform

    NASA Astrophysics Data System (ADS)

    Klampanos, Iraklis; Vlachogiannis, Diamando; Andronopoulos, Spyros; Cofiño, Antonio; Charalambidis, Angelos; Lokers, Rob; Konstantopoulos, Stasinos; Karkaletsis, Vangelis

    2016-04-01

    The EU, Horizon 2020, project Big Data Europe (BDE) aims to support European companies and institutions in effectively managing and making use of big data in activities critical to their progress and success. BDE focuses on seven areas of societal impact: Health, Food and Agriculture, Energy, Transport, Climate, Social Sciences and Security. By reaching out to partners and stakeholders, BDE aims to elicit data-intensive requirements for, and deliver an ICT platform to cover aspects of publishing and consuming semantically interoperable, large-scale, multi-lingual data assets and knowledge. In this presentation we will describe the first BDE pilot for Climate, focusing on SemaGrow, its core component, which provides data querying and management based on data semantics. Over the last few decades, extended scientific effort in understanding climate change has resulted in a huge volume of model and observational data. Large international global and regional model inter-comparison projects have focused on creating a framework in support of climate model diagnosis, validation, documentation and data access. The application of climate model ensembles, a system consisting of different possible realisations of a climate model, has further significantly increased the amount of climate and weather data generated. The provision of such models satisfies the crucial objective of assessing potential impacts of climate change on well-being for adaptation, prevention and mitigation. One of the methodologies applied by the climate research and impact assessment communities is that of dynamical downscaling. This calculates values of atmospheric variables in smaller spatial and temporal scales, given a global model. On the company or institution level, this process can be greatly improved in terms of querying, data ingestion from various sources and formats, automatic data mapping, etc. The first Climate BDE pilot will facilitate the process of dynamical downscaling by providing a

  18. Assessing bio-economic impacts and climate adaptation potential in Flanders

    NASA Astrophysics Data System (ADS)

    Gobin, A.

    2009-04-01

    According to Global Circulation Model predictions, Belgium is situated on a wedge between a wetter and drier climatic regime. Observed changes show an increase of 1.3°C during the past decade, a higher frequency of warm summer days and a 6% increase in rainfall with a pronounced rise in winter precipitation of about 25% as compared to the normal (1961-1990). Since agriculture is particularly sensitive to climate variability and occupies more than 61% of the land surface in Flanders, the rural landscape will be confronted with profound changes. A combination of climate scenarios, production models and economic evaluation was used to assess climate impacts on agricultural goods & services, adaptation costs due to production losses and adaptation options. Agro-ecosystems offer a wide range of productive, supporting, regulating and cultural services to society. Productive services relate to crop, animal and energy production, but will alter with climate change. Supporting services such as biodiversity, soil and water quality will be negatively affected by a higher climate variability, increasing erosion and sediment transport, enhancing the breakdown of soil organic matter, lowering soil quality and increasing runoff or leaching of agri-chemicals. The effect of a warmer climate on regulating services is an intensification of most nutrient cycles with increased emissions, which may be compensated for by carbon storage in faster and longer growing crops. The need for flooding areas may result in a net-reduction of the agricultural area. A higher probability of dry weather during summer time and a longer growing season may enlarge the attraction of recreating in rural areas. Knowledge on the interaction of agro-ecosystem services and climate change is required to formulate sustainable adaptation measures. Heat stress and water shortages lead to reduced crop growth, whereas increased CO2-concentrations and a prolonged growing season have a positive effect on crop yields

  19. ASSESSING IMPACT OF INTERANNUAL CLIMATE VARIATIONS ON WATER RESOURCES AND CROP PRODUCTIVITY USING CLIGEN AND WEPP MODELS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physically based hydrological and plant growth models are useful tools for assessing the impact of climate variations. Most response models require daily weather, which is often synthesized using stochastic daily weather generators. The objectives were to evaluate the ability of the CLImate GENera...

  20. Assessment of climate change impact on SOM balance with the Austrian Carbon Calculator

    NASA Astrophysics Data System (ADS)

    Franko, Uwe; Gründling, Ralf; Sedy, Katrin; Zethner, Gerhard; Formayer, Herbert

    2015-04-01

    Soil organic matter (SOM) balance depends on climate and climate change due to the impact on SOM turnover conditions as well as on cropping and crop yields. The Austrian Carbon calculator (ACC) is a tool for the comparison of future land use scenarios with the current agriculture in order to identify opportunities to sustain the SOM balance. The ACC can be used in a regional mode as well as in local mode for the assessment of single farm fields. The assessment is based on the concept of Biologic Active Time (BAT). BAT is calculated based on soil data from the Austrian eBod map and climate data for past and future on a 1 km grid. The ACC was implemented for the regions Mühlviertel and Marchfeld. Crop yields are calculated based on statistics from the Austrian agricultural sub regions "Kleinproduktionsgebiet" for the most common crops. The regional scenarios consist of the abundance of crops, the part of nitrogen added as mineral fertilizer and the part of irrigation. The local soil management is calculated based on crop rotations with yields, organic amendments, irrigation and the tillage system (ploughed or not ploughed). The SOM balance is assessed with the reproduction index (REP_IX) that is calculated as the quotient from carbon reproduction (Carbon flux into SOM) and the BAT value. This way REP_IX includes the impact from management as well as from climate. If the future management will not change REP_IX the SOM balance will be the same as well. This methodology helps to adapt the management to future conditions to sustain the current SOM conditions without an absolute assessment if the current SOM state is optimal or not. The regional results of ACC will be made available as thematic maps on the project web site. For local applications farmer can use the tool to analyze their special site conditions and management plans to assess the management options under climate change conditions. The described concept can be improved if reliable information about the

  1. Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis

    SciTech Connect

    Marten, Alex; Kopp, Robert E.; Shouse, Kate C.; Griffiths, Charles; Hodson, Elke L.; Kopits, Elizabeth; Mignone, Bryan K.; Moore, Chris; Newbold, Steve; Waldhoff, Stephanie T.; Wolverton, Ann

    2013-04-01

    The social cost of carbon (SCC) is a monetized metric for evaluating the benefits associated with marginal reductions in carbon dioxide (CO2) emissions. It represents the expected welfare loss from the future damages caused by the release of one tonne of CO2 in a given year, expressed in consumption equivalent terms. It is intended to be a comprehensive measure, taking into account changes in agricultural productivity, human health risks, loss of ecosystem services and biodiversity, and the frequency and severity of flooding and storms, among other possible impacts. Estimating the SCC requires long-term modeling of global economic activity, the climate system, and the linkages between the two through anthropogenic greenhouse gas (GHG) emissions and the effects of changing climatic conditions on economic activity and human well-being. The United States government currently uses the SCC in regulatory benefit-cost analyses to assess the welfare effects of changes in CO2 emissions. Consistent application of the SCC to federal rulemaking analyses began in 2009-2010 with the development of a set of global SCC estimates that employed three prominent integrated assessment models (IAMs) -- DICE, FUND, and PAGE. The U.S. government report identified a number of limitations associated with SCC estimates in general and its own assumptions in particular: an incomplete treatment of damages, including potential “catastrophic” impacts; uncertainty regarding the extrapolation of damage functions to high temperatures; incomplete treatment of adaptation and technological change; and the evaluation of uncertain outcomes in a risk-neutral fashion. External experts have identified other potential issues, including how best to model long-term socio-economic and emissions pathways, oversimplified physical climate and carbon cycle modeling within the IAMs, and an inconsistency between non-constant economic growth scenarios and constant discount rates. The U.S. government has committed

  2. Bias-correction and Spatial Disaggregation for Climate Change Impact Assessments at a basin scale

    NASA Astrophysics Data System (ADS)

    Nyunt, Cho; Koike, Toshio; Yamamoto, Akio; Nemoto, Toshihoro; Kitsuregawa, Masaru

    2013-04-01

    Basin-scale climate change impact studies mainly rely on general circulation models (GCMs) comprising the related emission scenarios. Realistic and reliable data from GCM is crucial for national scale or basin scale impact and vulnerability assessments to build safety society under climate change. However, GCM fail to simulate regional climate features due to the imprecise parameterization schemes in atmospheric physics and coarse resolution scale. This study describes how to exclude some unsatisfactory GCMs with respect to focused basin, how to minimize the biases of GCM precipitation through statistical bias correction and how to cover spatial disaggregation scheme, a kind of downscaling, within in a basin. GCMs rejection is based on the regional climate features of seasonal evolution as a bench mark and mainly depends on spatial correlation and root mean square error of precipitation and atmospheric variables over the target region. Global Precipitation Climatology Project (GPCP) and Japanese 25-uear Reanalysis Project (JRA-25) are specified as references in figuring spatial pattern and error of GCM. Statistical bias-correction scheme comprises improvements of three main flaws of GCM precipitation such as low intensity drizzled rain days with no dry day, underestimation of heavy rainfall and inter-annual variability of local climate. Biases of heavy rainfall are conducted by generalized Pareto distribution (GPD) fitting over a peak over threshold series. Frequency of rain day error is fixed by rank order statistics and seasonal variation problem is solved by using a gamma distribution fitting in each month against insi-tu stations vs. corresponding GCM grids. By implementing the proposed bias-correction technique to all insi-tu stations and their respective GCM grid, an easy and effective downscaling process for impact studies at the basin scale is accomplished. The proposed method have been examined its applicability to some of the basins in various climate

  3. On the assessment of urban land-surface impacts on climate in regional climate model simulations over Central Europe

    NASA Astrophysics Data System (ADS)

    Huszar, Peter; Belda, Michal; Halenka, Tomas

    2016-04-01

    When aiming higher resolution in dynamical downscaling, which is common trend in CORDEX activities, the effects of land use and land use changes are playing increasing role. This is especially true for the urban areas, which in high resolution can occupy significant part of a single gridbox, if not being even bigger in case of big cities or megacities. Moreover, the role of cities will increase in future, as the population within the urban areas is growing faster, with the estimate for Europe of about 84% living in cities. For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate, the surface parameterization in regional climate model RegCM4 has been coupled with the Single Layer Urban Canopy Model (SLUCM), which can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Additionally, the version of land-surface scheme using CLM is tested and effect of the urban environment, which is included in the CLM scheme, will be assessed. Both versions will be compared and validated using EOBS data.

  4. Climate services for the assessment of climate change impacts and risks in coastal areas at the regional scale: the North Adriatic case study (Italy).

    NASA Astrophysics Data System (ADS)

    Valentina, Gallina; Torresan, Silvia; Giannini, Valentina; Rizzi, Jonathan; Zabeo, Alex; Gualdi, Silvio; Bellucci, Alessio; Giorgi, Filippo; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    At the international level, the interest for climate services is rising due to the social and economic benefits that different stakeholders can achieve to manage climate risks and take advantage of the opportunities associated with climate change impacts. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. Within the CLIM-RUN project (FP7), the case study of the North Adriatic Sea is aimed at analysing the need of climate information and the effectiveness of climate services for the integrated assessment of climate change impacts in coastal zones of the North Adriatic Sea at the regional to local scale. A participative approach was developed and applied to identify relevant stakeholders which have a mandate for coastal zone management and to interact with them in order to elicit their climate information needs. Specifically, the participative approach was carried out by means of two local workshops and trough the administration of a questionnaire related to climate information and services. The results of the process allowed identifying three major themes of interest for local stakeholders (i.e. hydro-climatic regime, coastal and marine environment, agriculture) and their preferences concerning key climate variables (e.g. extreme events, sea-level, wave height), mid-term temporal projections (i.e. for the next 30-40 years) and medium-high spatial resolution (i.e. from 1 to 50 km). Furthermore, the workshops highlighted stakeholder concern about several climate-related impacts (e.g. sea-level rise, storm surge, droughts) and vulnerable receptors (e.g. beaches, wetlands, agricultural areas) to be considered in vulnerability and risk assessment studies for the North Adriatic coastal zones. This information was used by climate and environmental risk experts in order to develop targeted climate information and

  5. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach.

    PubMed

    Luo, Yuzhou; Ficklin, Darren L; Liu, Xiaomang; Zhang, Minghua

    2013-04-15

    The assessment of hydrologic responses to climate change is required in watershed management and planning to protect water resources and environmental quality. This study is designed to evaluate and enhance watershed modeling approach in characterizing climate change impacts on water supply and ecosystem stressors. Soil and Water Assessment Tool (SWAT) was selected as a base model, and improved for the CO2 dependence of potential evapotranspiration and stream temperature prediction. The updated model was applied to quantify the impacts of projected 21st century climate change in the northern Coastal Ranges and western Sierra Nevada, which are important water source areas and aquatic habitats of California. Evapotranspiration response to CO2 concentration varied with vegetation type. For the forest-dominated watersheds in this study, only moderate (1-3%) reductions on evapotranspiration were predicted by solely elevating CO2 concentration under emission scenarios A2 and B1. Modeling results suggested increases in annual average stream temperature proportional to the projected increases in air temperature. Although no temporal trend was confirmed for annual precipitation in California, increases of precipitation and streamflow during winter months and decreases in summers were predicted. Decreased streamflow during summertime, together with the higher projected air temperature in summer than in winter, would increase stream temperature during those months and result in unfavorable conditions for cold-water species. Compared to the present-day conditions, 30-60 more days per year were predicted with average stream temperature >20°C during 2090s. Overall, the hydrologic cycle and water quality of headwater drainage basins of California, especially their seasonality, are very sensitive to projected climate change. PMID:23467178

  6. Multi objective climate change impact assessment using multi downscaled climate scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.

  7. Advancing global hydro-climatological data archives to support climate change impact assessments on water resources

    NASA Astrophysics Data System (ADS)

    Saile, P.

    2012-12-01

    Climate variations and changing climate will very likely alter the rate and nature of hydrological processes and consequently affect water resources in many regions. Current General Circulation Models and downscaling methods that are increasingly used to assess changes in the water cycle and water resource vulnerabilities introduce a cascade of uncertainties that cannot realistically be dealt with at the moment and are too inaccurate to support improved decision-making for water management and for future water systems design. Therefore, water managers need not only improved hydrological and climate modelling and downscaling methods but also access to adequate hydro-meteorological monitoring networks. The Global Terrestrial Network for Hydrology (GTN-H), a joint effort by the World Meteorological Organization (WMO) and several global observing systems, aims at integrating in-situ and remote sensing hydrological observations with hydrological model results held by its partner institutions to support a wide range of hydrological applications including research of global and regional climate change. Adhering to the different needs of all data users (scientists, policy makes and other stakeholders) and bridging the gap between the distributed datasets, currently a new information system is being developed to enable web-based discovery, access and analysis of observation data and derived products served through GTN-H. This system is built on international standards published by the Open Geospatial Consortium (OGC) using open standardized web services, namely (1) Catalogue Services for data discovery, (2) Web Map Services for data visualization and (3) Web Feature Services, Web Coverage Services and Sensor Observation Services for data access. This presentation will give an overview about the GTN-H data archive and the design of the new information system including an outlook of its potential use for water related climate change impact assessments.

  8. Assessing the impact of climate change on water resources in Iran

    NASA Astrophysics Data System (ADS)

    Abbaspour, Karim C.; Faramarzi, Monireh; Ghasemi, Samaneh Seyed; Yang, Hong

    2009-10-01

    As water resources become further stressed due to increasing levels of societal demand, understanding the effect of climate change on various components of the water cycle is of strategic importance in management of this essential resource. In this study, we used a hydrologic model of Iran to study the impact of future climate on the country's water resources. The hydrologic model was created using the Soil and Water Assessment Tool (SWAT) model and calibrated for the period from 1980 to 2002 using daily river discharges and annual wheat yield data at a subbasin level. Future climate scenarios for periods of 2010-2040 and 2070-2100 were generated from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, B1, and A2, which were downscaled for 37 climate stations across the country. The hydrologic model was then applied to these periods to analyze the effect of future climate on precipitation, blue water, green water, and yield of wheat across the country. For future scenarios we found that in general, wet regions of the country will receive more rainfall while dry regions will receive less. Analysis of daily rainfall intensities indicated more frequent and larger-intensity floods in the wet regions and more prolonged droughts in the dry regions. When aggregated to provincial levels, the differences in the predictions due to the three future scenarios were smaller than the uncertainty in the hydrologic model. However, at the subbasin level the three climate scenarios produced quite different results in the dry regions of the country, although the results in the wet regions were more or less similar.

  9. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  10. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed.

    PubMed

    Nerantzaki, S D; Giannakis, G V; Efstathiou, D; Nikolaidis, N P; Sibetheros, I Α; Karatzas, G P; Zacharias, I

    2015-12-15

    Mediterranean semi-arid watersheds are characterized by a climate type with long periods of drought and infrequent but high-intensity rainfalls. These factors lead to the formation of temporary flow tributaries which present flashy hydrographs with response times ranging from minutes to hours and high erosion rates with significant sediment transport. Modeling of suspended sediment concentration in such watersheds is of utmost importance due to flash flood phenomena, during which, large quantities of sediments and pollutants are carried downstream. The aim of this study is to develop a modeling framework for suspended sediment transport in a karstic watershed and assess the impact of climate change on flow, soil erosion and sediment transport in a hydrologically complex and intensively managed Mediterranean watershed. The Soil and Water Assessment Tool (SWAT) model was coupled with a karstic flow and suspended sediment model in order to simulate the hydrology and sediment yield of the karstic springs and the whole watershed. Both daily flow data (2005-2014) and monthly sediment concentration data (2011-2014) were used for model calibration. The results showed good agreement between observed and modeled values for both flow and sediment concentration. Flash flood events account for 63-70% of the annual sediment export depending on a wet or dry year. Simulation results for a set of IPCC "A1B" climate change scenarios suggested that major decreases in surface flow (69.6%) and in the flow of the springs (76.5%) take place between the 2010-2049 and 2050-2090 time periods. An assessment of the future ecological flows revealed that the frequency of minimum flow events increases over the years. The trend of surface sediment export during these periods is also decreasing (54.5%) but the difference is not statistically significant due to the variability of the sediment. On the other hand, sediment originating from the springs is not affected significantly by climate change

  11. Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.

    2011-12-01

    The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical

  12. Improving models to assess impacts of climate change on Mediterranean water resources

    NASA Astrophysics Data System (ADS)

    Rocha, João; Carvalho Santos, Cláudia; Keizer, Jan Jacob; Alexandre Diogo, Paulo; Nunes, João Pedro

    2016-04-01

    In recent decades, water availability for human consumption has faced major constraints due to increasing pollution and reduced water availability. Water resources availability can gain additional stresses and pressures in the context of potential climate change scenarios. For the last decades, the climate change paradigm has been the scope of many researchers and the focus of decision makers, policies and environmental/climate legislation. Decision-makers face a wide range of constrains, as they are forced to define new strategies that merge planning, management and climate change adaptations. In turn, decision-makers must create integrated strategies aiming at the sustainable use of resources. There are multiple uncertainties associated with climate change impact assessment and water resources. Typically, most studies have dealt with uncertainties in emission scenarios and resulting socio-economic conditions, including land-use and water use. Less frequently, studies have address the disparities between the future climates generated by climate models for the same greenhouse gas concentrations; and the uncertainties related with the limited knowledge of how watersheds work, which also limits the capacity to simulate them with models. Therefore, the objective of this study is to apply the SWAT (Soil and Water Assessment Tool) hydrological model to a catchment in Alentejo, southern Portugal; and to evaluate the uncertainty associated both to the calibration of hydrological models and the use of different climate change scenarios and models (a combination of 4 GCM (General Circulation Models) and 1 RCM (Regional Circulation Models) for the scenarios RCP 4.5 and 8.5. The Alentejo region is highly vulnerable to the effects of potential climate changes with particular focus on water resources availability, despite several reservoirs used for freshwater supply and agriculture irrigation (e.g. the Alqueva reservoir - the largest artificial lake of the Iberian Peninsula

  13. Using NASA Earth Science Datasets for National Climate Assessment Indicators: Urban Impacts of Heat Waves Associated with Climate Change

    NASA Astrophysics Data System (ADS)

    Sadoff, N.; Weber, S.; Zell, E. R.; de Sherbinin, A. M.

    2014-12-01

    Climate-induced heat waves have been increasing globally in the past 5-10 years and are projected to continue increasing throughout the 21st century. In urban areas, heat waves are exacerbated by the non-climate stressor of urban heat islands (UHIs). The vulnerability of a city's population to heat waves reflects exposure to extreme heat events, sensitivity of the population to impacts, such as adverse health effects, and adaptive capacity to prepare for and respond to heat waves. Socially and economically vulnerable populations are especially at risk to the impacts of heat waves, due to increasing energy costs, air pollution, and heat-related illness and mortality. NASA earth science datasets, combined with socioeconomic data, can be used to create indicators that characterize vulnerability to urban heat events and address the effectiveness of adaptation measures designed to reduce local temperatures. The indicator development process should include engagement from local stakeholders and end users from the onset to ensure local relevance and, ultimately, indicator uptake and sustainability. This presentation will explore the process of working with urban stakeholders in Philadelphia to develop a set of policy-relevant, interdisciplinary vulnerability indicators focused on extreme heat events in urban areas. Ambient and land surface temperature, land cover classifications, NDVI, and US Census data are used to create a basket of indicators that reflect urban heat wave duration and intensity, UHI exposure, socioeconomic vulnerability, and adaptation effectiveness. These indicators can be assessed at the city level and also comparatively among different parts of a city to help quantify and track heat wave impacts on vulnerable populations and the effectiveness of adaptation measures.

  14. Implications of NARCCAP on the Likelihood of Regional Climate Change and an Integrated U.S. Water-Impact Assessment

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Gao, X.; Blanc, E.; Strzepek, K. M.; Monier, E.

    2012-12-01

    In order for regional, integrated impact and adaptation assessments to be regarded as risk-based approaches, they must encompass to the fullest extent possible, the range of regional and global climate-change uncertainties as well as consistent economic pathways that underlie them. As such, the computational burden on any probabilistic construction (i.e. frequency distribution) that quantify these uncertainties is substantial when considering the large ensembles required from multiple, regional climate models. Thus, hybrid or statistical methods that encapsulate salient trend signals from regional climate models yet avoid the exhaustive amount of explicit simulations but remain consistent with the socio-economic pathway under which it is forced, would be highly desirable. We therefore present a hybrid frequency distribution (HFD) approach that extends the MIT Integrated Global System Model (IGSM) framework to provide probabilistic projections of regional climate changes. This procedure constructs meta-ensembles of the regional hydro-climate, combining projections from the MIT IGSM that represent global-scale uncertainties with regionally resolved climate-change kernel (CCK) patterns from archived climate-model projections. The approach has been extended to the climate-model outputs of the North American Regional Climate Change Project (NARCCAP). Specifically, we compare the NARCCAP CCKs to those of CMIP3, CMIP5, as well as the corresponding climate models that force the NARCCAP models. Many of the NARCCAP CCKs retain the large-scale patterns of their climate-model counterparts. However, regional and seasonal exceptions are also seen and carry with them important important climate-impact consequences. We then assess the consequences of the NARCCAP HFDs to a U.S. water-impact, climate-change assessment performed by the Water Resource System (WRS) of the IGSM.

  15. Assessing the Impact of Climatic Variability and Change on Maize Production in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Andresen, J.; Jain, A. K.; Niyogi, D. S.; Alagarswamy, G.; Biehl, L.; Delamater, P.; Doering, O.; Elias, A.; Elmore, R.; Gramig, B.; Hart, C.; Kellner, O.; Liu, X.; Mohankumar, E.; Prokopy, L. S.; Song, C.; Todey, D.; Widhalm, M.

    2013-12-01

    Weather and climate remain among the most important uncontrollable factors in agricultural production systems. In this study, three process-based crop simulation models were used to identify the impacts of climate on the production of maize in the Midwestern U.S.A. during the past century. The 12-state region is a key global production area, responsible for more than 80% of U.S. domestic and 25% of total global production. The study is a part of the Useful to Useable (U2U) Project, a USDA NIFA-sponsored project seeking to improve the resilience and profitability of farming operations in the region amid climate variability and change. Three process-based crop simulation models were used in the study: CERES-Maize (DSSAT, Hoogenboom et al., 2012), the Hybrid-Maize model (Yang et al., 2004), and the Integrated Science Assessment Model (ISAM, Song et al., 2013). Model validation was carried out with individual plot and county observations. The models were run with 4 to 50 km spatial resolution gridded weather data for representative soils and cultivars, 1981-2012, to examine spatial and temporal yield variability within the region. We also examined the influence of different crop models and spatial scales on regional scale yield estimation, as well as a yield gap analysis between observed and attainable yields. An additional study was carried out with the CERES-Maize model at 18 individual site locations 1901-2012 to examine longer term historical trends. For all simulations, all input variables were held constant in order to isolate the impacts of climate. In general, the model estimates were in good agreement with observed yields, especially in central sections of the region. Regionally, low precipitation and soil moisture stress were chief limitations to simulated crop yields. The study suggests that at least part of the observed yield increases in the region during recent decades have occurred as the result of wetter, less stressful growing season weather conditions.

  16. National climate assessment technical report on the impacts of climate and land use and land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.

  17. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 1. Scenarios and Context

    SciTech Connect

    Smith, Steven J.; Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, R Cesar C.; Brown, Robert A.; Wigley, T. M.

    2005-04-01

    As CO2 and other greenhouse gasses accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how a changing climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using a suite of climate change projections from General Circulation Models (GCMs) and three biophysical models. In this paper we present the climate change scenarios used to drive the impact analyses. The assumed levels of global-mean climate changes are discussed and placed in the context of recent work on climate-change scenarios for the next 100 years. The spatial variation of these changes given by the GCM results used for the impact analyses are also discussed.

  18. Assessment of the Impacts of Climate Change on Stream Discharge and Water Quality in an Arid, Urbanized Watershed

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.; Tong, S.; Yang, J.

    2011-12-01

    Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.

  19. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  20. Assessment of climate change impact on water resources in the Upper Senegal basin

    NASA Astrophysics Data System (ADS)

    Lamine Mbaye, Mamadou; Hagemann, Stefan; Haensler, Andreas; Stacke, Tobias; Thierno Gaye, Amadou

    2015-04-01

    This study assesses the potential impacts of climate change on water resources and the effect of statistical bias correction on the projected climate change signal in hydrological variables over the Upper Senegal Basin (West Africa). Original and bias corrected climate data from the regional climate model REMO were used as input for the Max Planck Institute for Meteorology-Hydrology Model (MPI-HM) to simulate river discharge, runoff, soil moisture and evapotranspiration. The results during the historical period (1971-2000) show that using the bias corrected input yields a better representation of the mean river flow regimes and the 10th and 90th percentiles of river flow at the outlet of the Upper Senegal Basin (USB). The Nash-Sutcliffe efficiency coefficient is 0.92 using the bias corrected input, which demonstrates the ability of the model in simulating river flow. The percent bias of 3.88% indicates a slight overestimation of the river flow by the model using the corrected input. The evaluation demonstrates the ability of the bias correction and its necessity for the simulation of historical river regimes. As for the potential changes of hydrological variables by the end of 21st century (2071-2100), a general decrease of river discharge, runoff, actual evapotranspiration, soil moisture is found under two Representative Concentration Pathways (RCP4.5 and RCP8.5) in all simulations. The decrease is higher under RCP8.5 with uncorrected data in the northern basin. However, there are some localized increases in some parts of the basin (e.g Guinean Highlands). The projected climate change signal of these above variables has the same spatial pattern and tendency for the uncorrected and bias corrected data although the magnitude of the corrected signal is somewhat lower than that uncorrected. Furthermore, the available water resources are projected to substantially decrease by more than -50% in the majority of the basin (especially in driest and hottest northern basin

  1. Assessing Climate Change Impacts for Military Installations in the Southwest United States During the Warm Season

    NASA Astrophysics Data System (ADS)

    Castro, C.

    2013-05-01

    Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.

  2. Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Ferrise, R.; Moriondo, M.; Bindi, M.

    2011-05-01

    Recently, the availability of multi-model ensemble prediction methods has permitted a shift from a scenario-based approach to a risk-based approach in assessing the effects of climate change. This provides more useful information to decision-makers who need probability estimates to assess the seriousness of the projected impacts. In this study, a probabilistic framework for evaluating the risk of durum wheat yield shortfall over the Mediterranean Basin has been exploited. An artificial neural network, trained to emulate the outputs of a process-based crop growth model, has been adopted to create yield response surfaces which are then overlaid with probabilistic projections of future temperature and precipitation changes in order to estimate probabilistic projections of future yields. The risk is calculated as the relative frequency of projected yields below a selected threshold. In contrast to previous studies, which suggest that the beneficial effects of elevated atmospheric CO2 concentration over the next few decades would outweigh the detrimental effects of the early stages of climatic warming and drying, the results of this study are of greater concern.

  3. Assessment of Impacts of Climate Variability on Crop Yield over the Terai Region of Nepal

    NASA Astrophysics Data System (ADS)

    Subedi, S.; Acharya, A.

    2015-12-01

    Agricultural sector in Nepal which alone contributes about 42 % of the total GDP have a huge influence on national economy. This sector is very much susceptible to climate change. This study is emphasized on Terai region (situated at an altitude of 60m to 300m) of Nepal which investigates the impacts of climate variability on various stages of cropping (paddy) periods such as transplant, maturity and harvest. The climate variables namely temperature and rainfall are used to explore the relationship between climate and paddy yields based on 30 years of historical observed data. Observed monthly rainfall and temperature data are collected from the department of hydrology and meteorology, and paddy yield data are collected from the Ministry of Agricultural Development. A correlation analysis will be carried out between the backward difference filtered climate parameters and the backward difference filtered rice yield. This study will also analyze average monthly and annual rainfall, and, min, max and mean temperature during the period of 1981-2010 based on 15 synoptic stations of Nepal. This study will visualize rainfall and temperature distribution over Nepal, and also evaluate the effect of change in rainfall and temperature in the paddy yield. While evaluating the impacts of climate on crop yield, this study will not consider the impact of irrigation in crop yield. The major results, climate distribution and its local/regional impacts on agriculture, could be utilized by planners, decision makers, and climate and agricultural scientists as a basis in formulating/implementing future plans, policies and projects.

  4. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents

    NASA Astrophysics Data System (ADS)

    Vetter, T.; Huang, S.; Aich, V.; Yang, T.; Wang, X.; Krysanova, V.; Hattermann, F.

    2015-01-01

    Climate change impacts on hydrological processes should be simulated for river basins using validated models and multiple climate scenarios in order to provide reliable results for stakeholders. In the last 10-15 years, climate impact assessment has been performed for many river basins worldwide using different climate scenarios and models. However, their results are hardly comparable, and do not allow one to create a full picture of impacts and uncertainties. Therefore, a systematic intercomparison of impacts is suggested, which should be done for representative regions using state-of-the-art models. Only a few such studies have been available until now with the global-scale hydrological models, and our study is intended as a step in this direction by applying the regional-scale models. The impact assessment presented here was performed for three river basins on three continents: the Rhine in Europe, the Upper Niger in Africa and the Upper Yellow in Asia. For that, climate scenarios from five general circulation models (GCMs) and three hydrological models, HBV, SWIM and VIC, were used. Four representative concentration pathways (RCPs) covering a range of emissions and land-use change projections were included. The objectives were to analyze and compare climate impacts on future river discharge and to evaluate uncertainties from different sources. The results allow one to draw some robust conclusions, but uncertainties are large and shared differently between sources in the studied basins. Robust results in terms of trend direction and slope and changes in seasonal dynamics could be found for the Rhine basin regardless of which hydrological model or forcing GCM is used. For the Niger River, scenarios from climate models are the largest uncertainty source, providing large discrepancies in precipitation, and therefore clear projections are difficult to do. For the Upper Yellow basin, both the hydrological models and climate models contribute to uncertainty in the

  5. The utilization of research-based information: Moving beyond communicating assessments of (climate) impacts

    NASA Astrophysics Data System (ADS)

    Pulwarty, R.; Cohen, S. J.

    2006-12-01

    Societal impacts of changing environments include primary or direct effects (increased soil moisture, loss of life, crop and building damage etc.), secondary or indirect effects (displacement, illness) and, higher order or systemic effects (debt, loss of livelihood). Vulnerability to such events is constructed from: (1) the timing, magnitude, spatial extent, and duration of the physical hazard i.e. risk of occurrence; (2) exposure in regions of risk e.g. population, property; and, (3) factors that pre-condition the degree of impact and the capacity to respond and recover. The call for better articulated decision support and services components is rising on par with more traditional axes of assessments i.e. characterizing the integrated physical system and its social and environmental impacts. The expectation is that increasing the rate at which policy makers and resource managers acquire knowledge about environment-society interactions will result in improvements in the quality of public and private decisions (a decidedly idealized view). Much recent work has shown that this expectation is most difficult to meet when decision stakes are high, uncertainty is great, technologies are new, experience is limited, and there are unequal distributions of burdens and benefits. We review generalized frames of reference on the use of climate information identified in independent studies undertaken by the authors in different river basins of North America. As shown in these (and other) studies, researchers, policy-makers and practitioners (public and private) operate on different time-lines, use different languages, and most importantly respond to different problem definitions and accountability incentives. The process of communication is increasingly recognized to be complex, transactional, and heavily dependent on the potential user's pre-existing knowledge, beliefs and experiences. We outline differing approaches to risk communication and their associated assumptions

  6. The potential role of health impact assessment in tackling the complexity of climate change adaptation for health.

    PubMed

    Brown, Helen L; Proust, Katrina; Spickett, Jeffery; Capon, Anthony

    2011-12-01

    Managing an issue of the magnitude, scope and complexity of climate change is a daunting prospect, yet one which nations around the world must face. Climate change is an issue without boundaries--impacts will cut across administrative and geographical borders and be felt by every sector of society. Responses to climate change will need to employ system approaches that take into account the relationships that cross organisational and sectoral boundaries. Solutions designed in isolation from these interdependencies will be unlikely to succeed, squandering opportunities for long-term effective adaptation. Health Impact Assessment (HIA) provides a structural approach to identify, evaluate and manage health impacts of climate change that is inclusive of a wide range of stakeholders. Climate change will affect decision-making across every government level and sector and the health implications of these decisions can also be addressed with HIA. Given the nature of the issue, HIA of climate change will identify a large number of variables that influence the type and extent of health impacts and the management of these impacts. In order to implement the most effective adaptation measures, it is critica that an understanding of the interactions between these variables is developed. The outcome of HIA of climate change can therefore be strengthened by the introduction of system dynamics tools, such as causal loop diagrams, that are designed to examine interactions between variables and the resulting behaviour of complex systems. PMID:22518921

  7. Projecting Poverty at the Household Scale to Assess the Impact of Climate Change on Poor People

    NASA Astrophysics Data System (ADS)

    Hallegatte, S.; Rozenberg, J.

    2015-12-01

    This paper quantifies the potential impacts of climate change on poverty in 2030 and 2050, in 92 countries covering 90% of the developing world population. It accounts for the deep uncertainties that characterize future socio-economic evolutions and the lack of data regarding the condition and livelihood of poor people. It also considers many impacts of climate change, another source of uncertainty. We use a micro-simulation model based on household surveys and explore a wide range of uncertainties on future structural change, productivity growth or demographic changes. This results, for each country, in the creation of several hundred scenarios for future income growth and income distribution. We then explore the resulting space of possible futures and use scenario discovery techniques to identify the main drivers of inequalities and poverty reduction. We find that redistribution and structural change are powerful drivers of poverty and inequality reduction, except in low-income countries. In the poorest countries in Africa, reducing poverty cannot rely on redistribution but requires low population growth and productivity growth in agriculture. Once we have explored the space of possible outcomes for poverty and inequalities, we choose two representative scenarios of the best and worst cases and model the impacts of climate change in each of these two scenarios. Climate change impacts are modeled through 4 channels. First, climate change has an impact on labor productivity growth for people who work outside because of higher temperatures. Second, climate change has an impact on human capital because of more severe stunting in some places. Third, climate change has an impact on physical capital via more frequent natural disasters. Fourth, climate change has an impact on consumption because of changes in food prices. Impacts are very heterogeneous across countries and are mostly concentrated in African and South-East Asian countries. For high radiative forcing (RCP8

  8. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts.

    PubMed

    Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia

    2016-01-01

    Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed. PMID:26989826

  9. Impacts of Climate Change on Human Health in the United States: A Scientific Assessment

    EPA Science Inventory

    Climate change threatens human health and well-being in the United States. To address this growing threat, the Interagency Group on Climate Change and Human Health (CCHHG), a working group of the U.S. Global Change Research Program’s (USGCRP), has developed this assessment as par...

  10. A framework for the quantitative assessment of climate change impacts on water-related activities at the basin scale

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Pianosi, F.; Soncini-Sessa, R.

    2011-01-01

    While quantitative assessment of the climate change impact on hydrology at the basin scale is quite addressed in the literature, extension of quantitative analysis to impact on the ecological, economic and social sphere is still limited, although well recognized as a key issue to support water resource planning and promote public participation. In this paper we propose a framework for assessing climate change impact on water-related activities at the basin scale. The peculiarities of our approach are that: (i) the impact quantification is based on a set of performance indicators defined together with the stakeholders, thus explicitly taking into account the water-users preferences; (ii) the management policies are obtained by optimal control techniques, linking stakeholder expectations and decision-making; (iii) the multi-objective nature of the management problem is fully preserved by simulating a set of Pareto-optimal management policies, which allows for evaluating not only variations in the indicator values but also tradeoffs among conflicting objectives. The framework is demonstrated by application to a real world case study, Lake Como basin (Italy). We show that the most conflicting water-related activities within the basin (i.e. hydropower production and agriculture) are likely to be negatively impacted by climate change. An uncertainty analysis is performed in order to assess how the climate natural variability and approximations in modeling the physical system (climate and hydrology) and the socio-economic system (management policy) affect the robustness of the estimated impacts. We demonstrate that the contribution of natural climate uncertainty is rather significant and that, among different modelling uncertainty sources, the one from climate modeling is very significant.

  11. Assessing the Impacts of Climate, Groundwater and Land Use on Regional Geomorphology

    NASA Astrophysics Data System (ADS)

    Barkwith, A.; Hurst, M. D.; Ellis, M. A.; Coulthard, T. J.

    2014-12-01

    The CLiDE (CAESAR-Lisflood-DESC) platform integrates a variety of modelling components, in order to represent coupled environmental processes and assess their co-evolution over daily to centennial time-scales. A distributed surface-subsurface water partitioning component lies conceptually at the platform centre; providing the key linkages between the atmospheric, sediment transport and vegetation components. Fluvial sediment transport is simulated using the CAESAR model, which has previously been used to investigate a variety of sediment transport, erosional and depositional processes at centennial to millennial scales. Driving CAESAR with a higher resolution, distributed hydrology allows CLiDE to effectively capture geomorphological features that operate at sub-centennial timescales. Non-fluvial sediment transport at the mesoscale is handled by a debris flow component, which drives sediment transport through exchanges of energy and is triggered through modification of local gradient and hydrology. The coupled nature of the platform allows a variety of geomorphological assessments to be undertaken. We present a variety of regional scale, modelling case studies, which assess the impacts of climate, groundwater and land use on geomorphology. We investigate the non-linear influence of these drivers on the spatial and temporal evolution of river basins and find that antecedent conditions can have a major influence on future erosion events.

  12. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2015-12-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  13. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment.

    PubMed

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Sperotto, Anna; Glade, Thomas; Marcomini, Antonio

    2016-03-01

    This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process. PMID:26704454

  14. Impact of large-scale climate variability and change on crop yields in Africa: An observational assessment

    NASA Astrophysics Data System (ADS)

    Smoliak, B. V.; Po-Chedley, S.; Cullen, A. C.

    2011-12-01

    Assessments of the relationships between climate and agricultural production have progressed from opposite ends of the spatio-temporal spectrum. While studies of global-scale climate-yield relationships have provided estimates of the impact of multi-decadal trends in temperature and precipitation on recent production, studies of local weather impacts on yield have demonstrated the influence of temperature and precipitation variability on plant physiology, particularly with respect to the duration and timing of extremes. At intermediate spatial and temporal scales, somewhat of a gap in understanding exists. Our investigation contributes to better understanding climate-yield relationships at intermediate scales by assessing the impact of climate variability on crop yields at the country to continent scale on interannual to interdecadal timescales. Toward this end, we employ historical climatic data and reported cereal crop yields from the African continent, 1961 to 2009, in conjunction with principal component regression and partial least squares regression. Our results show that a discrete set of spatial patterns of climate variability account for up to half of the year-to-year variability in crop yields over portions of Africa. The impact of this climate variability is particularly strong in Sub-Saharan Africa, where large or prolonged deficits in yields can result in food shortages. The fundamental patterns of variability used to explain yield fluctuations are based on temperature and precipitation, chosen due to their influence on plant physiology; however, the time-varying behavior of the patterns may also be linked to coherent large-scale climate variability through regressions with sea surface temperature, sea level pressure and low-level wind fields. Results are distilled in terms of five UN designated geographic regions of Africa. Implications for short-term food security and future climate change are discussed.

  15. The role of water reservoir operation in climate change impact assessments: expanding uncertainties and evolving tradeoffs

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Anghileri, Daniela; Castelletti, Andrea; Soncini-Sessa, Rodolfo

    2015-04-01

    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Although many river basins are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the economy, and the environment, the operations of many water resource systems are still designed on the basis of the observed historical hydrologic variability. Yet, under changing hydroclimatic forcing, no guarantee exists that policies optimized over the past will not fail in coming years. This work explores the impact of projected climate change and the associated uncertainty on the policy performance for different future time horizons. A perturbed physics ensemble of projected hydroclimatic conditions based on the HadCM3 General Circulation Modelis is used to simulate the whole set of Pareto optimal policies over the different futures. The changes in the overall system performance and the evolution of each single-tradeoff are analyzed to improve our understanding of the system's vulnerabilities. The study is developed on the Red-Thai Binh River system, Vietnam. The Red River Basin is the second largest basin of Vietnam, draining an area of about 169,000 km2, and comprises three main tributaries and several reservoirs, namely SonLa and HoaBinh on the Da River, ThacBa and TuyenQuang on the Lo River. These reservoirs are regulated for maximizing hydropower production, mitigating downstream flood, primarily in Hanoi, and guaranteeing irrigation water supply to the agricultural districts in the delta. We address the challenges of the policy design problem (e.g., dimensionality of the system, number of objectives involved) by adopting the evolutionary multi-objective direct policy search (EMODPS), an approximate dynamic programming method that combines direct policy search, nonlinear approximating networks and multi-objective evolutionary algorithms to design Pareto approximate operating policies for multi

  16. On the Value of Climate Elasticity Indices to Assess the Impact of Climate Change on Streamflow Projection using an ensemble of bias corrected CMIP5 dataset

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet; Moradkhani, Hamid

    2015-04-01

    Changes in two climate elasticity indices, i.e. temperature and precipitation elasticity of streamflow, were investigated using an ensemble of bias corrected CMIP5 dataset as forcing to two hydrologic models. The Variable Infiltration Capacity (VIC) and the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic models, were calibrated at 1/16 degree resolution and the simulated streamflow was routed to the basin outlet of interest. We estimated precipitation and temperature elasticity of streamflow from: (1) observed streamflow; (2) simulated streamflow by VIC and SAC-SMA models using observed climate for the current climate (1963-2003); (3) simulated streamflow using simulated climate from 10 GCM - CMIP5 dataset for the future climate (2010-2099) including two concentration pathways (RCP4.5 and RCP8.5) and two downscaled climate products (BCSD and MACA). The streamflow sensitivity to long-term (e.g., 30-year) average annual changes in temperature and precipitation is estimated for three periods i.e. 2010-40, 2040-70 and 2070-99. We compared the results of the three cases to reflect on the value of precipitation and temperature indices to assess the climate change impacts on Columbia River streamflow. Moreover, these three cases for two models are used to assess the effects of different uncertainty sources (model forcing, model structure and different pathways) on the two climate elasticity indices.

  17. Assessing the Impacts of Climate Change on Tourism-Dependent Communities in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2013-12-01

    Tourism is an essential element of the Laurentian Great Lakes economy as well as one of the sectors expected to be affected most by climate change, particularly through extreme weather events. While studies looking at climate change impacts on the Great Lakes tourism, specifically, are limited, the results of other studies suggest that both summer tourism activities, such as beach-going, and winter tourism activities, such as skiing and snowboarding, could feel the effects of a changing climate. The purpose of this study was to determine how existing data and models might be used to predict the potential impacts of climate change on tourism-dependent communities at the local scale. Future climate projections and variable infiltration capacity (VIC) model simulations based on historical climate data were used to quantify trends in environmental metrics with a potential influence on tourism for several tourism-dependent Great Lakes communities. The results of this research show that the potential impacts of climate change vary at the local scale and could require different adaptation strategies for different communities and for different sectors of the tourism industry. For example, communities in the northern parts of the Great Lakes may find benefit in a greater diversification of their tourism industries, given that warming temperatures could be beneficial for summer tourism activities, while communities in the southern parts of the Great Lakes may have to find other ways to cope with climate conditions that are less conducive to summer tourism activities. Stakeholder input could also help inform the process of producing scientific information that is useful to policymakers when it comes to tourism sector-related decision making.

  18. Assessment of climate change impacts on hydrological processes and patterns in the Spree River catchment

    NASA Astrophysics Data System (ADS)

    Hölzel, H.; Gädeke, A.; Koch, H.; Grünewald, U.

    2012-04-01

    Nowadays, a successful river catchment planning and management should consider climate change impacts on hydrological processes and patterns. This is of particular interest for stakeholders in the Spree River catchment, which is significantly affected by long term lignite mining activities. Furthermore, the consideration of climate change impacts is essential for the development of climate change adaptation strategies, e.g. land use change. Therefore, the Innovation Network of Climate Change Adaptation Brandenburg Berlin (INKA BB), funded by the Federal Ministry of Education and Research (BMBF), was launched to reveal among others the impact of climate change on the hydrology at the regional scale. To achieve this, simulations with help of the process-based, spatially distributed Water Balance Simulation Model (WaSiM-ETH) were conducted. In a first step, a model for the Spree River catchment (up to gauge Leibsch, 4500 km2) was set up, calibrated (from 1998 to 2002), and validated (from 2002 to 2006) on measured discharge for a headwater sub-catchment (135 km2) which discharge is only minor affected by water management. To consider climate change impacts, results of the STAtistical Regional climate model STAR were used as meteorological input for hydrological modeling in a second step. From 100 available STAR-realizations, three were chosen which are closest to the median, the 10%-, and 90%-percentile of the entire number of realizations and hereafter called as moderate, dry, and wet scenario. The model period of the three scenarios spans over 10 years (from 2045 to 2054) and was compared to a 30 year period in the past (from 1961 to 1990) where measurements were used as climate input parameters (reference period). The model results show reduced precipitation (except the wet scenario), increased evapotranspiration and consequently reduced runoff in the scenarios compared to the reference period. Hence, the climate water budget decreases and hydrological patterns e

  19. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt.

    PubMed

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Baumert, Niklas; Kloos, Julia; Renaud, Fabrice G; La Jeunesse, Isabelle; Mabrouk, Badr; Savić, Dragan A; Kapelan, Zoran; Ludwig, Ralf; Fischer, Georg; Roson, Roberto; Zografos, Christos

    2015-01-15

    CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7 projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB - CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed - Water Availability and Security in Southern EuRope and the Mediterranean) and human security connected with possible hydro-climatic conflicts (CLICO - CLImate change hydro-COnflicts and human security). The Nile delta case study was common between the projects. CLIWASEC created an integrated forum for modelling and monitoring to understand potential impacts across sectors. This paper summarises key results from an integrated assessment of potential challenges to water-related security issues, focusing on expected sea-level rise impacts by the middle of the century. We use this common focus to illustrate the added value of project clustering. CLIWASEC pursued multidisciplinary research by adopting a single research objective: sea-level rise related water security threats, resulting in a more holistic view of problems and potential solutions. In fragmenting research, policy-makers can fail to understand how multiple issues can materialize from one driver. By combining efforts, an integrated assessment of water security threats in the lower Nile is formulated, offering policy-makers a clearer picture of inter-related issues to society and environment. The main issues identified by each project (land subsidence, saline intrusion - CLIMB; water supply overexploitation, land loss - WASSERMed; employment and housing security - CLICO), are in fact related. Water overexploitation is exacerbating land subsidence and saline intrusion, impacting on employment and placing additional pressure on remaining agricultural land and the underdeveloped housing market. All these have wider implications for regional development. This richer understanding could be critical in making better

  20. Assessment of climate and land use changes impacts on the rivers inflow to the Lake Baikal

    NASA Astrophysics Data System (ADS)

    Kurovskaia, Victoriia; Semenova, Olga; Vinogradova, Tatyana

    2016-04-01

    Baikal is the deepest lake in the world and one of the biggest reservoirs of fresh water. The aim of this research was to analyze the long-term variability of characteristics of river inflow to the Lake using the historical data and project possible changes in the face of non-stationary climate and land use based on hydrological modelling. The basin of the Lake Baikal has area about 545 000 km2, half of which is situated in Russia. It is characterized by different climate and landscape conditions with annual flow depth varying from 30 to more than 600 mm. Nowadays active development and use of natural resources as well as climate changes have a strong impact on the regime of rivers inflow to the Lake. The watersheds response caused by environmental non-stationarity can be variable and unpredictable. Therefore adequate hydrological models with robust parametrization are required for future projections. This study consisted of two parts. Initially we compiled the database of daily runoff data for about 50 gauges in the basin of the Baikal Lake with continuous period of observations 30-50 years. The data was used to assess the characteristics of river inflow to the Lake for the historical period and estimate observed changes due to current climate change. For the development of future projections we have chosen several small and middle-size representative watersheds in different parts of the Lake basin with area from 151 to 7800 km2 and various types of hydrological regime. The data base for modelling was developed which included the information about landscapes, soils, dominating hydrological processes. The hydrological model parameters for different dominant landscapes were estimated based on that information. We applied distributed process-based hydrological model Hydrograph developed in State Hydrological Institute, Russia (Vinogradov et al., 2011; Semenova et al., 2013). It describes all essential processes of land hydrological cycle including detailed algorithm

  1. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.

    2015-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  2. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  3. A Spatial Extrapolation Approach to Assess the Impact of Climate Change on Water Resource Systems

    NASA Astrophysics Data System (ADS)

    Pina, J.; Tilmant, A.; Anctil, F.

    2015-12-01

    The typical approach to assess climate change impacts on water resources systems is based on a vertical integration/coupling of models: GCM models are run to project future precipitations and temperatures, which are then downscaled and used as inputs to hydrologic models whose outputs are processed by water systems models. From a decision-making point of view, this top-down vertical approach presents some challenges. For example, since the range of uncertainty that can be explored with GCM is limited, researchers are relying on ensembles to enlarge the spread, making the modeling approach even more demanding in terms of computation time and resource. When a particular water system must be analyzed, the question is to know whether this computationally intensive vertical approach is necessary in the first place or if we could extrapolate projections available in neighboring systems to feed the water system model? This would be equivalent to a horizontal approach. The proposed study addresses this question by comparing the performance of a water resource system under future climate conditions using the vertical and horizontal approaches. The methodology is illustrated with the hydropower system of the Gatineau River Basin in Quebec, Canada. Vertically obtained hydrologic projections available in those river basins are extrapolated and used as inputs to a stochastic multireservoir optimization model. Two different extrapolation techniques are tested. The first one simply relies on the ratios between the drainage areas. The second exploits the covariance structure found in historical flow data throughout the region. The analysis of the simulation results reveals that the annual and weekly energy productions of the system derived from the horizontal approach are statistically equivalent to those obtained with the vertical one, regardless of the extrapolation technique used.

  4. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.

    2014-09-01

    Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that

  5. A framework for the quantitative assessment of climate change impacts on water-related activities at the basin scale

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Pianosi, F.; Soncini-Sessa, R.

    2011-06-01

    While quantitative assessment of the climate change impact on hydrology at the basin scale is quite addressed in the literature, extension of quantitative analysis to impact on the ecological, economic and social sphere is still limited, although well recognized as a key issue to support water resource planning and promote public participation. In this paper we propose a framework for assessing climate change impact on water-related activities at the basin scale. The specific features of our approach are that: (i) the impact quantification is based on a set of performance indicators defined together with the stakeholders, thus explicitly taking into account the water-users preferences; (ii) the management policies are obtained by optimal control techniques, linking stakeholder expectations and decision-making; (iii) the multi-objective nature of the management problem is fully preserved by simulating a set of Pareto-optimal management policies, which allows for evaluating not only variations in the indicator values but also tradeoffs among conflicting objectives. The framework is demonstrated by application to a real world case study, Lake Como basin (Italy). We show that the most conflicting water-related activities within the basin (i.e. hydropower production and agriculture) are likely to be negatively impacted by climate change. We discuss the robustness of the estimated impacts to the climate natural variability and the approximations in modeling the physical system and the socio-economic system, and perform an uncertainty analysis of several sources of uncertainty. We demonstrate that the contribution of natural climate uncertainty is rather remarkable and that, among different modelling uncertainty sources, the one from climate modeling is very significant.

  6. Toward a more realistic assessment of the climatic impacts of the 1257 eruption

    NASA Astrophysics Data System (ADS)

    Guillet, Sebastien; Corona, Christophe; Stoffel, Markus; Khodri, Myriam; Poulain, Virginie; Guiot, Joel; Luckman, Brian; Churakova, Olga; Beniston, Martin; Lavigne, Franck; Masson-Delmotte, Valérie; Oppenheimer, Clive

    2015-04-01

    Polar ice cores attest to a colossal volcanic eruption that occurred in 1257 to leave the largest sulphur signal of the past millennium and possibly the last 7000 years1,2. Paradoxically, while climate models suggest a global surface cooling of about 2°C after the Samalas eruption, proxy-based records largely lack evidence of significant climate cooling3-5. This stunning discrepancy has hampered the understanding of the contribution of historical volcanic eruptions to past climate changes and precluded conclusions about potential consequences of future eruptions on climate6. Drawing on a compelling body of evidence from newly exhumed contemporary historical sources, tree-ring reconstructions, and a general circulation model (GCM) - which explicitly incorporates microphysical aerosol processes as well as information about the eruption location, season and height of SO2 injection -, we demonstrate that a persistent dry veil started to install in Europe in October 1257 to cause a year without a summer over much of the northern hemisphere in 1258 (-1.2°C). Converging proxy and climate model data also attest to the persistence of volcanic cooling until 1261, but point to significant regional differences of impacts. We conclude that single colossal volcanic eruptions may effectively perturb climate at local and regional scales, but that their impact is neither sustained in time nor spatially generalized.

  7. An automated system for access to derived climate indices in support of ecological impacts assessments and resource management

    NASA Astrophysics Data System (ADS)

    Walker, J.; Morisette, J. T.; Talbert, C.; Blodgett, D. L.; Kunicki, T.

    2012-12-01

    A U.S. Geological Survey team is working with several providers to establish standard data services for the climate projection data they host. To meet the needs of climate adaptation science and landscape management communities, the team is establishing a set of climate index calculation algorithms that will consume data from various providers and provide directly useful data derivatives. Climate projections coming from various scenarios, modeling centers, and downscaling methods are increasing in number and size. Global change impact modeling and assessment, generally, requires inputs in the form of climate indices or values derived from raw climate projections. This requirement puts a large burden on a community not familiar with climate data formats, semantics, and processing techniques and requires storage capacity and computing resources out of the reach of most. In order to fully understand the implications of our best available climate projections, assessments must take into account an ensemble of climate projections and potentially a range of parameters for calculation of climate indices. These requirements around data access and processing are not unique from project to project, or even among projected climate data sets, pointing to the need for a reusable tool to generate climate indices. The U.S. Geological Survey has developed a pilot application and supporting web service framework that automates the generation of climate indices. The web service framework consists of standards-based data servers and a data integration broker. The resulting system allows data producers to publish and maintain ownership of their data and data consumers to access climate derivatives via a simple to use "data product ordering" workflow. Data access and processing is completed on enterprise "cloud" computing resources and only the relatively small, derived climate indices are delivered to the scientist or land manager. These services will assist the scientific and land

  8. Assessing the impacts of climate change on the forested watersheds in Korea using RCM scenarios

    NASA Astrophysics Data System (ADS)

    Jung, H.; Yoon, J. H.; Jeon, S. W.

    2015-12-01

    Climate change has significant effects on water resources in Korea, where about the 70% of areas are forested, by direct and indirect ways such as changes in forest species distribution and the growth rates. We explored the effect of climate change on water balance in the eight forested DAM watersheds by using a process-based hydrological model which integrates the various mechanisms of forest hydrology and developed the simplified impact response model to quantify the regional-scale impacts. As the first step of study, the GIS-based BROOK90 (gB90), operated on a grid resolution of 5×5 arc minute resolution under the RCP-based regional climate model (RCM) scenarios. To separate the effects of ecosystem functioning and distribution changes from the overall runoff change, modeling has conducted based on the three novel approaches of climate change with a doubled CO2 concentration, increases in the deciduous forest fraction at each watershed, and three RCM climate change. The results of the process-based model study are extended to develop the impact response model to assist policy makers to derive informed decisions in land, forest and water management.

  9. Development and Climate Change: A Mainstreaming Approach for Assessing Economic, Social, and Environmental Impacts of Adaptation Measures

    NASA Astrophysics Data System (ADS)

    Halsnæs, Kirsten; Trærup, Sara

    2009-05-01

    The paper introduces the so-called climate change mainstreaming approach, where vulnerability and adaptation measures are assessed in the context of general development policy objectives. The approach is based on the application of a limited set of indicators. These indicators are selected as representatives of focal development policy objectives, and a stepwise approach for addressing climate change impacts, development linkages, and the economic, social and environmental dimensions related to vulnerability and adaptation are introduced. Within this context it is illustrated using three case studies how development policy indicators in practice can be used to assess climate change impacts and adaptation measures based on three case studies, namely a road project in flood prone areas of Mozambique, rainwater harvesting in the agricultural sector in Tanzania and malaria protection in Tanzania. The conclusions of the paper confirm that climate risks can be reduced at relatively low costs, but the uncertainty is still remaining about some of the wider development impacts of implementing climate change adaptation measures.

  10. Northwest Climate Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mote, P.; Dalton, M. M.; Snover, A. K.

    2012-12-01

    As part of the US National Climate Assessment, the Northwest region undertook a process of climate risk assessment. This process included an expert evaluation of previously identified impacts, their likelihoods, and consequences, and engaged experts from both academia and natural resource management practice (federal, tribal, state, local, private, and non-profit) in a workshop setting. An important input was a list of 11 risks compiled by state agencies in Oregon and similar adaptation efforts in Washington. By considering jointly the likelihoods, consequences, and adaptive capacity, participants arrived at an approximately ranked list of risks which was further assessed and prioritized through a series of risk scoring exercises to arrive at the top three climate risks facing the Northwest: 1) changes in amount and timing of streamflow related to snowmelt, causing far-reaching ecological and socioeconomic consequences; 2) coastal erosion and inundation, and changing ocean acidity, combined with low adaptive capacity in the coastal zone to create large risks; and 3) the combined effects of wildfire, insect outbreaks, and diseases will cause large areas of forest mortality and long-term transformation of forest landscapes.

  11. Economic impact of climate

    SciTech Connect

    Eddy, A.

    1980-05-01

    This volume summarizes the first two of a series of six workshops to investigate the economic impact of climate. These two workshops dealt mainly with input-output and econometric models. Potential for introducing weather and climate variables was discussed. A listing of topics and authors follows: Economic Models and the Identification of Climatic Effects on Economic Processes, Stan Johnson; Economic Modeling, Jim Morgan; Econometric Modeling: State of the Arts for the US Agricultural Industry, Abner Womack; Regional Input-Output Models: Understanding Their Application, Charles Lamphear; Measuring Regional Economic Impact Associated With Unfavorable Conditions During Crop Production Periods: A concept Paper, Charles Lamphear; Possible Applications of Input-Output Models in Climatic Impact Analysis, William Cooter; and Aspects of Input-Output Analysis Pertinent to Climate-Economic Modeling: Three Short Notes, William Cooter. (PSB)

  12. Application of Remote Sensing to Assess the Impact of Short Term Climate Variability on Coastal Sedimentation

    NASA Technical Reports Server (NTRS)

    Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Huh, Oscar K.; Walker, Nan D.; Rouse, Lawrence J.; Frey, Herbert V. (Technical Monitor)

    2001-01-01

    The University of Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to modify coastal circulation and resuspend sediments along the microtidal Louisiana coast. The assessment includes quantifying the influence of cumulative winter season atmospheric forcing (through surface wind observations) from year to year in response to short term climate variability, such as El Nino events. A correlation between winter cyclone frequency and the strength of El Nino events has been suggested. The atmospheric forcing data are being correlated to geomorphic measurements along western Louisiana's prograding muddy coast. Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODIS observations will enable estimates of SSC in case 2 waters over the global domain. Progress in Year 1 of this study has included data collection and analysis of wind observations for atmospheric forcing characterization, a field activity (TX-2001) to collect in situ water samples with co-incident remote sensing measurements from the NASA ER-2 based MODIS Airborne Simulator (MAS) and the EOS Terra based MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aerial photography and of sediment burial pipe field measurements along the prograding muddy Chenier Plain coast of western Louisiana for documenting coastal change in that dynamic region, and routine collection of MODIS 250 in resolution data for monitoring coastal sediment patterns. The data sets are being used in a process to transfer an SSC estimation algorithm to the MODIS platform. Work is underway on assessing coastal transport for the winter 2000-01 season. Water level data for use in a Geomorphic Impact

  13. Collaborative experiment on intercomparison of regional-scale hydrological models for climate impact assessment

    NASA Astrophysics Data System (ADS)

    Krysanova, Valentina; Hattermann, Fred

    2015-04-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is a community-driven modelling effort bringing together impact modellers across sectors and scales to create more consistent and comprehensive projections of the impacts of climate change. This project is aimed in establishing a long-term, systematic, cross-sectoral impact model intercomparison process, including comparison of climate change impacts for multiple sectors using ensemble of climate scenarios and applying global and regional impact models. The project is coordinated by the Potsdam Institute for Climate Impact Research. An overview of this project and collaborative experiment related to the regional-scale water sector model intercomparison in ISI-MIP will be presented. The regional-scale water sector modelling includes eleven models applied to eleven large-scale river basins worldwide (not every model is applied to every of eleven basins). In total, 60-65 model applications will be done by several collaborating groups from different Institutions. The modelling tools include: ECOMAG, HBV, HBV-light, HYPE, LASCAM, LISFLOOD, mHM, SWAT, SWIM, VIC and WaterGAP. Eleven river basins chosen for the model application and intercomparison are: the Rhine and Tagus in Europe, the Niger and Blue Nile in Africa, the Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, the Upper Mississippi and Upper Amazon in America, and the Murray-Darling in Australia. Their drainage areas range between 67,490 km2 (Tagus) to 2,460,000 km2 (Lena). Data from global and regional datasets are used for the model setup and calibration. The model calibration and validation was done using the WATCH climate data for all cases, also checking the representation of high and low percentiles of river discharge. For most of the basins, also intermediate gauge stations were included in the calibration. The calibration and validation results, evaluated with the Nash and Sutcliffe efficiency (NSE) and percent bias (PBIAS), are mostly

  14. Assessing impact of climate change on soil erosion and conservation in southern Loess Plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As clearly stated in a special report from the Soil and Water Conservation Society, the potential for projected climate changes to increase the risk of soil erosion and related environmental consequences is clear, but the potential damages are not. There is a need to assess the potential damages acr...

  15. Climate Change Impacts for Conterminous USA: An Integrated Assessment Part 2. Models and Validation

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, R Cesar C.; Brown, Robert A.

    2005-03-01

    As CO{sub 2} and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how a changing climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using a suite of climate change predictions from General Circulation Models (GCMs) as described in Part 1. Here we describe the agriculture model EPIC and the HUMUS water model and validate them with historical crop yields and streamflow data. We compare EPIC simulated grain and forage crop yields with historical crop yields from the US Department of Agriculture and find an acceptable level of agreement for this study. The validation of HUMUS simulated streamflow with estimates of natural streamflow from the US Geological Survey shows that the model is able to reproduce significant relationships and capture major trends.

  16. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  17. Verifying a temporal disaggregation method for generating daily precipitation of potentially non-stationary climate change for site-specific impact assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Statistical approaches have been widely used to downscale global climate model (GCM) projections to finer spatiotemporal resolution for impact assessment of climate change. However, a major concern of the approaches is whether a statistical relationship derived from historical climate will hold for...

  18. Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment

    NASA Astrophysics Data System (ADS)

    Soundharajan, Bankaru-Swamy; Adeloye, Adebayo J.; Remesan, Renji

    2016-07-01

    This study employed a Monte-Carlo simulation approach to characterise the uncertainties in climate change induced variations in storage requirements and performance (reliability (time- and volume-based), resilience, vulnerability and sustainability) of surface water reservoirs. Using a calibrated rainfall-runoff (R-R) model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temperature) were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-change-perturbed future runoff scenarios. The resulting runoff ensembles were used to force simulation models of the behaviour of the reservoir to produce 'populations' of required reservoir storage capacity to meet demands, and the performance. Comparing these parameters between the current and the perturbed provided the population of climate change effects which was then analysed to determine the variability in the impacts. The methodology was applied to the Pong reservoir on the Beas River in northern India. The reservoir serves irrigation and hydropower needs and the hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon rainfall, both of which are predicted to change due to climate change. The results show that required reservoir capacity is highly variable with a coefficient of variation (CV) as high as 0.3 as the future climate becomes drier. Of the performance indices, the vulnerability recorded the highest variability (CV up to 0.5) while the volume-based reliability was the least variable. Such variabilities or uncertainties will, no doubt, complicate the development of climate change adaptation measures; however, knowledge of their sheer magnitudes as obtained in this study will help in the formulation of appropriate policy and technical interventions for sustaining and possibly enhancing

  19. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future. PMID:26545372

  20. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2016-04-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  1. Multi-criteria objective based climate change impact assessment for multi-purpose multi-reservoir systems

    NASA Astrophysics Data System (ADS)

    Müller, Ruben; Schütze, Niels

    2014-05-01

    Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A

  2. Assessment of impact of climate change and adaptation strategies on maize production in Uganda

    NASA Astrophysics Data System (ADS)

    Kikoyo, Duncan A.; Nobert, Joel

    2016-06-01

    Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially

  3. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    NASA Astrophysics Data System (ADS)

    Taye, M. T.; Ntegeka, V.; Ogiramoi, N. P.; Willems, P.

    2011-01-01

    The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo), considering 17 General Circulation Model (GCM) simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated. The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  4. Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate changes can have great impacts on fragile agro-ecosystems in the Loess Plateau of China, which is one of the most severely eroded regions in the world. The objective of this study is to assess the site-specific impacts of projected climate change scenarios for 2010-2039 on hydrology, soil l...

  5. An assessment of the impact of climate change effects on forest land cover based on satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Dida, Adrian I.

    2015-10-01

    Climate change affects forest both directly and indirectly through disturbances, that are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. Forest vegetation characteristics, including land cover and phenology, affect processes such as water cycle, absorption and re-emission of solar radiation, momentum transfer, carbon cycle, and latent and sensible heat fluxes. The climate system responds in complex ways to changes in forcing that may be natural or human-induced. Drastic climate change over the last decades has greatly increased the importance of forest land cover changes monitoring through time-series satellite data. Satellite based derived biophysical parameters for assessment of climate impacts on forest vegetation have to meet particularly high quality requirements. Forest vegetation and climate interact through a series of complex feedbacks, which are not very well understood. Satellite remote sensing is suited tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) and GPP (Gross Primary Production), which are key biophysical variables for studying land surface processes and surface-atmosphere interactions for forested areas. The aim of this paper was to investigate their pattern dynamics due to the impact of climate variations on a periurban forest Branesti-Cernica, placed to the North-Eastern part of Bucharest city, Romania. The forest vegetation analysis was based on derived biogeophysical parameters from time-series satellite remote sensing MODIS Terra/Aqua and NOAA AVHRR data and in-situ monitoring ground data (as air temperature, aerosols distribution, relative humidity, etc.) over 2002-2014 period.

  6. Assessing the impact of climate change on water resources in a tropical West African catchment using an ensemble of CORDEX climate simulations (Dano, Burkina Faso)

    NASA Astrophysics Data System (ADS)

    Yira, Yacouba; Diekkrüger, Bernd; Steup, Gero; Yaovi Bossa, Aymar

    2016-04-01

    This study assesses the potential impact of climate change on water resources in the Dano catchment (Burkina Faso, West Africa). There is now essential consensus on the importance of performing multi (climate)-model assessments in order to estimate the response of the West African climate to global change. Taking advantage of the results of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project, this study evaluates climate change impacts on water resources using an ensemble of six Regional Climate Models (RCMs) in a catchment that is potentially vulnerable to climate change and presents a low adaptive capacity. The ensemble of RCMs was first evaluated to get an estimate of the historical simulated rainfall for the catchment by comparing RCM-based simulated historical rainfall to the observed rainfall data provided by the National Meteorological Service (DGM). In general, the simulated historical rainfall agrees within some degree of variability with the observed rainfall in regard to the mean annual cycle of precipitation. However, significant biases such as a double-peaked rainy season as well as the timing of the rainy season were exhibited by individual RCMs. A statistical bias correction (Quantile mapping) was then applied to the RCM-based simulated daily rainfall for the overlapping period of 1971-2000. The results confirm the effectiveness of the applied bias correction method for rainfall. Temperature and bias corrected rainfall data from the ensemble of RCMs was used as input for the Water flow and balance Simulation Model (WaSiM) to simulate river discharge, soil moisture, evapotranspiration and groundwater depth. To take into account the concern of the potential alteration of the climate change signal due to bias correction, uncorrected climate data for a single RCM was also applied to the hydrological model. The simulated hydrological variables show a similar behavior under observed and bias corrected climate data for the

  7. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate

    NASA Astrophysics Data System (ADS)

    Brault, M.-O.; Mysak, L. A.; Matthews, H. D.; Simmons, C. T.

    2013-08-01

    The end of the Pleistocene was a turning point for the Earth system as climate gradually emerged from millennia of severe glaciation in the Northern Hemisphere. The deglacial climate change coincided with an unprecedented decline in many species of Pleistocene megafauna, including the near-total eradication of the woolly mammoth. Due to an herbivorous diet that presumably involved large-scale tree grazing, the mammoth extinction has been associated with the rapid expansion of dwarf deciduous trees in Siberia and Beringia, thus potentially contributing to the changing climate of the period. In this study, we use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the possible effects of these extinctions on climate during the latest deglacial period. We have explored various hypothetical scenarios of forest expansion in the northern high latitudes, quantifying the biogeophysical effects in terms of changes in surface albedo and air temperature. These scenarios include a Maximum Impact Scenario (MIS) which simulates the greatest possible post-extinction reforestation in the model, and sensitivity tests which investigate the timing of extinction, the fraction of trees grazed by mammoths, and the southern extent of mammoth habitats. We also show the results of a simulation with free atmospheric CO2-carbon cycle interactions. For the MIS, we obtained a surface albedo increase and global warming of 0.006 and 0.175 °C, respectively. Less extreme scenarios produced smaller global mean temperature changes, though local warming in some locations exceeded 0.3 °C even in the more realistic extinction scenarios. In the free CO2 simulation, the biogeophysical-induced warming was amplified by a biogeochemical effect, whereby the replacement of high-latitude tundra with shrub forest led to a release of soil carbon to the atmosphere and a small atmospheric CO2 increase. Overall, our results suggest the potential for a small, though non-trivial, effect of

  8. Assessing uncertainties in climate change impacts on runoff in Western Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Ruelland, D.; Hublart, P.; Tramblay, Y.

    2015-06-01

    This paper investigates the uncertainties linked to climate change impacts on runoff in four mesoscale basins (900 to 1800 km2) in the Mediterranean region. Runoff simulations were based on a daily conceptual model including a snow module. The model was calibrated and validated according to a differential split-sample test over a 20-year period and four competing criterions aiming to represent model structural uncertainty based on the concept of Pareto optimality. Five regional climate models (RCMs) from the Med-CORDEX initiative were used to provide temperature and precipitation projections under RCP8.5 by 2050. The RCMs' inability to realistically simulate reference climate (notably precipitation) led us to apply a monthly perturbation method in order to produce a range of climate scenarios. The structural uncertainty bounds obtained from the hydrological simulations over the reference period showed that the model was able to correctly reproduce observed runoff despite contrasted hydrological conditions in (and in between) the basins. Climate projections were shown to be convergent regarding temperatures, which could increase by about +1 to 3 °C on each basin. In contrast, no clear trends in precipitation could be put in evidence, some RCMs leading to a mean annual precipitation decrease (up to 64%), and others to an increase (up to 33%). The hydrological projections resulted from the combination of the hydrological simulation bounds with the range of climate projections. Despite the propagation of those uncertainties, the 2050 hydrological scenarios agreed on a significant runoff decrease (2-77%) during spring on all basins. On the opposite, no clear trend in runoff could be observed for the other seasons.

  9. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    NASA Technical Reports Server (NTRS)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  10. Errors and uncertainties introduced by a regional climate model in climate impact assessments: example of crop yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Ramarohetra, Johanna; Pohl, Benjamin; Sultan, Benjamin

    2015-12-01

    The challenge of estimating the potential impacts of climate change has led to an increasing use of dynamical downscaling to produce fine spatial-scale climate projections for impact assessments. In this work, we analyze if and to what extent the bias in the simulated crop yield can be reduced by using the Weather Research and Forecasting (WRF) regional climate model to downscale ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) rainfall and radiation data. Then, we evaluate the uncertainties resulting from both the choice of the physical parameterizations of the WRF model and its internal variability. Impact assessments were performed at two sites in Sub-Saharan Africa and by using two crop models to simulate Niger pearl millet and Benin maize yields. We find that the use of the WRF model to downscale ERA-Interim climate data generally reduces the bias in the simulated crop yield, yet this reduction in bias strongly depends on the choices in the model setup. Among the physical parameterizations considered, we show that the choice of the land surface model (LSM) is of primary importance. When there is no coupling with a LSM, or when the LSM is too simplistic, the simulated precipitation and then the simulated yield are null, or respectively very low; therefore, coupling with a LSM is necessary. The convective scheme is the second most influential scheme for yield simulation, followed by the shortwave radiation scheme. The uncertainties related to the internal variability of the WRF model are also significant and reach up to 30% of the simulated yields. These results suggest that regional models need to be used more carefully in order to improve the reliability of impact assessments.

  11. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate

    NASA Astrophysics Data System (ADS)

    Brault, Marc-Olivier; Mysak, Lawrence; Damon Matthews, H.; Simmons, Christopher

    2013-04-01

    The end of the Pleistocene marked a turning point for the Earth system as the climate gradually emerged from millennia of severe glaciation in the Northern Hemisphere. It is widely known that the deglacial climate change was accompanied by an unprecedented decline in many species of large terrestrial mammals, featuring among others the near-total eradication of the woolly mammoth. Due to an herbivorous diet that involved the grazing of a large number of trees, their extinction is thought to have contributed to the rapid and well-documented expansion of dwarf deciduous trees in Siberia and Beringia, which in turn could have affected the surface albedo of Northern Continents, and contributed to the changing climate of the period. In this study, we use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the possible effects of megafaunal extinctions on Pleistocene climate change. We have introduced various hypothetical scenarios of megafaunal extinctions ranging from catastrophic to more realistic cases, in order to quantify their potential impact on climate via the associated biogeophysical effects of expanding vegetation on regional and global temperature. In particular, we focus our attention on a Maximum Impact Scenario (MIS), which represents the greatest possible post-extinction reforestation in the model. The more realistic experiments include sensitivity tests based on the timing of extinction, the amount of tree clearance associated with mammoth diets, and the size of mammoth habitats. We also show the results of a simulation with free (non-prescribed) atmospheric CO2. For the most extreme extinction scenario, we obtained a surface albedo increase of 0.006, which resulted in a global warming of 0.175°C. Less extreme scenarios produced smaller global mean temperature changes, though local warming in some locations exceeded 0.3°C even in the more realistic extinction scenarios. In the simulation with freely evolving atmospheric CO2

  12. Assessing the impact of future climate extremes on the US corn and soybean production

    NASA Astrophysics Data System (ADS)

    Jin, Z.

    2015-12-01

    Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.

  13. Toward a comprehensive assessment of the combined impacts of climate change and groundwater pumping on catchment dynamics

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Carrera, Jesús; Gupta, Hoshin V.

    2015-10-01

    Under increasing anthropogenic pressure, it is becoming increasingly important to evaluate the combined hydrologic effects of climate change and groundwater overexploitation. Climate change impact studies traditionally rely on scenario projections, provided by General Circulation Models (GCMs) that are transformed via downscaling and bias correction and used to drive hydrological models. The potential impacts of climate change are then assessed by comparing the historical and projected hydrological responses. This approach assumes that downscaled GCM simulations can function as surrogates for the corresponding actual values (represented by observations or reanalysis fields), which implies a kind of stochastic equivalence. In this work we apply the concept of Stochastic Equivalence to evaluate the validity of the response of a hydrological model driven by GCM simulations that are downscaled to generate high-resolution spatially distributed rainfall fields. We then use this approach to assess the combined effects of projected climate change and groundwater pumping in the Upper Guadiana basin in Spain. Our results suggest that very significant decreases in availability of water for the future can be expected throughout the year, but most notably during a 3-month longer, extended hotter and drier summer season; overall, the soil moisture and actual evapotranspiration are reduced by 20%, recharge is reduced by 50%, and aquifer related responses (runoff generation, groundwater-surface water exchange, wetlands and streamflow) are reduced by 60%.

  14. Uncertainty assessment of climate change impacts for hydrologically distinct river basins

    NASA Astrophysics Data System (ADS)

    Jung, Il-Won; Moradkhani, H.; Chang, H.

    2012-10-01

    SummaryThe hydrologic uncertainty of climate change impacts in two river basins in the Pacific Northwest of US is investigated. One basin is dominated by snowfall in winter, resulting in snowmelt in spring and early summer, and the other basin is dominated by rainfall in all seasons. In addition to hydrologic uncertainties, we consider the combined effect of two emission scenarios and eight general circulation models (GCMs) in our analyses. Latin Hypercube Sampling (LHS) is employed to sample the Precipitation Runoff Modeling System (PRMS) parameter space and the behavioral parameter sets were obtained according to a statistical performance measure. The results suggest that the relative impacts of uncertainties from different sources vary between the two basins. It is shown that changes in winter runoff are more affected by hydrologic model parameter uncertainty in the snow-dominated basin, while they are less influenced in the rain-dominated basin. The differences in the amount and timing of snowmelt as a result of model parameter uncertainty contribute to the variations of change in winter runoff in the snowfall-dominated basin. This result indicates that climate change impact studies for snow-dominated regions require more cautious interpretation of runoff projections due to considerable uncertainty in estimated hydrologic model parameters.

  15. Application of Remote Sensing to Assess the Impact of Short Term Climate Variability on Coastal Sedimentation

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Huh, Oscar K.; Walker, Nan

    2004-01-01

    The purpose of this joint University of Wisconsin (UW) and Louisiana State University (LSU) project has been to relate short term climate variation to response in the coastal zone of Louisiana in an attempt to better understand how the coastal zone is shaped by climate variation. Climate variation in this case largely refers to variation in surface wind conditions that affect wave action and water currents in the coastal zone. The primary region of focus was the Atchafalaya Bay and surrounding bays in the central coastal region of Louisiana. Suspended solids in the water column show response to wind systems both in quantity (through resuspension) and in the pattern of dispersement or transport. Wind systems associated with cold fronts are influenced by short term climate variation. Wind energy was used as the primary signature of climate variation in this study because winds are a significant influence on sediment transport in the micro-tidal Gilf of Mexico coastal zone. Using case studies, the project has been able to investigate the influence of short term climate variation on sediment transport. Wind energy data, collected daily for National Weather Service (NWS) stations at Lake Charles and New Orleans, LA, were used as an indicator of short term climate variation influence on seasonal time scales. A goal was to relate wind energy to coastal impact through sediment transport. This goal was partially accomplished by combining remote sensing and wind energy data. Daily high resolution remote sensing observations are needed to monitor the complex coastal zone environment, where winds, tides, and water level all interact to influence sediment transport. The NASA Earth Observing System (EOS) era brings hope for documenting and revealing response of the complex coastal transport mosaic through regular high spatial resolution observations from the Moderate resolution Imaging Spectrometer (MODIS) instrument. MODIS observations were sampled in this project for

  16. Coastal impacts, adaptation, and vulnerabilities: a technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Burkett, Virginia; Davidson, Margaret

    2012-01-01

    The coast has long provided communities with a multitude of benefits including an abundance of natural resources that sustain economies, societies, and ecosystems. Coasts provide natural harbors for commerce, trade, and transportation; beaches and shorelines that attract residents and tourists; and wetlands and estuaries that are critical for fisheries and water resources. Coastal ecosystems provide critical functions to cycle and move nutrients, store carbon, detoxify wastes, and purify air and water. These areas also mitigate floods and buffer against coastal storms that bring high winds and salt water inland and erode the shore. Coastal regions are critical in the development, transportation, and processing of oil and natural gas resources and, more recently, are being explored as a source of energy captured from wind and waves. The many benefits and opportunities provided in coastal areas have strengthened our economic reliance on coastal resources. Consequently, the high demands placed on the coastal environment will increase commensurately with human activity. Because 35 U.S. states, commonwealths, and territories have coastlines that border the oceans or Great Lakes, impacts to coastline systems will reverberate through social, economic, and natural systems across the U.S. Impacts on coastal systems are among the most costly and most certain consequences of a warming climate (Nicholls et al., 2007). The warming atmosphere is expected to accelerate sea-level rise as a result of the decline of glaciers and ice sheets and the thermal expansion of sea water. As mean sea level rises, coastal shorelines will retreat and low-lying areas will tend to be inundated more frequently, if not permanently, by the advancing sea. As atmospheric temperature increases and rainfall patterns change, soil moisture and runoff to the coast are likely to be altered. An increase in the intensity of climatic extremes such as storms and heat spells, coupled with other impacts of

  17. The Use of MODIS Instrument on the EOS-Terra Satellite to Assess the Impact of Aerosol on Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: 1) From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. 2) Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. 3) Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  18. Combining Satellite Data and Models to Assess the Impacts of Urbanization on the Continental US Surface Climate

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.; Mostovoy, G.

    2013-01-01

    Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate

  19. Climate change impact on medium and small sized river catchments in Germany: An ensemble assessment

    NASA Astrophysics Data System (ADS)

    Ott, I.; Düthmann, D.; Liebert, J.; Berg, P.; Feldmann, H.; Ihringer, J.; Kunstmann, H.; Merz, B.; Schädler, G.; Wagner, S.

    2012-04-01

    This study investigates the impact of climate change on three small to medium sized river catchments in Germany using a high-resolution RCM ensemble of seven kilometers spatial resolution. The three catchments represent the characteristic hydrology of the alpine Southern Germany (Ammer) and more sub-mountainous regions in the Eastern (Mulde) and Western (Ruhr) parts. Possible changes in discharge characteristics and flood risk for the near future are examined. The ensemble approach in this project additionally allows the evaluation of the uncertainties in the future projections. With two global climate models (ECHAM5, CCCma3), three realisations of ECHAM5, two regional climate models (CLM, WRF) and three hydrological models (PRMS, SWIM and WaSiM-ETH), discharge of the three catchments is simulated and analyzed. Thereby, each catchment is simulated by two different hydrological models. Both global climate models (GCMs) are driven by the emission scenario A1B and the simulation period includes the years 1971-2000 as control period and 2021-2050 for the scenario. The results project that only the Ruhr catchment in the West of Germany will be subjected to higher flood hazard. The simulated significant future increases of the mean monthly maximum discharges are up to 20% in winter and summer. In spring and autumn, increase of flood hazard is less pronounced. For the other two catchments in the East and South of Germany, the flood hazard is projected to stay at the current level. The Ammer catchment shows statistical non-significant increasing flooding risks in winter and decreasing tendencies in summer. There are also no statistically significant changes projected for the Mulde catchment, although small increases can be seen in summer and autumn. The ensemble approach with different GCMs, high-resolution regional climate models (RCMs) and hydrological models allows the analysis of uncertainties and their attribution within the flood risk predictions. Major uncertainties

  20. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate

    NASA Astrophysics Data System (ADS)

    Brault, M.-O.; Mysak, L. A.; Matthews, H. D.; Simmons, C. T.

    2013-01-01

    The end of the Pleistocene marked a turning point for the Earth system as climate gradually emerged from millennia of severe glaciation in the Northern Hemisphere. It is widely acknowledged that the deglacial climate change coincided with an unprecedented decline in many species of large terrestrial mammals, including the near-total eradication of the woolly mammoth. Due to an herbivorous diet that presumably involved large-scale tree grazing, the mammoth expansion would have accelerated the expansion of dwarf deciduous trees in Siberia and Beringia, thus contributing to the changing climate of the period. In this study, we use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the possible effects of megafaunal extinctions on Pleistocene climate change. We have explored various hypothetical scenarios of forest expansion in the Northern Continents, quantifying the regional and global biogeophysical effects in terms of changes in surface albedo and air temperature. In particular, we focus our attention on a Maximum Impact Scenario (MIS) which simulates the greatest possible post-extinction reforestation in the model. More realistic experiments include sensitivity tests based on the timing of extinction, the fraction of trees grazed by mammoths, and the size of mammoth habitats. We also show the results of a simulation with free (non-prescribed) atmospheric CO2. For the MIS, we obtained a surface albedo increase of 0.006, which resulted in a global warming of 0.175 °C. Less extreme scenarios produced smaller global mean temperature changes, though local warming in some locations exceeded 0.3 °C even in the more realistic extinction scenarios. In the free CO2 simulation, the biogeophysical-induced warming was amplified by a biogeochemical effect whereby the replacement of high-latitude tundra with shrub forest led to a release of soil carbon to the atmosphere and a small atmospheric CO2 increase. Overall, our results suggest the potential

  1. Assessing the impact of climate variability and change on crop production in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Wang, R.; Bowling, L. C.; Cherkauer, K. A.

    2013-12-01

    Interannual variability of crop yield in the Midwestern USA is closely related to extremes in spring and summer moisture conditions. For example, extensive summer drought in 2012 caused a 28% reduction in corn yield relative to early season predictions. In contrast, saturated soil conditions in spring 2013 have led to delayed planting and poor stand development. Therefore, when applying physically-based models to predict crop yield, soil moisture dynamics and physiological stresses must be correctly represented, especially under future climate scenarios where spring and summer moisture are projected to increase and decrease, respectively, over much of the Midwest. The overall objective of this research is to explore and improve the ability of an existing ecohydrology model (SWAT 2009) to simulate corn yield with respect to current and future climate and soil moisture variability. The model is first evaluated for four field scale sites in Iowa, Illinois and Ohio. Soil moisture is calibrated based on 5-6 years of layer specific data to ensure a realistic soil water representation either in dry or wet conditions. Then the calibrated model is used to evaluate the effects of climate variability on crop yield between 1991 and 2010. Finally, the model is run with down-scaled and bias-corrected CMIP5 data from three GCMs (CCSM4, GFDL-esm2m, MIROC5) and four emissions scenarios (RC2.6, RCP4.5, RCP6.0 and RCP8.5). Soil moisture, physiological stresses and crop yield predictions for two future periods (2031-2050, 2071-2090) are compared with the baseline period (1991-2010) to quantify climate change impacts on crop yield due to excess/deficit moisture.

  2. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  3. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections.

    PubMed

    Junk, J; Ulber, B; Vidal, S; Eickermann, M

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members. PMID:25680630

  4. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections

    NASA Astrophysics Data System (ADS)

    Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  5. Costs of climate impacts

    SciTech Connect

    Roberts, W O

    1980-03-01

    The surest prospect for future world climate patterns is that they will differ from present ones. What is uncertain is how much, and exactly in what way in different geographical regions. The anthropogenic CO/sub 2/ increase will probably exceed the unknown forcing functions of natural climate change within 30 to 60 years. It is not unlikely that by AD 2040 the world's climate, driven by the CO/sub 2/ increase, will enter a domain warmer than any within the past few million years. The costs of averting this climate change or of absorbing its impact are likely to be huge, even though today imponderable. Not least among these are intangible and unquantifiable costs associated with changes in human values and the quality of everyday life for future generations.

  6. Impact of WRF Physics and Grid Resolution on Low-level Wind Prediction: Towards the Assessment of Climate Change Impact on Future Wind Power

    SciTech Connect

    Chin, H S; Glascoe, L; Lundquist, J; Wharton, S

    2010-02-24

    The Weather Research and Forecast (WRF) model is used in short-range simulations to explore the sensitivity of model physics and horizontal grid resolution. We choose five events with the clear-sky conditions to study the impact of different planetary boundary layer (PBL), surface and soil-layer physics on low-level wind forecast for two wind farms; one in California (CA) and the other in Texas (TX). Short-range simulations are validated with field measurements. Results indicate that the forecast error of the CA case decreases with increasing grid resolution due to the improved representation of valley winds. Besides, the model physics configuration has a significant impact on the forecast error at this location. In contrast, the forecast error of the TX case exhibits little dependence on grid resolution and is relatively independent of physics configuration. Therefore, the occurrence frequency of lowest root mean square errors (RMSEs) at this location is used to determine an optimal model configuration for subsequent decade-scale regional climate model (RCM) simulations. In this study, we perform two sets of 20-year RCM simulations using the data from the NCAR Global Climate Model (GCM) simulations; one set models the present climate and the other simulates the future climate. These RCM simulations will be used to assess the impact of climate change on future wind energy.

  7. Towards a climate impact assessment of the Tarim River, NW China: integrated hydrological modelling using SWIM

    NASA Astrophysics Data System (ADS)

    Wortmann, Michel

    2014-05-01

    The Tarim River is the principle water source of the Xinjiang Uyghur Autonomous Region, NW China and the country's largest endorheic river, terminating in the Taklamakan desert. The vast majority of discharge is generated in the glaciated mountain ranges to the north (Tian Shan), south (Kunlun Shan/Tibetan Plateau) and west (Pamir Mountains) of the Taklamakan desert. The main water user is the intensive irrigation agriculture for mostly cotton and fruit production in linear river oases of the middle and lower reaches as well as a population of 10 Mil. people. Over the past 40 years, an increase in river discharge was reported, assumed to be caused by enhanced glacier melt due to a warming climate. Rapid population growth and economic development have led to a significant expansion of area under irrigation, resulting in water shortages for downstream users and the floodplain vegetation. Water resource planning and management of the Tarim require integrated assessment tools to examine changes under future climate change, land use and irrigation scenarios. The development of such tools, however, is challenged by sparse climate and discharge data as well as available data on water abstractions and diversions. The semi-distributed, process-based hydrological model SWIM (Soil and Water Integrated Model) was implemented for the headwater and middle reaches that generate over 90% of discharge, including the Aksu, Hotan and Yarkant rivers. It includes the representation of snow and glacier melt as well as irrigation abstractions. Once calibrated and validated to river discharge, the model is used to analyse future climate scenarios provided by one physically-based and one statistical regional climate model (RCM). Preliminary results of the model calibration and validation indicate that SWIM is able simulate river discharge adequately, despite poor data conditions. Snow and glacier melt account for the largest share in river discharge. The modelling results will devise

  8. Assessing the Impact of Climate Change on the Flood Regime in France

    NASA Astrophysics Data System (ADS)

    Sauquet, E.; Vidal, J.; Perrin, C.; Bourgin, P.; Chauveau, M.; Chazot, S.

    2012-12-01

    Changes in river flows are associated with different types of uncertainties, due to an imperfect knowledge of both future climate and rainfall-runoff processes. Due to computational constraints, impact and adaptation studies unfortunately cannot always afford to perform a detailed analysis of all these uncertainties. In that case, the modelling efforts have to focus on the most relevant source of uncertainty in order to provide the best estimate of the overall uncertainty. As part of the national Explore2070 project, the present study thus aims at assessing the hierarchy of uncertainties in changes on river flow extremes at the scale of France. Amongst all possible sources of uncertainties, two are here considered: (1) the uncertainty in General Circulation Model (GCM) configuration, with 7 different models that adequately sample the range of changes as projected by the GCMs used in the IPCC AR4 over France, and (2) the uncertainty in hydrological model structure, with 2 quite different models: GR4J (Perrin et al., 2003), a lumped conceptual model, and Isba-Modcou (Habets et al., 2008), a suite of a land surface scheme and a distributed hydrogeological model. The hydrological models have been run at more than 1500 locations in France over the 1961-1990 baseline period with forcings from both the Safran near-surface atmospheric reanalysis (Vidal et al., 2010) and the GCM control runs downscaled with a weather type method (Boé et al., 2006), and over the 2046-2065 period with forcings from all downscaled GCM runs under the A1B emissions scenario. Single station flood frequency analyses were performed on 405 locations with observed discharges. Using Hosking and Wallis heterogeneity measures homogeneous regions were defined. Regional flood frequency analysis has been performed. Changes in homogeneity and changes in regional growth curvehave been examined. The analysis has accounted for the performance of the two hydrological models to quantify the confidence in future

  9. A New Trans-Disciplinary Approach to Regional Integrated Assessment of Climate Impact and Adaptation in Agricultural Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Antle, J. M.; Valdivia, R. O.; Jones, J.; Rosenzweig, C.; Ruane, A. C.

    2013-12-01

    This presentation provides an overview of the new methods developed by researchers in the Agricultural Model Inter-comparison and Improvement Project (AgMIP) for regional climate impact assessment and analysis of adaptation in agricultural systems. This approach represents a departure from approaches in the literature in several dimensions. First, the approach is based on the analysis of agricultural systems (not individual crops) and is inherently trans-disciplinary: it is based on a deep collaboration among a team of climate scientists, agricultural scientists and economists to design and implement regional integrated assessments of agricultural systems. Second, in contrast to previous approaches that have imposed future climate on models based on current socio-economic conditions, this approach combines bio-physical and economic models with a new type of pathway analysis (Representative Agricultural Pathways) to parameterize models consistent with a plausible future world in which climate change would be occurring. Third, adaptation packages for the agricultural systems in a region are designed by the research team with a level of detail that is useful to decision makers, such as research administrators and donors, who are making agricultural R&D investment decisions. The approach is illustrated with examples from AgMIP's projects currently being carried out in Africa and South Asia.

  10. Developing a climatological / hydrological baseline for climate change impact assessment in a remote mountain region - an example from Peru

    NASA Astrophysics Data System (ADS)

    Salzmann, N.; Huggel, C.; Calanca, P.; Diaz, A.; Jonas, T.; Konzelmann, T.; Lagos, P.; Rohrer, M.; Silverio, W.; Zappa, M.

    2009-04-01

    Changes in the availability of fresh water caused by climatic changes will become a major issue in the coming years and decades. In this context, regions presently depending on water from retreating mountain glaciers are particularly vulnerable. In many parts of the Andes for example, people already suffer from the impacts of reduced glacier run off. Therefore, the development and implementation of adequate adaptation measures is an urgent need. To better understand the impact of climate change on water resources in the Andean region, a new research program (PACC - Programa de Adaptación al Cambio Climático en el Perú) between Peru and Switzerland has recently been launched by SDC (Swiss Agency for Development and Cooperation). As a first step, a scientific baseline relative to climatology, hydrology, agriculture and natural disasters will be developed on a regional scale for the Departments of Cusco and Apurimac in close cooperation with partners from Universities and governmental institutions as well as NGOs in Peru. A reliable data baseline is a must for the development of adaptation measures that can effectively cope with the risks induced by climate change. The realization of this task in remote mountain regions, where observational data are generally sparse, however, is challenging. Temporal and spatial gaps must be filled using indirect methods such as re-analyses, remote sensing and interpolation techniques. For future scenarios, the use of climate model output along with statistical and dynamical downscaling is indicated. This contribution will present and discuss approaches and possible concepts to tackle the challenges in a Peruvian context. In addition, first experiences will be reported particularly on cross-disciplinary issues that naturally emerge from the integrative perspective needed in climate change impact assessments and the development of adaptation strategies.

  11. Assessment of climate change impacts on streamflow dynamics in the headwaters of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Beighley, E.

    2015-12-01

    The Amazon River basin is the largest watershed in the world containing thousands of tributaries. Although the mainstream and its larger tributaries have been the focus on much research, there has been few studies focused on the hydrodynamics of smaller rivers in the foothills of the Andes Mountains. These smaller rivers are of particular importance for the fishery industry because fish migrate up these headwater rivers to spawn. During the rainy season, fish wait for storm event to increase water depths to a sufficient level for their passage. Understanding how streamflow dynamics will change in response to future conditions is vital for the sustainable management of the fishery industry. In this paper, we focus on improving the accuracy of river discharge estimates on relatively small-scale sub-catchments (100 ~ 40,000 km2) in the headwaters of the Amazon River basin. The Hillslope River Routing (HRR) hydrologic model and remotely sensed datasets are used. We provide annual runoff, seasonal patterns, and daily discharge characteristics for 81 known migration reaches. The model is calibrated for the period 2000-2014 and climate forecasts for the period 2070-2100 are used to assess future changes in streamflow dynamics. The forecasts for the 2070 to 2100 period were obtained by selecting 5 climate models from IPCC's Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) based on their ability to represent the main aspects of recent (1970 to 2000) Amazon climate. The river network for the HRR model is developing using surface topography based on the SRTM digital elevation model. Key model forcings include precipitation (TRMM 3B42) and evapotranspiration (MODIS ET, MOD16). Model parameters for soil depth, hydraulic conductivity, runoff coefficients and lateral routing were initially approximated based on literature values and adjusted during calibration. Measurements from stream gauges located near the reaches of interest were used for

  12. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use.

    PubMed

    Liu, Junguo; Folberth, Christian; Yang, Hong; Röckström, Johan; Abbaspour, Karim; Zehnder, Alexander J B

    2013-01-01

    Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security. PMID:23460901

  13. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use

    PubMed Central

    Liu, Junguo; Folberth, Christian; Yang, Hong; Röckström, Johan; Abbaspour, Karim; Zehnder, Alexander J. B.

    2013-01-01

    Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security. PMID:23460901

  14. Assessing the Impacts of Climate Change on Species Habitats and Distributions in the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Collazo, J. A.; Grand, J. B.; Terando, A.; Nichols, J. D.; McKerrow, A.

    2009-05-01

    Adapting to and mitigating for the impacts of climate change on wildlife will require scale and resource specific analyses. In the Southeastern U.S. a variety of disturbances (e.g. urbanization, plant succession) including those affected by climate change (e.g. sea level rise, fire frequency) impact the suitability of habitat through time. In order to adapt their management strategies, resource managers and policy makers will need tools to understand the full range of possible future conditions. Here we describe and offer preliminary results on two studies designed to project the future range of conditions for wildlife habitat in the southeast. In the first project we use Monte Carlo simulations to project landscape dynamics and subsequent availability of habitats for priority species in the Southern Atlantic Migratory Bird Initiative (SAMBI) region. In that study, the indirect impacts of climate change are incorporated through the influence of temperature and convective precipitation on fire potential. Fires influences the landscape dynamics through state transitions (e.g., late open canopy, early closed canopy), that are determined probabilistically. Initially the relationship between the climate variables and fire potential were projected out to 2100 using twelve of the Global Climate Models. Currently, we are working with Texas Technological University to refine predictions of fire potential using regionally-scaled climate models. A variety of management and climate scenarios are being run to allow decision makers to make direct comparisons between predictions based on those scenarios (i.e., acres of habitat, connectivity of habitat). Results are supplied to resource managers in the form a decision support tools based on the priority species guilds in the region. A second more extensive effort, the Southeastern Pilot, will use occupancy models to assess range dynamics of North American land birds. Local probabilities of extinction and colonization are viewed as

  15. Assessing the relative impact of urban expansion and climate change on high flows in a small catchment in Flanders (Belgium)

    NASA Astrophysics Data System (ADS)

    Poelmans, Lien; van Rompaey, Anton; Ntegeka, Victor; Willems, Patrick

    2010-05-01

    Flood risk is in Belgium, as well as in other European countries, of considerable importance because of the dense population and high industrialisation along the river banks. During the last decades it has become evident that global climate change has the potential to produce changes in the temporal and spatial distribution of precipitation and potential evapotranspiration and as a consequence will bring along changes in hydrological extremes (floods and low flows). In addition, land use change can significantly affect the catchment hydrology by altering several hydrological processes such as infiltration, evapotranspiration and surface runoff. Examining the sensitivity of hydrologic responses to these human-induced climate and land use changes is essential in order to formulate solid water management policies that effectively deal with the changing conditions. Hydrological models provide a framework for analysing the complex impacts on catchment hydrology. The overall objective of this study is to evaluate the relative impact of urban expansion and climate change on the catchment hydrology. The Molenbeek catchment (48 km²) in central Belgium is taken as an example application. The streamflow in the selected catchment was simulated by coupling a simplified runoff model (SRM) to a complex hydrodynamic model, implemented in the InfoWorks RS modelling system. The model was calibrated and validated using observed land cover maps of 1988 and 2000 and a 15-min series of water depths, measured at the catchment outlet. Preliminary results show that the calibrated model is able to predict both the peak flows and the total flow volumes relatively well for a selection of summer and winter rainfall events. Finally, a sensitivity analysis was carried out to assess possible future high flows in the catchment under different scenarios of urban expansion and climate change. In a first step, the impacts of climate change and urban expansion were evaluated separately. Next, the

  16. Assessing the impacts of climate change on agricultural production in the Columbia River basin: incorporating water management

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Rajagopalan, K.; Stockle, C. O.; Yorgey, G.; Kruger, C. E.; Chinnayakanahalli, K.; Nelson, R.

    2014-12-01

    moving through growth stages earlier in the season with wetter and warmer spring conditions. Incorporating regulations into integrated modeling framework results in a more realistic assessment of climate change impacts.

  17. Assessing Public Health Impacts of Heat and Air Quality Under a Changing Climate in the New York City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Knowlton, K.; Kinney, P. L.; Rosenthal, J. E.; Lynn, B.; Gaffin, S.; Hogrefe, C.; Biswas, J.; Civerolo, K.; Ku, J.; Rosenzweig, C.; Goldberg, R.

    2003-12-01

    New tools are needed for assessing public health impacts of climate change. This paper describes the results of an integrated assessment of the health impacts of global climate change in the New York metropolitan region, projected for the decade of the 2050s. The model systems used for this study are the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model; the Penn State/NCAR MM5 mesoscale meteorological model; the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE); and the Community Multiscale Air Quality (CMAQ) model for simulating air quality. Simulations are performed for five summer seasons each during the 1990s and the 2050s, using greenhouse gas emissions projections from the Intergovernmental Panel on Climate Change (IPCC) A2 scenario. The GISS global climate model at 4 x 5 degree horizontal resolution is used as input to the MM5 model run at nested grids down to 36 km resolution. The MM5 at 36 km subsequently serves as input for the CMAQ ozone simulations. A risk assessment modeling framework is used to estimate summer heat- and ozone-related mortality in the region, with a focus on comparing respective estimates for the 1990s versus the 2050s. These endpoints represent two potentially appreciable public health impacts resulting from climate change-induced alterations in regional temperature and air quality profiles. Concentration-response functions from the epidemiological literature describing temperature-mortality and ozone-mortality relationships are applied in the risk assessment, to estimate numbers of regional deaths in a typical 1990s summer and a typical 2050s summer. An evaluation to define ozone-related mortality uses a minimum-value threshold applied across the 1-hour daily maximum ozone model outputs, to identify days that pose an elevated relative risk of ozone mortality. A parallel evaluation of heat-related mortality applies a 23.08° C (73.54° F) threshold value, above which the relative risk of heat

  18. Assessing the impacts of climate change in Mediterranean catchments under conditions of data scarcity

    NASA Astrophysics Data System (ADS)

    Meyer, Swen; Ludwig, Ralf

    2013-04-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating 7 test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. The Rio Mannu Basin, located in Sardinia; Italy, is one test site of the CLIMB project. The catchment has a size of 472.5 km2, it ranges from 62 to 946 meters in elevation, at mean annual temperatures of 16°C and precipitation of about 700 mm, the annual runoff volume is about 200 mm. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) was setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. In a field campaign about 250 soil samples were collected and lab-analyzed. Different geostatistical regionalization methods were tested to improve the

  19. Assessing Impacts of Human-Induced Climate Change on California's Meteorological Drought

    NASA Astrophysics Data System (ADS)

    Ragno, E.; Aghakouchak, A.

    2015-12-01

    Many studies have shown that the atmosphere has warmed because of human activities including increased anthropogenic CO2 emissions. However, the impacts of anthropogenic CO2 emissions on meteorological droughts and precipitation patterns are not well understood. In this study, we used historical runs of CMIP5 simulations under pre-industrial and industrial forcings. The two forcings represent rainfall, excluding and including anthropogenic CO2 emissions, respectively. The pre-industrial and current climate simulations are analyzed and compared using a series of techniques including entropy and Wavelet transform. The latter, widely used in signal processing, can detect hidden signal frequencies that cannot be retrieved from the original data. This presentation summarizes our findings and offers prospects for future research.

  20. Impact of Climate Change on extreme flows across Great Britain: a comparison of extreme value distributions and uncertainty assessment.

    NASA Astrophysics Data System (ADS)

    Collet, Lila; Beevers, Lindsay; Prudhomme, Christel

    2016-04-01

    Floods are the most common and widely distributed natural risk to life and property worldwide, causing over £6B worth of damage to the UK since 2000. Climate projections are predicted to result in the increase of UK properties at risk from flooding. It thus becomes urgent to assess the possible impact of these changes on extreme high flows in particular, and evaluate the uncertainties related to these projections. This paper aims to assess the changes in extreme runoff for the 1:100 year return period event across Great Britain as a result of climate change. It is based on the Future Flow database and analyses daily runoff over 1961-2098 for 281 gauging stations. The Generalized Extreme Value (GEV) and Generalized Pareto (GP) distribution functions are automatically fitted for 11 climate-change ensembles over the baseline (1961-1990) and the 2080s (2069-2098) for each gauging station. The analysis evaluates the uncertainty related to the Extreme Value (EV) distributions, and the uncertainty related to the climate model parameterization. Then it assesses return levels with combined uncertainties across Great Britain for both EV distributions. Ultimately, this work gives a national picture of extreme flows assessed by the two methods and allows a direct comparison between them. Results show that the GP distribution computes higher runoff estimates than the GEV distribution. Generally, the uncertainties associated with both distributions are similar, but the GP computes significantly higher uncertainties for stations in the south and southeast of England. From the baseline to the 2080s horizon, the GEV distribution shows variable runoff trends across Great Britain, while the GP distribution shows an increasing trend of return level estimate and uncertainties, especially in the northeast and southeast of England. The lowest climate model and extreme value uncertainty is generally seen across the west coast of Great Britain. In terms of uncertainty, with the GEV

  1. DEVELOPMENT OF IMPACT ORIENTED CLIMATE SCENARIOS

    EPA Science Inventory

    Appropriate scenarios of future climate must be developed prior to any assessment of the impacts of climate change. he information needed by impact assessors was examined in consultation with those having experience in scenario use. ost assessors require regional scenarios with a...

  2. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; Halthore, Rangasayi

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  3. WEPPCAT: An Online tool for assessing and managing the potential impacts of climate change on sediment loading to streams using the Water Erosion Prediction Project (WEPP) Model

    EPA Science Inventory

    WEPPCAT is an on-line tool that provides a flexible capability for creating user-determined climate change scenarios for assessing the potential impacts of climate change on sediment loading to streams using the USDA’s Water Erosion Prediction Project (WEPP) Model. In combination...

  4. Evaluation of a weather generator-based method for statistically downscaling non-stationary climate scenarios for impact assessment at a point scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The non-stationarity is a major concern for statistically downscaling climate change scenarios for impact assessment. This study is to evaluate whether a statistical downscaling method is fully applicable to generate daily precipitation under non-stationary conditions in a wide range of climatic zo...

  5. Economic Impacts from the Boulder County, Colorado, ClimateSmart Loan Program: Using Property-Assessed Clean Energy Financing

    SciTech Connect

    Goldberg, M.; Cliburn, J. K.; Coughlin, J.

    2011-04-01

    This report examines the economic impacts (including job creation) from the Boulder County, Colorado, ClimateSmart Loan Program (CSLP), an example of Property-Assessed Clean Energy (PACE) financing. The CSLP was the first test of PACE financing on a multi-jurisdictional level (involving individual cities as well as the county government). It was also the first PACE program to comprehensively address energy efficiency measures and renewable energy, and it was the first funded by a public offering of both taxable and tax-exempt bonds.

  6. Assessment of potential climate and land use change impacts on the regional water resources of Lusatia (Germany)

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Pohle, Ina; Koch, Hagen; Grünewald, Uwe

    2013-04-01

    Being one of the driest regions in Germany, the climatic water balance of Lusatia is already negative under current climate conditions. Due to excessive open-cast lignite mining activities during the last centuries, the water balance of the catchments of the rivers Spree, Schwarze Elster, and Lusatian Neisse is profoundly disturbed. Potential changes of future climate and land use conditions will certainly impact the hydrologic conditions and may tighten already existing water user conflicts. The aim of the study is (1) the determination of the impact of climate and land use change on the natural discharge in the Lusatian river catchments as a prerequisite for the formulation of suitable water related climate change adaptation strategies and (2) the assessment whether climate or land use changes will be the dominant reason for potential future changes of the water resources in the Lusatian river basins. In a first step, the spatially-distributed, process-based Water Balance Simulation Model (WaSiM-ETH), the semi-distributed, process-oriented Soil and Water Integrated Model (SWIM), and the simple conceptual lumped model HBV-light are calibrated for subcatchments where the influence of lignite mining and water management on discharge is comparably low. The application of three conceptually different models allows for the estimation of the uncertainty related to the hydrological model as well as to verify the applicability of SWIM for the whole study region. SWIM was chosen as hydrological model for the entire river basins because its computational effort is comparably low while allowing through its hydrotope approach spatially distributed analyses. In a second step, the model parameters of SWIM are regionalized onto the scale of the entire river basin. For the consideration of possible impacts of climate change, SWIM is the driven by the meteorological parameters of two statistical regional climate models: Statistical Analogue Resampling scheme (STAR; 3 scenarios

  7. Integrated Modeling to Assess the Impacts of Changes in Climate and Socio Economics on Agriculture in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Malek, K.; Nelson, R.; Stockle, C.; Brady, M.; Dinesh, S.; Barber, M. E.; Yorgey, G.; Kruger, C.

    2012-12-01

    The objective of this work is to assess the impacts of climate change and socio economics on agriculture in the Columbia River basin (CRB) in the Pacific Northwest region of the U.S. and a portion of Southwestern Canada. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of CRB water with 14,000 square kilometers of irrigated area. Agriculture is an important component of the region's economy, with an annual value over 5 billion in Washington State alone. Therefore, the region is relevant for applying a modeling framework that can aid agriculture decision making in the context of a changing climate. To do this, we created an integrated biophysical and socio-economic regional modeling framework that includes human and natural systems. The modeling framework captures the interactions between climate, hydrology, crop growth dynamics, water management and socio economics. The biophysical framework includes a coupled macro-scale physically-based hydrology model (the Variable Infiltration Capacity, VIC model), and crop growth model (CropSyst), as well as a reservoir operations simulation model. Water rights data and instream flow target requirements are also incorporated in the model to simulate the process of curtailment during water shortage. The economics model informs the biophysical model of the short term agricultural producer response to water shortage as well as the long term agricultural producer response to domestic growth and international trade in terms of an altered cropping pattern. The modeling framework was applied over the CRB for the historical period 1976-2006 and compared to a future 30-year period centered on the 2030s. Impacts of climate change on irrigation water availability, crop irrigation demand, frequency of curtailment, and crop yields are quantified and presented. Sensitivity associated with estimates of water availability, irrigation demand, crop

  8. Assessing Climate Change Impacts on Water Allocation in Karkheh River Basin

    NASA Astrophysics Data System (ADS)

    Davtalabsabet, R.; Madani, K.; Massah, A.; Farajzadeh, M.

    2013-12-01

    Rahman Davtalab1, 2, Kaveh Madani2, Alireza Massah3, Manouchehr Farajzadeh1 1Department of Geography, Tarbiat Modares University, Tehran, Iran 2Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA 3Department of Irrigation and Drainage Engineering, College of Abureyhan , University of Tehran, Iran Abstract Karkheh river basin, with an area of 50,000 km2 is located, in southwest Iran. This basin supplies water for major agricultural activities and large hydropower production in five Iranian provinces with the total population of four million people. Due to development and population growth, this large trans-boundary basin is incapable of meeting the water demands of the five riparian provinces, causing water allocation conflicts in the region. The situation has been exacerbated by the frequent droughts and is expected to worsen further by climate change. This study evaluates the impacts of climate change on water supply reliability and allocation in this basin. First, outputs of several General Circulation Models (GCMs) under different emission scenarios for different future time horizons are statistically downscaled. Then multiple river flow time series (RFTS) are generated by feeding GCM outputs into a HEC-HMS model, using the Soil Moisture Accounting (SMA). Given a wide range of variations in GCM outputs and the resulting RFTS, the Ward's method is used to identity different RFTS clusters. Clustering helps with increasing the ability of the modeler to test a range of possible future conditions while reducing the redundancies in input data. Karkheh river basin's ability to meet the growing demand under decreasing flows is evaluated for each RFTS cluster representative. Results indicate that Karkheh river flow might decrease by 50% toward the end of the century. This would decrease the reliability of agricultural water deliveries from 78-95% to less than 50%. While currently hydropower dams can only

  9. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.

    PubMed

    Dixit, Prakash N; Telleria, Roberto

    2015-04-01

    Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., >30 years observed weather data for calibration as generated results proved to be satisfactory with >10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. PMID:25590537

  10. Assessing impact of climate and land use change on water quality in two contrasting meso-scale catchments in Poland

    NASA Astrophysics Data System (ADS)

    Marcinkowski, Pawel; Kardel, Ignacy; Ksiezniak, Marta; Berezowski, Tomasz; Okruszko, Tomasz; Mezghani, Abdelkader; Dobler, Andreas; Piniewski, Mikolaj

    2016-04-01

    The Upper Narew (4280 km2) and the Barycz (5520 km2) are two Polish, meso-scale, lowland catchments, contrasting in terms of land use, water management and water quality. Semi-distributed process-based SWAT model was applied in both catchments for assessment of climate change impact on selected water quality parameters. The model setup was developed based on high-resolution inputs, e.g. 5 km gridded precipitation and temperature dataset and 30 m Landsat8-based land cover map. Multi-site calibration and validation against observed discharge, sediment loads and nutrients loads (nitrogen and phosphorus compounds) gave predominantly satisfactory goodness-of-fit measures which enabled further model use for scenario analysis. Impact of land use on water quality can be assessed by comparing nutrients loads and concentrations simulated for the current conditions between two contrasting catchments. Both specific loads and concentrations of major nitrogen and phosphorous forms were on average 80-100% higher in the Barycz than in the Upper Narew catchment. This is a result of more intensive agricultural practices taking place in the Barycz, unlike the Upper Narew where agriculture is mostly extensive. Large parts of the Barycz catchment have been designed as the Nitrates Vulnerable Zones and since 2007 there are legal restrictions concerning agricultural practices in these areas. Nine GCM-RCM runs projected to the year 2100 for RCP 4.5 and 8.5 provided within the EURO-CORDEX experiment were first bias-corrected using quantile mapping method and then used as an ensemble of climate change scenarios in SWAT. Precipitation projections were largely consistent in showing an increasing precipitation trend, present particularly in winter and spring, in both catchments. This clearly affected the hydrological and biogeochemical cycle and resulted in higher projected water yield, increased erosion, and elevated nitrogen and phosphorus emission to water bodies. The rate of change caused

  11. How the biodiversity sciences may aid biological tools and ecological engineering to assess the impact of climatic changes.

    PubMed

    Morand, S; Guégan, J-F

    2008-08-01

    This paper addresses how climate changes interact with other global changes caused by humans (habitat fragmentation, changes in land use, bioinvasions) to affect biodiversity. Changes in biodiversity at all levels (genetic, population and community) affect the functioning of ecosystems, in particular host-pathogen interactions, with major consequences in health ecology (emergence and re-emergence; the evolution of virulence and resistance). In this paper, the authors demonstrate that the biodiversity sciences, epidemiological theory and evolutionary ecology are indispensable in assessing the impact of climate changes, and also for modelling the evolution of host-pathogen interactions in a changing environment. The next step is to apply health ecology to the science of ecological engineering. PMID:18819665

  12. Assessment of Climate Change Impacts on Flood Event Types in Two Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Turkington, T.; Breinl, K.; Jetten, V.; Ettema, J.

    2014-12-01

    A variety of different climate factors can trigger floods: intense rainfall, long lasting rainfall or extreme amount of snowmelt. As a result, changes in climate extremes can affect both the frequency of floods, but also other factors such as seasonality and duration, all of which have implications on local social and ecological systems. Therefore, we present a technique for examining projected changes in flood events types, focusing on antecedent meteorological conditions. Floods (characterized by the historical 10 and 25-year return level discharge) are clustered into causal types based on rainfall, antecedent precipitation and temperature. A multi-site weather generator coupled with a conceptual rainfall-runoff model is employed to increase the number of flood events. Quantile mapping of precipitation and temperature projections is then used in the development of future discharge. The technique is applied to two different catchments in the European Alps: a smaller catchment in the southern French Alps, dominated by rain-on-snow floods, and a larger catchment in Austria, with more floods during summer. The results show that changes in precipitation and temperature can alter not only the frequency, but also the distribution of flood event types in the future. Furthermore, assessing changes in flood event types provides information about why the frequency of floods in an alpine catchment may change, even if the projections themselves are highly uncertain.

  13. Communicating Climate Change Science to Stakeholders for Assessments of Impact and Adaptation: Experiences at the Municipal Level in Canada

    NASA Astrophysics Data System (ADS)

    Hill, P. R.; Mate, D.; Tansey, J. D.

    2004-12-01

    The assessment of climate change impacts and the identification of adaptation strategies require understandable communication of climate change science and its uncertainties to a diverse group of stakeholders. This paper will report on the experience being gained from a set of municipal case studies conducted in Canada, where climate change impacts such as water resource depletion, permafrost melting and coastal sea level rise are being addressed. Two aspects will be discussed: the local process of stakeholder interaction and the effort to bring the local experiences to a national level through development of municipal best practice guides. Ideally, stakeholders are engaged at the local level through a structured process. This is to avoid the common problem that pre-existing tensions between stakeholders tend to dominate unstructured discussions and distract attention from the target issue. One-on-one interviews with the stakeholders and research into the socio-economic history of the communities provide background on the issues that may arise before group workshops are attempted. When workshops involving stakeholders are held, they are professionally facilitated and the science delivery is carefully rationed into digestible portions that enable informed discussion of specific climate change scenarios. Municipalities can be engaged at political, practitioner and public levels not only as major stakeholders, but also as key partners in the communication process. We have used presentations to council, direct involvement of city planning departments and public events such as Science and Technology Week to nurture two-way communication. We have also put considerable thought into the effort to communicate these experiences to the over one thousand communities across the country that will not benefit from a case study. Our initial approach was to develop best practice guides on climate change topics based on the successes and lessons learned in the case studies. While

  14. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Jeppesen, Erik

    2014-02-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno-reservoir, especially during summer, complicating the fulfillment of its purposes. Most of the scenarios also predicted a deterioration of trophic conditions in the limno-reservoir. Fertilization and soil erosion were the main factors affecting nitrate and total phosphorus concentrations. Combined climate and land use change scenarios showed noticeable synergistic effects on nutrients exports, relative to running the scenarios individually. While the impact of fertilization on nitrate export is projected to be reduced with warming in most cases, an additional 13% increase in the total phosphorus export is expected in the worst-case combined scenario compared to the sum of individual scenarios. Our model framework may help water managers to assess and manage how these multiple environmental stressors interact and ultimately affect aquatic ecosystems.

  15. Assessing Impact of Climate Change on the Runoffs of Gilgel Abbay Watershed, the upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Ayele, H. S.; Li, M. H.; Tung, C. P.; Liu, T. M.

    2015-12-01

    Water is the most climate sensitive sector in changing climate. Hydrological vulnerability assessment is critical to the implementation of adaption measures. In this study, projections of 7 GCMs in association with high (RCP8.5) and medium low (RCP4.5) representative concentration path way from the CMPI5 (fifth phase of the Coupled Model Intercomparison Project) for the period 2021-2040 and 2081-2100 were adopted to assess the impacts of climate change on the runoffs of Gilgel Abbay watershed, the upper Blue Nile basin, in Ethiopia. The GCMs selected were first screened in harmony with baseline climate statistics of study areas. Based on climate projections and statistical characteristics of historical weather data, a weather generator was employed to generate daily temperature and precipitation as inputs for the GWLF hydrological model to simulate runoffs. Changes of projected temperature and precipitation were analyzed to explain variations of evapotranspiration and influences on future runoffs. We found that, despite the fact that the projected magnitude varies among different GCMs, increasing in the wet and a decreasing in dry seasons runoffs were observed in both time windows, which mainly attributes to the increase of precipitations projected by most of GCMs. In contrast to great increases in runoffs, the increase of evapotranspiration by elevating temperature is less significant. The increasing runoffs in both time windows will provide more water inflow to the Lake Tana. On the other hand, the increase of precipitation in wet season makes the wet season wetter and implies higher possibility of flash floods. This will have deleterious consequences in the local community. Therefore, concerned water organizations in local, state, and federal levels shall be prepared to harness the opportunities with more water resources for utilization and management, as well as flood preventive measures.

  16. Climate Change Impact Assessment of the 21st Century Water Balance in the Mesoscale Fulda Catchment Area

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel Stefan Maria; Koch, Manfred

    2010-05-01

    Numerous recent climate impact studies have shown that the anticipated change in the radiation balance of the atmosphere due to the increased anthropogenic green house gas emissions will also affect the global hydrological cycle. However, in spite of the ever-increasing resolution of the numerical climate models, a lot of controversy still exists to the extent of the impact of climate change on the regional, mesoscale water balance. Thus, even for a country as small as Germany different reactions of the regional meteorology and hydrology to simulated 21st century climate change have been predicted for various river basins of the country. In this study the 21st century climate change impact on the water cycle in the 6930 km²- mesoscale Fulda catchment area in central Germany is assessed in more detail. The objective is to evaluate the effects in central Europe for a better assignment and understanding of the water resources on the regional scale in a global context. For this purpose the future surface water budget in the study area has been simulated with the distributed hydrological model SWAT (Soil and Water Assessment Tool). The model is driven by high resolution climate modeling data for the years 2001-2100 assuming the IPCC-Scenarios A1B, A2, and B1. The comparison-, i.e. calibration and verification period is 1960-2000. The dynamic downscaling of the global circulation model ECHAM5 MPI-OM as carried out by the regional model REMO is the basis of the SWAT's water balance's projection. As for possible 21st century changes in the geographical data are assumed to be negligible. The model is calibrated for the 1960-1977 and validated for the 1977-2004 time period using measured climate and hydrological data across the Fulda basin. A very good fit of modeled to the measured runoff data is obtained for daily, monthly, and yearly flows (RN²= 0.89/0.94/0.97). Specific consideration had to be given during the SWAT calibration process to properly incorporate the

  17. Climate Assessment for 2002

    NASA Astrophysics Data System (ADS)

    Waple, A. M.; Lawrimore, J. H.

    2003-04-01

    It is the thirteenth year that the Climate Assessment has been written to summarize the state of the earth's climate, and the third year that the National Climatic Data Center has taken the lead in its production. It is a cooperative effort that includes contributions from scientists around the country and the world. Neutral ENSO conditions at the beginning of 2002 gave way to a strengthening El Niño episode during late boreal summer and continuing into early winter. Weather patterns across the world began to reflect the positive ENSO conditions during the boreal autumn. Global temperatures in 2002 were 0.56°C above the long-term (1880-2001) average, which places 2002 as the second warmest year on record. Land temperatures were 0.89°C above average and ocean temperatures were 0.42°C above the 1880-2001 mean. This ranks both land and ocean as second warmest on record. The Northern Hemisphere temperature continues to average near record levels in 2002 at 0.63°C above the long-term average. The Southern Hemisphere also reflects the globally warmer conditions, with a positive anomaly of 0.47°C. Annual anomalies in excess of 1.0°C were widespread across much of Russia, Eastern Europe, Alaska, and central South America, while significantly cooler than average conditions were confined to the eastern half of Canada, southern South America and the eastern Pacific Ocean, near the coast of the United States. Although 12 tropical storms developed in the Atlantic during the boreal summer of 2002, most of them were weak and short-lived leading to a slightly below normal season in terms of overall activity, which is consistent with the developing El Nino. However, seven tropical storms made landfall on the coast of the United States, with an eighth brushing the coast of North Carolina. Hurricane Lili was the first hurricane to impact the U.S. directly in three years. Other notable aspects of the climate in 2002 include extreme drought in parts of the U.S., Canada and

  18. Identifying surging glaciers in the Central Karakoram for improved climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Bolch, Tobias; Mölg, Nico; Rastner, Philipp

    2015-04-01

    Several recent studies have investigated glacier changes in the Karakoram mountain range, a region where glaciers behave differently (mass gain and advancing tongues) compared to most other regions in the world. Attribution of this behaviour to climate change is challenging, as many glaciers in the Karakoram are of surge type and have actively surged in the recent past. The measured changes in length, area, volume or velocity in this region are thus depending on the time-period analysed and include non-climatic components. Hence, a proper analysis of climate change impacts on glaciers in this region requires a separation of the surging from the non-surging glaciers. This is challenging as the former often lack the typical surface characteristics such as looped moraines (e.g. when they are steep and small) and/or they merge (during a surge) with a larger non-surging glacier and create looped moraines on its surface. By analysing time series of satellite images that are available since 1961, the heterogeneous behaviour of glaciers in the Karakoram can be revealed. In this study, we have analysed changes in glacier terminus positions in the Karakoram over different time periods from 1961 to 2014 for several hundred glaciers using Corona KH-4 and KH-4B, Hexagon KH-9, Terra ASTER, and Landsat MSS, TM, ETM+ and OLI satellite data. For the last 15 years, high-speed animations of image time-series reveal details of glacier flow and surge dynamics that are otherwise difficult to detect. For example, several of the larger glaciers with surging tributaries (e.g. Panmah, Sarpo Laggo, Skamri, K2 glacier) are stationary and downwasting despite the mass contributions from the surging glaciers. The analysis of the entire time series reveals a complex pattern of changes through time with retreating, advancing, surging and stationary glaciers that are partly regionally clustered. While most of the non-surging glaciers show only small changes in terminus position (±100 m or less

  19. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in Mancha Oriental (Spain)

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Peña-Haro, S.; Garcia-Prats, A.; Mocholi-Almudever, A. F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A.

    2014-09-01

    Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation, as various and complex interactions in the hydrological cycle take part. Land-use and land-cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands (global change). Changes in future climate and land uses will alter the hydrologic cycles and subsequently impact the quantity and quality of regional water systems. Predicting the behavior of recharge and discharge conditions under future climatic and land use changes is essential for integrated water management and adaptation. In the Mancha Oriental system in Spain, in the last decades the transformation from dry to irrigated lands has led to a significant drop of the groundwater table in one of the largest groundwater bodies in Spain, with the consequent effect on stream-aquifer interaction in the connected Jucar River. Streamflow depletion is compromising the related ecosystems and the supply to the downstream demands, provoking a complex management issue. The intense use of fertilizer in agriculture is also leading to locally high groundwater nitrate concentrations. Understanding the spatial and temporal distribution of water availability and water quality is essential for a proper management of the system. In this paper we analyze the potential impact of climate and land use change in the system by using an integrated modelling framework consisting of the sequentially coupling of a watershed agriculturally-based hydrological model (SWAT) with the ground-water model MODFLOW and mass-transport model MT3D. SWAT model outputs (mainly groundwater recharge and pumping, considering new irrigation needs under changing ET and precipitation) are used as MODFLOW inputs to simulate changes in groundwater flow and storage and impacts on stream

  20. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    PubMed

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  1. Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems

    NASA Astrophysics Data System (ADS)

    Molina, José-Luis; Pulido-Velázquez, David; García-Aróstegui, José Luis; Pulido-Velázquez, Manuel

    2013-02-01

    SummaryBayesian Networks (BNs) are powerful tools for assessing and predicting consequences of water management scenarios and uncertain drivers like climate change, integrating available scientific knowledge with the interests of the multiple stakeholders. However, among their major limitations, the non-transient treatment of the cause-effect relationship stands out. A Decision Support System (DSS) based on Dynamic Bayesian Networks (DBNs) is proposed here aimed to palliate that limitation through time slicing technique. The DSS comprises several classes (Object-Oriented BN networks), especially designed for future 5 years length time steps (time slices), covering a total control period of 30 years (2070-2100). The DSS has been developed for assessing impacts generated by different Climate Change (CC) scenarios (generated from several Regional Climatic Models (RCMs) under two emission scenarios, A1B and A2) in an aquifer system (Serral-Salinas) affected by intensive groundwater use over the last 30 years. A calibrated continuous water balance model was used to generate hydrological CC scenarios, and then a groundwater flow model (MODFLOW) was employed in order to analyze the aquifer behavior under CC conditions. Results obtained from both models were used as input for the DSS, considering rainfall, aquifer recharge, variation of piezometric levels and temporal evolution of aquifer storage as the main hydrological components of the aquifer system. Results show the evolution of the aquifer storage for each future time step under different climate change conditions and under controlled water management interventions. This type of applications would allow establishing potential adaptation strategies for aquifer systems as the CC comes into effect.

  2. Assessing the Impact of Population Growth, Climate Change, and Land Use Change on Water Resources in India

    NASA Astrophysics Data System (ADS)

    Singh, N.; Cherkauer, K. A.

    2014-12-01

    India is poised to become the most populous country in the world by 2019 and reach a population of over 2 billion by 2050 based on current growth rates. It is also a region which will be under severe socio-economic and environmental stress if mitigation efforts are not adapted. In the past 10 years the population of India has grown by an average rate of 17 million people per year. In addition to unprecedented population growth, rapid urbanization and industrialization are straining the overburdened environmental system. This rapid growth in population, urbanization and industrialized will result in increased demand for food, requiring expansion of agricultural resources. Since total agricultural land in India has been relatively constant over the past 10 years the demand for additional food has to be partly met by enhanced production on existing land. Arable land in India has declined by around 3% according to FAOSTAT while the total agricultural area under irrigation has increased by about 9% thus further straining its water resources. In addition projections for future climate indicate that India is one of the regions where water resources are expected to be negatively impacted. Total agriculture water withdrawal in India increased by approximately 18 % from 2000-2010 while the total per capita water withdrawal increased by over 9% from 2000-2010. Total freshwater withdrawal as percentage of renewable water resources was around 40% in 2010. In addition, recent mandates of biofuel policies in India are also expected to impact its water resources. The combined impact of these various factors on future water availability in India could be one of the most severe globally due its unprecedented increase in population, food production and industrialization. In this study we assess the impact of land use and climate change on water resources over southern India in the face of a growing population and interest in development of national biofuel supplies. We use

  3. Wind power: Addressing wildlife impacts, assessing effects on tourism, and examining the link between climate change perceptions and support

    NASA Astrophysics Data System (ADS)

    Lilley, Meredith Blaydes

    As the world's most rapidly growing source of energy, wind power has vast potential for mitigating climate change and advancing global environmental sustainability. Yet, the challenges facing wind energy remain both complex and substantial. Two such challenges are: 1) wildlife impacts; and 2) perceived negative effects on tourism. This dissertation examines these challenges in a multi-paper format, and also investigates the role that climate change perceptions play in garnering public support for wind power. The first paper assesses optimal approaches for addressing wind power's wildlife impacts. Comparative analysis reveals that avian mortality from turbines ranks far behind avian mortality from a number of other anthropogenic sources. Additionally, although bats have recently emerged as more vulnerable to wind turbines than birds, they are generally less federally protected. The Migratory Bird Treaty Act (MBTA) protects over 800 bird species, regardless of their threatened or endangered status. Moreover, it criminalizes the incidental take of birds without a permit and simultaneously grants no permits for such incidental take, thereby creating a legal conundrum for the wind industry. An examination of the legislative and case history of the MBTA, however, reveals that wind operators are not likely to be prosecuted for incidental take if they cooperate with the U.S. Fish & Wildlife Service (FWS) and take reasonable steps to reduce siting and operational impacts. Furthermore, this study's analysis reveals modest wildlife impacts from wind power, in comparison with numerous other energy sources. Scientific-research, legal, and policy recommendations are provided to update the present legal and regulatory regime under the MBTA and to minimize avian and bat impacts. For instance, FWS should: establish comprehensive federal guidelines for wind facility siting, permitting, monitoring, and mitigation; and promulgate regulations under the MBTA for the issuance of

  4. Quantitative and qualitative assessment of the impact of climate change on a combined sewer overflow and its receiving water body.

    PubMed

    Bi, Eustache Gooré; Monette, Frédéric; Gachon, Philippe; Gaspéri, Johnny; Perrodin, Yves

    2015-08-01

    Projections from the Canadian Regional Climate Model (CRCM) for the southern part of the province of Québec, Canada, suggest an increase in extreme precipitation events for the 2050 horizon (2041-2070). The main goal of this study consisted in a quantitative and qualitative assessment of the impact of the 20 % increase in rainfall intensity that led, in the summer of 2013, to overflows in the "Rolland-Therrien" combined sewer system in the city of Longueuil, Canada. The PCSWMM 2013 model was used to assess the sensitivity of this overflow under current (2013) and future (2050) climate conditions. The simulated quantitative variables (peak flow, Q(CSO), and volume discharged, VD) served as the basis for deriving ecotoxicological risk indices and event fluxes (EFs) transported to the St. Lawrence (SL) River. Results highlighted 15 to 500% increases in VD and 13 to 148% increases in Q(CSO) by 2050 (compared to 2013), based on eight rainfall events measured from May to October. These results show that (i) the relationships between precipitation and combined sewer overflow variables are not linear and (ii) the design criteria for current hydraulic infrastructure must be revised to account for the impact of climate change (CC) arising from changes in precipitation regimes. EFs discharged into the SL River will be 2.24 times larger in the future than they are now (2013) due to large VDs resulting from CC. This will, in turn, lead to excessive inputs of total suspended solids (TSSs) and tracers for numerous urban pollutants (organic matter and nutrients, metals) into the receiving water body. Ecotoxicological risk indices will increase by more than 100% by 2050 compared to 2013. Given that substantial VDs are at play, and although CC scenarios have many sources of uncertainty, strategies to adapt this drainage network to the effects of CC will have to be developed. PMID:25869430

  5. Assessment of Long-Term Climate Change Impacts on Agricultural Productivity in Eastern China Using High-Resolution Regional Climate Model Output

    NASA Astrophysics Data System (ADS)

    Chavas, D. R.; Izaurralde, C.; Thomson, A.

    2008-12-01

    Increasing atmospheric greenhouse gas concentrations are expected to induce significant climate change over the next century and beyond, but the impacts on society remain highly uncertain. This work utilizes high-resolution regional climate model output to assess potential climate change impacts on the productivity of five major crops in eastern China: canola, corn, potato, rice, and winter wheat. In addition to determining domain-wide trends, the objective is to identify vulnerable and emergent regions under future climate conditions, defined as having a greater than 10 percent decrease and increase in productivity, respectively. Data from the ICTP RegCM3 regional climate model for baseline (1961-1990) and future (2071-2100) periods under A2 scenario conditions are used as input in the EPIC agro-ecosystem simulation model in the domain [30N, 108E] to [42N, 123E]. Simulations are performed with and without the enhanced CO2 fertilization effect. Results indicate that aggregate potential productivity (i.e. if the crop is grown everywhere) increases 6.5 percent for rice, 8.3 percent for canola, 18.6 percent for corn, 22.9 percent for potato, and 24.9 percent for winter wheat, although with significant spatial variability for each crop. However, absent the enhanced CO2 fertilization effect, potential productivity declines in all cases ranging from 2.5-12 percent. Interannual yield variability remains constant or declines in all cases except rice. Climate variables are found to be more significant drivers of simulated yield changes than changes in soil properties, except in the case of potato production in the northwest where the effects of wind erosion are more significant. Overall, in the future period corn and winter wheat benefit significantly in the North China Plain, rice remains dominant in the southeast and emerges in the northeast, potato and corn yields become viable in the northwest, and potato yields suffer in the southwest with no other crop emerging as a

  6. The 'Hothaps' programme for assessing climate change impacts on occupational health and productivity: an invitation to carry out field studies.

    PubMed

    Kjellstrom, Tord; Gabrysch, Sabine; Lemke, Bruno; Dear, Keith

    2009-01-01

    The 'high occupational temperature health and productivity suppression' programme (Hothaps) is a multi-centre health research and prevention programme aimed at quantifying the extent to which working people are affected by, or adapt to, heat exposure while working, and how global heating during climate change may increase such effects. The programme will produce essential new evidence for local, national and global assessment of negative impacts of climate change that have largely been overlooked. It will also identify and evaluate preventive interventions in different social and economic settings.Hothaps includes studies in any part of the world where hourly heat exposure exceeds physiological stress limits that may affect workers. This usually happens at temperatures above 25 degrees C, depending on humidity, wind movement and heat radiation. Working people in low and middle-income tropical countries are particularly vulnerable, because many of them are involved in heavy physical work, either outdoors in strong sunlight or indoors without effective cooling. If high work intensity is maintained in workplaces with high heat exposure, serious health effects can occur, including heat stroke and death.Depending on the type of occupation, the required work intensity, and the level of heat stress, working people have to slow down their work in order to reduce internal body heat production and the risk of heat stroke. Thus, unless preventive interventions are used to reduce the heat stress on workers, their individual health and productivity will be affected and economic output per work hour will be reduced. Heat also influences other daily physical activities, unrelated to work, in all age groups. Poorer people without access to household or workplace cooling devices are most likely to be affected.The Hothaps programme includes a pilot study, heat monitoring of selected workplaces, qualitative studies of perceived heat impacts and preventative interventions

  7. Using and Applying Focus Groups in Climate Change Impact Assessment Projects

    NASA Astrophysics Data System (ADS)

    DeLorme, D.; Hagen, S.

    2011-12-01

    The focus group social science research method is an efficient and flexible data collection tool with broad applicability across disciplines and contexts. Through group dynamics, this interviewing approach offers strengths in gathering candid, spontaneous comments and detailed firsthand descriptions from stakeholders' perspectives. The method, which can stand alone or be integrated with other research frameworks, has much potential for helping to manage complex issues of global change. For optimal outcomes, however, careful planning and procedures are paramount. This presentation offers guidance in this regard via examples, tips, and lessons learned from a multidisciplinary NOAA-funded project: Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM). Focus groups are a key component of the EESLR-NGOM project as they are being used to better understand coastal resource managers' operational and information behaviors and needs regarding sea level rise (SLR), erosion, and hurricane storm surge impact; to learn how to best develop and translate the project's expected scientific results into straightforward, useful, and readily-disseminated products; and to gather outreach recommendations. As part of an EESLR-NGOM project kickoff workshop, 12 coastal resource managers participated voluntarily in a focus group. A summary of findings and illustrative participant quotations will be included in the presentation. The initial focus group was productive in gaining insights into challenges and opportunities associated with a climate change project such as the EESLR-NGOM. It highlighted the importance of considering the interrelationships of natural and built environments and new avenues for resilience and sustainability. The coastal resource managers are not only end-users but also opinion leaders in their local communities who will diffuse this information widely through their networks of other potential end-users. Engaging coastal resource managers in

  8. The role of model selection in representing evapotranspiration processes in climate impact assessments

    NASA Astrophysics Data System (ADS)

    Guo, Danlu; Westra, Seth; Maier, Holger R.

    2015-04-01

    Projected changes to near-surface atmospheric temperature, wind, humidity and solar radiation are expected to lead to changes in evaporative demand - and thus changes to the catchment water balance - in many catchments worldwide. To quantify likely implications on runoff, a modelling chain is commonly used in which the meteorological variables are first converted to potential evapotranspiration (PET), followed by the conversion of PET to runoff using one or more rainfall-runoff models. The role of the PET model and rainfall-runoff model selection on changes to the catchment water balance is assessed using a sensitivity analysis applied to data from five climatologically different catchments in Australia. Changes to temperature have the strongest influence on both evapotranspiration and runoff for all models and catchments, whereas the relative role of the remaining variables depends on both the catchment location and the PET and rainfall-runoff model choice. Importantly, sensitivity experiments show that 1) distributions of climate variables differ for dry/wet conditions; 2) seasonal distribution of changes to PET differs for driving variables. These findings suggest possible interactions between PET model selection and the way that evapotranspiration processes are represented within rainfall-runoff model. For a constant percentage change to PET, this effect can lead to five-fold difference in runoff changes depending on which meteorological variable is being perturbed.

  9. Multi-model assessment of climate change impacts on river discharge in three different regional scale river basins on three continents

    NASA Astrophysics Data System (ADS)

    Vetter, Tobias; Krysanova, Valentina; Hattermann, Fred; Huang, Shaochun; Aich, Valentin; Yang, Tao

    2014-05-01

    Projections of climate impacts should be provided at the regional scale using validated regional-scale models in order to supply more reliable results for decision makers and managers. In the last decade climate impact assessment was performed for different regions and sectors using different scenarios and tools. However, the results are hardly comparable and do not allow to create a full picture of impacts and to evaluate their robustness. This study aims at comparing climate impacts on seasonal water discharge as well as on trends in projected discharge quantiles. Uncertainties from different sources are evaluated. The intercomparison of impacts was done for three regions on three continents which are characterized by very different climate and land use conditions: the Rhine in Europe, the Upper Niger in Africa and the Upper Yellow River in Asia. The climate impact assessment was performed using scenarios from five General Climate Models (GCMs). The bias-corrected climate scenarios for this study were provided by the ISI-MIP project. The following GCMs were used: HadGEM2-ES, IPSL-CM5ALR, MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M. The hydrological impact assessment was conducted applying the hydrological impact models HBV, SWIM and VIC. Our results suggest that the five GCMs contribute more to overall uncertainty of river discharge than the three hydrological models. Projected trends in river discharge are more variable and more often contradictory when different GCMs are compared. However, we also found significant opposite trend direction for projected river discharge using different hydrological models but the same climate input data.

  10. Assessing air quality and climate impacts of future ground freight choice in United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Bond, T. C.; Smith, S.; Lee, B.; Ouyang, Y.; Hwang, T.; Barkan, C.; Lee, S.; Daenzer, K.

    2013-12-01

    The demand for freight transportation has continued to increase due to the growth of domestic and international trade. Emissions from ground freight (truck and railways) account for around 7% of the greenhouse gas emissions, 4% of the primary particulate matter emission and 25% of the NOx emissions in the U.S. Freight railways are generally more fuel efficient than trucks and cause less congestion. Freight demand and emissions are affected by many factors, including economic activity, the spatial distribution of demand, freight modal choice and routing decision, and the technology used in each modal type. This work links these four critical aspects of freight emission system to project the spatial distribution of emissions and pollutant concentration from ground freight transport in the U.S. between 2010 and 2050. Macroeconomic scenarios are used to forecast economic activities. Future spatial structure of employment and commodity demand in major metropolitan areas are estimated using spatial models and a shift-share model, respectively. Freight flow concentration and congestion patterns in inter-regional transportation networks are predicted from a four-step freight demand forecasting model. An asymptotic vehicle routing model is also developed to estimate delivery ton-miles for intra-regional freight shipment in metropolitan areas. Projected freight activities are then converted into impacts on air quality and climate. CO2 emissions are determined using a simple model of freight activity and fuel efficiency, and compared with the projected CO2 emissions from the Second Generation Model. Emissions of air pollutants including PM, NOx and CO are calculated with a vehicle fleet model SPEW-Trend, which incorporates the dynamic change of technologies. Emissions are projected under three economic scenarios to represent different plausible futures. Pollutant concentrations are then estimated using tagged chemical tracers in an atmospheric model with the emissions serving

  11. Assessment of climate change impacts on rainfall using large scale climate variables and downscaling models - A case study

    NASA Astrophysics Data System (ADS)

    Ahmadi, Azadeh; Moridi, Ali; Lafdani, Elham Kakaei; Kianpisheh, Ghasem

    2014-10-01

    Many of the applied techniques in water resources management can be directly or indirectly influenced by hydro-climatology predictions. In recent decades, utilizing the large scale climate variables as predictors of hydrological phenomena and downscaling numerical weather ensemble forecasts has revolutionized the long-lead predictions. In this study, two types of rainfall prediction models are developed to predict the rainfall of the Zayandehrood dam basin located in the central part of Iran. The first seasonal model is based on large scale climate signals data around the world. In order to determine the inputs of the seasonal rainfall prediction model, the correlation coefficient analysis and the new Gamma Test (GT) method are utilized. Comparison of modelling results shows that the Gamma test method improves the Nash-Sutcliffe efficiency coefficient of modelling performance as 8% and 10% for dry and wet seasons, respectively. In this study, Support Vector Machine (SVM) model for predicting rainfall in the region has been used and its results are compared with the benchmark models such as K-nearest neighbours (KNN) and Artificial Neural Network (ANN). The results show better performance of the SVM model at testing stage. In the second model, statistical downscaling model (SDSM) as a popular downscaling tool has been used. In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall estimation. The results show that the rainfall in the future wet periods are more than historical values and it is lower than historical values in the dry periods. The highest monthly uncertainty of future rainfall occurs in March and the lowest in July.

  12. Assessing the Potential Impact of Climate Variability on the Hydrology in the Shubuto River Basin, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Bhatti, A. M.; Koike, T.; Shrestha, M.

    2014-12-01

    The present research deal with a basin-scale hydrological modeling approach for climate change impact assessment in the Shubuto River basin, Hokkaido, Japan by employing Water and Energy Budget - based Distributed Hydrological Model with improved snow physics (WEB-DHM-S) coupled with AOGCMs output. The WEB-DHM-S provided reliable estimation of seasonal and inter-annual variability of the snow cover area (SCA) and snow depth and the subsequent river discharge production. Comparison of simulated snow cover with the MODIS eight-day snow cover product showed that the distribution of snow over the basin was well captured. The observed and simulated discharge was found to be in well agreement. Sensitivity analysis showed that with the increase in temperature, the fraction of precipitation that occur as snow will decrease, resulting in less snowmelt driven runoff. To elucidate the potential impact of climate variability on the hydrology, WEB-DHM-S was fed with statistically downscaled climate data from the four selected AOGCMs for SRESA1B scenario. The 20 years daily discharge and snow water equivalent (SWE) of all the AOGCMs for the past (1981-2000) and future (2046-2065) have shown uniform direction of trends with decrease in snowmelt induced runoff. Based on the analysis, the mean annual basin wide SWE will decrease, on average 36%, relative to the past. Discharge projections indicated the seasonal march of snowmelt runoff in the future with predicted peak flow to be occurred earlier, on average 14 days, with reference to the past. The findings of present research reinforce the need of improved understanding and representation of changes occurring in the mountain hydrology.

  13. Assessing potential impacts of climate change on hydropower generation of three reservoirs in the Tagus River Basin under ensemble of climate projections

    NASA Astrophysics Data System (ADS)

    Lobanova, Anastasia; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2015-04-01

    The Tagus River basin is an important strategic water and energy source for Portugal and Spain. With an extensive network of 40 reservoirs with more than 15 hm3 capacity and numerous abstraction channels it is ensuring water supply for domestic and industrial usage, irrigation and hydropower production in Spain and Portugal. Growing electricity and water supply demands, over-regulation and construction of new dams, and large inter-basin water transfers aggravated by strong natural variability of climate and aridity of the catchment have already imposed significant pressures on the river. The substantial reduction of discharge, dropping during some months to zero in some parts of the catchment, is observed already now, and projected climatic change is expected to alter the water budget of the catchment further. As the water inflow is a fundamental defining factor in a reservoir operation and hydropower production, the latter are highly sensitive to shifts in water balance of the catchment, and hence to changes in climate. In this study we aim to investigate the effects of projected climate change on water inflows and hydropower generation of the three large reservoirs in the Tagus River Basin, and by that to assess their ability to cover electricity power demands and provide water supply under changed conditions, assuming present management strategies; hydropower and abstraction demands. The catchment scale, process-based eco-hydrological model SWIM was set up, calibrated and validated up to the Santarem gauge at the Tagus outlet, with the implementation of a reservoir module. The reservoir module is able to represent three reservoir operation management options, simulate water abstraction and provide rates of generated hydropower. In total, fifteen largest reservoirs in the Tagus River Basin were included in the model, calibrated and validated against observed inflow, stored water and outflow water volumes. The future climate projections were selected from the

  14. Assessing the Impacts of Local Knowledge and Technology on Climate Change Vulnerability in Remote Communities

    PubMed Central

    Bone, Christopher; Alessa, Lilian; Altaweel, Mark; Kliskey, Andrew; Lammers, Richard

    2011-01-01

    The introduction of new technologies into small remote communities can alter how individuals acquire knowledge about their surrounding environment. This is especially true when technologies that satisfy basic needs, such as freshwater use, create a distance (i.e., diminishing exposure) between individuals and their environment. However, such distancing can potentially be countered by the transfer of local knowledge between community members and from one generation to the next. The objective of this study is to simulate by way of agent-based modeling the tensions between technology-induced distancing and local knowledge that are exerted on community vulnerability to climate change. A model is developed that simulates how a collection of individual perceptions about changes to climatic-related variables manifest into community perceptions, how perceptions are influenced by the movement away from traditional resource use, and how the transmission of knowledge mitigates the potentially adverse effects of technology-induced distancing. The model is implemented utilizing climate and social data for two remote communities located on the Seward Peninsula in western Alaska. The agent-based model simulates a set of scenarios that depict different ways in which these communities may potentially engage with their natural resources, utilize knowledge transfer, and develop perceptions of how the local climate is different from previous years. A loosely-coupled pan-arctic climate model simulates changes monthly changes to climatic variables. The discrepancy between the perceptions derived from the agent-based model and the projections simulated by the climate model represent community vulnerability. The results demonstrate how demographics, the communication of knowledge and the types of ‘knowledge-providers’ influence community perception about changes to their local climate. PMID:21556176

  15. Infrastructure improvements for snowmelt runoff assessments of climate change impacts on water supplies in the Rio Grande basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has become apparent that the effects of climate change will be especially important for Southwestern US water users. The NSF-funded EPSCoR project “Climate Change Impacts on New Mexico’s Mountain Sources of Water” focuses on improving hydrometeorological measurements, developing basin-wide and s...

  16. Future Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health over the Coterminous U.S

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Crosson, W. L.; Al-Hamdan, M. Z.; Estes, M. G., Jr.

    2013-12-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981-2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a ';heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air

  17. Future Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health over the Coterminous U.S.

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices

  18. Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database

    NASA Astrophysics Data System (ADS)

    Calanca, Pierluigi; Semenov, Mikhail A.

    2013-08-01

    We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.

  19. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  20. A brief overview uncertainties in climate change projections and their consequences for impact assessment

    NASA Astrophysics Data System (ADS)

    Tebaldi, C.

    2014-12-01

    Using as an entry-point a recent study that quantified the risk of global crop production slowdown due to anthropogenic warming in the next couple of decades, I will talk about approaches to characterizing uncertainties in future climate projections; I will highlight the hurdles and challenges in translating characterization into quantification; and I will offer some examples of methodologies in the literature. I hope to span, with this overview, the space of assumptions that I consider crucial to any formal analysis of climate projections and their effects on human or natural systems.

  1. "CITY 2020+": assessing climate change impacts for the city of Aachen related to demographic change and health - a progress report

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Balzer, C.; Buttstädt, M.; Eßer, K.; Ginski, S.; Hahmann, J.; Ketzler, G.; Klemme, M.; Kröpelin, A.; Merbitz, H.; Michael, S.; Sachsen, T.; Siuda, A.; Weishoff-Houben, M.; Brunk, M. F.; Dott, W.; Hofmeister, H.; Pfaffenbach, C.; Roll, C.; Selle, K.

    2011-09-01

    The research initiative CITY 2020+ assesses the risks and opportunities for residents in urban built environments under projected demographic and climate change for the year 2020 and beyond, using the city of Aachen as a case study. CITY 2020+ develops strategies, options and tools for planning and developing sustainable future city structures. The investigation focuses on how urban environment, political structure and residential behaviour can best be adapted, with attention to the interactions among structural, political, and sociological configurations and their impacts on human health. The interdisciplinary research is organized in three clusters. Within the first cluster, strategies of older people exposed to heat stress, and their networks as well as environmental health risks according to atmospheric conditions are examined. The second cluster addresses governance questions, urban planning and building technologies as well as spatial patterns of the urban heat island. The third cluster includes studies on air quality related to particulate matter and a historical perspective of city development concerning environmental issues and climate variability. However, it turns out that research topics that require an interdisciplinary approach are best addressed not by pre-structuring the work into related sub-projects but through combining them according to shared methodological approaches. Examples illustrating this rather practical approach within ongoing research are presented in this paper.

  2. A modified regionalization weighting approach for climate change impact assessment at watershed scale

    NASA Astrophysics Data System (ADS)

    Zareian, Mohammad Javad; Eslamian, Saeid; Safavi, Hamid Reza

    2015-11-01

    This study is conducted to investigate the regional effects of climate change on Zayandeh-Rud River Basin located in the central part of Iran for the both near and far future scenarios. A combination of various general circulation models (GCMs) is used through a weighting approach to generate different climate change patterns including the ideal, medium, and critical patterns. Each of the GCMs has different ability to simulate the baseline climatic parameters in various months and regions of the basin. A new method, namely "modified weighting method based on the actual values" (MWM-AV), also is applied to convert the local effects of climate change to the regional effects. The results showed that the annual temperature of Zayandeh-Rud River Basin would increase by 0.59-1.34 and 1.02-2.53 °C, respectively, in the near and far futures in which maximum increase in seasonal temperature is expected to happen in the summer. Annual precipitation would change by +1.78 to -20.78 % in the near future and -14.35 to -32.82 % in the far future. The maximum decrease in precipitation is observed to be in the winter. The results of temperature and precipitation regionalization showed that the applied method has a good precision in estimating temperature and precipitation in different regions of the desired basin. The eastern part of the basin would have the maximum increase in temperature, while the western part would experience the maximum decrease in precipitation. Overall, the results demonstrated that due to the centralization of the main water uses in the east and the water resources in the west, the Zayandeh-Rud River Basin will face an intensive water shortage under climate change.

  3. Climate impacts on northern Canada: introduction.

    PubMed

    Furgal, Chris; Prowse, Terry

    2009-07-01

    There is significant evidence that northern Canada's climate has already undergone substantial change. These changes have meant significant impacts for physical, natural and human systems in Canada's North. Climate models suggest that such trends will continue into the future, and therefore shifts in Arctic systems are expected for some time to come. This introductory paper is the first in a series published in two issues of Ambio presenting work conducted for northern chapters of two recent Canadian national climate science assessment initiatives, From Impacts to Adaptation: Canada in a Changing Climate 2007 and Human Health in a Changing Climate: A Canadian Assessment of Vulnerabilities and Adaptive Capacity. Collectively, these assessments involved the work of 24 scientists with expertise in a variety of disciplines and regions in the Canadian North. These assessment processes adopted aspects of a vulnerability approach to climate assessment, primarily through a review of existing and projected exposures and elements of adaptive capacity based on existing literature. In so doing, they have contributed towards a more comprehensive understanding of climate impacts and adaptations across the northern regions of the country. This paper provides an overview and introduction to the series of papers contained in the two issues of Ambio. PMID:19714956

  4. Integrated snow and hydrology modeling for climate change impact assessment in Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G.; Lewis, S.; Nolin, A. W.; Hempel, L. A.; Cooper, M.; Tague, C.

    2014-12-01

    In the Pacific Northwest (PNW), increasing temperatures are expected to alter the hydrologic regimes of streams by shifting precipitation from snow to rain and forcing earlier snowmelt. How are such changes likely to affect peak flows across the region? Shifts in peak flows have obvious implications for changing flood risk, but are also likely to affect channel morphology, sediment transport, aquatic habitat, and water quality, issues with potentially high economic and environmental cost. Our goal, then, is to rigorously evaluate sensitivity to potential peak flow changes across the PNW. We address this by developing a detailed representation of snowpack and streamflow evolution under varying climate scenarios using a cascade-modeling approach. We have identified paired watersheds located on the east (Metolius River) and west (McKenzie River) sides of the Cascades, representing dry and wet climatic regimes, respectively. The tributaries of these two rivers are comprised of contrasting hydrologic regimes: surface-runoff dominated western cascades and deep-groundwater dominated high-cascades systems. We use a detailed hydro-ecological model (RHESSys) in conjunction with a spatially distributed snowpack evolution model (SnowModel) to characterize the peak flow behavior under present and future climate. We first calibrated and validated the SnowModel using observed temperature, precipitation, snow water equivalent, and manual snow survey data sets. We then employed a multi-objective calibration strategy for RHESSys using the simulated snow accumulation and melt from SnowModel and observed streamflow. The Nash-Sutcliffe Efficiency between observed and simulated streamflow varies between 0.5 in groundwater and 0.71 in surface-runoff dominated systems. The initial results indicate enhanced peak flow under future climate across all basins, but the magnitude of increase varies by the level of snowpack and deep-groundwater contribution in the watershed. Our continuing effort

  5. Assessing the impact of climate variability on phosphorus transport in the Cannonsville Watershed using the SWAT model

    NASA Astrophysics Data System (ADS)

    Woodbury, J.; Shoemaker, C. A.

    2011-12-01

    This study investigates the impact of climate variability on phosphorus transport in the mostly forested and agricultural Cannonsville watershed in Upstate New York. Different climate scenarios are studied in order to better understand the possible changes in seasonal phosphorus loading to the reservoir, which is an important source of drinking water for New York City residents. The study is carried out using a calibrated SWAT 2005 model along with a weather generator created specifically for the watershed. The study includes two parts. The first part investigates the historical trends in phosphorus loading. This is done by using climate data from the mid 1960s to the present day with the SWAT model. The results show that over time the phosphorus loading to the reservoir is increasing, with most of this increase occurring in the spring, summer and fall. This is worrisome since climate change is likely to make these seasons longer. The second part of the study investigates the impact of different climate scenarios under the same watershed conditions as the first part of the study. This is done in order to understand the changes in timing as well as the amount of phosphorus loading to the reservoir. The study also investigates the changes in crop growth, in terms of timing and magnitude. Since the watershed is mostly forest and agricultural land, the impact of warmer or colder climates is quite apparent. All model outputs are investigated on a yearly, as well as a seasonal basis since climate change is likely to impact seasons differently. The results show significant changes in phosphorus loading due to different climate scenarios. This shows that any type of phosphorus management planning for the future needs to include the possible uncertainty associated with changing climates.

  6. Assessing Climatic Impacts due to Land Use Change over Southeast Asian Maritime Continent base on Mesoscale Model Simulations

    NASA Astrophysics Data System (ADS)

    Feng, N.; Christopher, S. A.; Nair, U. S.

    2014-12-01

    Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.

  7. Public health impacts of global climate change.

    PubMed

    Hales, S; Weinstein, P; Woodward, A

    1997-01-01

    The potential health impacts of climate change are wide-ranging, from direct impacts at familiar local scales, through indirect effects occurring at the regional or ecosystem level, to long term effects on the sustainability of global systems. To assess these potential impacts, there is a need to broaden the scope of health impact assessment. Eco-epidemiology is emerging as a response to this need. Eco-epidemiology entails a shift in focus: from direct (toxicological) to indirect (ecological) mechanisms; and from effects occurring at 'human' temporal and geographical scales to those at regional and geophysical scales. We discuss the potential health impacts of climate change on each scale. At the global scale, interactions and feedbacks between systems are critical determinants of long term outcomes. From an eco-epidemiological perspective, the study of climate change becomes inseparable from the study of global change more generally. PMID:9406290

  8. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio

  9. Assessing the impact of landuse change, climate change and reservoirs on suspended sediment load in Da river (China-Vietnam)

    NASA Astrophysics Data System (ADS)

    Van Thinh, Le; Soncini, Andrea; Bocchiola, Daniele; Ranzi, Roberto; Rulli, Maria Cristina

    2016-04-01

    Sediment issues have critical implications for aquatic ecology, agriculture, water supply and river navigation. Recently, with the construction and operation of several reservoirs in Da river basin (China-Vietnam), such as Hoa Binh, Lai Chau, Son La and so on, this issue has risen high interest and concern. Reservoirs have been built to meet several important needs, including increasing energy, irrigation, and drinking water demand. However, the decision maker should pay attention to the effects on sediment load, namely trapping of sediments, reduction of sediment concentration downstream reservoirs, increasing riverbank erosion, and localized erosion nearby hydraulic structures. In addition, land use changes, and climate changes are also to be considered as causing effect on sediment erosion and transport. The aim of this work is to evaluate the effects of separate factors (reservoirs, land use change, and climate change) on sediment load in the Da river basin. To this purpose, an updated and enhanced version of the soil erosion and transport model at the catchment scale, namely DIMOSHONG_RUSLE is applied to the Da river basin. More than 50 years of monthly precipitation, runoff and suspended sediment load data are processed. Two historical (1983, 2000) land use maps were generated based on statistic data of the government. The effect of land use change, and reservoirs is assessed on the basis of trends observed in the last decades. To develop the DIMOSHONG_RUSLE model in the period 1961-1985 with land use 1983 (before Hoa Binh reservoir was constructed completely) an updated version of the parameters of the RUSLE equation is determined according to the space variability on the soil types base on experimental data. Then, using chosen optimized parameter of RUSLE, suspended sediment load for the period 1986-2005 (with the Hoa Binh reservoir built and in operation) corresponding with land use in 2000 are calculated. The results are in good agreement with observed

  10. Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index

    PubMed Central

    Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui

    2015-01-01

    Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation’s responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April–October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages. PMID:26184243

  11. Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index.

    PubMed

    Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui

    2015-07-01

    Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation's responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April-October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages. PMID:26184243

  12. Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Uvo, C. B.; Berndtsson, R.

    2015-10-01

    The effect of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010-2030 and 2030-2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. A conceptual rainfall-runoff model (Qbox) was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002-2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall-runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW) to simulate future recharge and groundwater hydraulic heads. As a result of the rainfall-runoff modeling, under the B1 scenario the number of floods is projected to slightly increase in the area. This in turn calls for proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference between present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharge amount in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

  13. Adjusting skewness and maximum 0.5 hour intensity in CLIGEN to improve extreme event and sub-daily intensity generation for assessing climate change impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both measured data and GCM/RCM projections show an general increasing trend in extreme rainfall events as temperature rises in US. Proper simulation of extreme events is particularly important for assessing climate change impacts on soil erosion and hydrology. The objective of this paper is to fin...

  14. Urban Impact Assessment and Adaptation Strategies to Climate Change in Europe: A Case Study for Antwerp, Berlin and Almada

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart

    2014-05-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heat waves. For example, the summer 2003 European heat wave caused up to 70.000 excess deaths over four months in Central and Western Europe. As around 75% of Europe's population resides in urban areas, it is of particular relevance to examine the impact of seasonal to decadal-scale climate variability on urban areas and their populations. This study aims at downscaling the spatially coarse resolution CMIP5 climate predictions to the local urban scale and investigating the relation between heat waves and the urban-rural temperature increment (urban heat island effect). The resulting heat stress effect is not only driven by climatic variables but also impacted by urban morphology. Moreover, the exposure varies significantly with the geographical location. All this information is coupled with relevant socio-economic datasets such as population density, age structure, etc. focussing on human health. The analyses are conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (BE), Berlin (DE) and Almada (PT) represented by different climate and urban characteristics. The end-user needs have been consolidated in a climate services plan including the production of heat risk exposure maps and the analysis of various scenarios considering e.g. the uncertainty of the global climate predictions, urban expansion over time and the impact of mitigation measures such as green roofs. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for the design and management of climate resilient cities.

  15. A stochastic assessment of climate change impacts on precipitation and potential evaporation in Alberta

    NASA Astrophysics Data System (ADS)

    Vashchyshyn, I.; Wheater, H. S.; Chun, K.

    2012-12-01

    In many climate change investigations, changes in precipitation are projected under various scenarios; however, changes in evaporation have received relatively less attention. For irrigation and water resources management, the difference between potential evaporation and precipitation can provide better quantification of local water availability and drought conditions. Therefore, projecting joint variations in precipitation and potential evaporation can provide better information for climate change adaptation. A stochastic approach based on a Generalised Linear Model (GLM) framework is proposed to study these together at a station scale. Eight stations in Alberta are selected for which historical pan evaporation records and up-to-date meteorological information are available. Results show that potential evaporation estimated from Global Circulation Models directly can be unreliable. The evaporation ensemble simulated by the GLM approach can represent observed evaporation more realistically and provide better uncertainty quantification. If only simulated precipitation is considered, the projected drought conditions in the 2080s are likely to be less severe than that in the 2000s. However, the projected difference between precipitation and evaporation (water deficit) shows that the future drought conditions may be higher or lower, varying between the stations. Implications of the results and further development of the proposed approach to address spatial dependence between stations are also discussed.

  16. Climate Change Impacts on Hydrology in Taiwan

    NASA Astrophysics Data System (ADS)

    Tung, C.

    2002-12-01

    The impacts of climate change on streamflows and groundwater recharge were evaluated for Taiwan. Rainfall unevenly distributes in a year in Taiwan Island, which May through October is a wet season and contains 67% and 90% of annual rainfall for North and South Taiwan, respectively. Increasing of frequencies of both flood and drought has been observed in recent years, which is coincided with the previous climate change impact study in Taiwan based on climate change scenarios from Country Studies Program. Further analysis of the influence of climate change on streamflows and groundwater recharge were evaluated based on IPCC­Ýs SRES scenarios in this study for providing more information of hydrologic conditions under possible future climates. Impacts on streamflows were assessed in a watershed scale by using the streamflow component of the GWLF model, while impacts on groundwater discharge was evaluate in an island wide scale by calculating water balance. Climate change scenarios were derived from three General Circulation Models (GCMs), including CGCM2 by Canadian Center for Climate Modelling and Analysis, HADCM3 by Hadley Centre for Climate Prediction and Research, and CSIRO-Mk2 by Commonwealth Scientific and Industrial Research Organization. These GCMs simulate climate based on SRES scenarios, which A2 and B2 scenarios were adopted in this study. The uncertainty of applying the predictions of global scale models and applying different GCMs are also concerned.

  17. Assessing urban climate change resilience

    NASA Astrophysics Data System (ADS)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  18. Assessing the impacts of climate change on winter crop production in Uruguay and Argentina using crop simulation models

    SciTech Connect

    Baethgen, W.E.; Magrin, G.O.

    1995-12-31

    Enhanced greenhouse effect caused by the increase in atmospheric concentration of CO{sub 2} and other trace gases could lead to higher global surface temperature and altered hydrological cycles. Most possible climate change scenarios include higher atmospheric CO{sub 2} concentrations, higher temperatures, and changes in precipitation. Three global climate models (GCMs) were applied to generate climate change scenarios for the Pampas region in southern South America. The generated scenarios were then used with crop simulation models to study the possible impact of climate change on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) production in the Pampas. The authors evaluated the impact of possible climate change scenarios on wheat and barley production in Uruguay for a wide range of soil and crop management strategies including planting dates, cultivar types, fertilizer management, and tillage practices. They also studied the impact of climate change on wheat production across two transects of the Pampas: north to south transect with decreasing temperature, and east to west transect with decreasing precipitation. Finally, sensitivity analyses were conducted for both, the Uruguayan site and the transects, by increasing daily maximum and minimum temperature by 0, 2, and 4 C, and changing the precipitation by {minus}20, 0, and +20%.

  19. Climate Impact of Solar Variability

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H. (Editor); Arking, Albert (Editor)

    1990-01-01

    The conference on The Climate Impact of Solar Variability, was held at Goddard Space Flight Center from April 24 to 27, 1990. In recent years they developed a renewed interest in the potential effects of increasing greenhouse gases on climate. Carbon dioxide, methane, nitrous oxide, and the chlorofluorocarbons have been increasing at rates that could significantly change climate. There is considerable uncertainty over the magnitude of this anthropogenic change. The climate system is very complex, with feedback processes that are not fully understood. Moreover, there are two sources of natural climate variability (volcanic aerosols and solar variability) added to the anthropogenic changes which may confuse our interpretation of the observed temperature record. Thus, if we could understand the climatic impact of the natural variability, it would aid our interpretation and understanding of man-made climate changes.

  20. Climate Change and Agriculture in Africa: Impact Assessment and Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Brown, Molly E.; McCusker, Brent

    2008-11-01

    As climate change has emerged as a significant threat, there is much concern about how vulnerable agricultural communities will adapt, particularly as global population continues to rise. Much of the current lack of productivity and economic marginalization of African agriculture arises from global trade regimes that give a competitive advantage to Western farmers, from low use of agricultural inputs, and from a dearth of infrastructure and services for the agriculture sector. For centuries, African farmers have used a wide variety of risk-reducing livelihood strategies, including diversifying income sources, switching crops, and investing in marketing. However, improving their productivity to ``modern'' levels has remained a distant dream, resulting in a continual reduction in investment in the sector over the past five decades.

  1. The satellite power system - Assessment of the environmental impact on middle atmosphere composition and on climate

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Park, C.; Pfister, L.; Woodward, H. T.; Turco, R. P.; Capone, L. A.; Riegel, C. A.; Kropp, T.

    1982-01-01

    Numerical models were developed to calculate the total deposition of watervapor, hydrogen, CO2, CO, SO2, and NO in the middle atmosphere from operation of heavy lift launch vehicles (HLLV) used to build a satellite solar power system (SPS). The effects of the contaminants were examined for their effects on the upper atmosphere. One- and two-dimensional models were formulated for the photochemistry of the upper atmosphere and for rocket plumes and reentry. An SPS scenario of 400 launches per year for 10 yr was considered. The build-up of the contaminants in the atmosphere was projected to have no significant effects, even at the launch latitude. Neither would there by any dangerous ozone depletion. It was found that H, OH, and HO2 species would double in the thermosphere. No measurable changes in climate were foreseen.

  2. Can the combined use of an ensemble based modelling approach and the analysis of measured meteorological trends lead to increased confidence in climate change impact assessments?

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Koch, Hagen; Pohle, Ina; Grünewald, Uwe

    2014-05-01

    In anthropogenically heavily impacted river catchments, such as the Lusatian river catchments of Spree and Schwarze Elster (Germany), the robust assessment of possible impacts of climate change on the regional water resources is of high relevance for the development and implementation of suitable climate change adaptation strategies. Large uncertainties inherent in future climate projections may, however, reduce the willingness of regional stakeholder to develop and implement suitable adaptation strategies to climate change. This study provides an overview of different possibilities to consider uncertainties in climate change impact assessments by means of (1) an ensemble based modelling approach and (2) the incorporation of measured and simulated meteorological trends. The ensemble based modelling approach consists of the meteorological output of four climate downscaling approaches (DAs) (two dynamical and two statistical DAs (113 realisations in total)), which drive different model configurations of two conceptually different hydrological models (HBV-light and WaSiM-ETH). As study area serve three near natural subcatchments of the Spree and Schwarze Elster river catchments. The objective of incorporating measured meteorological trends into the analysis was twofold: measured trends can (i) serve as a mean to validate the results of the DAs and (ii) be regarded as harbinger for the future direction of change. Moreover, regional stakeholders seem to have more trust in measurements than in modelling results. In order to evaluate the nature of the trends, both gradual (Mann-Kendall test) and step changes (Pettitt test) are considered as well as both temporal and spatial correlations in the data. The results of the ensemble based modelling chain show that depending on the type (dynamical or statistical) of DA used, opposing trends in precipitation, actual evapotranspiration and discharge are simulated in the scenario period (2031-2060). While the statistical DAs

  3. Development of National Future Extreme Heat Scenario to Enable the Assessment of Climate Impacts on Public Health

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Cresson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G.

    2013-01-01

    The project's emphasis is on providing assessments of the magnitude, frequency and geographic distribution of EHEs to facilitate public health studies. We focus on the daily to weekly time scales on which EHEs occur, not on decadal-scale climate changes. There is, however, a very strong connection between air temperature patterns at the two time scales and long-term climatic changes will certainly alter the frequency of EHEs.

  4. An assessment of the impact of local processes on dust lifting in martian climate models

    NASA Astrophysics Data System (ADS)

    Mulholland, David P.; Spiga, Aymeric; Listowski, Constantino; Read, Peter L.

    2015-05-01

    Simulation of the lifting of dust from the planetary surface is of substantially greater importance on Mars than on Earth, due to the fundamental role that atmospheric dust plays in the former's climate, yet the dust emission parameterisations used to date in martian global climate models (MGCMs) lag, understandably, behind their terrestrial counterparts in terms of sophistication. Recent developments in estimating surface roughness length over all martian terrains and in modelling atmospheric circulations at regional to local scales (less than O(100 km)) presents an opportunity to formulate an improved wind stress lifting parameterisation. We have upgraded the conventional scheme by including the spatially varying roughness length in the lifting parameterisation in a fully consistent manner (thereby correcting a possible underestimation of the true threshold level for wind stress lifting), and used a modification to account for deviations from neutral stability in the surface layer. Following these improvements, it is found that wind speeds at typical MGCM resolution never reach the lifting threshold at most gridpoints: winds fall particularly short in the southern midlatitudes, where mean roughness is large. Sub-grid scale variability, manifested in both the near-surface wind field and the surface roughness, is then considered, and is found to be a crucial means of bridging the gap between model winds and thresholds. Both forms of small-scale variability contribute to the formation of dust emission 'hotspots': areas within the model gridbox with particularly favourable conditions for lifting, namely a smooth surface combined with strong near-surface gusts. Such small-scale emission could in fact be particularly influential on Mars, due both to the intense positive radiative feedbacks that can drive storm growth and a strong hysteresis effect on saltation. By modelling this variability, dust lifting is predicted at the locations at which dust storms are frequently

  5. Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact

    NASA Astrophysics Data System (ADS)

    Permadi, Didin Agustian; Kim Oanh, Nguyen Thi

    2013-10-01

    This paper presents an emission inventory (EI) for biomass open burning (OB) sources including forest, agro-residue and municipal solid waste (MSW) in Indonesia for year 2007. The EI covered toxic air pollutants and greenhouse gases (GHGs) and was presented as annual and monthly average for every district, and further on a grid of 0.25° × 0.25°. A rigorous analysis of activity data and emission factor ranges was done to produce the low, best and high emission estimates for each species. Development of EI methodology for MSW OB which, to our best knowledge, has not been presented in detail in the literature was a focus of this paper. The best estimates of biomass OB emission of toxic air pollutants for the country, in Gg, were: 9.6 SO2; 98 NOx; 7411 CO; 335 NMVOC; 162 NH3; 439 PM10; 357 PM2.5; 24 BC; and 147 OC. The best emission estimates of GHGs, in Gg, were: 401 CH4, 57,247 CO2; and 3.6 N2O. The low and high values of the emission estimates for different species were found to range from -86% to +260% of the corresponding best estimates. Crop residue OB contributed more than 80% of the total biomass OB emissions, followed by forest fire of 2-12% (not including peat soil fire emission) and MSW (1-8%). An inter-annual active fires count for Indonesia showed relatively low values in 2007 which may be attributed to the high rainfall intensity under the influence of La Niña climate pattern in the year. Total estimated net climate forcing from OB in Indonesia was 110 (20 year horizon) and 73 (100 year horizon) Tg CO2 equivalents which is around 0.9-1.1% of that reported for the global biomass OB for both time horizons. The spatial distribution showed higher emissions in large urban areas in Java and Sumatra Island, while the monthly emissions indicated higher values during the dry months of August-October.

  6. It's the Heat AND the Humidity -- Assessment of Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health

    NASA Technical Reports Server (NTRS)

    Crosson, William L; Al-Hamdan, Mohammad Z.; Economou, Sigrid, A.; Estes, Maurice G.; Estes, Sue M.; Puckett, Mark; Quattrochi, Dale A

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. In a NASA-funded project supporting the National Climate Assessment, we are providing historical and future measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The project s emphasis is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM output, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons, 2040 and 2090, are the focus of future assessments; these are compared to the recent past period of 1981-2000. We are characterizing regional-scale temperature and humidity conditions using GCM output for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM output have been analyzed to develop a heat stress climatology based on statistics of extreme heat indicators. Differences between the two future and past periods have been used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes, combined with hourly historical meteorological data at a spatial scale (12 km) much finer than that of GCMs, enable us to create future climate realizations, from which we compute the daily heat stress measures and related spatially-specific climatological fields. These include the mean annual

  7. Co-production of science for regional integrated assessment and management of climate change impacts: The case study of Aspen, CO

    NASA Astrophysics Data System (ADS)

    Arnott, J. C.; Katzenberger, J.

    2015-12-01

    The impacts of global climate change to regional scales are complex and cut across sectorial and jurisdictional boundaries, and therefore, a unique enterprise of collaboration between scientists, resource managers, and other stakeholders for development of adequate response strategies is required. Such collaboration has been exhibited between stakeholders, researchers, and a boundary organization—the Aspen Global Change Institute—since 2005 in assessing impacts and crafting policies in response with regard to climate change impacts in the mountain watershed surrounding Aspen, CO. A series of structured stakeholder interviews and town hall sessions, impact assessment reports, and intensive collaboration between various information providers and user groups has set the stage for development of both mitigation of and adaptation to climate change impacts. The most recent example of this has included the use of global scale climate model output to inform the development of resiliency strategies in response to extreme precipitation projections. The use of this kind of resource has been considered in a variety of decision-making contexts and has included the development of region- and decision-relevant qualitative scenarios that make use of quantitative model-based information. Results from this line of work that include feedback from actual users', a boundary organization, and researchers' perspectives will be reported along with examples of policy and implementation results.

  8. Comparative analysis of two hydrological models with different glacier parameterisations for climate impact assessment and water resources management in the Syrdarya Basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Duethmann, Doris; Agaltseva, Natalya; Merkushkin, Alexander; Pak, Alexander; Kriegel, David; Huss, Matthias; Güntner, Andreas; Merz, Bruno; Unger-Shayesteh, Katy; Mannig, Birgit; Paeth, Heiko; Vorogushyn, Sergiy

    2014-05-01

    Central Asian river basins in general and zones of run-off formation in particular are currently experiencing the impact of increasing temperatures and changes in precipitation. The headwaters thus exhibit negative glacier mass balances, decreasing glacierisation, changes in snow cover characteristics and changing runoff response. These changes are likely to intensify in future under the changing climate. Both hydropower industry and irrigated agriculture in the downstream areas strongly depend on the water amount, its seasonal and long-term distribution. This fact calls for an effort to reliably assess water availability in the runoff formation zone of Central Asia in order to improve water management policy in the region. One of the approaches to assessment of water resources is the evaluation of climate scenarios with the climate-and-hydrology model chain. Application of several models allows reducing the modeling uncertainty and proceeding with more robust water balance components assessment. We present the comparison of the two hydrological models AISHF (Automated Information System for Hydrological Forecasting) developed at the Centre for Hydrometeorology of Uzbekistan and WASA run at GFZ Potsdam, implemented for the Naryn and Karadarya basins (Syrdarya). These models use different parameterization and calibration schemes. Whereas in the AISHF model glacier dynamics is considered in scenarios of glacier area loss, the WASA model simulates continuous glacier mass balance, glacier area and volume evolution based on meteorological drivers. Consideration of initial glacier volume and its temporal dynamics can be essential for climate impact assessment in transient model simulations. The impact of climate change scenarios, developed with the regional climate model REMO at the University of Würzburg, are compared with respect to total discharge dynamics and runoff contributions from glacier, snowmelt and rainfall. Implications of water availability assessment

  9. Assessing Climate Vulnerability and Resilience of a Major Water Resource System - Inverting the Paradigm for Specific Risk Quantification at Decision Making Points of Impact

    NASA Astrophysics Data System (ADS)

    Murphy, K. W.; Ellis, A. W.; Skindlov, J. A.

    2015-12-01

    Water resource systems have provided vital support to transformative growth in the Southwest United States and the Phoenix, Arizona metropolitan area where the Salt River Project (SRP) currently satisfies 40% of the area's water demand from reservoir storage and groundwater. Large natural variability and expectations of climate changes have sensitized water management to risks posed by future periods of excess and drought. The conventional approach to impacts assessment has been downscaled climate model simulations translated through hydrologic models; but, scenario ranges enlarge as uncertainties propagate through sequential levels of modeling complexity. The research often does not reach the stage of specific impact assessments, rendering future projections frustratingly uncertain and unsuitable for complex decision-making. Alternatively, this study inverts the common approach by beginning with the threatened water system and proceeding backwards to the uncertain climate future. The methodology is built upon reservoir system response modeling to exhaustive time series of climate-driven net basin supply. A reservoir operations model, developed with SRP guidance, assesses cumulative response to inflow variability and change. Complete statistical analyses of long-term historical watershed climate and runoff data are employed for 10,000-year stochastic simulations, rendering the entire range of multi-year extremes with full probabilistic characterization. Sets of climate change projections are then translated by temperature sensitivity and precipitation elasticity into future inflow distributions that are comparatively assessed with the reservoir operations model. This approach provides specific risk assessments in pragmatic terms familiar to decision makers, interpretable within the context of long-range planning and revealing a clearer meaning of climate change projections for the region. As a transferable example achieving actionable findings, the approach can

  10. Assessing the impacts of anthropogenic and hydro-climatic drivers on estrogen legacies and trajectories

    NASA Astrophysics Data System (ADS)

    Gall, Heather E.; Basu, Nandita B.; Mashtare, Michael L.; Rao, C.; Suresh, P.; Lee, Linda S.

    2016-01-01

    Intensification of concentrated animal feeding operations combined with the use of tile drains in agricultural fields has resulted in land-applied manure being a significant source of hormones to the environment. Currently, no model exists to simulate hormone fluxes from tile drains under field conditions. Therefore, we developed the Hormone Export and Recovery Dynamics (HERD) model, which incorporates hydro-climatic, biogeochemical, and anthropogenic drivers that affect hormone fate and transport. We validated HERD using known input (rainfall; lagoon effluent irrigation) and response data (tile drain flow; 17β-estradiol and estrone fluxes) from the 2009 growing season, 18 years after land-application activities began at a tile-drained field in Indiana. We used HERD to better understand the: (1) decision-making process underlying effluent irrigation activities; (2) contribution of macropore flow to estrogen transport; (3) potential for long-term applications to result in the development of legacy estrogen sources within the soil profile; and (4) potential recovery trajectory of estrogen transport following the cessation of animal waste applications. HERD adequately predicted irrigation events based on lagoon storage limits. Simple threshold exceedance logic for macropore flow activation accounted for ∼87% of the observed estrogen loads. Application history was found to be important, as not accounting for 18 years of application led to a severe underestimation of the observed estrogen loads; however, accounting for application history led to a much closer match between modeled and observed fluxes. Simulated trajectories after cessation of applications indicated that estrogens may continue to leach for several decades, which has important implications for mitigating hormone concentrations in receiving water bodies.

  11. ASSESSING THE RELATIVE AND COMBINED IMPACTS OF FUTURE LAND-USE AND CLIMATE CHANGES ON NONPOINT SOURCE POLLUTION

    EPA Science Inventory

    In this paper, we discuss the potential water quality impacts of future land-use and climate changes. The Little Miami River Basin was used as a case study. It is a predominantly agricultural watershed in southwestern Ohio (U.S.A.) that has experienced land-use modifications. ...

  12. Assessing climate change impacts on water availability of snowmelt-dominated basins of the Upper Rio Grande Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study Region- Upper Rio Grande, Colorado and New Mexico, USA: Climate change is predicted to further limit the water availability of the arid southwestern U.S. In this study, the Snowmelt Runoff Model is used to evaluate impacts of increased temperature and altered precipitation on snow covered are...

  13. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series

    NASA Astrophysics Data System (ADS)

    Wang, J.; Meng, J. J.; Cai, Y. L.

    2008-05-01

    The relationship between climate change and vegetation dynamics in the southwestern karst region of China has been identified by recent studies. Based on previous researches and AVHRR (Advanced Very High Resolution Radiometer) GIMMS (Global Inventory Monitoring and Modeling Studies) NDVI (Normalized Difference Vegetation Index) (1982 2003) and AVHRR GloPEM (Global Production Efficiency Model) NPP (Net Primary Production) (1981 2000) datasets, vegetation dynamics impacted by climate change in the southwestern karst region of China were assessed. The results show that: (1) since the early 1980s, both vegetation cover density and net primary production have insignificant ascending tendencies. However, the inter-annual variation rates of vegetation indexes have apparent spatial differentiations; (2) the correlation coefficients between the inter-annual variations of vegetation indexes and the inter-annual variations of climate factors vary geographically; (3) as indicated by NDVI and NPP, various vegetation types have different responses to climate change, and the annual mean temperature variation has more significant impact on vegetation dynamics than the annual precipitation variation in the study area; (4) distribution laws of correlation coefficients between the inter-annual variations of vegetation indexes and the inter-annual variations of climate factors in different climate conditions are apparent. All these findings will enrich our knowledge of the natural forces which impact the stability of the karst ecosystems and provide scientific basis for the management of the karst ecosystems.

  14. The Social Impact of Climate

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2013-12-01

    Managing climate change requires that we understand the social value of climate-related decisions. Rational decision-making demands that we weigh the potential benefits of climate-related investments against their costs. To date, it has been challenging to quantify the relative social benefit of living under different climatic conditions, so policy debates tend to focus on investment costs without considering their benefits. Here I will discuss challenges and advances in the measurement of climate's impact on society. By linking data and methods across physical and social sciences, we are beginning to understand when, where, and how climatic conditions have a causal impact on human wellbeing. I will present examples from this burgeoning interdisciplinary field that quantify the effect of temperature on macroeconomic performance, the effects of climate on human conflict, and the long-term health and economic impact of tropical cyclones. Each of these examples provide new insight into previously unknown benefits of various climate management strategies. I conclude by describing new efforts to systematically gather and compare findings from across the research community to support informed and rational climate management decisions.

  15. Assessing the impacts of combined climate and land use changes for water availability and demands in a Mediterranean watershed.

    NASA Astrophysics Data System (ADS)

    Jacinto, Rita; Nunes, João Pedro; Santos, Juliana

    2014-05-01

    Mediterranean basins experience water scarcity issues due to the dry climate associated with the need for agricultural irrigation and recurrent severe drought episodes. Recent land use changes have increased the pressure over water resources due to an expansion of irrigation. Global climate change is expected to bring forth a drier climate, which may simultaneously lead to higher irrigation demands and less water to sustain them, which would be a great management challenge. The issues surrounding climate and associated land use changes were addressed for the Xarrama basin in southern Portugal. This is a region where there is already a large amount of irrigation, mostly consisting of corn and rice fields, but recent trends point to an increase of drip-irrigation in olives and vineyards. The water management strategies for this region assume water transfers from the larger Alqueva reservoir, without taking into account the impacts of these future changes which might introduce additional evapotranspiration losses while decreasing the amount of available water both in Xarrama and Alqueva. Future climate and land-use scenarios were downscaled to the basin level, the latter taking into account local land-use change trends in recent decades. Downscaling based on local tendencies allowed detailed land use changes for agriculture and forest (the main land uses for this region), i.e. the most likely types of crops and trees to be introduced or replaced. The results of local tendencies scenarios reflect the SRES tendencies for Europe, namely agricultural abandonment and increased biofuel production, with species adapted to this climatic region. These scenarios are the first for this region with highly detailed information about land use change scenarios under climate change. The SWAT eco-hydrological model is being applied to quantify the individual impact of climate and land-use change scenarios on both water availability and demands, and the synergies between both. This

  16. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  17. Assessing the impact of a downscaled climate change simulation on the fish fauna in an Inner-Alpine River.

    PubMed

    Matulla, C; Schmutz, S; Melcher, A; Gerersdorfer, T; Haas, P

    2007-12-01

    This study assesses the impact of a changing climate on fish fauna by comparing the past mean state of fish assemblage to a possible future mean state. It is based on (1) local scale observations along an Inner-Alpine river called Mur, (2) an IPCC emission scenario (IS92a), implemented by atmosphere-ocean global circulation model (AOGCM) ECHAM4/OPYC3, and (3) a model-chain that links climate research to hydrobiology. The Mur River is still in a near-natural condition and water temperature in summer is the most important aquatic ecological constraint for fish distribution. The methodological strategy is (1) to use downscaled air temperature and precipitation scenarios for the first half of the twenty-first century, (2) to establish a model that simulates water temperature by means of air temperature and flow rate in order to generate water temperature scenarios, and (3) to evaluate the impact on fish communities using an ecological model that is driven by water temperature. This methodology links the response of fish fauna to an IPCC emission scenario and is to our knowledge an unprecedented approach. The downscaled IS92a scenarios show increased mean air temperatures during the whole year and increased precipitation totals during summer, but reduced totals for the rest of the annual cycle. These changes result in scenarios of increased water temperatures, an altered annual cycle of flow rate, and, in turn, a 70 m displacement in elevation of fish communities towards the river's head. This would enhance stress on species that rely on low water temperatures and coerce cyprinid species into advancing against retreating salmonids. Hyporhithral river sectors would turn into epipotamal sectors. Grayling (Thymallus thymallus) and Danube salmon (Hucho hucho), presently characteristic for the Mur River, would be superceded by other species. Native brown trout (Salmo trutta), already now under pressure of competition, may be at risk of losing its habitat in favour of

  18. An Approach to Developing Local Climate Change Environmental Public Health Indicators, Vulnerability Assessments, and Projections of Future Impacts

    PubMed Central

    2014-01-01

    Environmental public health indicators (EPHIs) are used by local, state, and federal health agencies to track the status of environmental hazards; exposure to those hazards; health effects of exposure; and public health interventions designed to reduce or prevent the hazard, exposure, or resulting health effect. Climate and health EPHIs have been developed at the state, federal, and international levels. However, they are also needed at the local level to track variations in community vulnerability and to evaluate the effectiveness of interventions designed to enhance community resilience. This review draws on a guidance document developed by the U.S. Council of State and Territorial Epidemiologists' State Environmental Health Indicators Collaborative climate change working group to present a three-tiered approach to develop local climate change EPHIs. Local climate change EPHIs can assist local health departments (LHDs) in implementing key steps of the 10 essential public health services and the U.S. Centers for Disease Control and Prevention's Building Resilience Against Climate Effects framework. They also allow LHDs to incorporate climate-related trends into the larger health department planning process and can be used to perform vulnerability assessments which can be leveraged to ensure that interventions designed to address climate change do not exacerbate existing health disparities. PMID:25349621

  19. An approach to developing local climate change environmental public health indicators, vulnerability assessments, and projections of future impacts.

    PubMed

    Houghton, Adele; English, Paul

    2014-01-01

    Environmental public health indicators (EPHIs) are used by local, state, and federal health agencies to track the status of environmental hazards; exposure to those hazards; health effects of exposure; and public health interventions designed to reduce or prevent the hazard, exposure, or resulting health effect. Climate and health EPHIs have been developed at the state, federal, and international levels. However, they are also needed at the local level to track variations in community vulnerability and to evaluate the effectiveness of interventions designed to enhance community resilience. This review draws on a guidance document developed by the U.S. Council of State and Territorial Epidemiologists' State Environmental Health Indicators Collaborative climate change working group to present a three-tiered approach to develop local climate change EPHIs. Local climate change EPHIs can assist local health departments (LHDs) in implementing key steps of the 10 essential public health services and the U.S. Centers for Disease Control and Prevention's Building Resilience Against Climate Effects framework. They also allow LHDs to incorporate climate-related trends into the larger health department planning process and can be used to perform vulnerability assessments which can be leveraged to ensure that interventions designed to address climate change do not exacerbate existing health disparities. PMID:25349621

  20. A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight

    NASA Astrophysics Data System (ADS)

    Irvine, E. A.; Hoskins, B. J.; Shine, K. P.

    2014-05-01

    Persistent contrails are an important climate impact of aviation which could potentially be reduced by re-routing aircraft to avoid contrailing; however this generally increases both the flight length and its corresponding CO_{2} emissions. Here, we provide a simple framework to assess the trade-off between the climate impact of CO_{2} emissions and contrails for a single flight, in terms of the absolute global warming potential and absolute global temperature potential metrics for time horizons of 20, 50 and 100 years. We use the framework to illustrate the maximum extra distance (with no altitude changes) that can be added to a flight and still reduce its overall climate impact. Small aircraft can fly up to four times further to avoid contrailing than large aircraft. The results have a strong dependence on the applied metric and time horizon. Applying a conservative estimate of the uncertainty in the contrail radiative forcing and climate efficacy leads to a factor of 20 difference in the maximum extra distance that could be flown to avoid a contrail. The impact of re-routing on other climatically-important aviation emissions could also be considered in this framework.

  1. Infrastructure Improvements for Snowmelt Runoff Forecasting and Assessments of Climate Change Impacts on Water Supplies in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Rango, A.; Steele, C. M.; Demouche, L.

    2009-12-01

    In the Southwest US, the southern Rocky Mountains provide a significant orographic barrier to prevailing moisture-laden Westerly winds, which results in snow accumulation and melt, both vitally important to the region’s water resources. The inherent variability of meteorological conditions in the Southwest, during both snowpack buildup and depletion, requires improved spatially-distributed data. The population of ground-based networks (SNOTEL, SCAN, and weather stations) is sparse and does not satisfactorily represent the variability of snow accumulation and melt. Remote sensing can be used to supplement data from ground networks, but the most frequently available remotely sensed product with the highest temporal and spatial resolution, namely snow cover, only provides areal data and not snow volume. Fortunately, the Snowmelt Runoff Model(SRM), which was developed in mountainous regions of the world, including the Rio Grande basin, accepts snow covered area as one of its major input variables along with temperature and precipitation. With the growing awareness of atmospheric warming and the southerly location of Southwest watersheds, it has become apparent that the effects of climate change will be especially important for Southwestern water users. The NSF-funded EPSCoR project “Climate Change Impacts on New Mexico’s Mountain Sources of Water” (started in 2009) has focused on improving hydrometeorological measurements, developing basin-wide and sub-basin snow cover mapping methods, generating snowmelt runoff simulations, forecasts, and long-term climate change assessments, and informing the public of the results through outreach and educational activities. Five new SNOTEL and four new SCAN sites are being installed in 2009-2010 and 12 existing basic SNOTEL sites are being upgraded. In addition, 30 automated precipitation gages are being added to New Mexico measurement networks. The first phase of snow mapping and modeling has focused on four sub basins

  2. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    PubMed

    Tompkins, Adrian M; Caporaso, Luca

    2016-01-01

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant. PMID:27063732

  3. Stochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based model

    NASA Astrophysics Data System (ADS)

    Francipane, A.; Fatichi, S.; Ivanov, V. Y.; Noto, L. V.

    2015-03-01

    Hydrologic and geomorphic responses of watersheds to changes in climate are difficult to assess due to projection uncertainties and nonlinearity of the processes that are involved. Yet such assessments are increasingly needed and call for mechanistic approaches within a probabilistic framework. This study employs an integrated hydrology-geomorphology model, the Triangulated Irregular Network-based Real-time Integrated Basin Simulator (tRIBS)-Erosion, to analyze runoff and erosion sensitivity of seven semiarid headwater basins to projected climate conditions. The Advanced Weather Generator is used to produce two climate ensembles representative of the historic and future climate conditions for the Walnut Gulch Experimental Watershed located in the southwest U.S. The former ensemble incorporates the stochastic variability of the observed climate, while the latter includes the stochastic variability and the uncertainty of multimodel climate change projections. The ensembles are used as forcing for tRIBS-Erosion that simulates runoff and sediment basin responses leading to probabilistic inferences of future changes. The results show that annual precipitation for the area is generally expected to decrease in the future, with lower hourly intensities and similar daily rates. The smaller hourly rainfall generally results in lower mean annual runoff. However, a non-negligible probability of runoff increase in the future is identified, resulting from stochastic combinations of years with low and high runoff. On average, the magnitudes of mean and extreme events of sediment yield are expected to decrease with a very high probability. Importantly, the projected variability of annual sediment transport for the future conditions is comparable to that for the historic conditions, despite the fact that the former account for a much wider range of possible climate "alternatives." This result demonstrates that the historic natural climate variability of sediment yield is already so

  4. Comparing statistical post-processing of regional and global climate scenarios for hydrological impacts assessment: A case study of two Canadian catchments

    NASA Astrophysics Data System (ADS)

    Troin, Magali; Velázquez, Juan Alberto; Caya, Daniel; Brissette, François

    2015-01-01

    Projected climate change effects on streamflow are investigated for the 2041-2070 horizon following the SRES A2 emissions scenario over two snowmelt-dominated catchments in Canada. A 16-member ensemble of SWAT hydrological model (HM) simulations, based on a comprehensive ensemble of the Canadian Regional Climate Model (CRCM) simulations driven by two global climate models (GCMs), with five realizations of the Canadian CGCM3 and three realizations of the German ECHAM5 is established per catchment. This study aims to evaluate, once model bias has been removed by statistical post-processing (SP), how the RCM-simulated climate changes differ from those of the parent GCMs, and how they affect the assessment of climate change-induced hydrological impacts at the catchment scale. The variability of streamflow caused by the use of different SP methods (mean-based versus distribution-based) within each statistical post-processing pathway of climate model outputs (bias correction versus perturbation) is also evaluated, as well as the uncertainty of natural climate variability. The simulations cover 1971-2000 in the reference period and 2041-2070 in the future period. For a set of criteria, results based on raw and statistically post-processed model outputs for the reference climate are compared with observations. This process demonstrates that SP is important not only for GCMs outputs, but also for CRCM outputs. SP leads to a high level of agreement between the CRCM and the driving GCMs in reproducing patterns of observed climate. The ensemble spread of the climate change signal on streamflow is large and varies with catchments and hydrological periods (winter/summer flows). The results of various hydrological indicators show that most of the uncertainty arises from the natural climate variability followed by the statistical post-processing. The uncertainty linked to the choice of statistical pathway is much larger than that associated with the choice of the method in

  5. A multi-metric global source-receptor model for integrated impact assessment of climate and air quality policy scenarios

    NASA Astrophysics Data System (ADS)

    Van Dingenen, Rita; Leitao, Joana; Dentener, Frank

    2014-05-01

    As a response to emerging needs for swift and integrated evaluation of air quality and climate policy scenarios at the regional and global scale, the European Commission Joint Research Centre has developed the 'Fast Scenario Screening Tool TM5-FASST'. TM5-FASST is a global simplified source-receptor model, calculating various air quality and climate impacts resulting from emissions of short-lived air pollutants and methane. TM5-FASST makes use of semi-linear relations expressing the sensitivity of pollutant concentrations in any receptor location of the globe to a change in pollutant emissions in any source region. The tool operates with 56 pre-defined source areas, defined as countries or country clusters. The source-receptor sensitivity matrices were calculated with the global chemical transport model TM5 by applying a 20% emission perturbation on year 2000 emissions for each of the 56 source regions, and for all relevant air pollutants. The model evaluates metrics relevant for health impacts (pollutant concentrations, premature mortalities from exposure to PM2.5 and O3), for vegetation and ecosystems (AOT40 and seasonal mean daytime O3, N and S deposition), as well as climate-relevant metrics of relevant short-lived climate pollutants (instantaneous forcing, AGWP and AGTP for various time horizons, black carbon deposition to snow surface). Climate metrics include short term impacts of O3 precursors (i.e. the direct formation of O3 as a greenhouse gas), as well as long-term effects on the oxidative capacity of the atmosphere with impacts on the methane lifetime and background O3. It is a strong feature of the model that all impacts, both air quality and climate related, are calculated from the same set of underlying pollutant concentration fields, and hence are internally consistent with respect to impact categories and with respect to geographical coverage. Here we will present in more detail the methodologies used in TM5-FASST, demonstrate its validity and

  6. Providing a Fuller Characterization of Uncertainty in Climate Impact Assessments to Better Inform Local-to-Regional Scale Decisions in the Water Resources Sector

    NASA Astrophysics Data System (ADS)

    Arnold, J. R.; Clark, M. P.; Newman, A. J.; Wood, A. W.; Gutmann, E. D.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Brekke, L. D.

    2014-12-01

    Assessments of projected climate change impacts on water resources at local-to-regional scales typically use a combination of numerical models for evaluating the various differences in projected effects resulting from different driving emissions scenarios and different climate models. Regional climate models, used to describe how large-scale changes in the Earth system effect change in the local or regional climate, and hydrologic models, used to describe how changes in local or regional climate effect change in local or regional hydrologic processes, are both typically used in these assessments. However, with both model types, assessments most often include only one or a small number of different models, and inter-model differences are often not constrained to define the uncertainties in the simulations consistently. More generally, the impacts assessment modeling community has focused very intently on characterizing uncertainty in climate projections using multiple climate models and multiple emission scenarios, doing less work to characterize and understand uncertainties in the regional climate and hydrologic models, and their important interactions, for impacts assessment and local-to-regional scale decision-making. The US Army Corps of Engineers is working with partners on a number of projects to help provide fuller characterizations of some previously undescribed uncertainties with the goal of helping inform its local-to-regional applications. Some salient results from those projects include: (1) choice of methods to produce gridded meteorological fields can have effects on projected hydrologic outcomes as large as the climate change signal; (2) many statistical downscaling methods popular in the water management community produce hydroclimate representations with too much drizzle, too small extreme events, and improper representation of spatial scaling characteristics relevant to hydrology; and (3) outcomes depend significantly on subjective decisions made

  7. Projected Climate Change Impacts on Pennsylvania

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  8. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.

    2010-07-01

    Climate change impacts in Pacific Northwest Region of North America (PNW) are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer). Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October-March) flows and decrease warm season (April-September) flows and water availability. Hydrologic extremes such as the 100 year flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems. The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc.) are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and access to these products and services is often supported by federally funded programs that ensure that these resources are available to water resources practitioners, policy makers, and the general public. Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources infrastructure

  9. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.

    2011-05-01

    Climate change impacts in Pacific Northwest Region of North America (PNW) are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer). Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October-March) flows and decrease warm season (April-September) flows and water availability. Hydrologic extremes such as the 100 yr flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems. The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc.) are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and is often supported by federally funded programs that ensure that these resources are freely available to water resources practitioners, policy makers, and the general public. Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources infrastructure and institutional arrangements

  10. The Regional Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Watson, Robert T.; Zinyowera, Marufu C.; Moss, Richard H.

    1997-12-01

    The degree to which human conditions and the natural environment are vulnerable to the potential effects of climate change is a key concern for governments and the environmental science community worldwide. This book from the Intergovernmental Panel on Climate Change (IPCC) provides the best available base of scientific information for policymakers and public use. The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health, and other resources for ten global regions. It also illustrates that the increasing costs of climate and climate variability, in terms of loss of human life and capital due to floods, storms, and droughts, are a result of the lack of adjustment and response in society's policies and use of resources. This book points to management options that would make many sectors more resilient to current variability in climate and thus help these sectors adapt to future changes in climate. This book will become the primary source of information on regional aspects of climate change for policymakers, the scientific community, and students.

  11. The Regional Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Watson, Robert T.; Zinyowera, Marufu C.; Moss, Richard H.

    1998-01-01

    The degree to which human conditions and the natural environment are vulnerable to the potential effects of climate change is a key concern for governments and the environmental science community worldwide. This book from the Intergovernmental Panel on Climate Change (IPCC) provides the best available base of scientific information for policymakers and public use. The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health, and other resources for ten global regions. It also illustrates that the increasing costs of climate and climate variability, in terms of loss of human life and capital due to floods, storms, and droughts, are a result of the lack of adjustment and response in society's policies and use of resources. This book points to management options that would make many sectors more resilient to current variability in climate and thus help these sectors adapt to future changes in climate. This book will become the primary source of information on regional aspects of climate change for policymakers, the scientific community, and students.

  12. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 7. Economic Analysis of Field Crops and Land Use with Climate Change

    SciTech Connect

    Sands, Ronald D.; Edmonds, James A.

    2005-03-01

    PNNL's Agriculture and Land Use (AgLU) model is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-year time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and the BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

  13. Impacts of Climate Changes in Ukraine on Hydrological Regime and Water Resources: Assessment and Measures of Adaptation

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2009-12-01

    Results of implementation of the National Climate Program of Ukraine in the area of researches of climate changes on hydrological regime and surface water resources are presented. The researches have been carried out for major plain rivers of different natural zones of Ukraine. Researches showed that were no large changes of mean annual flow discharges for long-term period. The trend of increase or decrease of mean annual flow has not been revealed. Other results are obtained for mean monthly and seasonal discharges (snow spring flood in March - May, summer - autumn low flow in June - September, winter low flow in December - February). An increase of discharges has been revealed for northern rivers in all months, except for April and May. The larges increase of river flow has taken place in winter months. A tendency of decrease of mean flow for period of spring floods for the most rivers has been revealed. Maximum spring discharges became less approximately on 25% - 40%. There was an increase of discharges in a winter low flow period. Investigations of a runoff for Carpathians rivers have shown an increase of mean annual flow on 13- 27%. Since 1975 a frequency of high floods has increased for the Carpathians rivers. During last years 6 - 10 high floods have been formed annually. The assessment of possible changes of hydrological regime until 2030 has been carried out by Ukrainian hydrologists using the approaches developed in the State Hydrological Institute (Russia). There are essential peculiarities in possible hydrological changes for northern and southern plain rivers. The 15-25% rise in annual runoff for northern rivers is expected. Particularly, important changes are to be expected in a distribution of runoff by seasons: a rise in winters and a fall in springs. Unfavorable changes are expected for rivers of forest - steppe and steppe zones - decreasing of mean annual runoff up to 30-50%. There may be changes in distribution of river flow during hydrological

  14. Comments on the process and product of the health impacts assessment component of the national assessment of the potential consequences of climate variability and change for the United States.

    PubMed Central

    Bernard, S M; Ebi, K L

    2001-01-01

    In 1990 Congress formed the U.S. Global Change Research Program and required it to conduct a periodic national assessment of the potential impacts of climate variability and change on all regions and select economic/resource sectors of the United States. Between 1998 and 2000, a team of experts collaborated on a health impacts assessment that formed the basis for the first National Assessment's analysis of the potential impacts of climate on human health. The health impacts assessment was integrated across a number of health disciplines and involved a search for and qualitative expert judgment review of data on the potential links between climate events and population health. Accomplishments included identification of vulnerable populations, adaptation strategies, research needs, and data gaps. Experts, stakeholders, and the public were involved. The assessment is reported in five articles in this issue; a summary was published in the April 2000 issue of Environmental Health Perspectives. The assessment report will enhance understanding of ways human health might be affected by various climate-associated stresses and of the need for further empirical and predictive research. Improved understanding and communication of the significance and inevitability of uncertainties in such an assessment are critical to further research and policy development. PMID:11359684

  15. Comments on the process and product of the health impacts assessment component of the national assessment of the potential consequences of climate variability and change for the United States.

    PubMed

    Bernard, S M; Ebi, K L

    2001-05-01

    In 1990 Congress formed the U.S. Global Change Research Program and required it to conduct a periodic national assessment of the potential impacts of climate variability and change on all regions and select economic/resource sectors of the United States. Between 1998 and 2000, a team of experts collaborated on a health impacts assessment that formed the basis for the first National Assessment's analysis of the potential impacts of climate on human health. The health impacts assessment was integrated across a number of health disciplines and involved a search for and qualitative expert judgment review of data on the potential links between climate events and population health. Accomplishments included identification of vulnerable populations, adaptation strategies, research needs, and data gaps. Experts, stakeholders, and the public were involved. The assessment is reported in five articles in this issue; a summary was published in the April 2000 issue of Environmental Health Perspectives. The assessment report will enhance understanding of ways human health might be affected by various climate-associated stresses and of the need for further empirical and predictive research. Improved understanding and communication of the significance and inevitability of uncertainties in such an assessment are critical to further research and policy development. PMID:11359684

  16. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa

    NASA Astrophysics Data System (ADS)

    Sultan, B.; Roudier, P.; Quirion, P.; Alhassane, A.; Muller, B.; Dingkuhn, M.; Ciais, P.; Guimberteau, M.; Traore, S.; Baron, C.

    2013-03-01

    Sub-Saharan West Africa is a vulnerable region where a better quantification and understanding of the impact of climate change on crop yields is urgently needed. Here, we have applied the process-based crop model SARRA-H calibrated and validated over multi-year field trials and surveys at eight contrasting sites in terms of climate and agricultural practices in Senegal, Mali, Burkina Faso and Niger. The model gives a reasonable correlation with observed yields of sorghum and millet under a range of cultivars and traditional crop management practices. We applied the model to more than 7000 simulations of yields of sorghum and millet for 35 stations across West Africa and under very different future climate conditions. We took into account 35 possible climate scenarios by combining precipitation anomalies from -20% to 20% and temperature anomalies from +0 to +6 °C. We found that most of the 35 scenarios (31/35) showed a negative impact on yields, up to -41% for +6 °C/ - 20% rainfall. Moreover, the potential future climate impacts on yields are very different from those recorded in the recent past. This is because of the increasingly adverse role of higher temperatures in reducing crop yields, irrespective of rainfall changes. When warming exceeds +2 °C, negative impacts caused by temperature rise cannot be counteracted by any rainfall change. The probability of a yield reduction appears to be greater in the Sudanian region (southern Senegal, Mali, Burkina Faso, northern Togo and Benin), because of an exacerbated sensitivity to temperature changes compared to the Sahelian region (Niger, Mali, northern parts of Senegal and Burkina Faso), where crop yields are more sensitive to rainfall change. Finally, our simulations show that the photoperiod-sensitive traditional cultivars of millet and sorghum used by local farmers for centuries seem more resilient to future climate conditions than modern cultivars bred for their high yield potential (-28% versus -40% for

  17. Assessing the potential impact and uncertainty of climate, land use change and demographic trends on malaria transmission in Africa by 2050.

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Caporaso, Luca; Colon-Gonzalez, Felipe

    2014-05-01

    Previous analyses of data has shown that in addition to variability and longer term trends in climate variables, both land use change (LUC) and population mobility and urbanisation trends can impact malaria transmission intensities and socio-economic burden. With the new regional VECTRI dynamical malaria model it is now possible to examine these in an integrated modelling framework. Using 5 global climate models which were bias corrected using the WATCH data for the recent ISIMIP project, the four Representative Concentration Pathways (RCP), population projections disaggregated from the Shared Socioeconomic Pathways (SSP) and Land use change from the HYDE model output used in the CMIP5 process, we construct a multi-member ensemble of malaria transmission intensity projections for 2050. The ensemble integrations indicate that climate has the leading impact on malaria changes, but that population growth and urbanisation can offset the effect of climate locally. LUC impacts can also be significant on the local scale but their assessment is highly uncertain and only indicative in this study. It is argued that the study should be repeated with a range of malaria models or VECTRI configurations in order to assess the additional uncertainty due to the malaria model assumptions.

  18. Assessing School Climate

    ERIC Educational Resources Information Center

    Cohen, Jonathan; Pickeral, Terry; McCloskey, Molly

    2009-01-01

    Compelling empirical research shows that a positive and sustained school climate promotes students' academic achievement and healthy development. Not surprisingly, a positive school climate also promotes teacher retention, which itself enhances student success. Yet the knowledge of the effects of school climate on learning has not been translated…

  19. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories.

    PubMed

    Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. PMID:22742772

  20. Climate Assessment For 2001

    NASA Astrophysics Data System (ADS)

    Waple, A. M.; Lawrimore, J. H.; Lyon, B.; Halpert, M. S.; Gleason, K. L.; Menne, M. J.; Schnell, R. C.; Thiaw, W.; Wright, W. J.; Alexander, L.; Salinger, M. J.; Bell, G. D.; Higgins, R. W.; Stone, R. S.

    2002-05-01

    It is the twelfth year that the Climate Assessment has been written to summarize the state of the Earth's climate, and the second year that the National Climatic Data Center has taken the lead in its production. It is a cooperative effort that includes contributions from scientists around the country and the world. The long-running La Nina episode finally came to an end in 2001. The weak La Nina, which began in mid-1998 persisted through the first half of the year but gave way to neutral ENSO conditions for the latter half. Global temperatures in 2001 were 0.51C (0.92F) above the long-term (1880-2000) average, which places 2001 as the second warmest year on record. Land temperatures were 0.75C (1.35F) above average and ocean temperatures were 0.40C (0.72F) above the 1880-2000 mean. This ranks them as 2nd and 3rd warmest on record respectively. The Northern Hemisphere temperature continues to average near record levels in 2001 at 0.60C (1.08F) above the long-term average. The Southern Hemisphere also reflects the globally warmer conditions, with a positive anomaly of 0.43C (0.77F). Annual anomalies in excess of 1.0C (1.8F) were widespread across North America and much of Europe and the Middle East, while significantly cooler than average conditions were confined to Western Australia the Northeast and Northwest Pacific Ocean, and the far southeastern region of the Pacific, near coastal Chile. Although no hurricanes made landfall in the United States for the second consecutive year, it was nonetheless an extremely active Atlantic hurricane season, the fourth most active on record. Tropical Storm Allison became the costliest tropical storm on record when it caused around five billion US dollars worth of damage in southern and southeastern USA. The season was slow to start but quickly escalated in the last three months of the season and it was the first time in recorded history that three hurricanes have formed in the Atlantic in the month of November. Other notable

  1. A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US

    NASA Astrophysics Data System (ADS)

    Oubeidillah, A. A.; Kao, S.-C.; Ashfaq, M.; Naz, B. S.; Tootle, G.

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic data set with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation - including meteorologic forcings, soil, land class, vegetation, and elevation - were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous US at refined 1/24° (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter data set was prepared for the macro-scale variable infiltration capacity (VIC) hydrologic model. The VIC simulation was driven by Daymet daily meteorological forcing and was calibrated against US Geological Survey (USGS) WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter data set may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous US. We anticipate that through this hydrologic parameter data set, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter data set will be provided to interested parties to support further hydro-climate impact assessment.

  2. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    SciTech Connect

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S; Tootle, Glenn

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

  3. Comparing the effects of climate and impact model uncertainty on climate impacts estimates for grain maize

    NASA Astrophysics Data System (ADS)

    Holzkämper, Annelie; Honti, Mark; Fuhrer, Jürg

    2015-04-01

    Crop models are commonly applied to estimate impacts of projected climate change and to anticipate suitable adaptation measures. Thereby, uncertainties from global climate models, regional climate models, and impacts models cascade down to impact estimates. It is essential to quantify and understand uncertainties in impact assessments in order to provide informed guidance for decision making in adaptation planning. A question that has hardly been investigated in this context is how sensitive climate impact estimates are to the choice of the impact model approach. In a case study for Switzerland we compare results of three different crop modelling approaches to assess the relevance of impact model choice in relation to other uncertainty sources. The three approaches include an expert-based, a statistical and a process-based model. With each approach impact model parameter uncertainty and climate model uncertainty (originating from climate model chain and downscaling approach) are accounted for. ANOVA-based uncertainty partitioning is performed to quantify the relative importance of different uncertainty sources. Results suggest that uncertainty in estimated yield changes originating from the choice of the crop modelling approach can be greater than uncertainty from climate model chains. The uncertainty originating from crop model parameterization is small in comparison. While estimates of yield changes are highly uncertain, the directions of estimated changes in climatic limitations are largely consistent. This leads us to the conclusion that by focusing on estimated changes in climate limitations, more meaningful information can be provided to support decision making in adaptation planning - especially in cases where yield changes are highly uncertain.

  4. Schneider lecture: From climate change impacts to climate change risks

    NASA Astrophysics Data System (ADS)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  5. Assessing Impacts of Disturbances and Climate Change on Carbon Stocks in Mexican Semidry Forests of the Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Birdsey, R.; Johnson, K.; Dupuy, J. M.; Hernandez-Stefanoni, J. L.; Richardson, K.

    2014-12-01

    The spatially explicit biogeochemical model Forest-DNDC was used to estimate carbon dynamics with disturbances and climate change in secondary semidry forests in Yucatan Peninsula. The model was validated using observations from 276 field plots in a 350 km2 region of semi-deciduous forest surrounding the intensive monitoring site at Kaxil Kiuic, and it performed well with high performance efficiency (E=0.79, R2=0.83). The simulation results showed substantial spatial differences in biomass in the forests due to historical disturbance patterns and heterogeneous forest environments. The simulated impacts of the disturbances that occurred from 1998-2010 revealed an estimated loss of total biomass carbon storage of 154.7 Gg due mainly to about 12 km2 of forestland loss. The results from disturbance scenarios indicate that disastrous storms, which are not uncommon in the Yucatan Peninsula, can substantially impact carbon storage in a short time. However, warming can produce a long-term impact on carbon sequestration, due principally to the decrease in biomass carbon at a mean rate of over 100 kg ha-1yr-1 with an increase in temperature by 1 degree Celsius. The forests in this area are highly sensitive to warming due to a semidry climate where the evapotranspiration is higher than precipitation. Even if each degree of warming increase is accompanied by an increase in precipitation of 10%, the significant impact of warming cannot be dismissed.

  6. Assessing climate change over the Marche Region (central Italy) from 1951 to 2050: toward an integrated strategy for climate impacts reduction

    NASA Astrophysics Data System (ADS)

    Sangelantoni, Lorenzo; Russo, Aniello; Marincioni, Fausto; Appiotti, Federica

    2013-04-01

    This study investigates consequences and future impacts of climate change on the social and natural systems of the Marche Region (one of the 20 administrative divisions of Italy). This Region, is located in central part of the peninsula and borders the Adriatic Sea on the East and the Apennine mountains on the West. The Region extends for about 60 km E-W, and has a NW-SE coastline of about 170 km, covering a total area of 9366 km2. Multimodel projections over the Marche Regions, on daily, monthly and seasonal temperature and precipitation parameters, have been extracted from the outputs of a set of Regional Climate Models (RCMs) over Europe run by several research institutes participating to the EU ENSEMBLE project. These climate simulations refer to the boundary conditions of the IPCC A1B emission scenario, and have a horizontal resolution of 25km × 25km covering a time period from 1951 to 2050. Results detail a significant increase of daily, monthly and seasonal mean temperatures, especially in summer, with anomaly values reaching +3°C after the year 2025, referring to the model CliNo 1981-2010. Mountain areas show higher values of temperature anomalies than coastal ones of approximately 0.5 °C. Concurrently, a widespread decrease of seasonal precipitation appears to affect all seasons, except for autumn. Rainfall decrease and temperature increase could reduce the Region's aquifer recharge and overall availability of hydro resources. These alterations could affect human health, agricultural productivity, forest fires, coastal erosion, algal blooms and water quality. Ongoing analysis of extreme climatological indices (e.g. frequency of maximum daily temperature exceeding comfort thresholds) are expected to quantify such impacts. A first analysis, linking climate change to the hydrologic cycle, studied through the computation of the hydro-climatic intensity index (as defined by Giorgi et al., 2012), suggests for the Marche Region an increase of the intensity of

  7. An integrated framework to assess adaptation options to climate change impacts in an irrigated basin in Central North Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Melo, O.; Meza, F. J.; Alvarez, P.; Maureira, F.; Sanchez, A.; Tapia, A.; Cortes, M.; Dale, L. L.

    2013-12-01

    Future climate conditions could potentially affect water supply and demand on water basins throughout the world but especially on snowmelt-driven agriculture oriented basins that can be found throughout central Chile. Increasing temperature and reducing precipitation will affect both the magnitude and timing of water supply this part of the world. Different adaptation strategies could be implemented to reduce the impacts of such scenarios. Some could be incorporated as planned policies decided at the basin or Water Use Organization levels. Examples include changing large scale irrigation infrastructure (reservoirs and main channels) either physically or its operation. Complementing these strategies it is reasonable to think that at a disaggregated level, farmers would also react (adapt) to these new conditions using a mix of options to either modify their patterns of consumption (irrigation efficiency, crop mix, crop area reduction), increase their ability to access new sources of water (groundwater, water markets) or finally compensate their expected losses (insurance). We present a modeling framework developed to represent these issues using as a case study the Limarí basin located in Central Chile. This basin is a renowned example of how the development of reservoirs and irrigation infrastructure can reduce climate vulnerabilities allowing the economic development of a basin. Farmers in this basin tackle climate variability by adopting different strategies that depend first on the reservoir water volume allocation rule, on the type and size of investment they have at their farms and finally their potential access to water markets and other water supplies options. The framework developed can be used to study these strategies under current and future climate scenarios. The cornerstone of the framework is an hydrology and water resources model developed on the WEAP platform. This model is able to reproduce the large scale hydrologic features of the basin such as

  8. Assessment of climate change and increased atmospheric CO2 impacts on water quality in an intensive agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Salmon-Monviola, Jordy; Moreau, Pierre; Benhamou, Cyril; Durand, Patrick; Merot, Philippe; Oehler, François; Gascuel-Odoux, Chantal

    2013-04-01

    Climate change and increasing atmospheric CO2 concentration can lead to disturbances in the global hydrological and nitrogen (N) cycling, and losses in catchment systems. Potential impacts on water and N cycling have been studied in large catchments with a variety of land uses but less attention has focused on agricultural headwater catchments. Despite their relatively small dimensions, headwater catchments of 1-10 km² play a dominant role in N transformations in the landscape, and streams in such catchments may have major impacts on downstream water quantity and quality. This issue is particular important for agricultural catchment which have to reach the WFD targets, where land use changes has to be analysed in combination with climate change. The effects of climate change and rising concentrations of atmospheric CO2 have been studied on (1) changes in hydrological and N balance components on a yearly basis and (2) the seasonal dynamics of water and N fluxes. The spatially distributed agro-hydrological model TNT2 (Topography-based nitrogen Transfers and Transformations) driven by ARPEGE (Action de Recherche Petite Echelle Grande Echelle) climate-model outputs from A1B scenario have been applied on the Kervidy-Naizin headwater catchment (western France), a long term hydrological observatory. Consideration of atmospheric CO2 concentration was implemented at two levels in TNT2: i) to account for the CO2 effect on stomatal conductance TNT2; ii) to consider effect of CO2 on biomass growth. Climate data from ARPEGE model, corrected with the quantile-quantile bias correction method, over 30-year simulation periods were used as TNT2 input (Salmon-Monviola et al., in review). With increased CO2, the main trends in water balance were a significant decrease in annual actual evapotranspiration, a moderate decrease in annual discharge and wetland extent, and a decrease in spring and summer of groundwater recharge and soil water content. Not considering the effects of

  9. Impact of climate and anthropogenic changes on urban surface albedo assessed from time-series MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Dida, Adrian I.; Zoran, Liviu Florin V.

    2015-10-01

    Urbanization may be considered the most significant anthropogenic force that has brought about fundamental changes in urban land cover and landscape pattern around the globe, being one of the crucial issues of global change in the 21st century affecting urban ecosystem. In the physical climate system, land surface albedo determines the radiation balance of the surface and affects the surface temperature and boundary-layer structure of the atmosphere. Due to anthropogenic and natural factors, urban land covers changes result is the land surfaces albedo changes. The main aim of this paper is to investigate the albedo patterns dynamics due to the impact of atmospheric pollution and climate variations on land cover of Bucharest metropolitan area, Romania based on satellite remote sensing MODIS Terra/Aqua (Moderate Imaging Spectroradiometer) data over 2000-2014 time period. This study is based on MODIS derived biogeophysical parameters land surface BRDF/albedo products and in-situ monitoring ground data (as air temperature, aerosols distribution, relative humidity, etc.). For urban land cover changes over the same investigated period have been used also IKONOS satellite data. Due to deforestation in the periurban areas albedo changes appear to be the most significant biogeophysical effect in temperate forests. As the physical climate system is very sensitive to surface albedo, urban/periurban vegetation systems could significantly feedback to the projected climate change modeling scenarios through albedo changes.

  10. Assessing the potential impacts of climate change on return periods of hydrological extremes in the Illinois River watershed of the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Chien, H.; Yeh, P. J. F.; Knouft, J.

    2014-12-01

    As the Earth's climate is predicted to change significantly in terms of warmer temperature and higher precipitation extremes during this century due to the increased combustion of fossil fuels, accurate estimations of the frequencies of future hydrological extremes are important to understanding the potential impacts of changes in climate on water resources management, particularly in accessing flood risk. The goal of this study is to use the Soil and Water Assessment Tool (SWAT), a distributed landscape-scale hydrological model, to predict current streamflow and the potential impacts of climate change on future stream flows in the Illinois River watershed in the Midwestern United States. Subsequently Gumbel distribution (Extreme Value Type Ⅰ) is fitted to the annual maxima simulated streamflow to derive a number of return periods of future hydrological extremes. The question in this study is: How do the return periods of future hydrological extremes change under future climate change scenarios and what factors cause the change? Daily simulated future streamflow from 2046-2065 and 2081-2100 are simulated using SWAT model based on nine separate downscaled global climate models (GCM) with three emissions scenarios. SWAT model predictions generally indicate that annual streamflow will likely decrease due to warmer temperatures. Based on the simulated daily streamflow, probability models for annual maxima flows frequency analysis are developed using Gumbel distribution and the values of hydrological extremes for different return periods including 50, 100, 200, 500, 1000 years are derived. The change of return periods of hydrological extremes and the implications will be discussed.

  11. Climate Change Impacts on Texas Water: A White Paper Assessment of the Past, Present and Future and Recommendations for Action

    SciTech Connect

    Banner, Jay L.; Jackson, Charles S.; Yang, Zong-Liang; Hayhoe, Katharine; Woodhouse, Connie; Gulden, Lindsey; Jacobs, Kathy; North, Gerald; Leung, Lai-Yung R.; Washington, Warren M.; Jiang, Xiaoyan; Casteel, Richard

    2010-09-01

    Texas comprises the eastern portion of the Southwest region, where the convergence of climatological and geopolitical forces has the potential to put extreme stress on water resources. Geologic records indicate that Texas experienced large climate changes on millennial time scales in the past, and over the last thousand years, tree-ring records indicate that there were significant periods of drought in Texas. These droughts were of longer duration than the 1950s 'drought of record' that is commonly used in planning, and they occurred independently of human-induced global climate change. Although there has been a negligible net temperature increase in Texas over the past century, temperatures have increased more significantly over the past three decades. Under essentially all climate model projections, Texas is susceptible to significant climate change in the future. Most projections for the 21st century show that with increasing atmospheric greenhouse gas concentrations, there will be an increase in temperatures across Texas and a shift to a more arid average climate. Studies agree that Texas will likely become significantly warmer and drier, yet the magnitude, timing, and regional distribution of these changes are uncertain. There is a large uncertainty in the projected changes in precipitation for Texas for the 21st century. In contrast, the more robust projected increase in temperature with its effect on evaporation, which is a dominant component in the region's hydrologic cycle, is consistent with model projections of frequent and extended droughts throughout the state. For these reasons, we recommend that Texas invest resources to investigate and anticipate the impacts of climate change on Texas water resources, with the goal of providing data to inform resource planning. This investment should support development of (1) research programs that provide policy-relevant science; (2) education programs to engage future researchers and policy-makers; and (3

  12. High Performance Computing-based Assessment of the Impacts of Climate Change on the Santa Cruz and San Pedro River Basin at Very High Resolution

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E. R.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.

    2012-12-01

    Assessing the impact of climate change on large river basins in the southwestern United States is important given the natural water scarcity in the region. The bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on the hydrological consequences of climate change in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). These river systems support rich ecological communities along riparian corridors that provide habitat to migratory birds and support recreational and economic activities. Determining the climate impacts on riparian communities involves assessing how river flows and groundwater recharge will change with altered temperature and precipitation regimes. In this study, we use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios from WRF at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization using sub-basin partitioning with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely

  13. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  14. 78 FR 4132 - National Climate Assessment and Development Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... report on climate change science and impacts, is conducted pursuant to the Global Change Research Act... National Oceanic and Atmospheric Administration RIN 0648-XC433 National Climate Assessment and Development... of the National Climate Assessment and Development Advisory Committee (NCADAC) to announce...

  15. I-C-SEA Change: A participatory tool for rapid assessment of vulnerability of tropical coastal communities to climate change impacts.

    PubMed

    Licuanan, Wilfredo Y; Samson, Maricar S; Mamauag, Samuel S; David, Laura T; Borja-Del Rosario, Roselle; Quibilan, Miledel Christine C; Siringan, Fernando P; Sta Maria, Ma Yvainne Y; España, Norievill B; Villanoy, Cesar L; Geronimo, Rollan C; Cabrera, Olivia C; Martinez, Renmar Jun S; Aliño, Porfirio M

    2015-12-01

    We present a synoptic, participatory vulnerability assessment tool to help identify the likely impacts of climate change and human activity in coastal areas and begin discussions among stakeholders on the coping and adaptation measures necessary to minimize these impacts. Vulnerability assessment tools are most needed in the tropical Indo-Pacific, where burgeoning populations and inequitable economic growth place even greater burdens on natural resources and support ecosystems. The Integrated Coastal Sensitivity, Exposure, and Adaptive Capacity for Climate Change (I-C-SEA Change) tool is built around a series of scoring rubrics to guide non-specialists in assigning scores to the sensitivity and adaptive capacity components of vulnerability, particularly for coral reef, seagrass, and mangrove habitats, along with fisheries and coastal integrity. These scores are then weighed against threat or exposure to climate-related impacts such as marine flooding and erosion. The tool provides opportunities for learning by engaging more stakeholders in participatory planning and group decision-making. It also allows for information to be collated and processed during a "town-hall" meeting, facilitating further discussion, data validation, and even interactive scenario building. PMID:26036847

  16. Evaluating the impact of climate policies on regional food availability and accessibility using an Integrated Assessment Model

    NASA Astrophysics Data System (ADS)

    Gilmore, E.; Cui, Y. R.; Waldhoff, S.

    2015-12-01

    Beyond 2015, eradicating hunger will remain a critical part of the global development agenda through the Sustainable Development Goals (SDG). Efforts to limit climate change through both mitigation of greenhouse gas emissions and land use policies may interact with food availability and accessibility in complex and unanticipated ways. Here, we develop projections of regional food accessibility to 2050 under the alternative futures outlined by the Shared Socioeconomic Pathways (SSPs) and under different climate policy targets and structures. We use the Global Change Assessment Model (GCAM), an integrated assessment model (IAM), for our projections. We calculate food access as the weighted average of consumption of five staples and the portion of income spend on those commodities and extend the GCAM calculated universal global producer price to regional consumer prices drawing on historical relationships of these prices. Along the SSPs, food access depends largely on expectations of increases in population and economic status. Under a more optimistic scenario, the pressures on food access from increasing demand and rising prices can be counterbalanced by faster economic development. Stringent climate policies that increase commodity prices, however, may hinder vulnerable regions, namely Sub-Saharan Africa, from achieving greater food accessibility.

  17. Assessing the impact of climate change on the crop potential productivity in Huang-Huai-Hai Plain in China based on crop model and GIS technique

    NASA Astrophysics Data System (ADS)

    Tian, Zhan; Lei, Xiaotu; Gao, Zhiqiang

    2007-09-01

    The climate is changing due to higher concentrations of greenhouse gases. If concentrations continue to increase, climate models project climate change will be more severe in this century, and with significant impacts on many human sectors, particularly agriculture. Agriculture is a fundamental production sector for society, especially for highly populated countries such as China. Huang Huai-Hai Plain is regarded as the bread basket of China. With only 7.7% water resources of the whole country, it produces 39.2% of national grain production and 32.4% of gross domestic product. According to government predictions, by 2030 this area will have a net population increase of 104 million, while its urbanization rate will be greater than 50%. The total irrigated area will reach about 20 million ha, with a net increase of 2 million ha/year. In this study, DSSAT a dynamic process crop growth model, has been calibrated and validated for current production at ten sites in the major winter wheat and summer maize-growing region of Huang-Huai-Hai Plain in China The IPCC SRES greenhouse gase emission scenarios A2 and B2 were used in the simulation, combining with the Regional Climate Model (PRICES) which provides long term present and future daily weather data. Using the regional crop model and GIS technologies, the crop productivity changes of two main crops winter wheat and summer maize were for simulated 2020s, 2050s and 2080s under both IPCC SRES A2 and B2 greenhouse gases emission scenarios. Simulation results indicated the possibility of significant impacts of climate change on crop production in this region, with marked differences between rainfed and irrigated production. In conclusion, this exercise successfully tested the applicability of standard climate change impact assessment methodology to an important production region of China.

  18. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment

    USGS Publications Warehouse

    Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.

    2008-01-01

    Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.

  19. Climate Change Impact Assessment in Pacific North West Using Copula based Coupling of Temperature and Precipitation variables

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Rana, A.; Moradkhani, H.

    2014-12-01

    The multi downscaled-scenario products allow us to better assess the uncertainty of the changes/variations of precipitation and temperature in the current and future periods. Joint Probability distribution functions (PDFs), of both the climatic variables, might help better understand the interdependence of the two, and thus in-turn help in accessing the future with confidence. Using the joint distribution of temperature and precipitation is also of significant importance in hydrological applications and climate change studies. In the present study, we have used multi-modelled statistically downscaled-scenario ensemble of precipitation and temperature variables using 2 different statistically downscaled climate dataset. The datasets used are, 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset, namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, leading to 2 ensemble time series from 20 GCM products. Thereafter the ensemble PDFs of both precipitation and temperature is evaluated for summer, winter, and yearly periods for all the 10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to establish the joint distribution of two variables enabling users to model the joint behavior of the variables with any level of correlation and dependency. Moreover, the probabilistic distribution helps remove the limitations on marginal distributions of variables in question. The joint distribution is then used to estimate the change trends of the joint precipitation and temperature in the current and future, along with estimation of the probabilities of the given change. Results have indicated towards varied change trends of the joint distribution of, summer, winter, and yearly time scale, respectively in all 10 sub-basins. Probabilities of changes, as estimated

  20. Considering uncertainty in climate change projections through a new decision-centric approach to global change impact assessment on water resources tested in a Pennsylvania watershed

    NASA Astrophysics Data System (ADS)

    Singh, R.; Wagener, T.; Crane, R. G.; Mann, M. E.; Ning, L.

    2013-12-01

    We generally force a hydrologic model with downscaled projections of temperature and precipitation to assess the impact of climate change on the water resources of a region. Often, the presence of large uncertainties in climate projections limits the utility of this forward propagation approach for robust water resource planning. In this study, instead of using the forward propagation approach that starts with uncertain projections of future climate, we propose an alternative strategy that starts by identifying stakeholder-defined critical thresholds for hydrologic indicators of interest, e.g. related to streamflow. We subsequently analyze a wide range of climate and land use settings in a model of the watershed under study to identify the corresponding critical combinations of climate and land use change that lead to exceedance of the previously defined thesholds in the output of interest. Finally, the downscaled projections on future climate are used to assess the plausibility of the watershed transitioning to identified vulnerable regimes in the future. We apply this method to the Lower Juniata watershed in Pennsylvania for which the downscaled projections suggest an increase in temperature between 3°C to 6°C and a change in mean annual precipitation between -17% to +19% by the end of century. The forward propagation approach using these projections suggests an overall decrease in the mean annual streamflow from 387 mm/year to 315 mm/year where 80% of the projected changes range from 3% to -38%. These projections agree well with those derived from the alternative method that suggests that even small change in precipitation (×5%) combined with increase temperature greater than 2.5°C is likely to cause a significant decrease in the mean annual runoff of the watershed. We therefore explore the decision-relevant space more fully and provide the decision-maker with additional useful information, e.g. under what circumstances is land use change more relevant than

  1. Climate Assessment for 1997.

    NASA Astrophysics Data System (ADS)

    Bell, Gerald D.; Halpert, Michael S.

    1998-05-01

    The global climate during 1997 was affected by both extremes of the El Niño-Southern Oscillation (ENSO), with weak Pacific cold episode conditions prevailing during January and February, and one of the strongest Pacific warm episodes (El Niño) in the historical record prevailing during the remainder of the year. This warm episode contributed to major regional rainfall and temperature anomalies over large portions of the Tropics and extratropics, which were generally consistent with those observed during past warm episodes. In many regions, these anomalies were opposite to those observed during 1996 and early 1997 in association with Pacific cold episode conditions.Some of the most dramatic El Niño impacts during 1997 were observed in the Tropics, where anomalous convection was evident across the entire Pacific and throughout most major monsoon regions of the world. Tropical regions most affected by excessive El Niño-related rainfall during the year included 1) the eastern half of the tropical Pacific, where extremely heavy rainfall and strong convective activity covered the region from April through December; 2) equatorial eastern Africa, where excessive rainfall during OctoberDecember led to widespread flooding and massive property damage; 3) Chile, where a highly amplified and extended South Pacific jet stream brought increased storminess and above-normal rainfall during the winter and spring; 4) southeastern South America, where these same storms produced above-normal rainfall during JuneDecember; and 5) Ecuador and northern Peru, which began receiving excessive rainfall totals in November and December as deep tropical convection spread eastward across the extreme eastern Pacific.In contrast, El Niño-related rainfall deficits during 1997 included 1) Indonesia, where significantly below-normal rainfall from June through December resulted in extreme drought and contributed to uncontrolled wildfires; 2) New Guinea, where drought contributed to large-scale food

  2. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 3. Dryland Production of Grain and Forage Crops

    SciTech Connect

    Thomson, Allison M.; Brown, Robert A.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Benson, Verel W.

    2005-05-31

    Here we simulate dryland agriculture in the United States with a suite of climate change projections. The total production of three major grain crops (corn, soybean, winter wheat) and two forage crops (alfalfa and clover hay) is calculated based on the Core Production Area (CPA) of each crop. Changes in production occur with each of the crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric CO2 increases production. The results varied depending on the General Circulation Model (GCM) used to simulate climate. Regional production followed trends similar to national production, but the magnitude of change was variable and substantially larger in some regions. An analysis of Currently Possible Production Areas (CPPA) for each crop indicates that the regions most likely to experience change with climate change are those on the edge of the area where the crop is currently grown. While national production of dryland agriculture does not change drastically, it is apparent that the regional impacts may be significant.

  3. Implications of global change and climate variability for vector-borne diseases: generic approaches to impact assessments.

    PubMed

    Sutherst, R W

    1998-06-01

    Global change is pervasive and occurring at a dramatic rate. It involves changes in land use, vegetation cover, species translocations and even the climate of the planet. The consequences for the biosphere are uncertain. Past research emphasis has been on the science of climate change as the major driver of policy. The present priority in the global-change community is to define the likely nature and extent of those impacts on biodiversity and the functioning of ecosystems. In addition, increasing consideration is now being given to adaptation measures. The way in which that is being initiated is to develop adaptation measures to respond to medium-term climate variability in the form of altered El Nino and similar cycles, and changes in the frequency of extreme events. Given the large number of stakeholders in agriculture, human health and environment, there is a need for great efficiencies if the scientific community is going to be able to respond in a meaningful way with foreseeable resources. The plethora of problems means that generic approaches are needed. The present situation, with parasitologists each doing their own thing in terms of developing and using software tools, is like the tower of Babel. Parasitologists need common tools and languages to facilitate communication and collaboration. Advances in computing, with object-oriented programming languages and seamless exchange of information between different packages and platforms, are providing some exciting opportunities to overcome these problems. PMID:9673872

  4. Assessing the Impacts of Climate and Land Use Change on Streamflow and Nutrient Loading in the Arroyo Colorado Watershed in Southern Texas

    NASA Astrophysics Data System (ADS)

    Osidele, O.; Sun, A.; Green, R.

    2011-12-01

    Based on results of the Second National Climate Assessment reported in 2009, the U.S. Global Change Research Program projects temperatures in southern Texas will increase 5 to 8° F by the end of the 21st century, with larger changes occurring under scenarios of higher greenhouse gas emissions. Temperature increases in summer are projected to be larger than in winter. Although drier conditions are expected in the region, sea-level rise, extreme rainfall events, and associated storm surges are projected to occur more frequently because of the likely increase in intensity of hurricanes and tropical storms in the Gulf of Mexico. The range of possible responses to climate change is attributable to a combination of characteristics at global, regional, and local scales. The risk of flooding and catastrophic infrastructure damage due to global climate phenomena has been incorporated into local climate adaptation plans for many low-lying areas and communities in the Gulf Coast region of southern Texas. However, because this region is dominated by irrigated agriculture and the population is projected to double by 2050, it is important to examine how climate change will affect water resources and environmental quality. The purpose of this study is to investigate the potential hydrologic and water quality impacts of projected climate change, land use change, and population change scenarios in the headwaters of the Arroyo Colorado. The results of this work will provide content for a web-based, collaborative geospatial decision support system being developed to support environmental management in the Arroyo Colorado Watershed. Presently, land use in the Arroyo Colorado Watershed is more than 50 percent agricultural and almost 25 percent residential with varying levels of urbanization. As a result, flow in the Arroyo Colorado is sustained primarily by discharge from municipal wastewater treatment facilities, irrigation return flows, and urban storm runoff. In this study

  5. Congress Assesses Climate Change Paleodata

    NASA Astrophysics Data System (ADS)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  6. Key landscape ecology metrics for assessing climate change adaptation options: rate of change and patchiness of impacts

    USGS Publications Warehouse

    López-Hoffman, Laura; Breshears, David D.; Allen, Craig D.; Miller, Marc L.

    2013-01-01

    Under a changing climate, devising strategies to help stakeholders adapt to alterations to ecosystems and their services is of utmost importance. In western North America, diminished snowpack and river flows are causing relatively gradual, homogeneous (system-wide) changes in ecosystems and services. In addition, increased climate variability is also accelerating the incidence of abrupt and patchy disturbances such as fires, floods and droughts. This paper posits that two key variables often considered in landscape ecology—the rate of change and the degree of patchiness of change—can aid in developing climate change adaptation strategies. We use two examples from the “borderland” region of the southwestern United States and northwestern Mexico. In piñon-juniper woodland die-offs that occurred in the southwestern United States during the 2000s, ecosystem services suddenly crashed in some parts of the system while remaining unaffected in other locations. The precise timing and location of die-offs was uncertain. On the other hand, slower, homogeneous change, such as the expected declines in water supply to the Colorado River delta, will likely impact the entire ecosystem, with ecosystem services everywhere in the delta subject to alteration, and all users likely exposed. The rapidity and spatial heterogeneity of faster, patchy climate change exemplified by tree die-off suggests that decision-makers and local stakeholders would be wise to operate under a Rawlsian “veil of ignorance,” and implement adaptation strategies that allow ecosystem service users to equitably share the risk of sudden loss of ecosystem services before actual ecosystem changes occur. On the other hand, in the case of slower, homogeneous, system-wide impacts to ecosystem services as exemplified by the Colorado River delta, adaptation strategies can be implemented after the changes begin, but will require a fundamental rethinking of how ecosystems and services are used and valued. In

  7. Impacts Of Climate Change On Ecosystems Management In Africa: An Assessment Of Disaster Risk Management And Adaptation

    NASA Astrophysics Data System (ADS)

    Ndebele-Murisa, M. R.

    2015-12-01

    This paper is a synthesis of eight studies which demonstrate the interface between disaster risk management (DRM) and adaptation. The studies; conducted from November 2011 to July 2012 included diverse ecosystems from forests, coastlines, rural areas to a lake region and showed that climate change/variability are major factors among other factors such as deforestation and land degradation, unsustainable land use practices, overharvesting of natural products and invasive species encroachment that are causing changes in ecosystems. The most common extreme events reported included shifts in and shorter rainfall seasons, extended droughts, increased temperatures, extreme heat, heavy rainfall, flooding, inundation, strong winds and sea level rises. As a result of these climate phenomena, adverse impacts on ecosystems and communities were reported as biodiversity loss, reduced fish catch, reduced water for forests/agriculture/consumption, increased rough waves, coastal erosion/sediment deposition and lastly land/mud slides in order of commonality. In response to these impacts communities are practicing coping and adaptation strategies but there is a huge gap between proper DRM and adaptation. This is mainly because the adaptation is practiced as an aftermath with very little effort propelled towards proactive DRM or preparedness. In addition, national level policies are archaic and do not address the current environmental changes. This was demonstrated in Togo where wood energy potential is deteriorating at an unprecedented rate but is projected to increase between 6.4% and 101% in the near and far future if the national forest action plans are implemented; preventing an energy crisis in the country. This shows that appropriate legal and policy frameworks and well planned responses to projected extreme events and climate changes are crucial in order to prevent disasters and to achieve sustainable utilisation of resources in the continent.

  8. Integrated Assessments of the Impact of Climate Change on Agriculture: An Overview of AgMIP Regional Research in South Asia

    NASA Technical Reports Server (NTRS)

    McDermid, Sonali P.; Dileepkumar, Guntuku; Murthy, K. M. Dakshina; Nedumaran, S.; Singh, Piara; Srinivasa, Chukka; Gangwar, B.; Subash, N.; Ahmad, Ashfaq; Zubair, Lareef; Nissanka, S. P.

    2015-01-01

    South Asia's growing population. In order to assess the future of food and livelihood security across South Asia, the Agricultural Model Intercomparison and Improvement Project (AgMIP) has undertaken integrated climate-crop-economic assessments of the impact of climate change on food security and poverty in South Asia, encompassing Bangladesh, India, Nepal, Pakistan, and Sri Lanka. AgMIP has funded, on a competitive basis, four South Asian regional research teams (RRTs) and one South Asian coordination team (CT) to undertake climate-crop-economic integrated assessments of food security for many districts in each of these countries, with the goal of characterizing the state of food security and poverty across the region, and projecting how these are subject to change under future climate change conditions.

  9. A method for reducing climate variation influence on the study of the urbanization impact assessment over 200 watersheds stream flow in USA

    NASA Astrophysics Data System (ADS)

    Salavati, Bahar; Oudin, Ludovic; Furusho, Carina; Ribstein, Pierre

    2014-05-01

    Urbanization and people concentration are suspected to have multiple impacts on the catchments hydrological response. Hydrologically-relevant metric of land-use change and climate variability identification still remain an open scientific question. Besides, at the catchment-scale, urbanization impacts on flow are not easy to quantify and previous studies results appear quite disparate when assessing these impacts. In this study, about 200 urban and non-urban catchments in the United States were selected based on neighbor paired catchments analysis. Streamflow and rainfall data were collected in periods of 30 to 70 years. Three hydrodynamic properties were particularly analyzed: runoff coefficient, baseflow index and the 2-year return period flood peak. Land use maps from National Land Cover Database (NLCD) and unit housing density maps over the 1940-2006 time period were used as a proxy of impervious area and urbanization. Two approaches were followed to assess the impact of urbanization on flow: a classical approach using observed flow time series and an alternative approach involving a hydrological model that allows to cope and diminish climate variability. To this aim, the GR4J model, a conceptual daily 4-parameter hydrological model, was used to simulate discharge. Ensemble of parameter sets were calibrated for a sequence of sub-periods and with each set of parameter a simulation is performed using the entire record period. Then, the trends on hydrodynamic properties are analyzed using the Mann-Kendall test. Our results showed that a majority of the catchments presented no significant trend over the record period for the hydrodynamic properties analysed on the studied period. Supposing that the hydrological model succeeds in reducing climate variability impacts by using exactly the same data of precipitation and evapotranspiration, we could expect that hydrodynamic properties trends calculated using observed and simulated discharges would depend on urbanization

  10. Assessment of near-surface ozone trends over Europe in regional climate-air quality simulations: The impact of emissions

    NASA Astrophysics Data System (ADS)

    Akritidis, Dimitris; Zanis, Prodromos; Pytharoulis, Ioannis; Karacostas, Theodore

    2014-05-01

    The current study aims to investigate the contribution of emission changes to near-surface ozone trends over Europe based on regional climate-air quality simulations. A modeling system based on the air quality model CAMx (version 5.2) driven off-line by the regional climate model RegCM3, is used to estimate near surface ozone trends over Europe for the time period 1996-2006. In order to assess the contribution of changing emissions to ozone trends, two simulations were performed: The first simulation (CONST) was forced from constant emissions based on the EMEP emissions of the year 1996, while the second simulation (VAR) was forced from year to year varying emissions based on the EMEP emissions of the years 1996-2006. Both climatic and air-quality simulations were performed on a 50 km × 50 km grid with RegCM3 driven by the NCEP meteorological reanalysis fields. The vertical profile of the domain contains 12 layers of varying thickness extending to about 6.7 km. Average monthly concentration values obtained from the global chemistry climate model ECHAM5-MOZ for the year 1996, were used as chemical boundary conditions for both simulations. Near surface ozone measurements from the EMEP network are used in order to evaluate the ability of the RegCM3/CAMx modeling system to reproduce the observed ozone trends. 74 stations were selected under the 75% data availability criterion. Annual and seasonal trends were calculated by implementing linear regression analysis on both modeled and observed ozone concentrations, while the statistical significance of trends has been calculated using the Mann-Kendall approach. The modeling system reproduces the correct sign of trends for the majority of the stations, while the magnitude of the trends is much milder than the observed. Overall, the VAR simulation exhibits a better approach to the observed trends compared to the CONST simulation, especially over the hotspots of NOx emissions (UK, Benelux).

  11. Assessing Climate Change

    NASA Astrophysics Data System (ADS)

    Covey, Curt; Gleckler, null

    Large-scale climatic patterns, rather than a growing “heat island” effect, are the overriding influence on weather in the Potomac River area, and temperature data in the area can therefore be validly compared to global trends. At least temporarily, however, the area, which includes Washington, D.C., has lost its coupling with global temperature trends.Short-term regional anomalies in the Potomac River area's weather, especially high summer temperatures, may promote legislative action in the U.S. Congress on long-term global climate research. However, the current benign weather conditions in the political center of the United States tend to divert attention away from global climate research, diminishing the likelihood of significant expansion of research funding and greenhouse gas legislation.

  12. 78 FR 56866 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time and Date: The...

  13. 78 FR 35259 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... National Climate Assessment and Development Advisory Committee (NCADAC) was established by the Secretary of... science and information pertaining to current and future impacts of climate. Time And Date: The...

  14. Projecting Climate Change Impacts on Wildfire Probabilities

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Bryant, B. P.; Preisler, H.

    2008-12-01

    We present preliminary results of the 2008 Climate Change Impact Assessment for wildfire in California, part of the second biennial science report to the California Climate Action Team organized via the California Climate Change Center by the California Energy Commission's Public Interest Energy Research Program pursuant to Executive Order S-03-05 of Governor Schwarzenegger. In order to support decision making by the State pertaining to mitigation of and adaptation to climate change and its impacts, we model wildfire occurrence monthly from 1950 to 2100 under a range of climate scenarios from the Intergovernmental Panel on Climate Change. We use six climate change models (GFDL CM2.1, NCAR PCM1, CNRM CM3, MPI ECHAM5, MIROC3.2 med, NCAR CCSM3) under two emissions scenarios--A2 (C02 850ppm max atmospheric concentration) and B1(CO2 550ppm max concentration). Climate model output has been downscaled to a 1/8 degree (~12 km) grid using two alternative methods: a Bias Correction and Spatial Donwscaling (BCSD) and a Constructed Analogues (CA) downscaling. Hydrologic variables have been simulated from temperature, precipitation, wind and radiation forcing data using the Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model. We model wildfire as a function of temperature, moisture deficit, and land surface characteristics using nonlinear logistic regression techniques. Previous work on wildfire climatology and seasonal forecasting has demonstrated that these variables account for much of the inter-annual and seasonal variation in wildfire. The results of this study are monthly gridded probabilities of wildfire occurrence by fire size class, and estimates of the number of structures potentially affected by fires. In this presentation we will explore the range of modeled outcomes for wildfire in California, considering the effects of emissions scenarios, climate model sensitivities, downscaling methods, hydrologic simulations, statistical model specifications for

  15. AgMIP's Transdisciplinary Agricultural Systems Approach to Regional Integrated Assessment of Climate Impacts, Vulnerability, and Adaptation

    NASA Technical Reports Server (NTRS)

    Antle, John M.; Valdivia, Roberto O.; Boote, Kenneth J.; Janssen, Sander; Jones, James W.; Porter, Cheryl H.; Rosenzweig, Cynthia; Ruane, Alexander C.; Thorburn, Peter J.

    2015-01-01

    This chapter describes methods developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to implement a transdisciplinary, systems-based approach for regional-scale (local to national) integrated assessment of agricultural systems under future climate, biophysical, and socio-economic conditions. These methods were used by the AgMIP regional research teams in Sub-Saharan Africa and South Asia to implement the analyses reported in their respective chapters of this book. Additional technical details are provided in Appendix 1.The principal goal that motivates AgMIP's regional integrated assessment (RIA) methodology is to provide scientifically rigorous information needed to support improved decision-making by various stakeholders, ranging from local to national and international non-governmental and governmental organizations.

  16. Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    NASA Technical Reports Server (NTRS)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  17. Assessment of climate change impacts on watershed in cold-arid region: an integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis method

    NASA Astrophysics Data System (ADS)

    Zhuang, X. W.; Li, Y. P.; Huang, G. H.; Liu, J.

    2015-12-01

    An integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis (MGCM-SWG-SCA) method is developed, through incorporating multiple global climate models (MGCM), stochastic weather generator (SWG), and stepwise-clustered hydrological model (SCHM) within a general framework. MGCM-SWG-SCA can investigate uncertainties of projected climate changes as well as create watershed-scale climate projections from large-scale variables. It can also assess climate change impacts on hydrological processes and capture nonlinear relationship between input variables and outputs in watershed systems. MGCM-SWG-SCA is then applied to the Kaidu watershed with cold-arid characteristics in the Xinjiang Uyghur Autonomous Region of northwest China, for demonstrating its efficiency. Results reveal that the variability of streamflow is mainly affected by (1) temperature change during spring, (2) precipitation change during winter, and (3) both temperature and precipitation changes in summer and autumn. Results also disclose that: (1) the projected minimum and maximum temperatures and precipitation from MGCM change with seasons in different ways; (2) various climate change projections can reproduce the seasonal variability of watershed-scale climate series; (3) SCHM can simulate daily streamflow with a satisfactory degree, and a significant increasing trend of streamflow is indicated from future (2015-2035) to validation (2006-2011) periods; (4) the streamflow can vary under different climate change projections. The findings can be explained that, for the Kaidu watershed located in the cold-arid region, glacier melt is mainly related to temperature changes and precipitation changes can directly cause the variability of streamflow.

  18. Assessment of climate change impacts on watershed in cold-arid region: an integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis method

    NASA Astrophysics Data System (ADS)

    Zhuang, X. W.; Li, Y. P.; Huang, G. H.; Liu, J.

    2016-07-01

    An integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis (MGCM-SWG-SCA) method is developed, through incorporating multiple global climate models (MGCM), stochastic weather generator (SWG), and stepwise-clustered hydrological model (SCHM) within a general framework. MGCM-SWG-SCA can investigate uncertainties of projected climate changes as well as create watershed-scale climate projections from large-scale variables. It can also assess climate change impacts on hydrological processes and capture nonlinear relationship between input variables and outputs in watershed systems. MGCM-SWG-SCA is then applied to the Kaidu watershed with cold-arid characteristics in the Xinjiang Uyghur Autonomous Region of northwest China, for demonstrating its efficiency. Results reveal that the variability of streamflow is mainly affected by (1) temperature change during spring, (2) precipitation change during winter, and (3) both temperature and precipitation changes in summer and autumn. Results also disclose that: (1) the projected minimum and maximum temperatures and precipitation from MGCM change with seasons in different ways; (2) various climate change projections can reproduce the seasonal variability of watershed-scale climate series; (3) SCHM can simulate daily streamflow with a satisfactory degree, and a significant increasing trend of streamflow is indicated from future (2015-2035) to validation (2006-2011) periods; (4) the streamflow can vary under different climate change projections. The findings can be explained that, for the Kaidu watershed located in the cold-arid region, glacier melt is mainly related to temperature changes and precipitation changes can directly cause the variability of streamflow.

  19. Climate impacts of Australian land cover change

    NASA Astrophysics Data System (ADS)

    Lawrence, P. J.

    2004-05-01

    Australian land cover has been dramatically altered since European settlement primarily for agricultural utilization, with native vegetation widely replaced or modified for cropping and intensive animal production. While there have been numerous investigations into the regional and near surface climate impacts of Australian land cover change, these investigation have not included the climate impacts of larger-scale changes in atmospheric circulation and their associated feedbacks, or the impacts of longer-term soil moisture feedbacks. In this research the CSIRO General Circulation Model (GCM) was used to investigate the climate impacts of Australian land cover change, with larger-scale and longer-term feedbacks. To avoid the common problem of overstating the magnitude and spatial extent of changes in land surface conditions prescribed in land cover change experiments, the current Australian land surface properties were described from finer-scale, satellite derived land cover datasets, with land surface conditions extrapolating from remnant native vegetation to pre-clearing extents to recreate the pre-clearing land surface properties. Aggregation rules were applied to the fine-scale data to generate the land surface parameters of the GCM, ensuring the equivalent sub-grid heterogeneity and land surface biogeophysics were captured in both the current and pre-clearing land surface parameters. The differences in climate simulated in the pre-clearing and current experiments were analyzed for changes in Australian continental and regional climate to assess the modeled climate impacts of Australian land cover change. The changes in modeled climate were compared to observed changes in Australian precipitation over the last 50 and 100 years to assess whether modeled results could be detected in the historical record. The differences in climate simulation also were analyzed at the global scale to assess the impacts of local changes on larger scale circulation and climate at

  20. Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer

    NASA Astrophysics Data System (ADS)

    Rasmussen, P.; Sonnenborg, T. O.; Goncear, G.; Hinsby, K.

    2012-07-01

    Groundwater abstraction from coastal aquifers is vulnerable to climate change and sea level rise because both may potentially impact saltwater intrusion and hence groundwater quality depending on the hydrogeological setting. In the present study the impacts of sea level rise and changes in groundwater recharge are quantified for an island located in the Western Baltic Sea. Agricultural land dominates the western and central parts of the island, which geologically are developed as push moraine hills and a former lagoon (later wetland area) behind barrier islands to the east. The low-lying central area of the island was extensively drained and reclaimed during the second half of the 19th century. Summer cottages along the beach on the former barrier islands dominate the eastern part of the island. The main water abstraction is for holiday cottages during the summer period (June-August). The water is abstracted from 11 wells drilled to a depth of around 20 m in the upper 5-10 m of a confined chalk aquifer. Increasing chloride concentrations have been observed in several abstraction wells and in some cases the WHO drinking water standard has been exceeded. Using the modeling package MODFLOW/MT3D/SEAWAT the historical, present and future freshwater-sea water distribution is simulated. The model is calibrated against hydraulic head observations and validated against geochemical and geophysical data from new investigation wells, including borehole logs, and from an airborne transient electromagnetic survey. The impact of climate changes on saltwater intrusion is found to be sensitive to the boundary conditions of the investigated system. For the flux-controlled aquifer to the west of the drained area only changes in groundwater recharge impacts the freshwater-sea water interface whereas sea level rise do not result in increasing sea water intrusion. However, on the barrier islands to the east of the reclaimed area below which the sea is hydraulically connected to the

  1. Linking Climate, Hydrology and Groundwater in High-Resolution Transient Groundwater Flow Models: a Case Study For a Climate Change Impacts Assessment in Grand Forks, BC

    NASA Astrophysics Data System (ADS)

    Scibek, J.; Allen, D. M.; Whitfield, P.; Wei, M.

    2004-05-01

    A case study of an unconfined aquifer in the Grand Forks valley in south-central BC was used to develop methodology for linking climate models, hydrologic models, and groundwater models to investigate future impacts of climate change on groundwater resources. A three dimensional groundwater flow model of variable spatial resolution (constrained by borehole spacing) was implemented in MODFLOW, and calibrated to observation well data. Multiple scenarios of the hydraulic conductivity fields were used in a sensitivity analysis. A new methodology was developed for generating spatially-distributed and temporally-varying recharge zonation for the surficial aquifer, using GIS linked to the one-dimensional HELP (USEPA) hydrologic model that estimates aquifer recharge. The recharge model accounts for soil distribution, vadose zone depth and hydraulic conductivity, extent of impermeable areas, surficial geology, and vadose zone thickness. Production well pumping and irrigation return flow during the summer season were included in recharge computations. Although recharge was computed as monthly averages per climate scenario, it is driven by physically-based daily weather inputs generated by a stochastic weather generator and calibrated to local observed climate. Four year long climate scenarios were run, each representing one typical year in the present and future (2020s, 2050s, and 2080s), by perturbing the historical weather according to the downscaled CGCM1 general circulation model results (Environment Canada). CGCM1 model outputs were calibrated for local conditions during the downscaling procedure. These include absolute and relative changes in precipitation; including indirect measures of precipitation intensity, dry and wet spell lengths, temperature, and solar radiation for the evapotranspiration model. CGCM1 downscaling was also used to predict basin-scale runoff for the Kettle River upstream of Grand Forks. This river exerts strong control on the groundwater levels

  2. An extended modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Uvo, C. B.; Berndtsson, R.

    2014-10-01

    The impact of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010-2030 and 2030-2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. The modified version of the HBV model (Qbox) was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002-2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall-runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW) to simulate future recharge and groundwater hydraulic head. The results of the rainfall-runoff modeling showed that under the B1 scenario the number of floods might increase in the area. This in turn calls for a proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference between present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharged water in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

  3. Linking Biological Integrity and Watershed Models to Assess the Impacts of Historical Land Use and Climate Changes on Stream Health

    NASA Astrophysics Data System (ADS)

    Einheuser, Matthew D.; Nejadhashemi, A. Pouyan; Wang, Lizhu; Sowa, Scott P.; Woznicki, Sean A.

    2013-06-01

    Land use change and other human disturbances have significant impacts on physicochemical and biological conditions of stream systems. Meanwhile, linking these disturbances with hydrology and water quality conditions is challenged due to the lack of high-resolution datasets and the selection of modeling techniques that can adequately deal with the complex and nonlinear relationships of natural systems. This study addresses the above concerns by employing a watershed model to obtain stream flow and water quality data and fill a critical gap in data collection. The data were then used to estimate fish index of biological integrity (IBI) within the Saginaw Bay basin in Michigan. Three methods were used in connecting hydrology and water quality variables to fish measures including stepwise linear regression, partial least squares regression, and fuzzy logic. The IBI predictive model developed using fuzzy logic showed the best performance with the R 2 = 0.48. The variables that identified as most correlated to IBI were average annual flow, average annual organic phosphorus, average seasonal nitrite, average seasonal nitrate, and stream gradient. Next, the predictions were extended to pre-settlement (mid-1800s) land use and climate conditions. Results showed overall significantly higher IBI scores under the pre-settlement land use scenario for the entire watershed. However, at the fish sampling locations, there was no significant difference in IBI. Results also showed that including historical climate data have strong influences on stream flow and water quality measures that interactively affect stream health; therefore, should be considered in developing baseline ecological conditions.

  4. Climate Change Effects on Heat- and Cold-Related Mortality in the Netherlands: A Scenario-Based Integrated Environmental Health Impact Assessment

    PubMed Central

    Huynen, Maud M. T. E.; Martens, Pim

    2015-01-01

    Although people will most likely adjust to warmer temperatures, it is still difficult to assess what this adaptation will look like. This scenario-based integrated health impacts assessment explores baseline (1981–2010) and future (2050) population attributable fractions (PAF) of mortality due to heat (PAFheat) and cold (PAFcold), by combining observed temperature–mortality relationships with the Dutch KNMI’14 climate scenarios and three adaptation scenarios. The 2050 model results without adaptation reveal a decrease in PAFcold (8.90% at baseline; 6.56%–7.85% in 2050) that outweighs the increase in PAFheat (1.15% at baseline; 1.66%–2.52% in 2050). When the 2050 model runs applying the different adaptation scenarios are considered as well, however, the PAFheat ranges between 0.94% and 2.52% and the PAFcold between 6.56% and 9.85%. Hence, PAFheat and PAFcold can decrease as well as increase in view of climate change (depending on the adaptation scenario). The associated annual mortality burdens in 2050—accounting for both the increasing temperatures and mortality trend—show that heat-related deaths will range between 1879 and 5061 (1511 at baseline) and cold-related deaths between 13,149 and 19,753 (11,727 at baseline). Our results clearly illustrate that model outcomes are not only highly dependent on climate scenarios, but also on adaptation assumptions. Hence, a better understanding of (the impact of various) plausible adaptation scenarios is required to advance future integrated health impact assessments. PMID:26512680

  5. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook

    NASA Astrophysics Data System (ADS)

    Baker, Andrew C.; Glynn, Peter W.; Riegl, Bernhard

    2008-12-01

    Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean-atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on

  6. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction.

    PubMed

    Cai, Juan Juan; Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2014-02-01

    The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change. PMID:24001685

  7. Exploring Air-Climate-Energy Impacts with GCAM-USA

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change and energy (ACE) goals. My research focuseson integration of impact factors in GCAM-USA and a...

  8. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  9. The 2008 California climate change assessment

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2008-12-01

    In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.

  10. Assessing the impacts induced by global climate change through a multi-risk approach: lessons learned from the North Adriatic coast (Italy)

    NASA Astrophysics Data System (ADS)

    Gallina, Valentina; Torressan, Silvia; Zabeo, Alex; Critto, Andrea; Glade, Thomas; Marcomini, Antonio

    2015-04-01

    Climate change is expected to pose a wide range of impacts on natural and human systems worldwide, increasing risks from long-term climate trends and disasters triggered by weather extremes. Accordingly, in the future, one region could be potentially affected by interactions, synergies and trade-offs of multiple hazards and impacts. A multi-risk risk approach is needed to effectively address multiple threats posed by climate change across regions and targets supporting decision-makers toward a new paradigm of multi-hazard and risk management. Relevant initiatives have been already developed for the assessment of multiple hazards and risks affecting the same area in a defined timeframe by means of quantitative and semi-quantitative approaches. Most of them are addressing the relations of different natural hazards, however, the effect of future climate change is usually not considered. In order to fill this gap, an advanced multi-risk methodology was developed at the Euro-Mediterranean Centre on Climate Change (CMCC) for estimating cumulative impacts related to climate change at the regional (i.e. sub-national) scale. This methodology was implemented into an assessment tool which allows to scan and classify quickly natural systems and human assets at risk resulting from different interacting hazards. A multi-hazard index is proposed to evaluate the relationships of different climate-related hazards (e.g. sea-level rise, coastal erosion, storm surge) occurring in the same spatial and temporal area, by means of an influence matrix and the disjoint probability function. Future hazard scenarios provided by regional climate models are used as input for this step in order to consider possible effects of future climate change scenarios. Then, the multi-vulnerability of different exposed receptors (e.g. natural systems, beaches, agricultural and urban areas) is estimated through a variety of vulnerability indicators (e.g. vegetation cover, sediment budget, % of urbanization

  11. Climate change impacts on forestry

    PubMed Central

    Kirilenko, Andrei P.; Sedjo, Roger A.

    2007-01-01

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO2 are likely to drive significant modifications in natural and modified forests. Our review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. We concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand. PMID:18077403

  12. Climate change impacts on forestry

    SciTech Connect

    Kirilenko, A.P.; Sedjo, R.A.

    2007-12-11

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

  13. Predictability of Pacific Decadal Climate Variability and Climate Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Newman, M.

    2013-12-01

    current region. These different processes represent increasingly longer time scales but are largely unrelated, and it is their combination that may produce regime-like behavior. The question of whether the PDO represents a response to climate forcing rather than a forcing of climate variability is thus key to an understanding of what impacts, if any, the PDO has on North American climate. Finally, in many disciplines, a climate index such as the PDO is a black box to be used as input for system sensitivity tests. But just because the PDO may represent the most predictable SST variation does not mean that it must always have the greatest climate impact. How climate impact assessment will be improved with an end-to-end approach where neither the climate predictability problem nor the systems sensitivity problem is treated in isolation is an essential but largely unanswered question. That is, rather than ask how sensitive our system is to a pre-specified climate pattern, or what climate patterns are most predictable, it may be better to ask what climate impacts on systems are most predictable.

  14. Representative Agricultural Pathways: A Trans-Disciplinary Approach to Agricultural Model Inter-comparison, Improvement, Climate Impact Assessment and Stakeholder Engagement

    NASA Astrophysics Data System (ADS)

    Antle, J. M.; Valdivia, R. O.; Claessens, L.; Nelson, G. C.; Rosenzweig, C.; Ruane, A. C.; Vervoort, J.

    2013-12-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment that is logically consistent across local, regional and global scales. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts are being developed. Representative Agricultural Pathways (RAPs) are designed to extend global pathways to provide the detail needed for global and regional assessment of agricultural systems. In addition, research by the Agricultural Model Inter-comparison and Improvement Project (AgMIP) shows that RAPs provide a powerful way to engage stakeholders in climate-related research throughout the research process and in communication of research results. RAPs are based on the integrated assessment framework developed by AgMIP. This framework shows that both bio-physical and socio-economic drivers are essential components of agricultural pathways and logically precede the definition of adaptation and mitigation scenarios that embody associated capabilities and challenges. This approach is based on a trans-disciplinary process for designing pathways and then translating them into parameter sets for bio-physical and economic models that are components of agricultural integrated assessments of climate impact, adaptation and mitigation. RAPs must be designed to be part of a logically consistent set of drivers and outcomes from global to regional and local. Global RAPs are designed to be consistent with higher-level global socio-economic pathways, but add key agricultural drivers such as agricultural growth trends that are not specified in more general pathways, as illustrated in a recent inter-comparison of global agricultural models. To create pathways at regional or local scales, further detail is needed. At this level, teams of scientists and other experts with knowledge of the agricultural systems and regions work together through a step-wise process. Experiences

  15. Climate impacts on Flanders' fields

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2010-05-01

    During the past decade Belgium has experienced more monthly extremes than in any other decade since observations started in 1833. According to Global Circulation Model predictions, the frequency and magnitude of extreme weather events are likely to increase with climate change. Not only the frequency and magnitude of meteorological events but also their timing in relation to crop development and the physical environment will determine their impact. The implications of extreme weather events are demonstrated for the year with the lowest yields in the past decade for winter wheat (2001), winter barley (2003), potatoes (2006) and sugar beet (1998) in the agricultural regions of Flanders. Water stress, both drought and flooding, and heat stress seem the major factors that influence arable yields in Flanders. The unfavourable weather conditions during the growth season may be further aggravated by the physical environment. A bad year for one arable crop is not necessarily a bad year for another arable crop such that diversification within one farm may be a good strategy to cope with weather variability. Based on analysis of historical yield and weather data, a process-based dynamic vegetation model was designed to integrate the effects of crop management, weather and physical environment on crop growth. The model operates at a regional scale commensurate with regional climate models and capable of both capturing weather and climate variability impacts. Pronounced yield losses mainly due to water shortages and heat stress occur for all climate change scenarios, to a lesser extent in the case of winter cereals on loam soils. Root crops such as potatoes and sugar beet will experience increased drought stress particularly when the probability rises that sensitive crop development stages coincide with dry spells. This may be aggravated when wet springs cause water logging in the field and delay planting dates. Despite lower summer precipitation predictions for the future

  16. Impacts of climate change on coastal benthic ecosystems: assessing the current risk of mortality outbreaks associated with thermal stress in NW Mediterranean coastal areas

    NASA Astrophysics Data System (ADS)

    Pairaud, Ivane Lilian; Bensoussan, Nathaniel; Garreau, Pierre; Faure, Vincent; Garrabou, Joaquim

    2014-01-01

    In the framework of climate change, the increase in ocean heat wave frequency is expected to impact marine life. Large-scale positive temperature anomalies already occurred in the northwestern Mediterranean Sea in 1999, 2003 and 2006. These anomalies were associated with mass mortality events of macrobenthic species in coastal areas (0-40 m in depth). The anomalies were particularly severe in 1999 and 2003 when thousands of kilometres of coasts and about 30 species were affected. The aim of this study was to develop a methodology to assess the current risk of mass mortality associated with temperature increase along NW Mediterranean continental coasts. A 3D regional ocean model was used to obtain the temperature conditions for the period 2001-2010, for which the model outputs were validated by comparing them with in situ observations in affected areas. The model was globally satisfactory, although extremes were underestimated and required correction. Combined with information on the thermo-tolerance of a key species (the red gorgonian P. clavata) as well as its spatial distribution, the modelled temperature conditions were then used to assess the risk of mass mortality associated with thermal stress for the first time. Most of the known areas of observed mass mortality were found using the model, although the degree of risk in certain areas was underestimated. Using climatic IPCC scenarios, the methodology could be applied to explore the impacts of expected climate change in the NW Mediterranean. This is a key issue for the development of sound management and conservation plans to protect Mediterranean marine biodiversity in the face of climate change.

  17. Climate Twins - a tool to explore future climate impacts by assessing real world conditions: Exploration principles, underlying data, similarity conditions and uncertainty ranges

    NASA Astrophysics Data System (ADS)

    Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann

    2010-05-01

    To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a

  18. A holistic, multi-scale dynamic downscaling framework for climate impact assessments and challenges of addressing finer-scale watershed dynamics

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.

    2015-03-01

    We present a state-of-the-art holistic, multi-scale dynamic downscaling approach suited to address climate change impacts on hydrologic metrics and hydraulic regime of surface flow at the "scale of human decisions" in ungauged basins. The framework rests on stochastic and physical downscaling techniques that permit one-way crossing 106-100 m scales, with a specific emphasis on 'nesting' hydraulic assessments within a coarser-scale hydrologic model. Future climate projections for the location of Manchester watershed (MI) are obtained from an ensemble of General Circulation Models of the 3rd phase of the Coupled Model Intercomparison Project database and downscaled to a "point" scale using a weather generator. To represent the natural variability of historic and future climates, we generated continuous time series of 300 years for the locations of 3 meteorological stations located in the vicinity of the ungauged basin. To make such a multi-scale approach computationally feasible, we identified the months of May and August as the periods of specific interest based on ecohydrologic considerations. Analyses of historic and future simulation results for the identified periods show that the same median rainfall obtained by accounting for climate natural variability triggers hydrologically-mediated non-uniqueness in flow variables resolved at the hydraulic scale. An emerging challenge is that uncertainty initiated at the hydrologic scale is not necessarily preserved at smaller-scale flow variables, because of non-linearity of underlying physical processes, which ultimately can mask climate uncertainty. We stress the necessity of augmenting climate-level uncertainties of emission scenario, multi-model, and natural variability with uncertainties arising due to non-linearities in smaller-scale processes.

  19. An enhanced archive facilitating climate impacts analysis

    USGS Publications Warehouse

    Maurer, E.P.; Brekke, L.; Pruitt, T.; Thrasher, B.; Long, J.; Duffy, P.; Dettinger, M.; Cayan, D.; Arnold, J.

    2014-01-01

    We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled data to include daily data to facilitate investigations of phenomena sensitive to daily to monthly temperature and precipitation, including extremes in these quantities. New developments include downscaled output from the new Coupled Model Intercomparison Project phase 5 (CMIP5) climate model simulations at both the monthly and daily time scales, as well as simulations of surface hydrologi- cal variables. The web interface allows the extraction of individual projections or ensemble statistics for user-defined regions, promoting the rapid assessment of model consensus and uncertainty for future projections of precipitation, temperature, and hydrology. The archive is accessible online (http://gdo-dcp.ucllnl.org/downscaled_ cmip_projections).

  20. Modelling the hydrological cycle in assessments of climate change

    NASA Technical Reports Server (NTRS)

    Rind, D.; Rosenzweig, C.; Goldberg, R.

    1992-01-01

    The predictions of climate change studies depend crucially on the hydrological cycles embedded in the different models used. It is shown here that uncertainties in hydrological processes and inconsistencies in both climate and impact models limit confidence in current assessments of climate change. A future course of action to remedy this problem is suggested.

  1. Climate Change Impacts on Turkish Vegetation

    NASA Astrophysics Data System (ADS)

    Forrest, Matthew; Dönmez, Cenk; Çilek, Ahmet; Akif Erdogan, Mehmet; Buontempo, Carlo; Hickler, Thomas

    2014-05-01

    The Mediterranean has been identified as a potentially vulnerable hotspot under climate change. In Turkey, climate change projections consistently predict large temperature rises over the 21st century. With 9% of GDP and 25% of employment coming from agriculture, climate change has the potential to significantly affect both the Turkish economy and living standards. Relatively little work has been undertaken to estimate the effects and risks of climate change in Turkey, and many European studies cover do not include the whole of Turkey in their domain and so are of limited use for policy-makers. The Dynamic Global Vegetation Model LPJ-GUESS was parametrised to represent Turkish vegetation. Climate forcings were derived by interpolating meteorological data from over 600 stations from 1975-2010 to a 1km resolution. Soil depth and soil texture data from field measurements were also interpolated to a 1km grid. The model was benchmarked against vegetation type and remotely sensed biomass and tree cover data. Future climate conditions were calculated using the outputs from a set of regional model simulations. In particular the HadRM3P regional climate model was used to downscale five members of a perturbed physics ensemble of global climate projections obtained using HadCM3 general circulation model and the SRES A1B scenario. A delta change factor approach was then used in conjunction with the observed climate data to assess the impact on vegetation structure and ecological processes to the year 2100 using LPJ-GUESS. The resulting changes to productivity, vegetation structure and hydrology are discussed. Eventually these results will be combined with complementary studies concerning wildfire and erosion to produce a risk map for informing policy-makers.

  2. Assessing the impacts of climate change in Mediterranean catchments under conditions of data scarcity - The Gaza case study

    NASA Astrophysics Data System (ADS)

    Gampe, David; Ludwig, Ralf

    2013-04-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating seven test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. One of those seven sites is the Gaza Strip, located in the Eastern Mediterranean and part of the Palestinian Autonomous Area, covers an area of 365km² with a length of 35km and 6 to 12km in width. Elevation ranges from sea level up to 104m in the East of the test site. Mean annual precipitation varies from 235mm in the South to 420mm in the North of the area. The inter annual variability of rainfall and the rapid population growth in an highly agricultural used area represent the major challenges in this area. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) is setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. WaSiM was driven with meteorological forcing taken from 4

  3. Linking biological integrity and watershed models to assess the impacts of historical land use and climate changes on stream health.

    PubMed

    Einheuser, Matthew D; Nejadhashemi, A Pouyan; Wang, Lizhu; Sowa, Scott P; Woznicki, Sean A

    2013-06-01

    Land use change and other human disturbances have significant impacts on physicochemical and biological conditions of stream systems. Meanwhile, linking these disturbances with hydrology and water quality conditions is challenged due to the lack of high-resolution datasets and the selection of modeling techniques that can adequately deal with the complex and nonlinear relationships of natural systems. This study addresses the above concerns by employing a watershed model to obtain stream flow and water quality data and fill a critical gap in data collection. The data were then used to estimate fish index of biological integrity (IBI) within the Saginaw Bay basin in Michigan. Three methods were used in connecting hydrology and water quality variables to fish measures including stepwise linear regression, partial least squares regression, and fuzzy logic. The IBI predictive model developed using fuzzy logic showed the best performance with the R (2) = 0.48. The variables that identified as most correlated to IBI were average annual flow, average annual organic phosphorus, average seasonal nitrite, average seasonal nitrate, and stream gradient. Next, the predictions were extended to pre-settlement (mid-1800s) land use and climate conditions. Results showed overall significantly higher IBI scores under the pre-settlement land use scenario for the entire watershed. Howev