Sample records for clinical decision-support systems

  1. Nurses' Clinical Decision Making on Adopting a Wound Clinical Decision Support System.

    PubMed

    Khong, Peck Chui Betty; Hoi, Shu Yin; Holroyd, Eleanor; Wang, Wenru

    2015-07-01

    Healthcare information technology systems are considered the ideal tool to inculcate evidence-based nursing practices. The wound clinical decision support system was built locally to support nurses to manage pressure ulcer wounds in their daily practice. However, its adoption rate is not optimal. The study's objective was to discover the concepts that informed the RNs' decisions to adopt the wound clinical decision support system as an evidence-based technology in their nursing practice. This was an exploratory, descriptive, and qualitative design using face-to-face interviews, individual interviews, and active participatory observation. A purposive, theoretical sample of 14 RNs was recruited from one of the largest public tertiary hospitals in Singapore after obtaining ethics approval. After consenting, the nurses were interviewed and observed separately. Recruitment stopped when data saturation was reached. All transcribed interview data underwent a concurrent thematic analysis, whereas observational data were content analyzed independently and subsequently triangulated with the interview data. Eight emerging themes were identified, namely, use of the wound clinical decision support system, beliefs in the wound clinical decision support system, influences of the workplace culture, extent of the benefits, professional control over nursing practices, use of knowledge, gut feelings, and emotions (fear, doubt, and frustration). These themes represented the nurses' mental outlook as they made decisions on adopting the wound clinical decision support system in light of the complexities of their roles and workloads. This research has provided insight on the nurses' thoughts regarding their decision to interact with the computer environment in a Singapore context. It captured the nurses' complex thoughts when deciding whether to adopt or reject information technology as they practice in a clinical setting.

  2. Features of computerized clinical decision support systems supportive of nursing practice: a literature review.

    PubMed

    Lee, Seonah

    2013-10-01

    This study aimed to organize the system features of decision support technologies targeted at nursing practice into assessment, problem identification, care plans, implementation, and outcome evaluation. It also aimed to identify the range of the five stage-related sequential decision supports that computerized clinical decision support systems provided. MEDLINE, CINAHL, and EMBASE were searched. A total of 27 studies were reviewed. The system features collected represented the characteristics of each category from patient assessment to outcome evaluation. Several features were common across the reviewed systems. For the sequential decision support, all of the reviewed systems provided decision support in sequence for patient assessment and care plans. Fewer than half of the systems included problem identification. There were only three systems operating in an implementation stage and four systems in outcome evaluation. Consequently, the key steps for sequential decision support functions were initial patient assessment, problem identification, care plan, and outcome evaluation. Providing decision support in such a full scope will effectively help nurses' clinical decision making. By organizing the system features, a comprehensive picture of nursing practice-oriented computerized decision support systems was obtained; however, the development of a guideline for better systems should go beyond the scope of a literature review.

  3. Evaluate the ability of clinical decision support systems (CDSSs) to improve clinical practice.

    PubMed

    Ajami, Sima; Amini, Fatemeh

    2013-01-01

    Prevalence of new diseases, medical science promotion and increase of referring to health care centers, provide a good situation for medical errors growth. Errors can involve medicines, surgery, diagnosis, equipment, or lab reports. Medical errors can occur anywhere in the health care system: In hospitals, clinics, surgery centers, doctors' offices, nursing homes, pharmacies, and patients' homes. According to the Institute of Medicine (IOM), 98,000 people die every year from preventable medical errors. In 2010 from all referred medical error records to Iran Legal Medicine Organization, 46/5% physician and medical team members were known as delinquent. One of new technologies that can reduce medical errors is clinical decision support systems (CDSSs). This study was unsystematic-review study. The literature was searched on evaluate the "ability of clinical decision support systems to improve clinical practice" with the help of library, books, conference proceedings, data bank, and also searches engines available at Google, Google scholar. For our searches, we employed the following keywords and their combinations: medical error, clinical decision support systems, Computer-Based Clinical Decision Support Systems, information technology, information system, health care quality, computer systems in the searching areas of title, keywords, abstract, and full text. In this study, more than 100 articles and reports were collected and 38 of them were selected based on their relevancy. The CDSSs are computer programs, designed for help to health care careers. These systems as a knowledge-based tool could help health care manager in analyze evaluation, improvement and selection of effective solutions in clinical decisions. Therefore, it has a main role in medical errors reduction. The aim of this study was to express ability of the CDSSs to improve

  4. Optimal data systems: the future of clinical predictions and decision support.

    PubMed

    Celi, Leo A; Csete, Marie; Stone, David

    2014-10-01

    The purpose of the review is to describe the evolving concept and role of data as it relates to clinical predictions and decision-making. Critical care medicine is, as an especially data-rich specialty, becoming acutely cognizant not only of its historic deficits in data utilization but also of its enormous potential for capturing, mining, and leveraging such data into well-designed decision support modalities as well as the formulation of robust best practices. Modern electronic medical records create an opportunity to design complete and functional data systems that can support clinical care to a degree never seen before. Such systems are often referred to as 'data-driven,' but a better term is 'optimal data systems' (ODS). Here we discuss basic features of an ODS and its benefits, including the potential to transform clinical prediction and decision support.

  5. An Internationally Consented Standard for Nursing Process-Clinical Decision Support Systems in Electronic Health Records.

    PubMed

    Müller-Staub, Maria; de Graaf-Waar, Helen; Paans, Wolter

    2016-11-01

    Nurses are accountable to apply the nursing process, which is key for patient care: It is a problem-solving process providing the structure for care plans and documentation. The state-of-the art nursing process is based on classifications that contain standardized concepts, and therefore, it is named Advanced Nursing Process. It contains valid assessments, nursing diagnoses, interventions, and nursing-sensitive patient outcomes. Electronic decision support systems can assist nurses to apply the Advanced Nursing Process. However, nursing decision support systems are missing, and no "gold standard" is available. The study aim is to develop a valid Nursing Process-Clinical Decision Support System Standard to guide future developments of clinical decision support systems. In a multistep approach, a Nursing Process-Clinical Decision Support System Standard with 28 criteria was developed. After pilot testing (N = 29 nurses), the criteria were reduced to 25. The Nursing Process-Clinical Decision Support System Standard was then presented to eight internationally known experts, who performed qualitative interviews according to Mayring. Fourteen categories demonstrate expert consensus on the Nursing Process-Clinical Decision Support System Standard and its content validity. All experts agreed the Advanced Nursing Process should be the centerpiece for the Nursing Process-Clinical Decision Support System and should suggest research-based, predefined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions, and patient outcomes.

  6. A medical informatics perspective on clinical decision support systems. Findings from the yearbook 2013 section on decision support.

    PubMed

    Bouaud, J; Lamy, J-B

    2013-01-01

    To summarize excellent research and to select best papers published in 2012 in the field of computer-based decision support in healthcare. A bibliographic search focused on clinical decision support systems (CDSSs) and computer provider order entry was performed, followed by a double-blind literature review. The review process yielded six papers, illustrating various aspects of clinical decision support. The first paper is a systematic review of CDSS intervention trials in real settings, and considers different types of possible outcomes. It emphasizes the heterogeneity of studies and confirms that CDSSs can improve process measures but that evidence lacks for other types of outcomes, especially clinical or economic. Four other papers tackle the safety of drug prescribing and show that CDSSs can be efficient in reducing prescription errors. The sixth paper exemplifies the growing role of ontological resources which can be used for several applications including decision support. CDSS research has to be continuously developed and assessed. The wide variety of systems and of interventions limits the understanding of factors of success of CDSS implementations. A standardization in the characterization of CDSSs and of intervention trial reporting will help to overcome this obstacle.

  7. A computerized clinical decision support system as a means of implementing depression guidelines.

    PubMed

    Trivedi, Madhukar H; Kern, Janet K; Grannemann, Bruce D; Altshuler, Kenneth Z; Sunderajan, Prabha

    2004-08-01

    The authors describe the history and current use of computerized systems for implementing treatment guidelines in general medicine as well as the development, testing, and early use of a computerized decision support system for depression treatment among "real-world" clinical settings in Texas. In 1999 health care experts from Europe and the United States met to confront the well-documented challenges of implementing treatment guidelines and to identify strategies for improvement. They suggested the integration of guidelines into computer systems that is incorporated into clinical workflow. Several studies have demonstrated improvements in physicians' adherence to guidelines when such guidelines are provided in a computerized format. Although computerized decision support systems are being used in many areas of medicine and have demonstrated improved patient outcomes, their use in psychiatric illness is limited. The authors designed and developed a computerized decision support system for the treatment of major depressive disorder by using evidence-based guidelines, transferring the knowledge gained from the Texas Medication Algorithm Project (TMAP). This computerized decision support system (CompTMAP) provides support in diagnosis, treatment, follow-up, and preventive care and can be incorporated into the clinical setting. CompTMAP has gone through extensive testing to ensure accuracy and reliability. Physician surveys have indicated a positive response to CompTMAP, although the sample was insufficient for statistical testing. CompTMAP is part of a new era of comprehensive computerized decision support systems that take advantage of advances in automation and provide more complete clinical support to physicians in clinical practice.

  8. Clinical Decision Support Systems (CDSS) for preventive management of COPD patients.

    PubMed

    Velickovski, Filip; Ceccaroni, Luigi; Roca, Josep; Burgos, Felip; Galdiz, Juan B; Marina, Nuria; Lluch-Ariet, Magí

    2014-11-28

    The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems.

  9. Knowledge bases, clinical decision support systems, and rapid learning in oncology.

    PubMed

    Yu, Peter Paul

    2015-03-01

    One of the most important benefits of health information technology is to assist the cognitive process of the human mind in the face of vast amounts of health data, limited time for decision making, and the complexity of the patient with cancer. Clinical decision support tools are frequently cited as a technologic solution to this problem, but to date useful clinical decision support systems (CDSS) have been limited in utility and implementation. This article describes three unique sources of health data that underlie fundamentally different types of knowledge bases which feed into CDSS. CDSS themselves comprise a variety of models which are discussed. The relationship of knowledge bases and CDSS to rapid learning health systems design is critical as CDSS are essential drivers of rapid learning in clinical care. Copyright © 2015 by American Society of Clinical Oncology.

  10. Mobile clinical decision support systems and applications: a literature and commercial review.

    PubMed

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; López-Coronado, Miguel; Sainz-de-Abajo, Beatriz; Robles, Montserrat; García-Gómez, Juan Miguel

    2014-01-01

    The latest advances in eHealth and mHealth have propitiated the rapidly creation and expansion of mobile applications for health care. One of these types of applications are the clinical decision support systems, which nowadays are being implemented in mobile apps to facilitate the access to health care professionals in their daily clinical decisions. The aim of this paper is twofold. Firstly, to make a review of the current systems available in the literature and in commercial stores. Secondly, to analyze a sample of applications in order to obtain some conclusions and recommendations. Two reviews have been done: a literature review on Scopus, IEEE Xplore, Web of Knowledge and PubMed and a commercial review on Google play and the App Store. Five applications from each review have been selected to develop an in-depth analysis and to obtain more information about the mobile clinical decision support systems. Ninety-two relevant papers and 192 commercial apps were found. Forty-four papers were focused only on mobile clinical decision support systems. One hundred seventy-one apps were available on Google play and 21 on the App Store. The apps are designed for general medicine and 37 different specialties, with some features common in all of them despite of the different medical fields objective. The number of mobile clinical decision support applications and their inclusion in clinical practices has risen in the last years. However, developers must be careful with their interface or the easiness of use, which can impoverish the experience of the users.

  11. Clinical Decision Support Systems (CDSS) for preventive management of COPD patients

    PubMed Central

    2014-01-01

    Background The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. Objectives The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. Methods The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. Results A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Conclusions Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health

  12. Privacy-preserving clinical decision support system using Gaussian kernel-based classification.

    PubMed

    Rahulamathavan, Yogachandran; Veluru, Suresh; Phan, Raphael C-W; Chambers, Jonathon A; Rajarajan, Muttukrishnan

    2014-01-01

    A clinical decision support system forms a critical capability to link health observations with health knowledge to influence choices by clinicians for improved healthcare. Recent trends toward remote outsourcing can be exploited to provide efficient and accurate clinical decision support in healthcare. In this scenario, clinicians can use the health knowledge located in remote servers via the Internet to diagnose their patients. However, the fact that these servers are third party and therefore potentially not fully trusted raises possible privacy concerns. In this paper, we propose a novel privacy-preserving protocol for a clinical decision support system where the patients' data always remain in an encrypted form during the diagnosis process. Hence, the server involved in the diagnosis process is not able to learn any extra knowledge about the patient's data and results. Our experimental results on popular medical datasets from UCI-database demonstrate that the accuracy of the proposed protocol is up to 97.21% and the privacy of patient data is not compromised.

  13. Improving performance with clinical decision support.

    PubMed

    Brailer, D J; Goldfarb, S; Horgan, M; Katz, F; Paulus, R A; Zakrewski, K

    1996-07-01

    CADU/CIS (Clinical and Administrative Decision-support Utility and Clinical Information System) is a clinical decision-support workstation that allows large volumes of clinical information systems data to be analyzed in a timely and user-friendly fashion. CARE PROCESS MEASUREMENT: For any given disease, subgroups of patients are identified, and automated, customized "clinical pathways" are generated. For each subgroup, the best practice norms for use of test and therapies are identified. Practice style variations are then compared to outcomes to focus inquiry on decisions that significantly affect outcomes. INTESTINAL OBSTRUCTION: Graduate Health Systems, a multisite integrated provider in the Philadelphia area, has used CADU/CIS to improve quality problems, reduce treatment-intensity variations, and improve clinical participation in care process evaluation and decision making. A task force selected intestinal obstruction without hernia as its first study because of the related high-volume and high-morbidity complications. Use of a ten-step method for clinical performance improvement showed that the intravenous administration of unnecessary fluids to 104 patients with intestinal obstruction induced congestive heart failure (CHF) in 5 patients. Task force members and other practicing physicians are now developing guidelines and other interventions aimed at fluid use. Indeed, the task force used CADU/CIS to identify an additional 250 patients in one year whose conditions were complicated by CHF. A clinical decision support tool can be instrumental in detecting problems with important clinical and economic implications, identifying their important underlying causes, tracking the associated tests and therapies, and monitoring interventions.

  14. Medication-related clinical decision support in computerized provider order entry systems: a review.

    PubMed

    Kuperman, Gilad J; Bobb, Anne; Payne, Thomas H; Avery, Anthony J; Gandhi, Tejal K; Burns, Gerard; Classen, David C; Bates, David W

    2007-01-01

    While medications can improve patients' health, the process of prescribing them is complex and error prone, and medication errors cause many preventable injuries. Computer provider order entry (CPOE) with clinical decision support (CDS), can improve patient safety and lower medication-related costs. To realize the medication-related benefits of CDS within CPOE, one must overcome significant challenges. Healthcare organizations implementing CPOE must understand what classes of CDS their CPOE systems can support, assure that clinical knowledge underlying their CDS systems is reasonable, and appropriately represent electronic patient data. These issues often influence to what extent an institution will succeed with its CPOE implementation and achieve its desired goals. Medication-related decision support is probably best introduced into healthcare organizations in two stages, basic and advanced. Basic decision support includes drug-allergy checking, basic dosing guidance, formulary decision support, duplicate therapy checking, and drug-drug interaction checking. Advanced decision support includes dosing support for renal insufficiency and geriatric patients, guidance for medication-related laboratory testing, drug-pregnancy checking, and drug-disease contraindication checking. In this paper, the authors outline some of the challenges associated with both basic and advanced decision support and discuss how those challenges might be addressed. The authors conclude with summary recommendations for delivering effective medication-related clinical decision support addressed to healthcare organizations, application and knowledge base vendors, policy makers, and researchers.

  15. Design Recommendations for Pharmacogenomics Clinical Decision Support Systems

    PubMed Central

    Khelifi, Maher; Tarczy-Hornoch, Peter; Devine, Emily B.; Pratt, Wanda

    2017-01-01

    The use of pharmacogenomics (PGx) in clinical practice still faces challenges to fully adopt genetic information in targeting drug therapy. To incorporate genetics into clinical practice, many support the use of Pharmacogenomics Clinical Decision Support Systems (PGx-CDS) for medication prescriptions. This support was fueled by new guidelines to incorporate genetics for optimizing drug dosage and reducing adverse events. In addition, the complexity of PGx led to exploring CDS outside the paradigm of the basic CDS tools embedded in commercial electronic health records. Therefore, designing the right CDS is key to unleashing the full potential of pharmacogenomics and making it a part of clinicians’ daily workflow. In this work, we 1) identify challenges and barriers of the implementation of PGx-CDS in clinical settings, 2) develop a new design approach to CDS with functional characteristics that can improve the adoption of pharmacogenomics guidelines and thus patient safety, and 3) create design guidelines and recommendations for such PGx-CDS tools. PMID:28815136

  16. Privacy-Preserving Patient-Centric Clinical Decision Support System on Naïve Bayesian Classification.

    PubMed

    Liu, Ximeng; Lu, Rongxing; Ma, Jianfeng; Chen, Le; Qin, Baodong

    2016-03-01

    Clinical decision support system, which uses advanced data mining techniques to help clinician make proper decisions, has received considerable attention recently. The advantages of clinical decision support system include not only improving diagnosis accuracy but also reducing diagnosis time. Specifically, with large amounts of clinical data generated everyday, naïve Bayesian classification can be utilized to excavate valuable information to improve a clinical decision support system. Although the clinical decision support system is quite promising, the flourish of the system still faces many challenges including information security and privacy concerns. In this paper, we propose a new privacy-preserving patient-centric clinical decision support system, which helps clinician complementary to diagnose the risk of patients' disease in a privacy-preserving way. In the proposed system, the past patients' historical data are stored in cloud and can be used to train the naïve Bayesian classifier without leaking any individual patient medical data, and then the trained classifier can be applied to compute the disease risk for new coming patients and also allow these patients to retrieve the top- k disease names according to their own preferences. Specifically, to protect the privacy of past patients' historical data, a new cryptographic tool called additive homomorphic proxy aggregation scheme is designed. Moreover, to leverage the leakage of naïve Bayesian classifier, we introduce a privacy-preserving top- k disease names retrieval protocol in our system. Detailed privacy analysis ensures that patient's information is private and will not be leaked out during the disease diagnosis phase. In addition, performance evaluation via extensive simulations also demonstrates that our system can efficiently calculate patient's disease risk with high accuracy in a privacy-preserving way.

  17. Decision support for clinical laboratory capacity planning.

    PubMed

    van Merode, G G; Hasman, A; Derks, J; Goldschmidt, H M; Schoenmaker, B; Oosten, M

    1995-01-01

    The design of a decision support system for capacity planning in clinical laboratories is discussed. The DSS supports decisions concerning the following questions: how should the laboratory be divided into job shops (departments/sections), how should staff be assigned to workstations and how should samples be assigned to workstations for testing. The decision support system contains modules for supporting decisions at the overall laboratory level (concerning the division of the laboratory into job shops) and for supporting decisions at the job shop level (assignment of staff to workstations and sample scheduling). Experiments with these modules are described showing both the functionality and the validity.

  18. Evaluation of Internet-Based Clinical Decision Support Systems

    PubMed Central

    Thomas, Karl W; Dayton, Charles S

    1999-01-01

    Background Scientifically based clinical guidelines have become increasingly used to educate physicians and improve quality of care. While individual guidelines are potentially useful, repeated studies have shown that guidelines are ineffective in changing physician behavior. The Internet has evolved as a potentially useful tool for guideline education, dissemination, and implementation because of its open standards and its ability to provide concise, relevant clinical information at the location and time of need. Objective Our objective was to develop and test decision support systems (DSS) based on clinical guidelines which could be delivered over the Internet for two disease models: asthma and tuberculosis (TB) preventive therapy. Methods Using open standards of HTML and CGI, we developed an acute asthma severity assessment DSS and a preventative tuberculosis treatment DSS based on content from national guidelines that are recognized as standards of care. Both DSS's are published on the Internet and operate through a decision algorithm developed from the parent guidelines with clinical information provided by the user at the point of clinical care. We tested the effectiveness of each DSS in influencing physician decisions using clinical scenario testing. Results We first validated the asthma algorithm by comparing asthma experts' decisions with the decisions reached by nonpulmonary nurses using the computerized DSS. Using the DSS, nurses scored the same as experts (89% vs. 88%; p = NS). Using the same scenario test instrument, we next compared internal medicine residents using the DSS with residents using a printed version of the National Asthma Education Program-2 guidelines. Residents using the computerized DSS scored significantly better than residents using the paper-based guidelines (92% vs. 84%; p <0.002). We similarly compared residents using the computerized TB DSS to residents using a printed reference card; the residents using the computerized DSS

  19. Using Best Practices to Extract, Organize, and Reuse Embedded Decision Support Content Knowledge Rules from Mature Clinical Systems.

    PubMed

    DesAutels, Spencer J; Fox, Zachary E; Giuse, Dario A; Williams, Annette M; Kou, Qing-Hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia

    2016-01-01

    Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems.

  20. Using Best Practices to Extract, Organize, and Reuse Embedded Decision Support Content Knowledge Rules from Mature Clinical Systems

    PubMed Central

    DesAutels, Spencer J.; Fox, Zachary E.; Giuse, Dario A.; Williams, Annette M.; Kou, Qing-hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia

    2016-01-01

    Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems. PMID:28269846

  1. Clinical decision support systems: data quality management and governance.

    PubMed

    Liaw, Siaw-Teng

    2013-01-01

    This chapter examines data quality management (DQM) and information governance (IG) of electronic decision support (EDS) systems so that they are safe and fit for use by clinicians and patients and their carers. This is consistent with the ISO definition of data quality as being fit for purpose. The scope of DQM & IG should range from data creation and collection in clinical settings, through cleaning and, where obtained from multiple sources, linkage, storage, use by the EDS logic engine and algorithms, knowledge base and guidance provided, to curation and presentation. It must also include protocols and mechanisms to monitor the safety of EDS, which will feedback into DQM & IG activities. Ultimately, DQM & IG must be integrated across the data cycle to ensure that the EDS systems provide guidance that leads to safe and effective clinical decisions and care.

  2. A decision-supported outpatient practice system.

    PubMed Central

    Barrows, R. C.; Allen, B. A.; Smith, K. C.; Arni, V. V.; Sherman, E.

    1996-01-01

    We describe a Decision-supported Outpatient Practice (DOP) system developed and now in use at the Columbia-Presbyterian Medical Center. DOP is an automated ambulatory medical record system that integrates in-patient and ambulatory care data, and incorporates active and passive decision support mechanisms with a view towards improving the quality of primary care. Active decision support occurs in the form of event-driven reminders created within a remote clinical information system with its central data repository and decision support system (DSS). Novel features of DOP include patient specific health maintenance task lists calculated by the remote DSS. uses of a semantically structured controlled medical vocabulary to support clinical results review and provider data entry, and exploitation of an underlying ambulatory data model that provides for an explicit record of evolution of insight regarding patient management. Benefits, challenges, and plans are discussed. PMID:8947774

  3. Intraoperative Clinical Decision Support for Anesthesia: A Narrative Review of Available Systems.

    PubMed

    Nair, Bala G; Gabel, Eilon; Hofer, Ira; Schwid, Howard A; Cannesson, Maxime

    2017-02-01

    With increasing adoption of anesthesia information management systems (AIMS), there is growing interest in utilizing AIMS data for intraoperative clinical decision support (CDS). CDS for anesthesia has the potential for improving quality of care, patient safety, billing, and compliance. Intraoperative CDS can range from passive and post hoc systems to active real-time systems that can detect ongoing clinical issues and deviations from best practice care. Real-time CDS holds the most promise because real-time alerts and guidance can drive provider behavior toward evidence-based standardized care during the ongoing case. In this review, we describe the different types of intraoperative CDS systems with specific emphasis on real-time systems. The technical considerations in developing and implementing real-time CDS are systematically covered. This includes the functional modules of a CDS system, development and execution of decision rules, and modalities to alert anesthesia providers concerning clinical issues. We also describe the regulatory aspects that affect development, implementation, and use of intraoperative CDS. Methods and measures to assess the effectiveness of intraoperative CDS are discussed. Last, we outline areas of future development of intraoperative CDS, particularly the possibility of providing predictive and prescriptive decision support.

  4. Personalizing Drug Selection Using Advanced Clinical Decision Support

    PubMed Central

    Pestian, John; Spencer, Malik; Matykiewicz, Pawel; Zhang, Kejian; Vinks, Alexander A.; Glauser, Tracy

    2009-01-01

    This article describes the process of developing an advanced pharmacogenetics clinical decision support at one of the United States’ leading pediatric academic medical centers. This system, called CHRISTINE, combines clinical and genetic data to identify the optimal drug therapy when treating patients with epilepsy or Attention Deficit Hyperactivity Disorder. In the discussion a description of clinical decision support systems is provided, along with an overview of neurocognitive computing and how it is applied in this setting. PMID:19898682

  5. Clinical decision support systems for addressing information needs of physicians.

    PubMed

    Denekamp, Yaron

    2007-11-01

    Clinicians routinely practice in a state of incomplete information--about the patient, and about medical knowledge pertaining to patients' care. Consequently, there is now growing interest in the use of CDSS to bring decision support to the point of care. CDSS can impact physician behavior in routine practice. Nonetheless, CDSSs are meant to support humans who are ultimately responsible for the clinical decisions, rather than replace them. Although the adoption of CDSS has proceeded at a slow pace, there is a widespread recognition that CDSSs are expected to play a crucial role in reducing medical errors and improving the quality and efficacy of health care. This will be facilitated by the gradual maturation of electronic health record systems and the emergence of standard terminologies and messaging standards for the exchange of clinical data.

  6. Advancing beyond the system: telemedicine nurses' clinical reasoning using a computerised decision support system for patients with COPD - an ethnographic study.

    PubMed

    Barken, Tina Lien; Thygesen, Elin; Söderhamn, Ulrika

    2017-12-28

    Telemedicine is changing traditional nursing care, and entails nurses performing advanced and complex care within a new clinical environment, and monitoring patients at a distance. Telemedicine practice requires complex disease management, advocating that the nurses' reasoning and decision-making processes are supported. Computerised decision support systems are being used increasingly to assist reasoning and decision-making in different situations. However, little research has focused on the clinical reasoning of nurses using a computerised decision support system in a telemedicine setting. Therefore, the objective of the study is to explore the process of telemedicine nurses' clinical reasoning when using a computerised decision support system for the management of patients with chronic obstructive pulmonary disease. The factors influencing the reasoning and decision-making processes were investigated. In this ethnographic study, a combination of data collection methods, including participatory observations, the think-aloud technique, and a focus group interview was employed. Collected data were analysed using qualitative content analysis. When telemedicine nurses used a computerised decision support system for the management of patients with complex, unstable chronic obstructive pulmonary disease, two categories emerged: "the process of telemedicine nurses' reasoning to assess health change" and "the influence of the telemedicine setting on nurses' reasoning and decision-making processes". An overall theme, termed "advancing beyond the system", represented the connection between the reasoning processes and the telemedicine work and setting, where being familiar with the patient functioned as a foundation for the nurses' clinical reasoning process. In the telemedicine setting, when supported by a computerised decision support system, nurses' reasoning was enabled by the continuous flow of digital clinical data, regular video-mediated contact and shared decision

  7. Grand Challenges in Clinical Decision Support v10

    PubMed Central

    Sittig, Dean F.; Wright, Adam; Osheroff, Jerome A.; Middleton, Blackford; Teich, Jonathan M.; Ash, Joan S.; Campbell, Emily; Bates, David W.

    2008-01-01

    There is a pressing need for high-quality, effective means of designing, developing, presenting, implementing, evaluating, and maintaining all types of clinical decision support capabilities for clinicians, patients and consumers. Using an iterative, consensus-building process we identified a rank-ordered list of the top 10 grand challenges in clinical decision support. This list was created to educate and inspire researchers, developers, funders, and policy-makers. The list of challenges in order of importance that they be solved if patients and organizations are to begin realizing the fullest benefits possible of these systems consists of: Improve the human-computer interface; Disseminate best practices in CDS design, development, and implementation; Summarize patient-level information; Prioritize and filter recommendations to the user; Create an architecture for sharing executable CDS modules and services; Combine recommendations for patients with co-morbidities; Prioritize CDS content development and implementation; Create internet-accessible clinical decision support repositories; Use freetext information to drive clinical decision support; Mine large clinical databases to create new CDS. Identification of solutions to these challenges is critical if clinical decision support is to achieve its potential and improve the quality, safety and efficiency of healthcare. PMID:18029232

  8. Gathering Real World Evidence with Cluster Analysis for Clinical Decision Support.

    PubMed

    Xia, Eryu; Liu, Haifeng; Li, Jing; Mei, Jing; Li, Xuejun; Xu, Enliang; Li, Xiang; Hu, Gang; Xie, Guotong; Xu, Meilin

    2017-01-01

    Clinical decision support systems are information technology systems that assist clinical decision-making tasks, which have been shown to enhance clinical performance. Cluster analysis, which groups similar patients together, aims to separate patient cases into phenotypically heterogenous groups and defining therapeutically homogeneous patient subclasses. Useful as it is, the application of cluster analysis in clinical decision support systems is less reported. Here, we describe the usage of cluster analysis in clinical decision support systems, by first dividing patient cases into similar groups and then providing diagnosis or treatment suggestions based on the group profiles. This integration provides data for clinical decisions and compiles a wide range of clinical practices to inform the performance of individual clinicians. We also include an example usage of the system under the scenario of blood lipid management in type 2 diabetes. These efforts represent a step toward promoting patient-centered care and enabling precision medicine.

  9. Exploration Clinical Decision Support System: Medical Data Architecture

    NASA Technical Reports Server (NTRS)

    Lindsey, Tony; Shetye, Sandeep; Shaw, Tianna (Editor)

    2016-01-01

    The Exploration Clinical Decision Support (ECDS) System project is intended to enhance the Exploration Medical Capability (ExMC) Element for extended duration, deep-space mission planning in HRP. A major development guideline is the Risk of "Adverse Health Outcomes & Decrements in Performance due to Limitations of In-flight Medical Conditions". ECDS attempts to mitigate that Risk by providing crew-specific health information, actionable insight, crew guidance and advice based on computational algorithmic analysis. The availability of inflight health diagnostic computational methods has been identified as an essential capability for human exploration missions. Inflight electronic health data sources are often heterogeneous, and thus may be isolated or not examined as an aggregate whole. The ECDS System objective provides both a data architecture that collects and manages disparate health data, and an active knowledge system that analyzes health evidence to deliver case-specific advice. A single, cohesive space-ready decision support capability that considers all exploration clinical measurements is not commercially available at present. Hence, this Task is a newly coordinated development effort by which ECDS and its supporting data infrastructure will demonstrate the feasibility of intelligent data mining and predictive modeling as a biomedical diagnostic support mechanism on manned exploration missions. The initial step towards ground and flight demonstrations has been the research and development of both image and clinical text-based computer-aided patient diagnosis. Human anatomical images displaying abnormal/pathological features have been annotated using controlled terminology templates, marked-up, and then stored in compliance with the AIM standard. These images have been filtered and disease characterized based on machine learning of semantic and quantitative feature vectors. The next phase will evaluate disease treatment response via quantitative linear

  10. Computerized Clinical Decision Support: Contributions from 2015

    PubMed Central

    Bouaud, J.

    2016-01-01

    Summary Objective To summarize recent research and select the best papers published in 2015 in the field of computerized clinical decision support for the Decision Support section of the IMIA yearbook. Method A literature review was performed by searching two bibliographic databases for papers related to clinical decision support systems (CDSSs) and computerized provider order entry (CPOE) systems. The aim was to identify a list of candidate best papers from the retrieved papers that were then peer-reviewed by external reviewers. A consensus meeting between the two section editors and the IMIA editorial team was finally conducted to conclude in the best paper selection. Results Among the 974 retrieved papers, the entire review process resulted in the selection of four best papers. One paper reports on a CDSS routinely applied in pediatrics for more than 10 years, relying on adaptations of the Arden Syntax. Another paper assessed the acceptability and feasibility of an important CPOE evaluation tool in hospitals outside the US where it was developed. The third paper is a systematic, qualitative review, concerning usability flaws of medication-related alerting functions, providing an important evidence-based, methodological contribution in the domain of CDSS design and development in general. Lastly, the fourth paper describes a study quantifying the effect of a complex, continuous-care, guideline-based CDSS on the correctness and completeness of clinicians’ decisions. Conclusions While there are notable examples of routinely used decision support systems, this 2015 review on CDSSs and CPOE systems still shows that, despite methodological contributions, theoretical frameworks, and prototype developments, these technologies are not yet widely spread (at least with their full functionalities) in routine clinical practice. Further research, testing, evaluation, and training are still needed for these tools to be adopted in clinical practice and, ultimately, illustrate

  11. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    PubMed Central

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of

  12. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    PubMed

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology

  13. Decision support systems for clinical radiological practice — towards the next generation

    PubMed Central

    Stivaros, S M; Gledson, A; Nenadic, G; Zeng, X-J; Keane, J; Jackson, A

    2010-01-01

    The huge amount of information that needs to be assimilated in order to keep pace with the continued advances in modern medical practice can form an insurmountable obstacle to the individual clinician. Within radiology, the recent development of quantitative imaging techniques, such as perfusion imaging, and the development of imaging-based biomarkers in modern therapeutic assessment has highlighted the need for computer systems to provide the radiological community with support for academic as well as clinical/translational applications. This article provides an overview of the underlying design and functionality of radiological decision support systems with examples tracing the development and evolution of such systems over the past 40 years. More importantly, we discuss the specific design, performance and usage characteristics that previous systems have highlighted as being necessary for clinical uptake and routine use. Additionally, we have identified particular failings in our current methodologies for data dissemination within the medical domain that must be overcome if the next generation of decision support systems is to be implemented successfully. PMID:20965900

  14. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  15. SFINX-a drug-drug interaction database designed for clinical decision support systems.

    PubMed

    Böttiger, Ylva; Laine, Kari; Andersson, Marine L; Korhonen, Tuomas; Molin, Björn; Ovesjö, Marie-Louise; Tirkkonen, Tuire; Rane, Anders; Gustafsson, Lars L; Eiermann, Birgit

    2009-06-01

    The aim was to develop a drug-drug interaction database (SFINX) to be integrated into decision support systems or to be used in website solutions for clinical evaluation of interactions. Key elements such as substance properties and names, drug formulations, text structures and references were defined before development of the database. Standard operating procedures for literature searches, text writing rules and a classification system for clinical relevance and documentation level were determined. ATC codes, CAS numbers and country-specific codes for substances were identified and quality assured to ensure safe integration of SFINX into other data systems. Much effort was put into giving short and practical advice regarding clinically relevant drug-drug interactions. SFINX includes over 8,000 interaction pairs and is integrated into Swedish and Finnish computerised decision support systems. Over 31,000 physicians and pharmacists are receiving interaction alerts through SFINX. User feedback is collected for continuous improvement of the content. SFINX is a potentially valuable tool delivering instant information on drug interactions during prescribing and dispensing.

  16. Clinical decision support systems in child and adolescent psychiatry: a systematic review.

    PubMed

    Koposov, Roman; Fossum, Sturla; Frodl, Thomas; Nytrø, Øystein; Leventhal, Bennett; Sourander, Andre; Quaglini, Silvana; Molteni, Massimo; de la Iglesia Vayá, María; Prokosch, Hans-Ulrich; Barbarini, Nicola; Milham, Michael Peter; Castellanos, Francisco Xavier; Skokauskas, Norbert

    2017-11-01

    Psychiatric disorders are amongst the most prevalent and impairing conditions in childhood and adolescence. Unfortunately, it is well known that general practitioners (GPs) and other frontline health providers (i.e., child protection workers, public health nurses, and pediatricians) are not adequately trained to address these ubiquitous problems (Braddick et al. Child and Adolescent mental health in Europe: infrastructures, policy and programmes, European Communities, 2009; Levav et al. Eur Child Adolesc Psychiatry 13:395-401, 2004). Advances in technology may offer a solution to this problem with clinical decision support systems (CDSS) that are designed to help professionals make sound clinical decisions in real time. This paper offers a systematic review of currently available CDSS for child and adolescent mental health disorders prepared according to the PRISMA-Protocols (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols). Applying strict eligibility criteria, the identified studies (n = 5048) were screened. Ten studies, describing eight original clinical decision support systems for child and adolescent psychiatric disorders, fulfilled inclusion criteria. Based on this systematic review, there appears to be a need for a new, readily available CDSS for child neuropsychiatric disorder which promotes evidence-based, best practices, while enabling consideration of national variation in practices by leveraging data-reuse to generate predictions regarding treatment outcome, addressing a broader cluster of clinical disorders, and targeting frontline practice environments.

  17. Integrating complex business processes for knowledge-driven clinical decision support systems.

    PubMed

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.

  18. System for selecting relevant information for decision support.

    PubMed

    Kalina, Jan; Seidl, Libor; Zvára, Karel; Grünfeldová, Hana; Slovák, Dalibor; Zvárová, Jana

    2013-01-01

    We implemented a prototype of a decision support system called SIR which has a form of a web-based classification service for diagnostic decision support. The system has the ability to select the most relevant variables and to learn a classification rule, which is guaranteed to be suitable also for high-dimensional measurements. The classification system can be useful for clinicians in primary care to support their decision-making tasks with relevant information extracted from any available clinical study. The implemented prototype was tested on a sample of patients in a cardiological study and performs an information extraction from a high-dimensional set containing both clinical and gene expression data.

  19. Decision support systems for robotic surgery and acute care

    NASA Astrophysics Data System (ADS)

    Kazanzides, Peter

    2012-06-01

    Doctors must frequently make decisions during medical treatment, whether in an acute care facility, such as an Intensive Care Unit (ICU), or in an operating room. These decisions rely on a various information sources, such as the patient's medical history, preoperative images, and general medical knowledge. Decision support systems can assist by facilitating access to this information when and where it is needed. This paper presents some research eorts that address the integration of information with clinical practice. The example systems include a clinical decision support system (CDSS) for pediatric traumatic brain injury, an augmented reality head- mounted display for neurosurgery, and an augmented reality telerobotic system for minimally-invasive surgery. While these are dierent systems and applications, they share the common theme of providing information to support clinical decisions and actions, whether the actions are performed with the surgeon's own hands or with robotic assistance.

  20. Creating and sharing clinical decision support content with Web 2.0: Issues and examples.

    PubMed

    Wright, Adam; Bates, David W; Middleton, Blackford; Hongsermeier, Tonya; Kashyap, Vipul; Thomas, Sean M; Sittig, Dean F

    2009-04-01

    Clinical decision support is a powerful tool for improving healthcare quality and patient safety. However, developing a comprehensive package of decision support interventions is costly and difficult. If used well, Web 2.0 methods may make it easier and less costly to develop decision support. Web 2.0 is characterized by online communities, open sharing, interactivity and collaboration. Although most previous attempts at sharing clinical decision support content have worked outside of the Web 2.0 framework, several initiatives are beginning to use Web 2.0 to share and collaborate on decision support content. We present case studies of three efforts: the Clinfowiki, a world-accessible wiki for developing decision support content; Partners Healthcare eRooms, web-based tools for developing decision support within a single organization; and Epic Systems Corporation's Community Library, a repository for sharing decision support content for customers of a single clinical system vendor. We evaluate the potential of Web 2.0 technologies to enable collaborative development and sharing of clinical decision support systems through the lens of three case studies; analyzing technical, legal and organizational issues for developers, consumers and organizers of clinical decision support content in Web 2.0. We believe the case for Web 2.0 as a tool for collaborating on clinical decision support content appears strong, particularly for collaborative content development within an organization.

  1. Modelling and Decision Support of Clinical Pathways

    NASA Astrophysics Data System (ADS)

    Gabriel, Roland; Lux, Thomas

    The German health care market is under a rapid rate of change, forcing especially hospitals to provide high-quality services at low costs. Appropriate measures for more effective and efficient service provision are process orientation and decision support by information technology of clinical pathway of a patient. The essential requirements are adequate modelling of clinical pathways as well as usage of adequate systems, which are capable of assisting the complete path of a patient within a hospital, and preferably also outside of it, in a digital way. To fulfil these specifications the authors present a suitable concept, which meets the challenges of well-structured clinical pathways as well as rather poorly structured diagnostic and therapeutic decisions, by interplay of process-oriented and knowledge-based hospital information systems.

  2. Factors Predicting Oncology Care Providers' Behavioral Intention to Adopt Clinical Decision Support Systems

    ERIC Educational Resources Information Center

    Wolfenden, Andrew

    2012-01-01

    The purpose of this quantitative correlation study was to examine the predictors of user behavioral intention on the decision of oncology care providers to adopt or reject the clinical decision support system. The Unified Theory of Acceptance and Use of Technology (UTAUT) formed the foundation of the research model and survey instrument. The…

  3. A secure communication using cascade chaotic computing systems on clinical decision support.

    PubMed

    Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat

    2016-06-01

    Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.

  4. Unintended adverse consequences of a clinical decision support system: two cases.

    PubMed

    Stone, Erin G

    2018-05-01

    Many institutions have implemented clinical decision support systems (CDSSs). While CDSS research papers have focused on benefits of these systems, there is a smaller body of literature showing that CDSSs may also produce unintended adverse consequences (UACs). Detailed here are 2 cases of UACs resulting from a CDSS. Both of these cases were related to external systems that fed data into the CDSS. In the first case, lack of knowledge of data categorization in an external pharmacy system produced a UAC; in the second case, the change of a clinical laboratory instrument produced the UAC. CDSSs rely on data from many external systems. These systems are dynamic and may have changes in hardware, software, vendors, or processes. Such changes can affect the accuracy of CDSSs. These cases point to the need for the CDSS team to be familiar with these external systems. This team (manager and alert builders) should include members in specific clinical specialties with deep knowledge of these external systems.

  5. A two-stage clinical decision support system for early recognition and stratification of patients with sepsis: an observational cohort study.

    PubMed

    Amland, Robert C; Lyons, Jason J; Greene, Tracy L; Haley, James M

    2015-10-01

    To examine the diagnostic accuracy of a two-stage clinical decision support system for early recognition and stratification of patients with sepsis. Observational cohort study employing a two-stage sepsis clinical decision support to recognise and stratify patients with sepsis. The stage one component was comprised of a cloud-based clinical decision support with 24/7 surveillance to detect patients at risk of sepsis. The cloud-based clinical decision support delivered notifications to the patients' designated nurse, who then electronically contacted a provider. The second stage component comprised a sepsis screening and stratification form integrated into the patient electronic health record, essentially an evidence-based decision aid, used by providers to assess patients at bedside. Urban, 284 acute bed community hospital in the USA; 16,000 hospitalisations annually. Data on 2620 adult patients were collected retrospectively in 2014 after the clinical decision support was implemented. 'Suspected infection' was the established gold standard to assess clinical decision support clinimetric performance. A sepsis alert activated on 417 (16%) of 2620 adult patients hospitalised. Applying 'suspected infection' as standard, the patient population characteristics showed 72% sensitivity and 73% positive predictive value. A postalert screening conducted by providers at bedside of 417 patients achieved 81% sensitivity and 94% positive predictive value. Providers documented against 89% patients with an alert activated by clinical decision support and completed 75% of bedside screening and stratification of patients with sepsis within one hour from notification. A clinical decision support binary alarm system with cross-checking functionality improves early recognition and facilitates stratification of patients with sepsis.

  6. Development, deployment and usability of a point-of-care decision support system for chronic disease management using the recently-approved HL7 decision support service standard.

    PubMed

    Lobach, David F; Kawamoto, Kensaku; Anstrom, Kevin J; Russell, Michael L; Woods, Peter; Smith, Dwight

    2007-01-01

    Clinical decision support is recognized as one potential remedy for the growing crisis in healthcare quality in the United States and other industrialized nations. While decision support systems have been shown to improve care quality and reduce errors, these systems are not widely available. This lack of availability arises in part because most decision support systems are not portable or scalable. The Health Level 7 international standard development organization recently adopted a draft standard known as the Decision Support Service standard to facilitate the implementation of clinical decision support systems using software services. In this paper, we report the first implementation of a clinical decision support system using this new standard. This system provides point-of-care chronic disease management for diabetes and other conditions and is deployed throughout a large regional health system. We also report process measures and usability data concerning the system. Use of the Decision Support Service standard provides a portable and scalable approach to clinical decision support that could facilitate the more extensive use of decision support systems.

  7. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: methods of a decision-maker-researcher partnership systematic review.

    PubMed

    Haynes, R Brian; Wilczynski, Nancy L

    2010-02-05

    Computerized clinical decision support systems are information technology-based systems designed to improve clinical decision-making. As with any healthcare intervention with claims to improve process of care or patient outcomes, decision support systems should be rigorously evaluated before widespread dissemination into clinical practice. Engaging healthcare providers and managers in the review process may facilitate knowledge translation and uptake. The objective of this research was to form a partnership of healthcare providers, managers, and researchers to review randomized controlled trials assessing the effects of computerized decision support for six clinical application areas: primary preventive care, therapeutic drug monitoring and dosing, drug prescribing, chronic disease management, diagnostic test ordering and interpretation, and acute care management; and to identify study characteristics that predict benefit. The review was undertaken by the Health Information Research Unit, McMaster University, in partnership with Hamilton Health Sciences, the Hamilton, Niagara, Haldimand, and Brant Local Health Integration Network, and pertinent healthcare service teams. Following agreement on information needs and interests with decision-makers, our earlier systematic review was updated by searching Medline, EMBASE, EBM Review databases, and Inspec, and reviewing reference lists through 6 January 2010. Data extraction items were expanded according to input from decision-makers. Authors of primary studies were contacted to confirm data and to provide additional information. Eligible trials were organized according to clinical area of application. We included randomized controlled trials that evaluated the effect on practitioner performance or patient outcomes of patient care provided with a computerized clinical decision support system compared with patient care without such a system. Data will be summarized using descriptive summary measures, including proportions

  8. User-centered design to improve clinical decision support in primary care.

    PubMed

    Brunner, Julian; Chuang, Emmeline; Goldzweig, Caroline; Cain, Cindy L; Sugar, Catherine; Yano, Elizabeth M

    2017-08-01

    A growing literature has demonstrated the ability of user-centered design to make clinical decision support systems more effective and easier to use. However, studies of user-centered design have rarely examined more than a handful of sites at a time, and have frequently neglected the implementation climate and organizational resources that influence clinical decision support. The inclusion of such factors was identified by a systematic review as "the most important improvement that can be made in health IT evaluations." (1) Identify the prevalence of four user-centered design practices at United States Veterans Affairs (VA) primary care clinics and assess the perceived utility of clinical decision support at those clinics; (2) Evaluate the association between those user-centered design practices and the perceived utility of clinical decision support. We analyzed clinic-level survey data collected in 2006-2007 from 170 VA primary care clinics. We examined four user-centered design practices: 1) pilot testing, 2) provider satisfaction assessment, 3) formal usability assessment, and 4) analysis of impact on performance improvement. We used a regression model to evaluate the association between user-centered design practices and the perceived utility of clinical decision support, while accounting for other important factors at those clinics, including implementation climate, available resources, and structural characteristics. We also examined associations separately at community-based clinics and at hospital-based clinics. User-centered design practices for clinical decision support varied across clinics: 74% conducted pilot testing, 62% conducted provider satisfaction assessment, 36% conducted a formal usability assessment, and 79% conducted an analysis of impact on performance improvement. Overall perceived utility of clinical decision support was high, with a mean rating of 4.17 (±.67) out of 5 on a composite measure. "Analysis of impact on performance

  9. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  10. Thinking Together: Modeling Clinical Decision-Support as a Sociotechnical System

    PubMed Central

    Hussain, Mustafa I.; Reynolds, Tera L.; Mousavi, Fatemeh E.; Chen, Yunan; Zheng, Kai

    2017-01-01

    Computerized clinical decision-support systems are members of larger sociotechnical systems, composed of human and automated actors, who send, receive, and manipulate artifacts. Sociotechnical consideration is rare in the literature. This makes it difficult to comparatively evaluate the success of CDS implementations, and it may also indicate that sociotechnical context receives inadequate consideration in practice. To facilitate sociotechnical consideration, we developed the Thinking Together model, a flexible diagrammatical means of representing CDS systems as sociotechnical systems. To develop this model, we examined the literature with the lens of Distributed Cognition (DCog) theory. We then present two case studies of vastly different CDSSs, one almost fully automated and the other with minimal automation, to illustrate the flexibility of the Thinking Together model. We show that this model, informed by DCog and the CDS literature, are capable of supporting both research, by enabling comparative evaluation, and practice, by facilitating explicit sociotechnical planning and communication. PMID:29854164

  11. Web-based health services and clinical decision support.

    PubMed

    Jegelevicius, Darius; Marozas, Vaidotas; Lukosevicius, Arunas; Patasius, Martynas

    2004-01-01

    The purpose of this study was the development of a Web-based e-health service for comprehensive assistance and clinical decision support. The service structure consists of a Web server, a PHP-based Web interface linked to a clinical SQL database, Java applets for interactive manipulation and visualization of signals and a Matlab server linked with signal and data processing algorithms implemented by Matlab programs. The service ensures diagnostic signal- and image analysis-sbased clinical decision support. By using the discussed methodology, a pilot service for pathology specialists for automatic calculation of the proliferation index has been developed. Physicians use a simple Web interface for uploading the pictures under investigation to the server; subsequently a Java applet interface is used for outlining the region of interest and, after processing on the server, the requested proliferation index value is calculated. There is also an "expert corner", where experts can submit their index estimates and comments on particular images, which is especially important for system developers. These expert evaluations are used for optimization and verification of automatic analysis algorithms. Decision support trials have been conducted for ECG and ophthalmology ultrasonic investigations of intraocular tumor differentiation. Data mining algorithms have been applied and decision support trees constructed. These services are under implementation by a Web-based system too. The study has shown that the Web-based structure ensures more effective, flexible and accessible services compared with standalone programs and is very convenient for biomedical engineers and physicians, especially in the development phase.

  12. Enabling Cross-Platform Clinical Decision Support through Web-Based Decision Support in Commercial Electronic Health Record Systems: Proposal and Evaluation of Initial Prototype Implementations

    PubMed Central

    Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku

    2013-01-01

    Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426

  13. Comparison of Computer-based Clinical Decision Support Systems and Content for Diabetes Mellitus.

    PubMed

    Kantor, M; Wright, A; Burton, M; Fraser, G; Krall, M; Maviglia, S; Mohammed-Rajput, N; Simonaitis, L; Sonnenberg, F; Middleton, B

    2011-01-01

    Computer-based clinical decision support (CDS) systems have been shown to improve quality of care and workflow efficiency, and health care reform legislation relies on electronic health records and CDS systems to improve the cost and quality of health care in the United States; however, the heterogeneity of CDS content and infrastructure of CDS systems across sites is not well known. We aimed to determine the scope of CDS content in diabetes care at six sites, assess the capabilities of CDS in use at these sites, characterize the scope of CDS infrastructure at these sites, and determine how the sites use CDS beyond individual patient care in order to identify characteristics of CDS systems and content that have been successfully implemented in diabetes care. We compared CDS systems in six collaborating sites of the Clinical Decision Support Consortium. We gathered CDS content on care for patients with diabetes mellitus and surveyed institutions on characteristics of their site, the infrastructure of CDS at these sites, and the capabilities of CDS at these sites. The approach to CDS and the characteristics of CDS content varied among sites. Some commonalities included providing customizability by role or user, applying sophisticated exclusion criteria, and using CDS automatically at the time of decision-making. Many messages were actionable recommendations. Most sites had monitoring rules (e.g. assessing hemoglobin A1c), but few had rules to diagnose diabetes or suggest specific treatments. All sites had numerous prevention rules including reminders for providing eye examinations, influenza vaccines, lipid screenings, nephropathy screenings, and pneumococcal vaccines. Computer-based CDS systems vary widely across sites in content and scope, but both institution-created and purchased systems had many similar features and functionality, such as integration of alerts and reminders into the decision-making workflow of the provider and providing messages that are

  14. Integrating HL7 RIM and ontology for unified knowledge and data representation in clinical decision support systems.

    PubMed

    Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song

    2016-01-01

    The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. The process of development of a prioritization tool for a clinical decision support build within a computerized provider order entry system: Experiences from St Luke's Health System.

    PubMed

    Wolf, Matthew; Miller, Suzanne; DeJong, Doug; House, John A; Dirks, Carl; Beasley, Brent

    2016-09-01

    To establish a process for the development of a prioritization tool for a clinical decision support build within a computerized provider order entry system and concurrently to prioritize alerts for Saint Luke's Health System. The process of prioritizing clinical decision support alerts included (a) consensus sessions to establish a prioritization process and identify clinical decision support alerts through a modified Delphi process and (b) a clinical decision support survey to validate the results. All members of our health system's physician quality organization, Saint Luke's Care as well as clinicians, administrators, and pharmacy staff throughout Saint Luke's Health System, were invited to participate in this confidential survey. The consensus sessions yielded a prioritization process through alert contextualization and associated Likert-type scales. Utilizing this process, the clinical decision support survey polled the opinions of 850 clinicians with a 64.7 percent response rate. Three of the top rated alerts were approved for the pre-implementation build at Saint Luke's Health System: Acute Myocardial Infarction Core Measure Sets, Deep Vein Thrombosis Prophylaxis within 4 h, and Criteria for Sepsis. This study establishes a process for developing a prioritization tool for a clinical decision support build within a computerized provider order entry system that may be applicable to similar institutions. © The Author(s) 2015.

  16. SANDS: A Service-Oriented Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256

  17. Patient-oriented Computerized Clinical Guidelines for Mobile Decision Support in Gestational Diabetes.

    PubMed

    García-Sáez, Gema; Rigla, Mercedes; Martínez-Sarriegui, Iñaki; Shalom, Erez; Peleg, Mor; Broens, Tom; Pons, Belén; Caballero-Ruíz, Estefanía; Gómez, Enrique J; Hernando, M Elena

    2014-03-01

    The risks associated with gestational diabetes (GD) can be reduced with an active treatment able to improve glycemic control. Advances in mobile health can provide new patient-centric models for GD to create personalized health care services, increase patient independence and improve patients' self-management capabilities, and potentially improve their treatment compliance. In these models, decision-support functions play an essential role. The telemedicine system MobiGuide provides personalized medical decision support for GD patients that is based on computerized clinical guidelines and adapted to a mobile environment. The patient's access to the system is supported by a smartphone-based application that enhances the efficiency and ease of use of the system. We formalized the GD guideline into a computer-interpretable guideline (CIG). We identified several workflows that provide decision-support functionalities to patients and 4 types of personalized advice to be delivered through a mobile application at home, which is a preliminary step to providing decision-support tools in a telemedicine system: (1) therapy, to help patients to comply with medical prescriptions; (2) monitoring, to help patients to comply with monitoring instructions; (3) clinical assessment, to inform patients about their health conditions; and (4) upcoming events, to deal with patients' personal context or special events. The whole process to specify patient-oriented decision support functionalities ensures that it is based on the knowledge contained in the GD clinical guideline and thus follows evidence-based recommendations but at the same time is patient-oriented, which could enhance clinical outcomes and patients' acceptance of the whole system. © 2014 Diabetes Technology Society.

  18. Practitioner approaches to the integration of clinical decision support system technology in critical care.

    PubMed

    Weber, Scott; Crago, Elizabeth A; Sherwood, Paula R; Smith, Tara

    2009-11-01

    The aim of this study was to explore the experiences of nurses and physicians who use a clinical decision support system (CDSS) in the critical care area, focusing on clinicians' motives and values related to decisions to either use or not use this optional technology. Information technology (IT) has been demonstrated to positively impact quality of patient care. Decision-support technology serves as an adjunct to, not as a replacement for, actual clinical decision making. Nurse administrators play an imperative role in the planning and implementation of IT projects and can benefit from understanding clinicians' affective considerations and approaches to the technology. This qualitative study used grounded theory methods. A total of 33 clinicians participated in in-depth structured interviews probing their professional concerns with how the technology is used. Data were analyzed using the constant comparative method. Medical staff were frustrated by perceived lack of planning input before system implementation. Both nurse and physician cohort groups were dissatisfied with preimplementation education. Barriers to system use were identified in significant detail by the participants. Both nurses and physicians should be involved in preimplementation planning and ongoing evaluation of CDSSs. There is a need for a systematic review or Cochrane meta-analysis describing the affective aspects of successful implementations of decisional technology in critical care, specifically from the perspective of nursing administrators.

  19. What We Can Learn from Amazon for Clinical Decision Support Systems.

    PubMed

    Abid, Sidra; Keshavjee, Karim; Karim, Arsalan; Guergachi, Aziz

    2017-01-01

    Health care continue to lag behind other industries, such as retail and financial services, in the use of decision-support-like tools. Amazon is particularly prolific in the use of advanced predictive and prescriptive analytics to assist its customers to purchase more, while increasing satisfaction, retention, repeat-purchases and loyalty. How can we do the same in health care? In this paper, we explore various elements of the Amazon website and Amazon's data science and big data practices to gather inspiration for re-designing clinical decision support in the health care sector. For each Amazon element we identified, we present one or more clinical applications to help us better understand where Amazon's.

  20. Reducing Risk with Clinical Decision Support

    PubMed Central

    Maloney, F.L.; Feblowitz, J.; Samal, L.; Sato, L.; Wright, A.

    2014-01-01

    Summary Objective Identify clinical opportunities to intervene to prevent a malpractice event and determine the proportion of malpractice claims potentially preventable by clinical decision support (CDS). Materials and Methods Cross-sectional review of closed malpractice claims over seven years from one malpractice insurance company and seven hospitals in the Boston area. For each event, clinical opportunities to intervene to avert the malpractice event and the presence or absence of CDS that might have a role in preventing the event, were assigned by a panel of expert raters. Compensation paid out to resolve a claim (indemnity), was associated with each CDS type. Results Of the 477 closed malpractice cases, 359 (75.3%) were categorized as substantiated and 195 (54%) had at least one opportunity to intervene. Common opportunities to intervene related to performance of procedure, diagnosis, and fall prevention. We identified at least one CDS type for 63% of substantiated claims. The 41 CDS types identified included clinically significant test result alerting, diagnostic decision support and electronic tracking of instruments. Cases with at least one associated intervention accounted for $40.3 million (58.9%) of indemnity. Discussion CDS systems and other forms of health information technology (HIT) are expected to improve quality of care, but their potential to mitigate risk had not previously been quantified. Our results suggest that, in addition to their known benefits for quality and safety, CDS systems within HIT have a potential role in decreasing malpractice payments. Conclusion More than half of malpractice events and over $40 million of indemnity were potentially preventable with CDS. PMID:25298814

  1. Automated Modular Magnetic Resonance Imaging Clinical Decision Support System (MIROR): An Application in Pediatric Cancer Diagnosis.

    PubMed

    Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine; Peet, Andrew

    2018-05-02

    Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians' skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. ©Niloufar Zarinabad, Emma M Meeus, Karen Manias

  2. Automated Modular Magnetic Resonance Imaging Clinical Decision Support System (MIROR): An Application in Pediatric Cancer Diagnosis

    PubMed Central

    Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine

    2018-01-01

    Background Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. Objective The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. Methods The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Results Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. Conclusions MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians’ skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. PMID

  3. Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.

    PubMed

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.

  4. Towards meaningful medication-related clinical decision support: recommendations for an initial implementation.

    PubMed

    Phansalkar, S; Wright, A; Kuperman, G J; Vaida, A J; Bobb, A M; Jenders, R A; Payne, T H; Halamka, J; Bloomrosen, M; Bates, D W

    2011-01-01

    Clinical decision support (CDS) can improve safety, quality, and cost-effectiveness of patient care, especially when implemented in computerized provider order entry (CPOE) applications. Medication-related decision support logic forms a large component of the CDS logic in any CPOE system. However, organizations wishing to implement CDS must either purchase the computable clinical content or develop it themselves. Content provided by vendors does not always meet local expectations. Most organizations lack the resources to customize the clinical content and the expertise to implement it effectively. In this paper, we describe the recommendations of a national expert panel on two basic medication-related CDS areas, specifically, drug-drug interaction (DDI) checking and duplicate therapy checking. The goals of this study were to define a starter set of medication-related alerts that healthcare organizations can implement in their clinical information systems. We also draw on the experiences of diverse institutions to highlight the realities of implementing medication decision support. These findings represent the experiences of institutions with a long history in the domain of medication decision support, and the hope is that this guidance may improve the feasibility and efficiency CDS adoption across healthcare settings.

  5. A clinical decision support system for diagnosis of Allergic Rhinitis based on intradermal skin tests.

    PubMed

    Jabez Christopher, J; Khanna Nehemiah, H; Kannan, A

    2015-10-01

    Allergic Rhinitis is a universal common disease, especially in populated cities and urban areas. Diagnosis and treatment of Allergic Rhinitis will improve the quality of life of allergic patients. Though skin tests remain the gold standard test for diagnosis of allergic disorders, clinical experts are required for accurate interpretation of test outcomes. This work presents a clinical decision support system (CDSS) to assist junior clinicians in the diagnosis of Allergic Rhinitis. Intradermal Skin tests were performed on patients who had plausible allergic symptoms. Based on patient׳s history, 40 clinically relevant allergens were tested. 872 patients who had allergic symptoms were considered for this study. The rule based classification approach and the clinical test results were used to develop and validate the CDSS. Clinical relevance of the CDSS was compared with the Score for Allergic Rhinitis (SFAR). Tests were conducted for junior clinicians to assess their diagnostic capability in the absence of an expert. The class based Association rule generation approach provides a concise set of rules that is further validated by clinical experts. The interpretations of the experts are considered as the gold standard. The CDSS diagnoses the presence or absence of rhinitis with an accuracy of 88.31%. The allergy specialist and the junior clinicians prefer the rule based approach for its comprehendible knowledge model. The Clinical Decision Support Systems with rule based classification approach assists junior doctors and clinicians in the diagnosis of Allergic Rhinitis to make reliable decisions based on the reports of intradermal skin tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Neighborhood graph and learning discriminative distance functions for clinical decision support.

    PubMed

    Tsymbal, Alexey; Zhou, Shaohua Kevin; Huber, Martin

    2009-01-01

    There are two essential reasons for the slow progress in the acceptance of clinical case retrieval and similarity search-based decision support systems; the especial complexity of clinical data making it difficult to define a meaningful and effective distance function on them and the lack of transparency and explanation ability in many existing clinical case retrieval decision support systems. In this paper, we try to address these two problems by introducing a novel technique for visualizing inter-patient similarity based on a node-link representation with neighborhood graphs and by considering two techniques for learning discriminative distance function that help to combine the power of strong "black box" learners with the transparency of case retrieval and nearest neighbor classification.

  7. Clinical decision support provided within physician order entry systems: a systematic review of features effective for changing clinician behavior.

    PubMed

    Kawamoto, Kensaku; Lobach, David F

    2003-01-01

    Computerized physician order entry (CPOE) systems represent an important tool for providing clinical decision support. In undertaking this systematic review, our objective was to identify the features of CPOE-based clinical decision support systems (CDSSs) most effective at modifying clinician behavior. For this review, two independent reviewers systematically identified randomized controlled trials that evaluated the effectiveness of CPOE-based CDSSs in changing clinician behavior. Furthermore, each included study was assessed for the presence of 14 CDSS features. We screened 10,023 citations and included 11 studies. Of the 10 studies comparing a CPOE-based CDSS intervention against a non-CDSS control group, 7 reported a significant desired change in professional practice. Moreover, meta-regression analysis revealed that automatic provision of the decision support was strongly associated with improved professional practice (adjusted odds ratio, 23.72; 95% confidence interval, 1.75-infiniti). Thus, we conclude that automatic provision of decision support is a critical feature of successful CPOE-based CDSS interventions.

  8. Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition

    PubMed Central

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498

  9. What can Natural Language Processing do for Clinical Decision Support?

    PubMed Central

    Demner-Fushman, Dina; Chapman, Wendy W.; McDonald, Clement J.

    2009-01-01

    Computerized Clinical Decision Support (CDS) aims to aid decision making of health care providers and the public by providing easily accessible health-related information at the point and time it is needed. Natural Language Processing (NLP) is instrumental in using free-text information to drive CDS, representing clinical knowledge and CDS interventions in standardized formats, and leveraging clinical narrative. The early innovative NLP research of clinical narrative was followed by a period of stable research conducted at the major clinical centers and a shift of mainstream interest to biomedical NLP. This review primarily focuses on the recently renewed interest in development of fundamental NLP methods and advances in the NLP systems for CDS. The current solutions to challenges posed by distinct sublanguages, intended user groups, and support goals are discussed. PMID:19683066

  10. Computerized clinical decision support systems for chronic disease management: a decision-maker-researcher partnership systematic review.

    PubMed

    Roshanov, Pavel S; Misra, Shikha; Gerstein, Hertzel C; Garg, Amit X; Sebaldt, Rolf J; Mackay, Jean A; Weise-Kelly, Lorraine; Navarro, Tamara; Wilczynski, Nancy L; Haynes, R Brian

    2011-08-03

    The use of computerized clinical decision support systems (CCDSSs) may improve chronic disease management, which requires recurrent visits to multiple health professionals, ongoing disease and treatment monitoring, and patient behavior modification. The objective of this review was to determine if CCDSSs improve the processes of chronic care (such as diagnosis, treatment, and monitoring of disease) and associated patient outcomes (such as effects on biomarkers and clinical exacerbations). We conducted a decision-maker-researcher partnership systematic review. We searched MEDLINE, EMBASE, Ovid's EBM Reviews database, Inspec, and reference lists for potentially eligible articles published up to January 2010. We included randomized controlled trials that compared the use of CCDSSs to usual practice or non-CCDSS controls. Trials were eligible if at least one component of the CCDSS was designed to support chronic disease management. We considered studies 'positive' if they showed a statistically significant improvement in at least 50% of relevant outcomes. Of 55 included trials, 87% (n = 48) measured system impact on the process of care and 52% (n = 25) of those demonstrated statistically significant improvements. Sixty-five percent (36/55) of trials measured impact on, typically, non-major (surrogate) patient outcomes, and 31% (n = 11) of those demonstrated benefits. Factors of interest to decision makers, such as cost, user satisfaction, system interface and feature sets, unique design and deployment characteristics, and effects on user workflow were rarely investigated or reported. A small majority (just over half) of CCDSSs improved care processes in chronic disease management and some improved patient health. Policy makers, healthcare administrators, and practitioners should be aware that the evidence of CCDSS effectiveness is limited, especially with respect to the small number and size of studies measuring patient outcomes.

  11. Computerized clinical decision support systems for chronic disease management: A decision-maker-researcher partnership systematic review

    PubMed Central

    2011-01-01

    Background The use of computerized clinical decision support systems (CCDSSs) may improve chronic disease management, which requires recurrent visits to multiple health professionals, ongoing disease and treatment monitoring, and patient behavior modification. The objective of this review was to determine if CCDSSs improve the processes of chronic care (such as diagnosis, treatment, and monitoring of disease) and associated patient outcomes (such as effects on biomarkers and clinical exacerbations). Methods We conducted a decision-maker-researcher partnership systematic review. We searched MEDLINE, EMBASE, Ovid's EBM Reviews database, Inspec, and reference lists for potentially eligible articles published up to January 2010. We included randomized controlled trials that compared the use of CCDSSs to usual practice or non-CCDSS controls. Trials were eligible if at least one component of the CCDSS was designed to support chronic disease management. We considered studies 'positive' if they showed a statistically significant improvement in at least 50% of relevant outcomes. Results Of 55 included trials, 87% (n = 48) measured system impact on the process of care and 52% (n = 25) of those demonstrated statistically significant improvements. Sixty-five percent (36/55) of trials measured impact on, typically, non-major (surrogate) patient outcomes, and 31% (n = 11) of those demonstrated benefits. Factors of interest to decision makers, such as cost, user satisfaction, system interface and feature sets, unique design and deployment characteristics, and effects on user workflow were rarely investigated or reported. Conclusions A small majority (just over half) of CCDSSs improved care processes in chronic disease management and some improved patient health. Policy makers, healthcare administrators, and practitioners should be aware that the evidence of CCDSS effectiveness is limited, especially with respect to the small number and size of studies measuring patient outcomes

  12. Creating Shareable Clinical Decision Support Rules for a Pharmacogenomics Clinical Guideline Using Structured Knowledge Representation.

    PubMed

    Linan, Margaret K; Sottara, Davide; Freimuth, Robert R

    2015-01-01

    Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.

  13. Lessons learned from implementing service-oriented clinical decision support at four sites: A qualitative study.

    PubMed

    Wright, Adam; Sittig, Dean F; Ash, Joan S; Erickson, Jessica L; Hickman, Trang T; Paterno, Marilyn; Gebhardt, Eric; McMullen, Carmit; Tsurikova, Ruslana; Dixon, Brian E; Fraser, Greg; Simonaitis, Linas; Sonnenberg, Frank A; Middleton, Blackford

    2015-11-01

    To identify challenges, lessons learned and best practices for service-oriented clinical decision support, based on the results of the Clinical Decision Support Consortium, a multi-site study which developed, implemented and evaluated clinical decision support services in a diverse range of electronic health records. Ethnographic investigation using the rapid assessment process, a procedure for agile qualitative data collection and analysis, including clinical observation, system demonstrations and analysis and 91 interviews. We identified challenges and lessons learned in eight dimensions: (1) hardware and software computing infrastructure, (2) clinical content, (3) human-computer interface, (4) people, (5) workflow and communication, (6) internal organizational policies, procedures, environment and culture, (7) external rules, regulations, and pressures and (8) system measurement and monitoring. Key challenges included performance issues (particularly related to data retrieval), differences in terminologies used across sites, workflow variability and the need for a legal framework. Based on the challenges and lessons learned, we identified eight best practices for developers and implementers of service-oriented clinical decision support: (1) optimize performance, or make asynchronous calls, (2) be liberal in what you accept (particularly for terminology), (3) foster clinical transparency, (4) develop a legal framework, (5) support a flexible front-end, (6) dedicate human resources, (7) support peer-to-peer communication, (8) improve standards. The Clinical Decision Support Consortium successfully developed a clinical decision support service and implemented it in four different electronic health records and four diverse clinical sites; however, the process was arduous. The lessons identified by the Consortium may be useful for other developers and implementers of clinical decision support services. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The Utilization of a Clinical Decision Support System to Manage Adult Type 2 Diabetes: A Correlational Study

    ERIC Educational Resources Information Center

    Faught, I. Charie

    2012-01-01

    While the Institute of Medicine (2001) has promoted health information technology to improve the process of care such as compliance with clinical practice guidelines and quicker access to clinical information, diagnostic tests, and treatment results, very little was known about how a clinical decision support system can contribute to diabetes…

  15. Clinical decision support for personalized medicine: an opportunity for pharmacist-physician collaboration.

    PubMed

    Barlow, Jane F

    2012-06-01

    Pharmacogenomics has significant potential to improve the efficacy and safety of medication therapy, but it requires new expertise and adds a new layer of complexity for all healthcare professionals. Pharmacists and pharmacy management systems can play a leading role in providing clinical decision support for the use and interpretation of pharmacogenomic tests. To serve this role effectively, pharmacists will need to expand their expertise in the emerging field of clinical pharmacogenomics. Pharmacy-based clinical programs can expedite the use of pharmacogenomic testing, help physicians interpret the test results and identify future medication risks associated with the patient's phenotype. Over time, some of these functions can be embedded in clinical decision support systems as part of the broader automation of the healthcare system.

  16. Relational Algebra in Spatial Decision Support Systems Ontologies.

    PubMed

    Diomidous, Marianna; Chardalias, Kostis; Koutonias, Panagiotis; Magnita, Adrianna; Andrianopoulos, Charalampos; Zimeras, Stelios; Mechili, Enkeleint Aggelos

    2017-01-01

    Decision Support Systems (DSS) is a powerful tool, for facilitates researchers to choose the correct decision based on their final results. Especially in medical cases where doctors could use these systems, to overcome the problem with the clinical misunderstanding. Based on these systems, queries must be constructed based on the particular questions that doctors must answer. In this work, combination between questions and queries would be presented via relational algebra.

  17. How updating textual clinical practice guidelines impacts clinical decision support systems: a case study with bladder cancer management.

    PubMed

    Bouaud, Jacques; Séroussi, Brigitte; Brizon, Ambre; Culty, Thibault; Mentré, France; Ravery, Vincent

    2007-01-01

    Guideline-based clinical decision support systems (CDSSs) can be effective in increasing physician compliance with recommendations. However, the ever growing pace at which medical knowledge is produced requires that clinical practice guidelines (CPGs) be updated regularly. It is therefore mandatory that CDSSs be revised accordingly. The French Association for Urology publishes CPGs on bladder cancer management every 2 years. We studied the impact of the 2004 revision of these guidelines, with respect to the 2002 version with a CDSS, UroDoc. We proposed a typology of knowledge base modifications resulting from the update of CPGs making the difference between practice, clinical conditions and recommendations refinement as opposed to new practice and new recommendations. The number of formalized recommendations increased from 577 in 2002 to 1,081 in 2004. We evaluated the two versions of UroDoc on a randomized sample of patient records. A single new practice that modifies a decision taken in 49% of all recorded decisions leads to a fall from 67% to 46% of the compliance rate of decisions.

  18. Cyborg practices: call-handlers and computerised decision support systems in urgent and emergency care.

    PubMed

    Pope, Catherine; Halford, Susan; Turnbull, Joanne; Prichard, Jane

    2014-06-01

    This article draws on data collected during a 2-year project examining the deployment of a computerised decision support system. This computerised decision support system was designed to be used by non-clinical staff for dealing with calls to emergency (999) and urgent care (out-of-hours) services. One of the promises of computerised decisions support technologies is that they can 'hold' vast amounts of sophisticated clinical knowledge and combine it with decision algorithms to enable standardised decision-making by non-clinical (clerical) staff. This article draws on our ethnographic study of this computerised decision support system in use, and we use our analysis to question the 'automated' vision of decision-making in healthcare call-handling. We show that embodied and experiential (human) expertise remains central and highly salient in this work, and we propose that the deployment of the computerised decision support system creates something new, that this conjunction of computer and human creates a cyborg practice.

  19. Information management to enable personalized medicine: stakeholder roles in building clinical decision support.

    PubMed

    Downing, Gregory J; Boyle, Scott N; Brinner, Kristin M; Osheroff, Jerome A

    2009-10-08

    Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies. Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures), and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine. This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In addition, to represent meaningful benefits to personalized

  20. Information management to enable personalized medicine: stakeholder roles in building clinical decision support

    PubMed Central

    2009-01-01

    Background Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies. Discussion Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures), and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine. Summary This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In addition, to represent

  1. Reduction in chemotherapy order errors with computerised physician order entry and clinical decision support systems.

    PubMed

    Aziz, Muhammad Tahir; Ur-Rehman, Tofeeq; Qureshi, Sadia; Bukhari, Nadeem Irfan

    Medication errors in chemotherapy are frequent and lead to patient morbidity and mortality, as well as increased rates of re-admission and length of stay, and considerable extra costs. Objective: This study investigated the proposition that computerised chemotherapy ordering reduces the incidence and severity of chemotherapy protocol errors. A computerised physician order entry of chemotherapy order (C-CO) with clinical decision support system was developed in-house, including standardised chemotherapy protocol definitions, automation of pharmacy distribution, clinical checks, labeling and invoicing. A prospective study was then conducted in a C-CO versus paper based chemotherapy order (P-CO) in a 30-bed chemotherapy bay of a tertiary hospital. Both C-CO and P-CO orders, including pharmacoeconomic analysis and the severity of medication errors, were checked and validated by a clinical pharmacist. A group analysis and field trial were also conducted to assess clarity, feasibility and decision making. The C-CO was very usable in terms of its clarity and feasibility. The incidence of medication errors was significantly lower in the C-CO compared with the P-CO (10/3765 [0.26%] versus 134/5514 [2.4%]). There was also a reduction in dispensing time of chemotherapy protocols in the C-CO. The chemotherapy computerisation with clinical decision support system resulted in a significant decrease in the occurrence and severity of medication errors, improvements in chemotherapy dispensing and administration times, and reduction of chemotherapy cost.

  2. A qualitative analysis of how advanced practice nurses use clinical decision support systems.

    PubMed

    Weber, Scott

    2007-12-01

    The purpose of this study was to generate a grounded theory that will reflect the experiences of advanced practice nurses (APNs) working as critical care nurse practitioners (NPs) and clinical nurse specialists (CNS) with computer-based decision-making systems. A study design using grounded theory qualitative research methods and convenience sampling was employed in this study. Twenty-three APNs (13 CNS and 10 NPs) were recruited from 16 critical care units located in six large urban medical centers in the U.S. Midwest. Single-structured in-depth interviews with open-ended audio-taped questions were conducted with each APN. Through this process, APNs defined what they consider to be relevant themes and patterns of clinical decision system use in their critical care practices, and they identified the interrelatedness of the conceptual categories that emerged from the results. Data were analyzed using the constant comparative analysis method of qualitative research. APN participants were predominantly female, white/non-Hispanic, had a history of access to the clinical decision system used in their critical care settings for an average of 14 months, and had attended a formal training program to learn how to use clinical decision systems. "Forecasting decision outcomes," which was defined as the voluntary process employed to forecast the outcomes of patient care decisions in critical care prior to actual decision making, was the core variable describing system use that emerged from the responses. This variable consisted of four user constructs or components: (a) users' perceptions of their initial system learning experience, (b) users' sense of how well they understand how system technology works, (c) users' understanding of how system inferences are created or derived, and (d) users' relative trust of system-derived data. Each of these categories was further described through the grounded theory research process, and the relationships between the categories were

  3. Design and Development of a Sharable Clinical Decision Support System Based on a Semantic Web Service Framework.

    PubMed

    Zhang, Yi-Fan; Gou, Ling; Tian, Yu; Li, Tian-Chang; Zhang, Mao; Li, Jing-Song

    2016-05-01

    Clinical decision support (CDS) systems provide clinicians and other health care stakeholders with patient-specific assessments or recommendations to aid in the clinical decision-making process. Despite their demonstrated potential for improving health care quality, the widespread availability of CDS systems has been limited mainly by the difficulty and cost of sharing CDS knowledge among heterogeneous healthcare information systems. The purpose of this study was to design and develop a sharable clinical decision support (S-CDS) system that meets this challenge. The fundamental knowledge base consists of independent and reusable knowledge modules (KMs) to meet core CDS needs, wherein each KM is semantically well defined based on the standard information model, terminologies, and representation formalisms. A semantic web service framework was developed to identify, access, and leverage these KMs across diverse CDS applications and care settings. The S-CDS system has been validated in two distinct client CDS applications. Model-level evaluation results confirmed coherent knowledge representation. Application-level evaluation results reached an overall accuracy of 98.66 % and a completeness of 96.98 %. The evaluation results demonstrated the technical feasibility and application prospect of our approach. Compared with other CDS engineering efforts, our approach facilitates system development and implementation and improves system maintainability, scalability and efficiency, which contribute to the widespread adoption of effective CDS within the healthcare domain.

  4. The value of participatory development to support antimicrobial stewardship with a clinical decision support system.

    PubMed

    Beerlage-de Jong, Nienke; Wentzel, Jobke; Hendrix, Ron; van Gemert-Pijnen, Lisette

    2017-04-01

    Current clinical decision support systems (CDSSs) for antimicrobial stewardship programs (ASPs) are guideline- or expert-driven. They are focused on (clinical) content, not on supporting real-time workflow. Thus, CDSSs fail to optimally support prudent antimicrobial prescribing in daily practice. Our aim was to demonstrate why and how participatory development (involving end-users and other stakeholders) can contribute to the success of CDSSs in ASPs. A mixed-methods approach was applied, combining scenario-based prototype evaluations (to support verbalization of work processes and out-of-the-box thinking) among 6 medical resident physicians with an online questionnaire (to cross-reference findings of the prototype evaluations) among 54 Dutch physicians. The prototype evaluations resulted in insight into the end-users and their way of working, as well as their needs and expectations. The online questionnaire that was distributed among a larger group of medical specialists, including lung and infection experts, complemented the findings of the prototype evaluations. It revealed a say/do problem concerning the unrecognized need of support for selecting diagnostic tests. Low-fidelity prototypes of a technology allow researchers to get to know the end-users, their way of working, and their work context. Involving experts allows technology developers to continuously check the fit between technology and clinical practice. The combination enables the participatory development of technology to successfully support ASPs. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Development of a real-time clinical decision support system upon the Web MVC-based architecture for prostate cancer treatment.

    PubMed

    Lin, Hsueh-Chun; Wu, Hsi-Chin; Chang, Chih-Hung; Li, Tsai-Chung; Liang, Wen-Miin; Wang, Jong-Yi Wang

    2011-03-08

    A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily applied in other chronic diseases.

  6. [A computerised clinical decision-support system for the management of depression in Primary Care].

    PubMed

    Aragonès, Enric; Comín, Eva; Cavero, Myriam; Pérez, Víctor; Molina, Cristina; Palao, Diego

    Despite its clinical relevance and its importance as a public health problem, there are major gaps in the management of depression. Evidence-based clinical guidelines are useful to improve processes and clinical outcomes. In order to make their implementation easier these guidelines have been transformed into computerised clinical decision support systems. In this article, a description is presented on the basics and characteristics of a new computerised clinical guideline for the management of major depression, developed in the public health system in Catalonia. This tool helps the clinician to establish reliable and accurate diagnoses of depression, to choose the best treatment a priori according to the disease and the patient characteristics. It also emphasises the importance of systematic monitoring to assess the clinical course, and to adjust therapeutic interventions to the patient's needs at all times. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  7. Development of a real-time clinical decision support system upon the web mvc-based architecture for prostate cancer treatment

    PubMed Central

    2011-01-01

    Background A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. Methods We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. Results The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Conclusions Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily

  8. A Clinical Decision Support System to Assist Pediatric Oncofertility: A Short Report.

    PubMed

    Hand, Meredith; Kemertzis, Matthew A; Peate, Michelle; Gillam, Lynn; McCarthy, Maria; Orme, Lisa; Heloury, Yves; Sullivan, Michael; Zacharin, Margaret; Jayasinghe, Yasmin

    2018-05-07

    Fertility preservation discussions with pediatric and adolescent cancer patients can be difficult for clinicians. This study describes the acceptability of a fertility clinician decision support system (CDSS). A cross-sectional study of clinicians at The Royal Children's Hospital, Melbourne. Participants were trained on CDSS purpose, contents, and use. A survey captured the perceived benefits and weaknesses of the CDSS. Thirty-nine clinicians participated. Over 90% felt the CDSS aims and format were clear, and understood the components. Over 80% felt it would enable adherence to clinical pathways, policy, and standards of care. The CDSS provided significant perceived benefits to oncofertility care.

  9. Computerized clinical decision support for prescribing: provision does not guarantee uptake

    PubMed Central

    Moxey, Annette; Robertson, Jane; Newby, David; Hains, Isla; Williamson, Margaret; Pearson, Sallie-Anne

    2010-01-01

    There is wide variability in the use and adoption of recommendations generated by computerized clinical decision support systems (CDSSs) despite the benefits they may bring to clinical practice. We conducted a systematic review to explore the barriers to, and facilitators of, CDSS uptake by physicians to guide prescribing decisions. We identified 58 studies by searching electronic databases (1990–2007). Factors impacting on CDSS use included: the availability of hardware, technical support and training; integration of the system into workflows; and the relevance and timeliness of the clinical messages. Further, systems that were endorsed by colleagues, minimized perceived threats to professional autonomy, and did not compromise doctor-patient interactions were accepted by users. Despite advances in technology and CDSS sophistication, most factors were consistently reported over time and across ambulatory and institutional settings. Such factors must be addressed when deploying CDSSs so that improvements in uptake, practice and patient outcomes may be achieved. PMID:20064798

  10. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department.

    PubMed

    Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B

    2013-01-01

    The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.

  11. A pilot study of distributed knowledge management and clinical decision support in the cloud.

    PubMed

    Dixon, Brian E; Simonaitis, Linas; Goldberg, Howard S; Paterno, Marilyn D; Schaeffer, Molly; Hongsermeier, Tonya; Wright, Adam; Middleton, Blackford

    2013-09-01

    Implement and perform pilot testing of web-based clinical decision support services using a novel framework for creating and managing clinical knowledge in a distributed fashion using the cloud. The pilot sought to (1) develop and test connectivity to an external clinical decision support (CDS) service, (2) assess the exchange of data to and knowledge from the external CDS service, and (3) capture lessons to guide expansion to more practice sites and users. The Clinical Decision Support Consortium created a repository of shared CDS knowledge for managing hypertension, diabetes, and coronary artery disease in a community cloud hosted by Partners HealthCare. A limited data set for primary care patients at a separate health system was securely transmitted to a CDS rules engine hosted in the cloud. Preventive care reminders triggered by the limited data set were returned for display to clinician end users for review and display. During a pilot study, we (1) monitored connectivity and system performance, (2) studied the exchange of data and decision support reminders between the two health systems, and (3) captured lessons. During the six month pilot study, there were 1339 patient encounters in which information was successfully exchanged. Preventive care reminders were displayed during 57% of patient visits, most often reminding physicians to monitor blood pressure for hypertensive patients (29%) and order eye exams for patients with diabetes (28%). Lessons learned were grouped into five themes: performance, governance, semantic interoperability, ongoing adjustments, and usability. Remote, asynchronous cloud-based decision support performed reasonably well, although issues concerning governance, semantic interoperability, and usability remain key challenges for successful adoption and use of cloud-based CDS that will require collaboration between biomedical informatics and computer science disciplines. Decision support in the cloud is feasible and may be a reasonable

  12. Understanding clinical work practices for cross-boundary decision support in e-health.

    PubMed

    Tawfik, Hissam; Anya, Obinna; Nagar, Atulya K

    2012-07-01

    One of the major concerns of research in integrated healthcare information systems is to enable decision support among clinicians across boundaries of organizations and regional workgroups. A necessary precursor, however, is to facilitate the construction of appropriate awareness of local clinical practices, including a clinician's actual cognitive capabilities, peculiar workplace circumstances, and specific patient-centered needs based on real-world clinical contexts across work settings. In this paper, a user-centered study aimed to investigate clinical practices across three different geographical areas-the U.K., the UAE and Nigeria-is presented. The findings indicate that differences in clinical practices among clinicians are associated with differences in local work contexts across work settings, but are moderated by adherence to best practice guidelines and the need for patient-centered care. The study further reveals that an awareness especially of the ontological, stereotypical, and situated practices plays a crucial role in adapting knowledge for cross-boundary decision support. The paper then outlines a set of design guidelines for the development of enterprise information systems for e-health. Based on the guidelines, the paper proposes the conceptual design of CaDHealth, a practice-centered framework for making sense of clinical practices across work settings for effective cross-boundary e-health decision support.

  13. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs

    PubMed Central

    Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-01-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs. PMID:21816958

  14. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs.

    PubMed

    Kagan, Jonathan M; Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs.

  15. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    PubMed

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    , and logistical concerns. Ensuring data security and protection of patient rights while simultaneously facilitating standardization is paramount to maintaining public support. The capabilities of supercomputing need to be applied strategically. A standardized, methodological implementation must be applied to developed artificial intelligence systems with the ability to integrate data and information into clinically relevant knowledge. Ultimately, the integration of bioinformatics and clinical data in a clinical decision support system promises precision medicine and cost effective and personalized patient care.

  16. Towards knowledge-based systems in clinical practice: development of an integrated clinical information and knowledge management support system.

    PubMed

    Kalogeropoulos, Dimitris A; Carson, Ewart R; Collinson, Paul O

    2003-09-01

    Given that clinicians presented with identical clinical information will act in different ways, there is a need to introduce into routine clinical practice methods and tools to support the scientific homogeneity and accountability of healthcare decisions and actions. The benefits expected from such action include an overall reduction in cost, improved quality of care, patient and public opinion satisfaction. Computer-based medical data processing has yielded methods and tools for managing the task away from the hospital management level and closer to the desired disease and patient management level. To this end, advanced applications of information and disease process modelling technologies have already demonstrated an ability to significantly augment clinical decision making as a by-product. The wide-spread acceptance of evidence-based medicine as the basis of cost-conscious and concurrently quality-wise accountable clinical practice suffices as evidence supporting this claim. Electronic libraries are one-step towards an online status of this key health-care delivery quality control environment. Nonetheless, to date, the underlying information and knowledge management technologies have failed to be integrated into any form of pragmatic or marketable online and real-time clinical decision making tool. One of the main obstacles that needs to be overcome is the development of systems that treat both information and knowledge as clinical objects with same modelling requirements. This paper describes the development of such a system in the form of an intelligent clinical information management system: a system which at the most fundamental level of clinical decision support facilitates both the organised acquisition of clinical information and knowledge and provides a test-bed for the development and evaluation of knowledge-based decision support functions.

  17. Preparing for a decision support system.

    PubMed

    Callan, K

    2000-08-01

    The increasing pressure to reduce costs and improve outcomes is driving the health care industry to view information as a competitive advantage. Timely information is required to help reduce inefficiencies and improve patient care. Numerous disparate operational or transactional information systems with inconsistent and often conflicting data are no longer adequate to meet the information needs of integrated care delivery systems and networks in competitive managed care environments. This article reviews decision support system characteristics and describes a process to assess the preparedness of an organization to implement and use decision support systems to achieve a more effective, information-based decision process. Decision support tools included in this article range from reports to data mining.

  18. [Knowledge management system for laboratory work and clinical decision support].

    PubMed

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  19. Measurement-based care for refractory depression: a clinical decision support model for clinical research and practice.

    PubMed

    Trivedi, Madhukar H; Daly, Ella J

    2007-05-01

    Despite years of antidepressant drug development and patient and provider education, suboptimal medication dosing and duration of exposure resulting in incomplete remission of symptoms remains the norm in the treatment of depression. Additionally, since no one treatment is effective for all patients, optimal implementation focusing on the measurement of symptoms, side effects, and function is essential to determine effective sequential treatment approaches. There is a need for a paradigm shift in how clinical decision making is incorporated into clinical practice and for a move away from the trial-and-error approach that currently determines the "next best" treatment. This paper describes how our experience with the Texas Medication Algorithm Project (TMAP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial has confirmed the need for easy-to-use clinical support systems to ensure fidelity to guidelines. To further enhance guideline fidelity, we have developed an electronic decision support system that provides critical feedback and guidance at the point of patient care. We believe that a measurement-based care (MBC) approach is essential to any decision support system, allowing physicians to individualize and adapt decisions about patient care based on symptom progress, tolerability of medication, and dose optimization. We also believe that successful integration of sequential algorithms with MBC into real-world clinics will facilitate change that will endure and improve patient outcomes. Although we use major depression to illustrate our approach, the issues addressed are applicable to other chronic psychiatric conditions including comorbid depression and substance use disorder as well as other medical illnesses.

  20. Measurement-Based Care for Refractory Depression: A Clinical Decision Support Model for Clinical Research and Practice

    PubMed Central

    Trivedi, Madhukar H.; Daly, Ella J.

    2009-01-01

    Despite years of antidepressant drug development and patient and provider education, suboptimal medication dosing and duration of exposure resulting in incomplete remission of symptoms remains the norm in the treatment of depression. Additionally, since no one treatment is effective for all patients, optimal implementation focusing on the measurement of symptoms, side effects, and function is essential to determine effective sequential treatment approaches. There is a need for a paradigm shift in how clinical decision making is incorporated into clinical practice and for a move away from the trial-and-error approach that currently determines the “next best” treatment. This paper describes how our experience with the Texas Medication Algorithm Project (TMAP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial has confirmed the need for easy-to-use clinical support systems to ensure fidelity to guidelines. To further enhance guideline fidelity, we have developed an electronic decision support system that provides critical feedback and guidance at the point of patient care. We believe that a measurement-based care (MBC) approach is essential to any decision support system, allowing physicians to individualize and adapt decisions about patient care based on symptom progress, tolerability of medication, and dose optimization. We also believe that successful integration of sequential algorithms with MBC into real-world clinics will facilitate change that will endure and improve patient outcomes. Although we use major depression to illustrate our approach, the issues addressed are applicable to other chronic psychiatric conditions including comorbid depression and substance use disorder as well as other medical illnesses. PMID:17320312

  1. Mobile Clinical Decision Support Systems in Our Hands - Great Potential but also a Concern.

    PubMed

    Masic, Izet; Begic, Edin

    2016-01-01

    Due to the powerful computer resources as well as the availability of today's mobile devices, a special field of mobile systems for clinical decision support in medicine has been developed. The benefits of these applications (systems) are: availability of necessary hardware (mobile phones, tablets and phablets are widespread, and can be purchased at a relatively affordable price), availability of mobile applications (free or for a "small" amount of money) and also mobile applications are tailored for easy use and save time of clinicians in their daily work. In these systems lies a huge potential, and certainly a great economic benefit, so this issue must be approached multidisciplinary.

  2. Understanding complex clinical reasoning in infectious diseases for improving clinical decision support design.

    PubMed

    Islam, Roosan; Weir, Charlene R; Jones, Makoto; Del Fiol, Guilherme; Samore, Matthew H

    2015-11-30

    Clinical experts' cognitive mechanisms for managing complexity have implications for the design of future innovative healthcare systems. The purpose of the study is to examine the constituents of decision complexity and explore the cognitive strategies clinicians use to control and adapt to their information environment. We used Cognitive Task Analysis (CTA) methods to interview 10 Infectious Disease (ID) experts at the University of Utah and Salt Lake City Veterans Administration Medical Center. Participants were asked to recall a complex, critical and vivid antibiotic-prescribing incident using the Critical Decision Method (CDM), a type of Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision Method, questions were posed to fully explore the incident, focusing in depth on the clinical components underlying the complexity. Probes were included to assess cognitive and decision strategies used by participants. The following three themes emerged as the constituents of decision complexity experienced by the Infectious Diseases experts: 1) the overall clinical picture does not match the pattern, 2) a lack of comprehension of the situation and 3) dealing with social and emotional pressures such as fear and anxiety. All these factors contribute to decision complexity. These factors almost always occurred together, creating unexpected events and uncertainty in clinical reasoning. Five themes emerged in the analyses of how experts deal with the complexity. Expert clinicians frequently used 1) watchful waiting instead of over- prescribing antibiotics, engaged in 2) theory of mind to project and simulate other practitioners' perspectives, reduced very complex cases into simple 3) heuristics, employed 4) anticipatory thinking to plan and re-plan events and consulted with peers to share knowledge, solicit opinions and 5) seek help on patient cases. The cognitive strategies to deal with decision complexity found in this study have important

  3. An integrated decision support system for diagnosing and managing patients with community-acquired pneumonia.

    PubMed Central

    Aronsky, D.; Haug, P. J.

    1999-01-01

    Decision support systems that integrate guidelines have become popular applications to reduce variation and deliver cost-effective care. However, adverse characteristics of decision support systems, such as additional and time-consuming data entry or manually identifying eligible patients, result in a "behavioral bottleneck" that prevents decision support systems to become part of the clinical routine. This paper describes the design and the implementation of an integrated decision support system that explores a novel approach for bypassing the behavioral bottleneck. The real-time decision support system does not require health care providers to enter additional data and consists of a diagnostic and a management component. Images Fig. 1 Fig. 2 Fig. 3 PMID:10566348

  4. A clinical decision support system prototype for cardiovascular intensive care.

    PubMed

    Lau, F

    1994-08-01

    This paper describes the development and validation of a decision-support system prototype that can help manage hypovolemic hypotension in the Cardiovascular Intensive Care Unit (CVICU). The prototype uses physiologic pattern-matching, therapeutic protocols, computational drug-dosage response modeling and expert reasoning heuristics in its selection of intervention strategies and choices. As part of model testing, the prototype simulated real-time operation by processing historical physiologic and intervention data on a patient sequentially, generating alerts on questionable data, critiques of interventions instituted and recommendations on preferred interventions. Bench-testing with 399 interventions from 13 historical cases showed therapies for bleeding and fluid replacement proposed by the prototype were significantly more consistent (p < 0.0001) than those instituted by the staff when compared against expert critiques (80% versus 44%). This study has demonstrated the feasibility of formalizing hemodynamic management of CVICU patients in a manner that may be implemented and evaluated in a clinical setting.

  5. IBM's Health Analytics and Clinical Decision Support.

    PubMed

    Kohn, M S; Sun, J; Knoop, S; Shabo, A; Carmeli, B; Sow, D; Syed-Mahmood, T; Rapp, W

    2014-08-15

    This survey explores the role of big data and health analytics developed by IBM in supporting the transformation of healthcare by augmenting evidence-based decision-making. Some problems in healthcare and strategies for change are described. It is argued that change requires better decisions, which, in turn, require better use of the many kinds of healthcare information. Analytic resources that address each of the information challenges are described. Examples of the role of each of the resources are given. There are powerful analytic tools that utilize the various kinds of big data in healthcare to help clinicians make more personalized, evidenced-based decisions. Such resources can extract relevant information and provide insights that clinicians can use to make evidence-supported decisions. There are early suggestions that these resources have clinical value. As with all analytic tools, they are limited by the amount and quality of data. Big data is an inevitable part of the future of healthcare. There is a compelling need to manage and use big data to make better decisions to support the transformation of healthcare to the personalized, evidence-supported model of the future. Cognitive computing resources are necessary to manage the challenges in employing big data in healthcare. Such tools have been and are being developed. The analytic resources, themselves, do not drive, but support healthcare transformation.

  6. An Automated System for Generating Situation-Specific Decision Support in Clinical Order Entry from Local Empirical Data

    ERIC Educational Resources Information Center

    Klann, Jeffrey G.

    2011-01-01

    Clinical Decision Support is one of the only aspects of health information technology that has demonstrated decreased costs and increased quality in healthcare delivery, yet it is extremely expensive and time-consuming to create, maintain, and localize. Consequently, a majority of health care systems do not utilize it, and even when it is…

  7. Employing clinical decision support to attain our strategic goal: the safe care of the surgical patient.

    PubMed

    Magid, Steven K; Pancoast, Paul E; Fields, Theodore; Bradley, Diane G; Williams, Robert B

    2007-01-01

    Clinical decision support can be employed to increase patient safety and improve workflow efficiencies for physicians and other healthcare providers. Physician input into the design and deployment of clinical decision support systems can increase the utility of the alerts and reduce the likelihood of "alert fatigue." The Hospital for Special Surgery is a 146-bed orthopedic facility that performs approximately 18,000 surgeries a year Efficient work processes are a necessity. The facility began implementing a new electronic health record system in June 2005 and plan to go live in summer 2007. This article reports on some of the clinical decision support rules and alerts being incorporated into the facility's system in the following categories--high-risk, high-frequency scenarios, rules that provide efficiencies and value from the presciber perspective, and rules that relate to patient safety.

  8. Acceptance of clinical decision support surveillance technology in the clinical pharmacy.

    PubMed

    English, Dan; Ankem, Kalyani; English, Kathleen

    2017-03-01

    There are clinical and economic benefits to incorporating clinical decision support systems (CDSSs) in patient care interventions in the clinical pharmacy setting. However, user dissatisfaction and resistance to HIT can prevent optimal use of such systems, particularly when users employ system workarounds and overrides. The present study applied a modified version of the unified theory of acceptance and use of technology (UTAUT) to evaluate the disposition and satisfaction with CDSS among clinical pharmacists who perform surveillance to identify potential medication therapy interventions on patients in the hospital setting. A survey of clinical pharmacists (N = 48) was conducted. Partial least squares (PLS) regression was used to analyze the influence of the UTAUT-related variables on behavioral intention and satisfaction with CDSS among clinical pharmacists. While behavioral intention did not predict actual use of HIT, facilitating conditions had a direct effect on pharmacists' use of CDSS. Likewise, satisfaction with CDSS was found to have a direct effect on use, with more satisfied users being less inclined to employ workarounds or overrides of the system. Based on the findings, organizational structures that facilitate CDSS use and user satisfaction affect the extent to which pharmacy and health care management maximize use in the clinical pharmacy setting.

  9. Reducing Diagnostic Error with Computer-Based Clinical Decision Support

    ERIC Educational Resources Information Center

    Greenes, Robert A.

    2009-01-01

    Information technology approaches to delivering diagnostic clinical decision support (CDS) are the subject of the papers to follow in the proceedings. These will address the history of CDS and present day approaches (Miller), evaluation of diagnostic CDS methods (Friedman), and the role of clinical documentation in supporting diagnostic decision…

  10. Decision support systems in health economics.

    PubMed

    Quaglini, S; Dazzi, L; Stefanelli, M; Barosi, G; Marchetti, M

    1999-08-01

    This article describes a system addressed to different health care professionals for building, using, and sharing decision support systems for resource allocation. The system deals with selected areas, namely the choice of diagnostic tests, the therapy planning, and the instrumentation purchase. Decision support is based on decision-analytic models, incorporating an explicit knowledge representation of both the medical domain knowledge and the economic evaluation theory. Application models are built on top of meta-models, that are used as guidelines for making explicit both the cost and effectiveness components. This approach improves the transparency and soundness of the collaborative decision-making process and facilitates the result interpretation.

  11. An Environment for Guideline-based Decision Support Systems for Outpatients Monitoring.

    PubMed

    Zini, Elisa M; Lanzola, Giordano; Bossi, Paolo; Quaglini, Silvana

    2017-08-11

    We propose an architecture for monitoring outpatients that relies on mobile technologies for acquiring data. The goal is to better control the onset of possible side effects between the scheduled visits at the clinic. We analyze the architectural components required to ensure a high level of abstraction from data. Clinical practice guidelines were formalized with Alium, an authoring tool based on the PROforma language, using SNOMED-CT as a terminology standard. The Alium engine is accessible through a set of APIs that may be leveraged for implementing an application based on standard web technologies to be used by doctors at the clinic. Data sent by patients using mobile devices need to be complemented with those already available in the Electronic Health Record to generate personalized recommendations. Thus a middleware pursuing data abstraction is required. To comply with current standards, we adopted the HL7 Virtual Medical Record for Clinical Decision Support Logical Model, Release 2. The developed architecture for monitoring outpatients includes: (1) a guideline-based Decision Support System accessible through a web application that helps the doctors with prevention, diagnosis and treatment of therapy side effects; (2) an application for mobile devices, which allows patients to regularly send data to the clinic. In order to tailor the monitoring procedures to the specific patient, the Decision Support System also helps physicians with the configuration of the mobile application, suggesting the data to be collected and the associated collection frequency that may change over time, according to the individual patient's conditions. A proof of concept has been developed with a system for monitoring the side effects of chemo-radiotherapy in head and neck cancer patients. Our environment introduces two main innovation elements with respect to similar works available in the literature. First, in order to meet the specific patients' needs, in our work the Decision

  12. Mobile Clinical Decision Support System for Acid-base Balance Diagnosis and Treatment Recommendation.

    PubMed

    Mandzuka, Mensur; Begic, Edin; Boskovic, Dusanka; Begic, Zijo; Masic, Izet

    2017-06-01

    This paper presents mobile application implementing a decision support system for acid-base disorder diagnosis and treatment recommendation. The application was developed using the official integrated development environment for the Android platform (to maximize availability and minimize investments in specialized hardware) called Android Studio. The application identifies disorder, based on the blood gas analysis, evaluates whether the disorder has been compensated, and based on additional input related to electrolyte imbalance, provides recommendations for treatment. The application is a tool in the hands of the user, which provides assistance during acid-base disorders treatment. The application will assist the physician in clinical practice and is focused on the treatment in intensive care.

  13. Construction of a clinical decision support system for undergoing surgery based on domain ontology and rules reasoning.

    PubMed

    Bau, Cho-Tsan; Chen, Rung-Ching; Huang, Chung-Yi

    2014-05-01

    To construct a clinical decision support system (CDSS) for undergoing surgery based on domain ontology and rules reasoning in the setting of hospitalized diabetic patients. The ontology was created with a modified ontology development method, including specification and conceptualization, formalization, implementation, and evaluation and maintenance. The Protégé-Web Ontology Language editor was used to implement the ontology. Embedded clinical knowledge was elicited to complement the domain ontology with formal concept analysis. The decision rules were translated into JENA format, which JENA can use to infer recommendations based on patient clinical situations. The ontology includes 31 classes and 13 properties, plus 38 JENA rules that were built to generate recommendations. The evaluation studies confirmed the correctness of the ontology, acceptance of recommendations, satisfaction with the system, and usefulness of the ontology for glycemic management of diabetic patients undergoing surgery, especially for domain experts. The contribution of this research is to set up an evidence-based hybrid ontology and an evaluation method for CDSS. The system can help clinicians to achieve inpatient glycemic control in diabetic patients undergoing surgery while avoiding hypoglycemia.

  14. Reasons For Physicians Not Adopting Clinical Decision Support Systems: Critical Analysis.

    PubMed

    Khairat, Saif; Marc, David; Crosby, William; Al Sanousi, Ali

    2018-04-18

    Clinical decision support systems (CDSSs) are an integral component of today's health information technologies. They assist with interpretation, diagnosis, and treatment. A CDSS can be embedded throughout the patient safety continuum providing reminders, recommendations, and alerts to health care providers. Although CDSSs have been shown to reduce medical errors and improve patient outcomes, they have fallen short of their full potential. User acceptance has been identified as one of the potential reasons for this shortfall. The purpose of this paper was to conduct a critical review and task analysis of CDSS research and to develop a new framework for CDSS design in order to achieve user acceptance. A critical review of CDSS papers was conducted with a focus on user acceptance. To gain a greater understanding of the problems associated with CDSS acceptance, we conducted a task analysis to identify and describe the goals, user input, system output, knowledge requirements, and constraints from two different perspectives: the machine (ie, the CDSS engine) and the user (ie, the physician). Favorability of CDSSs was based on user acceptance of clinical guidelines, reminders, alerts, and diagnostic suggestions. We propose two models: (1) the user acceptance and system adaptation design model, which includes optimizing CDSS design based on user needs/expectations, and (2) the input-process-output-engagemodel, which reveals to users the processes that govern CDSS outputs. This research demonstrates that the incorporation of the proposed models will improve user acceptance to support the beneficial effects of CDSSs adoption. Ultimately, if a user does not accept technology, this not only poses a threat to the use of the technology but can also pose a threat to the health and well-being of patients. ©Saif Khairat, David Marc, William Crosby, Ali Al Sanousi. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 18.04.2018.

  15. Clinical Decision Support Knowledge Management: Strategies for Success.

    PubMed

    Khalifa, Mohamed; Alswailem, Osama

    2015-01-01

    Clinical Decision Support Systems have been shown to increase quality of care, patient safety, improve adherence to guidelines for prevention and treatment, and avoid medication errors. Such systems depend mainly on two types of content; the clinical information related to patients and the medical knowledge related to the specialty that informs the system rules and alerts. At King Faisal Specialist Hospital and Research Center, Saudi Arabia, the Health Information Technology Affairs worked on identifying best strategies and recommendations for successful CDSS knowledge management. A review of literature was conducted to identify main areas of challenges and factors of success. A qualitative survey was used over six months' duration to collect opinions, experiences and suggestions from both IT and healthcare professionals. Recommendations were categorized into ten main topics that should be addressed during the development and implementation of CDSS knowledge management tools in the hospital.

  16. Direct and Electronic Health Record Access to the Clinical Decision Support for Immunizations in the Minnesota Immunization Information System.

    PubMed

    Rajamani, Sripriya; Bieringer, Aaron; Wallerius, Stephanie; Jensen, Daniel; Winden, Tamara; Muscoplat, Miriam Halstead

    2016-01-01

    Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.

  17. Decision support system for health care resources allocation

    PubMed Central

    Sebaa, Abderrazak; Nouicer, Amina; Tari, AbdelKamel; Tarik, Ramtani; Abdellah, Ouhab

    2017-01-01

    Background A study about healthcare resources can improve decisions regarding the allotment and mobilization of medical resources and to better guide future investment in the health sector. Aim The aim of this work was to design and implement a decision support system to improve medical resources allocation of Bejaia region. Methods To achieve the retrospective cohort study, we integrated existing clinical databases from different Bejaia department health sector institutions (an Algerian department) to collect information about patients from January 2015 through December 2015. Data integration was performed in a data warehouse using the multi-dimensional model and OLAP cube. During implementation, we used Microsoft SQL server 2012 and Microsoft Excel 2010. Results A medical decision support platform was introduced, and was implemented during the planning stages allowing the management of different medical orientations, it provides better apportionment and allotment of medical resources, and ensures that the allocation of health care resources has optimal effects on improving health. Conclusion In this study, we designed and implemented a decision support system which would improve health care in Bejaia department to especially assist in the selection of the optimum location of health center and hospital, the specialty of the health center, the medical equipment and the medical staff. PMID:28848645

  18. Decision support system for health care resources allocation.

    PubMed

    Sebaa, Abderrazak; Nouicer, Amina; Tari, AbdelKamel; Tarik, Ramtani; Abdellah, Ouhab

    2017-06-01

    A study about healthcare resources can improve decisions regarding the allotment and mobilization of medical resources and to better guide future investment in the health sector. The aim of this work was to design and implement a decision support system to improve medical resources allocation of Bejaia region. To achieve the retrospective cohort study, we integrated existing clinical databases from different Bejaia department health sector institutions (an Algerian department) to collect information about patients from January 2015 through December 2015. Data integration was performed in a data warehouse using the multi-dimensional model and OLAP cube. During implementation, we used Microsoft SQL server 2012 and Microsoft Excel 2010. A medical decision support platform was introduced, and was implemented during the planning stages allowing the management of different medical orientations, it provides better apportionment and allotment of medical resources, and ensures that the allocation of health care resources has optimal effects on improving health. In this study, we designed and implemented a decision support system which would improve health care in Bejaia department to especially assist in the selection of the optimum location of health center and hospital, the specialty of the health center, the medical equipment and the medical staff.

  19. Toward the Modularization of Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Raskin, R. G.

    2009-12-01

    Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.

  20. The experience of physicians in pharmacogenomic clinical decision support within eight German university hospitals.

    PubMed

    Hinderer, Marc; Boeker, Martin; Wagner, Sebastian A; Binder, Harald; Ückert, Frank; Newe, Stephanie; Hülsemann, Jan L; Neumaier, Michael; Schade-Brittinger, Carmen; Acker, Till; Prokosch, Hans-Ulrich; Sedlmayr, Brita

    2017-06-01

    The aim of this study was to assess the physicians' attitude, their knowledge and their experience in pharmacogenomic clinical decision support in German hospitals. We conducted an online survey to address physicians of 13 different medical specialties across eight German university hospitals. In total, 564 returned questionnaires were analyzed. The remaining knowledge gap, the uncertainty of test reimbursement and the physicians' lack of awareness of existing pharmacogenomic clinical decision support systems (CDSS) are the major barriers for implementing pharmacogenomic CDSS into German hospitals. Furthermore, pharmacogenomic CDSS are most effective in the form of real-time decision support for internists. Physicians in German hospitals require additional education of both genetics and pharmacogenomics. They need to be provided with access to relevant pharmacogenomic CDSS.

  1. SANDS: an architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2007-10-11

    A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics.

  2. Evolutionary and Neural Computing Based Decision Support System for Disease Diagnosis from Clinical Data Sets in Medical Practice.

    PubMed

    Sudha, M

    2017-09-27

    As a recent trend, various computational intelligence and machine learning approaches have been used for mining inferences hidden in the large clinical databases to assist the clinician in strategic decision making. In any target data the irrelevant information may be detrimental, causing confusion for the mining algorithm and degrades the prediction outcome. To address this issue, this study attempts to identify an intelligent approach to assist disease diagnostic procedure using an optimal set of attributes instead of all attributes present in the clinical data set. In this proposed Application Specific Intelligent Computing (ASIC) decision support system, a rough set based genetic algorithm is employed in pre-processing phase and a back propagation neural network is applied in training and testing phase. ASIC has two phases, the first phase handles outliers, noisy data, and missing values to obtain a qualitative target data to generate appropriate attribute reduct sets from the input data using rough computing based genetic algorithm centred on a relative fitness function measure. The succeeding phase of this system involves both training and testing of back propagation neural network classifier on the selected reducts. The model performance is evaluated with widely adopted existing classifiers. The proposed ASIC system for clinical decision support has been tested with breast cancer, fertility diagnosis and heart disease data set from the University of California at Irvine (UCI) machine learning repository. The proposed system outperformed the existing approaches attaining the accuracy rate of 95.33%, 97.61%, and 93.04% for breast cancer, fertility issue and heart disease diagnosis.

  3. Consensus Recommendations for Systematic Evaluation of Drug-Drug Interaction Evidence for Clinical Decision Support

    PubMed Central

    Scheife, Richard T.; Hines, Lisa E.; Boyce, Richard D.; Chung, Sophie P.; Momper, Jeremiah; Sommer, Christine D.; Abernethy, Darrell R.; Horn, John; Sklar, Stephen J.; Wong, Samantha K.; Jones, Gretchen; Brown, Mary; Grizzle, Amy J.; Comes, Susan; Wilkins, Tricia Lee; Borst, Clarissa; Wittie, Michael A.; Rich, Alissa; Malone, Daniel C.

    2015-01-01

    Background Healthcare organizations, compendia, and drug knowledgebase vendors use varying methods to evaluate and synthesize evidence on drug-drug interactions (DDIs). This situation has a negative effect on electronic prescribing and medication information systems that warn clinicians of potentially harmful medication combinations. Objective To provide recommendations for systematic evaluation of evidence from the scientific literature, drug product labeling, and regulatory documents with respect to DDIs for clinical decision support. Methods A conference series was conducted to develop a structured process to improve the quality of DDI alerting systems. Three expert workgroups were assembled to address the goals of the conference. The Evidence Workgroup consisted of 15 individuals with expertise in pharmacology, drug information, biomedical informatics, and clinical decision support. Workgroup members met via webinar from January 2013 to February 2014. Two in-person meetings were conducted in May and September 2013 to reach consensus on recommendations. Results We developed expert-consensus answers to three key questions: 1) What is the best approach to evaluate DDI evidence?; 2) What evidence is required for a DDI to be applicable to an entire class of drugs?; and 3) How should a structured evaluation process be vetted and validated? Conclusion Evidence-based decision support for DDIs requires consistent application of transparent and systematic methods to evaluate the evidence. Drug information systems that implement these recommendations should be able to provide higher quality information about DDIs in drug compendia and clinical decision support tools. PMID:25556085

  4. Automatic system testing of a decision support system for insulin dosing using Google Android.

    PubMed

    Spat, Stephan; Höll, Bernhard; Petritsch, Georg; Schaupp, Lukas; Beck, Peter; Pieber, Thomas R

    2013-01-01

    Hyperglycaemia in hospitalized patients is a common and costly health care problem. The GlucoTab system is a mobile workflow and decision support system, aiming to facilitate efficient and safe glycemic control of non-critically ill patients. Being a medical device, the GlucoTab requires extensive and reproducible testing. A framework for high-volume, reproducible and automated system testing of the GlucoTab system was set up applying several Open Source tools for test automation and system time handling. The REACTION insulin titration protocol was investigated in a paper-based clinical trial (PBCT). In order to validate the GlucoTab system, data from this trial was used for simulation and system tests. In total, 1190 decision support action points were identified and simulated. Four data points (0.3%) resulted in a GlucoTab system error caused by a defective implementation. In 144 data points (12.1%), calculation errors of physicians and nurses in the PBCT were detected. The test framework was able to verify manual calculation of insulin doses and detect relatively many user errors and workflow anomalies in the PBCT data. This shows the high potential of the electronic decision support application to improve safety of implementation of an insulin titration protocol and workflow management system in clinical wards.

  5. Design, implementation, use, and preliminary evaluation of SEBASTIAN, a standards-based Web service for clinical decision support.

    PubMed

    Kawamoto, Kensaku; Lobach, David F

    2005-01-01

    Despite their demonstrated ability to improve care quality, clinical decision support systems are not widely used. In part, this limited use is due to the difficulty of sharing medical knowledge in a machine-executable format. To address this problem, we developed a decision support Web service known as SEBASTIAN. In SEBASTIAN, individual knowledge modules define the data requirements for assessing a patient, the conclusions that can be drawn using that data, and instructions on how to generate those conclusions. Using standards-based XML messages transmitted over HTTP, client decision support applications provide patient data to SEBASTIAN and receive patient-specific assessments and recommendations. SEBASTIAN has been used to implement four distinct decision support systems; an architectural overview is provided for one of these systems. Preliminary assessments indicate that SEBASTIAN fulfills all original design objectives, including the re-use of executable medical knowledge across diverse applications and care settings, the straightforward authoring of knowledge modules, and use of the framework to implement decision support applications with significant clinical utility.

  6. Acceptance and barriers pertaining to a general practice decision support system for multiple clinical conditions: A mixed methods evaluation.

    PubMed

    Arts, Derk L; Medlock, Stephanie K; van Weert, Henk C P M; Wyatt, Jeremy C; Abu-Hanna, Ameen

    2018-01-01

    Many studies have investigated the use of clinical decision support systems as a means to improve care, but have thus far failed to show significant effects on patient-related outcomes. We developed a clinical decision support system that attempted to address issues that were identified in these studies. The system was implemented in Dutch general practice and was designed to be both unobtrusive and to respond in real time. Despite our efforts, usage of the system was low. In the current study we perform a mixed methods evaluation to identify remediable barriers which led to disappointing usage rates for our system. A mixed methods evaluation employing an online questionnaire and focus group. The focus group was organized to clarify free text comments and receive more detailed feedback from general practitioners. Topics consisted of items based on results from the survey and additional open questions. The response rate for the questionnaire was 94%. Results from the questionnaire and focus group can be summarized as follows: The system was perceived as interruptive, despite its design. Participants felt that there were too many recommendations and that the relevance of the recommendations varied. Demographic based recommendations (e.g. age) were often irrelevant, while specific risk-based recommendations (e.g. diagnosis) were more relevant. The other main barrier to use was lack of time during the patient visit. These results are likely to be useful to other researchers who are attempting to address the problems of interruption and alert fatigue in decision support.

  7. Mobile Clinical Decision Support System for Acid-base Balance Diagnosis and Treatment Recommendation

    PubMed Central

    Mandzuka, Mensur; Begic, Edin; Boskovic, Dusanka; Begic, Zijo; Masic, Izet

    2017-01-01

    Introduction: This paper presents mobile application implementing a decision support system for acid-base disorder diagnosis and treatment recommendation. Material and methods: The application was developed using the official integrated development environment for the Android platform (to maximize availability and minimize investments in specialized hardware) called Android Studio. Results: The application identifies disorder, based on the blood gas analysis, evaluates whether the disorder has been compensated, and based on additional input related to electrolyte imbalance, provides recommendations for treatment. Conclusion: The application is a tool in the hands of the user, which provides assistance during acid-base disorders treatment. The application will assist the physician in clinical practice and is focused on the treatment in intensive care. PMID:28883678

  8. GELLO: an object-oriented query and expression language for clinical decision support.

    PubMed

    Sordo, Margarita; Ogunyemi, Omolola; Boxwala, Aziz A; Greenes, Robert A

    2003-01-01

    GELLO is a purpose-specific, object-oriented (OO) query and expression language. GELLO is the result of a concerted effort of the Decision Systems Group (DSG) working with the HL7 Clinical Decision Support Technical Committee (CDSTC) to provide the HL7 community with a common format for data encoding and manipulation. GELLO will soon be submitted for ballot to the HL7 CDSTC for consideration as a standard.

  9. Developing an Interactive Data Visualization Tool to Assess the Impact of Decision Support on Clinical Operations.

    PubMed

    Huber, Timothy C; Krishnaraj, Arun; Monaghan, Dayna; Gaskin, Cree M

    2018-05-18

    Due to mandates from recent legislation, clinical decision support (CDS) software is being adopted by radiology practices across the country. This software provides imaging study decision support for referring providers at the point of order entry. CDS systems produce a large volume of data, providing opportunities for research and quality improvement. In order to better visualize and analyze trends in this data, an interactive data visualization dashboard was created using a commercially available data visualization platform. Following the integration of a commercially available clinical decision support product into the electronic health record, a dashboard was created using a commercially available data visualization platform (Tableau, Seattle, WA). Data generated by the CDS were exported from the data warehouse, where they were stored, into the platform. This allowed for real-time visualization of the data generated by the decision support software. The creation of the dashboard allowed the output from the CDS platform to be more easily analyzed and facilitated hypothesis generation. Integrating data visualization tools into clinical decision support tools allows for easier data analysis and can streamline research and quality improvement efforts.

  10. Evaluation of real-time clinical decision support systems for platelet and cryoprecipitate orders.

    PubMed

    Collins, Ryan A; Triulzi, Darrell J; Waters, Jonathan H; Reddy, Vivek; Yazer, Mark H

    2014-01-01

    To evaluate cryoprecipitate and platelet ordering practices after the implementation of real-time clinical decision support systems (CDSSs) in a computerized physician order entry (CPOE) system. Uniform platelet and cryoprecipitate transfusion thresholds were implemented at 11 hospitals in a regional health care system with a common CPOE system. Over 6 months, a variety of information was collected on the ordering physicians and the number of alerts generated by the CDSSs when these products were ordered outside of the institutional guidelines. There were 1,889 orders for platelets and 152 orders for cryoprecipitate placed in 6 months. Of these, 1,102 (58.3%) platelet and 74 (48.7%) cryoprecipitate orders triggered an alert. The proportion of orders canceled after an alert was generated ranged from 13.5% to 17.9% for platelets and 0% to 50.0% for cryoprecipitate orders. CDSS alerts reduce, but do not eliminate, platelet and cryoprecipitate transfusions that do not meet institutional guidelines.

  11. Computer Decision Support to Improve Autism Screening and Care in Community Pediatric Clinics

    ERIC Educational Resources Information Center

    Bauer, Nerissa S.; Sturm, Lynne A.; Carroll, Aaron E.; Downs, Stephen M.

    2013-01-01

    An autism module was added to an existing computer decision support system (CDSS) to facilitate adherence to recommended guidelines for screening for autism spectrum disorders in primary care pediatric clinics. User satisfaction was assessed by survey and informal feedback at monthly meetings between clinical staff and the software team. To assess…

  12. Development of the Supported Decision Making Inventory System.

    PubMed

    Shogren, Karrie A; Wehmeyer, Michael L; Uyanik, Hatice; Heidrich, Megan

    2017-12-01

    Supported decision making has received increased attention as an alternative to guardianship and a means to enable people with intellectual and developmental disabilities to exercise their right to legal capacity. Assessments are needed that can used by people with disabilities and their systems of supports to identify and plan for needed supports to enable decision making. This article describes the steps taken to develop such an assessment tool, the Supported Decision Making Inventory System (SDMIS), and initial feedback received from self-advocates with intellectual disability. The three sections of the SDMIS (Supported Decision Making Personal Factors Inventory, Supported Decision Making Environmental Demands Inventory, and Decision Making Autonomy Inventory) are described and implications for future research, policy, and practice are discussed.

  13. Analysis of Nursing Clinical Decision Support Requests and Strategic Plan in a Large Academic Health System

    PubMed Central

    Bavuso, Karen; Bouyer-Ferullo, Sharon; Goldsmith, Denise; Fairbanks, Amanda; Gesner, Emily; Lagor, Charles; Collins, Sarah

    2016-01-01

    Summary Objectives To understand requests for nursing Clinical Decision Support (CDS) interventions at a large integrated health system undergoing vendor-based EHR implementation. In addition, to establish a process to guide both short-term implementation and long-term strategic goals to meet nursing CDS needs. Materials and Methods We conducted an environmental scan to understand current state of nursing CDS over three months. The environmental scan consisted of a literature review and an analysis of CDS requests received from across our health system. We identified existing high priority CDS and paper-based tools used in nursing practice at our health system that guide decision-making. Results A total of 46 nursing CDS requests were received. Fifty-six percent (n=26) were specific to a clinical specialty; 22 percent (n=10) were focused on facilitating clinical consults in the inpatient setting. “Risk Assessments/Risk Reduction/Promotion of Healthy Habits” (n=23) was the most requested High Priority Category received for nursing CDS. A continuum of types of nursing CDS needs emerged using the Data-Information-Knowledge-Wisdom Conceptual Framework: 1) facilitating data capture, 2) meeting information needs, 3) guiding knowledge-based decision making, and 4) exposing analytics for wisdom-based clinical interpretation by the nurse. Conclusion Identifying and prioritizing paper-based tools that can be modified into electronic CDS is a challenge. CDS strategy is an evolving process that relies on close collaboration and engagement with clinical sites for short-term implementation and should be incorporated into a long-term strategic plan that can be optimized and achieved overtime. The Data-Information-Knowledge-Wisdom Conceptual Framework in conjunction with the High Priority Categories established may be a useful tool to guide a strategic approach for meeting short-term nursing CDS needs and aligning with the organizational strategic plan. PMID:27437036

  14. Analysis of Nursing Clinical Decision Support Requests and Strategic Plan in a Large Academic Health System.

    PubMed

    Whalen, Kimberly; Bavuso, Karen; Bouyer-Ferullo, Sharon; Goldsmith, Denise; Fairbanks, Amanda; Gesner, Emily; Lagor, Charles; Collins, Sarah

    2016-01-01

    To understand requests for nursing Clinical Decision Support (CDS) interventions at a large integrated health system undergoing vendor-based EHR implementation. In addition, to establish a process to guide both short-term implementation and long-term strategic goals to meet nursing CDS needs. We conducted an environmental scan to understand current state of nursing CDS over three months. The environmental scan consisted of a literature review and an analysis of CDS requests received from across our health system. We identified existing high priority CDS and paper-based tools used in nursing practice at our health system that guide decision-making. A total of 46 nursing CDS requests were received. Fifty-six percent (n=26) were specific to a clinical specialty; 22 percent (n=10) were focused on facilitating clinical consults in the inpatient setting. "Risk Assessments/Risk Reduction/Promotion of Healthy Habits" (n=23) was the most requested High Priority Category received for nursing CDS. A continuum of types of nursing CDS needs emerged using the Data-Information-Knowledge-Wisdom Conceptual Framework: 1) facilitating data capture, 2) meeting information needs, 3) guiding knowledge-based decision making, and 4) exposing analytics for wisdom-based clinical interpretation by the nurse. Identifying and prioritizing paper-based tools that can be modified into electronic CDS is a challenge. CDS strategy is an evolving process that relies on close collaboration and engagement with clinical sites for short-term implementation and should be incorporated into a long-term strategic plan that can be optimized and achieved overtime. The Data-Information-Knowledge-Wisdom Conceptual Framework in conjunction with the High Priority Categories established may be a useful tool to guide a strategic approach for meeting short-term nursing CDS needs and aligning with the organizational strategic plan.

  15. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility.

    PubMed

    Marcos, Mar; Maldonado, Jose A; Martínez-Salvador, Begoña; Boscá, Diego; Robles, Montserrat

    2013-08-01

    Clinical decision-support systems (CDSSs) comprise systems as diverse as sophisticated platforms to store and manage clinical data, tools to alert clinicians of problematic situations, or decision-making tools to assist clinicians. Irrespective of the kind of decision-support task CDSSs should be smoothly integrated within the clinical information system, interacting with other components, in particular with the electronic health record (EHR). However, despite decades of developments, most CDSSs lack interoperability features. We deal with the interoperability problem of CDSSs and EHRs by exploiting the dual-model methodology. This methodology distinguishes a reference model and archetypes. A reference model is represented by a stable and small object-oriented model that describes the generic properties of health record information. For their part, archetypes are reusable and domain-specific definitions of clinical concepts in the form of structured and constrained combinations of the entities of the reference model. We rely on archetypes to make the CDSS compatible with EHRs from different institutions. Concretely, we use archetypes for modelling the clinical concepts that the CDSS requires, in conjunction with a series of knowledge-intensive mappings relating the archetypes to the data sources (EHR and/or other archetypes) they depend on. We introduce a comprehensive approach, including a set of tools as well as methodological guidelines, to deal with the interoperability of CDSSs and EHRs based on archetypes. Archetypes are used to build a conceptual layer of the kind of a virtual health record (VHR) over the EHR whose contents need to be integrated and used in the CDSS, associating them with structural and terminology-based semantics. Subsequently, the archetypes are mapped to the EHR by means of an expressive mapping language and specific-purpose tools. We also describe a case study where the tools and methodology have been employed in a CDSS to support

  16. On implementing clinical decision support: achieving scalability and maintainability by combining business rules and ontologies.

    PubMed

    Kashyap, Vipul; Morales, Alfredo; Hongsermeier, Tonya

    2006-01-01

    We present an approach and architecture for implementing scalable and maintainable clinical decision support at the Partners HealthCare System. The architecture integrates a business rules engine that executes declarative if-then rules stored in a rule-base referencing objects and methods in a business object model. The rules engine executes object methods by invoking services implemented on the clinical data repository. Specialized inferences that support classification of data and instances into classes are identified and an approach to implement these inferences using an OWL based ontology engine is presented. Alternative representations of these specialized inferences as if-then rules or OWL axioms are explored and their impact on the scalability and maintenance of the system is presented. Architectural alternatives for integration of clinical decision support functionality with the invoking application and the underlying clinical data repository; and their associated trade-offs are discussed and presented.

  17. Clinical decision support systems at the Vienna General Hospital using Arden Syntax: Design, implementation, and integration.

    PubMed

    Schuh, Christian; de Bruin, Jeroen S; Seeling, Walter

    2015-12-01

    The Allgemeines Krankenhaus Informations Management (AKIM) project was started at the Vienna General Hospital (VGH) several years ago. This led to the introduction of a new hospital information system (HIS), and the installation of the expert system platform (EXP) for the integration of Arden-Syntax-based clinical decision support systems (CDSSs). In this report we take a look at the milestones achieved and the challenges faced in the creation and modification of CDSSs, and their integration into the HIS over the last three years. We introduce a three-stage development method, which is followed in nearly all CDSS projects at the Medical University of Vienna and the VGH. Stage one comprises requirements engineering and system conception. Stage two focuses on the implementation and testing of the system. Finally, stage three describes the deployment and integration of the system in the VGH HIS. The HIS provides a clinical work environment for healthcare specialists using customizable graphical interfaces known as parametric medical documents. Multiple Arden Syntax servers are employed to host and execute the CDSS knowledge bases: two embedded in the EXP for production and development, and a further three in clinical routine for production, development, and quality assurance. Three systems are discussed; the systems serve different purposes in different clinical areas, but are all implemented with Arden Syntax. MONI-ICU is an automated surveillance system for monitoring healthcare-associated infections in the intensive care setting. TSM-CDS is a CDSS used for risk prediction in the formation of cutaneous melanoma metastases. Finally, TacroDS is a CDSS for the manipulation of dosages for tacrolimus, an immunosuppressive agent used after kidney transplantation. Problems in development and integration were related to data quality or availability, although organizational difficulties also caused delays in development and integration. Since the inception of the AKIM

  18. A decision-support system for the analysis of clinical practice patterns.

    PubMed

    Balas, E A; Li, Z R; Mitchell, J A; Spencer, D C; Brent, E; Ewigman, B G

    1994-01-01

    Several studies documented substantial variation in medical practice patterns, but physicians often do not have adequate information on the cumulative clinical and financial effects of their decisions. The purpose of developing an expert system for the analysis of clinical practice patterns was to assist providers in analyzing and improving the process and outcome of patient care. The developed QFES (Quality Feedback Expert System) helps users in the definition and evaluation of measurable quality improvement objectives. Based on objectives and actual clinical data, several measures can be calculated (utilization of procedures, annualized cost effect of using a particular procedure, and expected utilization based on peer-comparison and case-mix adjustment). The quality management rules help to detect important discrepancies among members of the selected provider group and compare performance with objectives. The system incorporates a variety of data and knowledge bases: (i) clinical data on actual practice patterns, (ii) frames of quality parameters derived from clinical practice guidelines, and (iii) rules of quality management for data analysis. An analysis of practice patterns of 12 family physicians in the management of urinary tract infections illustrates the use of the system.

  19. IBM’s Health Analytics and Clinical Decision Support

    PubMed Central

    Sun, J.; Knoop, S.; Shabo, A.; Carmeli, B.; Sow, D.; Syed-Mahmood, T.; Rapp, W.

    2014-01-01

    Summary Objectives This survey explores the role of big data and health analytics developed by IBM in supporting the transformation of healthcare by augmenting evidence-based decision-making. Methods Some problems in healthcare and strategies for change are described. It is argued that change requires better decisions, which, in turn, require better use of the many kinds of healthcare information. Analytic resources that address each of the information challenges are described. Examples of the role of each of the resources are given. Results There are powerful analytic tools that utilize the various kinds of big data in healthcare to help clinicians make more personalized, evidenced-based decisions. Such resources can extract relevant information and provide insights that clinicians can use to make evidence-supported decisions. There are early suggestions that these resources have clinical value. As with all analytic tools, they are limited by the amount and quality of data. Conclusion Big data is an inevitable part of the future of healthcare. There is a compelling need to manage and use big data to make better decisions to support the transformation of healthcare to the personalized, evidence-supported model of the future. Cognitive computing resources are necessary to manage the challenges in employing big data in healthcare. Such tools have been and are being developed. The analytic resources, themselves, do not drive, but support healthcare transformation. PMID:25123736

  20. Construction of a Clinical Decision Support System for Undergoing Surgery Based on Domain Ontology and Rules Reasoning

    PubMed Central

    Bau, Cho-Tsan; Huang, Chung-Yi

    2014-01-01

    Abstract Objective: To construct a clinical decision support system (CDSS) for undergoing surgery based on domain ontology and rules reasoning in the setting of hospitalized diabetic patients. Materials and Methods: The ontology was created with a modified ontology development method, including specification and conceptualization, formalization, implementation, and evaluation and maintenance. The Protégé–Web Ontology Language editor was used to implement the ontology. Embedded clinical knowledge was elicited to complement the domain ontology with formal concept analysis. The decision rules were translated into JENA format, which JENA can use to infer recommendations based on patient clinical situations. Results: The ontology includes 31 classes and 13 properties, plus 38 JENA rules that were built to generate recommendations. The evaluation studies confirmed the correctness of the ontology, acceptance of recommendations, satisfaction with the system, and usefulness of the ontology for glycemic management of diabetic patients undergoing surgery, especially for domain experts. Conclusions: The contribution of this research is to set up an evidence-based hybrid ontology and an evaluation method for CDSS. The system can help clinicians to achieve inpatient glycemic control in diabetic patients undergoing surgery while avoiding hypoglycemia. PMID:24730353

  1. Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey

    PubMed Central

    Belle, Ashwin; Kon, Mark A.; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest. PMID:23431259

  2. Future of electronic health records: implications for decision support.

    PubMed

    Rothman, Brian; Leonard, Joan C; Vigoda, Michael M

    2012-01-01

    The potential benefits of the electronic health record over traditional paper are many, including cost containment, reductions in errors, and improved compliance by utilizing real-time data. The highest functional level of the electronic health record (EHR) is clinical decision support (CDS) and process automation, which are expected to enhance patient health and healthcare. The authors provide an overview of the progress in using patient data more efficiently and effectively through clinical decision support to improve health care delivery, how decision support impacts anesthesia practice, and how some are leading the way using these systems to solve need-specific issues. Clinical decision support uses passive or active decision support to modify clinician behavior through recommendations of specific actions. Recommendations may reduce medication errors, which would result in considerable savings by avoiding adverse drug events. In selected studies, clinical decision support has been shown to decrease the time to follow-up actions, and prediction has proved useful in forecasting patient outcomes, avoiding costs, and correctly prompting treatment plan modifications by clinicians before engaging in decision-making. Clinical documentation accuracy and completeness is improved by an electronic health record and greater relevance of care data is delivered. Clinical decision support may increase clinician adherence to clinical guidelines, but educational workshops may be equally effective. Unintentional consequences of clinical decision support, such as alert desensitization, can decrease the effectiveness of a system. Current anesthesia clinical decision support use includes antibiotic administration timing, improved documentation, more timely billing, and postoperative nausea and vomiting prophylaxis. Electronic health record implementation offers data-mining opportunities to improve operational, financial, and clinical processes. Using electronic health record data

  3. A clinical decision support system for integrating tuberculosis and HIV care in Kenya: a human-centered design approach.

    PubMed

    Catalani, Caricia; Green, Eric; Owiti, Philip; Keny, Aggrey; Diero, Lameck; Yeung, Ada; Israelski, Dennis; Biondich, Paul

    2014-01-01

    With the aim of integrating HIV and tuberculosis care in rural Kenya, a team of researchers, clinicians, and technologists used the human-centered design approach to facilitate design, development, and deployment processes of new patient-specific TB clinical decision support system for medical providers. In Kenya, approximately 1.6 million people are living with HIV and have a 20-times higher risk of dying of tuberculosis. Although tuberculosis prevention and treatment medication is widely available, proven to save lives, and prioritized by the World Health Organization, ensuring that it reaches the most vulnerable communities remains challenging. Human-centered design, used in the fields of industrial design and information technology for decades, is an approach to improving the effectiveness and impact of innovations that has been scarcely used in the health field. Using this approach, our team followed a 3-step process, involving mixed methods assessment to (1) understand the situation through the collection and analysis of site observation sessions and key informant interviews; (2) develop a new clinical decision support system through iterative prototyping, end-user engagement, and usability testing; and, (3) implement and evaluate the system across 24 clinics in rural West Kenya. Through the application of this approach, we found that human-centered design facilitated the process of digital innovation in a complex and resource-constrained context.

  4. A Clinical Decision Support System for Integrating Tuberculosis and HIV Care in Kenya: A Human-Centered Design Approach

    PubMed Central

    Catalani, Caricia; Green, Eric; Owiti, Philip; Keny, Aggrey; Diero, Lameck; Yeung, Ada; Israelski, Dennis; Biondich, Paul

    2014-01-01

    With the aim of integrating HIV and tuberculosis care in rural Kenya, a team of researchers, clinicians, and technologists used the human-centered design approach to facilitate design, development, and deployment processes of new patient-specific TB clinical decision support system for medical providers. In Kenya, approximately 1.6 million people are living with HIV and have a 20-times higher risk of dying of tuberculosis. Although tuberculosis prevention and treatment medication is widely available, proven to save lives, and prioritized by the World Health Organization, ensuring that it reaches the most vulnerable communities remains challenging. Human-centered design, used in the fields of industrial design and information technology for decades, is an approach to improving the effectiveness and impact of innovations that has been scarcely used in the health field. Using this approach, our team followed a 3-step process, involving mixed methods assessment to (1) understand the situation through the collection and analysis of site observation sessions and key informant interviews; (2) develop a new clinical decision support system through iterative prototyping, end-user engagement, and usability testing; and, (3) implement and evaluate the system across 24 clinics in rural West Kenya. Through the application of this approach, we found that human-centered design facilitated the process of digital innovation in a complex and resource-constrained context. PMID:25170939

  5. Development and impact of computerised decision support systems for clinical management of depression: A systematic review.

    PubMed

    Triñanes, Yolanda; Atienza, Gerardo; Louro-González, Arturo; de-las-Heras-Liñero, Elena; Alvarez-Ariza, María; Palao, Diego J

    2015-01-01

    One of the proposals for improving clinical practice is to introduce computerised decision support systems (CDSS) and integrate these with electronic medical records. Accordingly, this study sought to systematically review evidence on the effectiveness of CDSS in the management of depression. A search was performed in Medline, EMBASE and PsycInfo, in order to do this. The quality of quantitative studies was assessed using the SIGN method, and qualitative studies using the CASPe checklist. Seven studies were identified (3 randomised clinical trials, 3 non-randomised trials, and one qualitative study). The CDSS assessed incorporated content drawn from guidelines and other evidence-based products. In general, the CDSS had a positive impact on different aspects, such as the screening and diagnosis, treatment, improvement in depressive symptoms and quality of life, and referral of patients. The use of CDSS could thus serve to optimise care of depression in various scenarios by providing recommendations based on the best evidence available and facilitating decision-making in clinical practice. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.

  6. A multimedia electronic patient record (ePR) system to improve decision support in pre- and rehabilitation through clinical and movement analysis

    NASA Astrophysics Data System (ADS)

    Liu, Brent; Documet, Jorge; McNitt-Gray, Sarah; Requejo, Phil; McNitt-Gray, Jill

    2011-03-01

    Clinical decisions for improving motor function in patients both with disability as well as improving an athlete's performance are made through clinical and movement analysis. Currently, this analysis facilitates identifying abnormalities in a patient's motor function for a large amount of neuro-musculoskeletal pathologies. However definitively identifying the underlying cause or long-term consequences of a specific abnormality in the patient's movement pattern is difficult since this requires information from multiple sources and formats across different times and currently relies on the experience and intuition of the expert clinician. In addition, this data must be persistent for longitudinal outcomes studies. Therefore a multimedia ePR system integrating imaging informatics data could have a significant impact on decision support within this clinical workflow. We present the design and architecture of such an ePR system as well as the data types that need integration in order to develop relevant decision support tools. Specifically, we will present two data model examples: 1) A performance improvement project involving volleyball athletes and 2) Wheelchair propulsion evaluation of patients with disabilities. The end result is a new frontier area of imaging informatics research within rehabilitation engineering and biomechanics.

  7. Using Visualization in Cockpit Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2005-01-01

    In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.

  8. Referral criteria and clinical decision support: radiological protection aspects for justification.

    PubMed

    Pérez, M del Rosario

    2015-06-01

    Advanced imaging technology has opened new horizons for medical diagnostics and improved patient care. However, many procedures are unjustified and do not provide a net benefit. An area of particular concern is the unnecessary use of radiation when clinical evaluation or other imaging modalities could provide an accurate diagnosis. Referral criteria for medical imaging are consensus statements based on the best-available evidence to assist the decision-making process when choosing the best imaging procedure for a given patient. Although they are advisory rather than compulsory, physicians should have good reasons for deviation from these criteria. Voluntary use of referral criteria has shown limited success compared with integration into clinical decision support systems. These systems support good medical practice, can improve health service delivery, and foster safer, more efficient, fair, cost-effective care, thus contributing to the strengthening of health systems. Justification of procedures and optimisation of protection, the two pillars of radiological protection in health care, are implicit in the notion of good medical practice. However, some health professionals are not familiar with these principles, and have low awareness of radiological protection aspects of justification. A stronger collaboration between radiation protection and healthcare communities could contribute to improve the radiation protection culture in medical practice. © The Chartered Institution of Building Services Engineers 2014.

  9. Personalised Care Plan Management Utilizing Guideline-Driven Clinical Decision Support Systems.

    PubMed

    Laleci Erturkmen, Gokce Banu; Yuksel, Mustafa; Sarigul, Bunyamin; Lilja, Mikael; Chen, Rong; Arvanitis, Theodoros N

    2018-01-01

    Older age is associated with an increased accumulation of multiple chronic conditions. The clinical management of patients suffering from multiple chronic conditions is very complex, disconnected and time-consuming with the traditional care settings. Integrated care is a means to address the growing demand for improved patient experience and health outcomes of multimorbid and long-term care patients. Care planning is a prevalent approach of integrated care, where the aim is to deliver more personalized and targeted care creating shared care plans by clearly articulating the role of each provider and patient in the care process. In this paper, we present a method and corresponding implementation of a semi-automatic care plan management tool, integrated with clinical decision support services which can seamlessly access and assess the electronic health records (EHRs) of the patient in comparison with evidence based clinical guidelines to suggest personalized recommendations for goals and interventions to be added to the individualized care plans.

  10. Clinical Decision Support to Implement CYP2D6 Drug-Gene Interaction.

    PubMed

    Caraballo, Pedro J; Parkulo, Mark; Blair, David; Elliott, Michelle; Schultz, Cloann; Sutton, Joseph; Rao, Padma; Bruflat, Jamie; Bleimeyer, Robert; Crooks, John; Gabrielson, Donald; Nicholson, Wayne; Rohrer Vitek, Carolyn; Wix, Kelly; Bielinski, Suzette J; Pathak, Jyotishman; Kullo, Iftikhar

    2015-01-01

    The level of CYP2D6 metabolic activity can be predicted by pharmacogenomic testing, and concomitant use of clinical decision support has the potential to prevent adverse effects from those drugs metabolized by this enzyme. Our initial findings after implementation of clinical decision support alerts integrated in the electronic health records suggest high feasibility, but also identify important challenges.

  11. Diagnostic accuracy in Family Medicine residents using a clinical decision support system (DXplain): a randomized-controlled trial.

    PubMed

    Martinez-Franco, Adrian Israel; Sanchez-Mendiola, Melchor; Mazon-Ramirez, Juan Jose; Hernandez-Torres, Isaias; Rivero-Lopez, Carlos; Spicer, Troy; Martinez-Gonzalez, Adrian

    2018-05-07

    Clinical reasoning is an essential skill in physicians, required to address the challenges of accurate patient diagnoses. The goal of the study was to compare the diagnostic accuracy in Family Medicine residents, with and without the use of a clinical decision support tool (DXplain http://www.mghlcs.org/projects/dxplain). A total of 87 first-year Family Medicine residents, training at the National Autonomous University of Mexico (UNAM) Postgraduate Studies Division in Mexico City, participated voluntarily in the study. They were randomized to a control group and an intervention group that used DXplain. Both groups solved 30 clinical diagnosis cases (internal medicine, pediatrics, gynecology and emergency medicine) in a multiple-choice question test that had validity evidence. The percent-correct score in the Diagnosis Test in the control group (44 residents) was 74.1±9.4 (mean±standard deviation) whereas the DXplain intervention group (43 residents) had a score of 82.4±8.5 (p<0.001). There were significant differences in the four knowledge content areas of the test. Family Medicine residents have appropriate diagnostic accuracy that can improve with the use of DXplain. This could help decrease diagnostic errors, improve patient safety and the quality of medical practice. The use of clinical decision support systems could be useful in educational interventions and medical practice.

  12. Free and open source enabling technologies for patient-centric, guideline-based clinical decision support: a survey.

    PubMed

    Leong, T Y; Kaiser, K; Miksch, S

    2007-01-01

    Guideline-based clinical decision support is an emerging paradigm to help reduce error, lower cost, and improve quality in evidence-based medicine. The free and open source (FOS) approach is a promising alternative for delivering cost-effective information technology (IT) solutions in health care. In this paper, we survey the current FOS enabling technologies for patient-centric, guideline-based care, and discuss the current trends and future directions of their role in clinical decision support. We searched PubMed, major biomedical informatics websites, and the web in general for papers and links related to FOS health care IT systems. We also relied on our background and knowledge for specific subtopics. We focused on the functionalities of guideline modeling tools, and briefly examined the supporting technologies for terminology, data exchange and electronic health record (EHR) standards. To effectively support patient-centric, guideline-based care, the computerized guidelines and protocols need to be integrated with existing clinical information systems or EHRs. Technologies that enable such integration should be accessible, interoperable, and scalable. A plethora of FOS tools and techniques for supporting different knowledge management and quality assurance tasks involved are available. Many challenges, however, remain in their implementation. There are active and growing trends of deploying FOS enabling technologies for integrating clinical guidelines, protocols, and pathways into the main care processes. The continuing development and maturation of such technologies are likely to make increasingly significant contributions to patient-centric, guideline-based clinical decision support.

  13. Evolution and Evaluation of ECG Interpretation Systems-An Illustration of the Validation of Decision Support Systems

    PubMed Central

    van Bemmel, Jan H.; Kors, Jan A.; Willems, Jos L.; van Herpen, Gerard

    1990-01-01

    The last decade has shown a growing interest in medical decision making, strongly stimulated by the advent of artificial intelligence. This wave of interest is not the first one; it was preceded by other models and approaches to medical decision support. However, not all developments have resulted in equally successful decision support systems. Positive exceptions are the interpretation systems for ECGs that evolved all the way from very primitive attempts to well-accepted and highly-computerized clinical systems for which a major evaluation study (CSE, Common Standards for Quantitative Electrocardiography) is finalized in 1990. The evolution and the evaluation of the systems that took part in this study, is the subject of this paper.

  14. Decision support systems and the healthcare strategic planning process: a case study.

    PubMed

    Lundquist, D L; Norris, R M

    1991-01-01

    The repertoire of applications that comprises health-care decision support systems (DSS) includes analyses of clinical, financial, and operational activities. As a whole, these applications facilitate developing comprehensive and interrelated business and medical models that support the complex decisions required to successfully manage today's health-care organizations. Kennestone Regional Health Care System's use of DSS to facilitate strategic planning has precipitated marked changes in the organization's method of determining capital allocations. This case study discusses Kennestone's use of DSS in the strategic planning process, including profiles of key DSS modeling components.

  15. Development and evaluation of a comprehensive clinical decision support taxonomy: comparison of front-end tools in commercial and internally developed electronic health record systems

    PubMed Central

    Sittig, Dean F; Ash, Joan S; Feblowitz, Joshua; Meltzer, Seth; McMullen, Carmit; Guappone, Ken; Carpenter, Jim; Richardson, Joshua; Simonaitis, Linas; Evans, R Scott; Nichol, W Paul; Middleton, Blackford

    2011-01-01

    Background Clinical decision support (CDS) is a valuable tool for improving healthcare quality and lowering costs. However, there is no comprehensive taxonomy of types of CDS and there has been limited research on the availability of various CDS tools across current electronic health record (EHR) systems. Objective To develop and validate a taxonomy of front-end CDS tools and to assess support for these tools in major commercial and internally developed EHRs. Study design and methods We used a modified Delphi approach with a panel of 11 decision support experts to develop a taxonomy of 53 front-end CDS tools. Based on this taxonomy, a survey on CDS tools was sent to a purposive sample of commercial EHR vendors (n=9) and leading healthcare institutions with internally developed state-of-the-art EHRs (n=4). Results Responses were received from all healthcare institutions and 7 of 9 EHR vendors (response rate: 85%). All 53 types of CDS tools identified in the taxonomy were found in at least one surveyed EHR system, but only 8 functions were present in all EHRs. Medication dosing support and order facilitators were the most commonly available classes of decision support, while expert systems (eg, diagnostic decision support, ventilator management suggestions) were the least common. Conclusion We developed and validated a comprehensive taxonomy of front-end CDS tools. A subsequent survey of commercial EHR vendors and leading healthcare institutions revealed a small core set of common CDS tools, but identified significant variability in the remainder of clinical decision support content. PMID:21415065

  16. Decision Support Systems for Research and Management in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Rodriquez, Luis F.

    2004-01-01

    Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.

  17. Accuracy of a computerized clinical decision-support system for asthma assessment and management.

    PubMed

    Hoeksema, Laura J; Bazzy-Asaad, Alia; Lomotan, Edwin A; Edmonds, Diana E; Ramírez-Garnica, Gabriela; Shiffman, Richard N; Horwitz, Leora I

    2011-05-01

    To evaluate the accuracy of a computerized clinical decision-support system (CDSS) designed to support assessment and management of pediatric asthma in a subspecialty clinic. Cohort study of all asthma visits to pediatric pulmonology from January to December, 2009. CDSS and physician assessments of asthma severity, control, and treatment step. Both the clinician and the computerized CDSS generated assessments of asthma control in 767/1032 (74.3%) return patients, assessments of asthma severity in 100/167 (59.9%) new patients, and recommendations for treatment step in 66/167 (39.5%) new patients. Clinicians agreed with the CDSS in 543/767 (70.8%) of control assessments, 37/100 (37%) of severity assessments, and 19/66 (29%) of step recommendations. External review classified 72% of control disagreements (21% of all control assessments), 56% of severity disagreements (37% of all severity assessments), and 76% of step disagreements (54% of all step recommendations) as CDSS errors. The remaining disagreements resulted from pulmonologist error or ambiguous guidelines. Many CDSS flaws, such as attributing all 'cough' to asthma, were easily remediable. Pediatric pulmonologists failed to follow guidelines in 8% of return visits and 18% of new visits. The authors relied on chart notes to determine clinical reasoning. Physicians may have changed their assessments after seeing CDSS recommendations. A computerized CDSS performed relatively accurately compared to clinicians for assessment of asthma control but was inaccurate for treatment. Pediatric pulmonologists failed to follow guideline-based care in a small proportion of patients.

  18. Decision support systems for ecosystem management: An evaluation of existing systems

    Treesearch

    H. Todd Mowrer; Klaus Barber; Joe Campbell; Nick Crookston; Cathy Dahms; John Day; Jim Laacke; Jim Merzenich; Steve Mighton; Mike Rauscher; Rick Sojda; Joyce Thompson; Peter Trenchi; Mark Twery

    1997-01-01

    This report evaluated 24 computer-aided decision support systems (DSS) that can support management decision-making in forest ecosystems. It compares the scope of each system, spatial capabilities, computational methods, development status, input and output requirements, user support availability, and system performance. Questionnaire responses from the DSS developers (...

  19. Towards integration of clinical decision support in commercial hospital information systems using distributed, reusable software and knowledge components.

    PubMed

    Müller, M L; Ganslandt, T; Eich, H P; Lang, K; Ohmann, C; Prokosch, H U

    2001-12-01

    Clinicians' acceptance of clinical decision support depends on its workflow-oriented, context-sensitive accessibility and availability at the point of care, integrated into the Electronic Patient Record (EPR). Commercially available Hospital Information Systems (HIS) often focus on administrative tasks and mostly do not provide additional knowledge based functionality. Their traditionally monolithic and closed software architecture encumbers integration of and interaction with external software modules. Our aim was to develop methods and interfaces to integrate knowledge sources into two different commercial hospital information systems to provide the best decision support possible within the context of available patient data. An existing, proven standalone scoring system for acute abdominal pain was supplemented by a communication interface. In both HIS we defined data entry forms and developed individual and reusable mechanisms for data exchange with external software modules. We designed an additional knowledge support frontend which controls data exchange between HIS and the knowledge modules. Finally, we added guidelines and algorithms to the knowledge library. Despite some major drawbacks which resulted mainly from the HIS' closed software architectures we showed exemplary, how external knowledge support can be integrated almost seamlessly into different commercial HIS. This paper describes the prototypical design and current implementation and discusses our experiences.

  20. Scalable software architectures for decision support.

    PubMed

    Musen, M A

    1999-12-01

    Interest in decision-support programs for clinical medicine soared in the 1970s. Since that time, workers in medical informatics have been particularly attracted to rule-based systems as a means of providing clinical decision support. Although developers have built many successful applications using production rules, they also have discovered that creation and maintenance of large rule bases is quite problematic. In the 1980s, several groups of investigators began to explore alternative programming abstractions that can be used to build decision-support systems. As a result, the notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) problem-solving methods--domain-independent algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper highlights how developers can construct large, maintainable decision-support systems using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  1. How to guide - transit operations decision support systems (TODSS).

    DOT National Transportation Integrated Search

    2014-12-01

    Transit Operations Decision Support Systems (TODSS) are decision support systems designed to support dispatchers in real-time bus operations management in response to incidents, special events, and other changing conditions in order to restore servic...

  2. A Hyperknowledge Framework of Decision Support Systems.

    ERIC Educational Resources Information Center

    Chang, Ai-Mei; And Others

    1994-01-01

    Presents a hyperknowledge framework of decision support systems (DSS). This framework formalizes specifics about system functionality, representation of knowledge, navigation of the knowledge system, and user-interface traits as elements of a DSS environment that conforms closely to human cognitive processes in decision making. (Contains 52…

  3. Cardiological database management system as a mediator to clinical decision support.

    PubMed

    Pappas, C; Mavromatis, A; Maglaveras, N; Tsikotis, A; Pangalos, G; Ambrosiadou, V

    1996-03-01

    An object-oriented medical database management system is presented for a typical cardiologic center, facilitating epidemiological trials. Object-oriented analysis and design were used for the system design, offering advantages for the integrity and extendibility of medical information systems. The system was developed using object-oriented design and programming methodology, the C++ language and the Borland Paradox Relational Data Base Management System on an MS-Windows NT environment. Particular attention was paid to system compatibility, portability, the ease of use, and the suitable design of the patient record so as to support the decisions of medical personnel in cardiovascular centers. The system was designed to accept complex, heterogeneous, distributed data in various formats and from different kinds of examinations such as Holter, Doppler and electrocardiography.

  4. An HL7-CDA wrapper for facilitating semantic interoperability to rule-based Clinical Decision Support Systems.

    PubMed

    Sáez, Carlos; Bresó, Adrián; Vicente, Javier; Robles, Montserrat; García-Gómez, Juan Miguel

    2013-03-01

    The success of Clinical Decision Support Systems (CDSS) greatly depends on its capability of being integrated in Health Information Systems (HIS). Several proposals have been published up to date to permit CDSS gathering patient data from HIS. Some base the CDSS data input on the HL7 reference model, however, they are tailored to specific CDSS or clinical guidelines technologies, or do not focus on standardizing the CDSS resultant knowledge. We propose a solution for facilitating semantic interoperability to rule-based CDSS focusing on standardized input and output documents conforming an HL7-CDA wrapper. We define the HL7-CDA restrictions in a HL7-CDA implementation guide. Patient data and rule inference results are mapped respectively to and from the CDSS by means of a binding method based on an XML binding file. As an independent clinical document, the results of a CDSS can present clinical and legal validity. The proposed solution is being applied in a CDSS for providing patient-specific recommendations for the care management of outpatients with diabetes mellitus. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Improving Emergency Department Triage Classification with Computerized Clinical Decision Support at a Pediatric Hospital

    ERIC Educational Resources Information Center

    Kunisch, Joseph Martin

    2012-01-01

    Background: The Emergency Severity Index (ESI) is an emergency department (ED) triage classification system based on estimated patient-specific resource utilization. Rules for a computerized clinical decision support (CDS) system based on a patient's chief complaint were developed and tested using a stochastic model for predicting ESI scores.…

  6. The Use of Automated SNOMED CT Clinical Coding in Clinical Decision Support Systems for Preventive Care.

    PubMed

    Al-Hablani, Bader

    2017-01-01

    The objective of this study is to discuss and analyze the use of automated SNOMED CT clinical coding in clinical decision support systems (CDSSs) for preventive care. The central question that this study seeks to answer is whether the utilization of SNOMED CT in CDSSs can improve preventive care. PubMed, Google Scholar, and Cochrane Library were searched for articles published in English between 2001 and 2012 on SNOMED CT, CDSS, and preventive care. Outcome measures were the sensitivity or specificity of SNOMED CT coded data and the positive predictive value or negative predictive value of SNOMED CT coded data. Additionally, we documented the publication year, research question, study design, results, and conclusions of these studies. The reviewed studies suggested that SNOMED CT successfully represents clinical terms and negated clinical terms. The use of SNOMED CT in CDSS can be considered to provide an answer to the problem of medical errors as well as for preventive care in general. Enhancement of the modifiers and synonyms found in SNOMED CT will be necessary to improve the expected outcome of the integration of SNOMED CT with CDSS. Moreover, the application of the tree-augmented naïve (TAN) Bayesian network method can be considered the best technique to search SNOMED CT data and, consequently, to help improve preventive health services.

  7. The Use of Automated SNOMED CT Clinical Coding in Clinical Decision Support Systems for Preventive Care

    PubMed Central

    Al-Hablani, Bader

    2017-01-01

    Objective The objective of this study is to discuss and analyze the use of automated SNOMED CT clinical coding in clinical decision support systems (CDSSs) for preventive care. The central question that this study seeks to answer is whether the utilization of SNOMED CT in CDSSs can improve preventive care. Method PubMed, Google Scholar, and Cochrane Library were searched for articles published in English between 2001 and 2012 on SNOMED CT, CDSS, and preventive care. Outcome Measures Outcome measures were the sensitivity or specificity of SNOMED CT coded data and the positive predictive value or negative predictive value of SNOMED CT coded data. Additionally, we documented the publication year, research question, study design, results, and conclusions of these studies. Results The reviewed studies suggested that SNOMED CT successfully represents clinical terms and negated clinical terms. Conclusion The use of SNOMED CT in CDSS can be considered to provide an answer to the problem of medical errors as well as for preventive care in general. Enhancement of the modifiers and synonyms found in SNOMED CT will be necessary to improve the expected outcome of the integration of SNOMED CT with CDSS. Moreover, the application of the tree-augmented naïve (TAN) Bayesian network method can be considered the best technique to search SNOMED CT data and, consequently, to help improve preventive health services. PMID:28566995

  8. Computerized clinical decision support systems for drug prescribing and management: a decision-maker-researcher partnership systematic review.

    PubMed

    Hemens, Brian J; Holbrook, Anne; Tonkin, Marita; Mackay, Jean A; Weise-Kelly, Lorraine; Navarro, Tamara; Wilczynski, Nancy L; Haynes, R Brian

    2011-08-03

    Computerized clinical decision support systems (CCDSSs) for drug therapy management are designed to promote safe and effective medication use. Evidence documenting the effectiveness of CCDSSs for improving drug therapy is necessary for informed adoption decisions. The objective of this review was to systematically review randomized controlled trials assessing the effects of CCDSSs for drug therapy management on process of care and patient outcomes. We also sought to identify system and study characteristics that predicted benefit. We conducted a decision-maker-researcher partnership systematic review. We updated our earlier reviews (1998, 2005) by searching MEDLINE, EMBASE, EBM Reviews, Inspec, and other databases, and consulting reference lists through January 2010. Authors of 82% of included studies confirmed or supplemented extracted data. We included only randomized controlled trials that evaluated the effect on process of care or patient outcomes of a CCDSS for drug therapy management compared to care provided without a CCDSS. A study was considered to have a positive effect (i.e., CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive. Sixty-five studies met our inclusion criteria, including 41 new studies since our previous review. Methodological quality was generally high and unchanged with time. CCDSSs improved process of care performance in 37 of the 59 studies assessing this type of outcome (64%, 57% of all studies). Twenty-nine trials assessed patient outcomes, of which six trials (21%, 9% of all trials) reported improvements. CCDSSs inconsistently improved process of care measures and seldomly improved patient outcomes. Lack of clear patient benefit and lack of data on harms and costs preclude a recommendation to adopt CCDSSs for drug therapy management.

  9. A framework for evaluating the appropriateness of clinical decision support alerts and responses

    PubMed Central

    Waitman, Lemuel R; Lewis, Julia B; Wright, Julie A; Choma, David P; Miller, Randolph A; Peterson, Josh F

    2011-01-01

    Objective Alerting systems, a type of clinical decision support, are increasingly prevalent in healthcare, yet few studies have concurrently measured the appropriateness of alerts with provider responses to alerts. Recent reports of suboptimal alert system design and implementation highlight the need for better evaluation to inform future designs. The authors present a comprehensive framework for evaluating the clinical appropriateness of synchronous, interruptive medication safety alerts. Methods Through literature review and iterative testing, metrics were developed that describe successes, justifiable overrides, provider non-adherence, and unintended adverse consequences of clinical decision support alerts. The framework was validated by applying it to a medication alerting system for patients with acute kidney injury (AKI). Results Through expert review, the framework assesses each alert episode for appropriateness of the alert display and the necessity and urgency of a clinical response. Primary outcomes of the framework include the false positive alert rate, alert override rate, provider non-adherence rate, and rate of provider response appropriateness. Application of the framework to evaluate an existing AKI medication alerting system provided a more complete understanding of the process outcomes measured in the AKI medication alerting system. The authors confirmed that previous alerts and provider responses were most often appropriate. Conclusion The new evaluation model offers a potentially effective method for assessing the clinical appropriateness of synchronous interruptive medication alerts prior to evaluating patient outcomes in a comparative trial. More work can determine the generalizability of the framework for use in other settings and other alert types. PMID:21849334

  10. Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies.

    PubMed

    Samwald, Matthias; Miñarro Giménez, Jose Antonio; Boyce, Richard D; Freimuth, Robert R; Adlassnig, Klaus-Peter; Dumontier, Michel

    2015-02-22

    Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of

  11. Clinical Decision Support Reduces Overuse of Red Blood Cell Transfusions: Interrupted Time Series Analysis.

    PubMed

    Kassakian, Steven Z; Yackel, Thomas R; Deloughery, Thomas; Dorr, David A

    2016-06-01

    Red blood cell transfusion is the most common procedure in hospitalized patients in the US. Growing evidence suggests that a sizeable percentage of these transfusions are inappropriate, putting patients at significant risk and increasing costs to the health care system. We performed a retrospective quasi-experimental study from November 2008 until November 2014 in a 576-bed tertiary care hospital. The intervention consisted of an interruptive clinical decision support alert shown to a provider when a red blood cell transfusion was ordered in a patient whose most recent hematocrit was ≥21%. We used interrupted time series analysis to determine whether our primary outcome of interest, rate of red blood cell transfusion in patients with hematocrit ≥21% per 100 patient (pt) days, was reduced by the implementation of the clinical decision support tool. The rate of platelet transfusions was used as a nonequivalent dependent control variable. A total of 143,000 hospital admissions were included in our analysis. Red blood cell transfusions decreased from 9.4 to 7.8 per 100 pt days after the clinical decision support intervention was implemented. Interrupted time series analysis showed that significant decline of 0.05 (95% confidence interval [CI], 0.03-0.07; P < .001) units of red blood cells transfused per 100 pt days per month was already underway in the preintervention period. This trend accelerated to 0.1 (95% CI, 0.09-0.12; P < .001) units of red blood cells transfused per 100 pt days per month following the implementation of the clinical decision support tool. There was no statistical change in the rate of platelet transfusion resulting from the intervention. The implementation of an evidence-based clinical decision support tool was associated with a significant decline in the overuse of red blood cell transfusion. We believe this intervention could be easily replicated in other hospitals using commercial electronic health records and a similar reduction in

  12. An Electronic Nursing Patient Care Plan Helps in Clinical Decision Support.

    PubMed

    Wong, C M; Wu, S Y; Ting, W H; Ho, K H; Tong, L H; Cheung, N T

    2015-01-01

    Information technology can help to improve health care delivery. The utilisation of informatics principle enhances the quality of nursing practices through improved communication, documentation and efficiency. The Nursing Profession constitutes 34% of the total workforce in the Hong Kong Hospital Authority (HA) and includes 21,000 nurses in 2012. To enhance the quality of care and patient safety in both hospitals and community care setting, it is essential that an integrated electronic decision support system for nurses is designed to track documentation and support care or service including observations, decisions, actions and outcomes throughout the care process at each point-of-care. The Patient Care Plan project was set up to achieve these objectives. The Project adheres to strict documentation information architecture to ensure data sharing is freely available. Preliminary results showed very promising improvement in clinical care.

  13. A study of diverse clinical decision support rule authoring environments and requirements for integration

    PubMed Central

    2012-01-01

    Background Efficient rule authoring tools are critical to allow clinical Knowledge Engineers (KEs), Software Engineers (SEs), and Subject Matter Experts (SMEs) to convert medical knowledge into machine executable clinical decision support rules. The goal of this analysis was to identify the critical success factors and challenges of a fully functioning Rule Authoring Environment (RAE) in order to define requirements for a scalable, comprehensive tool to manage enterprise level rules. Methods The authors evaluated RAEs in active use across Partners Healthcare, including enterprise wide, ambulatory only, and system specific tools, with a focus on rule editors for reminder and medication rules. We conducted meetings with users of these RAEs to discuss their general experience and perceived advantages and limitations of these tools. Results While the overall rule authoring process is similar across the 10 separate RAEs, the system capabilities and architecture vary widely. Most current RAEs limit the ability of the clinical decision support (CDS) interventions to be standardized, sharable, interoperable, and extensible. No existing system meets all requirements defined by knowledge management users. Conclusions A successful, scalable, integrated rule authoring environment will need to support a number of key requirements and functions in the areas of knowledge representation, metadata, terminology, authoring collaboration, user interface, integration with electronic health record (EHR) systems, testing, and reporting. PMID:23145874

  14. Evaluating a Clinical Decision Support Interface for End-of-Life Nurse Care.

    PubMed

    Febretti, Alessandro; Stifter, Janet; Keenan, Gail M; Lopez, Karen D; Johnson, Andrew; Wilkie, Diana J

    2014-01-01

    Clinical Decision Support Systems (CDSS) are tools that assist healthcare personnel in the decision-making process for patient care. Although CDSSs have been successfully deployed in the clinical setting to assist physicians, few CDSS have been targeted at professional nurses, the largest group of health providers. We present our experience in designing and testing a CDSS interface embedded within a nurse care planning and documentation tool. We developed four prototypes based on different CDSS feature designs, and tested them in simulated end-of-life patient handoff sessions with a group of 40 nurse clinicians. We show how our prototypes directed nurses towards an optimal care decision that was rarely performed in unassisted practice. We also discuss the effect of CDSS layout and interface navigation in a nurse's acceptance of suggested actions. These findings provide insights into effective nursing CDSS design that are generalizable to care scenarios different than end-of-life.

  15. Clinical decision support tool for Co-management signalling.

    PubMed

    Horta, Alexandra Bayão; Salgado, Cátia; Fernandes, Marta; Vieira, Susana; Sousa, João M; Papoila, Ana Luísa; Xavier, Miguel

    2018-05-01

    Co-management between internists and surgeons of selected patients is becoming one of the pillars of modern clinical management in large hospitals. Defining the patients to be co-managed is essential. The aim of this study is to create a decision tool using real-world patient data collected in the preoperative period, to support the decision on which patients should have the co-management service offered. Data was collected from the electronic clinical health records of patients who had an International Classification of Diseases, 9th edition (ICD-9) code of colorectal surgery during the period between January 2012 and October 2014 in a 200 bed private teaching hospital in Lisbon. ICD-9 codes of colorectal surgery [48.5 and 48.6 (anterior rectal resection and abdominoperineal resection), 45.7 (partial colectomy), 45.8 (Total Colectomy), and 45.9 (Bowel Anastomosis)] were used. Only patients above 18 years old were considered. Patients with more than one procedure were excluded from the study. From these data the authors investigated the construction of predictive models using logistic regression and Takagi-Sugeno fuzzy modelling. Data contains information obtained from the clinical records of a cohort of 344 adult patients. Data from 398 emergent and elective surgeries were collected, from which 54 were excluded because they were second procedures for the same patients. Four preoperative variables were identified as being the most predictive of co-management, in multivariable regression analysis. The final model performed well after being internally validated (0.81 AUC, 77% accuracy, 74% sensitivity, 78% specificity, 93% negative predictive value). The results indicate that the decision process can be more objective and potentially automated. The authors developed a prediction model based on preoperative characteristics, in order to support the decision for the co-management of surgical patients in the postoperative ward setting. The model is a simple bedside

  16. How Decision Support Systems Can Benefit from a Theory of Change Approach.

    PubMed

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  17. How Decision Support Systems Can Benefit from a Theory of Change Approach

    NASA Astrophysics Data System (ADS)

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-06-01

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  18. New approaches for real time decision support systems

    NASA Technical Reports Server (NTRS)

    Hair, D. Charles; Pickslay, Kent

    1994-01-01

    NCCOSC RDT&E Division (NRaD) is conducting research into ways of improving decision support systems (DSS) that are used in tactical Navy decision making situations. The research has focused on the incorporation of findings about naturalistic decision-making processes into the design of the DSS. As part of that research, two computer tools were developed that model the two primary naturalistic decision-making strategies used by Navy experts in tactical settings. Current work is exploring how best to incorporate the information produced by those tools into an existing simulation of current Navy decision support systems. This work has implications for any applications involving the need to make decisions under time constraints, based on incomplete or ambiguous data.

  19. Governance for clinical decision support: case studies and recommended practices from leading institutions

    PubMed Central

    Sittig, Dean F; Ash, Joan S; Bates, David W; Feblowitz, Joshua; Fraser, Greg; Maviglia, Saverio M; McMullen, Carmit; Nichol, W Paul; Pang, Justine E; Starmer, Jack; Middleton, Blackford

    2011-01-01

    Objective Clinical decision support (CDS) is a powerful tool for improving healthcare quality and ensuring patient safety; however, effective implementation of CDS requires effective clinical and technical governance structures. The authors sought to determine the range and variety of these governance structures and identify a set of recommended practices through observational study. Design Three site visits were conducted at institutions across the USA to learn about CDS capabilities and processes from clinical, technical, and organizational perspectives. Based on the results of these visits, written questionnaires were sent to the three institutions visited and two additional sites. Together, these five organizations encompass a variety of academic and community hospitals as well as small and large ambulatory practices. These organizations use both commercially available and internally developed clinical information systems. Measurements Characteristics of clinical information systems and CDS systems used at each site as well as governance structures and content management approaches were identified through extensive field interviews and follow-up surveys. Results Six recommended practices were identified in the area of governance, and four were identified in the area of content management. Key similarities and differences between the organizations studied were also highlighted. Conclusion Each of the five sites studied contributed to the recommended practices presented in this paper for CDS governance. Since these strategies appear to be useful at a diverse range of institutions, they should be considered by any future implementers of decision support. PMID:21252052

  20. Research on web-based decision support system for sports competitions

    NASA Astrophysics Data System (ADS)

    Huo, Hanqiang

    2010-07-01

    This paper describes the system architecture and implementation technology of the decision support system for sports competitions, discusses the design of decision-making modules, management modules and security of the system, and proposes the development idea of building a web-based decision support system for sports competitions.

  1. A knowledge-based decision support system for payload scheduling

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen; Ford, Donnie

    1988-01-01

    The role that artificial intelligence/expert systems technologies play in the development and implementation of effective decision support systems is illustrated. A recently developed prototype system for supporting the scheduling of subsystems and payloads/experiments for NASA's Space Station program is presented and serves to highlight various concepts. The potential integration of knowledge based systems and decision support systems which has been proposed in several recent articles and presentations is illustrated.

  2. Advanced Clinical Decision Support for Vaccine Adverse Event Detection and Reporting.

    PubMed

    Baker, Meghan A; Kaelber, David C; Bar-Shain, David S; Moro, Pedro L; Zambarano, Bob; Mazza, Megan; Garcia, Crystal; Henry, Adam; Platt, Richard; Klompas, Michael

    2015-09-15

    Reporting of adverse events (AEs) following vaccination can help identify rare or unexpected complications of immunizations and aid in characterizing potential vaccine safety signals. We developed an open-source, generalizable clinical decision support system called Electronic Support for Public Health-Vaccine Adverse Event Reporting System (ESP-VAERS) to assist clinicians with AE detection and reporting. ESP-VAERS monitors patients' electronic health records for new diagnoses, changes in laboratory values, and new allergies following vaccinations. When suggestive events are found, ESP-VAERS sends the patient's clinician a secure electronic message with an invitation to affirm or refute the message, add comments, and submit an automated, prepopulated electronic report to VAERS. High-probability AEs are reported automatically if the clinician does not respond. We implemented ESP-VAERS in December 2012 throughout the MetroHealth System, an integrated healthcare system in Ohio. We queried the VAERS database to determine MetroHealth's baseline reporting rates from January 2009 to March 2012 and then assessed changes in reporting rates with ESP-VAERS. In the 8 months following implementation, 91 622 vaccinations were given. ESP-VAERS sent 1385 messages to responsible clinicians describing potential AEs. Clinicians opened 1304 (94.2%) messages, responded to 209 (15.1%), and confirmed 16 for transmission to VAERS. An additional 16 high-probability AEs were sent automatically. Reported events included seizure, pleural effusion, and lymphocytopenia. The odds of a VAERS report submission during the implementation period were 30.2 (95% confidence interval, 9.52-95.5) times greater than the odds during the comparable preimplementation period. An open-source, electronic health record-based clinical decision support system can increase AE detection and reporting rates in VAERS. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society

  3. Geospatial decision support systems for societal decision making

    USGS Publications Warehouse

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the

  4. Decision Performance Using Spatial Decision Support Systems: A Geospatial Reasoning Ability Perspective

    ERIC Educational Resources Information Center

    Erskine, Michael A.

    2013-01-01

    As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…

  5. Expert System Shells for Rapid Clinical Decision Support Module Development: An ESTA Demonstration of a Simple Rule-Based System for the Diagnosis of Vaginal Discharge

    PubMed Central

    2012-01-01

    Objectives This study demonstrates the feasibility of using expert system shells for rapid clinical decision support module development. Methods A readily available expert system shell was used to build a simple rule-based system for the crude diagnosis of vaginal discharge. Pictures and 'canned text explanations' are extensively used throughout the program to enhance its intuitiveness and educational dimension. All the steps involved in developing the system are documented. Results The system runs under Microsoft Windows and is available as a free download at http://healthcybermap.org/vagdisch.zip (the distribution archive includes both the program's executable and the commented knowledge base source as a text document). The limitations of the demonstration system, such as the lack of provisions for assessing uncertainty or various degrees of severity of a sign or symptom, are discussed in detail. Ways of improving the system, such as porting it to the Web and packaging it as an app for smartphones and tablets, are also presented. Conclusions An easy-to-use expert system shell enables clinicians to rapidly become their own 'knowledge engineers' and develop concise evidence-based decision support modules of simple to moderate complexity, targeting clinical practitioners, medical and nursing students, as well as patients, their lay carers and the general public (where appropriate). In the spirit of the social Web, it is hoped that an online repository can be created to peer review, share and re-use knowledge base modules covering various clinical problems and algorithms, as a service to the clinical community. PMID:23346475

  6. Four principles for user interface design of computerised clinical decision support systems.

    PubMed

    Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian

    2011-01-01

    The paper presents results from a design research project of a user interface (UI) for a Computerised Clinical Decision Support System (CDSS). The ambition has been to design Human-Computer Interaction (HCI) that can minimise medication errors. Through an iterative design process a digital prototype for prescription of medicine has been developed. This paper presents results from the formative evaluation of the prototype conducted in a simulation laboratory with ten participating physicians. Data from the simulation is analysed by use of theory on how users perceive information. The conclusion is a model, which sum up four principles of interaction for design of CDSS. The four principles for design of user interfaces for CDSS are summarised as four A's: All in one, At a glance, At hand and Attention. The model emphasises integration of all four interaction principles in the design of user interfaces for CDSS, i.e. the model is an integrated model which we suggest as a guide for interaction design when working with preventing medication errors.

  7. Real-Time Clinical Decision Support Decreases Inappropriate Plasma Transfusion.

    PubMed

    Shah, Neil; Baker, Steven A; Spain, David; Shieh, Lisa; Shepard, John; Hadhazy, Eric; Maggio, Paul; Goodnough, Lawrence T

    2017-08-01

    To curtail inappropriate plasma transfusions, we instituted clinical decision support as an alert upon order entry if the patient's recent international normalized ratio (INR) was 1.7 or less. The alert was suppressed for massive transfusion and within operative or apheresis settings. The plasma order was automatically removed upon alert acceptance while clinical exception reasons allowed for continued transfusion. Alert impact was studied comparing a 7-month control period with a 4-month intervention period. Monthly plasma utilization decreased 17.4%, from a mean ± SD of 3.40 ± 0.48 to 2.82 ± 0.6 plasma units per hundred patient days (95% confidence interval [CI] of difference, -0.1 to 1.3). Plasma transfused below an INR of 1.7 or less decreased from 47.6% to 41.6% (P = .0002; odds ratio, 0.78; 95% CI, 0.69-0.89). The alert recommendation was accepted 33% of the time while clinical exceptions were chosen in the remaining cases (active bleeding, 31%; other clinical indication, 33%; and apheresis, 2%). Alert acceptance rate varied significantly among different provider specialties. Clinical decision support can help curtail inappropriate plasma use but needs to be part of a comprehensive strategy including audit and feedback for comprehensive, long-term changes. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  8. Using the Situated Clinical Decision-Making framework to guide analysis of nurses' clinical decision-making.

    PubMed

    Gillespie, Mary

    2010-11-01

    Nurses' clinical decision-making is a complex process that holds potential to influence the quality of care provided and patient outcomes. The evolution of nurses' decision-making that occurs with experience has been well documented. In addition, literature includes numerous strategies and approaches purported to support development of nurses' clinical decision-making. There has been, however, significantly less attention given to the process of assessing nurses' clinical decision-making and novice clinical educators are often challenged with knowing how to best support nurses and nursing students in developing their clinical decision-making capacity. The Situated Clinical Decision-Making framework is presented for use by clinical educators: it provides a structured approach to analyzing nursing students' and novice nurses' decision-making in clinical nursing practice, assists educators in identifying specific issues within nurses' clinical decision-making, and guides selection of relevant strategies to support development of clinical decision-making. A series of questions is offered as a guide for clinical educators when assessing nurses' clinical decision-making. The discussion presents key considerations related to analysis of various decision-making components, including common sources of challenge and errors that may occur within nurses' clinical decision-making. An exemplar illustrates use of the framework and guiding questions. Implications of this approach for selection of strategies that support development of clinical decision-making are highlighted. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Investigating the Heart Pump Implant Decision Process: Opportunities for Decision Support Tools to Help

    PubMed Central

    Yang, Qian; Zimmerman, John; Steinfeld, Aaron; Carey, Lisa; Antaki, James F.

    2016-01-01

    Clinical decision support tools (DSTs) are computational systems that aid healthcare decision-making. While effective in labs, almost all these systems failed when they moved into clinical practice. Healthcare researchers speculated it is most likely due to a lack of user-centered HCI considerations in the design of these systems. This paper describes a field study investigating how clinicians make a heart pump implant decision with a focus on how to best integrate an intelligent DST into their work process. Our findings reveal a lack of perceived need for and trust of machine intelligence, as well as many barriers to computer use at the point of clinical decision-making. These findings suggest an alternative perspective to the traditional use models, in which clinicians engage with DSTs at the point of making a decision. We identify situations across patients’ healthcare trajectories when decision supports would help, and we discuss new forms it might take in these situations. PMID:27833397

  10. Clinical decision support of radiotherapy treatment planning: A data-driven machine learning strategy for patient-specific dosimetric decision making.

    PubMed

    Valdes, Gilmer; Simone, Charles B; Chen, Josephine; Lin, Alexander; Yom, Sue S; Pattison, Adam J; Carpenter, Colin M; Solberg, Timothy D

    2017-12-01

    Clinical decision support systems are a growing class of tools with the potential to impact healthcare. This study investigates the construction of a decision support system through which clinicians can efficiently identify which previously approved historical treatment plans are achievable for a new patient to aid in selection of therapy. Treatment data were collected for early-stage lung and postoperative oropharyngeal cancers treated using photon (lung and head and neck) and proton (head and neck) radiotherapy. Machine-learning classifiers were constructed using patient-specific feature-sets and a library of historical plans. Model accuracy was analyzed using learning curves, and historical treatment plan matching was investigated. Learning curves demonstrate that for these datasets, approximately 45, 60, and 30 patients are needed for a sufficiently accurate classification model for radiotherapy for early-stage lung, postoperative oropharyngeal photon, and postoperative oropharyngeal proton, respectively. The resulting classification model provides a database of previously approved treatment plans that are achievable for a new patient. An exemplary case, highlighting tradeoffs between the heart and chest wall dose while holding target dose constant in two historical plans is provided. We report on the first artificial-intelligence based clinical decision support system that connects patients to past discrete treatment plans in radiation oncology and demonstrate for the first time how this tool can enable clinicians to use past decisions to help inform current assessments. Clinicians can be informed of dose tradeoffs between critical structures early in the treatment process, enabling more time spent on finding the optimal course of treatment for individual patients. Copyright © 2017. Published by Elsevier B.V.

  11. Systematic Review of Medical Informatics-Supported Medication Decision Making.

    PubMed

    Melton, Brittany L

    2017-01-01

    This systematic review sought to assess the applications and implications of current medical informatics-based decision support systems related to medication prescribing and use. Studies published between January 2006 and July 2016 which were indexed in PubMed and written in English were reviewed, and 39 studies were ultimately included. Most of the studies looked at computerized provider order entry or clinical decision support systems. Most studies examined decision support systems as a means of reducing errors or risk, particularly associated with medication prescribing, whereas a few studies evaluated the impact medical informatics-based decision support systems have on workflow or operations efficiency. Most studies identified benefits associated with decision support systems, but some indicate there is room for improvement.

  12. Measuring the impact of diagnostic decision support on the quality of clinical decision making: development of a reliable and valid composite score.

    PubMed

    Ramnarayan, Padmanabhan; Kapoor, Ritika R; Coren, Michael; Nanduri, Vasantha; Tomlinson, Amanda L; Taylor, Paul M; Wyatt, Jeremy C; Britto, Joseph F

    2003-01-01

    Few previous studies evaluating the benefits of diagnostic decision support systems have simultaneously measured changes in diagnostic quality and clinical management prompted by use of the system. This report describes a reliable and valid scoring technique to measure the quality of clinical decision plans in an acute medical setting, where diagnostic decision support tools might prove most useful. Sets of differential diagnoses and clinical management plans generated by 71 clinicians for six simulated cases, before and after decision support from a Web-based pediatric differential diagnostic tool (ISABEL), were used. A composite quality score was calculated separately for each diagnostic and management plan by considering the appropriateness value of each component diagnostic or management suggestion, a weighted sum of individual suggestion ratings, relevance of the entire plan, and its comprehensiveness. The reliability and validity (face, concurrent, construct, and content) of these two final scores were examined. Two hundred fifty-two diagnostic and 350 management suggestions were included in the interrater reliability analysis. There was good agreement between raters (intraclass correlation coefficient, 0.79 for diagnoses, and 0.72 for management). No counterintuitive scores were demonstrated on visual inspection of the sets. Content validity was verified by a consultation process with pediatricians. Both scores discriminated adequately between the plans of consultants and medical students and correlated well with clinicians' subjective opinions of overall plan quality (Spearman rho 0.65, p < 0.01). The diagnostic and management scores for each episode showed moderate correlation (r = 0.51). The scores described can be used as key outcome measures in a larger study to fully assess the value of diagnostic decision aids, such as the ISABEL system.

  13. A Decision Support System for Evaluating Systems of Undersea Sensors and Weapons

    DTIC Science & Technology

    2015-12-01

    distribution is unlimited A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS by Team Mental Focus Cohort 142O...A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS 5. FUNDING NUMBERS 6. AUTHOR(S) Systems Engineering Cohort...undersea weapons, it requires the supporting tools to evaluate and predict the effectiveness of these system concepts. While current naval minefield

  14. Developing the U.S. Wildland Fire Decision Support System

    Treesearch

    Erin Noonan-Wright; Tonja S. Opperman; Mark A. Finney; Tom Zimmerman; Robert C. Seli; Lisa M. Elenz; David E. Calkin; John R. Fiedler

    2011-01-01

    A new decision support tool, the Wildland Fire Decision Support System (WFDSS) has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply...

  15. A programmable rules engine to provide clinical decision support using HTML forms.

    PubMed

    Heusinkveld, J; Geissbuhler, A; Sheshelidze, D; Miller, R

    1999-01-01

    The authors have developed a simple method for specifying rules to be applied to information on HTML forms. This approach allows clinical experts, who lack the programming expertise needed to write CGI scripts, to construct and maintain domain-specific knowledge and ordering capabilities within WizOrder, the order-entry and decision support system used at Vanderbilt Hospital. The clinical knowledge base maintainers use HTML editors to create forms and spreadsheet programs for rule entry. A test environment has been developed which uses Netscape to display forms; the production environment displays forms using an embedded browser.

  16. Automating Guidelines for Clinical Decision Support: Knowledge Engineering and Implementation.

    PubMed

    Tso, Geoffrey J; Tu, Samson W; Oshiro, Connie; Martins, Susana; Ashcraft, Michael; Yuen, Kaeli W; Wang, Dan; Robinson, Amy; Heidenreich, Paul A; Goldstein, Mary K

    2016-01-01

    As utilization of clinical decision support (CDS) increases, it is important to continue the development and refinement of methods to accurately translate the intention of clinical practice guidelines (CPG) into a computable form. In this study, we validate and extend the 13 steps that Shiffman et al. 5 identified for translating CPG knowledge for use in CDS. During an implementation project of ATHENA-CDS, we encoded complex CPG recommendations for five common chronic conditions for integration into an existing clinical dashboard. Major decisions made during the implementation process were recorded and categorized according to the 13 steps. During the implementation period, we categorized 119 decisions and identified 8 new categories required to complete the project. We provide details on an updated model that outlines all of the steps used to translate CPG knowledge into a CDS integrated with existing health information technology.

  17. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    PubMed

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  18. Clinical decision support for whole genome sequence information leveraging a service-oriented architecture: a prototype.

    PubMed

    Welch, Brandon M; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku

    2014-01-01

    Whole genome sequence (WGS) information could soon be routinely available to clinicians to support the personalized care of their patients. At such time, clinical decision support (CDS) integrated into the clinical workflow will likely be necessary to support genome-guided clinical care. Nevertheless, developing CDS capabilities for WGS information presents many unique challenges that need to be overcome for such approaches to be effective. In this manuscript, we describe the development of a prototype CDS system that is capable of providing genome-guided CDS at the point of care and within the clinical workflow. To demonstrate the functionality of this prototype, we implemented a clinical scenario of a hypothetical patient at high risk for Lynch Syndrome based on his genomic information. We demonstrate that this system can effectively use service-oriented architecture principles and standards-based components to deliver point of care CDS for WGS information in real-time.

  19. [From library to clinical decision support systems: access of general practitioner to quality information].

    PubMed

    Fauquert, B

    2012-09-01

    Since 2003, the following tools have been implemented in Belgium for improving the access of general practioners to the EBM literature: the Digital Library for Health and the evidence-linker of the CEBAM, the portal EBMPracticeNet.be and the multidimensional electronic clinical decision support EBMeDS. The aim of this article is to show the progress achieved in the information dissemination toward the belgian general practioners, particularly the access from the electronic health record. From the literature published these last years, the opportunities cited by the users are for using EBM and the strong willingness for using these literature access in the future; the limits are the medical data coding, the irrelevance of the search results, the alerts fatigue induced by EBMeDS. The achievements done and planned for the new EBMPracticeNet guidelines portal and the EBMeDS system are explained in the aim of informing belgian healthcare professionals. These projects are claiming for lauching a participatory process in the production and dissemination of EBM information. The discussion is focused on the belgian healthcare system advantages, the solutions for a reasonable implementation of these projects and for increasing the place of an evidence-based information in the healthcare decision process. Finally the input of these projects to the continuing medical education and to the healthcare quality are discussed, in a context of multifactorial interaction healthcare design (complexity design).

  20. Evaluation of a decision support system for pressure ulcer prevention and management: preliminary findings.

    PubMed

    Zielstorff, R D; Estey, G; Vickery, A; Hamilton, G; Fitzmaurice, J B; Barnett, G O

    1997-01-01

    A decision support system for prevention and management of pressure ulcers was developed based on AHCPR guidelines and other sources. The system was implemented for 21 weeks on a 20-bed clinical care unit. Fifteen nurses on that unit volunteered as subjects of the intervention to see whether use of the system would have a positive effect on their knowledge about pressure ulcers and on their decision-making skills related to this topic. A similar care unit was used as a control. In addition, the system was evaluated by experts for its instructional adequacy, and by end users for their satisfaction with the system. Preliminary results show no effect on knowledge about pressure ulcers and no effect on clinical decision making skills. The system was rated positively for instructional adequacy, and positively for user satisfaction. User interviews related to satisfaction supplemented the quantitative findings. A discussion of the issues of conducting experiments like this in today's clinical environment is included.

  1. The role of standardized data and terminological systems in computerized clinical decision support systems: literature review and survey.

    PubMed

    Ahmadian, Leila; van Engen-Verheul, Mariette; Bakhshi-Raiez, Ferishta; Peek, Niels; Cornet, Ronald; de Keizer, Nicolette F

    2011-02-01

    Clinical decision support systems (CDSSs) should be seamlessly integrated with existing clinical information systems to enable automatic provision of advice at the time and place where decisions are made. It has been suggested that a lack of agreed data standards frequently hampers this integration. We performed a literature review to investigate whether CDSSs used standardized (i.e. coded or numerical) data and which terminological systems have been used to code data. We also investigated whether a lack of standardized data was considered an impediment for CDSS implementation. Articles reporting an evaluation of a CDSS that provided a computerized advice based on patient-specific data items were identified based on a former literature review on CDSS and on CDSS studies identified in AMIA's 'Year in Review'. Authors of these articles were contacted to check and complete the extracted data. A questionnaire among the authors of included studies was used to determine the obstacles in CDSS implementation. We identified 77 articles published between 1995 and 2008. Twenty-two percent of the evaluated CDSSs used only numerical data. Fifty one percent of the CDSSs that used coded data applied an international terminology. The most frequently used international terminology were the ICD (International Classification of Diseases), used in 68% of the cases and LOINC (Logical Observation Identifiers Names and Codes) in 12% of the cases. More than half of the authors experienced barriers in CDSS implementation. In most cases these barriers were related to the lack of electronically available standardized data required to invoke or activate the CDSS. Many CDSSs applied different terminological systems to code data. This diversity hampers the possibility of sharing and reasoning with data within different systems. The results of the survey confirm the hypothesis that data standardization is a critical success factor for CDSS development. Copyright © 2010 Elsevier Ireland Ltd

  2. Evaluating online diagnostic decision support tools for the clinical setting.

    PubMed

    Pryor, Marie; White, David; Potter, Bronwyn; Traill, Roger

    2012-01-01

    Clinical decision support tools available at the point of care are an effective adjunct to support clinicians to make clinical decisions and improve patient outcomes. We developed a methodology and applied it to evaluate commercially available online clinical diagnostic decision support (DDS) tools for use at the point of care. We identified 11 commercially available DDS tools and assessed these against an evaluation instrument that included 6 categories; general information, content, quality control, search, clinical results and other features. We developed diagnostically challenging clinical case scenarios based on real patient experience that were commonly missed by junior medical staff. The evaluation was divided into 2 phases; an initial evaluation of all identified and accessible DDS tools conducted by the Clinical Information Access Portal (CIAP) team and a second phase that further assessed the top 3 tools identified in the initial evaluation phase. An evaluation panel consisting of senior and junior medical clinicians from NSW Health conducted the second phase. Of the eleven tools that were assessed against the evaluation instrument only 4 tools completely met the DDS definition that was adopted for this evaluation and were able to produce a differential diagnosis. From the initial phase of the evaluation 4 DDS tools scored 70% or more (maximum score 96%) for the content category, 8 tools scored 65% or more (maximum 100%) for the quality control category, 5 tools scored 65% or more (maximum 94%) for the search category, and 4 tools score 70% or more (maximum 81%) for the clinical results category. The second phase of the evaluation was focused on assessing diagnostic accuracy for the top 3 tools identified in the initial phase. Best Practice ranked highest overall against the 6 clinical case scenarios used. Overall the differentiating factor between the top 3 DDS tools was determined by diagnostic accuracy ranking, ease of use and the confidence and

  3. Advancing clinical decision support using lessons from outside of healthcare: an interdisciplinary systematic review

    PubMed Central

    2012-01-01

    Background Greater use of computerized decision support (DS) systems could address continuing safety and quality problems in healthcare, but the healthcare field has struggled to implement DS technology. This study surveys DS experience across multiple non-healthcare disciplines for new insights that are generalizable to healthcare provider decisions. In particular, it sought design principles and lessons learned from the other disciplines that could inform efforts to accelerate the adoption of clinical decision support (CDS). Methods Our systematic review drew broadly from non-healthcare databases in the basic sciences, social sciences, humanities, engineering, business, and defense: PsychINFO, BusinessSource Premier, Social Sciences Abstracts, Web of Science, and Defense Technical Information Center. Because our interest was in DS that could apply to clinical decisions, we selected articles that (1) provided a review, overview, discussion of lessons learned, or an evaluation of design or implementation aspects of DS within a non-healthcare discipline and (2) involved an element of human judgment at the individual level, as opposed to decisions that can be fully automated or that are made at the organizational level. Results Clinical decisions share some similarities with decisions made by military commanders, business managers, and other leaders: they involve assessing new situations and choosing courses of action with major consequences, under time pressure, and with incomplete information. We identified seven high-level DS system design features from the non-healthcare literature that could be applied to CDS: providing broad, system-level perspectives; customizing interfaces to specific users and roles; making the DS reasoning transparent; presenting data effectively; generating multiple scenarios covering disparate outcomes (e.g., effective; effective with side effects; ineffective); allowing for contingent adaptations; and facilitating collaboration. The

  4. Advancing clinical decision support using lessons from outside of healthcare: an interdisciplinary systematic review.

    PubMed

    Wu, Helen W; Davis, Paul K; Bell, Douglas S

    2012-08-17

    Greater use of computerized decision support (DS) systems could address continuing safety and quality problems in healthcare, but the healthcare field has struggled to implement DS technology. This study surveys DS experience across multiple non-healthcare disciplines for new insights that are generalizable to healthcare provider decisions. In particular, it sought design principles and lessons learned from the other disciplines that could inform efforts to accelerate the adoption of clinical decision support (CDS). Our systematic review drew broadly from non-healthcare databases in the basic sciences, social sciences, humanities, engineering, business, and defense: PsychINFO, BusinessSource Premier, Social Sciences Abstracts, Web of Science, and Defense Technical Information Center. Because our interest was in DS that could apply to clinical decisions, we selected articles that (1) provided a review, overview, discussion of lessons learned, or an evaluation of design or implementation aspects of DS within a non-healthcare discipline and (2) involved an element of human judgment at the individual level, as opposed to decisions that can be fully automated or that are made at the organizational level. Clinical decisions share some similarities with decisions made by military commanders, business managers, and other leaders: they involve assessing new situations and choosing courses of action with major consequences, under time pressure, and with incomplete information. We identified seven high-level DS system design features from the non-healthcare literature that could be applied to CDS: providing broad, system-level perspectives; customizing interfaces to specific users and roles; making the DS reasoning transparent; presenting data effectively; generating multiple scenarios covering disparate outcomes (e.g., effective; effective with side effects; ineffective); allowing for contingent adaptations; and facilitating collaboration. The article provides examples of

  5. Transforming User Needs into Functional Requirements for an Antibiotic Clinical Decision Support System

    PubMed Central

    Bright, T.J.

    2013-01-01

    Summary Background Many informatics studies use content analysis to generate functional requirements for system development. Explication of this translational process from qualitative data to functional requirements can strengthen the understanding and scientific rigor when applying content analysis in informatics studies. Objective To describe a user-centered approach transforming emergent themes derived from focus group data into functional requirements for informatics solutions and to illustrate these methods to the development of an antibiotic clinical decision support system (CDS). Methods The approach consisted of five steps: 1) identify unmet therapeutic planning information needs via Focus Group Study-I, 2) develop a coding framework of therapeutic planning themes to refine the domain scope to antibiotic therapeutic planning, 3) identify functional requirements of an antibiotic CDS system via Focus Group Study-II, 4) discover informatics solutions and functional requirements from coded data, and 5) determine the types of information needed to support the antibiotic CDS system and link with the identified informatics solutions and functional requirements. Results The coding framework for Focus Group Study-I revealed unmet therapeutic planning needs. Twelve subthemes emerged and were clustered into four themes; analysis indicated a need for an antibiotic CDS intervention. Focus Group Study-II included five types of information needs. Comments from the Barrier/Challenge to information access and Function/Feature themes produced three informatics solutions and 13 functional requirements of an antibiotic CDS system. Comments from the Patient, Institution, and Domain themes generated required data elements for each informatics solution. Conclusion This study presents one example explicating content analysis of focus group data and the analysis process to functional requirements from narrative data. Illustration of this 5-step method was used to develop an

  6. Reducing risk with clinical decision support: a study of closed malpractice claims.

    PubMed

    Zuccotti, G; Maloney, F L; Feblowitz, J; Samal, L; Sato, L; Wright, A

    2014-01-01

    Identify clinical opportunities to intervene to prevent a malpractice event and determine the proportion of malpractice claims potentially preventable by clinical decision support (CDS). Cross-sectional review of closed malpractice claims over seven years from one malpractice insurance company and seven hospitals in the Boston area. For each event, clinical opportunities to intervene to avert the malpractice event and the presence or absence of CDS that might have a role in preventing the event, were assigned by a panel of expert raters. Compensation paid out to resolve a claim (indemnity), was associated with each CDS type. Of the 477 closed malpractice cases, 359 (75.3%) were categorized as substantiated and 195 (54%) had at least one opportunity to intervene. Common opportunities to intervene related to performance of procedure, diagnosis, and fall prevention. We identified at least one CDS type for 63% of substantiated claims. The 41 CDS types identified included clinically significant test result alerting, diagnostic decision support and electronic tracking of instruments. Cases with at least one associated intervention accounted for $40.3 million (58.9%) of indemnity. CDS systems and other forms of health information technology (HIT) are expected to improve quality of care, but their potential to mitigate risk had not previously been quantified. Our results suggest that, in addition to their known benefits for quality and safety, CDS systems within HIT have a potential role in decreasing malpractice payments. More than half of malpractice events and over $40 million of indemnity were potentially preventable with CDS.

  7. Personalization and Patient Involvement in Decision Support Systems: Current Trends

    PubMed Central

    Sacchi, L.; Lanzola, G.; Viani, N.

    2015-01-01

    Summary Objectives This survey aims at highlighting the latest trends (2012-2014) on the development, use, and evaluation of Information and Communication Technologies (ICT) based decision support systems (DSSs) in medicine, with a particular focus on patient-centered and personalized care. Methods We considered papers published on scientific journals, by querying PubMed and Web of Science™. Included studies focused on the implementation or evaluation of ICT-based tools used in clinical practice. A separate search was performed on computerized physician order entry systems (CPOEs), since they are increasingly embedding patient-tailored decision support. Results We found 73 papers on DSSs (53 on specific ICT tools) and 72 papers on CPOEs. Although decision support through the delivery of recommendations is frequent (28/53 papers), our review highlighted also DSSs only based on efficient information presentation (25/53). Patient participation in making decisions is still limited (9/53), and mostly focused on risk communication. The most represented medical area is cancer (12%). Policy makers are beginning to be included among stakeholders (6/73), but integration with hospital information systems is still low. Concerning knowledge representation/management issues, we identified a trend towards building inference engines on top of standard data models. Most of the tools (57%) underwent a formal assessment study, even if half of them aimed at evaluating usability and not effectiveness. Conclusions Overall, we have noticed interesting evolutions of medical DSSs to improve communication with the patient, consider the economic and organizational impact, and use standard models for knowledge representation. However, systems focusing on patient-centered care still do not seem to be available at large. PMID:26293857

  8. "Smart Forms" in an Electronic Medical Record: documentation-based clinical decision support to improve disease management.

    PubMed

    Schnipper, Jeffrey L; Linder, Jeffrey A; Palchuk, Matvey B; Einbinder, Jonathan S; Li, Qi; Postilnik, Anatoly; Middleton, Blackford

    2008-01-01

    Clinical decision support systems (CDSS) integrated within Electronic Medical Records (EMR) hold the promise of improving healthcare quality. To date the effectiveness of CDSS has been less than expected, especially concerning the ambulatory management of chronic diseases. This is due, in part, to the fact that clinicians do not use CDSS fully. Barriers to clinicians' use of CDSS have included lack of integration into workflow, software usability issues, and relevance of the content to the patient at hand. At Partners HealthCare, we are developing "Smart Forms" to facilitate documentation-based clinical decision support. Rather than being interruptive in nature, the Smart Form enables writing a multi-problem visit note while capturing coded information and providing sophisticated decision support in the form of tailored recommendations for care. The current version of the Smart Form is designed around two chronic diseases: coronary artery disease and diabetes mellitus. The Smart Form has potential to improve the care of patients with both acute and chronic conditions.

  9. Initial implementation and evaluation of a Hepatitis C treatment clinical decision support system (CDSS)

    PubMed Central

    Fathauer, L; Meek, J.

    2012-01-01

    Background Clinician compliance with clinical guidelines in the treatment of patients with Hepatitis C (HCV) has been reported to be as low as 18.5%. Treatment is complex and patient compliance is often inconsistent thus, active clinician surveillance and support is essential to successful outcomes. A clinical decision support system (CDSS) embedded within an electronic health record can provide reminders, summarize key data, and facilitate coordination of care. To date, the literature is bereft of information describing the implementation and evaluation of a CDSS to support HCV treatment. Objective The purpose of this case report is to describe the design, implementation, and initial evaluation of an HCV-specific CDSS while piloting data collection metrics and methods to be used in a larger study across multiple practices. Methods The case report describes the design and implementation processes with preliminary reporting on impact of the CDSS on quality indicator completion by comparing the pre-CDSS group to the post-CDSS group. Results The CDSS was successfully designed and implemented using an iterative, collaborative process. Pilot testing of the clinical outcomes of the CDSS revealed high rates of quality indicator completion in both the pre- and post-CDSS; although the post-CDSS group received a higher frequency of reminders (4.25 per patient) than the pre-CDSS group (.25 per patient). Conclusions This case report documents the processes used to successfully design and implement an HCV CDSS. While the small sample size precludes generalizability of findings, results did positively demonstrate the feasibility of comparing quality indicator completion rates pre-CDSS and post-CDSS. It is recommended that future studies include a larger sample size across multiple providers with expanded outcomes measures related to patient outcomes, staff satisfaction with the CDSS, and time studies to evaluate efficiency and cost effectiveness of the CDSS. PMID:23646082

  10. Integrating clinical decision support systems for pharmacogenomic testing into clinical routine - a scoping review of designs of user-system interactions in recent system development.

    PubMed

    Hinderer, Marc; Boeker, Martin; Wagner, Sebastian A; Lablans, Martin; Newe, Stephanie; Hülsemann, Jan L; Neumaier, Michael; Binder, Harald; Renz, Harald; Acker, Till; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2017-06-06

    Pharmacogenomic clinical decision support systems (CDSS) have the potential to help overcome some of the barriers for translating pharmacogenomic knowledge into clinical routine. Before developing a prototype it is crucial for developers to know which pharmacogenomic CDSS features and user-system interactions have yet been developed, implemented and tested in previous pharmacogenomic CDSS efforts and if they have been successfully applied. We address this issue by providing an overview of the designs of user-system interactions of recently developed pharmacogenomic CDSS. We searched PubMed for pharmacogenomic CDSS published between January 1, 2012 and November 15, 2016. Thirty-two out of 118 identified articles were summarized and included in the final analysis. We then compared the designs of user-system interactions of the 20 pharmacogenomic CDSS we had identified. Alerts are the most widespread tools for physician-system interactions, but need to be implemented carefully to prevent alert fatigue and avoid liabilities. Pharmacogenomic test results and override reasons stored in the local EHR might help communicate pharmacogenomic information to other internal care providers. Integrating patients into user-system interactions through patient letters and online portals might be crucial for transferring pharmacogenomic data to external health care providers. Inbox messages inform physicians about new pharmacogenomic test results and enable them to request pharmacogenomic consultations. Search engines enable physicians to compare medical treatment options based on a patient's genotype. Within the last 5 years, several pharmacogenomic CDSS have been developed. However, most of the included articles are solely describing prototypes of pharmacogenomic CDSS rather than evaluating them. To support the development of prototypes further evaluation efforts will be necessary. In the future, pharmacogenomic CDSS will likely include prediction models to identify patients who

  11. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    PubMed

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  12. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare

    PubMed Central

    Dolan, James G.

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218

  13. Effectiveness of computerized clinical decision support systems for asthma and chronic obstructive pulmonary disease in primary care: a systematic review.

    PubMed

    Fathima, Mariam; Peiris, David; Naik-Panvelkar, Pradnya; Saini, Bandana; Armour, Carol Lyn

    2014-12-02

    The use of computerized clinical decision support systems may improve the diagnosis and ongoing management of chronic diseases, which requires recurrent visits to multiple health professionals, disease and medication monitoring and modification of patient behavior. The aim of this review was to systematically review randomized controlled trials evaluating the effectiveness of computerized clinical decision systems (CCDSS) in the care of people with asthma and COPD. Randomized controlled trials published between 2003 and 2013 were searched using multiple electronic databases Medline, EMBASE, CINAHL, IPA, Informit, PsychINFO, Compendex, and Cochrane Clinical Controlled Trials Register databases. To be included, RCTs had to evaluate the role of the CCDSSs for asthma and/or COPD in primary care. Nineteen studies representing 16 RCTs met our inclusion criteria. The majority of the trials were conducted in patients with asthma. Study quality was generally high. Meta-analysis was not conducted because of methodological and clinical heterogeneity. The use of CCDSS improved asthma and COPD care in 14 of the 19 studies reviewed (74%). Nine of the nineteen studies showed statistically significant (p < 0.05) improvement in the primary outcomes measured. The majority of the studies evaluated health care process measures as their primary outcomes (10/19). Evidence supports the effectiveness of CCDSS in the care of people with asthma. However there is very little information of its use in COPD care. Although there is considerable improvement in the health care process measures and clinical outcomes through the use of CCDSSs, its effects on user workload and efficiency, safety, costs of care, provider and patient satisfaction remain understudied.

  14. A programmable rules engine to provide clinical decision support using HTML forms.

    PubMed Central

    Heusinkveld, J.; Geissbuhler, A.; Sheshelidze, D.; Miller, R.

    1999-01-01

    The authors have developed a simple method for specifying rules to be applied to information on HTML forms. This approach allows clinical experts, who lack the programming expertise needed to write CGI scripts, to construct and maintain domain-specific knowledge and ordering capabilities within WizOrder, the order-entry and decision support system used at Vanderbilt Hospital. The clinical knowledge base maintainers use HTML editors to create forms and spreadsheet programs for rule entry. A test environment has been developed which uses Netscape to display forms; the production environment displays forms using an embedded browser. Images Figure 1 PMID:10566470

  15. A prototype knowledge-based decision support system for industrial waste management. Part 1: The decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, C.A.; Baetz, B.W.

    1998-12-31

    Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less

  16. OrderRex: clinical order decision support and outcome predictions by data-mining electronic medical records.

    PubMed

    Chen, Jonathan H; Podchiyska, Tanya; Altman, Russ B

    2016-03-01

    To answer a "grand challenge" in clinical decision support, the authors produced a recommender system that automatically data-mines inpatient decision support from electronic medical records (EMR), analogous to Netflix or Amazon.com's product recommender. EMR data were extracted from 1 year of hospitalizations (>18K patients with >5.4M structured items including clinical orders, lab results, and diagnosis codes). Association statistics were counted for the ∼1.5K most common items to drive an order recommender. The authors assessed the recommender's ability to predict hospital admission orders and outcomes based on initial encounter data from separate validation patients. Compared to a reference benchmark of using the overall most common orders, the recommender using temporal relationships improves precision at 10 recommendations from 33% to 38% (P < 10(-10)) for hospital admission orders. Relative risk-based association methods improve inverse frequency weighted recall from 4% to 16% (P < 10(-16)). The framework yields a prediction receiver operating characteristic area under curve (c-statistic) of 0.84 for 30 day mortality, 0.84 for 1 week need for ICU life support, 0.80 for 1 week hospital discharge, and 0.68 for 30-day readmission. Recommender results quantitatively improve on reference benchmarks and qualitatively appear clinically reasonable. The method assumes that aggregate decision making converges appropriately, but ongoing evaluation is necessary to discern common behaviors from "correct" ones. Collaborative filtering recommender algorithms generate clinical decision support that is predictive of real practice patterns and clinical outcomes. Incorporating temporal relationships improves accuracy. Different evaluation metrics satisfy different goals (predicting likely events vs. "interesting" suggestions). Published by Oxford University Press on behalf of the American Medical Informatics Association 2015. This work is written by US Government

  17. OrderRex: clinical order decision support and outcome predictions by data-mining electronic medical records

    PubMed Central

    Chen, Jonathan H; Podchiyska, Tanya

    2016-01-01

    Objective: To answer a “grand challenge” in clinical decision support, the authors produced a recommender system that automatically data-mines inpatient decision support from electronic medical records (EMR), analogous to Netflix or Amazon.com’s product recommender. Materials and Methods: EMR data were extracted from 1 year of hospitalizations (>18K patients with >5.4M structured items including clinical orders, lab results, and diagnosis codes). Association statistics were counted for the ∼1.5K most common items to drive an order recommender. The authors assessed the recommender’s ability to predict hospital admission orders and outcomes based on initial encounter data from separate validation patients. Results: Compared to a reference benchmark of using the overall most common orders, the recommender using temporal relationships improves precision at 10 recommendations from 33% to 38% (P < 10−10) for hospital admission orders. Relative risk-based association methods improve inverse frequency weighted recall from 4% to 16% (P < 10−16). The framework yields a prediction receiver operating characteristic area under curve (c-statistic) of 0.84 for 30 day mortality, 0.84 for 1 week need for ICU life support, 0.80 for 1 week hospital discharge, and 0.68 for 30-day readmission. Discussion: Recommender results quantitatively improve on reference benchmarks and qualitatively appear clinically reasonable. The method assumes that aggregate decision making converges appropriately, but ongoing evaluation is necessary to discern common behaviors from “correct” ones. Conclusions: Collaborative filtering recommender algorithms generate clinical decision support that is predictive of real practice patterns and clinical outcomes. Incorporating temporal relationships improves accuracy. Different evaluation metrics satisfy different goals (predicting likely events vs. “interesting” suggestions). PMID:26198303

  18. Considering Information Up-to-Dateness to Increase the Accuracy of Therapy Decision Support Systems.

    PubMed

    Gaebel, Jan; Cypko, Mario A; Oeltze-Jafra, Steffen

    2017-01-01

    During the diagnostic process a lot of information is generated. All this information is assessed when making a final diagnosis and planning the therapy. While some patient information is stable, e.g., gender, others may become outdated, e.g., tumor size derived from CT data. Quantifying this information up-to-dateness and deriving consequences are difficult. Especially for the implementation in clinical decision support systems, this has not been studied. When information entities tend to become outdated, in practice, clinicians intuitively reduce their impact when making decisions. Therefore, in a system's calculations their impact should be reduced as well. We propose a method of decreasing the certainty of information entities based on their up-to-dateness. The method is tested in a decision support system for TNM staging based on Bayesian networks. We compared the actual N-state in records of 39 patients to the N-state calculated with and without decreasing data certainty. The results under decreased certainty correlated better with the actual states (r=0.958, p=0.008). We conclude that the up-to-dateness must be considered when processing clinical information to enhance decision making and ensure more patient safety.

  19. Successful Outcomes of a Clinical Decision Support System in an HIV Practice: A Randomized Controlled Trial

    PubMed Central

    Robbins, Gregory K.; Lester, William; Johnson, Kristin L.; Chang, Yuchiao; Estey, Gregory; Surrao, Dominic; Zachary, Kimon; Lammert, Sara M.; Chueh, Henry; Meigs, James B.; Freedberg, Kenneth A.

    2013-01-01

    Background Data to support improved patient outcomes from clinical decision support systems (CDSS) are lacking in HIV care. Objective To conduct a randomized controlled trial testing the efficacy of a CDSS to improve HIV outcomes in an outpatient clinic. Design We conducted a randomized controlled trial where half of each provider’s patients were randomized to interactive or static computer alerts (ClinicalTrials.gov #NCT00678600). Setting The study was conducted at the Massachusetts General Hospital HIV Clinic. Subjects Participants were HIV providers and their HIV-infected patients. Intervention Computer alerts were generated for virologic failure (HIV RNA >400 c/mL after HIV RNA ≤400 c/mL), evidence of suboptimal follow-up, and 11 abnormal laboratory tests. Providers received interactive computer alerts, facilitating appointment rescheduling and repeat laboratory testing, for half of their patients and static alerts for the other half. Measurements The primary endpoint was change in CD4 count. Other endpoints included time-to-clinical event, 6-month suboptimal follow-up, and severe laboratory toxicity. Results Thirty-three HIV providers followed 1,011 HIV-infected patients. For the intervention arm, the mean CD4 count increase was greater (5.3 versus 3.2 cells/mm3/month; difference = 2.0 cells/mm3/month 95% CI [0.1, 4.0], p=0.040) and the rate of 6-month suboptimal follow-up was lower (20.6 versus 30.1 events per 100 patient-years, p=0.022). Median time-to-next scheduled appointment was shorter in the intervention arm after a suboptimal follow-up alert (1.71 versus 3.48 months; p<0.001) and after a toxicity alert (2.79 versus >6 months for control); p=0.072). Ninety-six percent of providers supported adopting the CDSS as part of standard care. Limitations This was a one-year informatics study conducted at a single hospital sub-specialty clinic. Conclusion A CDSS using interactive provider alerts improved CD4 counts and clinic follow-up for HIV

  20. Usability evaluation of pharmacogenomics clinical decision support aids and clinical knowledge resources in a computerized provider order entry system: a mixed methods approach.

    PubMed

    Devine, Emily Beth; Lee, Chia-Ju; Overby, Casey L; Abernethy, Neil; McCune, Jeannine; Smith, Joe W; Tarczy-Hornoch, Peter

    2014-07-01

    Pharmacogenomics (PGx) is positioned to have a widespread impact on the practice of medicine, yet physician acceptance is low. The presentation of context-specific PGx information, in the form of clinical decision support (CDS) alerts embedded in a computerized provider order entry (CPOE) system, can aid uptake. Usability evaluations can inform optimal design, which, in turn, can spur adoption. The study objectives were to: (1) evaluate an early prototype, commercial CPOE system with PGx-CDS alerts in a simulated environment, (2) identify potential improvements to the system user interface, and (3) understand the contexts under which PGx knowledge embedded in an electronic health record is useful to prescribers. Using a mixed methods approach, we presented seven cardiologists and three oncologists with five hypothetical clinical case scenarios. Each scenario featured a drug for which a gene encoding drug metabolizing enzyme required consideration of dosage adjustment. We used Morae(®) to capture comments and on-screen movements as participants prescribed each drug. In addition to PGx-CDS alerts, 'Infobutton(®)' and 'Evidence' icons provided participants with clinical knowledge resources to aid decision-making. Nine themes emerged. Five suggested minor improvements to the CPOE user interface; two suggested presenting PGx information through PGx-CDS alerts using an 'Infobutton' or 'Evidence' icon. The remaining themes were strong recommendations to provide succinct, relevant guidelines and dosing recommendations of phenotypic information from credible and trustworthy sources; any more information was overwhelming. Participants' median rating of PGx-CDS system usability was 2 on a Likert scale ranging from 1 (strongly agree) to 7 (strongly disagree). Usability evaluation results suggest that participants considered PGx information important for improving prescribing decisions; and that they would incorporate PGx-CDS when information is presented in relevant and

  1. Recommendations for Clinical Decision Support Deployment: Synthesis of a Roundtable of Medical Directors of Information Systems

    PubMed Central

    Jenders, Robert A.; Osheroff, Jerome A.; Sittig, Dean F.; Pifer, Eric A.; Teich, Jonathan M

    2007-01-01

    Background: Ample evidence exists that clinical decision support (CDS) can improve clinician performance. Nevertheless, additional evidence demonstrates that clinicians still do not perform adequately in many instances. This suggests an ongoing need for implementation of CDS, in turn prompting development of a roadmap for national action regarding CDS. Objective: Develop practical advice to aid CDS implementation in order to improve clinician performance. Method: Structured group interview during a roundtable discussion by medical directors of information systems (N = 30), with subsequent review by participants and synthesis. Results: Participant consensus was that CDS should be comprehensive and should involve techniques such as order sets and facilitated documentation as well as alerts; should be subject to ongoing feedback; and should flow from and be governed by an organization’s clinical goals. Conclusion: A structured roundtable discussion of clinicians experienced in health information technology can yield practical, consensus advice for implementation of CDS. PMID:18693858

  2. Pilot study of a point-of-use decision support tool for cancer clinical trials eligibility.

    PubMed

    Breitfeld, P P; Weisburd, M; Overhage, J M; Sledge, G; Tierney, W M

    1999-01-01

    Many adults with cancer are not enrolled in clinical trials because caregivers do not have the time to match the patient's clinical findings with varying eligibility criteria associated with multiple trials for which the patient might be eligible. The authors developed a point-of-use portable decision support tool (DS-TRIEL) to automate this matching process. The support tool consists of a hand-held computer with a programmable relational database. A two-level hierarchic decision framework was used for the identification of eligible subjects for two open breast cancer clinical trials. The hand-held computer also provides protocol consent forms and schemas to further help the busy oncologist. This decision support tool and the decision framework on which it is based could be used for multiple trials and different cancer sites.

  3. Pilot Study of a Point-of-use Decision Support Tool for Cancer Clinical Trials Eligibility

    PubMed Central

    Breitfeld, Philip P.; Weisburd, Marina; Overhage, J. Marc; Sledge, George; Tierney, William M.

    1999-01-01

    Many adults with cancer are not enrolled in clinical trials because caregivers do not have the time to match the patient's clinical findings with varying eligibility criteria associated with multiple trials for which the patient might be eligible. The authors developed a point-of-use portable decision support tool (DS-TRIEL) to automate this matching process. The support tool consists of a hand-held computer with a programmable relational database. A two-level hierarchic decision framework was used for the identification of eligible subjects for two open breast cancer clinical trials. The hand-held computer also provides protocol consent forms and schemas to further help the busy oncologist. This decision support tool and the decision framework on which it is based could be used for multiple trials and different cancer sites. PMID:10579605

  4. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems.

    PubMed

    Szlosek, Donald A; Ferrett, Jonathan

    2016-01-01

    As the number of clinical decision support systems (CDSSs) incorporated into electronic medical records (EMRs) increases, so does the need to evaluate their effectiveness. The use of medical record review and similar manual methods for evaluating decision rules is laborious and inefficient. The authors use machine learning and Natural Language Processing (NLP) algorithms to accurately evaluate a clinical decision support rule through an EMR system, and they compare it against manual evaluation. Modeled after the EMR system EPIC at Maine Medical Center, we developed a dummy data set containing physician notes in free text for 3,621 artificial patients records undergoing a head computed tomography (CT) scan for mild traumatic brain injury after the incorporation of an electronic best practice approach. We validated the accuracy of the Best Practice Advisories (BPA) using three machine learning algorithms-C-Support Vector Classification (SVC), Decision Tree Classifier (DecisionTreeClassifier), k-nearest neighbors classifier (KNeighborsClassifier)-by comparing their accuracy for adjudicating the occurrence of a mild traumatic brain injury against manual review. We then used the best of the three algorithms to evaluate the effectiveness of the BPA, and we compared the algorithm's evaluation of the BPA to that of manual review. The electronic best practice approach was found to have a sensitivity of 98.8 percent (96.83-100.0), specificity of 10.3 percent, PPV = 7.3 percent, and NPV = 99.2 percent when reviewed manually by abstractors. Though all the machine learning algorithms were observed to have a high level of prediction, the SVC displayed the highest with a sensitivity 93.33 percent (92.49-98.84), specificity of 97.62 percent (96.53-98.38), PPV = 50.00, NPV = 99.83. The SVC algorithm was observed to have a sensitivity of 97.9 percent (94.7-99.86), specificity 10.30 percent, PPV 7.25 percent, and NPV 99.2 percent for evaluating the best practice approach, after

  5. Identification of design features to enhance utilization and acceptance of systems for Internet-based decision support at the point of care.

    PubMed Central

    Gadd, C. S.; Baskaran, P.; Lobach, D. F.

    1998-01-01

    Extensive utilization of point-of-care decision support systems will be largely dependent on the development of user interaction capabilities that make them effective clinical tools in patient care settings. This research identified critical design features of point-of-care decision support systems that are preferred by physicians, through a multi-method formative evaluation of an evolving prototype of an Internet-based clinical decision support system. Clinicians used four versions of the system--each highlighting a different functionality. Surveys and qualitative evaluation methodologies assessed clinicians' perceptions regarding system usability and usefulness. Our analyses identified features that improve perceived usability, such as telegraphic representations of guideline-related information, facile navigation, and a forgiving, flexible interface. Users also preferred features that enhance usefulness and motivate use, such as an encounter documentation tool and the availability of physician instruction and patient education materials. In addition to identifying design features that are relevant to efforts to develop clinical systems for point-of-care decision support, this study demonstrates the value of combining quantitative and qualitative methods of formative evaluation with an iterative system development strategy to implement new information technology in complex clinical settings. Images Figure 1 PMID:9929188

  6. Identification of design features to enhance utilization and acceptance of systems for Internet-based decision support at the point of care.

    PubMed

    Gadd, C S; Baskaran, P; Lobach, D F

    1998-01-01

    Extensive utilization of point-of-care decision support systems will be largely dependent on the development of user interaction capabilities that make them effective clinical tools in patient care settings. This research identified critical design features of point-of-care decision support systems that are preferred by physicians, through a multi-method formative evaluation of an evolving prototype of an Internet-based clinical decision support system. Clinicians used four versions of the system--each highlighting a different functionality. Surveys and qualitative evaluation methodologies assessed clinicians' perceptions regarding system usability and usefulness. Our analyses identified features that improve perceived usability, such as telegraphic representations of guideline-related information, facile navigation, and a forgiving, flexible interface. Users also preferred features that enhance usefulness and motivate use, such as an encounter documentation tool and the availability of physician instruction and patient education materials. In addition to identifying design features that are relevant to efforts to develop clinical systems for point-of-care decision support, this study demonstrates the value of combining quantitative and qualitative methods of formative evaluation with an iterative system development strategy to implement new information technology in complex clinical settings.

  7. Efficacy of an evidence-based clinical decision support in primary care practices: a randomized clinical trial.

    PubMed

    McGinn, Thomas G; McCullagh, Lauren; Kannry, Joseph; Knaus, Megan; Sofianou, Anastasia; Wisnivesky, Juan P; Mann, Devin M

    2013-09-23

    There is consensus that incorporating clinical decision support into electronic health records will improve quality of care, contain costs, and reduce overtreatment, but this potential has yet to be demonstrated in clinical trials. To assess the influence of a customized evidence-based clinical decision support tool on the management of respiratory tract infections and on the effectiveness of integrating evidence at the point of care. In a randomized clinical trial, we implemented 2 well-validated integrated clinical prediction rules, namely, the Walsh rule for streptococcal pharyngitis and the Heckerling rule for pneumonia. INTERVENTIONS AND MAIN OUTCOMES AND MEASURES: The intervention group had access to the integrated clinical prediction rule tool and chose whether to complete risk score calculators, order medications, and generate progress notes to assist with complex decision making at the point of care. The intervention group completed the integrated clinical prediction rule tool in 57.5% of visits. Providers in the intervention group were significantly less likely to order antibiotics than the control group (age-adjusted relative risk, 0.74; 95% CI, 0.60-0.92). The absolute risk of the intervention was 9.2%, and the number needed to treat was 10.8. The intervention group was significantly less likely to order rapid streptococcal tests compared with the control group (relative risk, 0.75; 95% CI, 0.58-0.97; P= .03). The integrated clinical prediction rule process for integrating complex evidence-based clinical decision report tools is of relevant importance for national initiatives, such as Meaningful Use. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01386047.

  8. Community health workers' experiences of mobile device-enabled clinical decision support systems for maternal, newborn and child health in developing countries: a qualitative systematic review protocol.

    PubMed

    Dzabeng, Francis; Enuameh, Yeetey; Adjei, George; Manu, Grace; Asante, Kwaku Poku; Owusu-Agyei, Seth

    2016-09-01

    The objective of this review is to synthesize evidence on the experiences of community health workers (CHWs) of mobile device-enabled clinical decision support systems (CDSSs) interventions designed to support maternal newborn and child health (MNCH) in low-and middle-income countries.Specific objectives.

  9. Clinical Decision Support in Electronic Prescribing: Recommendations and an Action Plan

    PubMed Central

    Teich, Jonathan M.; Osheroff, Jerome A.; Pifer, Eric A.; Sittig, Dean F.; Jenders, Robert A.

    2005-01-01

    Clinical decision support (CDS) in electronic prescribing (eRx) systems can improve the safety, quality, efficiency, and cost-effectiveness of care. However, at present, these potential benefits have not been fully realized. In this consensus white paper, we set forth recommendations and action plans in three critical domains: (1) advances in system capabilities, including basic and advanced sets of CDS interventions and knowledge, supporting database elements, operational features to improve usability and measure performance, and management and governance structures; (2) uniform standards, vocabularies, and centralized knowledge structures and services that could reduce rework by vendors and care providers, improve dissemination of well-constructed CDS interventions, promote generally applicable research in CDS methods, and accelerate the movement of new medical knowledge from research to practice; and (3) appropriate financial and legal incentives to promote adoption. PMID:15802474

  10. Nursing process decision support system for urology ward.

    PubMed

    Hao, Angelica Te-Hui; Wu, Lee-Pin; Kumar, Ajit; Jian, Wen-Shan; Huang, Li-Fang; Kao, Ching-Chiu; Hsu, Chien-Yeh

    2013-07-01

    We developed a nursing process decision support system (NPDSS) based on three clinical pathways, including benign prostatic hypertrophy, inguinal hernia, and urinary tract stone. NPDSS included six major nursing diagnoses - acute pain, impaired urinary elimination, impaired skin integrity, anxiety, infection risk, and risk of falling. This paper aims to describe the design, development and validation process of the NPDSS. We deployed the Delphi method to reach consensus for decision support rules of NPDSS. A team of nine-member expert nurses from a medical center in Taiwan was involved in Delphi method. The Cronbach's α method was used for examining the reliability of the questionnaire used in the Delphi method. The Visual Basic 6.0 as front-end and Microsoft Access 2003 as back-end was used to develop the system. A team of six nursing experts was asked to evaluate the usability of the developed systems. A 5-point Likert scale questionnaire was used for the evaluation. The sensitivity and specificity of NPDSS were validated using 150 nursing chart. The study showed a consistency between the diagnoses of the developed system (NPDSS) and the nursing charts. The sensitivities of the nursing diagnoses including acute pain, impaired urinary elimination, risk of infection, and risk of falling were 96.9%, 98.1%, 94.9%, and 89.9% respectively; and the specificities were 88%, 49.5%, 62%, and 88% respectively. We did not calculate the sensitivity and specificity of impaired skin integrity and anxiety due to non-availability of enough sample size. NPDSS can help nurses in decision making of nursing diagnoses. Besides, it can help them to generate nursing diagnoses based on patient-specific data, individualized care plans, and implementation within their usual nursing workflow. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Maintenance decision support system deployment guide

    DOT National Transportation Integrated Search

    2008-07-01

    This is a guide for transportation professionals on why and how to deploy winter Maintenance Decision Support Systems (MDSS). Adverse winter weather can cause traffic delays and crashes. Treating the effects of winter weather can also have impacts on...

  12. The Contribution of a Decision Support System to Educational Decision-Making Processes

    ERIC Educational Resources Information Center

    Klein, Joseph; Ronen, Herman

    2003-01-01

    In the light of reports of bias, the present study investigated the hypothesis that administrative educational decisions assisted by Decision Support Systems (DSS) are characterized by different pedagogical and organizational orientation than decisions made without computer assistance. One hundred and ten high school teachers were asked to suggest…

  13. Clinical genomics information management software linking cancer genome sequence and clinical decisions.

    PubMed

    Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent

    2013-09-01

    Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A First Step towards a Clinical Decision Support System for Post-traumatic Stress Disorders.

    PubMed

    Ma, Sisi; Galatzer-Levy, Isaac R; Wang, Xuya; Fenyö, David; Shalev, Arieh Y

    2016-01-01

    PTSD is distressful and debilitating, following a non-remitting course in about 10% to 20% of trauma survivors. Numerous risk indicators of PTSD have been identified, but individual level prediction remains elusive. As an effort to bridge the gap between scientific discovery and practical application, we designed and implemented a clinical decision support pipeline to provide clinically relevant recommendation for trauma survivors. To meet the specific challenge of early prediction, this work uses data obtained within ten days of a traumatic event. The pipeline creates personalized predictive model for each individual, and computes quality metrics for each predictive model. Clinical recommendations are made based on both the prediction of the model and its quality, thus avoiding making potentially detrimental recommendations based on insufficient information or suboptimal model. The current pipeline outperforms the acute stress disorder, a commonly used clinical risk factor for PTSD development, both in terms of sensitivity and specificity.

  15. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?

    PubMed

    Rawson, T M; Moore, L S P; Hernandez, B; Charani, E; Castro-Sanchez, E; Herrero, P; Hayhoe, B; Hope, W; Georgiou, P; Holmes, A H

    2017-08-01

    Clinical decision support systems (CDSS) for antimicrobial management can support clinicians to optimize antimicrobial therapy. We reviewed all original literature (qualitative and quantitative) to understand the current scope of CDSS for antimicrobial management and analyse existing methods used to evaluate and report such systems. PRISMA guidelines were followed. Medline, EMBASE, HMIC Health and Management and Global Health databases were searched from 1 January 1980 to 31 October 2015. All primary research studies describing CDSS for antimicrobial management in adults in primary or secondary care were included. For qualitative studies, thematic synthesis was performed. Quality was assessed using Integrated quality Criteria for the Review Of Multiple Study designs (ICROMS) criteria. CDSS reporting was assessed against a reporting framework for behaviour change intervention implementation. Fifty-eight original articles were included describing 38 independent CDSS. The majority of systems target antimicrobial prescribing (29/38;76%), are platforms integrated with electronic medical records (28/38;74%), and have a rules-based infrastructure providing decision support (29/38;76%). On evaluation against the intervention reporting framework, CDSS studies fail to report consideration of the non-expert, end-user workflow. They have narrow focus, such as antimicrobial selection, and use proxy outcome measures. Engagement with CDSS by clinicians was poor. Greater consideration of the factors that drive non-expert decision making must be considered when designing CDSS interventions. Future work must aim to expand CDSS beyond simply selecting appropriate antimicrobials with clear and systematic reporting frameworks for CDSS interventions developed to address current gaps identified in the reporting of evidence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. “Smart Forms” in an Electronic Medical Record: Documentation-based Clinical Decision Support to Improve Disease Management

    PubMed Central

    Schnipper, Jeffrey L.; Linder, Jeffrey A.; Palchuk, Matvey B.; Einbinder, Jonathan S.; Li, Qi; Postilnik, Anatoly; Middleton, Blackford

    2008-01-01

    Clinical decision support systems (CDSS) integrated within Electronic Medical Records (EMR) hold the promise of improving healthcare quality. To date the effectiveness of CDSS has been less than expected, especially concerning the ambulatory management of chronic diseases. This is due, in part, to the fact that clinicians do not use CDSS fully. Barriers to clinicians' use of CDSS have included lack of integration into workflow, software usability issues, and relevance of the content to the patient at hand. At Partners HealthCare, we are developing “Smart Forms” to facilitate documentation-based clinical decision support. Rather than being interruptive in nature, the Smart Form enables writing a multi-problem visit note while capturing coded information and providing sophisticated decision support in the form of tailored recommendations for care. The current version of the Smart Form is designed around two chronic diseases: coronary artery disease and diabetes mellitus. The Smart Form has potential to improve the care of patients with both acute and chronic conditions. PMID:18436911

  17. A Knowledge-Modeling Approach to Integrate Multiple Clinical Practice Guidelines to Provide Evidence-Based Clinical Decision Support for Managing Comorbid Conditions.

    PubMed

    Abidi, Samina

    2017-10-26

    Clinical management of comorbidities is a challenge, especially in a clinical decision support setting, as it requires the safe and efficient reconciliation of multiple disease-specific clinical procedures to formulate a comorbid therapeutic plan that is both effective and safe for the patient. In this paper we pursue the integration of multiple disease-specific Clinical Practice Guidelines (CPG) in order to manage co-morbidities within a computerized Clinical Decision Support System (CDSS). We present a CPG integration framework-termed as COMET (Comorbidity Ontological Modeling & ExecuTion) that manifests a knowledge management approach to model, computerize and integrate multiple CPG to yield a comorbid CPG knowledge model that upon execution can provide evidence-based recommendations for handling comorbid patients. COMET exploits semantic web technologies to achieve (a) CPG knowledge synthesis to translate a paper-based CPG to disease-specific clinical pathways (CP) that include specialized co-morbidity management procedures based on input from domain experts; (b) CPG knowledge modeling to computerize the disease-specific CP using a Comorbidity CPG ontology; (c) CPG knowledge integration by aligning multiple ontologically-modeled CP to develop a unified comorbid CPG knowledge model; and (e) CPG knowledge execution using reasoning engines to derive CPG-mediated recommendations for managing patients with comorbidities. We present a web-accessible COMET CDSS that provides family physicians with CPG-mediated comorbidity decision support to manage Atrial Fibrillation and Chronic Heart Failure. We present our qualitative and quantitative analysis of the knowledge content and usability of COMET CDSS.

  18. Clinical decision support: effectiveness in improving quality processes and clinical outcomes and factors that may influence success.

    PubMed

    Murphy, Elizabeth V

    2014-06-01

    The use of electronic health records has skyrocketed following the 2009 HITECH Act, which provides financial incentives to health care providers for the "meaningful use" of electronic medical record systems. An important component of the "Meaningful Use" legislation is the integration of Clinical Decision Support Systems (CDSS) into the computerized record, providing up-to-date medical knowledge and evidence-based guidance to the physician at the point of care. As reimbursement is increasingly tied to process and clinical outcomes, CDSS will be integral to future medical practice. Studies of CDSS indicate improvement in preventive services, appropriate care, and clinical and cost outcomes with strong evidence for CDSS effectiveness in process measures. Increasing provider adherence to CDSS recommendations is essential in improving CDSS effectiveness, and factors that influence adherence are currently under study.

  19. Analysis of clinical decision support system malfunctions: a case series and survey.

    PubMed

    Wright, Adam; Hickman, Thu-Trang T; McEvoy, Dustin; Aaron, Skye; Ai, Angela; Andersen, Jan Marie; Hussain, Salman; Ramoni, Rachel; Fiskio, Julie; Sittig, Dean F; Bates, David W

    2016-11-01

    To illustrate ways in which clinical decision support systems (CDSSs) malfunction and identify patterns of such malfunctions. We identified and investigated several CDSS malfunctions at Brigham and Women's Hospital and present them as a case series. We also conducted a preliminary survey of Chief Medical Information Officers to assess the frequency of such malfunctions. We identified four CDSS malfunctions at Brigham and Women's Hospital: (1) an alert for monitoring thyroid function in patients receiving amiodarone stopped working when an internal identifier for amiodarone was changed in another system; (2) an alert for lead screening for children stopped working when the rule was inadvertently edited; (3) a software upgrade of the electronic health record software caused numerous spurious alerts to fire; and (4) a malfunction in an external drug classification system caused an alert to inappropriately suggest antiplatelet drugs, such as aspirin, for patients already taking one. We found that 93% of the Chief Medical Information Officers who responded to our survey had experienced at least one CDSS malfunction, and two-thirds experienced malfunctions at least annually. CDSS malfunctions are widespread and often persist for long periods. The failure of alerts to fire is particularly difficult to detect. A range of causes, including changes in codes and fields, software upgrades, inadvertent disabling or editing of rules, and malfunctions of external systems commonly contribute to CDSS malfunctions, and current approaches for preventing and detecting such malfunctions are inadequate. CDSS malfunctions occur commonly and often go undetected. Better methods are needed to prevent and detect these malfunctions. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  20. Analysis of clinical decision support system malfunctions: a case series and survey

    PubMed Central

    Wright, Adam; Hickman, Thu-Trang T; McEvoy, Dustin; Aaron, Skye; Ai, Angela; Andersen, Jan Marie; Hussain, Salman; Ramoni, Rachel; Fiskio, Julie; Sittig, Dean F; Bates, David W

    2016-01-01

    Objective To illustrate ways in which clinical decision support systems (CDSSs) malfunction and identify patterns of such malfunctions. Materials and Methods We identified and investigated several CDSS malfunctions at Brigham and Women’s Hospital and present them as a case series. We also conducted a preliminary survey of Chief Medical Information Officers to assess the frequency of such malfunctions. Results We identified four CDSS malfunctions at Brigham and Women’s Hospital: (1) an alert for monitoring thyroid function in patients receiving amiodarone stopped working when an internal identifier for amiodarone was changed in another system; (2) an alert for lead screening for children stopped working when the rule was inadvertently edited; (3) a software upgrade of the electronic health record software caused numerous spurious alerts to fire; and (4) a malfunction in an external drug classification system caused an alert to inappropriately suggest antiplatelet drugs, such as aspirin, for patients already taking one. We found that 93% of the Chief Medical Information Officers who responded to our survey had experienced at least one CDSS malfunction, and two-thirds experienced malfunctions at least annually. Discussion CDSS malfunctions are widespread and often persist for long periods. The failure of alerts to fire is particularly difficult to detect. A range of causes, including changes in codes and fields, software upgrades, inadvertent disabling or editing of rules, and malfunctions of external systems commonly contribute to CDSS malfunctions, and current approaches for preventing and detecting such malfunctions are inadequate. Conclusion CDSS malfunctions occur commonly and often go undetected. Better methods are needed to prevent and detect these malfunctions. PMID:27026616

  1. Physician Attitudes toward Adopting Genome-Guided Prescribing through Clinical Decision Support

    PubMed Central

    Overby, Casey Lynnette; Erwin, Angelika Ludtke; Abul-Husn, Noura S.; Ellis, Stephen B.; Scott, Stuart A.; Obeng, Aniwaa Owusu; Kannry, Joseph L.; Hripcsak, George; Bottinger, Erwin P.; Gottesman, Omri

    2014-01-01

    This study assessed physician attitudes toward adopting genome-guided prescribing through clinical decision support (CDS), prior to enlisting in the Clinical Implementation of Personalized Medicine through Electronic Health Records and Genomics pilot pharmacogenomics project (CLIPMERGE PGx). We developed a survey instrument that includes the Evidence Based Practice Attitude Scale, adapted to measure attitudes toward adopting genome-informed interventions (EBPAS-GII). The survey also includes items to measure physicians’ characteristics (awareness, experience, and perceived usefulness), attitudes about personal genome testing (PGT) services, and comfort using technology. We surveyed 101 General Internal Medicine physicians from the Icahn School of Medicine at Mount Sinai (ISMMS). The majority were residency program trainees (~88%). Prior to enlisting into CLIPMERGE PGx, most physicians were aware of and had used decision support aids. Few physicians, however, were aware of and had used genome-guided prescribing. The majority of physicians viewed decision support aids and genotype data as being useful for making prescribing decisions. Most physicians had not heard of, but were willing to use, PGT services and felt comfortable interpreting PGT results. Most physicians were comfortable with technology. Physicians who perceived genotype data to be useful in making prescribing decisions, had more positive attitudes toward adopting genome-guided prescribing through CDS. Our findings suggest that internal medicine physicians have a deficit in their familiarity and comfort interpreting and using genomic information. This has reinforced the importance of gathering feedback and guidance from our enrolled physicians when designing genome-guided CDS and the importance of prioritizing genomic medicine education at our institutions. PMID:25562141

  2. An Integrated Web-based Decision Support System in Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Aye, Z. C.; Jaboyedoff, M.; Derron, M. H.

    2012-04-01

    Nowadays, web based decision support systems (DSS) play an essential role in disaster risk management because of their supporting abilities which help the decision makers to improve their performances and make better decisions without needing to solve complex problems while reducing human resources and time. Since the decision making process is one of the main factors which highly influence the damages and losses of society, it is extremely important to make right decisions at right time by combining available risk information with advanced web technology of Geographic Information System (GIS) and Decision Support System (DSS). This paper presents an integrated web-based decision support system (DSS) of how to use risk information in risk management efficiently and effectively while highlighting the importance of a decision support system in the field of risk reduction. Beyond the conventional systems, it provides the users to define their own strategies starting from risk identification to the risk reduction, which leads to an integrated approach in risk management. In addition, it also considers the complexity of changing environment from different perspectives and sectors with diverse stakeholders' involvement in the development process. The aim of this platform is to contribute a part towards the natural hazards and geosciences society by developing an open-source web platform where the users can analyze risk profiles and make decisions by performing cost benefit analysis, Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) with the support of others tools and resources provided. There are different access rights to the system depending on the user profiles and their responsibilities. The system is still under development and the current version provides maps viewing, basic GIS functionality, assessment of important infrastructures (e.g. bridge, hospital, etc.) affected by landslides and visualization of the impact

  3. How to improve vital sign data quality for use in clinical decision support systems? A qualitative study in nine Swedish emergency departments.

    PubMed

    Skyttberg, Niclas; Vicente, Joana; Chen, Rong; Blomqvist, Hans; Koch, Sabine

    2016-06-04

    Vital sign data are important for clinical decision making in emergency care. Clinical Decision Support Systems (CDSS) have been advocated to increase patient safety and quality of care. However, the efficiency of CDSS depends on the quality of the underlying vital sign data. Therefore, possible factors affecting vital sign data quality need to be understood. This study aims to explore the factors affecting vital sign data quality in Swedish emergency departments and to determine in how far clinicians perceive vital sign data to be fit for use in clinical decision support systems. A further aim of the study is to provide recommendations on how to improve vital sign data quality in emergency departments. Semi-structured interviews were conducted with sixteen physicians and nurses from nine hospitals and vital sign documentation templates were collected and analysed. Follow-up interviews and process observations were done at three of the hospitals to verify the results. Content analysis with constant comparison of the data was used to analyse and categorize the collected data. Factors related to care process and information technology were perceived to affect vital sign data quality. Despite electronic health records (EHRs) being available in all hospitals, these were not always used for vital sign documentation. Only four out of nine sites had a completely digitalized vital sign documentation flow and paper-based triage records were perceived to provide a better mobile workflow support than EHRs. Observed documentation practices resulted in low currency, completeness, and interoperability of the vital signs. To improve vital sign data quality, we propose to standardize the care process, improve the digital documentation support, provide workflow support, ensure interoperability and perform quality control. Vital sign data quality in Swedish emergency departments is currently not fit for use by CDSS. To address both technical and organisational challenges, we propose

  4. Using Clinical Decision Support Software in Health Insurance Company

    NASA Astrophysics Data System (ADS)

    Konovalov, R.; Kumlander, Deniss

    This paper proposes the idea to use Clinical Decision Support software in Health Insurance Company as a tool to reduce the expenses related to Medication Errors. As a prove that this class of software will help insurance companies reducing the expenses, the research was conducted in eight hospitals in United Arab Emirates to analyze the amount of preventable common Medication Errors in drug prescription.

  5. The utility of decision support, clinical guidelines, and financial incentives as tools to achieve improved clinical performance.

    PubMed

    Goldfarb, S

    1999-03-01

    Whether one seeks to reduce inappropriate utilization of resources, improve diagnostic accuracy, increase utilization of effective therapies, or reduce the incidence of complications, the key to change is physician involvement in change. Unfortunately, a simple approach to the problem of inducing change in physician behavior is not available. There is a generally accepted view that expert, best-practice guidelines will improve clinical performance. However, there may be a bias to report positive results and a lack of careful analysis of guideline usage in routine practice in a "postmarketing" study akin to that seen in the pharmaceutical industry. Systems that allow the reliable assessment of quality of outcomes, efficiency of resource utilization, and accurate assessment of the risks associated with the care of given patient populations must be widely available before deciding whether an incentive-based system for providing the full range of medical care is feasible. Decision support focuses on providing information, ideally at the "point of service" and in the context of a particular clinical situation. Rules are self-imposed by physicians and are therefore much more likely to be adopted. As health care becomes corporatized, with increasing numbers of physicians employed by large organizations with the capacity to provide detailed information on the nature and quality of clinical care, it is possible that properly constructed guidelines, appropriate financial incentives, and robust forms of decision support will lead to a physician-led, process improvement approach to more rational and affordable health care.

  6. Decision support systems in clinical practice: The case of venous thromboembolism prevention.

    PubMed

    Nazarenko, G I; Kleymenova, E B; Payushik, S A; Otdelenov, V A; Sychev, D A; Yashina, L P

    2015-01-01

    Today medicine is facing a "knowledge crisis" in that explosively expanding medical knowledge encounters limited abilities to disseminate new practices [1]. Clinical practice guidelines (CPGs) are intended to promote high standards of care in specific areas of medicine by summarizing best clinical practice based on careful reviews of current research. However, doctors are often short of time to study these documents and check their updates, have little motivation for strict adherence to them. A systematic review of 11 studies reporting on 29 recommendations has found that median adherence to all recommendations was 34%, suggesting that potential benefits for patients from health research may be lost [2].Clinical decision support systems (CDSS) can serve as a knowledge translation tool, mediator between clinical guidelines and physicians by providing the right information to the right person at the right time. To evaluate the effectiveness of implementation of international and national CPGs for venous thromboembolism (VTE) prevention with the help of CDSS in a general hospital. A multifunctional CDSS based on national and international guidelines on the VTE prevention was developed and implemented in the Medical Center of the Bank of Russia (MC). The system has the following functionalities: 1) it supports the decision on the VTE prevention based on individual risk assessment of thrombosis (scales of Caprini, Rogers and Khorana, Padua Prediction Score, additional risk factors) and bleeding (IMPROVE scale for non-surgical patients, major bleeding scale for surgical patients and major orthopedic surgeries, hemorrhagic complications risk in cancer patients); 2) generates the summary containing the grade of recommendations and the level of evidence, personalized recommendations on regimen and duration of preventive antithrombotic therapy, dose correction according to creatinine clearance; 3) provides an audit form for and statistical analysis of VTE cases; 3

  7. Integration of Hospital Information and Clinical Decision Support Systems to Enable the Reuse of Electronic Health Record Data.

    PubMed

    Kopanitsa, Georgy

    2017-05-18

    The efficiency and acceptance of clinical decision support systems (CDSS) can increase if they reuse medical data captured during health care delivery. High heterogeneity of the existing legacy data formats has become the main barrier for the reuse of data. Thus, we need to apply data modeling mechanisms that provide standardization, transformation, accumulation and querying medical data to allow its reuse. In this paper, we focus on the interoperability issues of the hospital information systems (HIS) and CDSS data integration. Our study is based on the approach proposed by Marcos et al. where archetypes are used as a standardized mechanism for the interaction of a CDSS with an electronic health record (EHR). We build an integration tool to enable CDSSs collect data from various institutions without a need for modifications in the implementation. The approach implies development of a conceptual level as a set of archetypes representing concepts required by a CDSS. Treatment case data from Regional Clinical Hospital in Tomsk, Russia was extracted, transformed and loaded to the archetype database of a clinical decision support system. Test records' normalization has been performed by defining transformation and aggregation rules between the EHR data and the archetypes. These mapping rules were used to automatically generate openEHR compliant data. After the transformation, archetype data instances were loaded into the CDSS archetype based data storage. The performance times showed acceptable performance for the extraction stage with a mean of 17.428 s per year (3436 case records). The transformation times were also acceptable with 136.954 s per year (0.039 s per one instance). The accuracy evaluation showed the correctness and applicability of the method for the wide range of HISes. These operations were performed without interrupting the HIS workflow to prevent the HISes from disturbing the service provision to the users. The project results have proven that

  8. Clinical-decision support based on medical literature: A complex network approach

    NASA Astrophysics Data System (ADS)

    Jiang, Jingchi; Zheng, Jichuan; Zhao, Chao; Su, Jia; Guan, Yi; Yu, Qiubin

    2016-10-01

    In making clinical decisions, clinicians often review medical literature to ensure the reliability of diagnosis, test, and treatment because the medical literature can answer clinical questions and assist clinicians making clinical decisions. Therefore, finding the appropriate literature is a critical problem for clinical-decision support (CDS). First, the present study employs search engines to retrieve relevant literature about patient records. However, the result of the traditional method is usually unsatisfactory. To improve the relevance of the retrieval result, a medical literature network (MLN) based on these retrieved papers is constructed. Then, we show that this MLN has small-world and scale-free properties of a complex network. According to the structural characteristics of the MLN, we adopt two methods to further identify the potential relevant literature in addition to the retrieved literature. By integrating these potential papers into the MLN, a more comprehensive MLN is built to answer the question of actual patient records. Furthermore, we propose a re-ranking model to sort all papers by relevance. We experimentally find that the re-ranking model can improve the normalized discounted cumulative gain of the results. As participants of the Text Retrieval Conference 2015, our clinical-decision method based on the MLN also yields higher scores than the medians in most topics and achieves the best scores for topics: #11 and #12. These research results indicate that our study can be used to effectively assist clinicians in making clinical decisions, and the MLN can facilitate the investigation of CDS.

  9. A "building block" approach to application development for education and decision support in radiology: implications for integrated clinical information systems environments.

    PubMed

    Greenes, R A

    1991-11-01

    Education and decision-support resources useful to radiologists are proliferating for the personal computer/workstation user or are potentially accessible via high-speed networks. These resources are typically made available through a set of application programs that tend to be developed in isolation and operate independently. Nonetheless, there is a growing need for an integrated environment for access to these resources in the context of professional work, during clinical problem-solving and decision-making activities, and for use in conjunction with other information resources. New application development environments are required to provide these capabilities. One such architecture for applications, which we have implemented in a prototype environment called DeSyGNER, is based on separately delineating the component information resources required for an application, termed entities, and the user interface and organizational paradigms, or composition methods, by which the entities are used to provide particular kinds of capability. Examples include composition methods to support query, book browsing, hyperlinking, tutorials, simulations, or question/answer testing. Future steps must address true integration of such applications with existing clinical information systems. We believe that the most viable approach for evolving this capability is based on the use of new software engineering methodologies, open systems, client-server communication, and delineation of standard message protocols.

  10. Towards ethical decision support and knowledge management in neonatal intensive care.

    PubMed

    Yang, L; Frize, M; Eng, P; Walker, R; Catley, C

    2004-01-01

    Recent studies in neonatal medicine, clinical nursing, and cognitive psychology have indicated the need to augment current decision-making practice in neonatal intensive care units with computerized, intelligent decision support systems. Rapid progress in artificial intelligence and knowledge management facilitates the design of collaborative ethical decision-support tools that allow clinicians to provide better support for parents facing inherently difficult choices, such as when to withdraw aggressive treatment. The appropriateness of using computers to support ethical decision-making is critically analyzed through research and literature review. In ethical dilemmas, multiple diverse participants need to communicate and function as a team to select the best treatment plan. In order to do this, physicians require reliable estimations of prognosis, while parents need a highly useable tool to help them assimilate complex medical issues and address their own value system. Our goal is to improve and structuralize the ethical decision-making that has become an inevitable part of modern neonatal care units. The paper contributes to clinical decision support by outlining the needs and basis for ethical decision support and justifying the proposed development efforts.

  11. Clinical Decision Support: Effectiveness in Improving Quality Processes and Clinical Outcomes and Factors That May Influence Success

    PubMed Central

    Murphy, Elizabeth V.

    2014-01-01

    The use of electronic health records has skyrocketed following the 2009 HITECH Act, which provides financial incentives to health care providers for the “meaningful use” of electronic medical record systems. An important component of the “Meaningful Use” legislation is the integration of Clinical Decision Support Systems (CDSS) into the computerized record, providing up-to-date medical knowledge and evidence-based guidance to the physician at the point of care. As reimbursement is increasingly tied to process and clinical outcomes, CDSS will be integral to future medical practice. Studies of CDSS indicate improvement in preventive services, appropriate care, and clinical and cost outcomes with strong evidence for CDSS effectiveness in process measures. Increasing provider adherence to CDSS recommendations is essential in improving CDSS effectiveness, and factors that influence adherence are currently under study. PMID:24910564

  12. Design and realization of tourism spatial decision support system based on GIS

    NASA Astrophysics Data System (ADS)

    Ma, Zhangbao; Qi, Qingwen; Xu, Li

    2008-10-01

    In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.

  13. Enhancing Worker Health Through Clinical Decision Support (CDS): An Introduction to a Compilation.

    PubMed

    Filios, Margaret S; Storey, Eileen; Baron, Sherry; Luensman, Genevieve B; Shiffman, Richard N

    2017-11-01

    This article outlines an approach to developing clinical decision support (CDS) for conditions related to work and health. When incorporated in electronic health records, such CDS will assist primary care providers (PCPs) care for working patients. Three groups of Subject Matter Experts (SMEs) identified relevant clinical practice guidelines, best practices, and reviewed published literature concerning work-related asthma, return-to-work, and management of diabetes at work. SMEs developed one recommendation per topic that could be supported by electronic CDS. Reviews with PCPs, staff, and health information system implementers in five primary care settings confirmed that the approach was important and operationally sound. This compendium is intended to stimulate a dialogue between occupational health specialists and PCPs that will enhance the use of work information about patients in the primary care setting.

  14. Implementation of clinical decision support in young children with acute gastroenteritis: a randomized controlled trial at the emergency department.

    PubMed

    Geurts, Dorien; de Vos-Kerkhof, Evelien; Polinder, Suzanne; Steyerberg, Ewout; van der Lei, Johan; Moll, Henriëtte; Oostenbrink, Rianne

    2017-02-01

    Acute gastroenteritis (AGE) is one of the most frequent reasons for young children to visit emergency departments (EDs). We aimed to evaluate (1) feasibility of a nurse-guided clinical decision support system for rehydration treatment in children with AGE and (2) the impact on diagnostics, treatment, and costs compared with usual care by attending physician. A randomized controlled trial was performed in 222 children, aged 1 month to 5 years at the ED of the Erasmus MC-Sophia Children's hospital in The Netherlands ( 2010-2012). Outcome included (1) feasibility, measured by compliance of the nurses, and (2) length of stay (LOS) at the ED, the number of diagnostic tests, treatment, follow-up, and costs. Due to failure of post-ED weight measurement, we could not evaluate weight difference as measure for dehydration. Patient characteristics were comparable between the intervention (N = 113) and the usual care group (N = 109). Implementation of the clinical decision support system proved a high compliance rate. The standardized use of oral ORS (oral rehydration solution) significantly increased from 52 to 65%(RR2.2, 95%CI 1.09-4.31 p < 0.05). We observed no differences in other outcome measures. Implementation of nurse-guided clinical decision support system on rehydration treatment in children with AGE showed high compliance and increase standardized use of ORS, without differences in other outcome measures. What is Known: • Acute gastroenteritis is one of the most frequently encountered problems in pediatric emergency departments. • Guidelines advocate standardized oral treatment in children with mild to moderate dehydration, but appear to be applied infrequently in clinical practice. What is New: • Implementation of a nurse-guided clinical decision support system on treatment of AGE in young children showed good feasibility, resulting in a more standardized ORS use in children with mild to moderate dehydration, compared to usual care. • Given the

  15. [Implementation of ontology-based clinical decision support system for management of interactions between antihypertensive drugs and diet].

    PubMed

    Park, Jeong Eun; Kim, Hwa Sun; Chang, Min Jung; Hong, Hae Sook

    2014-06-01

    The influence of dietary composition on blood pressure is an important subject in healthcare. Interactions between antihypertensive drugs and diet (IBADD) is the most important factor in the management of hypertension. It is therefore essential to support healthcare providers' decision making role in active and continuous interaction control in hypertension management. The aim of this study was to implement an ontology-based clinical decision support system (CDSS) for IBADD management (IBADDM). We considered the concepts of antihypertensive drugs and foods, and focused on the interchangeability between the database and the CDSS when providing tailored information. An ontology-based CDSS for IBADDM was implemented in eight phases: (1) determining the domain and scope of ontology, (2) reviewing existing ontology, (3) extracting and defining the concepts, (4) assigning relationships between concepts, (5) creating a conceptual map with CmapTools, (6) selecting upper ontology, (7) formally representing the ontology with Protégé (ver.4.3), (8) implementing an ontology-based CDSS as a JAVA prototype application. We extracted 5,926 concepts, 15 properties, and formally represented them using Protégé. An ontology-based CDSS for IBADDM was implemented and the evaluation score was 4.60 out of 5. We endeavored to map functions of a CDSS and implement an ontology-based CDSS for IBADDM.

  16. A Decision-Support System for Sustainable Water Distribution System Planning.

    PubMed

    Freund, Alina; Aydin, Nazli Yonca; Zeckzer, Dirk; Hagen, Hans

    2017-01-01

    An interactive decision-support system (DSS) can help experts prepare water resource management plans for decision makers and stakeholders. The design of the proposed prototype incorporates visualization techniques such as circle views, grid layout, small multiple maps, and node simplification to improve the data readability of water distribution systems. A case study with three urban water management and sanitary engineering experts revealed that the proposed DSS is satisfactory, efficient, and effective.

  17. Development and Implementation of the Clinical Decision Support System for Patients With Cancer and Nurses' Experiences Regarding the System.

    PubMed

    Yılmaz, Arzu Akman; Ozdemir, Leyla

    2017-01-01

    The purpose of this study was to develop and implement the clinical decision support system (CDSS) for oncology nurses in the care of patients with cancer and to explore the nurses' experiences about the system. The study was conducted using a mixed-methods research design with 14 nurses working at a gynecological oncology clinic at a university hospital in Turkey. The nurses stated that they did not experience any problems during the implementation of the CDSS, and its usage facilitated the assessment of patients' needs and care management. The results indicated that the CDSS supported the nurses' decision-making process about patients' needs and preparation of individual care plans. The CDSS should be developed and implemented by the nurses working with patients with cancer. AMAÇ: Amaç kanser hastalarının bakımına yönelik klinik karar destek sistemi oluşturmak, uygulamak (KKDS) ve sistemi kullanan hemşirelerin deneyimlerini incelemektir. YÖNTEM: Çalışma kalitatif ve kantitatif araştırma yöntemleri kullanılarak Türkiyede'ki bir üniversite hastanesinin jinekolojik onkoloji servisinde çalışan 14 hemşire ile yürütülmüştür. Hemşireler KKDS'ni kullanırken herhangi bir sorun yaşamadıklarını ve sistemin hasta gereksinimlerini değerlendirmeyi ve bakım yönetimini kolaylaştırdığını belirtmişlerdir. SONUÇ: Bulgular hastanın gereksinimlerine karar verme sürecinde ve bireysel bakım planları hazırlamada KKDS'nin hemşireleri desteklediğini göstermektedir. HEMŞIRELIK UYGULAMALARI IÇIN ÖNERILER: Kanserli hastaların bakımına yönelik KKDS geliştirilebilir ve hemşireler tarafından klinikte kullanılabilir. © 2015 NANDA International, Inc.

  18. Medication-related clinical decision support alert overrides in inpatients.

    PubMed

    Nanji, Karen C; Seger, Diane L; Slight, Sarah P; Amato, Mary G; Beeler, Patrick E; Her, Qoua L; Dalleur, Olivia; Eguale, Tewodros; Wong, Adrian; Silvers, Elizabeth R; Swerdloff, Michael; Hussain, Salman T; Maniam, Nivethietha; Fiskio, Julie M; Dykes, Patricia C; Bates, David W

    2018-05-01

    To define the types and numbers of inpatient clinical decision support alerts, measure the frequency with which they are overridden, and describe providers' reasons for overriding them and the appropriateness of those reasons. We conducted a cross-sectional study of medication-related clinical decision support alerts over a 3-year period at a 793-bed tertiary-care teaching institution. We measured the rate of alert overrides, the rate of overrides by alert type, the reasons cited for overrides, and the appropriateness of those reasons. Overall, 73.3% of patient allergy, drug-drug interaction, and duplicate drug alerts were overridden, though the rate of overrides varied by alert type (P < .0001). About 60% of overrides were appropriate, and that proportion also varied by alert type (P < .0001). Few overrides of renal- (2.2%) or age-based (26.4%) medication substitutions were appropriate, while most duplicate drug (98%), patient allergy (96.5%), and formulary substitution (82.5%) alerts were appropriate. Despite warnings of potential significant harm, certain categories of alert overrides were inappropriate >75% of the time. The vast majority of duplicate drug, patient allergy, and formulary substitution alerts were appropriate, suggesting that these categories of alerts might be good targets for refinement to reduce alert fatigue. Almost three-quarters of alerts were overridden, and 40% of the overrides were not appropriate. Future research should optimize alert types and frequencies to increase their clinical relevance, reducing alert fatigue so that important alerts are not inappropriately overridden.

  19. Recommendations for Selecting Drug-Drug Interactions for Clinical Decision Support

    PubMed Central

    Tilson, Hugh; Hines, Lisa E.; McEvoy, Gerald; Weinstein, David M.; Hansten, Philip D.; Matuszewski, Karl; le Comte, Marianne; Higby-Baker, Stefanie; Hanlon, Joseph T.; Pezzullo, Lynn; Vieson, Kathleen; Helwig, Amy L.; Huang, Shiew-Mei; Perre, Anthony; Bates, David W.; Poikonen, John; Wittie, Michael A.; Grizzle, Amy J.; Brown, Mary; Malone, Daniel C.

    2016-01-01

    Purpose To recommend principles for including drug-drug interactions (DDIs) in clinical decision support. Methods A conference series was conducted to improve clinical decision support (CDS) for DDIs. The Content Workgroup met monthly by webinar from January 2013 to February 2014, with two in-person meetings to reach consensus. The workgroup consisted of 20 experts in pharmacology, drug information, and CDS from academia, government agencies, health information (IT) vendors, and healthcare organizations. Workgroup members addressed four key questions: (1) What process should be used to develop and maintain a standard set of DDIs?; (2) What information should be included in a knowledgebase of standard DDIs?; (3) Can/should a list of contraindicated drug pairs be established?; and (4) How can DDI alerts be more intelligently filtered? Results To develop and maintain a standard set of DDIs for CDS in the United States, we recommend a transparent, systematic, and evidence-driven process with graded recommendations by a consensus panel of experts and oversight by a national organization. We outline key DDI information needed to help guide clinician decision-making. We recommend judicious classification of DDIs as contraindicated, as only a small set of drug combinations are truly contraindicated. Finally, we recommend more research to identify methods to safely reduce repetitive and less relevant alerts. Conclusion A systematic ongoing process is necessary to select DDIs for alerting clinicians. We anticipate that our recommendations can lead to consistent and clinically relevant content for interruptive DDIs, and thus reduce alert fatigue and improve patient safety. PMID:27045070

  20. Therapy Decision Support Based on Recommender System Methods

    PubMed Central

    Gräßer, Felix; Beckert, Stefanie; Küster, Denise; Schmitt, Jochen; Abraham, Susanne; Malberg, Hagen

    2017-01-01

    We present a system for data-driven therapy decision support based on techniques from the field of recommender systems. Two methods for therapy recommendation, namely, Collaborative Recommender and Demographic-based Recommender, are proposed. Both algorithms aim to predict the individual response to different therapy options using diverse patient data and recommend the therapy which is assumed to provide the best outcome for a specific patient and time, that is, consultation. The proposed methods are evaluated using a clinical database incorporating patients suffering from the autoimmune skin disease psoriasis. The Collaborative Recommender proves to generate both better outcome predictions and recommendation quality. However, due to sparsity in the data, this approach cannot provide recommendations for the entire database. In contrast, the Demographic-based Recommender performs worse on average but covers more consultations. Consequently, both methods profit from a combination into an overall recommender system. PMID:29065657

  1. A feasibility study for a clinical decision support system prompting HIV testing.

    PubMed

    Chadwick, D R; Hall, C; Rae, C; Rayment, Ml; Branch, M; Littlewood, J; Sullivan, A

    2017-07-01

    Levels of undiagnosed HIV infection and late presentation remain high globally despite attempts to increase testing. The objective of this study was to evaluate a risk-based prototype application to prompt HIV testing when patients undergo routine blood tests. Two computer physician order entry (CPOE) systems were modified using the application to prompt health care workers (HCWs) to add an HIV test when other tests selected suggested that the patient was at higher risk of HIV infection. The application was applied for a 3-month period in two areas, in a large London hospital and in general practices in Teesside/North Yorkshire. At the end of the evaluation period, HCWs were interviewed to assess the usability and acceptability of the prompt. Numbers of HIV tests ordered in the general practice areas were also compared before and after the prompt's introduction. The system was found to be both useable and generally acceptable to hospital doctors, general practitioners and nurse practitioners, with little evidence of prompt/alert fatigue. The issue of the prompt appearing late in the patient consultation did lead to some difficulties, particularly around discussion of the test and consent. In the general practices, around 1 in 10 prompts were accepted and there was a 6% increase in testing rates over the 3-month study period (P = 0.169). Using a CPOE-based clinical decision support application to prompt HIV testing appears both feasible and acceptable to HCWs. Refining the application to provide more accurate risk stratification is likely to make it more effective. © 2016 British HIV Association.

  2. Evaluation of RxNorm for Medication Clinical Decision Support.

    PubMed

    Freimuth, Robert R; Wix, Kelly; Zhu, Qian; Siska, Mark; Chute, Christopher G

    2014-01-01

    We evaluated the potential use of RxNorm to provide standardized representations of generic drug name and route of administration to facilitate management of drug lists for clinical decision support (CDS) rules. We found a clear representation of generic drug name but not route of administration. We identified several issues related to data quality, including erroneous or missing defined relationships, and the use of different concept hierarchies to represent the same drug. More importantly, we found extensive semantic precoordination of orthogonal concepts related to route and dose form, which would complicate the use of RxNorm for drug-based CDS. This study demonstrated that while RxNorm is a valuable resource for the standardization of medications used in clinical practice, additional work is required to enhance the terminology so that it can support expanded use cases, such as managing drug lists for CDS.

  3. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  4. Clinic-Based Mobile Health Decision Support to Enhance Adult Epilepsy Self-Management: An Intervention Mapping Approach.

    PubMed

    Shegog, Ross; Begley, Charles E

    2017-01-01

    Epilepsy is a neurological disorder involving recurrent seizures. It affects approximately 5 million people in the U.S. To optimize their quality of life people with epilepsy are encouraged to engage in self-management (S-M) behaviors. These include managing their treatment (e.g., adhering to anti-seizure medication and clinical visit schedules), managing their seizures (e.g., responding to seizure episodes), managing their safety (e.g., monitoring and avoiding environmental seizure triggers), and managing their co-morbid conditions (e.g., anxiety, depression). The clinic-based Management Information Decision Support Epilepsy Tool (MINDSET) is a decision-support system founded on theory and empirical evidence. It is designed to increase awareness by adult patients (≥18 years) and their health-care provider regarding the patient's epilepsy S-M behaviors, facilitate communication during the clinic visit to prioritize S-M goals and strategies commensurate with the patient's needs, and increase the patient's self-efficacy to achieve those goals. The purpose of this paper is to describe the application of intervention mapping (IM) to develop, implement, and formatively evaluate the clinic-based MINDSET prototype and in developing implementation and evaluation plans. Deliverables comprised a logic model of the problem (IM Step 1); matrices of program objectives (IM Step 2); a program planning document comprising scope, sequence, theory-based methods, and practical strategies (IM Step 3); a functional MINDSET program prototype (IM Step 4); plans for implementation (IM Step 5); and evaluation (IM Step 6). IM provided a logical and systematic approach to developing and evaluating clinic-based decision support toward epilepsy S-M.

  5. Usability Evaluation of a Clinical Decision Support System for Geriatric ED Pain Treatment.

    PubMed

    Genes, Nicholas; Kim, Min Soon; Thum, Frederick L; Rivera, Laura; Beato, Rosemary; Song, Carolyn; Soriano, Jared; Kannry, Joseph; Baumlin, Kevin; Hwang, Ula

    2016-01-01

    Older adults are at risk for inadequate emergency department (ED) pain care. Unrelieved acute pain is associated with poor outcomes. Clinical decision support systems (CDSS) hold promise to improve patient care, but CDSS quality varies widely, particularly when usability evaluation is not employed. To conduct an iterative usability and redesign process of a novel geriatric abdominal pain care CDSS. We hypothesized this process would result in the creation of more usable and favorable pain care interventions. Thirteen emergency physicians familiar with the Electronic Health Record (EHR) in use at the study site were recruited. Over a 10-week period, 17 1-hour usability test sessions were conducted across 3 rounds of testing. Participants were given 3 patient scenarios and provided simulated clinical care using the EHR, while interacting with the CDSS interventions. Quantitative System Usability Scores (SUS), favorability scores and qualitative narrative feedback were collected for each session. Using a multi-step review process by an interdisciplinary team, positive and negative usability issues in effectiveness, efficiency, and satisfaction were considered, prioritized and incorporated in the iterative redesign process of the CDSS. Video analysis was used to determine the appropriateness of the CDS appearances during simulated clinical care. Over the 3 rounds of usability evaluations and subsequent redesign processes, mean SUS progressively improved from 74.8 to 81.2 to 88.9; mean favorability scores improved from 3.23 to 4.29 (1 worst, 5 best). Video analysis revealed that, in the course of the iterative redesign processes, rates of physicians' acknowledgment of CDS interventions increased, however most rates of desired actions by physicians (such as more frequent pain score updates) decreased. The iterative usability redesign process was instrumental in improving the usability of the CDSS; if implemented in practice, it could improve geriatric pain care. The

  6. A computerized handheld decision-support system to improve pulmonary embolism diagnosis: a randomized trial.

    PubMed

    Roy, Pierre-Marie; Durieux, Pierre; Gillaizeau, Florence; Legall, Catherine; Armand-Perroux, Aurore; Martino, Ludovic; Hachelaf, Mohamed; Dubart, Alain-Eric; Schmidt, Jeannot; Cristiano, Mirko; Chretien, Jean-Marie; Perrier, Arnaud; Meyer, Guy

    2009-11-17

    Testing for pulmonary embolism often differs from that recommended by evidence-based guidelines. To assess the effectiveness of a handheld clinical decision-support system to improve the diagnostic work-up of suspected pulmonary embolism among patients in the emergency department. Cluster randomized trial. Assignment was by random-number table, providers were not blinded, and outcome assessment was automated. (ClinicalTrials.gov registration number: NCT00188032). 20 emergency departments in France. 1103 and 1768 consecutive outpatients with suspected pulmonary embolism. After a preintervention period involving 20 centers and 1103 patients, in which providers grew accustomed to inputting clinical data into handheld devices and investigators assessed baseline testing, emergency departments were randomly assigned to activation of a decision-support system on the devices (10 centers, 753 patients) or posters and pocket cards that showed validated diagnostic strategies (10 centers, 1015 patients). Appropriateness of diagnostic work-up, defined as any sequence of tests that yielded a posttest probability less than 5% or greater than 85% (primary outcome) or as strict adherence to guideline recommendations (secondary outcome); number of tests per patient (secondary outcome). The proportion of patients who received appropriate diagnostic work-ups was greater during the trial than in the preintervention period in both groups, but the increase was greater in the computer-based guidelines group (adjusted mean difference in increase, 19.3 percentage points favoring computer-based guidelines [95% CI, 2.9 to 35.6 percentage points]; P = 0.023). Among patients with appropriate work-ups, those in the computer-based guidelines group received slightly fewer tests than did patients in the paper guidelines group (mean tests per patient, 1.76 [SD, 0.98] vs. 2.25 [SD, 1.04]; P < 0.001). The study was not designed to show a difference in the clinical outcomes of patients during follow

  7. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system

    PubMed Central

    Gultepe, Eren; Green, Jeffrey P; Nguyen, Hien; Adams, Jason; Albertson, Timothy; Tagkopoulos, Ilias

    2014-01-01

    Objective To develop a decision support system to identify patients at high risk for hyperlactatemia based upon routinely measured vital signs and laboratory studies. Materials and methods Electronic health records of 741 adult patients at the University of California Davis Health System who met at least two systemic inflammatory response syndrome criteria were used to associate patients’ vital signs, white blood cell count (WBC), with sepsis occurrence and mortality. Generative and discriminative classification (naïve Bayes, support vector machines, Gaussian mixture models, hidden Markov models) were used to integrate heterogeneous patient data and form a predictive tool for the inference of lactate level and mortality risk. Results An accuracy of 0.99 and discriminability of 1.00 area under the receiver operating characteristic curve (AUC) for lactate level prediction was obtained when the vital signs and WBC measurements were analysed in a 24 h time bin. An accuracy of 0.73 and discriminability of 0.73 AUC for mortality prediction in patients with sepsis was achieved with only three features: median of lactate levels, mean arterial pressure, and median absolute deviation of the respiratory rate. Discussion This study introduces a new scheme for the prediction of lactate levels and mortality risk from patient vital signs and WBC. Accurate prediction of both these variables can drive the appropriate response by clinical staff and thus may have important implications for patient health and treatment outcome. Conclusions Effective predictions of lactate levels and mortality risk can be provided with a few clinical variables when the temporal aspect and variability of patient data are considered. PMID:23959843

  8. The Arden Syntax standard for clinical decision support: experiences and directions.

    PubMed

    Samwald, Matthias; Fehre, Karsten; de Bruin, Jeroen; Adlassnig, Klaus-Peter

    2012-08-01

    Arden Syntax is a widely recognized standard for representing clinical and scientific knowledge in an executable format. It has a history that reaches back until 1989 and is currently maintained by the Health Level 7 (HL7) organization. We created a production-ready development environment, compiler, rule engine and application server for Arden Syntax. Over the course of several years, we have applied this Arden - Syntax - based CDS system in a wide variety of clinical problem domains, such as hepatitis serology interpretation, monitoring of nosocomial infections or the prediction of metastatic events in melanoma patients. We found the Arden Syntax standard to be very suitable for the practical implementation of CDS systems. Among the advantages of Arden Syntax are its status as an actively developed HL7 standard, the readability of the syntax, and various syntactic features such as flexible list handling. A major challenge we encountered was the technical integration of our CDS systems in existing, heterogeneous health information systems. To address this issue, we are currently working on incorporating the HL7 standard GELLO, which provides a standardized interface and query language for accessing data in health information systems. We hope that these planned extensions of the Arden Syntax might eventually help in realizing the vision of a global, interoperable and shared library of clinical decision support knowledge. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Recommendations for selecting drug-drug interactions for clinical decision support.

    PubMed

    Tilson, Hugh; Hines, Lisa E; McEvoy, Gerald; Weinstein, David M; Hansten, Philip D; Matuszewski, Karl; le Comte, Marianne; Higby-Baker, Stefanie; Hanlon, Joseph T; Pezzullo, Lynn; Vieson, Kathleen; Helwig, Amy L; Huang, Shiew-Mei; Perre, Anthony; Bates, David W; Poikonen, John; Wittie, Michael A; Grizzle, Amy J; Brown, Mary; Malone, Daniel C

    2016-04-15

    Recommendations for including drug-drug interactions (DDIs) in clinical decision support (CDS) are presented. A conference series was conducted to improve CDS for DDIs. A work group consisting of 20 experts in pharmacology, drug information, and CDS from academia, government agencies, health information vendors, and healthcare organizations was convened to address (1) the process to use for developing and maintaining a standard set of DDIs, (2) the information that should be included in a knowledge base of standard DDIs, (3) whether a list of contraindicated drug pairs can or should be established, and (4) how to more intelligently filter DDI alerts. We recommend a transparent, systematic, and evidence-driven process with graded recommendations by a consensus panel of experts and oversight by a national organization. We outline key DDI information needed to help guide clinician decision-making. We recommend judicious classification of DDIs as contraindicated and more research to identify methods to safely reduce repetitive and less-relevant alerts. An expert panel with a centralized organizer or convener should be established to develop and maintain a standard set of DDIs for CDS in the United States. The process should be evidence driven, transparent, and systematic, with feedback from multiple stakeholders for continuous improvement. The scope of the expert panel's work should be carefully managed to ensure that the process is sustainable. Support for research to improve DDI alerting in the future is also needed. Adoption of these steps may lead to consistent and clinically relevant content for interruptive DDIs, thus reducing alert fatigue and improving patient safety. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  10. Web-services-based spatial decision support system to facilitate nuclear waste siting

    NASA Astrophysics Data System (ADS)

    Huang, L. Xinglai; Sheng, Grant

    2006-10-01

    The availability of spatial web services enables data sharing among managers, decision and policy makers and other stakeholders in much simpler ways than before and subsequently has created completely new opportunities in the process of spatial decision making. Though generally designed for a certain problem domain, web-services-based spatial decision support systems (WSDSS) can provide a flexible problem-solving environment to explore the decision problem, understand and refine problem definition, and generate and evaluate multiple alternatives for decision. This paper presents a new framework for the development of a web-services-based spatial decision support system. The WSDSS is comprised of distributed web services that either have their own functions or provide different geospatial data and may reside in different computers and locations. WSDSS includes six key components, namely: database management system, catalog, analysis functions and models, GIS viewers and editors, report generators, and graphical user interfaces. In this study, the architecture of a web-services-based spatial decision support system to facilitate nuclear waste siting is described as an example. The theoretical, conceptual and methodological challenges and issues associated with developing web services-based spatial decision support system are described.

  11. Decision support system for nursing management control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, C.J.

    A knowledge representation approach for expert systems supporting decision processes in business is proposed. A description of a knowledge representation schema using a logic programming metalanguage is described, then the role of such a schema in a management expert system is demonstrated through the problem of nursing management control in hospitals. 18 references.

  12. A Decision Support System for Concrete Bridge Maintenance

    NASA Astrophysics Data System (ADS)

    Rashidi, Maria; Lemass, Brett; Gibson, Peter

    2010-05-01

    The maintenance of bridges as a key element in transportation infrastructure has become a major concern for asset managers and society due to increasing traffic volumes, deterioration of existing bridges and well-publicised bridge failures. A pivotal responsibility for asset managers in charge of bridge remediation is to identify the risks and assess the consequences of remediation programs to ensure that the decisions are transparent and lead to the lowest predicted losses in recognized constraint areas. The ranking of bridge remediation treatments can be quantitatively assessed using a weighted constraint approach to structure the otherwise ill-structured phases of problem definition, conceptualization and embodiment [1]. This Decision Support System helps asset managers in making the best decision with regards to financial limitations and other dominant constraints imposed upon the problem at hand. The risk management framework in this paper deals with the development of a quantitative intelligent decision support system for bridge maintenance which has the ability to provide a source for consistent decisions through selecting appropriate remediation treatments based upon cost, service life, product durability/sustainability, client preferences, legal and environmental constraints. Model verification and validation through industry case studies is ongoing.

  13. Cost-effectiveness of an electronic clinical decision support system for improving quality of antenatal and childbirth care in rural Tanzania: an intervention study.

    PubMed

    Saronga, Happiness Pius; Duysburgh, Els; Massawe, Siriel; Dalaba, Maxwell Ayindenaba; Wangwe, Peter; Sukums, Felix; Leshabari, Melkizedeck; Blank, Antje; Sauerborn, Rainer; Loukanova, Svetla

    2017-08-07

    QUALMAT project aimed at improving quality of maternal and newborn care in selected health care facilities in three African countries. An electronic clinical decision support system was implemented to support providers comply with established standards in antenatal and childbirth care. Given that health care resources are limited and interventions differ in their potential impact on health and costs (efficiency), this study aimed at assessing cost-effectiveness of the system in Tanzania. This was a quantitative pre- and post- intervention study involving 6 health centres in rural Tanzania. Cost information was collected from health provider's perspective. Outcome information was collected through observation of the process of maternal care. Incremental cost-effectiveness ratios for antenatal and childbirth care were calculated with testing of four models where the system was compared to the conventional paper-based approach to care. One-way sensitivity analysis was conducted to determine whether changes in process quality score and cost would impact on cost-effectiveness ratios. Economic cost of implementation was 167,318 USD, equivalent to 27,886 USD per health center and 43 USD per contact. The system improved antenatal process quality by 4.5% and childbirth care process quality by 23.3% however these improvements were not statistically significant. Base-case incremental cost-effectiveness ratios of the system were 2469 USD and 338 USD per 1% change in process quality for antenatal and childbirth care respectively. Cost-effectiveness of the system was sensitive to assumptions made on costs and outcomes. Although the system managed to marginally improve individual process quality variables, it did not have significant improvement effect on the overall process quality of care in the short-term. A longer duration of usage of the electronic clinical decision support system and retention of staff are critical to the efficiency of the system and can reduce the invested

  14. Development of a Decision Support System to Predict Physicians' Rehabilitation Protocols for Patients with Knee Osteoarthritis

    ERIC Educational Resources Information Center

    Hawamdeh, Ziad M.; Alshraideh, Mohammad A.; Al-Ajlouni, Jihad M.; Salah, Imad K.; Holm, Margo B.; Otom, Ali H.

    2012-01-01

    To design a medical decision support system (MDSS) that would accurately predict the rehabilitation protocols prescribed by the physicians for patients with knee osteoarthritis (OA) using only their demographic and clinical characteristics. The demographic and clinical variables for 170 patients receiving one of three treatment protocols for knee…

  15. Information Engineering and Workflow Design in a Clinical Decision Support System for Colorectal Cancer Screening in Iran.

    PubMed

    Maserat, Elham; Seied Farajollah, Seiede Sedigheh; Safdari, Reza; Ghazisaeedi, Marjan; Aghdaei, Hamid Asadzadeh; Zali, Mohammad Reza

    2015-01-01

    Colorectal cancer is a major cause of morbidity and mortality throughout the world. Colorectal cancer screening is an optimal way for reducing of morbidity and mortality and a clinical decision support system (CDSS) plays an important role in predicting success of screening processes. DSS is a computer-based information system that improves the delivery of preventive care services. The aim of this article was to detail engineering of information requirements and work flow design of CDSS for a colorectal cancer screening program. In the first stage a screening minimum data set was determined. Developed and developing countries were analyzed for identifying this data set. Then information deficiencies and gaps were determined by check list. The second stage was a qualitative survey with a semi-structured interview as the study tool. A total of 15 users and stakeholders' perspectives about workflow of CDSS were studied. Finally workflow of DSS of control program was designed by standard clinical practice guidelines and perspectives. Screening minimum data set of national colorectal cancer screening program was defined in five sections, including colonoscopy data set, surgery, pathology, genetics and pedigree data set. Deficiencies and information gaps were analyzed. Then we designed a work process standard of screening. Finally workflow of DSS and entry stage were determined. A CDSS facilitates complex decision making for screening and has key roles in designing optimal interactions between colonoscopy, pathology and laboratory departments. Also workflow analysis is useful to identify data reconciliation strategies to address documentation gaps. Following recommendations of CDSS should improve quality of colorectal cancer screening.

  16. Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN): evolution of a content management system for point-of-care clinical decision support.

    PubMed

    Barwise, Amelia; Garcia-Arguello, Lisbeth; Dong, Yue; Hulyalkar, Manasi; Vukoja, Marija; Schultz, Marcus J; Adhikari, Neill K J; Bonneton, Benjamin; Kilickaya, Oguz; Kashyap, Rahul; Gajic, Ognjen; Schmickl, Christopher N

    2016-10-03

    The Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN) is an international collaborative project with the overall objective of standardizing the approach to the evaluation and treatment of critically ill patients world-wide, in accordance with best-practice principles. One of CERTAIN's key features is clinical decision support providing point-of-care information about common acute illness syndromes, procedures, and medications in an index card format. This paper describes 1) the process of developing and validating the content for point-of-care decision support, and 2) the content management system that facilitates frequent peer-review and allows rapid updates of content across different platforms (CERTAIN software, mobile apps, pdf-booklet) and different languages. Content was created based on survey results of acute care providers and validated using an open peer-review process. Over a 3 year period, CERTAIN content expanded to include 67 syndrome cards, 30 procedure cards, and 117 medication cards. 127 (59 %) cards have been peer-reviewed so far. Initially MS Word® and Dropbox® were used to create, store, and share content for peer-review. Recently Google Docs® was used to make the peer-review process more efficient. However, neither of these approaches met our security requirements nor has the capacity to instantly update the different CERTAIN platforms. Although we were able to successfully develop and validate a large inventory of clinical decision support cards in a short period of time, commercially available software solutions for content management are suboptimal. Novel custom solutions are necessary for efficient global point of care content system management.

  17. Clinical decision support for genetically guided personalized medicine: a systematic review

    PubMed Central

    Welch, Brandon M

    2013-01-01

    Objective To review the literature on clinical decision support (CDS) for genetically guided personalized medicine (GPM). Materials and Methods MEDLINE and Embase were searched from 1990 to 2011. The manuscripts included were summarized, and notable themes and trends were identified. Results Following a screening of 3416 articles, 38 primary research articles were identified. Focal areas of research included family history-driven CDS, cancer management, and pharmacogenomics. Nine randomized controlled trials of CDS interventions for GPM were identified, seven of which reported positive results. The majority of manuscripts were published on or after 2007, with increased recent focus on genotype-driven CDS and the integration of CDS within primary clinical information systems. Discussion Substantial research has been conducted to date on the use of CDS to enable GPM. In a previous analysis of CDS intervention trials, the automatic provision of CDS as a part of routine clinical workflow had been identified as being critical for CDS effectiveness. There was some indication that CDS for GPM could potentially be effective without the CDS being provided automatically, but we did not find conclusive evidence to support this hypothesis. Conclusion To maximize the clinical benefits arising from ongoing discoveries in genetics and genomics, additional research and development is recommended for identifying how best to leverage CDS to bridge the gap between the promise and realization of GPM. PMID:22922173

  18. Evaluation of RxNorm for Medication Clinical Decision Support

    PubMed Central

    Freimuth, Robert R.; Wix, Kelly; Zhu, Qian; Siska, Mark; Chute, Christopher G.

    2014-01-01

    We evaluated the potential use of RxNorm to provide standardized representations of generic drug name and route of administration to facilitate management of drug lists for clinical decision support (CDS) rules. We found a clear representation of generic drug name but not route of administration. We identified several issues related to data quality, including erroneous or missing defined relationships, and the use of different concept hierarchies to represent the same drug. More importantly, we found extensive semantic precoordination of orthogonal concepts related to route and dose form, which would complicate the use of RxNorm for drug-based CDS. This study demonstrated that while RxNorm is a valuable resource for the standardization of medications used in clinical practice, additional work is required to enhance the terminology so that it can support expanded use cases, such as managing drug lists for CDS. PMID:25954360

  19. Executive Support Systems: An Innovation Decision Perspective

    DTIC Science & Technology

    1990-01-01

    of the requirements for the degree of Master of Science Department of Management Science and Information Systems 1990 0 4 28 071 This thesis for the...Master of Science degree by Vern Edwin Hasenstein has been approved for the Department of Management Science and -formation Systems by James C...Dist Speolal Hasenstein, Vern Edwin (M.S., Management Science and Information Systems) Executive Support Systems: An Innovation-decision Perspective

  20. A Multi-criterial Decision Support System for Forest Management

    Treesearch

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  1. Designing Computerized Decision Support That Works for Clinicians and Families

    PubMed Central

    Fiks, Alexander G.

    2011-01-01

    Evidence-based decision-making is central to the practice of pediatrics. Clinical trials and other biomedical research provide a foundation for this process, and practice guidelines, drawing from their results, inform the optimal management of an increasing number of childhood health problems. However, many clinicians fail to adhere to guidelines. Clinical decision support delivered using health information technology, often in the form of electronic health records, provides a tool to deliver evidence-based information to the point of care and has the potential to overcome barriers to evidence-based practice. An increasing literature now informs how these systems should be designed and implemented to most effectively improve outcomes in pediatrics. Through the examples of computerized physician order entry, as well as the impact of alerts at the point of care on immunization rates, the delivery of evidence-based asthma care, and the follow-up of children with attention deficit hyperactivity disorder, the following review addresses strategies for success in using these tools. The following review argues that, as decision support evolves, the clinician should no longer be the sole target of information and alerts. Through the Internet and other technologies, families are increasingly seeking health information and gathering input to guide health decisions. By enlisting clinical decision support systems to deliver evidence-based information to both clinicians and families, help families express their preferences and goals, and connect families to the medical home, clinical decision support may ultimately be most effective in improving outcomes. PMID:21315295

  2. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Person centered prediction of survival in population based screening program by an intelligent clinical decision support system.

    PubMed

    Safdari, Reza; Maserat, Elham; Asadzadeh Aghdaei, Hamid; Javan Amoli, Amir Hossein; Mohaghegh Shalmani, Hamid

    2017-01-01

    To survey person centered survival rate in population based screening program by an intelligent clinical decision support system. Colorectal cancer is the most common malignancy and major cause of morbidity and mortality throughout the world. Colorectal cancer is the sixth leading cause of cancer death in Iran. In this survey, we used cosine similarity as data mining technique and intelligent system for estimating survival of at risk groups in the screening plan. In the first step, we determined minimum data set (MDS). MDS was approved by experts and reviewing literatures. In the second step, MDS were coded by python language and matched with cosine similarity formula. Finally, survival rate by percent was illustrated in the user interface of national intelligent system. The national intelligent system was designed in PyCharm environment. Main data elements of intelligent system consist demographic information, age, referral type, risk group, recommendation and survival rate. Minimum data set related to survival comprise of clinical status, past medical history and socio-demographic information. Information of the covered population as a comprehensive database was connected to intelligent system and survival rate estimated for each patient. Mean range of survival of HNPCC patients and FAP patients were respectively 77.7% and 75.1%. Also, the mean range of the survival rate and other calculations have changed with the entry of new patients in the CRC registry by real-time. National intelligent system monitors the entire of risk group and reports survival rates by electronic guidelines and data mining technique and also operates according to the clinical process. This web base software has a critical role in the estimation survival rate in order to health care planning.

  4. Lung Cancer Assistant: a hybrid clinical decision support application for lung cancer care.

    PubMed

    Sesen, M Berkan; Peake, Michael D; Banares-Alcantara, Rene; Tse, Donald; Kadir, Timor; Stanley, Roz; Gleeson, Fergus; Brady, Michael

    2014-09-06

    Multidisciplinary team (MDT) meetings are becoming the model of care for cancer patients worldwide. While MDTs have improved the quality of cancer care, the meetings impose substantial time pressure on the members, who generally attend several such MDTs. We describe Lung Cancer Assistant (LCA), a clinical decision support (CDS) prototype designed to assist the experts in the treatment selection decisions in the lung cancer MDTs. A novel feature of LCA is its ability to provide rule-based and probabilistic decision support within a single platform. The guideline-based CDS is based on clinical guideline rules, while the probabilistic CDS is based on a Bayesian network trained on the English Lung Cancer Audit Database (LUCADA). We assess rule-based and probabilistic recommendations based on their concordances with the treatments recorded in LUCADA. Our results reveal that the guideline rule-based recommendations perform well in simulating the recorded treatments with exact and partial concordance rates of 0.57 and 0.79, respectively. On the other hand, the exact and partial concordance rates achieved with probabilistic results are relatively poorer with 0.27 and 0.76. However, probabilistic decision support fulfils a complementary role in providing accurate survival estimations. Compared to recorded treatments, both CDS approaches promote higher resection rates and multimodality treatments.

  5. Developing a Software for Fuzzy Group Decision Support System: A Case Study

    ERIC Educational Resources Information Center

    Baba, A. Fevzi; Kuscu, Dincer; Han, Kerem

    2009-01-01

    The complex nature and uncertain information in social problems required the emergence of fuzzy decision support systems in social areas. In this paper, we developed user-friendly Fuzzy Group Decision Support Systems (FGDSS) software. The software can be used for multi-purpose decision making processes. It helps the users determine the main and…

  6. Decision support system for drinking water management

    NASA Astrophysics Data System (ADS)

    Janža, M.

    2012-04-01

    The problems in drinking water management are complex and often solutions must be reached under strict time constrains. This is especially distinct in case of environmental accidents in the catchment areas of the wells that are used for drinking water supply. The beneficial tools that can help decision makers and make program of activities more efficient are decision support systems (DSS). In general they are defined as computer-based support systems that help decision makers utilize data and models to solve unstructured problems. The presented DSS was developed in the frame of INCOME project which is focused on the long-term stable and safe drinking water supply in Ljubljana. The two main water resources Ljubljana polje and Barje alluvial aquifers are characterized by a strong interconnection of surface and groundwater, high vulnerability, high velocities of groundwater flow and pollutant transport. In case of sudden pollution, reactions should be very fast to avoid serious impact to the water supply. In the area high pressures arising from urbanization, industry, traffic, agriculture and old environmental burdens. The aim of the developed DSS is to optimize the activities in cases of emergency water management and to optimize the administrative work regarding the activities that can improve groundwater quality status. The DSS is an interactive computer system that utilizes data base, hydrological modelling, and experts' and stakeholders' knowledge. It consists of three components, tackling the different abovementioned issues in water management. The first one utilizes the work on identification, cleaning up and restoration of illegal dumpsites that are a serious threat to the qualitative status of groundwater. The other two components utilize the predictive capability of the hydrological model and scenario analysis. The user interacts with the system by a graphical interface that guides the user step-by-step to the recommended remedial measures. Consequently, the

  7. Decision Support System Based on Computational Collective Intelligence in Campus Information Systems

    NASA Astrophysics Data System (ADS)

    Saito, Yoshihito; Matsuo, Tokuro

    Education institutions such as universities have a lot of information including book information, equipment administrative information, student information, and several others. The institutions also have multiple information in time series. As collective intelligence in campus, integrating and reusing these preserved information regarding career and taking a class, university can effectively support students' decision making of their getting jobs and subjects choice. Our purpose of support is to increase student's motivation. In this paper, we focus on course record and job information included in students' information, and propose the method to analyze correlation between a pattern of taking class and job lined up. Afterwards, we propose a support system regarding getting a job and taking class by using our proposed method. For a student who has his/her favorite job to get, the system supports his/her decision making of lecture choice by recommending a set of appropriate lecture groups. On another hand, for a student who does not have favorite job to get, the system supports his/her decision making of getting job by presenting appropriate job families related with lecture group in which he/she has ever taken. The contribution of this paper is showing a concrete method to reuse the campus collective information, implementing a system, and user perspectives.

  8. Applying the Wildland Fire Decision Support System (WFDSS) to support risk-informed decision making: The Gold Pan Fire, Bitterroot National Forest, Montana, USA

    Treesearch

    Erin K. Noonan-Wright; Tonja S. Opperman

    2015-01-01

    In response to federal wildfire policy changes, risk-informed decision-making by way of improved decision support, is increasingly becoming a component of managing wildfires. As fire incidents escalate in size and complexity, the Wildland Fire Decision Support System (WFDSS) provides support with different analytical tools as fire conditions change. We demonstrate the...

  9. The application of reduced-processing decision support systems to facilitate the acquisition of decision-making skills.

    PubMed

    Perry, Nathan C; Wiggins, Mark W; Childs, Merilyn; Fogarty, Gerard

    2013-06-01

    The study was designed to examine whether the availability of reduced-processing decision support system interfaces could improve the decision making of inexperienced personnel in the context of Although research into reduced-processing decision support systems has demonstrated benefits in minimizing cognitive load, these benefits have not typically translated into direct improvements in decision accuracy because of the tendency for inexperienced personnel to focus on less-critical information. The authors investigated whether reduced-processing interfaces that direct users' attention toward the most critical cues for decision making can produce improvements in decision-making performance. Novice participants made incident command-related decisions in experimental conditions that differed according to the amount of information that was available within the interface, the level of control that they could exert over the presentation of information, and whether they had received decision training. The results revealed that despite receiving training, participants improved in decision accuracy only when they were provided with an interface that restricted information access to the most critical cues. It was concluded that an interface that restricts information access to only the most critical cues in the scenario can facilitate improvements in decision performance. Decision support system interfaces that encourage the processing of the most critical cues have the potential to improve the accuracy and timeliness of decisions made by inexperienced personnel.

  10. Graphical user interface for a neonatal parenteral nutrition decision support system.

    PubMed Central

    Peverini, R. L.; Beach, D. S.; Wan, K. W.; Vyhmeister, N. R.

    2000-01-01

    We developed and implemented a decision support system for prescribing parenteral nutrition (PN) solutions for infants in our neonatal intensive care unit. We employed a graphical user interface to provide clinical guidelines and aid the understanding of the interaction among the various ingredients that make up a PN solution. In particular, by displaying the interaction between the PN total solution volume, protein, calcium and phosphorus, we have eliminated PN orders that previously would have resulted in calcium-phosphorus precipitation errors. PMID:11079964

  11. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  12. Heuristics in Managing Complex Clinical Decision Tasks in Experts' Decision Making.

    PubMed

    Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme

    2014-09-01

    Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design.

  13. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine.

    PubMed

    Kawamoto, Kensaku; Lobach, David F; Willard, Huntington F; Ginsburg, Geoffrey S

    2009-03-23

    In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs. Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the Roadmap for National Action on Clinical Decision Support commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government. A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge

  14. Modular Architecture for Integrated Model-Based Decision Support.

    PubMed

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  15. Decision Support System for Disability Assessment and Intervention.

    ERIC Educational Resources Information Center

    Dowler, Denetta L.; And Others

    1991-01-01

    Constructed decision support system to aid referral of good candidates for rehabilitation from Social Security Administration to rehabilitation counselors. Three layers of system were gross screening based on policy guidelines, training materials, and interviews with experts; physical and mental functional capacity items derived from policy…

  16. Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma

    PubMed Central

    Swietlik, Marguerite; Deakyne, Sara; Hoffman, Jeffrey M.; Grundmeier, Robert W.; Paterno, Marilyn D.; Rocha, Beatriz H.; Schaeffer, Molly H; Pabbathi, Deepika; Alessandrini, Evaline; Ballard, Dustin; Goldberg, Howard S.; Kuppermann, Nathan; Dayan, Peter S.

    2016-01-01

    Summary Introduction For children who present to emergency departments (EDs) due to blunt head trauma, ED clinicians must decide who requires computed tomography (CT) scanning to evaluate for traumatic brain injury (TBI). The Pediatric Emergency Care Applied Research Network (PECARN) derived and validated two age-based prediction rules to identify children at very low risk of clinically-important traumatic brain injuries (ciTBIs) who do not typically require CT scans. In this case report, we describe the strategy used to implement the PECARN TBI prediction rules via electronic health record (EHR) clinical decision support (CDS) as the intervention in a multicenter clinical trial. Methods Thirteen EDs participated in this trial. The 10 sites receiving the CDS intervention used the Epic® EHR. All sites implementing EHR-based CDS built the rules by using the vendor’s CDS engine. Based on a sociotechnical analysis, we designed the CDS so that recommendations could be displayed immediately after any provider entered prediction rule data. One central site developed and tested the intervention package to be exported to other sites. The intervention package included a clinical trial alert, an electronic data collection form, the CDS rules and the format for recommendations. Results The original PECARN head trauma prediction rules were derived from physician documentation while this pragmatic trial led each site to customize their workflows and allow multiple different providers to complete the head trauma assessments. These differences in workflows led to varying completion rates across sites as well as differences in the types of providers completing the electronic data form. Site variation in internal change management processes made it challenging to maintain the same rigor across all sites. This led to downstream effects when data reports were developed. Conclusions The process of a centralized build and export of a CDS system in one commercial EHR system

  17. Introduction to Decision Support Systems for Risk Based Management of Contaminated Sites

    EPA Science Inventory

    A book on Decision Support Systems for Risk-based Management of contaminated sites is appealing for two reasons. First, it addresses the problem of contaminated sites, which has worldwide importance. Second, it presents Decision Support Systems (DSSs), which are powerful comput...

  18. Factors influencing alert acceptance: a novel approach for predicting the success of clinical decision support

    PubMed Central

    Seidling, Hanna M; Phansalkar, Shobha; Seger, Diane L; Paterno, Marilyn D; Shaykevich, Shimon; Haefeli, Walter E

    2011-01-01

    Background Clinical decision support systems can prevent knowledge-based prescription errors and improve patient outcomes. The clinical effectiveness of these systems, however, is substantially limited by poor user acceptance of presented warnings. To enhance alert acceptance it may be useful to quantify the impact of potential modulators of acceptance. Methods We built a logistic regression model to predict alert acceptance of drug–drug interaction (DDI) alerts in three different settings. Ten variables from the clinical and human factors literature were evaluated as potential modulators of provider alert acceptance. ORs were calculated for the impact of knowledge quality, alert display, textual information, prioritization, setting, patient age, dose-dependent toxicity, alert frequency, alert level, and required acknowledgment on acceptance of the DDI alert. Results 50 788 DDI alerts were analyzed. Providers accepted only 1.4% of non-interruptive alerts. For interruptive alerts, user acceptance positively correlated with frequency of the alert (OR 1.30, 95% CI 1.23 to 1.38), quality of display (4.75, 3.87 to 5.84), and alert level (1.74, 1.63 to 1.86). Alert acceptance was higher in inpatients (2.63, 2.32 to 2.97) and for drugs with dose-dependent toxicity (1.13, 1.07 to 1.21). The textual information influenced the mode of reaction and providers were more likely to modify the prescription if the message contained detailed advice on how to manage the DDI. Conclusion We evaluated potential modulators of alert acceptance by assessing content and human factors issues, and quantified the impact of a number of specific factors which influence alert acceptance. This information may help improve clinical decision support systems design. PMID:21571746

  19. A Conceptual Framework for Decision-making Support in Uncertainty- and Risk-based Diagnosis of Rare Clinical Cases by Specialist Physicians.

    PubMed

    Santos, Adriano A; Moura, J Antão B; de Araújo, Joseana Macêdo Fechine Régis

    2015-01-01

    Mitigating uncertainty and risks faced by specialist physicians in analysis of rare clinical cases is something desired by anyone who needs health services. The number of clinical cases never seen by these experts, with little documentation, may introduce errors in decision-making. Such errors negatively affect well-being of patients, increase procedure costs, rework, health insurance premiums, and impair the reputation of specialists and medical systems involved. In this context, IT and Clinical Decision Support Systems (CDSS) play a fundamental role, supporting decision-making process, making it more efficient and effective, reducing a number of avoidable medical errors and enhancing quality of treatment given to patients. An investigation has been initiated to look into characteristics and solution requirements of this problem, model it, propose a general solution in terms of a conceptual risk-based, automated framework to support rare-case medical diagnostics and validate it by means of case studies. A preliminary validation study of the proposed framework has been carried out by interviews conducted with experts who are practicing professionals, academics, and researchers in health care. This paper summarizes the investigation and its positive results. These results motivate continuation of research towards development of the conceptual framework and of a software tool that implements the proposed model.

  20. Decision support at home (DS@HOME) – system architectures and requirements

    PubMed Central

    2012-01-01

    Background Demographic change with its consequences of an aging society and an increase in the demand for care in the home environment has triggered intensive research activities in sensor devices and smart home technologies. While many advanced technologies are already available, there is still a lack of decision support systems (DSS) for the interpretation of data generated in home environments. The aim of the research for this paper is to present the state-of-the-art in DSS for these data, to define characteristic properties of such systems, and to define the requirements for successful home care DSS implementations. Methods A literature review was performed along with the analysis of cross-references. Characteristic properties are proposed and requirements are derived from the available body of literature. Results 79 papers were identified and analyzed, of which 20 describe implementations of decision components. Most authors mention server-based decision support components, but only few papers provide details about the system architecture or the knowledge base. A list of requirements derived from the analysis is presented. Among the primary drawbacks of current systems are the missing integration of DSS in current health information system architectures including interfaces, the missing agreement among developers with regard to the formalization and customization of medical knowledge and a lack of intelligent algorithms to interpret data from multiple sources including clinical application systems. Conclusions Future research needs to address these issues in order to provide useful information – and not only large amounts of data – for both the patient and the caregiver. Furthermore, there is a need for outcome studies allowing for identifying successful implementation concepts. PMID:22640470

  1. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  2. Decision-Making Amplification under Uncertainty: An Exploratory Study of Behavioral Similarity and Intelligent Decision Support Systems

    ERIC Educational Resources Information Center

    Campbell, Merle Wayne

    2013-01-01

    Intelligent decision systems have the potential to support and greatly amplify human decision-making across a number of industries and domains. However, despite the rapid improvement in the underlying capabilities of these "intelligent" systems, increasing their acceptance as decision aids in industry has remained a formidable challenge.…

  3. Integrative review of clinical decision support for registered nurses in acute care settings.

    PubMed

    Dunn Lopez, Karen; Gephart, Sheila M; Raszewski, Rebecca; Sousa, Vanessa; Shehorn, Lauren E; Abraham, Joanna

    2017-03-01

    To report on the state of the science of clinical decision support (CDS) for hospital bedside nurses. We performed an integrative review of qualitative and quantitative peer-reviewed original research studies using a structured search of PubMed, Embase, Cumulative Index to Nursing and Applied Health Literature (CINAHL), Scopus, Web of Science, and IEEE Xplore (Institute of Electrical and Electronics Engineers Xplore Digital Library). We included articles that reported on CDS targeting bedside nurses and excluded in stages based on rules for titles, abstracts, and full articles. We extracted research design and methods, CDS purpose, electronic health record integration, usability, and process and patient outcomes. Our search yielded 3157 articles. After removing duplicates and applying exclusion rules, 28 articles met the inclusion criteria. The majority of studies were single-site, descriptive or qualitative (43%) or quasi-experimental (36%). There was only 1 randomized controlled trial. The purpose of most CDS was to support diagnostic decision-making (36%), guideline adherence (32%), medication management (29%), and situational awareness (25%). All the studies that included process outcomes (7) and usability outcomes (4) and also had analytic procedures to detect changes in outcomes demonstrated statistically significant improvements. Three of 4 studies that included patient outcomes and also had analytic procedures to detect change showed statistically significant improvements. No negative effects of CDS were found on process, usability, or patient outcomes. Clinical support systems targeting bedside nurses have positive effects on outcomes and hold promise for improving care quality; however, this research is lagging behind studies of CDS targeting medical decision-making in both volume and level of evidence. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions

  4. Multidisciplinary Modelling of Symptoms and Signs with Archetypes and SNOMED-CT for Clinical Decision Support.

    PubMed

    Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G

    2015-01-01

    Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology.

  5. Reducing duplicate testing: a comparison of two clinical decision support tools.

    PubMed

    Procop, Gary W; Keating, Catherine; Stagno, Paul; Kottke-Marchant, Kandice; Partin, Mary; Tuttle, Robert; Wyllie, Robert

    2015-05-01

    Unnecessary duplicate laboratory testing is common and costly. Systems-based means to avert unnecessary testing should be investigated and employed. We compared the effectiveness and cost savings associated with two clinical decision support tools to stop duplicate testing. The Hard Stop required telephone contact with the laboratory and justification to have the duplicate test performed, whereas the Smart Alert allowed the provider to bypass the alert at the point of order entry without justification. The Hard Stop alert was significantly more effective than the Smart Alert (92.3% vs 42.6%, respectively; P < .0001). The cost savings realized per alert activation was $16.08/alert for the Hard Stop alert vs $3.52/alert for the Smart Alert. Structural and process changes that require laboratory contact and justification for duplicate testing are more effective than interventions that allow providers to bypass alerts without justification at point of computerized physician order entry. Copyright© by the American Society for Clinical Pathology.

  6. Using a Group Decision Support System for Creativity.

    ERIC Educational Resources Information Center

    Aiken, Milam; Riggs, Mary

    1993-01-01

    A computer-based group decision support system (GDSS) to increase collaborative group productivity and creativity is explained. Various roles for the computer are identified, and implementation of GDSS systems at the University of Mississippi and International Business Machines are described. The GDSS is seen as fostering productivity through…

  7. [Clinical everyday ethics-support in handling moral distress? : Evaluation of an ethical decision-making model for interprofessional clinical teams].

    PubMed

    Tanner, S; Albisser Schleger, H; Meyer-Zehnder, B; Schnurrer, V; Reiter-Theil, S; Pargger, H

    2014-06-01

    High-tech medicine and cost rationing provoke moral distress up to burnout syndromes. The consequences are severe, not only for those directly involved but also for the quality of patient care and the institutions. The multimodal model METAP (Modular, Ethical, Treatment, Allocation, Process) was developed as clinical everyday ethics to support the interprofessional ethical decision-making process. The distinctive feature of the model lays in education concerning ethics competence in dealing with difficult treatment decisions. METAP has been evaluated for quality testing. The research question of interest was whether METAP supports the handling of moral distress. The evaluation included 3 intensive care units and 3 geriatric units. In all, 33 single and 9 group interviews were held with 24 physicians, 44 nurses, and 9 persons from other disciplines. An additional questionnaire was completed by 122 persons (return rate 57%). Two-thirds of the interview answers and 55% of the questionnaire findings show that clinical everyday ethics supports the handling of moral distress, especially for interdisciplinary communication and collaboration and for the explanation and evaluation of treatment goals. METAP does not provide support for persons who are rarely confronted with ethical problems or have not applied the model long enough yet. To a certain degree, moral distress is unavoidable and must be addressed as an interprofessional problem. Herein, clinical everyday ethics may provide targeted support for ethical decision-making competence.

  8. Incorporating INTERACT II Clinical Decision Support Tools into Nursing Home Health Information Technology

    PubMed Central

    Handler, Steven M.; Sharkey, Siobhan S.; Hudak, Sandra; Ouslander, Joseph G.

    2012-01-01

    A substantial reduction in hospitalization rates has been associated with the implementation of the Interventions to Reduce Acute Care Transfers (INTERACT) quality improvement intervention using the accompanying paper-based clinical practice tools (INTERACT II). There is significant potential to further increase the impact of INTERACT by integrating INTERACT II tools into nursing home (NH) health information technology (HIT) via standalone or integrated clinical decision support (CDS) systems. This article highlights the process of translating INTERACT II tools from paper to NH HIT. The authors believe that widespread dissemination and integration of INTERACT II CDS tools into various NH HIT products could lead to sustainable improvement in resident and clinician process and outcome measures, including enhanced interclinician communication and a reduction in potentially avoidable hospitalizations. PMID:22267955

  9. Online decision support system for surface irrigation management

    NASA Astrophysics Data System (ADS)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  10. A health record integrated clinical decision support system to support prescriptions of pharmaceutical drugs in patients with reduced renal function: design, development and proof of concept.

    PubMed

    Shemeikka, Tero; Bastholm-Rahmner, Pia; Elinder, Carl-Gustaf; Vég, Anikó; Törnqvist, Elisabeth; Cornelius, Birgitta; Korkmaz, Seher

    2015-06-01

    To develop and verify proof of concept for a clinical decision support system (CDSS) to support prescriptions of pharmaceutical drugs in patients with reduced renal function, integrated in an electronic health record system (EHR) used in both hospitals and primary care. A pilot study in one geriatric clinic, one internal medicine admission ward and two outpatient healthcare centers was evaluated with a questionnaire focusing on the usefulness of the CDSS. The usage of the system was followed in a log. The CDSS is considered to increase the attention on patients with impaired renal function, provides a better understanding of dosing and is time saving. The calculated glomerular filtration rate (eGFR) and the dosing recommendation classification were perceived useful while the recommendation texts and background had been used to a lesser extent. Few previous systems are used in primary care and cover this number of drugs. The global assessment of the CDSS scored high but some elements were used to a limited extent possibly due to accessibility or that texts were considered difficult to absorb. Choosing a formula for the calculation of eGFR in a CDSS may be problematic. A real-time CDSS to support kidney-related drug prescribing in both hospital and outpatient settings is valuable to the physicians. It has the potential to improve quality of drug prescribing by increasing the attention on patients with renal insufficiency and the knowledge of their drug dosing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Heuristics in Managing Complex Clinical Decision Tasks in Experts’ Decision Making

    PubMed Central

    Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme

    2016-01-01

    Background Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. Objective The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. Method After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. Results We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Conclusion Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Application Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design. PMID:27275019

  12. A multiple-scenario assessment of the effect of a continuous-care, guideline-based decision support system on clinicians' compliance to clinical guidelines.

    PubMed

    Shalom, Erez; Shahar, Yuval; Parmet, Yisrael; Lunenfeld, Eitan

    2015-04-01

    To quantify the effect of a new continuous-care guideline (GL)-application engine, the Picard decision support system (DSS) engine, on the correctness and completeness of clinicians' decisions relative to an established clinical GL, and to assess the clinicians' attitudes towards a specific DSS. Thirty-six clinicians, including residents at different training levels and board-certified specialists at an academic OB/GYN department that handles around 15,000 deliveries annually, agreed to evaluate our continuous-care guideline-based DSS and to perform a cross-over assessment of the effects of using our guideline-based DSS. We generated electronic patient records that realistically simulated the longitudinal course of six different clinical scenarios of the preeclampsia/eclampsia/toxemia (PET) GL, encompassing 60 different decision points in total. Each clinician managed three scenarios manually without the Picard DSS engine (Non-DSS mode) and three scenarios when assisted by the Picard DSS engine (DSS mode). The main measures in both modes were correctness and completeness of actions relative to the PET GL. Correctness was further decomposed into necessary and redundant actions, relative to the guideline and the actual patient data. At the end of the assessment, a questionnaire was administered to the clinicians to assess their perceptions regarding use of the DSS. With respect to completeness, the clinicians applied approximately 41% of the GL's recommended actions in the non-DSS mode. Completeness increased to the performance of approximately 93% of the guideline's recommended actions, when using the DSS mode. With respect to correctness, approximately 94.5% of the clinicians' decisions in the non-DSS mode were correct. However, these included 68% of the actions that were correct but redundant, given the patient's data (e.g., repeating tests that had been performed), and 27% of the actions, which were necessary in the context of the GL and of the given scenario

  13. Adaptation of a Knowledge-Based Decision-Support System in the Tactical Environment.

    DTIC Science & Technology

    1981-12-01

    002-04-6411S1CURITY CL All PICATION OF 1,416 PAGE (00HIR Onto ea0aOW .L10 *GU9WVC 4bGSI.CAYON S. Voss 10466lVka t... OftesoE ’ making decisons . The...noe..aaw Ad tdlalttt’ IV 680011 MMib) Artificial Intelligence; Decision-Support Systems; Tactical Decision- making ; Knowledge-based Decision-support...tactical information to assist tactical commanders in making decisions. The system, TAC*, for "Tactical Adaptable Consultant," incorporates a database

  14. Digital technology and clinical decision making in depression treatment: Current findings and future opportunities.

    PubMed

    Hallgren, Kevin A; Bauer, Amy M; Atkins, David C

    2017-06-01

    Clinical decision making encompasses a broad set of processes that contribute to the effectiveness of depression treatments. There is emerging interest in using digital technologies to support effective and efficient clinical decision making. In this paper, we provide "snapshots" of research and current directions on ways that digital technologies can support clinical decision making in depression treatment. Practical facets of clinical decision making are reviewed, then research, design, and implementation opportunities where technology can potentially enhance clinical decision making are outlined. Discussions of these opportunities are organized around three established movements designed to enhance clinical decision making for depression treatment, including measurement-based care, integrated care, and personalized medicine. Research, design, and implementation efforts may support clinical decision making for depression by (1) improving tools to incorporate depression symptom data into existing electronic health record systems, (2) enhancing measurement of treatment fidelity and treatment processes, (3) harnessing smartphone and biosensor data to inform clinical decision making, (4) enhancing tools that support communication and care coordination between patients and providers and within provider teams, and (5) leveraging treatment and outcome data from electronic health record systems to support personalized depression treatment. The current climate of rapid changes in both healthcare and digital technologies facilitates an urgent need for research, design, and implementation of digital technologies that explicitly support clinical decision making. Ensuring that such tools are efficient, effective, and usable in frontline treatment settings will be essential for their success and will require engagement of stakeholders from multiple domains. © 2017 Wiley Periodicals, Inc.

  15. Decision support systems in water and wastewater treatment process selection and design: a review.

    PubMed

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  16. Middle Mississippi River decision support system: user's manual

    USGS Publications Warehouse

    Rohweder, Jason J.; Zigler, Steven J.; Fox, Timothy J.; Hulse, Steven N.

    2005-01-01

    This user's manual describes the Middle Mississippi River Decision Support System (MMRDSS) and gives detailed examples on its use. The MMRDSS provides a framework to assist decision makers regarding natural resource issues in the Middle Mississippi River floodplain. The MMRDSS is designed to provide users with a spatially explicit tool for tasks, such as inventorying existing knowledge, developing models to investigate the potential effects of management decisions, generating hypotheses to advance scientific understanding, and developing scientifically defensible studies and monitoring. The MMRDSS also includes advanced tools to assist users in evaluating differences in complexity, connectivity, and structure of aquatic habitats among river reaches. The Environmental Systems Research Institute ArcView 3.x platform was used to create and package the data and tools of the MMRDSS.

  17. Information/Knowledge Acquisition Methods for Decision Support Systems and Expert Systems.

    ERIC Educational Resources Information Center

    Yang, Heng-Li

    1995-01-01

    Compares information requirement-elicitation (IRE) methods for decision support systems (DSS) with knowledge acquisition (KA) methods for expert systems (ES) development. The definition and architectures of ES and DSS are compared and the systems' development cycles and IRE/KA methods are discussed. Differences are noted between ES and DSS…

  18. Clinical Decision Support System to Enhance Quality Control of Spirometry Using Information and Communication Technologies

    PubMed Central

    2014-01-01

    Background We recently demonstrated that quality of spirometry in primary care could markedly improve with remote offline support from specialized professionals. It is hypothesized that implementation of automatic online assessment of quality of spirometry using information and communication technologies may significantly enhance the potential for extensive deployment of a high quality spirometry program in integrated care settings. Objective The objective of the study was to elaborate and validate a Clinical Decision Support System (CDSS) for automatic online quality assessment of spirometry. Methods The CDSS was done through a three step process including: (1) identification of optimal sampling frequency; (2) iterations to build-up an initial version using the 24 standard spirometry curves recommended by the American Thoracic Society; and (3) iterations to refine the CDSS using 270 curves from 90 patients. In each of these steps the results were checked against one expert. Finally, 778 spirometry curves from 291 patients were analyzed for validation purposes. Results The CDSS generated appropriate online classification and certification in 685/778 (88.1%) of spirometry testing, with 96% sensitivity and 95% specificity. Conclusions Consequently, only 93/778 (11.9%) of spirometry testing required offline remote classification by an expert, indicating a potential positive role of the CDSS in the deployment of a high quality spirometry program in an integrated care setting. PMID:25600957

  19. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription.

    PubMed

    Shen, Ying; Yuan, Kaiqi; Chen, Daoyuan; Colloc, Joël; Yang, Min; Li, Yaliang; Lei, Kai

    2018-03-01

    The available antibiotic decision-making systems were developed from a physician's perspective. However, because infectious diseases are common, many patients desire access to knowledge via a search engine. Although the use of antibiotics should, in principle, be subject to a doctor's advice, many patients take them without authorization, and some people cannot easily or rapidly consult a doctor. In such cases, a reliable antibiotic prescription support system is needed. This study describes the construction and optimization of the sensitivity and specificity of a decision support system named IDDAP, which is based on ontologies for infectious disease diagnosis and antibiotic therapy. The ontology for this system was constructed by collecting existing ontologies associated with infectious diseases, syndromes, bacteria and drugs into the ontology's hierarchical conceptual schema. First, IDDAP identifies a potential infectious disease based on a patient's self-described disease state. Then, the system searches for and proposes an appropriate antibiotic therapy specifically adapted to the patient based on factors such as the patient's body temperature, infection sites, symptoms/signs, complications, antibacterial spectrum, contraindications, drug-drug interactions between the proposed therapy and previously prescribed medication, and the route of therapy administration. The constructed domain ontology contains 1,267,004 classes, 7,608,725 axioms, and 1,266,993 members of "SubClassOf" that pertain to infectious diseases, bacteria, syndromes, anti-bacterial drugs and other relevant components. The system includes 507 infectious diseases and their therapy methods in combination with 332 different infection sites, 936 relevant symptoms of the digestive, reproductive, neurological and other systems, 371 types of complications, 838,407 types of bacteria, 341 types of antibiotics, 1504 pairs of reaction rates (antibacterial spectrum) between antibiotics and bacteria, 431

  20. Studying the Vendor Perspective on Clinical Decision Support

    PubMed Central

    Ash, Joan S.; Sittig, Dean F.; McMullen, Carmit K.; McCormack, James L.; Wright, Adam; Bunce, Arwen; Wasserman, Joseph; Mohan, Vishnu; Cohen, Deborah J.; Shapiro, Michael; Middleton, Blackford

    2011-01-01

    In prior work, using a Rapid Assessment Process (RAP), we have investigated clinical decision support (CDS) in ambulatory clinics and hospitals. We realized that individuals in these settings provide only one perspective related to the CDS landscape, which also includes content vendors and electronic health record (EHR) vendors. To discover content vendors’ perspectives and their perceived challenges, we modified RAP for industrial settings. We describe how we employed RAP, and show its utility by describing two illustrative themes. We found that while the content vendors believe they provide unique much-needed services, the amount of labor involved in content development is underestimated by others. We also found that the content vendors believe their products are resources to be used by practitioners, so they are somewhat protected from liability issues. To promote adequate understanding about these issues, we recommend a “three way conversation” among content vendors, EHR vendors, and user organizations. PMID:22195058

  1. DXplain: a Web-based diagnostic decision support system for medical students.

    PubMed

    London, S

    1998-01-01

    DXplain is a diagnostic decision support program, with a new World Wide Web interface, designed to help medical students and physicians formulate differential diagnoses based on clinical findings. It covers over 2000 diseases and 5000 clinical manifestations. DXplain suggests possible diagnoses, and provides brief descriptions of every disease in the database. Not all diseases are included, nor does DXplain take into account preexisting conditions or the chronological sequence of clinical manifestations. Despite these limitations, it is a useful educational tool, particularly for problem-based learning (PBL) cases and for students in clinical rotations, as it fills a niche not adequately covered by MEDLINE or medical texts. The system is relatively self-explanatory, requiring little or no end-user training. Medical libraries offering, or planning to offer, their users access to Web-based materials and resources may find this system a valuable addition to their electronic collections. Should it prove popular with the local users, provision of access may also establish or enhance the library's image as a partner in medical education.

  2. Medical Device Integrated Vital Signs Monitoring Application with Real-Time Clinical Decision Support.

    PubMed

    Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria

    2018-01-01

    This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.

  3. Implementation of a scalable, web-based, automated clinical decision support risk-prediction tool for chronic kidney disease using C-CDA and application programming interfaces.

    PubMed

    Samal, Lipika; D'Amore, John D; Bates, David W; Wright, Adam

    2017-11-01

    Clinical decision support tools for risk prediction are readily available, but typically require workflow interruptions and manual data entry so are rarely used. Due to new data interoperability standards for electronic health records (EHRs), other options are available. As a clinical case study, we sought to build a scalable, web-based system that would automate calculation of kidney failure risk and display clinical decision support to users in primary care practices. We developed a single-page application, web server, database, and application programming interface to calculate and display kidney failure risk. Data were extracted from the EHR using the Consolidated Clinical Document Architecture interoperability standard for Continuity of Care Documents (CCDs). EHR users were presented with a noninterruptive alert on the patient's summary screen and a hyperlink to details and recommendations provided through a web application. Clinic schedules and CCDs were retrieved using existing application programming interfaces to the EHR, and we provided a clinical decision support hyperlink to the EHR as a service. We debugged a series of terminology and technical issues. The application was validated with data from 255 patients and subsequently deployed to 10 primary care clinics where, over the course of 1 year, 569 533 CCD documents were processed. We validated the use of interoperable documents and open-source components to develop a low-cost tool for automated clinical decision support. Since Consolidated Clinical Document Architecture-based data extraction extends to any certified EHR, this demonstrates a successful modular approach to clinical decision support. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  4. Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise.

    PubMed

    Militello, Laura G; Saleem, Jason J; Borders, Morgan R; Sushereba, Christen E; Haverkamp, Donald; Wolf, Steven P; Doebbeling, Bradley N

    2016-03-01

    Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration's EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability.

  5. Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise

    PubMed Central

    Militello, Laura G.; Saleem, Jason J.; Borders, Morgan R.; Sushereba, Christen E.; Haverkamp, Donald; Wolf, Steven P.; Doebbeling, Bradley N.

    2016-01-01

    Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration’s EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability. PMID:26973441

  6. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations

  7. Multi Criteria Evaluation Module for RiskChanges Spatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Jaboyedoff, Michel; van Westen, Cees; Bakker, Wim

    2015-04-01

    Multi-Criteria Evaluation (MCE) module is one of the five modules of RiskChanges spatial decision support system. RiskChanges web-based platform aims to analyze changes in hydro-meteorological risk and provides tools for selecting the best risk reduction alternative. It is developed under CHANGES framework (changes-itn.eu) and INCREO project (increo-fp7.eu). MCE tool helps decision makers and spatial planners to evaluate, sort and rank the decision alternatives. The users can choose among different indicators that are defined within the system using Risk and Cost Benefit analysis results besides they can add their own indicators. Subsequently the system standardizes and prioritizes them. Finally, the best decision alternative is selected by using the weighted sum model (WSM). The Application of this work is to facilitate the effect of MCE for analyzing changing risk over the time under different scenarios and future years by adopting a group decision making into practice and comparing the results by numeric and graphical view within the system. We believe that this study helps decision-makers to achieve the best solution by expressing their preferences for strategies under future scenarios. Keywords: Multi-Criteria Evaluation, Spatial Decision Support System, Weighted Sum Model, Natural Hazard Risk Management

  8. Interactive decision support in hepatic surgery

    PubMed Central

    Dugas, Martin; Schauer, Rolf; Volk, Andreas; Rau, Horst

    2002-01-01

    Background Hepatic surgery is characterized by complicated operations with a significant peri- and postoperative risk for the patient. We developed a web-based, high-granular research database for comprehensive documentation of all relevant variables to evaluate new surgical techniques. Methods To integrate this research system into the clinical setting, we designed an interactive decision support component. The objective is to provide relevant information for the surgeon and the patient to assess preoperatively the risk of a specific surgical procedure. Based on five established predictors of patient outcomes, the risk assessment tool searches for similar cases in the database and aggregates the information to estimate the risk for an individual patient. Results The physician can verify the analysis and exclude manually non-matching cases according to his expertise. The analysis is visualized by means of a Kaplan-Meier plot. To evaluate the decision support component we analyzed data on 165 patients diagnosed with hepatocellular carcinoma (period 1996–2000). The similarity search provides a two-peak distribution indicating there are groups of similar patients and singular cases which are quite different to the average. The results of the risk estimation are consistent with the observed survival data, but must be interpreted with caution because of the limited number of matching reference cases. Conclusion Critical issues for the decision support system are clinical integration, a transparent and reliable knowledge base and user feedback. PMID:12003639

  9. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system.

    PubMed

    Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  10. Transforming user needs into functional requirements for an antibiotic clinical decision support system: explicating content analysis for system design.

    PubMed

    Bright, T J

    2013-01-01

    Many informatics studies use content analysis to generate functional requirements for system development. Explication of this translational process from qualitative data to functional requirements can strengthen the understanding and scientific rigor when applying content analysis in informatics studies. To describe a user-centered approach transforming emergent themes derived from focus group data into functional requirements for informatics solutions and to illustrate these methods to the development of an antibiotic clinical decision support system (CDS). THE APPROACH CONSISTED OF FIVE STEPS: 1) identify unmet therapeutic planning information needs via Focus Group Study-I, 2) develop a coding framework of therapeutic planning themes to refine the domain scope to antibiotic therapeutic planning, 3) identify functional requirements of an antibiotic CDS system via Focus Group Study-II, 4) discover informatics solutions and functional requirements from coded data, and 5) determine the types of information needed to support the antibiotic CDS system and link with the identified informatics solutions and functional requirements. The coding framework for Focus Group Study-I revealed unmet therapeutic planning needs. Twelve subthemes emerged and were clustered into four themes; analysis indicated a need for an antibiotic CDS intervention. Focus Group Study-II included five types of information needs. Comments from the Barrier/Challenge to information access and Function/Feature themes produced three informatics solutions and 13 functional requirements of an antibiotic CDS system. Comments from the Patient, Institution, and Domain themes generated required data elements for each informatics solution. This study presents one example explicating content analysis of focus group data and the analysis process to functional requirements from narrative data. Illustration of this 5-step method was used to develop an antibiotic CDS system, resolving unmet antibiotic prescribing

  11. Reducing indwelling urinary catheter use through staged introduction of electronic clinical decision support in a multicenter hospital system.

    PubMed

    Youngerman, Brett E; Salmasian, Hojjat; Carter, Eileen J; Loftus, Michael L; Perotte, Rimma; Ross, Barbara G; Furuya, E Yoko; Green, Robert A; Vawdrey, David K

    2018-06-13

    To integrate electronic clinical decision support tools into clinical practice and to evaluate the impact on indwelling urinary catheter (IUC) use and catheter-associated urinary tract infections (CAUTIs).Design, Setting, and ParticipantsThis 4-phase observational study included all inpatients at a multicampus, academic medical center between 2011 and 2015.InterventionsPhase 1 comprised best practices training and standardization of electronic documentation. Phase 2 comprised real-time electronic tracking of IUC duration. In phase 3, a triggered alert reminded clinicians of IUC duration. In phase 4, a new IUC order (1) introduced automated order expiration and (2) required consideration of alternatives and selection of an appropriate indication. Overall, 2,121 CAUTIs, 179,070 new catheters, 643,055 catheter days, and 2,186 reinsertions occurred in 3·85 million hospitalized patient days during the study period. The CAUTI rate per 10,000 patient days decreased incrementally in each phase from 9·06 in phase 1 to 1·65 in phase 4 (relative risk [RR], 0·182; 95% confidence interval [CI], 0·153-0·216; P<·001). New catheters per 1,000 patient days declined from 53·4 in phase 1 to 39·5 in phase 4 (RR, 0·740; 95% CI, 0·730; P<·001), and catheter days per 1,000 patient days decreased from 194·5 in phase 1 to 140·7 in phase 4 (RR, 0·723; 95% CI, 0·719-0·728; P<·001). The reinsertion rate declined from 3·66% in phase 1 to 3·25% in phase 4 (RR, 0·894; 95% CI, 0·834-0·959; P=·0017). The phased introduction of decision support tools was associated with progressive declines in new catheters, total catheter days, and CAUTIs. Clinical decision support tools offer a viable and scalable intervention to target hospital-wide IUC use and hold promise for other quality improvement initiatives.

  12. GIS-based spatial decision support system for grain logistics management

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  13. Imaging informatics-based multimedia ePR system for data management and decision support in rehabilitation research

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Verma, Sneha; Qin, Yi; Sterling, Josh; Zhou, Alyssa; Zhang, Jeffrey; Martinez, Clarisa; Casebeer, Narissa; Koh, Hyunwook; Winstein, Carolee; Liu, Brent

    2013-03-01

    With the rapid development of science and technology, large-scale rehabilitation centers and clinical rehabilitation trials usually involve significant volumes of multimedia data. Due to the global aging crisis, millions of new patients with age-related chronic diseases will produce huge amounts of data and contribute to soaring costs of medical care. Hence, a solution for effective data management and decision support will significantly reduce the expenditure and finally improve the patient life quality. Inspired from the concept of the electronic patient record (ePR), we developed a prototype system for the field of rehabilitation engineering. The system is subject or patient-oriented and customized for specific projects. The system components include data entry modules, multimedia data presentation and data retrieval. To process the multimedia data, the system includes a DICOM viewer with annotation tools and video/audio player. The system also serves as a platform for integrating decision-support tools and data mining tools. Based on the prototype system design, we developed two specific applications: 1) DOSE (a phase 1 randomized clinical trial to determine the optimal dose of therapy for rehabilitation of the arm and hand after stroke.); and 2) NEXUS project from the Rehabilitation Engineering Research Center(RERC, a NIDRR funded Rehabilitation Engineering Research Center). Currently, the system is being evaluated in the context of the DOSE trial with a projected enrollment of 60 participants over 5 years, and will be evaluated by the NEXUS project with 30 subjects. By applying the ePR concept, we developed a system in order to improve the current research workflow, reduce the cost of managing data, and provide a platform for the rapid development of future decision-support tools.

  14. A Mechanized Decision Support System for Academic Scheduling.

    DTIC Science & Technology

    1986-03-01

    an operational system called software. The first step in the development phase is Design . Designers destribute software control by factoring the Data...SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ELD GROUP SUB-GROUP Scheduling, Decision Support System , Software Design ...scheduling system . It will also examine software - design techniques to identify the most appropriate method- ology for this problem. " - Chapter 3 will

  15. Electronic decision support for diagnostic imaging in a primary care setting

    PubMed Central

    Reed, Martin H

    2011-01-01

    Methods Clinical guideline adherence for diagnostic imaging (DI) and acceptance of electronic decision support in a rural community family practice clinic was assessed over 36 weeks. Physicians wrote 904 DI orders, 58% of which were addressed by the Canadian Association of Radiologists guidelines. Results Of those orders with guidelines, 76% were ordered correctly; 24% were inappropriate or unnecessary resulting in a prompt from clinical decision support. Physicians followed suggestions from decision support to improve their DI order on 25% of the initially inappropriate orders. The use of decision support was not mandatory, and there were significant variations in use rate. Initially, 40% reported decision support disruptive in their work flow, which dropped to 16% as physicians gained experience with the software. Conclusions Physicians supported the concept of clinical decision support but were reluctant to change clinical habits to incorporate decision support into routine work flow. PMID:21486884

  16. An engineering approach to modelling, decision support and control for sustainable systems.

    PubMed

    Day, W; Audsley, E; Frost, A R

    2008-02-12

    Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.

  17. A legal framework to enable sharing of Clinical Decision Support knowledge and services across institutional boundaries.

    PubMed

    Hongsermeier, Tonya; Maviglia, Saverio; Tsurikova, Lana; Bogaty, Dan; Rocha, Roberto A; Goldberg, Howard; Meltzer, Seth; Middleton, Blackford

    2011-01-01

    The goal of the CDS Consortium (CDSC) is to assess, define, demonstrate, and evaluate best practices for knowledge management and clinical decision support in healthcare information technology at scale - across multiple ambulatory care settings and Electronic Health Record technology platforms. In the course of the CDSC research effort, it became evident that a sound legal foundation was required for knowledge sharing and clinical decision support services in order to address data sharing, intellectual property, accountability, and liability concerns. This paper outlines the framework utilized for developing agreements in support of sharing, accessing, and publishing content via the CDSC Knowledge Management Portal as well as an agreement in support of deployment and consumption of CDSC developed web services in the context of a research project under IRB oversight.

  18. A Decision Support System for Optimum Use of Fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; J. R. Hess; R. K. Fink

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less

  19. Development of a decision support system for analysis and solutions of prolonged standing in the workplace.

    PubMed

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-06-01

    Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.

  20. Development of a Decision Support System for Analysis and Solutions of Prolonged Standing in the Workplace

    PubMed Central

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-01-01

    Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141

  1. An Ontology-Based, Mobile-Optimized System for Pharmacogenomic Decision Support at the Point-of-Care

    PubMed Central

    Miñarro-Giménez, Jose Antonio; Blagec, Kathrin; Boyce, Richard D.; Adlassnig, Klaus-Peter; Samwald, Matthias

    2014-01-01

    Background The development of genotyping and genetic sequencing techniques and their evolution towards low costs and quick turnaround have encouraged a wide range of applications. One of the most promising applications is pharmacogenomics, where genetic profiles are used to predict the most suitable drugs and drug dosages for the individual patient. This approach aims to ensure appropriate medical treatment and avoid, or properly manage, undesired side effects. Results We developed the Medicine Safety Code (MSC) service, a novel pharmacogenomics decision support system, to provide physicians and patients with the ability to represent pharmacogenomic data in computable form and to provide pharmacogenomic guidance at the point-of-care. Pharmacogenomic data of individual patients are encoded as Quick Response (QR) codes and can be decoded and interpreted with common mobile devices without requiring a centralized repository for storing genetic patient data. In this paper, we present the first fully functional release of this system and describe its architecture, which utilizes Web Ontology Language 2 (OWL 2) ontologies to formalize pharmacogenomic knowledge and to provide clinical decision support functionalities. Conclusions The MSC system provides a novel approach for enabling the implementation of personalized medicine in clinical routine. PMID:24787444

  2. An ontology-based, mobile-optimized system for pharmacogenomic decision support at the point-of-care.

    PubMed

    Miñarro-Giménez, Jose Antonio; Blagec, Kathrin; Boyce, Richard D; Adlassnig, Klaus-Peter; Samwald, Matthias

    2014-01-01

    The development of genotyping and genetic sequencing techniques and their evolution towards low costs and quick turnaround have encouraged a wide range of applications. One of the most promising applications is pharmacogenomics, where genetic profiles are used to predict the most suitable drugs and drug dosages for the individual patient. This approach aims to ensure appropriate medical treatment and avoid, or properly manage, undesired side effects. We developed the Medicine Safety Code (MSC) service, a novel pharmacogenomics decision support system, to provide physicians and patients with the ability to represent pharmacogenomic data in computable form and to provide pharmacogenomic guidance at the point-of-care. Pharmacogenomic data of individual patients are encoded as Quick Response (QR) codes and can be decoded and interpreted with common mobile devices without requiring a centralized repository for storing genetic patient data. In this paper, we present the first fully functional release of this system and describe its architecture, which utilizes Web Ontology Language 2 (OWL 2) ontologies to formalize pharmacogenomic knowledge and to provide clinical decision support functionalities. The MSC system provides a novel approach for enabling the implementation of personalized medicine in clinical routine.

  3. Development of a computer-based clinical decision support tool for selecting appropriate rehabilitation interventions for injured workers.

    PubMed

    Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar

    2013-12-01

    To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.

  4. Artificial intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease.

    PubMed

    Tenório, Josceli Maria; Hummel, Anderson Diniz; Cohrs, Frederico Molina; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar

    2011-11-01

    Celiac disease (CD) is a difficult-to-diagnose condition because of its multiple clinical presentations and symptoms shared with other diseases. Gold-standard diagnostic confirmation of suspected CD is achieved by biopsying the small intestine. To develop a clinical decision-support system (CDSS) integrated with an automated classifier to recognize CD cases, by selecting from experimental models developed using intelligence artificial techniques. A web-based system was designed for constructing a retrospective database that included 178 clinical cases for training. Tests were run on 270 automated classifiers available in Weka 3.6.1 using five artificial intelligence techniques, namely decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines and artificial neural networks. The parameters evaluated were accuracy, sensitivity, specificity and area under the ROC curve (AUC). AUC was used as a criterion for selecting the CDSS algorithm. A testing database was constructed including 38 clinical CD cases for CDSS evaluation. The diagnoses suggested by CDSS were compared with those made by physicians during patient consultations. The most accurate method during the training phase was the averaged one-dependence estimator (AODE) algorithm (a Bayesian classifier), which showed accuracy 80.0%, sensitivity 0.78, specificity 0.80 and AUC 0.84. This classifier was integrated into the web-based decision-support system. The gold-standard validation of CDSS achieved accuracy of 84.2% and k=0.68 (p<0.0001) with good agreement. The same accuracy was achieved in the comparison between the physician's diagnostic impression and the gold standard k=0. 64 (p<0.0001). There was moderate agreement between the physician's diagnostic impression and CDSS k=0.46 (p=0.0008). The study results suggest that CDSS could be used to help in diagnosing CD, since the algorithm tested achieved excellent accuracy in differentiating possible positive from negative CD

  5. Outcomes of Implementing the Women's Health Assessment Tool and Clinical Decision Support Tool Kit

    PubMed Central

    Silvestrin, Terry; Steenrod, Anna; Coyne, Karin; Gross, David; Esinduy, Canan; Kodsi, Angela; Slifka, Gayle; Abraham, Lucy; Araiza, Anna; Bushmakin, Andrew; Luo, Xuemei

    2016-01-01

    Aim: To evaluate outcomes after implementing the women's health assessment tool (WHAT) and clinical decision support toolkit during annual well-women visits. Methods: An observational project involved women aged 45–64 years attending one of three medical sites in Washington (WA, USA). Responses to the WHAT questionnaire and patients' health resource utilization prepost toolkit implementation were analyzed. Results: A total of 110 women completed the WHAT questionnaire. Majority of women were postmenopausal (77.3%) and experienced depressive mood (63.6%), hot flashes (61.8%) or anxiety (60.9%) in the last 3 months. There was a 72.2% increase in the number of diagnoses made during the annual visit versus the previous 12 months. Conclusion: The WHAT/clinical decision support toolkit helped identify conditions relevant to mid-life women. PMID:27188377

  6. Impact of a clinical decision support system for drug dosage in patients with renal failure.

    PubMed

    Desmedt, Sophie; Spinewine, Anne; Jadoul, Michel; Henrard, Séverine; Wouters, Dominique; Dalleur, Olivia

    2018-05-21

    Background A clinical decision support system (CDSS) linked to the computerized physician order entry may help improve prescription appropriateness in inpatients with renal insufficiency. Objective To evaluate the impact on prescription appropriateness of a CDSS prescriber alert for 85 drugs in renal failure patients. Setting Before-after study in a 975-bed academic hospital. Method Prescriptions of patients with renal failure were reviewed during two comparable periods of 6 days each, before and after the implementation of the CDSS (September 2009 and 2010). Main outcome measure The proportion of inappropriate dosages of 85 drugs included in the CDSS was compared in the pre- and post-implementation group. Results Six hundred and fifteen patients were included in the study (301 in pre- and 314 in post-implementation periods). In the pre- and post-implementation period, respectively 2882 and 3485 prescriptions were evaluated, of which 14.9 and 16.6% triggered an alert. Among these, the dosage was inappropriate in respectively 25.4 and 24.6% of prescriptions in the pre- and post-implementation periods (OR 0.97; 95% CI 0.72-1.29). The most frequently involved drugs were paracetamol, perindopril, tramadol and allopurinol. Conclusion The implementation of a CDSS did not significantly reduce the proportion of inappropriate drug dosages in patients with renal failure. Further research is required to investigate the reasons why prescribers override alerts. Collaboration with clinical pharmacists might improve compliance with the CDSS recommendations.

  7. Applying a family systems lens to proxy decision making in clinical practice and research.

    PubMed

    Rolland, John S; Emanuel, Linda L; Torke, Alexia M

    2017-03-01

    When patients are incapacitated and face serious illness, family members must make medical decisions for the patient. Medical decision sciences give only modest attention to the relationships among patients and their family members, including impact that these relationships have on the decision-making process. A review of the literature reveals little effort to systematically apply a theoretical framework to the role of family interactions in proxy decision making. A family systems perspective can provide a useful lens through which to understand the dynamics of proxy decision making. This article considers the mutual impact of family systems on the processes and outcomes of proxy decision making. The article first reviews medical decision science's evolution and focus on proxy decision making and then reviews a family systems approach, giving particular attention to Rolland's Family Systems Illness Model. A case illustrates how clinical practice and how research would benefit from bringing family systems thinking to proxy decisions. We recommend including a family systems approach in medical decision science research and clinical practices around proxy decisions making. We propose that clinical decisions could be less conflicted and less emotionally troubling for families and clinicians if family systems approaches were included. This perspective opens new directions for research and novel approaches to clinical care. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Cancer surveillance using data warehousing, data mining, and decision support systems.

    PubMed

    Forgionne, G A; Gangopadhyay, A; Adya, M

    2000-08-01

    This article discusses how data warehousing, data mining, and decision support systems can reduce the national cancer burden or the oral complications of cancer therapies, especially as related to oral and pharyngeal cancers. An information system is presented that will deliver the necessary information technology to clinical, administrative, and policy researchers and analysts in an effective and efficient manner. The system will deliver the technology and knowledge that users need to readily: (1) organize relevant claims data, (2) detect cancer patterns in general and special populations, (3) formulate models that explain the patterns, and (4) evaluate the efficacy of specified treatments and interventions with the formulations. Such a system can be developed through a proven adaptive design strategy, and the implemented system can be tested on State of Maryland Medicaid data (which includes women, minorities, and children).

  9. A decision support system for map projections of small scale data

    USGS Publications Warehouse

    Finn, Michael P.; Usery, E. Lynn; Posch, Stephan T.; Seong, Jeong Chang

    2004-01-01

    The use of commercial geographic information system software to process large raster datasets of terrain elevation, population, land cover, vegetation, soils, temperature, and rainfall requires both projection from spherical coordinates to plane coordinate systems and transformation from one plane system to another. Decision support systems deliver information resulting in knowledge that assists in policies, priorities, or processes. This paper presents an approach to handling the problems of raster dataset projection and transformation through the development of a Web-enabled decision support system to aid users of transformation processes with the selection of appropriate map projections based on data type, areal extent, location, and preservation properties.

  10. A decision support system for telemedicine through the mobile telecommunications platform.

    PubMed

    Eren, Ali; Subasi, Abdulhamit; Coskun, Osman

    2008-02-01

    In this paper we have discussed the application of artificial intelligence in telemedicine using mobile device. The main goal of our research is to develop methods and systems to collect, analyze, distribute and use medical diagnostics information from multiple knowledge sources and areas of expertise. Physicians may collect and analyze information obtained from experts worldwide with the help of a medical decision support system. In this information retrieval system, modern communication tools such as computers and mobile phones can be used efficiently. In this work we propose a medical decision support system using the general packet radio service (GPRS). GPRS, a data extension of the mobile telephony standard Global system for mobile communications (GSM) is emerging as the first true packet-switched architecture to allow mobile subscribers to benefit from high-speed transmission rates and run JAVA based applications from their mobile terminals. An academic prototype of a medical decision support system using mobile device was implemented. The results reveal that the system could find acceptance from the medical community and it could be an effective means of providing quality health care in developing countries.

  11. A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being.

    PubMed

    Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin

    2015-01-01

    A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.

  12. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review.

    PubMed

    Liedlgruber, Michael; Uhl, Andreas

    2011-01-01

    Today, medical endoscopy is a widely used procedure to inspect the inner cavities of the human body. The advent of endoscopic imaging techniques-allowing the acquisition of images or videos-created the possibility for the development of the whole new branch of computer-aided decision support systems. Such systems aim at helping physicians to identify possibly malignant abnormalities more accurately. At the beginning of this paper, we give a brief introduction to the history of endoscopy, followed by introducing the main types of endoscopes which emerged so far (flexible endoscope, wireless capsule endoscope, and confocal laser endomicroscope). We then give a brief introduction to computer-aided decision support systems specifically targeted at endoscopy in the gastrointestinal tract. Then we present general facts and figures concerning computer-aided decision support systems and summarize work specifically targeted at computer-aided decision support in the gastrointestinal tract. This summary is followed by a discussion of some common issues concerning the approaches reviewed and suggestions of possible ways to resolve them.

  13. A water management decision support system contributing to sustainability

    NASA Astrophysics Data System (ADS)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high

  14. Clinical decision support alert malfunctions: analysis and empirically derived taxonomy.

    PubMed

    Wright, Adam; Ai, Angela; Ash, Joan; Wiesen, Jane F; Hickman, Thu-Trang T; Aaron, Skye; McEvoy, Dustin; Borkowsky, Shane; Dissanayake, Pavithra I; Embi, Peter; Galanter, William; Harper, Jeremy; Kassakian, Steve Z; Ramoni, Rachel; Schreiber, Richard; Sirajuddin, Anwar; Bates, David W; Sittig, Dean F

    2018-05-01

    To develop an empirically derived taxonomy of clinical decision support (CDS) alert malfunctions. We identified CDS alert malfunctions using a mix of qualitative and quantitative methods: (1) site visits with interviews of chief medical informatics officers, CDS developers, clinical leaders, and CDS end users; (2) surveys of chief medical informatics officers; (3) analysis of CDS firing rates; and (4) analysis of CDS overrides. We used a multi-round, manual, iterative card sort to develop a multi-axial, empirically derived taxonomy of CDS malfunctions. We analyzed 68 CDS alert malfunction cases from 14 sites across the United States with diverse electronic health record systems. Four primary axes emerged: the cause of the malfunction, its mode of discovery, when it began, and how it affected rule firing. Build errors, conceptualization errors, and the introduction of new concepts or terms were the most frequent causes. User reports were the predominant mode of discovery. Many malfunctions within our database caused rules to fire for patients for whom they should not have (false positives), but the reverse (false negatives) was also common. Across organizations and electronic health record systems, similar malfunction patterns recurred. Challenges included updates to code sets and values, software issues at the time of system upgrades, difficulties with migration of CDS content between computing environments, and the challenge of correctly conceptualizing and building CDS. CDS alert malfunctions are frequent. The empirically derived taxonomy formalizes the common recurring issues that cause these malfunctions, helping CDS developers anticipate and prevent CDS malfunctions before they occur or detect and resolve them expediently.

  15. Scalable Clinical Decision Support for Individualized Cancer Risk Management | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    We will build a scalable clinical decision support (CDS) platform that helps clinicians and patients select cancer screening strategies that are best suited to each individual. This kind of CDS is important because increased evidence supports personalizing cancer screening decisions according to each individual's unique cancer risks. While a highly desired goal, individualizing screening at a population scale requires the implementation of patient-specific risk assessments for several types of cancer. This is quite challenging in today's overwhelmed primary care environment.

  16. A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie

    2017-08-01

    The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.

  17. Human-Computer Interaction with Medical Decisions Support Systems

    NASA Technical Reports Server (NTRS)

    Adolf, Jurine A.; Holden, Kritina L.

    1994-01-01

    Decision Support Systems (DSSs) have been available to medical diagnosticians for some time, yet their acceptance and use have not increased with advances in technology and availability of DSS tools. Medical DSSs will be necessary on future long duration space missions, because access to medical resources and personnel will be limited. Human-Computer Interaction (HCI) experts at NASA's Human Factors and Ergonomics Laboratory (HFEL) have been working toward understanding how humans use DSSs, with the goal of being able to identify and solve the problems associated with these systems. Work to date consists of identification of HCI research areas, development of a decision making model, and completion of two experiments dealing with 'anchoring'. Anchoring is a phenomenon in which the decision maker latches on to a starting point and does not make sufficient adjustments when new data are presented. HFEL personnel have replicated a well-known anchoring experiment and have investigated the effects of user level of knowledge. Future work includes further experimentation on level of knowledge, confidence in the source of information and sequential decision making.

  18. An intelligent clinical decision support system for patient-specific predictions to improve cervical intraepithelial neoplasia detection.

    PubMed

    Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Margari, Niki; Kyrgiou, Maria; Spathis, Aris; Pappas, Asimakis; Panayiotides, Ioannis; Paraskevaidis, Evangelos A; Karakitsos, Petros; Koutsouris, Dimitrios-Dionyssios

    2014-01-01

    Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions.

  19. An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection

    PubMed Central

    Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Margari, Niki; Kyrgiou, Maria; Spathis, Aris; Pappas, Asimakis; Panayiotides, Ioannis; Paraskevaidis, Evangelos A.; Karakitsos, Petros; Koutsouris, Dimitrios-Dionyssios

    2014-01-01

    Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions. PMID:24812614

  20. User Requirements for a Chronic Kidney Disease Clinical Decision Support Tool to Promote Timely Referral.

    PubMed

    Gulla, Joy; Neri, Pamela M; Bates, David W; Samal, Lipika

    2017-05-01

    Timely referral of patients with CKD has been associated with cost and mortality benefits, but referrals are often done too late in the course of the disease. Clinical decision support (CDS) offers a potential solution, but interventions have failed because they were not designed to support the physician workflow. We sought to identify user requirements for a chronic kidney disease (CKD) CDS system to promote timely referral. We interviewed primary care physicians (PCPs) to identify data needs for a CKD CDS system that would encourage timely referral and also gathered information about workflow to assess risk factors for progression of CKD. Interviewees were general internists recruited from a network of 14 primary care clinics affiliated with Brigham and Women's Hospital (BWH). We then performed a qualitative analysis to identify user requirements and system attributes for a CKD CDS system. Of the 12 participants, 25% were women, the mean age was 53 (range 37-82), mean years in clinical practice was 27 (range 11-58). We identified 21 user requirements. Seven of these user requirements were related to support for the referral process workflow, including access to pertinent information and support for longitudinal co-management. Six user requirements were relevant to PCP management of CKD, including management of risk factors for progression, interpretation of biomarkers of CKD severity, and diagnosis of the cause of CKD. Finally, eight user requirements addressed user-centered design of CDS, including the need for actionable information, links to guidelines and reference materials, and visualization of trends. These 21 user requirements can be used to design an intuitive and usable CDS system with the attributes necessary to promote timely referral. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Clinical decision support improves quality of telephone triage documentation--an analysis of triage documentation before and after computerized clinical decision support.

    PubMed

    North, Frederick; Richards, Debra D; Bremseth, Kimberly A; Lee, Mary R; Cox, Debra L; Varkey, Prathibha; Stroebel, Robert J

    2014-03-20

    Clinical decision support (CDS) has been shown to be effective in improving medical safety and quality but there is little information on how telephone triage benefits from CDS. The aim of our study was to compare triage documentation quality associated with the use of a clinical decision support tool, ExpertRN©. We examined 50 triage documents before and after a CDS tool was used in nursing triage. To control for the effects of CDS training we had an additional control group of triage documents created by nurses who were trained in the CDS tool, but who did not use it in selected notes. The CDS intervention cohort of triage notes was compared to both the pre-CDS notes and the CDS trained (but not using CDS) cohort. Cohorts were compared using the documentation standards of the American Academy of Ambulatory Care Nursing (AAACN). We also compared triage note content (documentation of associated positive and negative features relating to the symptoms, self-care instructions, and warning signs to watch for), and documentation defects pertinent to triage safety. Three of five AAACN documentation standards were significantly improved with CDS. There was a mean of 36.7 symptom features documented in triage notes for the CDS group but only 10.7 symptom features in the pre-CDS cohort (p < 0.0001) and 10.2 for the cohort that was CDS-trained but not using CDS (p < 0.0001). The difference between the mean of 10.2 symptom features documented in the pre-CDS and the mean of 10.7 symptom features documented in the CDS-trained but not using was not statistically significant (p = 0.68). CDS significantly improves triage note documentation quality. CDS-aided triage notes had significantly more information about symptoms, warning signs and self-care. The changes in triage documentation appeared to be the result of the CDS alone and not due to any CDS training that came with the CDS intervention. Although this study shows that CDS can improve documentation, further study is needed

  2. Decision support systems for transportation system management and operations (TSM&O).

    DOT National Transportation Integrated Search

    2015-12-01

    There is a need for the development of tools and methods to support off-line and real-time : planning and operation decisions associated with the Transportation System Management and : Operations (TSM&O) program. The goal of this proposed project is ...

  3. Clinical decision-making and secondary findings in systems medicine.

    PubMed

    Fischer, T; Brothers, K B; Erdmann, P; Langanke, M

    2016-05-21

    Systems medicine is the name for an assemblage of scientific strategies and practices that include bioinformatics approaches to human biology (especially systems biology); "big data" statistical analysis; and medical informatics tools. Whereas personalized and precision medicine involve similar analytical methods applied to genomic and medical record data, systems medicine draws on these as well as other sources of data. Given this distinction, the clinical translation of systems medicine poses a number of important ethical and epistemological challenges for researchers working to generate systems medicine knowledge and clinicians working to apply it. This article focuses on three key challenges: First, we will discuss the conflicts in decision-making that can arise when healthcare providers committed to principles of experimental medicine or evidence-based medicine encounter individualized recommendations derived from computer algorithms. We will explore in particular whether controlled experiments, such as comparative effectiveness trials, should mediate the translation of systems medicine, or if instead individualized findings generated through "big data" approaches can be applied directly in clinical decision-making. Second, we will examine the case of the Riyadh Intensive Care Program Mortality Prediction Algorithm, pejoratively referred to as the "death computer," to demonstrate the ethical challenges that can arise when big-data-driven scoring systems are applied in clinical contexts. We argue that the uncritical use of predictive clinical algorithms, including those envisioned for systems medicine, challenge basic understandings of the doctor-patient relationship. Third, we will build on the recent discourse on secondary findings in genomics and imaging to draw attention to the important implications of secondary findings derived from the joint analysis of data from diverse sources, including data recorded by patients in an attempt to realize their

  4. A Mobile Computerized Decision Support System to Prevent Hypoglycemia in Hospitalized Patients With Type 2 Diabetes Mellitus

    PubMed Central

    Spat, Stephan; Donsa, Klaus; Beck, Peter; Höll, Bernhard; Mader, Julia K.; Schaupp, Lukas; Augustin, Thomas; Chiarugi, Franco; Lichtenegger, Katharina M.; Plank, Johannes; Pieber, Thomas R.

    2016-01-01

    Background: Diabetes management requires complex and interdisciplinary cooperation of health care professionals (HCPs). To support this complex process, IT-support is recommended by clinical guidelines. The aim of this article is to report on results from a clinical feasibility study testing the prototype of a mobile, tablet-based client-server system for computerized decision and workflow support (GlucoTab®) and to discuss its impact on hypoglycemia prevention. Methods: The system was tested in a monocentric, open, noncontrolled intervention study in 30 patients with type 2 diabetes mellitus (T2DM). The system supports HCPs in performing a basal-bolus insulin therapy. Diabetes therapy, adverse events, software errors and user feedback were documented. Safety, efficacy and user acceptance of the system were investigated. Results: Only 1.3% of blood glucose (BG) measurements were <70 mg/dl and only 2.6% were >300 mg/dl. The availability of the system (97.3%) and the rate of treatment activities documented with the system (>93.5%) were high. Only few suggestions from the system were overruled by the users (>95.7% adherence). Evaluation of the 3 anonymous questionnaires showed that confidence in the system increased over time. The majority of users believed that treatment errors could be prevented by using this system. Conclusions: Data from our feasibility study show a significant reduction of hypoglycemia by implementing a computerized system for workflow and decision support for diabetes management, compared to a paper-based process. The system was well accepted by HCPs, which is shown in the user acceptance analysis and that users adhered to the insulin dose suggestions made by the system. PMID:27810995

  5. Translational Cognition for Decision Support in Critical Care Environments: A Review

    PubMed Central

    Patel, Vimla L.; Zhang, Jiajie; Yoskowitz, Nicole A.; Green, Robert; Sayan, Osman R.

    2008-01-01

    The dynamic and distributed work environment in critical care requires a high level of collaboration among clinical team members and a sophisticated task coordination system to deliver safe, timely and effective care. A complex cognitive system underlies the decision-making process in such cooperative workplaces. This methodological review paper addresses the issues of translating cognitive research to clinical practice with a specific focus on decision-making in critical care, and the role of information and communication technology to aid in such decisions. Examples are drawn from studies of critical care in our own research laboratories. Critical care, in this paper, includes both intensive (inpatient) and emergency (outpatient) care. We define translational cognition as the research on basic and applied cognitive issues that contribute to our understanding of how information is stored, retrieved and used for problem-solving and decision-making. The methods and findings are discussed in the context of constraints on decision-making in real world complex environments and implications for supporting the design and evaluation of decision support tools for critical care health providers. PMID:18343731

  6. Translational cognition for decision support in critical care environments: a review.

    PubMed

    Patel, Vimla L; Zhang, Jiajie; Yoskowitz, Nicole A; Green, Robert; Sayan, Osman R

    2008-06-01

    The dynamic and distributed work environment in critical care requires a high level of collaboration among clinical team members and a sophisticated task coordination system to deliver safe, timely and effective care. A complex cognitive system underlies the decision-making process in such cooperative workplaces. This methodological review paper addresses the issues of translating cognitive research to clinical practice with a specific focus on decision-making in critical care, and the role of information and communication technology to aid in such decisions. Examples are drawn from studies of critical care in our own research laboratories. Critical care, in this paper, includes both intensive (inpatient) and emergency (outpatient) care. We define translational cognition as the research on basic and applied cognitive issues that contribute to our understanding of how information is stored, retrieved and used for problem-solving and decision-making. The methods and findings are discussed in the context of constraints on decision-making in real-world complex environments and implications for supporting the design and evaluation of decision support tools for critical care health providers.

  7. "Quality of prenatal and maternal care: bridging the know-do gap" (QUALMAT study): an electronic clinical decision support system for rural Sub-Saharan Africa.

    PubMed

    Blank, Antje; Prytherch, Helen; Kaltschmidt, Jens; Krings, Andreas; Sukums, Felix; Mensah, Nathan; Zakane, Alphonse; Loukanova, Svetla; Gustafsson, Lars L; Sauerborn, Rainer; Haefeli, Walter E

    2013-04-10

    Despite strong efforts to improve maternal care, its quality remains deficient in many countries of Sub-Saharan Africa as persistently high maternal mortality rates testify. The QUALMAT study seeks to improve the performance and motivation of rural health workers and ultimately quality of primary maternal health care services in three African countries Burkina Faso, Ghana, and Tanzania. One major intervention is the introduction of a computerized Clinical Decision Support System (CDSS) for rural primary health care centers to be used by health care workers of different educational levels. A stand-alone, java-based software, able to run on any standard hardware, was developed based on assessment of the health care situation in the involved countries. The software scope was defined and the final software was programmed under consideration of test experiences. Knowledge for the decision support derived from the World Health Organization (WHO) guideline "Pregnancy, Childbirth, Postpartum and Newborn Care; A Guide for Essential Practice". The QUALMAT CDSS provides computerized guidance and clinical decision support for antenatal care, and care during delivery and up to 24 hours post delivery. The decision support is based on WHO guidelines and designed using three principles: (1) Guidance through routine actions in maternal and perinatal care, (2) integration of clinical data to detect situations of concern by algorithms, and (3) electronic tracking of peri- and postnatal activities. In addition, the tool facilitates patient management and is a source of training material. The implementation of the software, which is embedded in a set of interventions comprising the QUALMAT study, is subject to various research projects assessing and quantifying the impact of the CDSS on quality of care, the motivation of health care staff (users) and its health economic aspects. The software will also be assessed for its usability and acceptance, as well as for its influence on

  8. Automation, decision support, and expert systems in nephrology.

    PubMed

    Soman, Sandeep; Zasuwa, Gerard; Yee, Jerry

    2008-01-01

    Increasing data suggest that errors in medicine occur frequently and result in substantial harm to the patient. The Institute of Medicine report described the magnitude of the problem, and public interest in this issue, which was already large, has grown. The traditional approach in medicine has been to identify the persons making the errors and recommend corrective strategies. However, it has become increasingly clear that it is more productive to focus on the systems and processes through which care is provided. If these systems are set up in ways that would both make errors less likely and identify those that do occur and, at the same time, improve efficiency, then safety and productivity would be substantially improved. Clinical decision support systems (CDSSs) are active knowledge systems that use 2 or more items of patient data to generate case specific recommendations. CDSSs are typically designed to integrate a medical knowledge base, patient data, and an inference engine to generate case specific advice. This article describes how automation, templating, and CDSS improve efficiency, patient care, and safety by reducing the frequency and consequences of medical errors in nephrology. We discuss practical applications of these in 3 settings: a computerized anemia-management program (CAMP, Henry Ford Health System, Detroit, MI), vascular access surveillance systems, and monthly capitation notes in the hemodialysis unit.

  9. Evaluation of Antimicrobial Stewardship-Related Alerts Using a Clinical Decision Support System.

    PubMed

    Ghamrawi, Riane J; Kantorovich, Alexander; Bauer, Seth R; Pallotta, Andrea M; Sekeres, Jennifer K; Gordon, Steven M; Neuner, Elizabeth A

    2017-11-01

    Background: Information technology, including clinical decision support systems (CDSS), have an increasingly important and growing role in identifying opportunities for antimicrobial stewardship-related interventions. Objective: The aim of this study was to describe and compare types and outcomes of CDSS-built antimicrobial stewardship alerts. Methods: Fifteen alerts were evaluated in the initial antimicrobial stewardship program (ASP) review. Preimplementation, alerts were reviewed retrospectively. Postimplementation, alerts were reviewed in real-time. Data collection included total number of actionable alerts, recommendation acceptance rates, and time spent on each alert. Time to de-escalation to narrower spectrum agents was collected. Results: In total, 749 alerts were evaluated. Overall, 306 (41%) alerts were actionable (173 preimplementation, 133 postimplementation). Rates of actionable alerts were similar for custom-built and prebuilt alert types (39% [53 of 135] vs 41% [253 of 614], P = .68]. In the postimplementation group, an intervention was attempted in 97% of actionable alerts and 70% of interventions were accepted. The median time spent per alert was 7 minutes (interquartile range [IQR], 5-13 minutes; 15 [12-17] minutes for actionable alerts vs 6 [5-7] minutes for nonactionable alerts, P < .001). In cases where the antimicrobial was eventually de-escalated, the median time to de-escalation was 28.8 hours (95% confidence interval [CI], 10.0-69.1 hours) preimplementation vs 4.7 hours (95% CI, 2.4-22.1 hours) postimplementation, P < .001. Conclusions: CDSS have played an important role in ASPs to help identify opportunities to optimize antimicrobial use through prebuilt and custom-built alerts. As ASP roles continue to expand, focusing time on customizing institution specific alerts will be of vital importance to help redistribute time needed to manage other ASP tasks and opportunities.

  10. Functional specifications for a radioactive waste decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.

    1989-09-01

    It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less

  11. Towards public health decision support: a systematic review of bidirectional communication approaches

    PubMed Central

    Dixon, Brian E; Gamache, Roland E; Grannis, Shaun J

    2013-01-01

    Objective To summarize the literature describing computer-based interventions aimed at improving bidirectional communication between clinical and public health. Materials and Methods A systematic review of English articles using MEDLINE and Google Scholar. Search terms included public health, epidemiology, electronic health records, decision support, expert systems, and decision-making. Only articles that described the communication of information regarding emerging health threats from public health agencies to clinicians or provider organizations were included. Each article was independently reviewed by two authors. Results Ten peer-reviewed articles highlight a nascent but promising area of research and practice related to alerting clinicians about emerging threats. Current literature suggests that additional research and development in bidirectional communication infrastructure should focus on defining a coherent architecture, improving interoperability, establishing clear governance, and creating usable systems that will effectively deliver targeted, specific information to clinicians in support of patient and population decision-making. Conclusions Increasingly available clinical information systems make it possible to deliver timely, relevant knowledge to frontline clinicians in support of population health. Future work should focus on developing a flexible, interoperable infrastructure for bidirectional communications capable of integrating public health knowledge into clinical systems and workflows. PMID:23467470

  12. Towards public health decision support: a systematic review of bidirectional communication approaches.

    PubMed

    Dixon, Brian E; Gamache, Roland E; Grannis, Shaun J

    2013-05-01

    To summarize the literature describing computer-based interventions aimed at improving bidirectional communication between clinical and public health. A systematic review of English articles using MEDLINE and Google Scholar. Search terms included public health, epidemiology, electronic health records, decision support, expert systems, and decision-making. Only articles that described the communication of information regarding emerging health threats from public health agencies to clinicians or provider organizations were included. Each article was independently reviewed by two authors. Ten peer-reviewed articles highlight a nascent but promising area of research and practice related to alerting clinicians about emerging threats. Current literature suggests that additional research and development in bidirectional communication infrastructure should focus on defining a coherent architecture, improving interoperability, establishing clear governance, and creating usable systems that will effectively deliver targeted, specific information to clinicians in support of patient and population decision-making. Increasingly available clinical information systems make it possible to deliver timely, relevant knowledge to frontline clinicians in support of population health. Future work should focus on developing a flexible, interoperable infrastructure for bidirectional communications capable of integrating public health knowledge into clinical systems and workflows.

  13. A Decision Support System for Optimum Use of Fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less

  14. Application of GIS in foreign direct investment decision support system

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlan; Sun, Koumei

    2007-06-01

    It is important to make decisions on how to attract foreign direct investment (FDI) to China and know how the inequality of FDI introduction by locational different provinces. Following background descriptions on China's FDI economic environments and FDI-related policies, this paper demonstrates the uses of geographical information system (GIS) and multi-criterion decision-making (MCDM) framework in solving a spatial multi-objective problem of evaluating and ranking China's provinces for FDI introduction. It implements a foreign direct investment decision support system, which reveals the main determinants of FDI in China and gives some results of regional geographical analysis over spatial data.

  15. Knowledge translation of the American College of Emergency Physicians' clinical policy on syncope using computerized clinical decision support.

    PubMed

    Melnick, Edward R; Genes, Nicholas G; Chawla, Neal K; Akerman, Meredith; Baumlin, Kevin M; Jagoda, Andy

    2010-06-01

    To influence physician practice behavior after implementation of a computerized clinical decision support system (CDSS) based upon the recommendations from the 2007 ACEP Clinical Policy on Syncope. This was a pre-post intervention with a prospective cohort and retrospective controls. We conducted a medical chart review of consecutive adult patients with syncope. A computerized CDSS prompting physicians to explain their decision-making regarding imaging and admission in syncope patients based upon ACEP Clinical Policy recommendations was embedded into the emergency department information system (EDIS). The medical records of 410 consecutive adult patients presenting with syncope were reviewed prior to implementation, and 301 records were reviewed after implementation. Primary outcomes were physician practice behavior demonstrated by admission rate and rate of head computed tomography (CT) imaging before and after implementation. There was a significant difference in admission rate pre- and post-intervention (68.1% vs. 60.5% respectively, p = 0.036). There was no significant difference in the head CT imaging rate pre- and post-intervention (39.8% vs. 43.2%, p = 0.358). There were seven physicians who saw ten or more patients during the pre- and post-intervention. Subset analysis of these seven physicians' practice behavior revealed a slight significant difference in the admission rate pre- and post-intervention (74.3% vs. 63.9%, p = 0.0495) and no significant difference in the head CT scan rate pre- and post-intervention (42.9% vs. 45.4%, p = 0.660). The introduction of an evidence-based CDSS based upon ACEP Clinical Policy recommendations on syncope correlated with a change in physician practice behavior in an urban academic emergency department. This change suggests emergency medicine clinical practice guideline recommendations can be incorporated into the physician workflow of an EDIS to enhance the quality of practice.

  16. Development of an Electronic Medical Record-Based Clinical Decision Support Tool to Improve HIV Symptom Management

    PubMed Central

    Tsevat, Joel; Justice, Amy C.; Mrus, Joseph M.; Levin, Forrest; Kozal, Michael J.; Mattocks, Kristin; Farber, Steven; Rogers, Michelle; Erdos, Joseph; Brandt, Cynthia; Kudel, Ian; Braithwaite, Ronald

    2009-01-01

    Abstract Common symptoms associated with HIV disease and its management are often underrecognized and undertreated. A clinical decision support tool for symptom management was developed within the Veterans Health Administration electronic medical record (EMR), aiming at increasing provider awareness of and response to common HIV symptoms. Its feasibility was studied in March to May 2007 by implementing it within a weekly HIV clinic, comparing a 4-week intervention period with a 4-week control period. Fifty-six patients and their providers participated in the study. Patients' perceptions of providers' awareness of their symptoms, proportion of progress notes mentioning any symptom(s) and proportion of care plans mentioning any symptom(s) were measured. The clinical decision support tool used portable electronic “tablets” to elicit symptom information at the time of check-in, filtered, and organized that information into a concise and clinically relevant EMR note available at the point of care, and facilitated clinical responses to that information. It appeared to be well accepted by patients and providers and did not substantially impact workflow. Although this pilot study was not powered to detect effectiveness, 25 (93%) patients in the intervention group reported that their providers were very aware of their symptoms versuas 27 (75%) control patients (p = 0.07). The proportion of providers' notes listing symptoms was similar in both periods; however, there was a trend toward including a greater number of symptoms in intervention period progress notes. The symptom support tool seemed to be useful in clinical HIV care. The Veterans Health Administration EMR may be an effective “laboratory” for developing and testing decision supports. PMID:19538046

  17. A service oriented approach for guidelines-based clinical decision support using BPMN.

    PubMed

    Rodriguez-Loya, Salvador; Aziz, Ayesha; Chatwin, Chris

    2014-01-01

    Evidence-based medical practice requires that clinical guidelines need to be documented in such a way that they represent a clinical workflow in its most accessible form. In order to optimize clinical processes to improve clinical outcomes, we propose a Service Oriented Architecture (SOA) based approach for implementing clinical guidelines that can be accessed from an Electronic Health Record (EHR) application with a Web Services enabled communication mechanism with the Enterprise Service Bus. We have used Business Process Modelling Notation (BPMN) for modelling and presenting the clinical pathway in the form of a workflow. The aim of this study is to produce spontaneous alerts in the healthcare workflow in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD). The use of BPMN as a tool to automate clinical guidelines has not been previously employed for providing Clinical Decision Support (CDS).

  18. Decision Support Systems for Operational Level Command and Control

    DTIC Science & Technology

    1990-04-30

    business -based. These definitions still have applicability to military command and control - the business of military operations. A synthesis of the...other hand, there are such studies that were conducted in business environments. An eight week empincal study39 was 37 bd, pp 8-1 I. 38 Ranesh Shada...pp 139-158. 19 conducted and the groups with access to decision support system made significantly more effective decisions :n a business simulation

  19. Pharmacist-driven initiative for management of Staphylococcus aureus bacteremia using a clinical decision support system.

    PubMed

    Wang, Fei; Prier, Beth; Bauer, Karri A; Mellett, John

    2018-06-01

    The development and implementation of a clinical decision support system (CDSS) for pharmacists to use for identification of and intervention on patients with Staphylococcus aureus bacteremia (SAB) are described. A project team consisting of 3 informatics pharmacists and 2 infectious diseases (ID) pharmacists was formed to develop the CDSS. The primary CDSS component was a scoring system that generates a score in real time for a patient with a positive blood culture for S. aureus. In addition, 4 tools were configured in the CDSS to facilitate pharmacists' workflow and documentation tasks: a patient list, a patient list report, a handoff note, and a standardized progress note. Pharmacists are required to evaluate the patient list at least once per shift to identify newly listed patients with a blood culture positive for S. aureus and provide recommendations if necessary. The CDSS was implemented over a period of 2.5 months, with a pharmacy informatics resident dedicating approximately 200 hours in total. An audit showed that the standardized progress note was completed for 100% of the patients, with a mean time to completion of 8.5 hours. Importantly, this initiative can be implemented in hospitals without specialty-trained ID pharmacists. This study provides a framework for future antimicrobial stewardship program initiatives to incorporate pharmacists into the process of providing real-time recommendations. A pharmacist-driven patient scoring system was successfully used to improve adherence to quality performance measures for management of SAB. A pharmacist-driven CDSS can be utilized to assist in the management of SAB. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  20. A multi-faceted tailored strategy to implement an electronic clinical decision support system for pressure ulcer prevention in nursing homes: a two-armed randomized controlled trial.

    PubMed

    Beeckman, Dimitri; Clays, Els; Van Hecke, Ann; Vanderwee, Katrien; Schoonhoven, Lisette; Verhaeghe, Sofie

    2013-04-01

    Frail older people admitted to nursing homes are at risk of a range of adverse outcomes, including pressure ulcers. Clinical decision support systems are believed to have the potential to improve care and to change the behaviour of healthcare professionals. To determine whether a multi-faceted tailored strategy to implement an electronic clinical decision support system for pressure ulcer prevention improves adherence to recommendations for pressure ulcer prevention in nursing homes. Two-armed randomized controlled trial in a nursing home setting in Belgium. The trial consisted of a 16-week implementation intervention between February and June 2010, including one baseline, four intermediate, and one post-testing measurement. Primary outcome was the adherence to guideline-based care recommendations (in terms of allocating adequate pressure ulcer prevention in residents at risk). Secondary outcomes were the change in resident outcomes (pressure ulcer prevalence) and intermediate outcomes (knowledge and attitudes of healthcare professionals). Random sample of 11 wards (6 experimental; 5 control) in a convenience sample of 4 nursing homes in Belgium. In total, 464 nursing home residents and 118 healthcare professionals participated. The experimental arm was involved in a multi-faceted tailored implementation intervention of a clinical decision support system, including interactive education, reminders, monitoring, feedback and leadership. The control arm received a hard-copy of the pressure ulcer prevention protocol, supported by standardized 30 min group lecture. Patients in the intervention arm were significantly more likely to receive fully adequate pressure ulcer prevention when seated in a chair (F=16.4, P=0.003). No significant improvement was observed on pressure ulcer prevalence and knowledge of the professionals. While baseline attitude scores were comparable between both groups [exp. 74.3% vs. contr. 74.5% (P=0.92)], the mean score after the intervention was

  1. Developing Mobile Clinical Decision Support for Nursing Home Staff Assessment of Urinary Tract Infection using Goal-Directed Design.

    PubMed

    Jones, Wallace; Drake, Cynthia; Mack, David; Reeder, Blaine; Trautner, Barbara; Wald, Heidi

    2017-06-20

    Unique characteristics of nursing homes (NHs) contribute to high rates of inappropriate antibiotic use for asymptomatic bacteriuria (ASB), a benign condition. A mobile clinical decision support system (CDSS) may support NH staff in differentiating urinary tract infections (UTI) from ASB and reducing antibiotic days. We used Goal-Directed Design to: 1) Characterize information needs for UTI identification and management in NHs; 2) Develop UTI Decide, a mobile CDSS prototype informed by personas and scenarios of use constructed from Aim 1 findings; 3) Evaluate the UTI Decide prototype with NH staff. Focus groups were conducted with providers and nurses in NHs in Denver, Colorado (n= 24). Qualitative descriptive analysis was applied to focus group transcripts to identify information needs and themes related to mobile clinical decision support for UTI identification and management. Personas representing typical end users were developed; typical clinical context scenarios were constructed using information needs as goals. Usability testing was performed using cognitive walk-throughs and a think-aloud protocol. Four information needs were identified including guidance regarding resident assessment; communication with providers; care planning; and urine culture interpretation. Design of a web-based application incorporating a published decision support algorithm for evidence-based UTI diagnoses proceeded with a focus on nursing information needs during resident assessment and communication with providers. Certified nursing assistant (CNA) and registered nurse (RN) personas were constructed in 4 context scenarios with associated key path scenarios. After field testing, a high fidelity prototype of UTI Decide was completed and evaluated by potential end users. Design recommendations and content recommendations were elicited. Goal-Directed Design informed the development of a mobile CDSS supporting participant-identified information needs for UTI assessment and communication

  2. Preprocessing Structured Clinical Data for Predictive Modeling and Decision Support

    PubMed Central

    Oliveira, Mónica Duarte; Janela, Filipe; Martins, Henrique M. G.

    2016-01-01

    Summary Background EHR systems have high potential to improve healthcare delivery and management. Although structured EHR data generates information in machine-readable formats, their use for decision support still poses technical challenges for researchers due to the need to preprocess and convert data into a matrix format. During our research, we observed that clinical informatics literature does not provide guidance for researchers on how to build this matrix while avoiding potential pitfalls. Objectives This article aims to provide researchers a roadmap of the main technical challenges of preprocessing structured EHR data and possible strategies to overcome them. Methods Along standard data processing stages – extracting database entries, defining features, processing data, assessing feature values and integrating data elements, within an EDPAI framework –, we identified the main challenges faced by researchers and reflect on how to address those challenges based on lessons learned from our research experience and on best practices from related literature. We highlight the main potential sources of error, present strategies to approach those challenges and discuss implications of these strategies. Results Following the EDPAI framework, researchers face five key challenges: (1) gathering and integrating data, (2) identifying and handling different feature types, (3) combining features to handle redundancy and granularity, (4) addressing data missingness, and (5) handling multiple feature values. Strategies to address these challenges include: cross-checking identifiers for robust data retrieval and integration; applying clinical knowledge in identifying feature types, in addressing redundancy and granularity, and in accommodating multiple feature values; and investigating missing patterns adequately. Conclusions This article contributes to literature by providing a roadmap to inform structured EHR data preprocessing. It may advise researchers on potential

  3. Semantics-based plausible reasoning to extend the knowledge coverage of medical knowledge bases for improved clinical decision support.

    PubMed

    Mohammadhassanzadeh, Hossein; Van Woensel, William; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2017-01-01

    Capturing complete medical knowledge is challenging-often due to incomplete patient Electronic Health Records (EHR), but also because of valuable, tacit medical knowledge hidden away in physicians' experiences. To extend the coverage of incomplete medical knowledge-based systems beyond their deductive closure, and thus enhance their decision-support capabilities, we argue that innovative, multi-strategy reasoning approaches should be applied. In particular, plausible reasoning mechanisms apply patterns from human thought processes, such as generalization, similarity and interpolation, based on attributional, hierarchical, and relational knowledge. Plausible reasoning mechanisms include inductive reasoning , which generalizes the commonalities among the data to induce new rules, and analogical reasoning , which is guided by data similarities to infer new facts. By further leveraging rich, biomedical Semantic Web ontologies to represent medical knowledge, both known and tentative, we increase the accuracy and expressivity of plausible reasoning, and cope with issues such as data heterogeneity, inconsistency and interoperability. In this paper, we present a Semantic Web-based, multi-strategy reasoning approach, which integrates deductive and plausible reasoning and exploits Semantic Web technology to solve complex clinical decision support queries. We evaluated our system using a real-world medical dataset of patients with hepatitis, from which we randomly removed different percentages of data (5%, 10%, 15%, and 20%) to reflect scenarios with increasing amounts of incomplete medical knowledge. To increase the reliability of the results, we generated 5 independent datasets for each percentage of missing values, which resulted in 20 experimental datasets (in addition to the original dataset). The results show that plausibly inferred knowledge extends the coverage of the knowledge base by, on average, 2%, 7%, 12%, and 16% for datasets with, respectively, 5%, 10%, 15

  4. Development of a SNOMED CT based national medication decision support system.

    PubMed

    Greibe, Kell

    2013-01-01

    Physicians often lack the time to familiarize themselves with the details of particular allergies or other drug restrictions. Clinical Decision Support (CDS), based on a structured terminology as SNOMED CT (SCT), can help physicians get an overview, by automatically alerting allergy, interactions and other important information. The centralized CDS platform based on SCT, controls Allergy, Interactions, Risk Situation Drugs and Max Dose restrictions by the help of databases developed for these specific purposes. The CDS will respond to automatic web service requests from the hospital or GP electronic medication system (EMS) during prescription, and return alerts and information. The CDS also contains a Physicians Preference Database where the physicians individually can set which kind of alerts they want to see. The result is clinically useful information physicians can use as a base for a more effective and safer treatment, without developing alert fatigue.

  5. Increasing Complexity in Rule-Based Clinical Decision Support: The Symptom Assessment and Management Intervention.

    PubMed

    Lobach, David F; Johns, Ellis B; Halpenny, Barbara; Saunders, Toni-Ann; Brzozowski, Jane; Del Fiol, Guilherme; Berry, Donna L; Braun, Ilana M; Finn, Kathleen; Wolfe, Joanne; Abrahm, Janet L; Cooley, Mary E

    2016-11-08

    Management of uncontrolled symptoms is an important component of quality cancer care. Clinical guidelines are available for optimal symptom management, but are not often integrated into the front lines of care. The use of clinical decision support (CDS) at the point-of-care is an innovative way to incorporate guideline-based symptom management into routine cancer care. The objective of this study was to develop and evaluate a rule-based CDS system to enable management of multiple symptoms in lung cancer patients at the point-of-care. This study was conducted in three phases involving a formative evaluation, a system evaluation, and a contextual evaluation of clinical use. In Phase 1, we conducted iterative usability testing of user interface prototypes with patients and health care providers (HCPs) in two thoracic oncology clinics. In Phase 2, we programmed complex algorithms derived from clinical practice guidelines into a rules engine that used Web services to communicate with the end-user application. Unit testing of algorithms was conducted using a stack-traversal tree-spanning methodology to identify all possible permutations of pathways through each algorithm, to validate accuracy. In Phase 3, we evaluated clinical use of the system among patients and HCPs in the two clinics via observations, structured interviews, and questionnaires. In Phase 1, 13 patients and 5 HCPs engaged in two rounds of formative testing, and suggested improvements leading to revisions until overall usability scores met a priori benchmarks. In Phase 2, symptom management algorithms contained between 29 and 1425 decision nodes, resulting in 19 to 3194 unique pathways per algorithm. Unit testing required 240 person-hours, and integration testing required 40 person-hours. In Phase 3, both patients and HCPs found the system usable and acceptable, and offered suggestions for improvements. A rule-based CDS system for complex symptom management was systematically developed and tested. The

  6. Decision Support System for hydrological extremes

    NASA Astrophysics Data System (ADS)

    Bobée, Bernard; El Adlouni, Salaheddine

    2014-05-01

    The study of the tail behaviour of extreme event distributions is important in several applied statistical fields such as hydrology, finance, and telecommunications. For example in hydrology, it is important to estimate adequately extreme quantiles in order to build and manage safe and effective hydraulic structures (dams, for example). Two main classes of distributions are used in hydrological frequency analysis: the class D of sub-exponential (Gamma (G2), Gumbel, Halphen type A (HA), Halphen type B (HB)…) and the class C of regularly varying distributions (Fréchet, Log-Pearson, Halphen type IB …) with a heavier tail. A Decision Support System (DSS) based on the characterization of the right tail, corresponding low probability of excedence p (high return period T=1/p, in hydrology), has been developed. The DSS allows discriminating between the class C and D and in its last version, a new prior step is added in order to test Lognormality. Indeed, the right tail of the Lognormal distribution (LN) is between the tails of distributions of the classes C and D; studies indicated difficulty with the discrimination between LN and distributions of the classes C and D. Other tools are useful to discriminate between distributions of the same class D (HA, HB and G2; see other communication). Some numerical illustrations show that, the DSS allows discriminating between Lognormal, regularly varying and sub-exponential distributions; and lead to coherent conclusions. Key words: Regularly varying distributions, subexponential distributions, Decision Support System, Heavy tailed distribution, Extreme value theory

  7. Transit Operations Decision Support System (TODSS) core requirements evaluation and update recommendations.

    DOT National Transportation Integrated Search

    2009-10-01

    Transit Operations Decision Support Systems (TODSS) are systems designed to support dispatchers and others in real-time operations : management in response to incidents, special events, and other changing conditions in order to improve operating spee...

  8. Decision Support Systems (DSSs) For Contaminated Land Management - Gaps And Challenges

    EPA Science Inventory

    A plethora of information is available when considering decision support systems for risk-based management of contaminated land. Broad issues of what is contaminated land, what is a brownfield, and what is remediation are discussed in EU countries and the U.S. Making decisions ...

  9. Intelligence Decision Support System for the Republic of Korea Army Engineer Operation.

    DTIC Science & Technology

    1987-06-01

    34.:L;’:Ce mnechanism and prUnin2 -must be collected in a computer program for it to -’’, nroerlx escribed as possessing Artificial Intelligence (AI). [Ref...At84 128 INTELLIGENCE DECISION SUPPORT SYSTEM FOR THE REPUBLIC I/i OF KOREA ARMY ENGINEER OPERATION(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA C K...POSTGRADUATE SCHOOL q~J.00 ’Monterey, California THESIS INTELLIGENCE DECISION SUPPORT SYSTEM FOR THE REPUBLIC OF KOREA ARMY ENGINEER OPERATION by Jang

  10. Facilitating adherence to the tobacco use treatment guideline with computer-mediated decision support systems: physician and clinic office manager perspectives.

    PubMed

    Marcy, Theodore W; Skelly, Joan; Shiffman, Richard N; Flynn, Brian S

    2005-08-01

    A majority of physicians do not adhere to all the elements of the evidence-based USPHS guideline on tobacco use and dependence treatment. Among physicians and clinic office managers in Vermont we assessed perceived barriers to guideline adherence. We then assessed attitudes towards a computer-mediated clinical decision support system (CDSS) to gauge whether this type of intervention could support performance of the guideline. A random sample of 600 Vermont primary care and subspecialty physicians were surveyed with a mailed survey instrument. A separate survey instrument was mailed to the census of 93 clinic office managers. The response rates of physicians and clinic office managers were 67% and 76%, respectively. Though most physicians were aware of the guideline and had positive attitudes towards it, there was a lack of familiarity with Vermont's smoking cessation resources as 35% would refer smokers to non-existent counseling resources and only 48% would refer patients to a toll-free quit line. Time constraints and the perception that smokers are unreceptive to counseling were the two most common barriers cited by both physicians and office managers. The vast majority of physicians (92%) have access to a computer in their outpatient clinics, and 68% have used computers during the course of a patient's visit. Four of the eight information management services that a CDSS could provide were highly valued by both physicians and clinic office managers. Interventions to improve adherence to the guideline should address the inaccurate perception that smokers are unreceptive to counseling, and physicians' lack of familiarity with resources. A CDSS may improve knowledge of these resources if the design addresses cost, space, and time limitations.

  11. Human Cognitive Limitations. Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support.

    PubMed

    Morris, Alan H

    2018-02-01

    Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.

  12. Design, Development, and Initial Evaluation of a Terminology for Clinical Decision Support and Electronic Clinical Quality Measurement.

    PubMed

    Lin, Yanhua; Staes, Catherine J; Shields, David E; Kandula, Vijay; Welch, Brandon M; Kawamoto, Kensaku

    2015-01-01

    When coupled with a common information model, a common terminology for clinical decision support (CDS) and electronic clinical quality measurement (eCQM) could greatly facilitate the distributed development and sharing of CDS and eCQM knowledge resources. To enable such scalable knowledge authoring and sharing, we systematically developed an extensible and standards-based terminology for CDS and eCQM in the context of the HL7 Virtual Medical Record (vMR) information model. The development of this terminology entailed three steps: (1) systematic, physician-curated concept identification from sources such as the Health Information Technology Standards Panel (HITSP) and the SNOMED-CT CORE problem list; (2) concept de-duplication leveraging the Unified Medical Language System (UMLS) MetaMap and Metathesaurus; and (3) systematic concept naming using standard terminologies and heuristic algorithms. This process generated 3,046 concepts spanning 68 domains. Evaluation against representative CDS and eCQM resources revealed approximately 50-70% concept coverage, indicating the need for continued expansion of the terminology.

  13. Design, Development, and Initial Evaluation of a Terminology for Clinical Decision Support and Electronic Clinical Quality Measurement

    PubMed Central

    Lin, Yanhua; Staes, Catherine J; Shields, David E; Kandula, Vijay; Welch, Brandon M; Kawamoto, Kensaku

    2015-01-01

    When coupled with a common information model, a common terminology for clinical decision support (CDS) and electronic clinical quality measurement (eCQM) could greatly facilitate the distributed development and sharing of CDS and eCQM knowledge resources. To enable such scalable knowledge authoring and sharing, we systematically developed an extensible and standards-based terminology for CDS and eCQM in the context of the HL7 Virtual Medical Record (vMR) information model. The development of this terminology entailed three steps: (1) systematic, physician-curated concept identification from sources such as the Health Information Technology Standards Panel (HITSP) and the SNOMED-CT CORE problem list; (2) concept de-duplication leveraging the Unified Medical Language System (UMLS) MetaMap and Metathesaurus; and (3) systematic concept naming using standard terminologies and heuristic algorithms. This process generated 3,046 concepts spanning 68 domains. Evaluation against representative CDS and eCQM resources revealed approximately 50–70% concept coverage, indicating the need for continued expansion of the terminology. PMID:26958220

  14. Disaster Management with a Next Generation Disaster Decision Support System

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    As populations become increasingly concentrated in large cities, the world is experiencing an inevitably growing trend towards the urbanisation of disasters. Scientists have contributed significant advances in understanding the geophysical causes of natural hazards and have developed sophisticated tools to predict their effects; while, much less attention has been devoted to tools that increase situational awareness, facilitate leadership, provide effective communication channels and data flow and enhance the cognitive abilities of decision makers and first responders. In this paper, we envisioned the capabilities of a next generation disaster decision support system and hence proposed a state-of-the-art system architecture design to facilitate the decision making process in natural catastrophes such as flood and bushfire by utilising a combination of technologies for multi-channel data aggregation, disaster modelling, visualisation and optimisation. Moreover, we put our thoughts into action by implementing an Intelligent Disaster Decision Support System (IDDSS). The developed system can easily plug in to external disaster models and aggregate large amount of heterogeneous data from government agencies, sensor networks, and crowd sourcing platforms in real-time to enhance the situational awareness of decision makers and offer them a comprehensive understanding of disaster impacts from diverse perspectives such as environment, infrastructure and economy, etc. Sponsored by the Australian Government and the Victorian Department of Justice (Australia), the system was built upon a series of open-source frameworks (see attached figure) with four key components: data management layer, model application layer, processing service layer and presentation layer. It has the potential to be adopted by a range of agencies across Australian jurisdictions to assist stakeholders in accessing, sharing and utilising available information in their management of disaster events.

  15. Evaluation of Nursing Documentation Completion of Stroke Patients in the Emergency Department: A Pre-Post Analysis Using Flowsheet Templates and Clinical Decision Support.

    PubMed

    Richardson, Karen J; Sengstack, Patricia; Doucette, Jeffrey N; Hammond, William E; Schertz, Matthew; Thompson, Julie; Johnson, Constance

    2016-02-01

    The primary aim of this performance improvement project was to determine whether the electronic health record implementation of stroke-specific nursing documentation flowsheet templates and clinical decision support alerts improved the nursing documentation of eligible stroke patients in seven stroke-certified emergency departments. Two system enhancements were introduced into the electronic record in an effort to improve nursing documentation: disease-specific documentation flowsheets and clinical decision support alerts. Using a pre-post design, project measures included six stroke management goals as defined by the National Institute of Neurological Disorders and Stroke and three clinical decision support measures based on entry of orders used to trigger documentation reminders for nursing: (1) the National Institutes of Health's Stroke Scale, (2) neurological checks, and (3) dysphagia screening. Data were reviewed 6 months prior (n = 2293) and 6 months following the intervention (n = 2588). Fisher exact test was used for statistical analysis. Statistical significance was found for documentation of five of the six stroke management goals, although effect sizes were small. Customizing flowsheets to meet the needs of nursing workflow showed improvement in the completion of documentation. The effects of the decision support alerts on the completeness of nursing documentation were not statistically significant (likely due to lack of order entry). For example, an order for the National Institutes of Health Stroke Scale was entered only 10.7% of the time, which meant no alert would fire for nursing in the postintervention group. Future work should focus on decision support alerts that trigger reminders for clinicians to place relevant orders for this population.

  16. The Feasibility of a Decision Support System for the Determination of Source Selection Evaluation Criteria

    DTIC Science & Technology

    1984-09-01

    is not only difficult and time consuming , but also crucial to the success of the project, the question is whether a decision support system designed...KtI I - uAujvhIMtf IENE In THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR THE DETERMINATION OF SOURCE SELECTION EVALUATION ’CRITERIA THESIS .2...INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DZM=0N STATEMENT A ,’r !’ILMILSHIM S /8 4 THE FEASIBILITY OF A DECISION SUPPORT SYSTEM FOR

  17. A Multidisciplinary Sepsis Program Enabled by a Two-Stage Clinical Decision Support System: Factors That Influence Patient Outcomes.

    PubMed

    Amland, Robert C; Haley, James M; Lyons, Jason J

    2016-11-01

    Sepsis is an inflammatory response triggered by infection, with risk of in-hospital mortality fueled by disease progression. Early recognition and intervention by multidisciplinary sepsis programs may reverse the inflammatory response among at-risk patient populations, potentially improving outcomes. This retrospective study of a sepsis program enabled by a 2-stage sepsis Clinical Decision Support (CDS) system sought to evaluate the program's impact, identify early indicators that may influence outcomes, and uncover opportunities for quality improvement. Data encompassed 16 527 adult hospitalizations from 2014 and 2015. Of 2108 non-intensive care unit patients screened-in by sepsis CDS, 97% patients were stratified by 177 providers. Risk of adverse outcome improved 30% from baseline to year end, with gains materializing and stabilizing at month 7 after sepsis program go-live. Early indicators likely to influence outcomes include patient age, recent hospitalization, electrolyte abnormalities, hypovolemic shock, hypoxemia, patient location when sepsis CDS activated, and specific alert patterns. © The Author(s) 2015.

  18. An Organizational Informatics Analysis of Colorectal, Breast, and Cervical Cancer Screening Clinical Decision Support and Information Systems within Community Health Centers

    ERIC Educational Resources Information Center

    Carney, Timothy Jay

    2012-01-01

    A study design has been developed that employs a dual modeling approach to identify factors associated with facility-level cancer screening improvement and how this is mediated by the use of clinical decision support. This dual modeling approach combines principles of (1) Health Informatics, (2) Cancer Prevention and Control, (3) Health Services…

  19. The Wildland Fire Decision Support System: Integrating science, technology, and fire management

    Treesearch

    Morgan Pence; Tom Zimmerman

    2011-01-01

    Federal agency policy requires documentation and analysis of all wildland fire response decisions. In the past, planning and decision documentation for fires were completed using multiple unconnected processes, yielding many limitations. In response, interagency fire management executives chartered the development of the Wildland Fire Decision Support System (WFDSS)....

  20. AppBuilder for DSSTools; an application development environment for developing decision support systems in Prolog

    Treesearch

    Geneho Kim; Donald Nute; H. Michael Rauscher; David L. Loftis

    2000-01-01

    A programming environment for developing complex decision support systems (DSSs) should support rapid prototyping and modular design, feature a flexible knowledge representation scheme and sound inference mechanisms, provide project management, and be domain independent. We have previously developed DSSTools (Decision Support System Tools), a reusable, domain-...

  1. Use of a Clinical Decision Support System Alert to Prevent Supratherapeutic Vancomycin Concentrations

    PubMed Central

    Ralph, Rachel; Patel, Jean A.; Postelnick, Michael; Ziauddin, Salma; Flis, Weronika; Galal, Audrey N.

    2014-01-01

    Background: Alerts issued by clinical decision support systems (CDSS) may be useful to identify and prevent the occurrence of acute kidney injury among patients on nephrotoxic drugs, particularly vancomycin. Objective: The purpose of this instructive study was to determine the effectiveness of using a pharmacist-run CDSS alert of early serum creatinine increases in patients receiving intravenous vancomycin to decrease the proportion of severely elevated vancomycin concentrations. Methods: This was a retrospective study of a prospectively reviewed CDSS alert that triggered in patients with an increase in serum creatinine by 25% from baseline within 24 hours. Severely elevated vancomycin concentrations were divided into a control group (before alert implementation) and a study group (after alert implementation) and considered for study inclusion. The proportion of severely elevated vancomycin concentrations (ie, >30 mg/L) were collected in the control and study groups. Results: There were 1290 and 1501 vancomycin concentrations in the control group and the study group, respectively. A total of 696 CDSS alerts triggered during the study period. The proportion of severely elevated vancomycin troughs decreased from 5.3% (n = 68, median = 36.6 mg/L, interquartile range = 33.75-43.2 mg/L) in the control group to 3.7% (n = 55, median = 34.7 mg/L, interquartile range = 31.3-39.3 mg/L) in the study group. This reflects a statistically significant decrease in the proportion of severely elevated vancomycin concentrations (P = .04). Conclusion: Overall, this instructive analysis on a novel use of CDSS software suggests that the implementation of an alert based on early detection of serum creatinine changes led to a significant decrease in the proportion of severely elevated serum vancomycin concentrations.

  2. TUW @ TREC Clinical Decision Support Track

    DTIC Science & Technology

    2014-11-01

    and the ShARe/CLEF eHealth Evaluation Lab [8,3] running in 2013 and 2014. Here we briefly describe the goals of the first TREC Clinical Decision...Wendy W. Chapman, David Mart́ınez, Guido Zuccon, and João R. M. Palotti. Overview of the share/clef ehealth evalu- ation lab 2014. In Information Access...Zuccon. Overview of the share/clef ehealth evaluation lab 2013. In Information Access Evaluation. Multilinguality, Multimodality, and Visualization

  3. Clinical decision support improves quality of telephone triage documentation - an analysis of triage documentation before and after computerized clinical decision support

    PubMed Central

    2014-01-01

    Background Clinical decision support (CDS) has been shown to be effective in improving medical safety and quality but there is little information on how telephone triage benefits from CDS. The aim of our study was to compare triage documentation quality associated with the use of a clinical decision support tool, ExpertRN©. Methods We examined 50 triage documents before and after a CDS tool was used in nursing triage. To control for the effects of CDS training we had an additional control group of triage documents created by nurses who were trained in the CDS tool, but who did not use it in selected notes. The CDS intervention cohort of triage notes was compared to both the pre-CDS notes and the CDS trained (but not using CDS) cohort. Cohorts were compared using the documentation standards of the American Academy of Ambulatory Care Nursing (AAACN). We also compared triage note content (documentation of associated positive and negative features relating to the symptoms, self-care instructions, and warning signs to watch for), and documentation defects pertinent to triage safety. Results Three of five AAACN documentation standards were significantly improved with CDS. There was a mean of 36.7 symptom features documented in triage notes for the CDS group but only 10.7 symptom features in the pre-CDS cohort (p < 0.0001) and 10.2 for the cohort that was CDS-trained but not using CDS (p < 0.0001). The difference between the mean of 10.2 symptom features documented in the pre-CDS and the mean of 10.7 symptom features documented in the CDS-trained but not using was not statistically significant (p = 0.68). Conclusions CDS significantly improves triage note documentation quality. CDS-aided triage notes had significantly more information about symptoms, warning signs and self-care. The changes in triage documentation appeared to be the result of the CDS alone and not due to any CDS training that came with the CDS intervention. Although this study shows that CDS

  4. Usability of clinical decision support system as a facilitator for learning the assistive technology adaptation process.

    PubMed

    Danial-Saad, Alexandra; Kuflik, Tsvi; Weiss, Patrice L Tamar; Schreuer, Naomi

    2016-01-01

    The aim of this study was to evaluate the usability of Ontology Supported Computerized Assistive Technology Recommender (OSCAR), a Clinical Decision Support System (CDSS) for the assistive technology adaptation process, its impact on learning the matching process, and to determine the relationship between its usability and learnability. Two groups of expert and novice clinicians (total, n = 26) took part in this study. Each group filled out system usability scale (SUS) to evaluate OSCAR's usability. The novice group completed a learning questionnaire to assess OSCAR's effect on their ability to learn the matching process. Both groups rated OSCAR's usability as "very good", (M [SUS] = 80.7, SD = 11.6, median = 83.7) by the novices, and (M [SUS] = 81.2, SD = 6.8, median = 81.2) by the experts. The Mann-Whitney results indicated that no significant differences were found between the expert and novice groups in terms of OSCAR's usability. A significant positive correlation existed between the usability of OSCAR and the ability to learn the adaptation process (rs = 0.46, p = 0.04). Usability is an important factor in the acceptance of a system. The successful application of user-centered design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically in developing other systems. Implications for Rehabilitation Creating a CDSS with a focus on its usability is an important factor for its acceptance by its users. Successful usability outcomes can impact the learning process of the subject matter in general, and the AT prescription process in particular. The successful application of User-Centered Design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically. The study emphasizes the importance of close collaboration between the developers and

  5. A Review of Decision Support Systems for Smart Homes in the Health Care System.

    PubMed

    Baumgärtel, Diana; Mielke, Corinna; Haux, Reinhold

    2018-01-01

    The use of decision support systems for smart homes can provide attractive solutions for challenges that have arisen in the Health Care System due to ageing of society. In order to provide an overview of current research projects in this field, a systematic literature review was performed according to the PRISMA approach. The aims of this work are to provide an overview of current research projects and to update a similar study from 2012. The literature search engines IEEE Xplore and PubMed were used. 23 papers were included. Most of the systems presented are developed for monitoring the patient regardless of their illness. For decision support, mainly rule-based approaches are used.

  6. Improved blood utilization using real-time clinical decision support.

    PubMed

    Goodnough, Lawrence T; Shieh, Lisa; Hadhazy, Eric; Cheng, Nathalie; Khari, Paul; Maggio, Paul

    2014-05-01

    We analyzed blood utilization at Stanford Hospital and Clinics after implementing real-time clinical decision support (CDS) and best practice alerts (BPAs) into physician order entry (POE) for blood transfusions. A clinical effectiveness (CE) team developed consensus with a suggested transfusion threshold of a hemoglobin (Hb) level of 7 g/dL, or 8 g/dL for patients with acute coronary syndromes. The CDS was implemented in July 2010 and consisted of an interruptive BPA at POE, a link to relevant literature, and an "acknowledgment reason" for the blood order. The percentage of blood ordered for patients whose most recent Hb level exceeded 8 g/dL ranged at baseline from 57% to 66%; from the education intervention by the CE team August 2009 to July 2010, the percentage decreased to a range of 52% to 56% (p = 0.01); and after implementation of CDS and BPA, by end of December 2010 the percentage of patients transfused outside the guidelines decreased to 35% (p = 0.02) and has subsequently remained below 30%. For the most recent interval, only 27% (767 of 2890) of transfusions occurred in patients outside guidelines. Comparing 2009 to 2012, despite an increase in annual case mix index from 1.952 to 2.026, total red blood cell (RBC) transfusions decreased by 7186 units, or 24%. The estimated net savings for RBC units (at $225/unit) in purchase costs for 2012 compared to 2009 was $1,616,750. Real-time CDS has significantly improved blood utilization. This system of concurrent review can be used by health care institutions, quality departments, and transfusion services to reduce blood transfusions. © 2013 American Association of Blood Banks.

  7. A systematic review of near real-time and point-of-care clinical decision support in anesthesia information management systems.

    PubMed

    Simpao, Allan F; Tan, Jonathan M; Lingappan, Arul M; Gálvez, Jorge A; Morgan, Sherry E; Krall, Michael A

    2017-10-01

    Anesthesia information management systems (AIMS) are sophisticated hardware and software technology solutions that can provide electronic feedback to anesthesia providers. This feedback can be tailored to provide clinical decision support (CDS) to aid clinicians with patient care processes, documentation compliance, and resource utilization. We conducted a systematic review of peer-reviewed articles on near real-time and point-of-care CDS within AIMS using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols. Studies were identified by searches of the electronic databases Medline and EMBASE. Two reviewers screened studies based on title, abstract, and full text. Studies that were similar in intervention and desired outcome were grouped into CDS categories. Three reviewers graded the evidence within each category. The final analysis included 25 articles on CDS as implemented within AIMS. CDS categories included perioperative antibiotic prophylaxis, post-operative nausea and vomiting prophylaxis, vital sign monitors and alarms, glucose management, blood pressure management, ventilator management, clinical documentation, and resource utilization. Of these categories, the reviewers graded perioperative antibiotic prophylaxis and clinical documentation as having strong evidence per the peer reviewed literature. There is strong evidence for the inclusion of near real-time and point-of-care CDS in AIMS to enhance compliance with perioperative antibiotic prophylaxis and clinical documentation. Additional research is needed in many other areas of AIMS-based CDS.

  8. A multidisciplinary decision support system for forest fire crisis management.

    PubMed

    Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Sarimveis, Haralambos; Sifakis, Nicolaos

    2004-02-01

    A wildland fire is a serious threat for forest ecosystems in Southern Europe affecting severely and irreversibly regions of significant ecological value as well as human communities. To support decision makers during large-scale forest fire incidents, a multidisciplinary system has been developed that provides rational and quantitative information based on the site-specific circumstances and the possible consequences. The system's architecture consists of several distinct supplementary modules of near real-time satellite monitoring and fire forecast using an integrated framework of satellite Remote Sensing, GIS, and RDBMS technologies equipped with interactive communication capabilities. The system may handle multiple fire ignitions and support decisions regarding dispatching of utilities, equipment, and personnel that would appropriately attack the fire front. The operational system was developed for the region of Penteli Mountain in Attika, Greece, one of the mountain areas in the country most hit by fires. Starting from a real fire incident in August 2000, a scenario is presented to illustrate the effectiveness of the proposed approach.

  9. Tailoring implementation strategies for evidence-based recommendations using computerised clinical decision support systems: protocol for the development of the GUIDES tools.

    PubMed

    Van de Velde, Stijn; Roshanov, Pavel; Kortteisto, Tiina; Kunnamo, Ilkka; Aertgeerts, Bert; Vandvik, Per Olav; Flottorp, Signe

    2016-03-05

    A computerised clinical decision support system (CCDSS) is a technology that uses patient-specific data to provide relevant medical knowledge at the point of care. It is considered to be an important quality improvement intervention, and the implementation of CCDSS is growing substantially. However, the significant investments do not consistently result in value for money due to content, context, system and implementation issues. The Guideline Implementation with Decision Support (GUIDES) project aims to improve the impact of CCDSS through optimised implementation based on high-quality evidence-based recommendations. To achieve this, we will develop tools that address the factors that determine successful CCDSS implementation. We will develop the GUIDES tools in four steps, using the methods and results of the Tailored Implementation for Chronic Diseases (TICD) project as a starting point: (1) a review of research evidence and frameworks on the determinants of implementing recommendations using CCDSS; (2) a synthesis of a comprehensive framework for the identified determinants; (3) the development of tools for use of the framework and (4) pilot testing the utility of the tools through the development of a tailored CCDSS intervention in Norway, Belgium and Finland. We selected the conservative management of knee osteoarthritis as a prototype condition for the pilot. During the process, the authors will collaborate with an international expert group to provide input and feedback on the tools. This project will provide guidance and tools on methods of identifying implementation determinants and selecting strategies to implement evidence-based recommendations through CCDSS. We will make the GUIDES tools available to CCDSS developers, implementers, researchers, funders, clinicians, managers, educators, and policymakers internationally. The tools and recommendations will be generic, which makes them scalable to a large spectrum of conditions. Ultimately, the better

  10. Proposal for fulfilling strategic objectives of the U.S. Roadmap for national action on clinical decision support through a service-oriented architecture leveraging HL7 services.

    PubMed

    Kawamoto, Kensaku; Lobach, David F

    2007-01-01

    Despite their demonstrated effectiveness, clinical decision support (CDS) systems are not widely used within the U.S. The Roadmap for National Action on Clinical Decision Support, published in June 2006 by the American Medical Informatics Association, identifies six strategic objectives for achieving widespread adoption of effective CDS capabilities. In this manuscript, we propose a Service-Oriented Architecture (SOA) for CDS that facilitates achievement of these six objectives. Within the proposed framework, CDS capabilities are implemented through the orchestration of independent software services whose interfaces are being standardized by Health Level 7 and the Object Management Group through their joint Healthcare Services Specification Project (HSSP). Core services within this framework include the HSSP Decision Support Service, the HSSP Common Terminology Service, and the HSSP Retrieve, Locate, and Update Service. Our experiences, and those of others, indicate that the proposed SOA approach to CDS could enable the widespread adoption of effective CDS within the U.S. health care system.

  11. Patient factors that influence clinicians' decision making in self-management support: A clinical vignette study.

    PubMed

    Bos-Touwen, Irene D; Trappenburg, Jaap C A; van der Wulp, Ineke; Schuurmans, Marieke J; de Wit, Niek J

    2017-01-01

    Self-management support is an integral part of current chronic care guidelines. The success of self-management interventions varies between individual patients, suggesting a need for tailored self-management support. Understanding the role of patient factors in the current decision making of health professionals can support future tailoring of self-management interventions. The aim of this study is to identify the relative importance of patient factors in health professionals' decision making regarding self-management support. A factorial survey was presented to primary care physicians and nurses. The survey consisted of clinical vignettes (case descriptions), in which 11 patient factors were systematically varied. Each care provider received a set of 12 vignettes. For each vignette, they decided whether they would give this patient self-management support and whether they expected this support to be successful. The associations between respondent decisions and patient factors were explored using ordered logit regression. The survey was completed by 60 general practitioners and 80 nurses. Self-management support was unlikely to be provided in a third of the vignettes. The most important patient factor in the decision to provide self-management support as well as in the expectation that self-management support would be successful was motivation, followed by patient-provider relationship and illness perception. Other factors, such as depression or anxiety, education level, self-efficacy and social support, had a small impact on decisions. Disease, disease severity, knowledge of disease, and age were relatively unimportant factors. This is the first study to explore the relative importance of patient factors in decision making and the expectations regarding the provision of self-management support to chronic disease patients. By far, the most important factor considered was patient's motivation; unmotivated patients were less likely to receive self-management support

  12. Which breast cancer decisions remain non-compliant with guidelines despite the use of computerised decision support?

    PubMed Central

    Séroussi, B; Laouénan, C; Gligorov, J; Uzan, S; Mentré, F; Bouaud, J

    2013-01-01

    Background: Despite multidisciplinary tumour boards (MTBs), non-compliance with clinical practice guidelines is still observed for breast cancer patients. Computerised clinical decision support systems (CDSSs) may improve the implementation of guidelines, but cases of non-compliance persist. Methods: OncoDoc2, a guideline-based decision support system, has been routinely used to remind MTB physicians of patient-specific recommended care plans. Non-compliant MTB decisions were analysed using a multivariate adjusted logistic regression model. Results: Between 2007 and 2009, 1624 decisions for invasive breast cancers with a global non-compliance rate of 8.3% were analysed. Patient factors associated with non-compliance were age>80 years (odds ratio (OR): 7.7; 95% confidence interval (CI): 3.7–15.7) in pre-surgical decisions; microinvasive tumour (OR: 5.2; 95% CI: 1.5–17.5), surgical discovery of microinvasion in addition to a unique invasive tumour (OR: 4.2; 95% CI: 1.4–12.5), and prior neoadjuvant treatment (OR: 4.2; 95% CI: 1.1–15.1) in decisions with recommendation of re-excision; age<35 years (OR: 4.7; 95% CI: 1.9–11.4), positive hormonal receptors with human epidermal growth factor receptor 2 overexpression (OR: 15.7; 95% CI: 3.1–78.7), and the absence of prior axillary surgery (OR: 17.2; 95% CI: 5.1–58.1) in adjuvant decisions. Conclusion: Residual non-compliance despite the use of OncoDoc2 illustrates the need to question the clinical profiles where evidence is missing. These findings challenge the weaknesses of guideline content rather than the use of CDSSs. PMID:23942076

  13. Whose decision is it anyway? How clinicians support decision-making participation after acquired brain injury.

    PubMed

    Knox, Lucy; Douglas, Jacinta M; Bigby, Christine

    2013-01-01

    To raise professional awareness of factors that may influence the support offered by clinicians to people with acquired brain injury (ABI), and to consider the potential implications of these factors in terms of post-injury rehabilitation and living. A review of the literature was conducted to identify factors that determine how clinicians provide support and influence opportunities for individuals with ABI to participate in decision making across the rehabilitation continuum. Clinical case studies are used to highlight two specific issues: (1) hidden assumptions on the part of the practitioner, and (2) perceptions of risk operating in clinical practice. There are a range of factors which may influence the decision-making support provided by clinicians and, ultimately, shape lifetime outcomes for individuals with ABI. A multidimensional framework may assist clinicians to identify relevant factors and consider their potential implications including those that influence how clinicians involved in supporting decision making approach this task. Participation in decision making is an undisputed human right and central to the provision of person-centred care. Further research is required to understand how clinical practice can maximise both opportunities and support for increased decision-making participation by individuals with ABI. There is an increasing focus on the rights of all individuals to be supported to participate in decision making about their life. A number of changes associated with ABI mean that individuals with ABI will require support with decision making. Clinicians have a critical role in providing this support over the course of the rehabilitation continuum. Clinicians need to be aware of the range of factors that may influence the decision-making support they provide. A multidimensional framework may be used by clinicians to identify influences on the decision-making support they provide.

  14. A Decision Support System for Evaluating and Selecting Information Systems Projects

    NASA Astrophysics Data System (ADS)

    Deng, Hepu; Wibowo, Santoso

    2009-01-01

    This chapter presents a decision support system (DSS) for effectively solving the information systems (IS) project selection problem. The proposed DSS recognizes the multidimensional nature of the IS project selection problem, the availability of multicriteria analysis (MA) methods, and the preferences of the decision-maker (DM) on the use of specific MA methods in a given situation. A knowledge base consisting of IF-THEN production rules is developed for assisting the DM with a systematic adoption of the most appropriate method with the efficient use of the powerful reasoning and explanation capabilities of intelligent DSS. The idea of letting the problem to be solved determines the method to be used is incorporated into the proposed DSS. As a result, effective decisions can be made for solving the IS project selection problem. An example is presented to demonstrate the applicability of the proposed DSS for solving the problem of selecting IS projects in real world situations.

  15. Design of decision support interventions for medication prescribing.

    PubMed

    Horsky, Jan; Phansalkar, Shobha; Desai, Amrita; Bell, Douglas; Middleton, Blackford

    2013-06-01

    Describe optimal design attributes of clinical decision support (CDS) interventions for medication prescribing, emphasizing perceptual, cognitive and functional characteristics that improve human-computer interaction (HCI) and patient safety. Findings from published reports on success, failures and lessons learned during implementation of CDS systems were reviewed and interpreted with regard to HCI and software usability principles. We then formulated design recommendations for CDS alerts that would reduce unnecessary workflow interruptions and allow clinicians to make informed decisions quickly, accurately and without extraneous cognitive and interactive effort. Excessive alerting that tends to distract clinicians rather than provide effective CDS can be reduced by designing only high severity alerts as interruptive dialog boxes and less severe warnings without explicit response requirement, by curating system knowledge bases to suppress warnings with low clinical utility and by integrating contextual patient data into the decision logic. Recommended design principles include parsimonious and consistent use of color and language, minimalist approach to the layout of information and controls, the use of font attributes to convey hierarchy and visual prominence of important data over supporting information, the inclusion of relevant patient data in the context of the alert and allowing clinicians to respond with one or two clicks. Although HCI and usability principles are well established and robust, CDS and EHR system interfaces rarely conform to the best known design conventions and are seldom conceived and designed well enough to be truly versatile and dependable tools. These relatively novel interventions still require careful monitoring, research and analysis of its track record to mature. Clarity and specificity of alert content and optimal perceptual and cognitive attributes, for example, are essential for providing effective decision support to clinicians

  16. Improving the Slum Planning Through Geospatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Shekhar, S.

    2014-11-01

    In India, a number of schemes and programmes have been launched from time to time in order to promote integrated city development and to enable the slum dwellers to gain access to the basic services. Despite the use of geospatial technologies in planning, the local, state and central governments have only been partially successful in dealing with these problems. The study on existing policies and programmes also proved that when the government is the sole provider or mediator, GIS can become a tool of coercion rather than participatory decision-making. It has also been observed that local level administrators who have adopted Geospatial technology for local planning continue to base decision-making on existing political processes. In this juncture, geospatial decision support system (GSDSS) can provide a framework for integrating database management systems with analytical models, graphical display, tabular reporting capabilities and the expert knowledge of decision makers. This assists decision-makers to generate and evaluate alternative solutions to spatial problems. During this process, decision-makers undertake a process of decision research - producing a large number of possible decision alternatives and provide opportunities to involve the community in decision making. The objective is to help decision makers and planners to find solutions through a quantitative spatial evaluation and verification process. The study investigates the options for slum development in a formal framework of RAY (Rajiv Awas Yojana), an ambitious program of Indian Government for slum development. The software modules for realizing the GSDSS were developed using the ArcGIS and Community -VIZ software for Gulbarga city.

  17. Evaluation of medium-term consequences of implementing commercial computerized physician order entry and clinical decision support prescribing systems in two ‘early adopter’ hospitals

    PubMed Central

    Cresswell, Kathrin M; Bates, David W; Williams, Robin; Morrison, Zoe; Slee, Ann; Coleman, Jamie; Robertson, Ann; Sheikh, Aziz

    2014-01-01

    Objective To understand the medium-term consequences of implementing commercially procured computerized physician order entry (CPOE) and clinical decision support (CDS) systems in ‘early adopter’ hospitals. Materials and methods In-depth, qualitative case study in two hospitals using a CPOE or a CDS system for at least 2 years. Both hospitals had implemented commercially available systems. Hospital A had implemented a CPOE system (with basic decision support), whereas hospital B invested additional resources in a CDS system that facilitated order entry but which was integrated with electronic health records and offered more advanced CDS. We used a combination of documentary analysis of the implementation plans, audiorecorded semistructured interviews with system users, and observations of strategic meetings and systems usage. Results We collected 11 documents, conducted 43 interviews, and conducted a total of 21.5 h of observations. We identified three major themes: (1) impacts on individual users, including greater legibility of prescriptions, but also some accounts of increased workloads; (2) the introduction of perceived new safety risks related to accessibility and usability of hardware and software, with users expressing concerns that some problems such as duplicate prescribing were more likely to occur; and (3) realizing organizational benefits through secondary uses of data. Conclusions We identified little difference in the medium-term consequences of a CPOE and a CDS system. It is important that future studies investigate the medium- and longer-term consequences of CPOE and CDS systems in a wider range of hospitals. PMID:24431334

  18. A proposed clinical decision support architecture capable of supporting whole genome sequence information.

    PubMed

    Welch, Brandon M; Loya, Salvador Rodriguez; Eilbeck, Karen; Kawamoto, Kensaku

    2014-04-04

    Whole genome sequence (WGS) information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS) offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR). A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1) each component of the architecture; (2) the interaction of the components; and (3) how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine.

  19. An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients.

    PubMed

    Riaño, David; Real, Francis; López-Vallverdú, Joan Albert; Campana, Fabio; Ercolani, Sara; Mecocci, Patrizia; Annicchiarico, Roberta; Caltagirone, Carlo

    2012-06-01

    Chronically ill patients are complex health care cases that require the coordinated interaction of multiple professionals. A correct intervention of these sort of patients entails the accurate analysis of the conditions of each concrete patient and the adaptation of evidence-based standard intervention plans to these conditions. There are some other clinical circumstances such as wrong diagnoses, unobserved comorbidities, missing information, unobserved related diseases or prevention, whose detection depends on the capacities of deduction of the professionals involved. In this paper, we introduce an ontology for the care of chronically ill patients and implement two personalization processes and a decision support tool. The first personalization process adapts the contents of the ontology to the particularities observed in the health-care record of a given concrete patient, automatically providing a personalized ontology containing only the clinical information that is relevant for health-care professionals to manage that patient. The second personalization process uses the personalized ontology of a patient to automatically transform intervention plans describing health-care general treatments into individual intervention plans. For comorbid patients, this process concludes with the semi-automatic integration of several individual plans into a single personalized plan. Finally, the ontology is also used as the knowledge base of a decision support tool that helps health-care professionals to detect anomalous circumstances such as wrong diagnoses, unobserved comorbidities, missing information, unobserved related diseases, or preventive actions. Seven health-care centers participating in the K4CARE project, together with the group SAGESA and the Local Health System in the town of Pollenza have served as the validation platform for these two processes and tool. Health-care professionals participating in the evaluation agree about the average quality 84% (5.9/7.0) and

  20. Anesthesia information management system-based near real-time decision support to manage intraoperative hypotension and hypertension.

    PubMed

    Nair, Bala G; Horibe, Mayumi; Newman, Shu-Fang; Wu, Wei-Ying; Peterson, Gene N; Schwid, Howard A

    2014-01-01

    Intraoperative hypotension and hypertension are associated with adverse clinical outcomes and morbidity. Clinical decision support mediated through an anesthesia information management system (AIMS) has been shown to improve quality of care. We hypothesized that an AIMS-based clinical decision support system could be used to improve management of intraoperative hypotension and hypertension. A near real-time AIMS-based decision support module, Smart Anesthesia Manager (SAM), was used to detect selected scenarios contributing to hypotension and hypertension. Specifically, hypotension (systolic blood pressure <80 mm Hg) with a concurrent high concentration (>1.25 minimum alveolar concentration [MAC]) of inhaled drug and hypertension (systolic blood pressure >160 mm Hg) with concurrent phenylephrine infusion were detected, and anesthesia providers were notified via "pop-up" computer screen messages. AIMS data were retrospectively analyzed to evaluate the effect of SAM notification messages on hypotensive and hypertensive episodes. For anesthetic cases 12 months before (N = 16913) and after (N = 17132) institution of SAM messages, the median duration of hypotensive episodes with concurrent high MAC decreased with notifications (Mann Whitney rank sum test, P = 0.031). However, the reduction in the median duration of hypertensive episodes with concurrent phenylephrine infusion was not significant (P = 0.47). The frequency of prolonged episodes that lasted >6 minutes (sampling period of SAM), represented in terms of the number of cases with episodes per 100 surgical cases (or percentage occurrence), declined with notifications for both hypotension with >1.25 MAC inhaled drug episodes (δ = -0.26% [confidence interval, -0.38% to -0.11%], P < 0.001) and hypertension with phenylephrine infusion episodes (δ = -0.92% [confidence interval, -1.79% to -0.04%], P = 0.035). For hypotensive events, the anesthesia providers reduced the inhaled drug concentrations to <1.25 MAC 81% of

  1. Usability Testing of a Complex Clinical Decision Support Tool in the Emergency Department: Lessons Learned.

    PubMed

    Press, Anne; McCullagh, Lauren; Khan, Sundas; Schachter, Andy; Pardo, Salvatore; McGinn, Thomas

    2015-09-10

    As the electronic health record (EHR) becomes the preferred documentation tool across medical practices, health care organizations are pushing for clinical decision support systems (CDSS) to help bring clinical decision support (CDS) tools to the forefront of patient-physician interactions. A CDSS is integrated into the EHR and allows physicians to easily utilize CDS tools. However, often CDSS are integrated into the EHR without an initial phase of usability testing, resulting in poor adoption rates. Usability testing is important because it evaluates a CDSS by testing it on actual users. This paper outlines the usability phase of a study, which will test the impact of integration of the Wells CDSS for pulmonary embolism (PE) diagnosis into a large urban emergency department, where workflow is often chaotic and high stakes decisions are frequently made. We hypothesize that conducting usability testing prior to integration of the Wells score into an emergency room EHR will result in increased adoption rates by physicians. The objective of the study was to conduct usability testing for the integration of the Wells clinical prediction rule into a tertiary care center's emergency department EHR. We conducted usability testing of a CDS tool in the emergency department EHR. The CDS tool consisted of the Wells rule for PE in the form of a calculator and was triggered off computed tomography (CT) orders or patients' chief complaint. The study was conducted at a tertiary hospital in Queens, New York. There were seven residents that were recruited and participated in two phases of usability testing. The usability testing employed a "think aloud" method and "near-live" clinical simulation, where care providers interacted with standardized patients enacting a clinical scenario. Both phases were audiotaped, video-taped, and had screen-capture software activated for onscreen recordings. Phase I: Data from the "think-aloud" phase of the study showed an overall positive outlook on

  2. A Framework for a Decision Support System in a Hierarchical Extended Enterprise Decision Context

    NASA Astrophysics Data System (ADS)

    Boza, Andrés; Ortiz, Angel; Vicens, Eduardo; Poler, Raul

    Decision Support System (DSS) tools provide useful information to decision makers. In an Extended Enterprise, a new goal, changes in the current objectives or small changes in the extended enterprise configuration produce a necessary adjustment in its decision system. A DSS in this context must be flexible and agile to make suitable an easy and quickly adaptation to this new context. This paper proposes to extend the Hierarchical Production Planning (HPP) structure to an Extended Enterprise decision making context. In this way, a framework for DSS in Extended Enterprise context is defined using components of HPP. Interoperability details have been reviewed to identify the impact in this framework. The proposed framework allows overcoming some interoperability barriers, identifying and organizing components for a DSS in Extended Enterprise context, and working in the definition of an architecture to be used in the design process of a flexible DSS in Extended Enterprise context which can reuse components for futures Extended Enterprise configurations.

  3. Immediate financial impact of computerized clinical decision support for long-term care residents with renal insufficiency: a case study.

    PubMed

    Subramanian, Sujha; Hoover, Sonja; Wagner, Joann L; Donovan, Jennifer L; Kanaan, Abir O; Rochon, Paula A; Gurwitz, Jerry H; Field, Terry S

    2012-01-01

    In a randomized trial of a clinical decision support system for drug prescribing for residents with renal insufficiency in a large long-term care facility, analyses were conducted to estimate the system's immediate, direct financial impact. We determined the costs that would have been incurred if drug orders that triggered the alert system had actually been completed compared to the costs of the final submitted orders and then compared intervention units to control units. The costs incurred by additional laboratory testing that resulted from alerts were also estimated. Drug orders were conservatively assigned a duration of 30 days of use for a chronic drug and 10 days for antibiotics. It was determined that there were modest reductions in drug costs, partially offset by an increase in laboratory-related costs. Overall, there was a reduction in direct costs (US$1391.43, net 7.6% reduction). However, sensitivity analyses based on alternative estimates of duration of drug use suggested a reduction as high as US$7998.33 if orders for non-antibiotic drugs were assumed to be continued for 180 days. The authors conclude that the immediate and direct financial impact of a clinical decision support system for medication ordering for residents with renal insufficiency is modest and that the primary motivation for such efforts must be to improve the quality and safety of medication ordering.

  4. Depression and Anxiety During Pregnancy: Evaluating the Literature in Support of Clinical Risk-Benefit Decision-Making.

    PubMed

    Dalke, Katharine Baratz; Wenzel, Amy; Kim, Deborah R

    2016-06-01

    Depression and anxiety during pregnancy are common, and patients and providers are faced with complex decisions regarding various treatment modalities. A structured discussion of the risks and benefits of options with the patient and her support team is recommended to facilitate the decision-making process. This clinically focused review, with emphasis on the last 3 years of published study data, evaluates the major risk categories of medication treatments, namely pregnancy loss, physical malformations, growth impairment, behavioral teratogenicity, and neonatal toxicity. Nonpharmacological treatment options, including neuromodulation and psychotherapy, are also briefly reviewed. Specific recommendations, drawn from the literature and the authors' clinical experience, are also offered to help guide the clinician in decision-making.

  5. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Treesearch

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  6. Clinical decision support tools for osteoporosis disease management: a systematic review of randomized controlled trials.

    PubMed

    Kastner, Monika; Straus, Sharon E

    2008-12-01

    Studies indicate a gap between evidence and clinical practice in osteoporosis management. Tools that facilitate clinical decision making at the point of care are promising strategies for closing these practice gaps. To systematically review the literature to identify and describe the effectiveness of tools that support clinical decision making in osteoporosis disease management. Medline, EMBASE, CINAHL, and EBM Reviews (CDSR, DARE, CCTR, and ACP J Club), and contact with experts in the field. Randomized controlled trials (RCTs) in any language from 1966 to July 2006 investigating disease management interventions in patients at risk for osteoporosis. Outcomes included fractures and bone mineral density (BMD) testing. Two investigators independently assessed articles for relevance and study quality, and extracted data using standardized forms. Of 1,246 citations that were screened for relevance, 13 RCTs met the inclusion criteria. Reported study quality was generally poor. Meta-analysis was not done because of methodological and clinical heterogeneity; 77% of studies included a reminder or education as a component of their intervention. Three studies of reminders plus education targeted to physicians and patients showed increased BMD testing (RR range 1.43 to 8.67) and osteoporosis medication use (RR range 1.60 to 8.67). A physician reminder plus a patient risk assessment strategy found reduced fractures [RR 0.58, 95% confidence interval (CI) 0.37 to 0.90] and increased osteoporosis therapy (RR 2.44, CI 1.43 to 4.17). Multi-component tools that are targeted to physicians and patients may be effective for supporting clinical decision making in osteoporosis disease management.

  7. Fuzzy Based Decision Support System for Condition Assessment and Rating of Bridges

    NASA Astrophysics Data System (ADS)

    Srinivas, Voggu; Sasmal, Saptarshi; Karusala, Ramanjaneyulu

    2016-09-01

    In this work, a knowledge based decision support system has been developed to efficiently handle the issues such as distress diagnosis, assessment of damages and condition rating of existing bridges towards developing an exclusive and robust Bridge Management System (BMS) for sustainable bridges. The Knowledge Based Expert System (KBES) diagnoses the distresses and finds the cause of distress in the bridge by processing the data which are heuristic and combined with site inspection results, laboratory test results etc. The coupling of symbolic and numeric type of data has been successfully implemented in the expert system to strengthen its decision making process. Finally, the condition rating of the bridge is carried out using the assessment results obtained from the KBES and the information received from the bridge inspector. A systematic procedure has been developed using fuzzy mathematics for condition rating of bridges by combining the fuzzy weighted average and resolution identity technique. The proposed methodologies and the decision support system will facilitate in developing a robust and exclusive BMS for a network of bridges across the country and allow the bridge engineers and decision makers to carry out maintenance of bridges in a rational and systematic way.

  8. Fuzzy-Arden-Syntax-based, Vendor-agnostic, Scalable Clinical Decision Support and Monitoring Platform.

    PubMed

    Adlassnig, Klaus-Peter; Fehre, Karsten; Rappelsberger, Andrea

    2015-01-01

    This study's objective is to develop and use a scalable genuine technology platform for clinical decision support based on Arden Syntax, which was extended by fuzzy set theory and fuzzy logic. Arden Syntax is a widely recognized formal language for representing clinical and scientific knowledge in an executable format, and is maintained by Health Level Seven (HL7) International and approved by the American National Standards Institute (ANSI). Fuzzy set theory and logic permit the representation of knowledge and automated reasoning under linguistic and propositional uncertainty. These forms of uncertainty are a common feature of patients' medical data, the body of medical knowledge, and deductive clinical reasoning.

  9. Prioritization of information using decision support systems for seismic risk in Bucharest city

    NASA Astrophysics Data System (ADS)

    Armas, Iuliana; Gheorghe, Diana

    2014-05-01

    Nowadays, because of the ever increasing volume of information, policymakers are faced with decision making problems. Achieving an objective and suitable decision making may become a challenge. In such situations decision support systems (DSS) have been developed. DSS can assist in the decision making process, offering support on how a decision should be made, rather than what decision should be made (Simon, 1979). This in turn potentially involves a huge number of stakeholders and criteria. Regarding seismic risk, Bucharest City is highly vulnerable (Mandrescu et al., 2007). The aim of this study is to implement a spatial decision support system in order to secure a suitable shelter in case of an earthquake occurrence in the historical centre of Bucharest City. In case of a seismic risk, a shelter is essential for sheltering people who lost their homes or whose homes are in danger of collapsing while people at risk receive first aid in the post-disaster phase. For the present study, the SMCE Module for ILWIS 3.4 was used. The methodology included structuring the problem by creating a decision tree, standardizing and weighting of the criteria. The results showed that the most suitable buildings are Tania Hotel, Hanul lui Manuc, The National Bank of Romania, The Romanian Commercial Bank and The National History Museum.

  10. [Which research is needed to support clinical decision-making on integrative medicine? Can comparative effectiveness research close the gap?].

    PubMed

    Witt, Claudia M; Huang, Wen-jing; Lao, Lixing; Berman, Brian M

    2013-08-01

    In clinical research on complementary and integrative medicine, experts and scientists have often pursued a research agenda in spite of an incomplete understanding of the needs of end users. Consequently, the majority of previous clinical trials have mainly assessed the efficacy of interventions. Scant data is available on their effectiveness. Comparative effectiveness research (CER) promises to support decision makers by generating evidence that compares the benefits and harms of best care options. This evidence, more generalizable than evidence generated by traditional randomized clinical trials (RCTs), is better suited to inform real-world care decisions. An emphasis on CER supports the development of the evidence base for clinical and policy decision-making. Whereas in most areas of complementary and integrative medicine data on CER is scarce, available acupuncture research already contributes to CER evidence. This paper will introduce CER and make suggestions for future research.

  11. Service oriented architecture for clinical decision support: a systematic review and future directions.

    PubMed

    Loya, Salvador Rodriguez; Kawamoto, Kensaku; Chatwin, Chris; Huser, Vojtech

    2014-12-01

    The use of a service-oriented architecture (SOA) has been identified as a promising approach for improving health care by facilitating reliable clinical decision support (CDS). A review of the literature through October 2013 identified 44 articles on this topic. The review suggests that SOA related technologies such as Business Process Model and Notation (BPMN) and Service Component Architecture (SCA) have not been generally adopted to impact health IT systems' performance for better care solutions. Additionally, technologies such as Enterprise Service Bus (ESB) and architectural approaches like Service Choreography have not been generally exploited among researchers and developers. Based on the experience of other industries and our observation of the evolution of SOA, we found that the greater use of these approaches have the potential to significantly impact SOA implementations for CDS.

  12. Using statistical anomaly detection models to find clinical decision support malfunctions.

    PubMed

    Ray, Soumi; McEvoy, Dustin S; Aaron, Skye; Hickman, Thu-Trang; Wright, Adam

    2018-05-11

    Malfunctions in Clinical Decision Support (CDS) systems occur due to a multitude of reasons, and often go unnoticed, leading to potentially poor outcomes. Our goal was to identify malfunctions within CDS systems. We evaluated 6 anomaly detection models: (1) Poisson Changepoint Model, (2) Autoregressive Integrated Moving Average (ARIMA) Model, (3) Hierarchical Divisive Changepoint (HDC) Model, (4) Bayesian Changepoint Model, (5) Seasonal Hybrid Extreme Studentized Deviate (SHESD) Model, and (6) E-Divisive with Median (EDM) Model and characterized their ability to find known anomalies. We analyzed 4 CDS alerts with known malfunctions from the Longitudinal Medical Record (LMR) and Epic® (Epic Systems Corporation, Madison, WI, USA) at Brigham and Women's Hospital, Boston, MA. The 4 rules recommend lead testing in children, aspirin therapy in patients with coronary artery disease, pneumococcal vaccination in immunocompromised adults and thyroid testing in patients taking amiodarone. Poisson changepoint, ARIMA, HDC, Bayesian changepoint and the SHESD model were able to detect anomalies in an alert for lead screening in children and in an alert for pneumococcal conjugate vaccine in immunocompromised adults. EDM was able to detect anomalies in an alert for monitoring thyroid function in patients on amiodarone. Malfunctions/anomalies occur frequently in CDS alert systems. It is important to be able to detect such anomalies promptly. Anomaly detection models are useful tools to aid such detections.

  13. The Telecommunications Emergency Decision Support System as a Crisis Management Decision Support System

    DTIC Science & Technology

    1991-09-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A246 188 7 R DTIC fl ELECTE FEB2 1992 U THESIS THE TELECOMMUNICATIONS EMERGENCY DECISION SUPPORT...ORGANIZATION REPORT NUMBER(S) a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOl 7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School J ""X...s Naval Postgraduate School c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000 Monterey, CA 93943

  14. Web-based decision support system to predict risk level of long term rice production

    NASA Astrophysics Data System (ADS)

    Mukhlash, Imam; Maulidiyah, Ratna; Sutikno; Setiyono, Budi

    2017-09-01

    Appropriate decision making in risk management of rice production is very important in agricultural planning, especially for Indonesia which is an agricultural country. Good decision would be obtained if the supporting data required are satisfied and using appropriate methods. This study aims to develop a Decision Support System that can be used to predict the risk level of rice production in some districts which are central of rice production in East Java. Web-based decision support system is constructed so that the information can be easily accessed and understood. Components of the system are data management, model management, and user interface. This research uses regression models of OLS and Copula. OLS model used to predict rainfall while Copula model used to predict harvested area. Experimental results show that the models used are successfully predict the harvested area of rice production in some districts which are central of rice production in East Java at any given time based on the conditions and climate of a region. Furthermore, it can predict the amount of rice production with the level of risk. System generates prediction of production risk level in the long term for some districts that can be used as a decision support for the authorities.

  15. Automatic Decision Support for Clinical Diagnostic Literature Using Link Analysis in a Weighted Keyword Network.

    PubMed

    Li, Shuqing; Sun, Ying; Soergel, Dagobert

    2017-12-23

    We present a novel approach to recommending articles from the medical literature that support clinical diagnostic decision-making, giving detailed descriptions of the associated ideas and principles. The specific goal is to retrieve biomedical articles that help answer questions of a specified type about a particular case. Based on the filtered keywords, MeSH(Medical Subject Headings) lexicon and the automatically extracted acronyms, the relationship between keywords and articles was built. The paper gives a detailed description of the process of by which keywords were measured and relevant articles identified based on link analysis in a weighted keywords network. Some important challenges identified in this study include the extraction of diagnosis-related keywords and a collection of valid sentences based on the keyword co-occurrence analysis and existing descriptions of symptoms. All data were taken from medical articles provided in the TREC (Text Retrieval Conference) clinical decision support track 2015. Ten standard topics and one demonstration topic were tested. In each case, a maximum of five articles with the highest relevance were returned. The total user satisfaction of 3.98 was 33% higher than average. The results also suggested that the smaller the number of results, the higher the average satisfaction. However, a few shortcomings were also revealed since medical literature recommendation for clinical diagnostic decision support is so complex a topic that it cannot be fully addressed through the semantic information carried solely by keywords in existing descriptions of symptoms. Nevertheless, the fact that these articles are actually relevant will no doubt inspire future research.

  16. Conceptual framework of knowledge management for ethical decision-making support in neonatal intensive care.

    PubMed

    Frize, Monique; Yang, Lan; Walker, Robin C; O'Connor, Annette M

    2005-06-01

    This research is built on the belief that artificial intelligence estimations need to be integrated into clinical social context to create value for health-care decisions. In sophisticated neonatal intensive care units (NICUs), decisions to continue or discontinue aggressive treatment are an integral part of clinical practice. High-quality evidence supports clinical decision-making, and a decision-aid tool based on specific outcome information for individual NICU patients will provide significant support for parents and caregivers in making difficult "ethical" treatment decisions. In our approach, information on a newborn patient's likely outcomes is integrated with the physician's interpretation and parents' perspectives into codified knowledge. Context-sensitive content adaptation delivers personalized and customized information to a variety of users, from physicians to parents. The system provides structuralized knowledge translation and exchange between all participants in the decision, facilitating collaborative decision-making that involves parents at every stage on whether to initiate, continue, limit, or terminate intensive care for their infant.

  17. Representing Human Expertise by the OWL Web Ontology Language to Support Knowledge Engineering in Decision Support Systems.

    PubMed

    Ramzan, Asia; Wang, Hai; Buckingham, Christopher

    2014-01-01

    Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.

  18. Promising adoption of an electronic clinical decision support system for antenatal and intrapartum care in rural primary healthcare facilities in sub-Saharan Africa: The QUALMAT experience.

    PubMed

    Sukums, Felix; Mensah, Nathan; Mpembeni, Rose; Massawe, Siriel; Duysburgh, Els; Williams, Afua; Kaltschmidt, Jens; Loukanova, Svetla; Haefeli, Walter E; Blank, Antje

    2015-09-01

    The QUALMAT project has successfully implemented an electronic clinical decision support system (eCDSS) for antenatal and intrapartum care in two sub-Saharan African countries. The system was introduced to facilitate adherence to clinical practice guidelines and to support decision making during client encounter to bridge the know-do gap of health workers. This study aimed to describe health workers' acceptance and use of the eCDSS for maternal care in rural primary health care (PHC) facilities of Ghana and Tanzania and to identify factors affecting successful adoption of such a system. This longitudinal study was conducted in Lindi rural district in Tanzania and Kassena-Nankana district in Ghana between October 2011 and December 2013 employing mixed methods. The study population included healthcare workers who were involved in the provision of maternal care in six rural PHC facilities from one district in each country where the eCDSS was implemented. All eCDSS users participated in the study with 61 and 56 participants at the midterm and final assessment, respectively. After several rounds of user training and support the eCDSS has been successfully adopted and constantly used during patient care in antenatal clinics and maternity wards. The eCDSS was used in 71% (2703/3798) and 59% (14,189/24,204) of all ANC clients in Tanzania and Ghana respectively, while it was also used in 83% (1185/1427) and 67% (1435/2144) of all deliveries in Tanzania and in Ghana, respectively. Several barriers reported to hinder eCDSS use were related to individual users, tasks, technology, and organization attributes. Implementation of an eCDSS in resource-constrained PHC facilities in sub-Saharan Africa was successful and the health workers accepted and continuously used the system for maternal care. Facilitators for eCDSS use included sufficient training and regular support whereas the challenges to sustained use were unreliable power supply and perceived high workload. However our

  19. Factors of accepting pain management decision support systems by nurse anesthetists

    PubMed Central

    2013-01-01

    Background Pain management is a critical but complex issue for the relief of acute pain, particularly for postoperative pain and severe pain in cancer patients. It also plays important roles in promoting quality of care. The introduction of pain management decision support systems (PM-DSS) is considered a potential solution for addressing the complex problems encountered in pain management. This study aims to investigate factors affecting acceptance of PM-DSS from a nurse anesthetist perspective. Methods A questionnaire survey was conducted to collect data from nurse anesthetists in a case hospital. A total of 113 questionnaires were distributed, and 101 complete copies were returned, indicating a valid response rate of 89.3%. Collected data were analyzed by structure equation modeling using the partial least square tool. Results The results show that perceived information quality (γ=.451, p<.001), computer self-efficacy (γ=.315, p<.01), and organizational structure (γ=.210, p<.05), both significantly impact nurse anesthetists’ perceived usefulness of PM-DSS. Information quality (γ=.267, p<.05) significantly impacts nurse anesthetists’ perceptions of PM-DSS ease of use. Furthermore, both perceived ease of use (β=.436, p<.001, R2=.487) and perceived usefulness (β=.443, p<.001, R2=.646) significantly affected nurse anesthetists’ PM-DSS acceptance (R2=.640). Thus, the critical role of information quality in the development of clinical decision support system is demonstrated. Conclusions The findings of this study enable hospital managers to understand the important considerations for nurse anesthetists in accepting PM-DSS, particularly for the issues related to the improvement of information quality, perceived usefulness and perceived ease of use of the system. In addition, the results also provide useful suggestions for designers and implementers of PM-DSS in improving system development. PMID:23360305

  20. Application of a web-based Decision Support System in risk management

    NASA Astrophysics Data System (ADS)

    Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri

    2013-04-01

    Increasingly, risk information is widely available with the help of advanced technologies such as earth observation satellites, global positioning technologies, coupled with hazard modeling and analysis, and geographical information systems (GIS). Even though it exists, no effort will be put into action if it is not properly presented to the decision makers. These information need to be communicated clearly and show its usefulness so that people can make better informed decision. Therefore, communicating available risk information has become an important challenge and decision support systems have been one of the significant approaches which can help not only in presenting risk information to the decision makers but also in making efficient decisions while reducing human resources and time needed. In this study, the conceptual framework of an internet-based decision support system is presented to highlight its importance role in risk management framework and how it can be applied in case study areas chosen. The main purpose of the proposed system is to facilitate the available risk information in risk reduction by taking into account of the changes in climate, land use and socio-economic along with the risk scenarios. It allows the users to formulate, compare and select risk reduction scenarios (mainly for floods and landslides) through an enhanced participatory platform with diverse stakeholders' involvement in the decision making process. It is based on the three-tier (client-server) architecture which integrates web-GIS plus DSS functionalities together with cost benefit analysis and other supporting tools. Embedding web-GIS provides its end users to make better planning and informed decisions referenced to a geographical location, which is the one of the essential factors in disaster risk reduction programs. Different risk reduction measures of a specific area (local scale) will be evaluated using this web-GIS tool, available risk scenarios obtained from

  1. The Design and Use of Decision Support Systems by Academic Departments. AIR 1987 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Johnson, F. Craig

    The design and use of a departmental decision support system at Florida State University are described from the perspective of a department head. The decisions selected for study are ones of adequacy, equitability, quality, efficiency, and consistency. The complexity of the decision is related to the complexity of the support system. The major…

  2. Systems Analysis and Design for Decision Support Systems on Economic Feasibility of Projects

    NASA Astrophysics Data System (ADS)

    Balaji, S. Arun

    2010-11-01

    This paper discuss about need for development of the Decision Support System (DSS) software for economic feasibility of projects in Rwanda, Africa. The various economic theories needed and the corresponding formulae to compute payback period, internal rate of return and benefit cost ratio of projects are clearly given in this paper. This paper is also deals with the systems flow chart to fabricate the system in any higher level computing language. The various input requirements from the projects and the output needed for the decision makers are also included in this paper. The data dictionary used for input and output data structure is also explained.

  3. A Prototype Decision Support System for the Location of Military Water Points.

    DTIC Science & Technology

    1980-06-01

    create an environ- ment which is conductive to an efficient man/machine decision making system . This could be accomplished by designing the operating...Figure 12. Flowchart of Program COMPUTE 50 Procedure This Decision Support System was designed to be interactive. That is, it requests data from the user...Pg. 82-114, 1974. 24. Geoffrion, A.M. and G.W. Graves, "Multicomodity Distribution System Design by Benders Partition", Management Science, Vol. 20, Pg

  4. E-Health towards ecumenical framework for personalized medicine via Decision Support System.

    PubMed

    Kouris, Ioannis; Tsirmpas, Charalampos; Mougiakakou, Stavroula G; Iliopoulou, Dimitra; Koutsouris, Dimitris

    2010-01-01

    The purpose of the present manuscript is to present the advances performed in medicine using a Personalized Decision Support System (PDSS). The models used in Decision Support Systems (DSS) are examined in combination with Genome Information and Biomarkers to produce personalized result for each individual. The concept of personalize medicine is described in depth and application of PDSS for Cardiovascular Diseases (CVD) and Type-1 Diabetes Mellitus (T1DM) are analyzed. Parameters extracted from genes, biomarkers, nutrition habits, lifestyle and biological measurements feed DSSs, incorporating Artificial Intelligence Modules (AIM), to provide personalized advice, medication and treatment.

  5. “Quality of prenatal and maternal care: bridging the know-do gap” (QUALMAT study): an electronic clinical decision support system for rural Sub-Saharan Africa

    PubMed Central

    2013-01-01

    Background Despite strong efforts to improve maternal care, its quality remains deficient in many countries of Sub-Saharan Africa as persistently high maternal mortality rates testify. The QUALMAT study seeks to improve the performance and motivation of rural health workers and ultimately quality of primary maternal health care services in three African countries Burkina Faso, Ghana, and Tanzania. One major intervention is the introduction of a computerized Clinical Decision Support System (CDSS) for rural primary health care centers to be used by health care workers of different educational levels. Methods A stand-alone, java-based software, able to run on any standard hardware, was developed based on assessment of the health care situation in the involved countries. The software scope was defined and the final software was programmed under consideration of test experiences. Knowledge for the decision support derived from the World Health Organization (WHO) guideline “Pregnancy, Childbirth, Postpartum and Newborn Care; A Guide for Essential Practice”. Results The QUALMAT CDSS provides computerized guidance and clinical decision support for antenatal care, and care during delivery and up to 24 hours post delivery. The decision support is based on WHO guidelines and designed using three principles: (1) Guidance through routine actions in maternal and perinatal care, (2) integration of clinical data to detect situations of concern by algorithms, and (3) electronic tracking of peri- and postnatal activities. In addition, the tool facilitates patient management and is a source of training material. The implementation of the software, which is embedded in a set of interventions comprising the QUALMAT study, is subject to various research projects assessing and quantifying the impact of the CDSS on quality of care, the motivation of health care staff (users) and its health economic aspects. The software will also be assessed for its usability and acceptance, as well

  6. Flood Forecast Accuracy and Decision Support System Approach: the Venice Case

    NASA Astrophysics Data System (ADS)

    Canestrelli, A.; Di Donato, M.

    2016-02-01

    In the recent years numerical models for weather predictions have experienced continuous advances in technology. As a result, all the disciplines making use of weather forecasts have made significant steps forward. In the case of the Safeguard of Venice, a large effort has been put in order to improve the forecast of tidal levels. In this context, the Istituzione Centro Previsioni e Segnalazioni Maree (ICPSM) of the Venice Municipality has developed and tested many different forecast models, both of the statistical and deterministic type, and has shown to produce very accurate forecasts. For Venice, the maximum admissible forecast error should be (ideally) of the order of ten centimeters at 24 hours. The entity of the forecast error clearly affects the decisional process, which mainly consists of alerting the population, activating the movable barriers installed at the three tidal inlets and contacting the port authority. This process becomes more challenging whenever the weather predictions, and therefore the water level forecasts, suddenly change. These new forecasts have to be quickly transformed into operational tasks. Therefore, it is of the utter importance to set up scheduled alerts and emergency plans by means of easy-to-follow procedures. On this direction, Technital has set up a Decision Support System based on expert procedures that minimizes the human mistakes and, as a consequence, reduces the risk of flooding of the historical center. Moreover, the Decision Support System can communicate predefined alerts to all the interested subjects. The System uses the water levels forecasts produced by the ICPSM by taking into account the accuracy at different leading times. The Decision Support System has been successfully tested with 8 years of data, 6 of them in real time. Venice experience shows that the Decision Support System is an essential tool which assesses the risks associated with a particular event, provides clear operational procedures and minimizes

  7. The anatomy of decision support during inpatient care provider order entry (CPOE): Empirical observations from a decade of CPOE experience at Vanderbilt

    PubMed Central

    Miller, Randolph A.; Waitman, Lemuel R.; Chen, Sutin; Rosenbloom, S. Trent

    2006-01-01

    The authors describe a pragmatic approach to the introduction of clinical decision support at the point of care, based on a decade of experience in developing and evolving Vanderbilt’s inpatient “WizOrder” care provider order entry (CPOE) system. The inpatient care setting provides a unique opportunity to interject CPOE-based decision support features that restructure clinical workflows, deliver focused relevant educational materials, and influence how care is delivered to patients. From their empirical observations, the authors have developed a generic model for decision support within inpatient CPOE systems. They believe that the model’s utility extends beyond Vanderbilt, because it is based on characteristics of end-user workflows and on decision support considerations that are common to a variety of inpatient settings and CPOE systems. The specific approach to implementing a given clinical decision support feature within a CPOE system should involve evaluation along three axes: what type of intervention to create (for which the authors describe 4 general categories); when to introduce the intervention into the user’s workflow (for which the authors present 7 categories), and how disruptive, during use of the system, the intervention might be to end-users’ workflows (for which the authors describe 6 categories). Framing decision support in this manner may help both developers and clinical end-users plan future alterations to their systems when needs for new decision support features arise. PMID:16290243

  8. Using systems thinking to support clinical system transformation.

    PubMed

    Best, Allan; Berland, Alex; Herbert, Carol; Bitz, Jennifer; van Dijk, Marlies W; Krause, Christina; Cochrane, Douglas; Noel, Kevin; Marsden, Julian; McKeown, Shari; Millar, John

    2016-05-16

    Purpose - The British Columbia Ministry of Health's Clinical Care Management initiative was used as a case study to better understand large-scale change (LSC) within BC's health system. Using a complex system framework, the purpose of this paper is to examine mechanisms that enable and constrain the implementation of clinical guidelines across various clinical settings. Design/methodology/approach - Researchers applied a general model of complex adaptive systems plus two specific conceptual frameworks (realist evaluation and system dynamics mapping) to define and study enablers and constraints. Focus group sessions and interviews with clinicians, executives, managers and board members were validated through an online survey. Findings - The functional themes for managing large-scale clinical change included: creating a context to prepare clinicians for health system transformation initiatives; promoting shared clinical leadership; strengthening knowledge management, strategic communications and opportunities for networking; and clearing pathways through the complexity of a multilevel, dynamic system. Research limitations/implications - The action research methodology was designed to guide continuing improvement of implementation. A sample of initiatives was selected; it was not intended to compare and contrast facilitators and barriers across all initiatives and regions. Similarly, evaluating the results or process of guideline implementation was outside the scope; the methods were designed to enable conversations at multiple levels - policy, management and practice - about how to improve implementation. The study is best seen as a case study of LSC, offering a possible model for replication by others and a tool to shape further dialogue. Practical implications - Recommended action-oriented strategies included engaging local champions; supporting local adaptation for implementation of clinical guidelines; strengthening local teams to guide implementation; reducing

  9. A novel personal health system with integrated decision support and guidance for the management of chronic liver disease.

    PubMed

    Kiefer, Stephan; Schäfer, Michael; Bransch, Marco; Brimmers, Peter; Bartolomé, Diego; Baños, Janie; Orr, James; Jones, Dave; Jara, Maximilian; Stockmann, Martin

    2014-01-01

    A personal health system platform for the management of patients with chronic liver disease that incorporates a novel approach to integrate decision support and guidance through care pathways for patients and their doctors is presented in this paper. The personal health system incorporates an integrated decision support engine that guides patients and doctors through the management of the disease by issuing tasks and providing recommendations to both the care team and the patient and by controlling the execution of a Care Flow Plan based on the results of tasks and the monitored health status of the patient. This Care Flow Plan represents a formal, business process based model of disease management designed off-line by domain experts on the basis of clinical guidelines, knowledge of care pathways and an organisational model for integrated, patient-centred care. In this way, remote monitoring and treatment are dynamically adapted to the patient's actual condition and clinical symptoms and allow flexible delivery of care with close integration of specialists, therapists and care-givers.

  10. Computerized clinical decision support systems for primary preventive care: a decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes.

    PubMed

    Souza, Nathan M; Sebaldt, Rolf J; Mackay, Jean A; Prorok, Jeanette C; Weise-Kelly, Lorraine; Navarro, Tamara; Wilczynski, Nancy L; Haynes, R Brian

    2011-08-03

    Computerized clinical decision support systems (CCDSSs) are claimed to improve processes and outcomes of primary preventive care (PPC), but their effects, safety, and acceptance must be confirmed. We updated our previous systematic reviews of CCDSSs and integrated a knowledge translation approach in the process. The objective was to review randomized controlled trials (RCTs) assessing the effects of CCDSSs for PPC on process of care, patient outcomes, harms, and costs. We conducted a decision-maker-researcher partnership systematic review. We searched MEDLINE, EMBASE, Ovid's EBM Reviews Database, Inspec, and other databases, as well as reference lists through January 2010. We contacted authors to confirm data or provide additional information. We included RCTs that assessed the effect of a CCDSS for PPC on process of care and patient outcomes compared to care provided without a CCDSS. A study was considered to have a positive effect (i.e., CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive. We added 17 new RCTs to our 2005 review for a total of 41 studies. RCT quality improved over time. CCDSSs improved process of care in 25 of 40 (63%) RCTs. Cumulative scientifically strong evidence supports the effectiveness of CCDSSs for screening and management of dyslipidaemia in primary care. There is mixed evidence for effectiveness in screening for cancer and mental health conditions, multiple preventive care activities, vaccination, and other preventive care interventions. Fourteen (34%) trials assessed patient outcomes, and four (29%) reported improvements with the CCDSS. Most trials were not powered to evaluate patient-important outcomes. CCDSS costs and adverse events were reported in only six (15%) and two (5%) trials, respectively. Information on study duration was often missing, limiting our ability to assess sustainability of CCDSS effects. Evidence supports the effectiveness of CCDSSs for screening and

  11. A Proposed Clinical Decision Support Architecture Capable of Supporting Whole Genome Sequence Information

    PubMed Central

    Welch, Brandon M.; Rodriguez Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku

    2014-01-01

    Whole genome sequence (WGS) information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS) offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR). A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1) each component of the architecture; (2) the interaction of the components; and (3) how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine. PMID:25411644

  12. Decision Support Systems Project. Design Review Conference, October 14-15, 1984. Summary Report of Findings.

    ERIC Educational Resources Information Center

    Tetlow, William L.

    Findings of a conference that reviewed and evaluated design decisions concerning the Decision Support System (DSS) Demonstrator are summarized. The DSS Demonstrator was designed by the National Center for Higher Education Management Systems as an example of the way in which microcomputer technology can support and make more effective planning and…

  13. Decision support in psychiatry – a comparison between the diagnostic outcomes using a computerized decision support system versus manual diagnosis

    PubMed Central

    Bergman, Lars G; Fors, Uno GH

    2008-01-01

    Background Correct diagnosis in psychiatry may be improved by novel diagnostic procedures. Computerized Decision Support Systems (CDSS) are suggested to be able to improve diagnostic procedures, but some studies indicate possible problems. Therefore, it could be important to investigate CDSS systems with regard to their feasibility to improve diagnostic procedures as well as to save time. Methods This study was undertaken to compare the traditional 'paper and pencil' diagnostic method SCID1 with the computer-aided diagnostic system CB-SCID1 to ascertain processing time and accuracy of diagnoses suggested. 63 clinicians volunteered to participate in the study and to solve two paper-based cases using either a CDSS or manually. Results No major difference between paper and pencil and computer-supported diagnosis was found. Where a difference was found it was in favour of paper and pencil. For example, a significantly shorter time was found for paper and pencil for the difficult case, as compared to computer support. A significantly higher number of correct diagnoses were found in the diffilt case for the diagnosis 'Depression' using the paper and pencil method. Although a majority of the clinicians found the computer method supportive and easy to use, it took a longer time and yielded fewer correct diagnoses than with paper and pencil. Conclusion This study could not detect any major difference in diagnostic outcome between traditional paper and pencil methods and computer support for psychiatric diagnosis. Where there were significant differences, traditional paper and pencil methods were better than the tested CDSS and thus we conclude that CDSS for diagnostic procedures may interfere with diagnosis accuracy. A limitation was that most clinicians had not previously used the CDSS system under study. The results of this study, however, confirm that CDSS development for diagnostic purposes in psychiatry has much to deal with before it can be used for routine clinical

  14. Adoption of clinical decision support systems in a developing country: Antecedents and outcomes of physician's threat to perceived professional autonomy.

    PubMed

    Esmaeilzadeh, Pouyan; Sambasivan, Murali; Kumar, Naresh; Nezakati, Hossein

    2015-08-01

    The basic objective of this research is to study the antecedents and outcomes of professional autonomy which is a central construct that affects physicians' intention to adopt clinical decision support systems (CDSS). The antecedents are physicians' attitude toward knowledge sharing and interactivity perception (about CDSS) and the outcomes are performance expectancy and intention to adopt CDSS. Besides, we include (1) the antecedents of attitude toward knowledge sharing-subjective norms, social factors and OCB (helping behavior) and (2) roles of physicians' involvement in decision making, computer self-efficacy and effort expectancy in our framework. Data from a stratified sample of 335 Malaysian physicians working in 12 public and private hospitals in Malaysia were collected to test the hypotheses using Structural Equation Modeling (SEM). The important findings of our research are: (1) factors such as perceived threat to professional autonomy, performance expectancy, and physicians' involvement in making decision about CDSS have significant impact on physicians' intention to adopt CDSS; (2) physicians' attitude toward knowledge sharing, interactivity perception and computer self-efficacy of physicians play a crucial role in influencing their perceived threat to professional autonomy; and (3) social network, shared goals and OCB (helping behavior) impact physicians' attitude toward knowledge sharing. The findings provide a comprehensive understanding of the factors that influence physicians' intention to adopt CDSS in a developing country. The results can help hospital managers manage CDSS implementation in an effective manner. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Reliability and validity of DS-ADHD: A decision support system on attention deficit hyperactivity disorders.

    PubMed

    Chu, Kuo-Chung; Huang, Yu-Shu; Tseng, Chien-Fu; Huang, Hsin-Jou; Wang, Chih-Huan; Tai, Hsin-Yi

    2017-03-01

    The purpose of this study is to examine the reliability of the clinical use of the self-built decision support system, diagnosis-supported attention deficit hyperactivity disorder (DS-ADHD), in an effort to develop the DS-ADHD system, by probing into the development of indicating patterns of past screening support systems for ADHD. The study collected data based on 107 subjects, who were divided into two groups, non-ADHD and ADHD, based on the doctor's determination, using the DSM-IV diagnostic standards. The two groups then underwent Test of Variables of Attention (TOVA) and DS-ADHD testing. The survey and testing results underwent one-way ANOVA and split-half method statistical analysis, in order to further understand whether there were any differences between the DS-ADHD and the identification tools used in today's clinical trials. The results of the study are as follows: 1) The ROC area between the TOVA and the clinical identification rate is 0.787 (95% confidence interval: 0.701-0.872); 2) The ROC area between the DS-ADHD and the clinical identification rate is 0.867 (95% confidence interval: 0.801-0.933). The study results show that DS-ADHD has the characteristics of screening for ADHD, based on its reliability and validity. It does not display any statistical differences when compared with TOVA systems that are currently on the market. However, the system is more effective and the accuracy rate is better than TOVA. It is a good tool to screen ADHD not only in Chinese children, but also in western country. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thwaites, D; Holloway, L; Bailey, M

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction andmore » mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions

  17. Incorporating Pharmacogenomics into Health Information Technology, Electronic Health Record and Decision Support System: An Overview.

    PubMed

    Alanazi, Abdullah

    2017-02-01

    As the adoption of information technology in healthcare is rising, the potentiality of moving Pharmacogenomics from benchside to bedside is aggravated. This paper reviews the current status of Pharmacogenomics (PGx) information and the attempts for incorporating them into the Electronic Health Record (EHR) system through Decision Support Systems (DSSs). Rigorous review strategies of PGx information and providing context-relevant recommendations in form of action plan- dose adjustment, lab tests rather than just information- would be ideal for making clinical recommendations out of PGx information. Lastly, realistic projections of what pharmacogenomics can provide is another important aspect in incorporating Pharmacogenomics into health information technology.

  18. Qualitative analysis of vendor discussions on the procurement of Computerised Physician Order Entry and Clinical Decision Support systems in hospitals

    PubMed Central

    Cresswell, Kathrin M; Lee, Lisa; Slee, Ann; Coleman, Jamie; Bates, David W; Sheikh, Aziz

    2015-01-01

    Objectives We studied vendor perspectives about potentially transferable lessons for implementing organisations and national strategies surrounding the procurement of Computerised Physician Order Entry (CPOE)/Clinical Decision Support (CDS) systems in English hospitals. Setting Data were collected from digitally audio-recorded discussions from a series of CPOE/CDS vendor round-table discussions held in September 2014 in the UK. Participants Nine participants, representing 6 key vendors operating in the UK, attended. The discussions were transcribed verbatim and thematically analysed. Results Vendors reported a range of challenges surrounding the procurement and contracting processes of CPOE/CDS systems, including hospitals’ inability to adequately assess their own needs and then select a suitable product, rushed procurement and implementation processes that resulted in difficulties in meaningfully engaging with vendors, as well as challenges relating to contracting leading to ambiguities in implementation roles. Consequently, relationships between system vendors and hospitals were often strained, the vendors attributing this to a lack of hospital management's appreciation of the complexities associated with implementation efforts. Future anticipated challenges included issues surrounding the standardisation of data to enable their aggregation across systems for effective secondary uses, and implementation of data exchange with providers outside the hospital. Conclusions Our results indicate that there are significant issues surrounding capacity to procure and optimise CPOE/CDS systems among UK hospitals. There is an urgent need to encourage more synergistic and collaborative working between providers and vendors and for a more centralised support for National Health Service hospitals, which draws on a wider body of experience, including a formalised procurement framework with value-based product specifications. PMID:26503385

  19. Analysis of the process of representing clinical statements for decision-support applications: a comparison of openEHR archetypes and HL7 virtual medical record.

    PubMed

    González-Ferrer, A; Peleg, M; Marcos, M; Maldonado, J A

    2016-07-01

    Delivering patient-specific decision-support based on computer-interpretable guidelines (CIGs) requires mapping CIG clinical statements (data items, clinical recommendations) into patients' data. This is most effectively done via intermediate data schemas, which enable querying the data according to the semantics of a shared standard intermediate schema. This study aims to evaluate the use of HL7 virtual medical record (vMR) and openEHR archetypes as intermediate schemas for capturing clinical statements from CIGs that are mappable to electronic health records (EHRs) containing patient data and patient-specific recommendations. Using qualitative research methods, we analyzed the encoding of ten representative clinical statements taken from two CIGs used in real decision-support systems into two health information models (openEHR archetypes and HL7 vMR instances) by four experienced informaticians. Discussion among the modelers about each case study example greatly increased our understanding of the capabilities of these standards, which we share in this educational paper. Differing in content and structure, the openEHR archetypes were found to contain a greater level of representational detail and structure while the vMR representations took fewer steps to complete. The use of openEHR in the encoding of CIG clinical statements could potentially facilitate applications other than decision-support, including intelligent data analysis and integration of additional properties of data items from existing EHRs. On the other hand, due to their smaller size and fewer details, the use of vMR potentially supports quicker mapping of EHR data into clinical statements.

  20. Which research is needed to support clinical decision-making on integrative medicine?- Can comparative effectiveness research close the gap?

    PubMed

    Witt, Claudia M; Huang, Wen-jing; Lao, Lixing; Bm, Berman

    2012-10-01

    In clinical research on complementary and integrative medicine, experts and scientists have often pursued a research agenda in spite of an incomplete understanding of the needs of end users. Consequently, the majority of previous clinical trials have mainly assessed the efficacy of interventions. Scant data is available on their effectiveness. Comparative effectiveness research (CER) promises to support decision makers by generating evidence that compares the benefits and harms of the best care options. This evidence, more generalizable than the evidence generated by traditional randomized controlled trials (RCTs), is better suited to inform real-world care decisions. An emphasis on CER supports the development of the evidence base for clinical and policy decision-making. Whereas in most areas of complementary and integrative medicine data on comparative effectiveness is scarce, available acupuncture research already contributes to CER evidence. This paper will introduce CER and make suggestions for future research.

  1. "Think aloud" and "Near live" usability testing of two complex clinical decision support tools.

    PubMed

    Richardson, Safiya; Mishuris, Rebecca; O'Connell, Alexander; Feldstein, David; Hess, Rachel; Smith, Paul; McCullagh, Lauren; McGinn, Thomas; Mann, Devin

    2017-10-01

    Low provider adoption continues to be a significant barrier to realizing the potential of clinical decision support. "Think Aloud" and "Near Live" usability testing were conducted on two clinical decision support tools. Each was composed of an alert, a clinical prediction rule which estimated risk of either group A Streptococcus pharyngitis or pneumonia and an automatic order set based on risk. The objective of this study was to further understanding of the facilitators of usability and to evaluate the types of additional information gained from proceeding to "Near Live" testing after completing "Think Aloud". This was a qualitative observational study conducted at a large academic health care system with 12 primary care providers. During "Think Aloud" testing, participants were provided with written clinical scenarios and asked to verbalize their thought process while interacting with the tool. During "Near Live" testing participants interacted with a mock patient. Morae usability software was used to record full screen capture and audio during every session. Participant comments were placed into coding categories and analyzed for generalizable themes. Themes were compared across usability methods. "Think Aloud" and "Near Live" usability testing generated similar themes under the coding categories visibility, workflow, content, understand-ability and navigation. However, they generated significantly different themes under the coding categories usability, practical usefulness and medical usefulness. During both types of testing participants found the tool easier to use when important text was distinct in its appearance, alerts were passive and appropriately timed, content was up to date, language was clear and simple, and each component of the tool included obvious indicators of next steps. Participant comments reflected higher expectations for usability and usefulness during "Near Live" testing. For example, visit aids, such as automatically generated order sets

  2. Emerging medical informatics with case-based reasoning for aiding clinical decision in multi-agent system.

    PubMed

    Shen, Ying; Colloc, Joël; Jacquet-Andrieu, Armelle; Lei, Kai

    2015-08-01

    This research aims to depict the methodological steps and tools about the combined operation of case-based reasoning (CBR) and multi-agent system (MAS) to expose the ontological application in the field of clinical decision support. The multi-agent architecture works for the consideration of the whole cycle of clinical decision-making adaptable to many medical aspects such as the diagnosis, prognosis, treatment, therapeutic monitoring of gastric cancer. In the multi-agent architecture, the ontological agent type employs the domain knowledge to ease the extraction of similar clinical cases and provide treatment suggestions to patients and physicians. Ontological agent is used for the extension of domain hierarchy and the interpretation of input requests. Case-based reasoning memorizes and restores experience data for solving similar problems, with the help of matching approach and defined interfaces of ontologies. A typical case is developed to illustrate the implementation of the knowledge acquisition and restitution of medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Clinical Decision Support: a 25 Year Retrospective and a 25 Year Vision.

    PubMed

    Middleton, B; Sittig, D F; Wright, A

    2016-08-02

    The objective of this review is to summarize the state of the art of clinical decision support (CDS) circa 1990, review progress in the 25 year interval from that time, and provide a vision of what CDS might look like 25 years hence, or circa 2040. Informal review of the medical literature with iterative review and discussion among the authors to arrive at six axes (data, knowledge, inference, architecture and technology, implementation and integration, and users) to frame the review and discussion of selected barriers and facilitators to the effective use of CDS. In each of the six axes, significant progress has been made. Key advances in structuring and encoding standardized data with an increased availability of data, development of knowledge bases for CDS, and improvement of capabilities to share knowledge artifacts, explosion of methods analyzing and inferring from clinical data, evolution of information technologies and architectures to facilitate the broad application of CDS, improvement of methods to implement CDS and integrate CDS into the clinical workflow, and increasing sophistication of the end-user, all have played a role in improving the effective use of CDS in healthcare delivery. CDS has evolved dramatically over the past 25 years and will likely evolve just as dramatically or more so over the next 25 years. Increasingly, the clinical encounter between a clinician and a patient will be supported by a wide variety of cognitive aides to support diagnosis, treatment, care-coordination, surveillance and prevention, and health maintenance or wellness.

  4. Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach.

    PubMed

    Marco-Ruiz, Luis; Pedrinaci, Carlos; Maldonado, J A; Panziera, Luca; Chen, Rong; Bellika, J Gustav

    2016-08-01

    The high costs involved in the development of Clinical Decision Support Systems (CDSS) make it necessary to share their functionality across different systems and organizations. Service Oriented Architectures (SOA) have been proposed to allow reusing CDSS by encapsulating them in a Web service. However, strong barriers in sharing CDS functionality are still present as a consequence of lack of expressiveness of services' interfaces. Linked Services are the evolution of the Semantic Web Services paradigm to process Linked Data. They aim to provide semantic descriptions over SOA implementations to overcome the limitations derived from the syntactic nature of Web services technologies. To facilitate the publication, discovery and interoperability of CDS services by evolving them into Linked Services that expose their interfaces as Linked Data. We developed methods and models to enhance CDS SOA as Linked Services that define a rich semantic layer based on machine interpretable ontologies that powers their interoperability and reuse. These ontologies provided unambiguous descriptions of CDS services properties to expose them to the Web of Data. We developed models compliant with Linked Data principles to create a semantic representation of the components that compose CDS services. To evaluate our approach we implemented a set of CDS Linked Services using a Web service definition ontology. The definitions of Web services were linked to the models developed in order to attach unambiguous semantics to the service components. All models were bound to SNOMED-CT and public ontologies (e.g. Dublin Core) in order to count on a lingua franca to explore them. Discovery and analysis of CDS services based on machine interpretable models was performed reasoning over the ontologies built. Linked Services can be used effectively to expose CDS services to the Web of Data by building on current CDS standards. This allows building shared Linked Knowledge Bases to provide machine

  5. Evaluating the Effectiveness of Nurse-Focused Computerized Clinical Decision Support on Urinary Catheter Practice Guidelines

    ERIC Educational Resources Information Center

    Lang, Robin Lynn Neal

    2012-01-01

    A growing national emphasis has been placed on health information technology (HIT) with robust computerized clinical decision support (CCDS) integration into health care delivery. Catheter-associated urinary tract infection is the most frequent health care-associated infection in the United States and is associated with high cost, high volumes and…

  6. CorRECTreatment: A Web-based Decision Support Tool for Rectal Cancer Treatment that Uses the Analytic Hierarchy Process and Decision Tree

    PubMed Central

    Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.

    2015-01-01

    Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options

  7. CorRECTreatment: a web-based decision support tool for rectal cancer treatment that uses the analytic hierarchy process and decision tree.

    PubMed

    Suner, A; Karakülah, G; Dicle, O; Sökmen, S; Çelikoğlu, C C

    2015-01-01

    The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians' decision making. The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options.

  8. Future perspectives toward the early definition of a multivariate decision-support scheme employed in clinical decision making for senior citizens.

    PubMed

    Frantzidis, Christos A; Gilou, Sotiria; Billis, Antonis; Karagianni, Maria; Bratsas, Charalampos D; Bamidis, Panagiotis

    2016-03-01

    Recent neuroscientific studies focused on the identification of pathological neurophysiological patterns (emotions, geriatric depression, memory impairment and sleep disturbances) through computerised clinical decision-support systems. Almost all these research attempts employed either resting-state condition (e.g. eyes-closed) or event-related potentials extracted during a cognitive task known to be affected by the disease under consideration. This Letter reviews existing data mining techniques and aims to enhance their robustness by proposing a holistic decision framework dealing with comorbidities and early symptoms' identification, while it could be applied in realistic occasions. Multivariate features are elicited and fused in order to be compared with average activities characteristic of each neuropathology group. A proposed model of the specific cognitive function which may be based on previous findings (a priori information) and/or validated by current experimental data should be then formed. So, the proposed scheme facilitates the early identification and prevention of neurodegenerative phenomena. Neurophysiological semantic annotation is hypothesised to enhance the importance of the proposed framework in facilitating the personalised healthcare of the information society and medical informatics research community.

  9. Clinical staging: its importance in therapeutic decisions and clinical trials.

    PubMed

    Denis, L J

    1992-02-01

    International collaboration has resulted in a revised and unified 1987 formulation for the TNM classification in solid tumors. The simplification and eliminations of most variables caused difficulties for the clinical use of the system in some tumors such as bladder cancer. The approval of the proposed adaptation covering the tumor mass, subdividing the T4 category and adapting the stage grouping, resolves these difficulties. Published reports demonstrate support for the TNM system as a clinical base for treatment decisions and prognosis. The TNMG stage and grade are important basic prognostic factors, but other prognostic factors, especially biologic tumor activity, are under clinical investigation. The TNM classification is the initial evaluation after histologic confirmation of cancer to guide treatment and prognosis. The quality of the evaluation is enhanced by precise communication on the employed methodology.

  10. The integration of quantitative information with an intelligent decision support system for residential energy retrofits

    NASA Astrophysics Data System (ADS)

    Mo, Yunjeong

    The purpose of this research is to support the development of an intelligent Decision Support System (DSS) by integrating quantitative information with expert knowledge in order to facilitate effective retrofit decision-making. To achieve this goal, the Energy Retrofit Decision Process Framework is analyzed. Expert system shell software, a retrofit measure cost database, and energy simulation software are needed for developing the DSS; Exsys Corvid, the NREM database and BEopt were chosen for implementing an integration model. This integration model demonstrates the holistic function of a residential energy retrofit system for existing homes, by providing a prioritized list of retrofit measures with cost information, energy simulation and expert advice. The users, such as homeowners and energy auditors, can acquire all of the necessary retrofit information from this unified system without having to explore several separate systems. The integration model plays the role of a prototype for the finalized intelligent decision support system. It implements all of the necessary functions for the finalized DSS, including integration of the database, energy simulation and expert knowledge.

  11. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR.

    PubMed

    King, Andrew J; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device's accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use.

  12. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR

    PubMed Central

    King, Andrew J.; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F.

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device’s accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use. PMID:28815151

  13. Corruption Early Prevention: Decision Support System for President of the Republic of Indonesia

    NASA Astrophysics Data System (ADS)

    Sasmoko; Widhoyoko, S. A.; Ariyanto, S.; Indrianti, Y.; Noerlina; Muqsith, A. M.; Alamsyah, M.

    2017-01-01

    Corruption is an extraordinary crime, and then the prevention must also be extraordinary, simultaneously (national) in the form of early warning that involves all elements; government, industry, and society. To realize it the system needs to be built which in this study is called the Corruption Early Prevention (CEP) as a Decision Support System for President of the Republic of Indonesia. This study aims to examine 1) how is the construct of the Corruption Early Prevention as a Decision Support System for President of the Republic of Indonesia?, and 2) how is the design form of the system of Corruption Early Prevention as a Decision Support System for President of Republic of Indonesia? The research method is using Neuro-Research which is the collaboration of qualitative and quantitative research methods and the model development of Information Technology (IT). The research found that: 1) the construct of CEP is theoretically feasible, valid and reliable by content to be developed in the context of the prevention of corruption in Indonesia as an early prevention system that diagnoses Indonesia simultaneously and in real time, and 2) the concept of system design and business process of CEP is predicted to be realized in the IT-based program.

  14. Impact of four training conditions on physician use of a web-based clinical decision support system.

    PubMed

    Kealey, Edith; Leckman-Westin, Emily; Finnerty, Molly T

    2013-09-01

    Training has been identified as an important barrier to implementation of clinical decision support systems (CDSSs), but little is known about the effectiveness of different training approaches. Using an observational retrospective cohort design, we examined the impact of four training conditions on physician use of a CDSS: (1) computer lab training with individualized follow-up (CL-FU) (n=40), (2) computer lab training without follow-up (CL) (n=177), (3) lecture demonstration (LD) (n=16), or (4) no training (NT) (n=134). Odds ratios of any use and ongoing use under training conditions were compared to no training over a 2-year follow-up period. CL-FU was associated with the highest percent of active users and odds for any use (90.0%, odds ratio (OR)=10.2, 95% confidence interval (CI): 3.2-32.9) and ongoing use (60.0%, OR=6.1 95% CI: 2.6-13.7), followed by CL (any use=81.4%, OR=5.3, CI: 2.9-9.6; ongoing use=28.8%, OR=1.7, 95% CI: 1.0-3.0). LD was not superior to no training (any use=47%, ongoing use=22.4%). Training format may have differential effects on initial and long-term follow-up of CDSSs use by physicians. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Clinical Decision Support Tools for Osteoporosis Disease Management: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Straus, Sharon E.

    2008-01-01

    BACKGROUND Studies indicate a gap between evidence and clinical practice in osteoporosis management. Tools that facilitate clinical decision making at the point of care are promising strategies for closing these practice gaps. OBJECTIVE To systematically review the literature to identify and describe the effectiveness of tools that support clinical decision making in osteoporosis disease management. DATA SOURCES Medline, EMBASE, CINAHL, and EBM Reviews (CDSR, DARE, CCTR, and ACP J Club), and contact with experts in the field. REVIEW METHODS Randomized controlled trials (RCTs) in any language from 1966 to July 2006 investigating disease management interventions in patients at risk for osteoporosis. Outcomes included fractures and bone mineral density (BMD) testing. Two investigators independently assessed articles for relevance and study quality, and extracted data using standardized forms. RESULTS Of 1,246 citations that were screened for relevance, 13 RCTs met the inclusion criteria. Reported study quality was generally poor. Meta-analysis was not done because of methodological and clinical heterogeneity; 77% of studies included a reminder or education as a component of their intervention. Three studies of reminders plus education targeted to physicians and patients showed increased BMD testing (RR range 1.43 to 8.67) and osteoporosis medication use (RR range 1.60 to 8.67). A physician reminder plus a patient risk assessment strategy found reduced fractures [RR 0.58, 95% confidence interval (CI) 0.37 to 0.90] and increased osteoporosis therapy (RR 2.44, CI 1.43 to 4.17). CONCLUSION Multi-component tools that are targeted to physicians and patients may be effective for supporting clinical decision making in osteoporosis disease management. Electronic supplementary material The online version of this article (doi:10.1007/s11606-008-0812-9) contains supplementary material, which is available to authorized users. PMID:18836782

  16. From guideline modeling to guideline execution: defining guideline-based decision-support services.

    PubMed Central

    Tu, S. W.; Musen, M. A.

    2000-01-01

    We describe our task-based approach to defining the guideline-based decision-support services that the EON system provides. We categorize uses of guidelines in patient-specific decision support into a set of generic tasks--making of decisions, specification of work to be performed, interpretation of data, setting of goals, and issuance of alert and reminders--that can be solved using various techniques. Our model includes constructs required for representing the knowledge used by these techniques. These constructs form a toolkit from which developers can select modeling solutions for guideline task. Based on the tasks and the guideline model, we define a guideline-execution architecture and a model of interactions between a decision-support server and clients that invoke services provided by the server. These services use generic interfaces derived from guideline tasks and their associated modeling constructs. We describe two implementations of these decision-support services and discuss how this work can be generalized. We argue that a well-defined specification of guideline-based decision-support services will facilitate sharing of tools that implement computable clinical guidelines. PMID:11080007

  17. Uncertainty management, spatial and temporal reasoning, and validation of intelligent environmental decision support systems

    USGS Publications Warehouse

    Sànchez-Marrè, Miquel; Gilbert, Karina; Sojda, Rick S.; Steyer, Jean Philippe; Struss, Peter; Rodríguez-Roda, Ignasi; Voinov, A.A.; Jakeman, A.J.; Rizzoli, A.E.

    2006-01-01

    There are inherent open problems arising when developing and running Intelligent Environmental Decision Support Systems (IEDSS). During daily operation of IEDSS several open challenge problems appear. The uncertainty of data being processed is intrinsic to the environmental system, which is being monitored by several on-line sensors and off-line data. Thus, anomalous data values at data gathering level or even uncertain reasoning process at later levels such as in diagnosis or decision support or planning can lead the environmental process to unsafe critical operation states. At diagnosis level or even at decision support level or planning level, spatial reasoning or temporal reasoning or both aspects can influence the reasoning processes undertaken by the IEDSS. Most of Environmental systems must take into account the spatial relationships between the environmental goal area and the nearby environmental areas and the temporal relationships between the current state and the past states of the environmental system to state accurate and reliable assertions to be used within the diagnosis process or decision support process or planning process. Finally, a related issue is a crucial point: are really reliable and safe the decisions proposed by the IEDSS? Are we sure about the goodness and performance of proposed solutions? How can we ensure a correct evaluation of the IEDSS? Main goal of this paper is to analyse these four issues, review some possible approaches and techniques to cope with them, and study new trends for future research within the IEDSS field.

  18. Factors and outcomes of decision making for cancer clinical trial participation.

    PubMed

    Biedrzycki, Barbara A

    2011-09-01

    To describe factors and outcomes related to the decision-making process regarding participation in a cancer clinical trial. Cross-sectional, descriptive. Urban, academic, National Cancer Institute-designated comprehensive cancer center in the mid-Atlantic United States. 197 patients with advanced gastrointestinal cancer. Mailed survey using one investigator-developed instrument, eight instruments used in published research, and a medical record review. disease context, sociodemographics, hope, quality of life, trust in healthcare system, trust in health professional, preference for research decision control, understanding risks, and information. decision to accept or decline research participation and satisfaction with this decision. All of the factors within the Research Decision Making Model together predicted cancer clinical trial participation and satisfaction with this decision. The most frequently preferred decision-making style for research participation was shared (collaborative) (83%). Multiple factors affect decision making for cancer clinical trial participation and satisfaction with this decision. Shared decision making previously was an unrecognized factor and requires further investigation. Enhancing the process of research decision making may facilitate an increase in cancer clinical trial enrollment rates. Oncology nurses have unique opportunities as educators and researchers to support shared decision making by those who prefer this method for deciding whether to accept or decline cancer clinical trial participation.

  19. Towards a decision support system for hand dermatology.

    PubMed

    Mazzola, Luca; Cavazzina, Alice; Pinciroli, Francesco; Bonacina, Stefano; Pigatto, Paolo; Ayala, Fabio; De Pità, Ornella; Marceglia, Sara

    2014-01-01

    The complexity of the medical diagnosis is faced by practitioners relying mainly on their experiences. This can be acquired during daily practices and on-the-job training. Given the complexity and extensiveness of the subject, supporting tools that include knowledge extracted by highly specialized practitioners can be valuable. In the present work, a Decision Support System (DSS) for hand dermatology was developed based on data coming from a Visit Report Form (VRF). Using a Bayesian approach and factors significance difference over the population average for the case, we demonstrated the potentiality of creating an enhanced VRF that include a diagnoses distribution probability based on the DSS rules applied for the specific patient situation.

  20. Decision support system in an international-voice-services business company

    NASA Astrophysics Data System (ADS)

    Hadianti, R.; Uttunggadewa, S.; Syamsuddin, M.; Soewono, E.

    2017-01-01

    We consider a problem facing by an international telecommunication services company in maximizing its profit. From voice services by controlling cost and business partnership. The competitiveness in this industry is very high, so that any efficiency from controlling cost and business partnership can help the company to survive in the very high competitiveness situation. The company trades voice traffic with a large number of business partners. There are four trading schemes that can be chosen by this company, namely, flat rate, class tiering, volume commitment, and revenue capped. Each scheme has a specific characteristic on the rate and volume deal, where the last three schemes are regarded as strategic schemes to be offered to business partner to ensure incoming traffic volume for both parties. This company and each business partner need to choose an optimal agreement in a certain period of time that can maximize the company’s profit. In this agreement, both parties agree to use a certain trading scheme, rate and rate/volume/revenue deal. A decision support system is then needed in order to give a comprehensive information to the sales officers to deal with the business partners. This paper discusses the mathematical model of the optimal decision for incoming traffic volume control, which is a part of the analysis needed to build the decision support system. The mathematical model is built by first performing data analysis to see how elastic the incoming traffic volume is. As the level of elasticity is obtained, we then derive a mathematical modelling that can simulate the impact of any decision on trading to the revenue of the company. The optimal decision can be obtained from these simulations results. To evaluate the performance of the proposed method we implement our decision model to the historical data. A software tool incorporating our methodology is currently in construction.

  1. A case study of the Maintenance Decision Support System (MDSS) in Maine.

    DOT National Transportation Integrated Search

    2007-09-10

    This report presents the results of a case study evaluation of a Maintenance Decision Support System (MDSS) project under a program funded by the U.S. Department of Transportations (USDOT) Intelligent Transportation Systems (ITS) Joint Program Off...

  2. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis

    PubMed Central

    Miller, Matthew James; McGuire, Kerry M.; Feigh, Karen M.

    2016-01-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity. The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design. PMID:28491008

  3. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    PubMed

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  4. Apply creative thinking of decision support in electrical nursing record.

    PubMed

    Hao, Angelica Te-Hui; Hsu, Chien-Yeh; Li-Fang, Huang; Jian, Wen-Shan; Wu, Li-Bin; Kao, Ching-Chiu; Lu, Mei-Show; Chang, Her-Kung

    2006-01-01

    The nursing process consists of five interrelated steps: assessment, diagnosis, planning, intervention, and evaluation. In the nursing process, the nurse collects a great deal of data and information. The amount of data and information may exceed the amount the nurse can process efficiently and correctly. Thus, the nurse needs assistance to become proficient in the planning of nursing care, due to the difficulty of simultaneously processing a large set of information. Computer systems are viewed as tools to expand the capabilities of the nurse's mind. Using computer technology to support clinicians' decision making may provide high-quality, patient-centered, and efficient healthcare. Although some existing nursing information systems aid in the nursing process, they only provide the most fundamental decision support--i.e., standard care plans associated with common nursing diagnoses. Such a computerized decision support system helps the nurse develop a care plan step-by-step. But it does not assist the nurse in the decision-making process. The decision process about how to generate nursing diagnoses from data and how to individualize the care plans still reminds of the nurse. The purpose of this study is to develop a pilot structure in electronic nursing record system integrated with international nursing standard for improving the proficiency and accuracy of plan of care in clinical pathway process. The proposed pilot systems not only assist both student nurses and nurses who are novice in nursing practice, but also experts who need to work in a practice area which they are not familiar with.

  5. E-Estuary: Developing a Decision-support System for Coastal Management in the Conterminous United States

    EPA Science Inventory

    Ready access to geographic information is needed to support management decisions for estuaries at local, state, regional, and national scales. The United States Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E...

  6. Comparison of Overridden Medication-related Clinical Decision Support in the Intensive Care Unit between a Commercial System and a Legacy System.

    PubMed

    Wong, Adrian; Wright, Adam; Seger, Diane L; Amato, Mary G; Fiskio, Julie M; Bates, David

    2017-08-23

    Electronic health records (EHRs) with clinical decision support (CDS) have shown to be effective at improving patient safety. Despite this, alerts delivered as part of CDS are overridden frequently, which is of concern in the critical care population as this group may have an increased risk of harm. Our organization recently transitioned from an internally-developed EHR to a commercial system. Data comparing various EHR systems, especially after transitions between EHRs, are needed to identify areas for improvement. To compare the two systems and identify areas for potential improvement with the new commercial system at a single institution. Overridden medication-related CDS alerts were included from October to December of the systems' respective years (legacy, 2011; commercial, 2015), restricted to three intensive care units. The two systems were compared with regards to CDS presentation and override rates for four types of CDS: drug-allergy, drug-drug interaction (DDI), geriatric and renal alerts. A post hoc analysis to evaluate for adverse drug events (ADEs) potentially resulting from overridden alerts was performed for 'contraindicated' DDIs via chart review. There was a significant increase in provider exposure to alerts and alert overrides in the commercial system (commercial: n=5,535; legacy: n=1,030). Rates of overrides were higher for the allergy and DDI alerts (p<0.001) in the commercial system. Geriatric and renal alerts were significantly different in incidence and presentation between the two systems. No ADEs were identified in an analysis of 43 overridden contraindicated DDI alerts. The vendor system had much higher rates of both alerts and overrides, although we did not find evidence of harm in a review of DDIs which were overridden. We propose recommendations for improving our current system which may be helpful to other similar institutions; improving both alert presentation and the underlying knowledge base appear important.

  7. A mobile and web-based clinical decision support and monitoring system for diabetes mellitus patients in primary care: a study protocol for a randomized controlled trial.

    PubMed

    Kart, Özge; Mevsim, Vildan; Kut, Alp; Yürek, İsmail; Altın, Ayşe Özge; Yılmaz, Oğuz

    2017-11-29

    Physicians' guideline use rates for diagnosis, treatment and monitoring of diabetes mellitus (DM) is very low. Time constraints, patient overpopulation, and complex guidelines require alternative solutions for real time patient monitoring. Rapidly evolving e-health technology combined with clinical decision support and monitoring systems (CDSMS) provides an effective solution to these problems. The purpose of the study is to develop a user-friendly, comprehensive, fully integrated web and mobile-based Clinical Decision Support and Monitoring System (CDSMS) for the screening, diagnosis, treatment, and monitoring of DM diseases which is used by physicians and patients in primary care and to determine the effectiveness of the system. The CDSMS will be based on evidence-based guidelines for DM disease. A web and mobile-based application will be developed in which the physician will remotely monitor patient data through mobile applications in real time. The developed CDSMS will be tested in two stages. In the first stage, the usability, understandability, and adequacy of the application will be determined. Five primary care physicians will use the developed application for at least 16 DM patients. Necessary improvements will be made according to physician feedback. In the second phase, a parallel, single-blind, randomized controlled trial will be implemented. DM diagnosed patients will be recruited for the CDSMS trial by their primary care physicians. Ten physicians and their 439 patients will be involved in the study. Eligible participants will be assigned to intervention and control groups with simple randomization. The significance level will be accepted as p < 0.05. In the intervention group, the system will make recommendations on patient monitoring, diagnosis, and treatment. These recommendations will be implemented at the physician's discretion. Patients in the control group will be treated by physicians according to current DM treatment standards. Patients in

  8. Maintenance and operations decision support tool : Clarus regional demonstrations.

    DOT National Transportation Integrated Search

    2011-01-01

    Weather affects almost all maintenance activity decisions. The Federal Highway Administration (FHWA) tested a new decision support system for maintenance in Iowa, Indiana, and Illinois called the Maintenance and Operations Decision Support System (MO...

  9. Health information technology: use it well, or don't! Findings from the use of a decision support system for breast cancer management.

    PubMed

    Bouaud, Jacques; Blaszka-Jaulerry, Brigitte; Zelek, Laurent; Spano, Jean-Philippe; Lefranc, Jean-Pierre; Cojean-Zelek, Isabelle; Durieux, Axel; Tournigand, Christophe; Rousseau, Alexandra; Séroussi, Brigitte

    2014-01-01

    The potential of health information technology is hampered by new types of errors which impact is not totally assessed. OncoDoc2 is a decision support system designed to support treatment decisions of multidisciplinary meetings (MDMs) for breast cancer patients. We evaluated how the way the system was used had an impact on MDM decision compliance with clinical practice guidelines. We distinguished "correct navigations" (N+), "incorrect navigations" (N-), and "missing navigations" (N0), according to the quality of data entry when using OncoDoc2. We collected 557 MDM decisions from three hospitals of Paris area (France) where OncoDoc2 was routinely used. We observed 33.9% N+, 36.8% N-, and 29.3% N0. The compliance rate was significantly different according to the quality of navigations, 94.2%, 80.0%, and 90.2% for N+, N-, and N0 respectively. Surprinsingly, it was better not to use the system (N0) than to use it improperly (N-).

  10. GET SMARTE: A DECISION SUPPORT SYSTEM TO REVITALIZE COMMUNITIES - CABERNET 2007

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...

  11. A Decision Support System for Solving Multiple Criteria Optimization Problems

    ERIC Educational Resources Information Center

    Filatovas, Ernestas; Kurasova, Olga

    2011-01-01

    In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

  12. A Clinical Decision Support System Using Ultrasound Textures and Radiologic Features to Distinguish Metastasis From Tumor-Free Cervical Lymph Nodes in Patients With Papillary Thyroid Carcinoma.

    PubMed

    Abbasian Ardakani, Ali; Reiazi, Reza; Mohammadi, Afshin

    2018-03-30

    This study investigated the potential of a clinical decision support approach for the classification of metastatic and tumor-free cervical lymph nodes (LNs) in papillary thyroid carcinoma on the basis of radiologic and textural analysis through ultrasound (US) imaging. In this research, 170 metastatic and 170 tumor-free LNs were examined by the proposed clinical decision support method. To discover the difference between the groups, US imaging was used for the extraction of radiologic and textural features. The radiologic features in the B-mode scans included the echogenicity, margin, shape, and presence of microcalcification. To extract the textural features, a wavelet transform was applied. A support vector machine classifier was used to classify the LNs. In the training set data, a combination of radiologic and textural features represented the best performance with sensitivity, specificity, accuracy, and area under the curve (AUC) values of 97.14%, 98.57%, 97.86%, and 0.994, respectively, whereas the classification based on radiologic and textural features alone yielded lower performance, with AUCs of 0.964 and 0.922. On testing the data set, the proposed model could classify the tumor-free and metastatic LNs with an AUC of 0.952, which corresponded to sensitivity, specificity, and accuracy of 93.33%, 96.66%, and 95.00%. The clinical decision support method based on textural and radiologic features has the potential to characterize LNs via 2-dimensional US. Therefore, it can be used as a supplementary technique in daily clinical practice to improve radiologists' understanding of conventional US imaging for characterizing LNs. © 2018 by the American Institute of Ultrasound in Medicine.

  13. Duplicate laboratory test reduction using a clinical decision support tool.

    PubMed

    Procop, Gary W; Yerian, Lisa M; Wyllie, Robert; Harrison, A Marc; Kottke-Marchant, Kandice

    2014-05-01

    Duplicate laboratory tests that are unwarranted increase unnecessary phlebotomy, which contributes to iatrogenic anemia, decreased patient satisfaction, and increased health care costs. We employed a clinical decision support tool (CDST) to block unnecessary duplicate test orders during the computerized physician order entry (CPOE) process. We assessed laboratory cost savings after 2 years and searched for untoward patient events associated with this intervention. This CDST blocked 11,790 unnecessary duplicate test orders in these 2 years, which resulted in a cost savings of $183,586. There were no untoward effects reported associated with this intervention. The movement to CPOE affords real-time interaction between the laboratory and the physician through CDSTs that signal duplicate orders. These interactions save health care dollars and should also increase patient satisfaction and well-being.

  14. Towards ontology-based decision support systems for complex ultrasound diagnosis in obstetrics and gynecology.

    PubMed

    Maurice, P; Dhombres, F; Blondiaux, E; Friszer, S; Guilbaud, L; Lelong, N; Khoshnood, B; Charlet, J; Perrot, N; Jauniaux, E; Jurkovic, D; Jouannic, J-M

    2017-05-01

    We have developed a new knowledge base intelligent system for obstetrics and gynecology ultrasound imaging, based on an ontology and a reference image collection. This study evaluates the new system to support accurate annotations of ultrasound images. We have used the early ultrasound diagnosis of ectopic pregnancies as a model clinical issue. The ectopic pregnancy ontology was derived from medical texts (4260 ultrasound reports of ectopic pregnancy from a specialist center in the UK and 2795 Pubmed abstracts indexed with the MeSH term "Pregnancy, Ectopic") and the reference image collection was built on a selection from 106 publications. We conducted a retrospective analysis of the signs in 35 scans of ectopic pregnancy by six observers using the new system. The resulting ectopic pregnancy ontology consisted of 1395 terms, and 80 images were collected for the reference collection. The observers used the knowledge base intelligent system to provide a total of 1486 sign annotations. The precision, recall and F-measure for the annotations were 0.83, 0.62 and 0.71, respectively. The global proportion of agreement was 40.35% 95% CI [38.64-42.05]. The ontology-based intelligent system provides accurate annotations of ultrasound images and suggests that it may benefit non-expert operators. The precision rate is appropriate for accurate input of a computer-based clinical decision support and could be used to support medical imaging diagnosis of complex conditions in obstetrics and gynecology. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Clinical Decision Support: a 25 Year Retrospective and a 25 Year Vision

    PubMed Central

    Sittig, D. F.; Wright, A.

    2016-01-01

    Summary Objective The objective of this review is to summarize the state of the art of clinical decision support (CDS) circa 1990, review progress in the 25 year interval from that time, and provide a vision of what CDS might look like 25 years hence, or circa 2040. Method Informal review of the medical literature with iterative review and discussion among the authors to arrive at six axes (data, knowledge, inference, architecture and technology, implementation and integration, and users) to frame the review and discussion of selected barriers and facilitators to the effective use of CDS. Result In each of the six axes, significant progress has been made. Key advances in structuring and encoding standardized data with an increased availability of data, development of knowledge bases for CDS, and improvement of capabilities to share knowledge artifacts, explosion of methods analyzing and inferring from clinical data, evolution of information technologies and architectures to facilitate the broad application of CDS, improvement of methods to implement CDS and integrate CDS into the clinical workflow, and increasing sophistication of the end-user, all have played a role in improving the effective use of CDS in healthcare delivery. Conclusion CDS has evolved dramatically over the past 25 years and will likely evolve just as dramatically or more so over the next 25 years. Increasingly, the clinical encounter between a clinician and a patient will be supported by a wide variety of cognitive aides to support diagnosis, treatment, care-coordination, surveillance and prevention, and health maintenance or wellness. PMID:27488402

  16. Decision support system for the operating room rescheduling problem.

    PubMed

    van Essen, J Theresia; Hurink, Johann L; Hartholt, Woutske; van den Akker, Bernd J

    2012-12-01

    Due to surgery duration variability and arrivals of emergency surgeries, the planned Operating Room (OR) schedule is disrupted throughout the day which may lead to a change in the start time of the elective surgeries. These changes may result in undesirable situations for patients, wards or other involved departments, and therefore, the OR schedule has to be adjusted. In this paper, we develop a decision support system (DSS) which assists the OR manager in this decision by providing the three best adjusted OR schedules. The system considers the preferences of all involved stakeholders and only evaluates the OR schedules that satisfy the imposed resource constraints. The decision rules used for this system are based on a thorough analysis of the OR rescheduling problem. We model this problem as an Integer Linear Program (ILP) which objective is to minimize the deviation from the preferences of the considered stakeholders. By applying this ILP to instances from practice, we determined that the given preferences mainly lead to (i) shifting a surgery and (ii) scheduling a break between two surgeries. By using these changes in the DSS, the performed simulation study shows that less surgeries are canceled and patients and wards are more satisfied, but also that the perceived workload of several departments increases to compensate this. The system can also be used to judge the acceptability of a proposed initial OR schedule.

  17. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.

  18. A mobile decision support system for red eye diseases diagnosis: experience with medical students.

    PubMed

    López, Marta Manovel; López, Miguel Maldonado; de la Torre Díez, Isabel; Jimeno, José Carlos Pastor; López-Coronado, Miguel

    2016-06-01

    A good primary health care is the base for a better healthcare system. Taking a good decision on time by the primary health care physician could have a huge repercussion. In order to ease the diagnosis task arise the Decision Support Systems (DSS), which offer counselling instead of refresh the medical knowledge, in a profession where it is still learning every day. The implementation of these systems in diseases which are a frequent cause of visit to the doctor like ophthalmologic pathologies are, which affect directly to our quality of life, takes more importance. This paper aims to develop OphthalDSS, a totally new mobile DSS for red eye diseases diagnosis. The main utilities that OphthalDSS offers will be a study guide for medical students and a clinical decision support system for primary care professionals. Other important goal of this paper is to show the user experience results after OphthalDSS being used by medical students of the University of Valladolid. For achieving the main purpose of this research work, a decision algorithm will be developed and implemented by an Android mobile application. Moreover, the Quality of Experience (QoE) has been evaluated by the students through the questions of a short inquiry. The app developed which implements the algorithm OphthalDSS is capable of diagnose more than 30 eye's anterior segment diseases. A total of 67 medical students have evaluated the QoE. The students find the diseases' information presented very valuable, the appearance is adequate, it is always available and they have ever found what they were looking for. Furthermore, the students think that their quality of life has not been improved using the app and they can do the same without using the OphthalDSS app. OphthalDSS is easy to use, which is capable of diagnose more than 30 ocular diseases in addition to be used as a DSS tool as an educational tool at the same time.

  19. A clinical decision support system algorithm for intravenous to oral antibiotic switch therapy: validity, clinical relevance and usefulness in a three-step evaluation study.

    PubMed

    Akhloufi, H; Hulscher, M; van der Hoeven, C P; Prins, J M; van der Sijs, H; Melles, D C; Verbon, A

    2018-04-26

    To evaluate a clinical decision support system (CDSS) based on consensus-based intravenous to oral switch criteria, which identifies intravenous to oral switch candidates. A three-step evaluation study of a stand-alone CDSS with electronic health record interoperability was performed at the Erasmus University Medical Centre in the Netherlands. During the first step, we performed a technical validation. During the second step, we determined the sensitivity, specificity, negative predictive value and positive predictive value in a retrospective cohort of all hospitalized adult patients starting at least one therapeutic antibacterial drug between 1 and 16 May 2013. ICU, paediatric and psychiatric wards were excluded. During the last step the clinical relevance and usefulness was prospectively assessed by reports to infectious disease specialists. An alert was considered clinically relevant if antibiotics could be discontinued or switched to oral therapy at the time of the alert. During the first step, one technical error was found. The second step yielded a positive predictive value of 76.6% and a negative predictive value of 99.1%. The third step showed that alerts were clinically relevant in 53.5% of patients. For 43.4% it had already been decided to discontinue or switch the intravenous antibiotics by the treating physician. In 10.1%, the alert resulted in advice to change antibiotic policy and was considered useful. This prospective cohort study shows that the alerts were clinically relevant in >50% (n = 449) and useful in 10% (n = 85). The CDSS needs to be evaluated in hospitals with varying activity of infectious disease consultancy services as this probably influences usefulness.

  20. SMARTHealth India: Development and Field Evaluation of a Mobile Clinical Decision Support System for Cardiovascular Diseases in Rural India

    PubMed Central

    Patel, Anushka; Raghu, Arvind; Clifford, Gari D; Maulik, Pallab K; Mohammad Abdul, Ameer; Mogulluru, Kishor; Tarassenko, Lionel; MacMahon, Stephen; Peiris, David

    2014-01-01

    Background Cardiovascular disease (CVD) is the major cause of premature death and disability in India and yet few people at risk of CVD are able to access best practice health care. Mobile health (mHealth) is a promising solution, but very few mHealth interventions have been subjected to robust evaluation in India. Objective The objectives were to develop a multifaceted, mobile clinical decision support system (CDSS) for CVD management and evaluate it for use by public nonphysician health care workers (NPHWs) and physicians in a rural Indian setting. Methods Plain language clinical rules were developed based on standard guidelines and programmed into a computer tablet app. The algorithm was validated and field-tested in 11 villages in Andhra Pradesh, involving 11 NPHWs and 3 primary health center (PHC) physicians. A mixed method evaluation was conducted comprising clinical and survey data and in-depth patient and staff interviews to understand barriers and enablers to the use of the system. Then this was thematically analyzed using NVivo 10. Results During validation of the algorithm, there was an initial agreement for 70% of the 42 calculated variables between the CDSS and SPSS software outputs. Discrepancies were identified and amendments were made until perfect agreement was achieved. During field testing, NPHWs and PHC physicians used the CDSS to screen 227 and 65 adults, respectively. The NPHWs identified 39% (88/227) of patients for referral with 78% (69/88) of these having a definite indication for blood pressure (BP)-lowering medication. However, only 35% (24/69) attended a clinic within 1 month of referral, with 42% (10/24) of these reporting continuing medications at 3-month follow-up. Physicians identified and recommended 17% (11/65) of patients for BP-lowering medications. Qualitative interviews identified 3 interrelated interview themes: (1) the CDSS had potential to change prevailing health care models, (2) task-shifting to NPHWs was the central