Sample records for clinical neurophysiology kyoto

  1. Application of ET-Kyoto solution in clinical lung transplantation.

    PubMed

    Omasa, Mitsugu; Hasegawa, Seiki; Bando, Toru; Hanaoka, Nobuharu; Yoshimura, Takashi; Nakamura, Takayuki; Wada, Hiromi

    2004-01-01

    We have developed a new organ preservation solution called extracellular-type trehalose-containing Kyoto (ET-Kyoto) solution. ET-Kyoto solution has been applied in clinical lung transplantation. The patient was a 49-year-old woman with diffuse panbronchiolitis. She underwent bilateral lobar lung transplantation from living donors. Each lobe was flushed with ET-Kyoto solution. After reperfusion, PaO(2) with inhalation of 100% oxygen was more than 500 Torr. Posttransplantation course was uneventful. Despite the relatively short ischemic time of this case report, ET-Kyoto solution may be feasible and safely applied in clinical lung transplantation.

  2. [Mixed depressions: clinical and neurophysiological biomarkers].

    PubMed

    Micoulaud Franchi, J-A; Geoffroy, P-A; Vion-Dury, J; Balzani, C; Belzeaux, R; Maurel, M; Cermolacce, M; Fakra, E; Azorin, J-M

    2013-12-01

    Epidemiological studies of major depressive episodes (MDE) highlighted the frequent association of symptoms or signs of mania or hypomania with depressive syndrome. Beyond the strict definition of DSM-IV, epidemiological recognition of a subset of MDE characterized by the presence of symptoms or signs of the opposite polarity is clinically important because it is associated with pejorative prognosis and therapeutic response compared to the subgroup of "typical MDE". The development of DSM-5 took into account the epidemiological data. DSM-5 opted for a more dimensional perspective in implementing the concept of "mixed features" from an "episode" to a "specification" of mood disorder. As outlined in the DSM-5: "Mixed features associated with a major depressive episode have been found to be a significant risk factor for the development of bipolar I and II disorder. As a result, it is clinically useful to note the presence of this specifier for treatment planning and monitoring of response to therapeutic". However, the mixed features are sometimes difficult to identify, and neurophysiological biomarkers would be useful to make a more specific diagnosis. Two neurophysiological models make it possible to better understand MDE with mixed features : i) the emotional regulation model that highlights a tendency to hyper-reactive and unstable emotion response, and ii) the vigilance regulation model that highlights, through EEG recording, a tendency to unstable vigilance. Further research is required to better understand relationships between these two models. These models provide the opportunity of a neurophysiological framework to better understand the mixed features associated with MDE and to identify potential neurophysiological biomarkers to guide therapeutic strategies. Copyright © 2013 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  3. Objective pain diagnostics: clinical neurophysiology.

    PubMed

    Garcia-Larrea, L

    2012-06-01

    Neurophysiological techniques help in diagnosis, prognosis and treatment of chronic pain, and are particularly useful to determine its neuropathic origin. According to current standards, the diagnosis of definite neuropathic pain (NP) needs objective confirmation of a lesion or disease of somatosensory systems, which can be provided by neurophysiological testing. Lesions causing NP mostly concern the pain-temperature pathways, and therefore neurophysiological procedures allowing the specific testing of these pathways (i.e., A-delta and C-fibres, spino-thalamo-cortical tracts) are essential for objective diagnosis. Different techniques to stimulate selectively pain-temperature pathways are discussed. Of these, laser-evoked potentials (LEPs) appear as the easiest and most reliable neurophysiological method of assessing nociceptive function, and their coupling with autonomic responses (e.g., galvanic skin response) and psychophysics (quantitative sensory testing - QST) can still enhance their diagnostic yield. Neurophysiological techniques not exploring specifically nociception, such as standard nerve conduction velocities (NCV) and SEPs to non-noxious stimulation, should be associated to the exploration of nociceptive systems, not only because both may be simultaneously affected to different degrees, but also because some specific painful symptoms, such as paroxysmal discharges, may depend on specific alteration of highly myelinated A-beta fibres. The choice of techniques is determined after anamnesis and clinical exam, and tries to answer a number of questions: (a) is the pain-related to injury of somatosensory pathways?; (b) to what extent are different subsystems affected?; (c) are mechanisms and lesion site in accordance with imaging data?; (d) are results of use for diagnostic or therapeutic follow-up? Neuropathic pain (NP) affects more than 15 million people in Western countries, and its belated diagnosis leads to insufficient or delayed therapy. The use of

  4. Neurophysiology of the pelvic floor in clinical practice: a systematic literature review

    PubMed Central

    Bianchi, Francesca; Squintani, Giovanna Maddalena; Osio, Maurizio; Morini, Alberto; Bana, Cristina; Ardolino, Gianluca; Barbieri, Sergio; Bertolasi, Laura; Caramelli, Riccardo; Cogiamanian, Filippo; Currà, Antonio; de Scisciolo, Giuseppe; Foresti, Camillo; Frasca, Vittorio; Frasson, Emma; Inghilleri, Maurizio; Maderna, Luca; Motti, Luisa; Onesti, Emanuela; Romano, Marcello Calogero; Del Carro, Ubaldo

    2017-01-01

    Summary Neurophysiological testing of the pelvic floor is recognized as an essential tool to identify pathophysiological mechanisms of pelvic floor disorders, support clinical diagnosis, and aid in therapeutic decisions. Nevertheless, the diagnostic value of these tests in specific neurological diseases of the pelvic floor is not completely clarified. Seeking to fill this gap, the members of the Neurophysiology of the Pelvic Floor Study Group of the Italian Clinical Neurophysiology Society performed a systematic review of the literature to gather available evidence for and against the utility of neurophysiological tests. Our findings confirm the utility of some tests in specific clinical conditions [e.g. concentric needle electromyography, evaluation of sacral reflexes and of pudendal somatosensory evoked potentials (pSEPs) in cauda equina and conus medullaris lesions, and evaluation of pSEPs and perineal sympathetic skin response in spinal cord lesions], and support their use in clinical practice. Other tests, particularly those not currently supported by high-level evidence, when employed in individual patients, should be evaluated in the overall clinical context, or otherwise used for research purposes.

  5. CLINICAL AUTONOMIC NEUROPHYSIOLOGY AND THE MALE SEXUAL RESPONSE: AN OVERVIEW

    PubMed Central

    Yang, Claire C.; Jiang, Xiaogang

    2009-01-01

    Introduction Clinical neurophysiology is the study of the human nervous system through the recording of bioelectrical activity. In the realm of male sexual functioning, this includes using electrophysiologic techniques to study the nerves subserving erection, emission, ejaculation, and orgasm. Aim To introduce the reader to the principles of clinical neurophysiology as they relate to the male sexual response, particularly erection. Methods We review the pertinent autonomic neuroanatomy and neurophysiology of reflexes relevant to the male sexual response, as well as summarize the genital electrodiagnostic tests that are being used to interrogate the autonomic innervation pertinent to male sexual functioning. Conclusions The male sexual response is a coordinated series of interactions between the somatic and the autonomic nervous systems. Measurement of the autonomically mediated portions of the sexual reflexes is of great clinical interest, particularly in relation to erection. Advances in clinical electrodiagnostics now allow for consistent recording of evoked and spontaneous intra-penile electrical activity. However, before broad and widespread use of these techniques is possible, more investigations are needed. PMID:19267845

  6. Pathophysiology of pain in postherpetic neuralgia: a clinical and neurophysiological study.

    PubMed

    Truini, A; Galeotti, F; Haanpaa, M; Zucchi, R; Albanesi, A; Biasiotta, A; Gatti, A; Cruccu, G

    2008-12-01

    Postherpetic neuralgia is an exceptionally drug-resistant neuropathic pain. To investigate the pathophysiological mechanisms underlying postherpetic neuralgia we clinically investigated sensory disturbances, pains and itching, with an 11-point numerical rating scale in 41 patients with ophthalmic postherpetic neuralgia. In all the patients we recorded the blink reflex, mediated by non-nociceptive myelinated Abeta-fibers, and trigeminal laser evoked potentials (LEPs) related to nociceptive myelinated Adelta- and unmyelinated C-fiber activation. We also sought possible correlations between clinical sensory disturbances and neurophysiological data. Neurophysiological testing yielded significantly abnormal responses on the affected side compared with the normal side (P<0.001). The blink reflex delay correlated with the intensity of paroxysmal pain, whereas the Adelta- and C-LEP amplitude reduction correlated with the intensity of constant pain (P<0.01). Allodynia correlated with none of the neurophysiological data. Our study shows that postherpetic neuralgia impairs all sensory fiber groups. The neurophysiological-clinical correlations suggest that constant pain arises from a marked loss of nociceptive afferents, whereas paroxysmal pain is related to Abeta-fiber demyelination. These findings might be useful for a better understanding of pain mechanisms in postherpetic neuralgia.

  7. Application of Higuchi's fractal dimension from basic to clinical neurophysiology: A review.

    PubMed

    Kesić, Srdjan; Spasić, Sladjana Z

    2016-09-01

    For more than 20 years, Higuchi's fractal dimension (HFD), as a nonlinear method, has occupied an important place in the analysis of biological signals. The use of HFD has evolved from EEG and single neuron activity analysis to the most recent application in automated assessments of different clinical conditions. Our objective is to provide an updated review of the HFD method applied in basic and clinical neurophysiological research. This article summarizes and critically reviews a broad literature and major findings concerning the applications of HFD for measuring the complexity of neuronal activity during different neurophysiological conditions. The source of information used in this review comes from the PubMed, Scopus, Google Scholar and IEEE Xplore Digital Library databases. The review process substantiated the significance, advantages and shortcomings of HFD application within all key areas of basic and clinical neurophysiology. Therefore, the paper discusses HFD application alone, combined with other linear or nonlinear measures, or as a part of automated methods for analyzing neurophysiological signals. The speed, accuracy and cost of applying the HFD method for research and medical diagnosis make it stand out from the widely used linear methods. However, only a combination of HFD with other nonlinear methods ensures reliable and accurate analysis of a wide range of neurophysiological signals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. [Clinical and neurophysiological aspects of severe forms of autism in children].

    PubMed

    Simashkova, N V; Iakupova, L P; Bashina, V M

    2006-01-01

    The aim of the study was to elucidate fundamentals for the phenomenon of universality of childhood autism by comparison of clinical and neurophysiological features of its severest forms--children endogenous autism (CEA) and Rett's syndrome (RS). Each group included 20 patients. Both groups were similar by age-at-disease-onset, clinical appearances during the disease course and dynamics of psychopathological syndromes. The theta-rhythm is common for CEA and RS at the disease stage with marked signs of disease acuity, autism, regress and, therefore, may be regarded as a marker of severity and development delay. The universality of autism phenomenon in its severe forms was confirmed both at the clinical and neurophysiological levels.

  9. [Pain disorders in traumatized individuals - neurophysiology and clinical presentation].

    PubMed

    Egloff, N; Hirschi, A; von Känel, R

    2012-01-18

    This overview portrays the salient physiological mechanisms being involved in the clinical manifestation of chronic pain in traumatized patients. A «hypermnesia-hyperarousal-model» is purported to support the neurophysiologic plausibility of the trauma-pain-relationship. We discuss seven characteristic clinical pain entities which alone or in combination can be found in patients with a previous psychological trauma.

  10. Neurophysiology versus clinical genetics in Rett syndrome: A multicenter study.

    PubMed

    Halbach, Nicky; Smeets, Eric E; Julu, Peter; Witt-Engerström, Ingegerd; Pini, Giorgio; Bigoni, Stefania; Hansen, Stig; Apartopoulos, Flora; Delamont, Robert; van Roozendaal, Kees; Scusa, Maria F; Borelli, Paolo; Candel, Math; Curfs, Leopold

    2016-09-01

    Many studies have attempted to establish the genotype-phenotype correlation in Rett syndrome (RTT). Cardiorespiratory measurements provide robust objective data, to correlate with each of the different clinical phenotypes. It has important implications for the management and treatment of this syndrome. The aim of this study was to correlate the genotype with the quantitative cardiorespiratory data obtained by neurophysiological measurement combined with a clinical severity score. This international multicenter study was conducted in four European countries from 1999 to 2012. The study cohort consisted of a group of 132 well-defined RTT females aged between 2 and 43 years with extended clinical, molecular, and neurophysiological assessments. Diagnosis of RTT was based on the consensus criteria for RTT and molecular confirmation. Genotype-phenotype analyses of clinical features and cardiorespiratory data were performed after grouping mutations by the same type and localization or having the same putative biological effect on the MeCP2 protein, and subsequently on eight single recurrent mutations. A less severe phenotype was seen in females with CTS, p.R133C, and p.R294X mutations. Autonomic disturbances were present in all females, and not restricted to nor influenced by one specific group or any single recurrent mutation. The objective information from non-invasive neurophysiological evaluation of the disturbed central autonomic control is of great importance in helping to organize the lifelong care for females with RTT. Further research is needed to provide insights into the pathogenesis of autonomic dysfunction, and to develop evidence-based management in RTT. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. The contribution of clinical neurophysiology to the comprehension of the tension-type headache mechanisms.

    PubMed

    Rossi, Paolo; Vollono, Catello; Valeriani, Massimiliano; Sandrini, Giorgio

    2011-06-01

    So far, clinical neurophysiological studies on tension-type headache (TTH) have been conducted with two main purposes: (1) to establish whether some neurophysiological parameters may act as markers of TTH, and (2) to investigate the physiopathology of TTH. With regard to the first point, the present results are disappointing, since some abnormalities found in TTH patients may be frequently observed also in migraineurs. On the other hand, clinical neurophysiology has played an important role in the debate about the pathogenesis of TTH. Studies on the exteroceptive suppression of the temporalis muscle contraction have detected a dysfunction of the brainstem excitability and of its suprasegmental control. A similar conclusion has been reached by using the trigeminocervical reflexes, whose abnormalities in TTH have suggested a reduced inhibitory activity of brainstem interneurons, reflecting abnormal endogenous pain control mechanisms. It is interesting that the neural excitability abnormality in TTH seems to be a generalized phenomenon, not limited to the cranial districts. Defective DNIC-like mechanisms have indeed been evidenced also in somatic districts by nociceptive flexion reflex studies. Unfortunately, most neurophysiological studies on TTH are marred by serious methodological flaws, which should be avoided in future researches, in order to better clarify the TTH mechanisms. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Customer needs, expectations, and satisfaction with clinical neurophysiology services in Ireland: a case for tele-neurophysiology development.

    PubMed

    Fitzsimons, M; Ronan, L; Murphy, K; Browne, G; Connolly, S; McMenamin, J; Delanty, N

    2004-01-01

    Although equitable access to services should be based on need, geographical location of patients and their clinicians can give rise to inequalities in healthcare delivery. Development of tele-medicine services can improve equity of access. The specialty of Clinical Neurophysiology (CN), currently under-developed in Ireland provides an example of such potential. This study aimed to determine the needs, expectations, and satisfaction of CN customers, namely patients and referring clinicians. The goal was to examine geographical impediments to access that might be addressed by the introduction of tele-neurophysiology. Two customer surveys were conducted: CN referring clinicians and CN patients. Thirty-one North Western Health Board (NWHB) consultant clinicians responded to a postal survey. Distance and delays caused by long waiting lists were felt to deter or make CN referral irrelevant. Ninety-seven percent believed the lack of a local service negatively impacts on patient management and 93% would welcome the introduction of a tele-neurophysiology service. The geographical location of patient's residence and/or the location of the referring clinician's practice influenced waiting lists for CN. Fifty-eight (105/182) percent of patients living in a region with a CN service compared to 39% (50/128) of those living in a region with no service received an appointment within one month. In addition to the current insufficient CN service capacity in Ireland, these surveys highlighted geographical inequities. Tele-neurophysiology has the potential to speed-up diagnosis, result in more patients being appropriately investigated and be fairer to patients.

  13. Primary headache pathophysiology in children: the contribution of clinical neurophysiology.

    PubMed

    Pro, S; Tarantino, S; Capuano, A; Vigevano, F; Valeriani, M

    2014-01-01

    Although primary headaches are very prevalent also in pediatric age, most neurophysiologic studies in these diseases concerned only the adulthood. The neurophysiologic investigation of the pathophysiological mechanisms subtending migraine and tension-type headache in children and adolescents could be particularly interesting, since during the developmental age the migrainous phenotype is scarcely influenced by many environmental factors that can typically act on adult headache patients. The neurophysiologic abnormality most frequently found in adult migraineurs, that is the reduced habituation of evoked potentials, was confirmed also in migraine children, although it was shown to involve also children with tension-type headache. Some studies showed abnormalities in the maturation of brain functions in migraine children and adolescents. While the visual system maturation seems slowed in young migraineurs, the psychophysiological mechanisms subtending somatosensory spatial attention in migraine children are more similar to those of healthy adults than to those of age-matched controls. There are some still unexplored fields that will have to be subjects of future studies. The nociceptive modality, which has been investigated in adult patients with primary headaches, should be studied also in pediatric migraine. Moreover, the technique of transcranial magnetic stimulation, not yet used in young migraineurs, will possibly provide further elements about brain excitability in migraine children. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Clinical and neurophysiological investigation of a large family with dominant Charcot-Marie-Tooth type 2 disease with pyramidal signs.

    PubMed

    Neves, Eduardo Luis de Aquino; Kok, Fernando

    2011-06-01

    Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy of motor and sensory impairment with distal predominance. Atrophy and weakness of lower limbs are the first signs of the disease. It can be classified, with the aid of electromyography and nerve conduction studies, as demyelinating (CMT1) or axonal (CMT2). Clinical and neurophysiological investigation of a large multigenerational family with CMT2 with autosomal dominant mode of transmission. Fifty individuals were evaluated and neurophysiological studies performed in 22 patients. Thirty individuals had clinical signs of motor-sensory neuropathy. Babinski sign was present in 14 individuals. Neurophysiological study showed motor-sensory axonal polyneuropathy. The clinical and neurophysiological characteristics of this family does not differ from those observed with other forms of CMT, except for the high prevalence of Babinski sign.

  15. Neurophysiological localisation of ulnar neuropathy at the elbow: Validation of diagnostic criteria developed by a taskforce of the Danish Society of clinical neurophysiology.

    PubMed

    Pugdahl, K; Beniczky, S; Wanscher, B; Johnsen, B; Qerama, E; Ballegaard, M; Benedek, K; Juhl, A; Ööpik, M; Selmar, P; Sønderborg, J; Terney, D; Fuglsang-Frederiksen, A

    2017-11-01

    This study validates consensus criteria for localisation of ulnar neuropathy at elbow (UNE) developed by a taskforce of the Danish Society of Clinical Neurophysiology and compares them to the existing criteria from the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM). The Danish criteria are based on combinations of conduction slowing in the segments of the elbow and forearm expressed in Z-scores, and difference between the segments in m/s. Examining fibres to several muscles and sensory fibres can increase the certainty of the localisation. Diagnostic accuracy for UNE was evaluated on 181 neurophysiological studies of the ulnar nerve from 171 peer-reviewed patients from a mixed patient-group. The diagnostic reference standard was the consensus diagnosis based on all available clinical, laboratory, and electrodiagnostic information reached by a group of experienced Danish neurophysiologists. The Danish criteria had high specificity (98.4%) and positive predictive value (PPV) (95.2%) and fair sensitivity (76.9%). Compared to the AANEM criteria, the Danish criteria had higher specificity (p<0.001) and lower sensitivity (p=0.02). The Danish consensus criteria for UNE are very specific and have high PPV. The Danish criteria for UNE are reliable and well suited for use in different centres as they are based on Z-scores. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. The neurophysiology of pain perception and hypnotic analgesia: implications for clinical practice.

    PubMed

    Jensen, Mark P

    2008-10-01

    Although there remains much to be learned, a great deal is now known about the neurophysiological processes involved in the experience of pain. Research confirms that there is no single focal "center" in the brain responsible for the experience of pain. Rather, pain is the end product of a number of integrated networks that involve activity at multiple cortical and subcortical sites. Our current knowledge about the neurophysiological mechanisms of pain has important implications for understanding the mechanisms underlying the effects of hypnotic analgesia treatments, as well as for improving clinical practice. This article is written for the clinician who uses hypnotic interventions for pain management. It begins with an overview of what is known about the neurophysiological basis of pain and hypnotic analgesia, and then discusses how clinicians can use this knowledge for (1) organizing the types of suggestions that can be used when providing hypnotic treatment, and (2) maximizing the efficacy of hypnotic interventions in clients presenting with pain problems.

  17. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  18. [Clinical and neurophysiological heterogeneity of attention deficit hyperactivity disorder].

    PubMed

    Chutko, L S; Yakovenko, E A; Surushkina, S Yu; Anisimova, T I; Kropotov, Yu D

    To determine clinical/neurophysiological characteristics of different forms of attention deficit hyperactivity disorder (ADHD) and the efficacy of treatment with cerebrolysin. Sixty children, aged 9 to 12 years, with ADHD were examined using clinical and electroencephalographic methods. Idiopathic and residual-organic forms were compared. The study shows significantly higher levels of impulsivity and hyperactivity in children with residual-organic form of the disease. There were significant differences in the amplitude component of engaging in action (P3 Go) and the amplitude of the action suppression component (P3 NOGO) in patients with different forms of ADHD. The high clinical efficacy (improvement in 70.0% of patients with idiopathic form of ADHD and 86.7% of patients with residual-organic form of the disease) was found.

  19. Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.

    PubMed

    Light, Gregory A; Swerdlow, Neal R; Rissling, Anthony J; Radant, Allen; Sugar, Catherine A; Sprock, Joyce; Pela, Marlena; Geyer, Mark A; Braff, David L

    2012-01-01

    Endophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed. Participants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year. Most neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria. The majority of neurophysiological and neurocognitive measures exhibited deficits in patients

  20. Characterization of Neurophysiologic and Neurocognitive Biomarkers for Use in Genomic and Clinical Outcome Studies of Schizophrenia

    PubMed Central

    Light, Gregory A.; Swerdlow, Neal R.; Rissling, Anthony J.; Radant, Allen; Sugar, Catherine A.; Sprock, Joyce; Pela, Marlena; Geyer, Mark A.; Braff, David L.

    2012-01-01

    Background Endophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed. Methods Participants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year. Results Most neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria. Conclusions The majority of neurophysiological and neurocognitive

  1. Pre- and postoperative evaluation of patients with lumbosacral disc herniation by neurophysiological and clinical assessment.

    PubMed

    Wojtysiak, Magdalena; Huber, Juliusz; Wiertel-Krawczuk, Agnieszka; Szymankiewicz-Szukała, Agnieszka; Moskal, Jakub; Janicki, Jacek

    2014-10-01

    The application of complex neurophysiological examination including motor evoked potentials (MEP) for pre- and postoperative evaluation of patients experiencing acute sciatica. The assessment of sensitivity and specificity of needle electromyography, MEP, and H-reflex examinations. The comparative analysis of preoperative and postoperative neurophysiological examination. In spite of the fact that complex neurophysiological diagnostic tools seem to be important for interpretation of incompatible results of neuroimaging and clinical examination, especially in the patients qualified for surgical treatment, their application has never been completely analyzed and documented. Pre- and postoperative electromyography, electroneurography, F-waves, H-reflex, and MEP examination were performed in 23 patients with confirmed disc-root conflict at lumbosacral spine. Clinical evaluation included examination of sensory perception for L5-S1 dermatomes, muscles strength with Lovett's scale, deep tendon reflexes, pain intensity with visual analogue scale, and straight leg raising test. Sensitivity of electromyography at rest and MEP examination for evaluation of L5-S1 roots injury was 22% to 63% and 31% to 56% whereas specificity was 71% to 83% and 57% to 86%, respectively. H-reflex sensitivity and specificity for evaluation of S1 root injury were 56% and 67%, respectively. A significant improvement of root latency parameter in postoperative MEP studies as compared with preoperative was recorded for L5 (P = 0.039) and S1 root's levels (P = 0.05). The analysis of the results from neurophysiological tests together with neuroimaging and clinical examination allow for a precise preoperative indication of the lumbosacral roots injury and accurate postoperative evaluation of patients experiencing sciatica. 3.

  2. A neurophysiological study of facial numbness in multiple sclerosis: Integration with clinical data and imaging findings.

    PubMed

    Koutsis, Georgios; Kokotis, Panagiotis; Papagianni, Aikaterini E; Evangelopoulos, Maria-Eleftheria; Kilidireas, Constantinos; Karandreas, Nikolaos

    2016-09-01

    To integrate neurophysiological findings with clinical and imaging data in a consecutive series of multiple sclerosis (MS) patients developing facial numbness during the course of an MS attack. Nine consecutive patients with MS and recent-onset facial numbness were studied clinically, imaged with routine MRI, and assessed neurophysiologically with trigeminal somatosensory evoked potential (TSEP), blink reflex (BR), masseter reflex (MR), facial nerve conduction, facial muscle and masseter EMG studies. All patients had unilateral facial hypoesthesia on examination and lesions in the ipsilateral pontine tegmentum on MRI. All patients had abnormal TSEPs upon stimulation of the affected side, excepting one that was tested following remission of numbness. BR was the second most sensitive neurophysiological method with 6/9 examinations exhibiting an abnormal R1 component. The MR was abnormal in 3/6 patients, always on the affected side. Facial conduction and EMG studies were normal in all patients but one. Facial numbness was always related to abnormal TSEPs. A concomitant R1 abnormality on BR allowed localization of the responsible pontine lesion, which closely corresponded with MRI findings. We conclude that neurophysiological assessment of MS patients with facial numbness is a sensitive tool, which complements MRI, and can improve lesion localization. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A neurophysiological approach to tinnitus: clinical implications.

    PubMed

    Jastreboff, P J; Hazell, J W

    1993-02-01

    This paper presents a neurophysiological approach to tinnitus and discusses its clinical implications. A hypothesis of discordant damage of inner and outer hair cells systems in tinnitus generation is outlined. A recent animal model has facilitated the investigation of the mechanisms of tinnitus and has been further refined to allow for the measurement of tinnitus pitch and loudness. The analysis of the processes involved in tinnitus detection postulates the involvement of an abnormal increase of gain within the auditory system. Moreover, it provides a basis for treating patients with hyperacusis, which we are considering to be a pre-tinnitus state. Analysis of the process of tinnitus perception allows for the possibility of facilitating the process of tinnitus habituation for the purpose of its alleviation. The combining of theoretical analysis with clinical findings has resulted in the creation of a multidisciplinary Tinnitus Centre. The foundation of the Centre focuses on two goals: the clinical goal is to remove tinnitus perception from the patient's consciousness, while directing research toward finding a mechanism-based method for the suppression of tinnitus generators and processes responsible for enhancement of tinnitus-related neuronal activity.

  4. Neurophysiological criteria in the diagnosis of different clinical types of Guillain-Barre syndrome.

    PubMed

    Kalita, J; Misra, U K; Das, M

    2008-03-01

    The diagnostic yield of various neurophysiological criteria may vary in different subforms of Guillain-Barre syndrome (GBS), whose prevalence varies in different geographical areas. To evaluate the sensitivity of various neurophysiological criteria in different clinical subtypes of GBS, and their relationship with severity, duration and outcome. Consecutive patients with GBS underwent detailed clinical evaluation. Severity was graded on a scale from 0 to 10. Motor and sensory nerve conductions and F wave studies were performed. The diagnostic sensitivity of Albers et al (set 1), Cornblath (set 2), Ho et al (set 3), Dutch GBS study group (set 4), Italian GBS study group (set 5) and Albers and Kelly (set 6) criteria were evaluated and correlated with clinical subtypes of GBS, duration, severity and outcome. There were 51 patients. Mean disability was 6.8; 34 patients were bedridden and five needed a ventilator. Clinical presentation was pure motor in 31, motorsensory in 18 and pure sensory in two patients. The sensitivity of nerve conduction study in the diagnosis of GBS was highest in set 1 (88.2%) followed by set 3 (86.3%) and set 4 (82.4%) and lowest in set 2 (39.2%). The diagnostic yield of sets 1, 3 and 4 were also higher than sets 2, 5 and 6 in different clinical subtypes of GBS. As per Ho et al, patients could be categorised into acute inflammatory demyelinating polyradiculoneuropathy (44 (86.3%)), acute motor axonal neuropathy (4 (7.8%)) and acute motor sensory axonal neuropathy (3 (5.9%)). One (2%) patient died, 22.4% had complete, 57.1% partial and 18.4% poor recovery at 3 months. Outcome was related to severity of illness and compound muscle action potential (CMAP) amplitude. The sensitivity of different neurophysiological criteria in the diagnosis of Indian GBS patients varied from 39.2% to 88.2%. The outcome was related to severity of illness and CMAP amplitude.

  5. Neurophysiology of pain and hypnosis for chronic pain.

    PubMed

    Dillworth, Tiara; Mendoza, M Elena; Jensen, Mark P

    2012-03-01

    In the past decade there has been a dramatic increase in (1) understanding the neurophysiological components of the pain experiences, (2) randomized clinical trials testing the efficacy of hypnotic treatments on chronic pain, and (3) laboratory research examining the effects of hypnosis on the neurophysiological processes implicated in pain. Work done in these areas has not only demonstrated the efficacy of hypnosis for treating chronic pain but is beginning to shed light on neurophysiological processes that may play a role in its effectiveness. This paper reviews a selection of published studies from these areas of research, focusing on recent findings that have the most potential to inform both clinical work and research in this area. The paper concludes with research and clinical recommendations for maximizing treatment efficacy based on the research findings that are available.

  6. [Intraoperative neurophysiological monitoring in Spain: its beginnings, current situation and future prospects].

    PubMed

    Cortes-Donate, V E; Perez-Lorensu, P J; Garcia-Garcia, A; Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine, Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine; Sociedad Espanola de Neurofisiologia Clinica Senfc, Sociedad Espanola de Neurofisiologia Clinica Senfc; Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc, Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc

    2018-05-01

    Intraoperative neurophysiological monitoring (IONM) is nowadays another tool within the operating room that seeks to avoid neurological sequels derived from the surgical act. The Spanish Neurophysiological Intra-Surgical Monitoring Association (AMINE) in collaboration with the Spanish Society of Clinical Neurophysiology (SENFC), and the IONM Working Group of the SENFC has been collecting data in order to know the current situation of the IONM in Spain by hospitals, autonomous communities including the autonomous cities of Ceuta and Melilla, the opinions of the specialists in clinical neurophysiology involved in this topic and further forecasts regarding IONM. The data was gathered from November 2015 to May 2016 through telephone contact and/or email with specialists in clinical neurophysiology of the public National Health System, and through a computerized survey that also includes private healthcare centers. With the data obtained, from the perspective of AMINE and the SENFC we consider that nowadays the field of medicine covered by IONM is considerably large and it is foreseen that it will continue to grow. Therefore, a greater number of specialists in Clinical Neurophysiology will be required, as well as the need for specific training within the specialty that involves increasing the training period of MIRs based on competencies due to the increase in techniques/procedures, as well as its complexity.

  7. Clinical and Demographic Evaluation of a Holoprosencephaly Cohort From the Kyoto Collection of Human Embryos.

    PubMed

    Abe, Yu; Kruszka, Paul; Martinez, Ariel F; Roessler, Erich; Shiota, Kohei; Yamada, Shigehito; Muenke, Maximilian

    2018-06-01

    Holoprosencephaly (HPE) is a genetically and phenotypically heterogeneous disorder involving developmental defects. HPE is a rare condition (1/10,000-20,000 newborns) but can be found as frequently as 1/250 among conceptions, suggesting that most HPE embryos are incompatible with postnatal life and result in spontaneous abortions during the first trimester of gestation. Beginning in 1961, the Kyoto University in Japan collected over 44,000 human conceptuses in collaboration with several hundred domestic obstetricians. Over 200 cases of HPE have been identified in the Kyoto collection, which represents the largest single cohort of HPE early stage embryo specimens. In this study, we present a comprehensive clinical and demographic evaluation of this HPE cohort prior to genomic analysis. The total percentage of the threatened abortion among HPE embryos in the Kyoto collection was 67%. Almost 20% of the women with embryos affected by HPE had experienced spontaneous miscarriage. In addition, there was a significant tendency that the mothers with HPE cases had fewer live births than the control. Moreover, in 70% of cases, the mother reported bleeding during pregnancy, a higher percentage than expected, indicating that most of the conceptions with HPE embryos tend to be terminated spontaneously. There were no differences in smoking between mothers with HPE affected and unaffected pregnancies; however, alcohol use was higher in women with pregnancies affected by HPE. In this study, we precisely characterize the phenotype and environmental influences of embryos affected by HPE allowing the future leveraging of genomic technologies to further understand the genetics of forebrain development. Anat Rec, 301:973-986, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Response inhibition in Attention deficit disorder and neurofibromatosis type 1 – clinically similar, neurophysiologically different

    PubMed Central

    Bluschke, Annet; von der Hagen, Maja; Papenhagen, Katharina; Roessner, Veit; Beste, Christian

    2017-01-01

    There are large overlaps in cognitive deficits occurring in attention deficit disorder (ADD) and neurodevelopmental disorders like neurofibromatosis type 1 (NF1). This overlap is mostly based on clinical measures and not on in-depth analyses of neuronal mechanisms. However, the consideration of such neuronal underpinnings is crucial when aiming to integrate measures that can lead to a better understanding of the underlying mechanisms. Inhibitory control deficits, for example, are a hallmark in ADD, but it is unclear how far there are similar deficits in NF1. We thus compared adolescent ADD and NF1 patients to healthy controls in a Go/Nogo task using behavioural and neurophysiological measures. Clinical measures of ADD-symptoms were not different between ADD and NF1. Only patients with ADD showed increased Nogo errors and reductions in components reflecting response inhibition (i.e. Nogo-P3). Early perceptual processes (P1) were changed in ADD and NF1. Clinically, patients with ADD and NF1 thus show strong similarities. This is not the case in regard to underlying cognitive control processes. This shows that in-depth analyses of neurophysiological processes are needed to determine whether the overlap between ADD and NF1 is as strong as assumed and to develop appropriate treatment strategies. PMID:28262833

  9. Neurophysiological testing in anorectal disorders

    PubMed Central

    Remes-Troche, Jose M; Rao, Satish SC

    2013-01-01

    Neurophysiological tests of anorectal function can provide useful information regarding the integrity of neuronal innervation, as well as neuromuscular function. This information can give insights regarding the pathophysiological mechanisms that lead to several disorders of anorectal function, particularly fecal incontinence, pelvic floor disorders and dyssynergic defecation. Currently, several tests are available for the neurophysiological evaluation of anorectal function. These tests are mostly performed on patients referred to tertiary care centers, either following negative evaluations or when there is lack of response to conventional therapy. Judicious use of these tests can reveal significant and new understanding of the underlying mechanism(s) that could pave the way for better management of these disorders. In addition, these techniques are complementary to other modalities of investigation, such as pelvic floor imaging. The most commonly performed neurophysiological tests, along with their indications and clinical utility are discussed. Several novel techniques are evolving that may reveal new information on brain–gut interactions. PMID:19072383

  10. Correlations between the clinical, histological and neurophysiological examinations in patients before and after parotid gland tumor surgery: verification of facial nerve transmission.

    PubMed

    Wiertel-Krawczuk, Agnieszka; Huber, Juliusz; Wojtysiak, Magdalena; Golusiński, Wojciech; Pieńkowski, Piotr; Golusiński, Paweł

    2015-05-01

    Parotid gland tumor surgery sometimes leads to facial nerve paralysis. Malignant more than benign tumors determine nerve function preoperatively, while postoperative observations based on clinical, histological and neurophysiological studies have not been reported in detail. The aims of this pilot study were evaluation and correlations of histological properties of tumor (its size and location) and clinical and neurophysiological assessment of facial nerve function pre- and post-operatively (1 and 6 months). Comparative studies included 17 patients with benign (n = 13) and malignant (n = 4) tumors. Clinical assessment was based on House-Brackmann scale (H-B), neurophysiological diagnostics included facial electroneurography [ENG, compound muscle action potential (CMAP)], mimetic muscle electromyography (EMG) and blink-reflex examinations (BR). Mainly grade I of H-B was recorded both pre- (n = 13) and post-operatively (n = 12) in patients with small (1.5-2.4 cm) benign tumors located in superficial lobes. Patients with medium size (2.5-3.4 cm) malignant tumors in both lobes were scored at grade I (n = 2) and III (n = 2) pre- and mainly VI (n = 4) post-operatively. CMAP amplitudes after stimulation of mandibular marginal branch were reduced at about 25 % in patients with benign tumors after surgery. In the cases of malignant tumors CMAPs were not recorded following stimulation of any branch. A similar trend was found for BR results. H-B and ENG results revealed positive correlations between the type of tumor and surgery with facial nerve function. Neurophysiological studies detected clinically silent facial nerve neuropathy of mandibular marginal branch in postoperative period. Needle EMG, ENG and BR examinations allow for the evaluation of face muscles reinnervation and facial nerve regeneration.

  11. Neurophysiology of conversion disorders: a historical perspective.

    PubMed

    Crommelinck, M

    2014-10-01

    The aim of this paper is to present a short historical perspective on the neurophysiological approach to hysteria and conversion disorders. The body of this paper will be constituted of three main parts. In the first part, we will present the significant progress due to some pioneers of neurology/psychiatry during the XIXth century. As we shall see, this period was particularly rich in personalities whose work gradually laid the foundations to a true medical approach to hysteria. In the first half of the XXth century, different factors have led to a long eclipse of the neurological approach to hysteria. In the second part, we will show how, by the 1960's-1970's, the conceptual and methodological advances in neurophysiology, as well as the turning point of cognitive sciences (and cognitive psychology in particular) allowed a gradual reinstatement of hysteria within the fields of neurology and clinical neurophysiology. Finally, and this is the third part of this paper, we will show how over the past three decades, an entirely new neurophysiological approach to hysteria and conversion disorders has emerged. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Clinical and neurophysiological changes after targeted intrathecal injections of bone marrow stem cells in a C3 tetraplegic subject.

    PubMed

    Santamaria, Andrea Jimena; Benavides, Francisco D; DiFede, Darcy L; Khan, Aisha; Pujol, Marietsy V; Dietrich, W Dalton; Marttos, Antonio; Green, Barth A; Hare, Joshua M; Guest, James

    2018-05-23

    High-level quadriplegia is a devastating condition with limited treatment options. Bone marrow derived stem cells (BMSCs) are reported to have immunomodulatory and neurotrophic effects in spinal cord injury (SCI). We report a subject with complete C2 SCI who received 3 anatomically targeted intrathecal infusions of BMSCs under a single-patient expanded access IND. She underwent intensive physical therapy and was followed for over 2 years. At end-point, her AIS grade improved from A to B and she recovered focal pressure touch sensation over several body areas. We conducted serial neurophysiological testing to monitor changes in residual connectivity. Motor, sensory and autonomic system testing included MEPs, SSEPs, EMG recordings, F waves, galvanic skin responses and tilt-table responses. The quality and magnitude of voluntary EMG activations increased over time but remained below the threshold of clinically obvious movement. Unexpectedly, at 14 months post-injury deep inspiratory maneuvers triggered respiratory-like EMG bursting in the biceps and several other muscles. This finding means that connections between respiratory neurons and motor neurons were newly established, or unmasked. We also report serial analysis of MRI, ISNCSCI, pulmonary function, pain scores, CSF cytokines and bladder assessment. As a single case, the linkage of the clinical and neurophysiological changes to either natural history or to the BMSC infusions cannot be resolved. Nevertheless, such detailed neurophysiological assessment of high cervical SCI patients is rarely performed. Our findings indicate that electrophysiology studies are sensitive to define both residual connectivity and new plasticity.

  13. Automatic detection of rhythmic and periodic patterns in critical care EEG based on American Clinical Neurophysiology Society (ACNS) standardized terminology.

    PubMed

    Fürbass, F; Hartmann, M M; Halford, J J; Koren, J; Herta, J; Gruber, A; Baumgartner, C; Kluge, T

    2015-09-01

    Continuous EEG from critical care patients needs to be evaluated time efficiently to maximize the treatment effect. A computational method will be presented that detects rhythmic and periodic patterns according to the critical care EEG terminology (CCET) of the American Clinical Neurophysiology Society (ACNS). The aim is to show that these detected patterns support EEG experts in writing neurophysiological reports. First of all, three case reports exemplify the evaluation procedure using graphically presented detections. Second, 187 hours of EEG from 10 critical care patients were used in a comparative trial study. For each patient the result of a review session using the EEG and the visualized pattern detections was compared to the original neurophysiology report. In three out of five patients with reported seizures, all seizures were reported correctly. In two patients, several subtle clinical seizures with unclear EEG correlation were missed. Lateralized periodic patterns (LPD) were correctly found in 2/2 patients and EEG slowing was correctly found in 7/9 patients. In 8/10 patients, additional EEG features were found including LPDs, EEG slowing, and seizures. The use of automatic pattern detection will assist in review of EEG and increase efficiency. The implementation of bedside surveillance devices using our detection algorithm appears to be feasible and remains to be confirmed in further multicenter studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.

    PubMed

    Gassert, Roger; Dietz, Volker

    2018-06-05

    The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well

  15. Kyoto global consensus report on Helicobacter pylori gastritis

    PubMed Central

    Sugano, Kentaro; Tack, Jan; Kuipers, Ernst J; Graham, David Y; El-Omar, Emad M; Miura, Soichiro; Haruma, Ken; Asaka, Masahiro; Uemura, Naomi; Malfertheiner, Peter

    2015-01-01

    Objective To present results of the Kyoto Global Consensus Meeting, which was convened to develop global consensus on (1) classification of chronic gastritis and duodenitis, (2) clinical distinction of dyspepsia caused by Helicobacter pylori from functional dyspepsia, (3) appropriate diagnostic assessment of gastritis and (4) when, whom and how to treat H. pylori gastritis. Design Twenty-three clinical questions addressing the above-mentioned four domains were drafted for which expert panels were asked to formulate relevant statements. A Delphi method using an anonymous electronic system was adopted to develop the consensus, the level of which was predefined as ≥80%. Final modifications of clinical questions and consensus were achieved at the face-to-face meeting in Kyoto. Results All 24 statements for 22 clinical questions after extensive modifications and omission of one clinical question were achieved with a consensus level of >80%. To better organise classification of gastritis and duodenitis based on aetiology, a new classification of gastritis and duodenitis is recommended for the 11th international classification. A new category of H. pylori-associated dyspepsia together with a diagnostic algorithm was proposed. The adoption of grading systems for gastric cancer risk stratification, and modern image-enhancing endoscopy for the diagnosis of gastritis, were recommended. Treatment to eradicate H. pylori infection before preneoplastic changes develop, if feasible, was recommended to minimise the risk of more serious complications of the infection. Conclusions A global consensus for gastritis was developed for the first time, which will be the basis for an international classification system and for further research on the subject. PMID:26187502

  16. Neurophysiological and clinical responses to rituximab in patients with anti-MAG polyneuropathy.

    PubMed

    Zara, Gabriella; Zambello, Renato; Ermani, M

    2011-12-01

    Rituximab treatment has shown clinical improvement in anti-myelin associated glycoprotein (MAG) polyneuropathy. We analyzed scores of clinical scales and the most sensitive electrophysiological parameters before and after immunomodulating treatment with rituximab in a group of patients affected by anti-MAG demyelinating polyneuropathy. Clinical scores, the percentage of CD20 B-lymphocytes, anti-MAG antibody titers and electrophysiological data in 7 patients with anti-MAG polyneuropathy were analyzed. The patients were examined before a cycle with rituximab, 6, 12 and 24 months after the end of the treatment. Two patients were treated with rituximab additional cycles and re-evaluated 48 months after the first treatment. There were no evident correlation between anti-MAG serum antibody titers or clinical scales and electrodiagnostic data. Significant decrease in the proportion of CD20 B-lymphocytes was observed. Significant anti-MAG antibodies titers reduction was detected after re-treatment. At follow-up, pinprik sensation and two point discrimination presented a significant improvement compared with the score before treatment. In our patients, rituximab did not improve any electrophysiological data. No correlation with anti-MAG serum antibodies course was found. With rituximab only pin sensibility improved. Rituximab re-treatment significantly reduces anti-MAG serum antibodies titers but improves only small fibers sensibility. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. The neurophysiology of sexual arousal.

    PubMed

    Schober, Justine M; Pfaff, Donald

    2007-09-01

    Our understanding of the process and initiation of sexual arousal is being enhanced by both animal and human studies, inclusive of basic science principles and research on clinical outcomes. Sexual arousal is dependent on neural (sensory and cognitive) factors, hormonal factors, genetic factors and, in the human case, the complex influences of culture and context. Sexual arousal activates the cognitive and physiologic processes that can eventually lead to sexual behavior. Sexual arousal comprises a particular subset of central nervous system arousal functions which depend on primitive, fundamental arousal mechanisms that cause generalized brain activity, but are manifest in a sociosexual context. The neurophysiology of sexual arousal is seen as a bidirectional system universal to all vertebrates. The following review includes known neural and genomic mechanisms of a hormone-dependent circuit for simple sex behavior. New information about hormone effects on causal steps related to sex hormones' nuclear receptor isoforms expressed by hypothalamic neurons continues to enrich our understanding of this neurophysiology.

  18. Kyoto global consensus report on Helicobacter pylori gastritis.

    PubMed

    Sugano, Kentaro; Tack, Jan; Kuipers, Ernst J; Graham, David Y; El-Omar, Emad M; Miura, Soichiro; Haruma, Ken; Asaka, Masahiro; Uemura, Naomi; Malfertheiner, Peter

    2015-09-01

    To present results of the Kyoto Global Consensus Meeting, which was convened to develop global consensus on (1) classification of chronic gastritis and duodenitis, (2) clinical distinction of dyspepsia caused by Helicobacter pylori from functional dyspepsia, (3) appropriate diagnostic assessment of gastritis and (4) when, whom and how to treat H. pylori gastritis. Twenty-three clinical questions addressing the above-mentioned four domains were drafted for which expert panels were asked to formulate relevant statements. A Delphi method using an anonymous electronic system was adopted to develop the consensus, the level of which was predefined as ≥80%. Final modifications of clinical questions and consensus were achieved at the face-to-face meeting in Kyoto. All 24 statements for 22 clinical questions after extensive modifications and omission of one clinical question were achieved with a consensus level of >80%. To better organise classification of gastritis and duodenitis based on aetiology, a new classification of gastritis and duodenitis is recommended for the 11th international classification. A new category of H. pylori-associated dyspepsia together with a diagnostic algorithm was proposed. The adoption of grading systems for gastric cancer risk stratification, and modern image-enhancing endoscopy for the diagnosis of gastritis, were recommended. Treatment to eradicate H. pylori infection before preneoplastic changes develop, if feasible, was recommended to minimise the risk of more serious complications of the infection. A global consensus for gastritis was developed for the first time, which will be the basis for an international classification system and for further research on the subject. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Pain is Associated to Clinical, Psychological, Physical, and Neurophysiological Variables in Women With Carpal Tunnel Syndrome.

    PubMed

    Fernández-Muñoz, Juan J; Palacios-Ceña, María; Cigarán-Méndez, Margarita; Ortega-Santiago, Ricardo; de-la-Llave-Rincón, Ana I; Salom-Moreno, Jaime; Fernández-de-las-Peñas, César

    2016-02-01

    To investigate potential relationships of clinical (age, function, side of pain, years with pain), physical (cervical range of motion, pinch grip force), psychological (depression), and neurophysiological (pressure and thermal pain thresholds) outcomes and hand pain intensity in carpal tunnel syndrome (CTS). Two hundred and forty-four (n=224) women with CTS were recruited. Demographic data, duration of the symptoms, function and severity of the disease, pain intensity, depression, cervical range of motion, pinch tip grip force, heat/cold pain thresholds (HPT/CPT), and pressure pain thresholds (PPT) were collected. Correlation and regression analysis were performed to determine the association among those variables and to determine the proportions of explained variance in hand pain intensity. Significant negative correlations existed between the intensity of pain and PPTs over the radial nerve, C5/C6 zygapophyseal joint, carpal tunnel and tibialis anterior muscle, HPT over the carpal tunnel, cervical extension and lateral-flexion, and thumb-middle, fourth, and little finger pinch tip forces. Significant positive correlations between the intensity of hand pain with function and depression were also observed. Stepwise regression analyses revealed that function, thumb-middle finger pinch, thumb-little finger pinch, depression, PPT radial nerve, PPT carpal tunnel, and HPT carpal tunnel were significant predictors of intensity of hand pain (R²=0.364; R² adjusted=0.343; F=16.87; P<0.001). This study showed that 36.5% of the variance of pain intensity was associated to clinical (function), neurophysiological (localized PPT and HPT), psychological (depression), and physical (finger pinch tip force) outcomes in women with chronic CTS.

  20. Congenital myasthenic syndrome with episodic apnoea: clinical, neurophysiological and genetic features in the long-term follow-up of 19 patients.

    PubMed

    McMacken, Grace; Whittaker, Roger G; Evangelista, Teresinha; Abicht, Angela; Dusl, Marina; Lochmüller, Hanns

    2018-01-01

    Congenital myasthenic syndrome with episodic apnoea (CMS-EA) is a rare but potentially treatable cause of apparent life-threatening events in infancy. The underlying mechanisms for sudden and recurrent episodes of respiratory arrest in these patients are unclear. Whilst CMS-EA is most commonly caused by mutations in CHAT, the list of associated genotypes is expanding. We reviewed clinical information from 19 patients with CMS-EA, including patients with mutations in CHAT, SLC5A7 and RAPSN, and patients lacking a genetic diagnosis. Lack of genetic diagnosis was more common in CMS-EA than in CMS without EA (56% n = 18, compared to 7% n = 97). Most patients manifested intermittent apnoea in the first 4 months of life (74%, n = 14). A degree of clinical improvement with medication was observed in most patients (74%, n = 14), but the majority of cases also showed a tendency towards complete remission of apnoeic events with age (mean age of resolution 2 years 5 months). Signs of impaired neuromuscular transmission were detected on neurophysiology studies in 79% (n = 15) of cases, but in six cases, this was only apparent following specific neurophysiological testing protocols (prolonged high-frequency stimulation). A relatively large proportion of CMS-EA remains genetically undiagnosed, which suggests the existence of novel causative CMS genes which remain uncharacterised. In light of the potential for recurrent life-threatening apnoeas in early life and the positive response to therapy, early diagnostic consideration of CMS-EA is critical, but without specific neurophysiology tests, it may go overlooked.

  1. [Clinical, neurophysiological and psychological characteristics of neurosis in patients with panic disorders].

    PubMed

    Tuter, N V

    2008-01-01

    Forty-eight patients with panic disorders (PD), aged 31,5 years, 17 men, 31 women, were studied. The results were analyzed in comparison to a control group which comprised 16 healthy people, 6 men, 10 women, mean age 29,5 years. A traditional clinical approach, including somatic, neurologic and psychiatric examination, was used in the study. Also, a neurophysiological study using compression and spectral analyses, EEG, cognitive evoked potentials, skin evoked potentials, was conducted. A psychological examination included assessment of personality traits (Cattell's test), MMPI personality profile, mechanisms of psychological defense, the "Life style index" and Sondy test. A decrease of - and -rhythms was found that implied the reduction of activation processes. The psychological data mirror as common signs characteristic of all PD, as well as psychological features characteristic of neurotic disorders. The results obtained confirm the heterogeneity of PD in nosological aspect that demands using differential approach to the problems of their diagnostics and treatment.

  2. Developing the Digital Kyoto Collection in Education and Research.

    PubMed

    Hill, Mark Anthony

    2018-04-16

    The Kyoto embryo collection was begun in 1961 by Dr. Hideo Nishimura. The collection has been continuously developed and currently contains over 44,000 human normal and abnormal specimens. Beginning online in 1997, the internet provided an opportunity to make embryos from the collection widely available for research and educational purposes (http://tiny.cc/Embryo). These embryonic development resources have been continuously published and available from that time until today. Published in Japanese as an Atlas of Embryonic Development. Published online as the Kyoto Human Embryo Visualization Project (http://atlas.cac.med.kyoto-u.ac.jp) and also as the Human Embryo Atlas (http://tiny.cc/Human_Embryo_Atlas). Published now electronically as a digital eBook (http://tiny.cc/Kyoto_Collection_eBook). This new digital format allows incorporation of whole embryo and histology manipulable images, labels, and a linked glossary. New imaging modalities of magnetic resonance imaging (MRI) and episcopic fluorescence image capture (EFIC) can also be easily displayed as animations. For research, the collection specimens and histological sections have been extensively studied and published in several hundred papers, discussed here and elsewhere in this special edition. I will also describe how the Kyoto collection will now form a major partner of a new international embryology research group, the Digital Embryology Consortium (https://human-embryology.org). The digital Kyoto collection will be made available for remote researcher access, analysis, and comparison with other collections allowing new research and educational applications. This work was presented at the 40th Anniversary Commemoration Symposium of the Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Japan, November, 2015. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Chronic alcoholism: insights from neurophysiology.

    PubMed

    Campanella, S; Petit, G; Maurage, P; Kornreich, C; Verbanck, P; Noël, X

    2009-01-01

    Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.

  4. Ocean fertilization, carbon credits and the Kyoto Protocol

    NASA Astrophysics Data System (ADS)

    Westley, M. B.; Gnanadesikan, A.

    2008-12-01

    Commercial interest in ocean fertilization as a carbon sequestration tool was excited by the December 1997 agreement of the Kyoto Protocol to the United Nations Convention on Climate Change. The Protocol commits industrialized countries to caps on net greenhouse gas emissions and allows for various flexible mechanisms to achieve these caps in the most economically efficient manner possible, including trade in carbon credits from projects that reduce emissions or enhance sinks. The carbon market was valued at 64 billion in 2007, with the bulk of the trading (50 billion) taking place in the highly regulated European Union Emission Trading Scheme, which deals primarily in emission allowances in the energy sector. A much smaller amount, worth $265 million, was traded in the largely unregulated "voluntary" market (Capoor and Ambrosi 2008). As the voluntary market grows, so do calls for its regulation, with several efforts underway to set rules and standards for the sale of voluntary carbon credits using the Kyoto Protocol as a starting point. Four US-based companies and an Australian company currently seek to develop ocean fertilization technologies for the generation of carbon credits. We review these plans through the lens of the Kyoto Protocol and its flexible mechanisms, and examine whether and how ocean fertilization could generate tradable carbon credits. We note that at present, ocean sinks are not included in the Kyoto Protocol, and that furthermore, the Kyoto Protocol only addresses sources and sinks of greenhouse gases within national boundaries, making open-ocean fertilization projects a jurisdictional challenge. We discuss the negotiating history behind the limited inclusion of land use, land use change and forestry in the Kyoto Protocol and the controversy and eventual compromise concerning methodologies for terrestrial carbon accounting. We conclude that current technologies for measuring and monitoring carbon sequestration following ocean fertilization

  5. The role of the circadian system in fractal neurophysiological control

    PubMed Central

    Pittman-Polletta, Benjamin R.; Scheer, Frank A.J.L.; Butler, Matthew P.; Shea, Steven A.; Hu, Kun

    2013-01-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in fractal regulation. PMID:23573942

  6. Effect of pain neurophysiology education on physiotherapy students' understanding of chronic pain, clinical recommendations and attitudes towards people with chronic pain: a randomised controlled trial.

    PubMed

    Colleary, G; O'Sullivan, K; Griffin, D; Ryan, C G; Martin, D J

    2017-12-01

    To investigate the effect of pain neurophysiology education (PNE) on student physiotherapists': (1) knowledge of chronic pain; (2) attitudes towards patients with chronic pain; and (3) clinical recommendations for patients with chronic pain. Multicentre single-blind randomised controlled trial. One UK and one Irish university. Seventy-two student physiotherapists. Participants received either PNE (intervention) or a control education. Both were delivered in a 70-minute group lecture. (1) The Revised Pain Neurophysiology Quiz to assess knowledge; (2) the Health Care Pain Attitudes and Impairment Relationship Scale (HC-PAIRS) to assess attitudes; and (3) a case vignette to assess the appropriateness of clinical recommendations. Post education, the PNE group had a greater increase in pain neurophysiology knowledge [mean difference 4.0 (95% confidence interval 3.2 to 4.7), P<0.01] and more improved attitudes [-17.5 (95% confidence interval -22.1 to -12.9), P<0.01] compared with the control group. Post education, students in the PNE group were more likely to make appropriate recommendations regarding work (94% vs 56%), exercise (92% vs 56%), activity (94% vs 67%) and bed rest (69% vs 33%) compared with those in the control group (P<0.05). The improvements in knowledge, attitudes and recommendations for pain management show that PNE is a potentially valuable part of the education of physiotherapy students, and could be used on a more widespread basis. There is a need to investigate whether these findings can be replicated in other healthcare professions, and how well these reported changes lead to changes in actual clinical behaviour and the clinical outcomes of patients. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  7. Neurophysiological and clinical effects of dry needling in patients with upper trapezius myofascial trigger points.

    PubMed

    Abbaszadeh-Amirdehi, Maryam; Ansari, Noureddin Nakhostin; Naghdi, Soofia; Olyaei, Gholamreza; Nourbakhsh, Mohammad Reza

    2017-01-01

    Dry needling (DN) is a widely used in treatment of myofascial trigger points (MTrPs). The purpose of this pretest-posttest clinical trial was to investigate the neurophysiological and clinical effects of DN in patients with MTrPs. A sample of 20 patients (3 man, 17 women; mean age 31.7 ± 10.8) with upper trapezius MTrPs received one session of deep DN. The outcomes of neuromuscular junction response (NMJR), sympathetic skin response (SSR), pain intensity (PI) and pressure pain threshold (PPT) were measured at baseline and immediately after DN. There were significant improvements in SSR latency and amplitude, pain, and PPT after DN. The NMJR decreased and returned to normal after DN. A single session of DN to the active upper trapezius MTrP was effective in improving pain, PPT, NMJR, and SSR in patients with myofascial trigger points. Further studies are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Incorporating neurophysiological concepts in mathematical thermoregulation models

    NASA Astrophysics Data System (ADS)

    Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.

    2014-01-01

    Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR < 0.27. Tskin simulation results were within 0.37 °C of the measured mean skin temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.

  9. Neurophysiology Summary

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2001-01-01

    flight. Building on these basic research studies are more applied studies focused on the development of countermeasures to the untoward neurophysiological responses to space flight. At the 2001 workshop, applied research studies were presented addressing issues related to the use of rotational artificial gravity (centripetal acceleration) as a multisystem (bone, muscle, cardiovascular, and, perhaps, neurovestibular) countermeasure. Also presented was a clinical study reporting on a new rating system for clinical evaluation of postflight functional neurological status.

  10. The characteristic of the earthquake damage in Kyoto during the historical period

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akihito

    2017-04-01

    The Kyoto city is located in the northern part of the Kyoto basin, central Japan and has a history of more than 1200 years. Kyoto has long been populated area with many buildings, and the center of politics, economics and culture of Japan. Due to historical large earthquakes, the Kyoto city was severely damaged such as collapses of buildings and human casualties. In the historical period, the Kyoto city has experienced six damaging large earthquake of 976, 1185, 1449, 1596, 1662 and 1830. Among them, Kyoto has experienced three damaging large earthquakes from the end of the 16th century to the middle of the 19th century, when the urban area was being expanded. All of these earthquakes are considered to be not the earthquakes in the Kyoto basin but inland earthquakes occurred in the surrounding area. The earthquake damage in Kyoto during the historical period is strongly controlled by ground conditions and earthquakes resistance of buildings rather than distance from the estimated source fault. To better estimate seismic intensity based on building damage, it is necessary to consider the state of buildings (e.g., elapsed years since established, histories of repairs and/or reinforcements, building structures) as well as the strength of ground shakings. By considering the strength of buildings at the time of an earthquake occurrence, the seismic intensity distribution due to historical large earthquakes can be estimated with higher reliability than before. The estimated seismic intensity distribution map for such historical earthquakes can be utilized for developing the strong ground motion prediction in the Kyoto basin.

  11. The neurophysiological effects of dry needling in patients with upper trapezius myofascial trigger points: study protocol of a controlled clinical trial

    PubMed Central

    Abbaszadeh-Amirdehi, Maryam; Ansari, Noureddin Nakhostin; Naghdi, Soofia; Olyaei, Gholamreza; Nourbakhsh, Mohammad Reza

    2013-01-01

    Introduction Dry needling (DN) is an effective method for the treatment of myofascial trigger points (MTrPs). There is no report on the neurophysiological effects of DN in patients with MTrPs. The aim of the present study will be to assess the immediate neurophysiological efficacy of deep DN in patients with upper trapezius MTrPs. Methods and analysis A prospective, controlled clinical trial was designed to include patients with upper trapezius MTrPs and volunteered healthy participants to receive one session of DN. The primary outcome measures are neuromuscular junction response and sympathetic skin response. The secondary outcomes are pain intensity and pressure pain threshold. Data will be collected at baseline and immediately after intervention. Ethics and dissemination This study protocol has been approved by the Research Council, School of Rehabilitation and the Ethics Committee of Tehran University of Medical Sciences. The results of the study will be disseminated in a peer-reviewed journal and presented at international congresses. PMID:23793673

  12. [Clinical and neurophysiological manifestations of cerebral asymmetry in cervical dystonia].

    PubMed

    Naryshkin, A G; Skoromets, T A; Gorelik, A L; Egorov, A Iu

    2009-01-01

    Based on the analysis of clinical and neurophysiological data with the use of up-to-date methods of EEG processing, the authors discuss a role of cerebral asymmetry (CA) in the pathogenesis of cervical dystonia (CD). Sixty-seven patients (31 male and 36 female) with CD have been studied. The pathological turn of the head to the right side (RT) was observed in 34 patients, to the left side (LT) - in 33 patients. The uni- or bilateral generalization of dystonic symptoms (Meig's syndrome, laterocollis) was found only in one-third of RT patients. The visual analysis of EEG of RT patients revealed the high level of EEG synchronization with signs of cortical irritation, with the prevalence in the left hemisphere, and the presence of focal epileptiform appearances in the temporal leads of the left or both hemispheres with the left-side prevalence. In LT patients, the EEG presentation was similar to normal but more often represented the variants of EEG-pattern. In these cases, the apparent manifestations of CA were not found. The coherent analysis revealed the formation of the network of coherent links, with bilateral spread, in RT patients. This may suggest the functional inequivalence of the peripersonal space of right and left hand and the dominate significance of striopallidar and thalamic structures of the left hemisphere for the total brain activity.

  13. Capgras syndrome: a review of the neurophysiological correlates and presenting clinical features in cases involving physical violence.

    PubMed

    Bourget, Dominique; Whitehurst, Laurie

    2004-11-01

    Acts of violence have been frequently reported in cases of Capgras syndrome (CS), a misidentification syndrome characterized by the delusional belief that imposters have replaced people familiar to the individual. CS has been observed in many neuropsychiatric and organic disorders, and neuroimaging studies indicate an association between CS and right hemisphere abnormalities. However, CS has received limited attention from a forensic psychiatric perspective. We propose that elucidating demographic and clinical features noted in cases of violence secondary to CS may highlight important factors in the progression of CS to violence. We review the neurophysiological correlates and clinical factors observed in CS and present characteristics of a series of cases that demonstrate the potential of CS patients for severe physical violence toward the misidentified person. For patients with CS involving assault, we present and discuss commonly reported demographic and clinical features that may contribute to an increased risk for violence. An understanding of the presenting clinical features of CS resulting in aggressive acts may assist clinicians to assess the potential for violence in these patients.

  14. [Neurophysiology of pruritus].

    PubMed

    Raap, U; Ikoma, A; Kapp, A

    2006-05-01

    Neurophysiologic studies indicate that pruritus is a distinct sensation with its own neuronal pathways in the peripheral and central nervous system which are different from that of pain. Pruritus is a very disturbing sensation and most common skin-related symptom. Histamine was long considered to be the only mediator of pruritus. However, it has become evident that - besides histamine - a variety of neuromediators such as neurotrophins and neuropeptides as well as their receptors play an important role in pruritus. Neuromediators are produced by mast cells, keratinocytes and eosinophil granulocytes which are in close contact to sensory nerves. The discovery of these neurophysiological interactions opens new and promising therapeutic options for the treatment of pruritus.

  15. The characteristic of the building damage from historical large earthquakes in Kyoto

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akihito

    2016-04-01

    The Kyoto city, which is located in the northern part of Kyoto basin in Japan, has a long history of >1,200 years since the city was initially constructed. The city has been a populated area with many buildings and the center of the politics, economy and culture in Japan for nearly 1,000 years. Some of these buildings are now subscribed as the world's cultural heritage. The Kyoto city has experienced six damaging large earthquakes during the historical period: i.e., in 976, 1185, 1449, 1596, 1662, and 1830. Among these, the last three earthquakes which caused severe damage in Kyoto occurred during the period in which the urban area had expanded. These earthquakes are considered to be inland earthquakes which occurred around the Kyoto basin. The damage distribution in Kyoto from historical large earthquakes is strongly controlled by ground condition and earthquakes resistance of buildings rather than distance from estimated source fault. Therefore, it is necessary to consider not only the strength of ground shaking but also the condition of building such as elapsed years since the construction or last repair in order to more accurately and reliably estimate seismic intensity distribution from historical earthquakes in Kyoto. The obtained seismic intensity map would be helpful for reducing and mitigating disaster from future large earthquakes.

  16. Clinical Neurophysiology Training in a Developing Country: Institutional Resources and Profiles.

    PubMed

    Sámano, Arturo G; Ochoa Mena, José D; Padilla, Silvana P; Acevedo, Gerardo R; Orenday Barraza, José M; San-Juan, Daniel

    2018-05-01

    The purpose of this study was to describe the characteristics and preferences of clinical neurophysiology (CN) fellows, as well as the resources available for their training, in a developing country such as Mexico. An online survey (25 questions) was given to Mexican CN fellows from May to June 2017, covering their reasons for choosing the CN subspecialty, their activities, future plans, institutional resources, and administrative staff. Descriptive statistics were used. Total respondents: 20/22 (90%), 65% female from 7 CN centers (80% public and 20% private hospitals) in Mexico City. Seventy-five percent chose CN out of personal interest, and all were not unsatisfied with their academic program. Most plan to work in private practice (75%) and are interested in learning EEG (85%) and intraoperative monitoring (75%-85%). The highest-reported training time by CN area allocated by the programs was as follows: EEG (27%), electromyography (22%), and evoked potentials (16%). The average number of fellows per center was 4; 75% of the centers perform epilepsy surgery, of which 60% offer invasive intracranial studies for the evaluation of surgical candidates. Mexican CN fellows are satisfied with their choice and with the academic program. They are increasingly interested in intraoperative monitoring, which is not addressed in current Mexican CN Programs.

  17. A randomized controlled trial of intensive neurophysiology education in chronic low back pain.

    PubMed

    Moseley, G Lorimer; Nicholas, Michael K; Hodges, Paul W

    2004-01-01

    Cognitive-behavioral pain management programs typically achieve improvements in pain cognitions, disability, and physical performance. However, it is not known whether the neurophysiology education component of such programs contributes to these outcomes. In chronic low back pain patients, we investigated the effect of neurophysiology education on cognitions, disability, and physical performance. This study was a blinded randomized controlled trial. Individual education sessions on neurophysiology of pain (experimental group) and back anatomy and physiology (control group) were conducted by trained physical therapist educators. Cognitions were evaluated using the Survey of Pain Attitudes (revised) (SOPA(R)), and the Pain Catastrophizing Scale (PCS). Behavioral measures included the Roland Morris Disability Questionnaire (RMDQ), and 3 physical performance tasks; (1) straight leg raise (SLR), (2) forward bending range, and (3) an abdominal "drawing-in" task, which provides a measure of voluntary activation of the deep abdominal muscles. Methodological checks evaluated non-specific effects of intervention. There was a significant treatment effect on the SOPA(R), PCS, SLR, and forward bending. There was a statistically significant effect on RMDQ; however, the size of this effect was small and probably not clinically meaningful. Education about pain neurophysiology changes pain cognitions and physical performance but is insufficient by itself to obtain a change in perceived disability. The results suggest that pain neurophysiology education, but not back school type education, should be included in a wider pain management approach.

  18. Benefit of neurophysiologic monitoring for pediatric cardiac surgery.

    PubMed

    Austin, E H; Edmonds, H L; Auden, S M; Seremet, V; Niznik, G; Sehic, A; Sowell, M K; Cheppo, C D; Corlett, K M

    1997-11-01

    . Inasmuch as the break-even cost for neurophysiologic monitoring is more than four times the actual average charge, both patients and hospital may profit from this service. Because this study was not a truly randomized clinical trial, unintentional statistical bias may have occurred and caution is urged in interpreting the magnitude of apparent intergroup outcome differences.

  19. Pain processing in atypical Parkinsonisms and Parkinson disease: A comparative neurophysiological study.

    PubMed

    Avenali, Micol; Tassorelli, Cristina; De Icco, Roberto; Perrotta, Armando; Serrao, Mariano; Fresia, Mauro; Pacchetti, Claudio; Sandrini, Giorgio

    2017-10-01

    Pain is a frequent non-motor feature in Parkinsonism but mechanistic data on the alteration of pain processing are insufficient to understand the possible causes and to define specifically-targeted treatments. we investigated spinal nociception through the neurophysiological measure of the threshold (TR) of nociceptive withdrawal reflex (NWR) and its temporal summation threshold (TST) comparatively in 12 Progressive Supranuclear Palsy (PSP) subjects, 11 Multiple System Atrophy (MSA) patients, 15 Parkinson's disease (PD) subjects and 24 healthy controls (HC). We also investigated the modulatory effect of L-Dopa in these three parkinsonian groups. We found a significant reduction in the TR of NWR and in the TST of NWR in PSP, MSA and PD patients compared with HC. L-Dopa induced an increase in the TR of NWR in the PSP group while TST of NWR increased in both PSP and PD. Our neurophysiological findings identify a facilitation of nociceptive processing in PSP that is broadly similar to that observed in MSA and PD. Specific peculiarities have emerged for PSP. Our data advance the knowledge of the neurophysiology of nociception in the advanced phases of parkinsonian syndromes and on the role of dopaminergic pathways in the control on pain processing. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. Intraoperative neurophysiological monitoring of the cortico-spinal tract in image-guided mini-invasive neurosurgery.

    PubMed

    Cordella, Roberto; Acerbi, Francesco; Broggi, Morgan; Vailati, Davide; Nazzi, Vittoria; Schiariti, Marco; Tringali, Giovanni; Ferroli, Paolo; Franzini, Angelo; Broggi, Giovanni

    2013-06-01

    To evaluate the role of intraoperative neurophysiological monitoring in image-guided mini-invasive neurosurgery. Twenty-one patients were operated under general anaesthesia with the aid of multimodal intraoperative neurophysiological monitoring to remove supratentorials tumors closely related to the cortico-spinal tract. Pre-operative assessment included fMRI scans and tractography that were uploaded into the intraoperative neuro-navigation system. Monitoring consisted in simultaneously recording EEG, electrocorticography, transcranial and direct motor evoked potentials (tMEP and dMEP), somatosensory evoked potentials and subcortical stimulation during the whole procedures. The recording of all the electrophysiological signals was possible in all procedures. SSEP guided the positioning of the strip electrode over the motor cortex (N20 phase inversion) that was used to evoke dMEP and monitor the lower limb motor responses; subcortical stimulation to unveil the spatial relationship between the tumors and motor fibers. Four patients had transient worsening of the symptoms, but only two had a long-term worsening, although not severe, of the pre-op clinical status. Intraoperative neurophysiology has a great value in mini-invasive neurosurgery, especially because the motor cortex is not exposed, consequently it cannot be directly mapped. This report describes a valuable scheme making use of as many electrophysiological signals as possible to constantly monitor the motor functions. A useful method to monitor motor functions in mini-invasive neurosurgery was described. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Brain Oscillations Forever--Neurophysiology in Future Research of Child Psychiatric Problems

    ERIC Educational Resources Information Center

    Rothenberger, Aribert

    2009-01-01

    For decades neurophysiology has successfully contributed to research and clinical care in child psychiatry. Recently, methodological progress has led to a revival of interest in brain oscillations (i.e., a band of periodic neuronal frequencies with a wave-duration from milliseconds to several seconds which may code and decode information). These…

  2. Proposal for a Standard Format for Neurophysiology Data Recording and Exchange.

    PubMed

    Stead, Matt; Halford, Jonathan J

    2016-10-01

    The lack of interoperability between information networks is a significant source of cost in health care. Standardized data formats decrease health care cost, improve quality of care, and facilitate biomedical research. There is no common standard digital format for storing clinical neurophysiologic data. This review proposes a new standard file format for neurophysiology data (the bulk of which is video-electroencephalographic data), entitled the Multiscale Electrophysiology Format, version 3 (MEF3), which is designed to address many of the shortcomings of existing formats. MEF3 provides functionality that addresses many of the limitations of current formats. The proposed improvements include (1) hierarchical file structure with improved organization; (2) greater extensibility for big data applications requiring a large number of channels, signal types, and parallel processing; (3) efficient and flexible lossy or lossless data compression; (4) industry standard multilayered data encryption and time obfuscation that permits sharing of human data without the need for deidentification procedures; (5) resistance to file corruption; (6) facilitation of online and offline review and analysis; and (7) provision of full open source documentation. At this time, there is no other neurophysiology format that supports all of these features. MEF3 is currently gaining industry and academic community support. The authors propose the use of the MEF3 as a standard format for neurophysiology recording and data exchange. Collaboration between industry, professional organizations, research communities, and independent standards organizations is needed to move the project forward.

  3. An international survey of physicians regarding clinical trials: a comparison between Kyoto University Hospital and Seoul National University Hospital

    PubMed Central

    2013-01-01

    Background International clinical trials are now rapidly expanding into Asia. However, the proportion of global trials is higher in South Korea compared to Japan despite implementation of similar governmental support in both countries. The difference in clinical trial environment might influence the respective physicians’ attitudes and experience towards clinical trials. Therefore, we designed a questionnaire to explore how physicians conceive the issues surrounding clinical trials in both countries. Methods A questionnaire survey was conducted at Kyoto University Hospital (KUHP) and Seoul National University Hospital (SNUH) in 2008. The questionnaire consisted of 15 questions and 2 open-ended questions on broad key issues relating to clinical trials. Results The number of responders was 301 at KUHP and 398 at SNUH. Doctors with trial experience were 196 at KUHP and 150 at SNUH. Among them, 12% (24/196) at KUHP and 41% (61/150) at SUNH had global trial experience. Most respondents at both institutions viewed clinical trials favorably and thought that conducting clinical trials contributed to medical advances, which would ultimately lead to new and better treatments. The main reason raised as a hindrance to conducting clinical trials was the lack of personnel support and time. Doctors at both university hospitals thought that more clinical research coordinators were required to conduct clinical trials more efficiently. KUHP doctors were driven mainly by pure academic interest or for their desire to find new treatments, while obtaining credits for board certification and co-authorship on manuscripts also served as motivation factors for doctors at SNUH. Conclusions Our results revealed that there might be two different approaches to increase clinical trial activity. One is a social level approach to establish clinical trial infrastructure providing sufficient clinical research professionals. The other is an individual level approach that would provide incentives to

  4. Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football.

    PubMed

    Breedlove, Evan L; Robinson, Meghan; Talavage, Thomas M; Morigaki, Katherine E; Yoruk, Umit; O'Keefe, Kyle; King, Jeff; Leverenz, Larry J; Gilger, Jeffrey W; Nauman, Eric A

    2012-04-30

    Concussion is a growing public health issue in the United States, and chronic traumatic encephalopathy (CTE) is the chief long-term concern linked to repeated concussions. Recently, attention has shifted toward subconcussive blows and the role they may play in the development of CTE. We recruited a cohort of high school football players for two seasons of observation. Acceleration sensors were placed in the helmets, and all contact activity was monitored. Pre-season computer-based neuropsychological tests and functional magnetic resonance imaging (fMRI) tests were also obtained in order to assess cognitive and neurophysiological health. In-season follow-up scans were then obtained both from individuals who had sustained a clinically-diagnosed concussion and those who had not. These changes were then related through stepwise regression to history of blows recorded throughout the football season up to the date of the scan. In addition to those subjects who had sustained a concussion, a substantial portion of our cohort who did not sustain concussions showed significant neurophysiological changes. Stepwise regression indicated significant relationships between the number of blows sustained by a subject and the ensuing neurophysiological change. Our findings reinforce the hypothesis that the effects of repetitive blows to the head are cumulative and that repeated exposure to subconcussive blows is connected to pathologically altered neurophysiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Critical illness polyneuropathy (CIP) in neurological early rehabilitation: clinical and neurophysiological features.

    PubMed

    Schmidt, Simone B; Rollnik, Jens D

    2016-12-15

    Critical illness polyneuropathy (CIP) is a complex disease affecting 30-70% of critically ill patients. Clinical (Barthel index, length of stay (LOS), morbidity, duration of mechanical ventilation, routine lab results) and neurophysiological (neurography) data of 191 patients admitted to neurological early rehabilitation and diagnosed with CIP have been analyzed retrospectively. CIP diagnosis was correct in 159 cases (83%). In this study, systemic inflammation, sepsis, systemic inflammatory response syndrome (SIRS), multiple organic failure (MOF), chronic renal failure, liver dysfunction, mechanical ventilation, diabetes, dyslipidemia and impaired ion homeostasis (hypocalcaemia, hypokalemia) were associated with CIP. Neurography, in particular of the peroneal, sural, tibial and median nerves, helped to identify CIP patients. Compound muscle action potential amplitude (r = -0.324, p < 0.05), as well as sensory (r = -0.389, p < 0.05) and motor conduction velocity (r = -0.347, p < 0.05) of the median nerve correlated with LOS in neurological early rehabilitation but not with outcome measures. In most cases, diagnosis of CIP among neurological early rehabilitation patients seems to be correct. Neurography may help to verify the diagnosis and to learn more about CIP pathophysiology, but it does not allow outcome prediction. Further studies on CIP are strongly encouraged.

  6. Influence of outdoor advertisement colors on psychological evaluation of townscape in Kyoto

    NASA Astrophysics Data System (ADS)

    Onishi, Ayumi; Ishida, Taiichiro; Katsuya, Yoshiko

    2002-06-01

    Outdoor advertisements must be one of the major factors that affect our psychological impression for townscapes. They often conflict with propr color environments in cities particularly in historic cities like Kyoto. In this study we investigated how outdoor advertisements influenced our visual evaluation of townscapes in Kyoto. In recent years, a new regulation for outdoor advertisements came into operation in Kyoto and some of the advertisements have been replaced or removed gradually. We examined psychological evaluation for the townscapes before and after their changes. In the experiment, subjects evaluated 'visual harmony,' 'visual busyness,' 'visual comfort' and 'suitability to Kyoto' of townscapes projected on a screen. The results indicated that the evaluation of 'visual busyness' significantly decreased with the amount of the advertisements. The relations between the advertisements and the psychological evaluation of the townscape are discussed.

  7. Psychological pain interventions and neurophysiology: implications for a mechanism-based approach.

    PubMed

    Flor, Herta

    2014-01-01

    This article provides an illustrative overview of neurophysiological changes related to acute and chronic pain involving structural and functional brain changes, which might be the targets of psychological interventions. A number of psychological pain treatments have been examined with respect to their effects on brain activity, ranging from cognitive- and operant behavioral interventions, meditation and hypnosis, to neuro- and biofeedback, discrimination training, imagery and mirror treatment, as well as virtual reality and placebo applications. These treatments affect both ascending and descending aspects of pain processing and act through brain mechanisms that involve sensorimotor areas as well as those involved in affective-motivational and cognitive-evaluative aspects. The analysis of neurophysiological changes related to effective psychological pain treatment can help to identify subgroups of patients with chronic pain who might profit from different interventions, can aid in predicting treatment outcome, and can assist in identifying responders and nonresponders, thus enhancing the efficacy and efficiency of psychological interventions. Moreover, new treatment targets can be developed and tested. Finally, the use of neurophysiological measures can also aid in motivating patients to participate in psychological interventions and can increase their acceptance in clinical practice. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Neurophysiology and neural engineering: a review.

    PubMed

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  9. The American Society of Neurophysiological Monitoring position statements project.

    PubMed

    Morledge, David E; Stecker, Mark

    2006-02-01

    The American Society of Neurophysiological Monitoring (ASNM) is developing position statements aimed at assisting practitioners and others in making decisions regarding neurophysiological monitoring practice. This paper describes the procedures used in drafting these documents.

  10. Increasing use of yellow colors in Kyoto

    NASA Astrophysics Data System (ADS)

    Akita, Munehira; Nara, Iwao

    2002-06-01

    Colors used for commercial signboards, displayed outdoors as well as indoors through windows, such as a store sign, an advertising sign, a sky sign, a poster, a placard, and a billboard were extensively surveyed in Kyoto City, Japan, in 1998. The survey showed that various kinds of yellow painted signs have increased rapidly and invaded a center area and suburbs of the city. Vivid yellow, what we called it the Y98 virus, is specially considered a color unpleasantly matched to the city image of Kyoto which was the capital of Japan for nearly 1000 years (794 to 1868) and is endowed with cultural and historic heritage. Discussions trying to find out what we could do to prevent the rapid spread of a big commercial display painted with vivid yellows what we called 'the Y98 virus' over the city will be summarized in a main text.

  11. Neurophysiological Influence of Musical Training on Speech Perception

    PubMed Central

    Shahin, Antoine J.

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL. PMID:21716639

  12. Neurophysiological influence of musical training on speech perception.

    PubMed

    Shahin, Antoine J

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL.

  13. Climate change. Managing forests after Kyoto.

    PubMed

    Schulze, D E; Wirth, C; Heimann, M

    2000-09-22

    The Kyoto protocol aims to reduce carbon emissions into the atmosphere. Part of the strategy is the active management of terrestrial carbon sinks, principally through afforestation and reforestation. In their Perspective, Schulze et al. argue that the preservation of old-growth forests may have a larger positive effect on the carbon cycle than promotion of regrowth.

  14. Neurophysiological Aspects and their relationship to clinical and functional impairment in patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    de Miranda Rocco, Carolina Chiusoli; Sampaio, Luciana Maria Malosá; Stirbulov, Roberto; Corrêa, João Carlos Ferrari

    2011-01-01

    OBJECTIVE: The purpose was to assess functional (balance L–L and A–P displacement, sit‐to‐stand test (SST) and Tinetti scale – balance and gait) and neurophysiological aspects (patellar and Achilles reflex and strength) relating these responses to the BODE Index. INTRODUCTION: The neurophysiological alterations found in patients with chronic obstructive pulmonary disease (COPD) are associated with the severity of the disease. There is also involvement of peripheral muscle which, in combination with neurophysiological impairment, may further compromise the functional activity of these patients. METHODS: A cross‐sectional study design was used. Twenty‐two patients with moderate to very severe COPD (>60 years) and 16 age‐matched healthy volunteers served as the control group (CG). The subjects performed spirometry and several measures of static and dynamic balance, monosynaptic reflexes, peripheral muscle strength, SST and the 6‐minute walk test. RESULTS: The individuals with COPD had a reduced reflex response, 36.77±3.23 (p<0.05) and 43.54±6.60 (p<0.05), achieved a lower number repetitions on the SST 19.27±3.88 (p<0.05), exhibited lesser peripheral muscle strength on the femoral quadriceps muscle, 24.98±6.88 (p<0.05) and exhibited deficits in functional balance and gait on the Tinetti scale, 26.86±1.69 (p<0.05), compared with the CG. The BODE Index demonstrated correlations with balance assessment (determined by the Tinetti scale), r = 0.59 (p<0.05) and the sit‐to‐stand test, r = 0.78 (p<0.05). CONCLUSIONS: The individuals with COPD had functional and neurophysiological alterations in comparison with the control group. The BODE Index was correlated with the Tinetti scale and the SST. Both are functional tests, easy to administer, low cost and feasible, especially the SST. These results suggest a worse prognosis; however, more studies are needed to identify the causes of these changes and the repercussions that could result in their

  15. [Implementation of intraoperative neurophysiologic monitoring in children and adults in secondary and tertiary health care facilities].

    PubMed

    Maza-Krzeptowsky, Lilia Cristina De la; Romero-Esquiliano, Gabriela; Ramírez-Segura, Eduardo H; Obieta-Cruz, Enrique De; Vega-Sosa, Alfonso; Cárdenas-Mejía, Alexander; Juan-Orta, Daniel San; Castillo-Herrera, Margot; Aguilar-Castillo, Sergio J; Ávila-Ordóñez, Mario U; Cordero-Guzmán, Luz M; Escobar-Cedillo, Rosa E; Fraire-Martínez, María I; Franco-Lira, Marisela O; González-Jaime, José J; Paz-Navarro, Claudia E; Ramos-Peek, Jaime N; Shkurovich-Bialik, Paul; Silva-Cerecedo, Pedro; Tello-Valdés, C Armando; Zavala-Reina, Álvaro A; López-Rodríguez, Jaime; Sosa-García, Ojino

    2018-01-01

    Intraoperative neurophysiological monitoring (IONM) is a procedure that uses neurophysiological techniques in order to evaluate the motor and sensitive systems during surgeries that endanger the nervous system. The approach, scope, target population, and clinical questions to be answered were defined. A systematic search of the evidence was conducted step by step; during the first stage, clinical practice guidelines were collected, during the second stage systematic reviews were obtained, and during the third stage, clinical trials and observational studies were procured. The MeSH nomenclature and free related terminology were used, with no language restrictions and a 5-10 years frame. The quality of the evidence was graded using the CEPD and SIGN scales. Obtained using the search algorrhythms of 892 documents. Fifty-eight were chosen to be included in the qualitative synthesis. A meta-analysis was not possible due to the heterogeneity of the studies. Eighteen recommendations were issued and will support the adequate use of the IONM. Copyright: © 2018 Permanyer.

  16. [Towards a new approach of neurophysiology in clinical psychiatry: functional magnetic resonance imaging neurofeedback applied to emotional dysfunctions].

    PubMed

    Micoulaud-Franchi, J-A; Fakra, E; Cermolacce, M; Vion-Dury, J

    2012-04-01

    Emotions color in a singular way our everyday life and constitute important determinants of human cognition and behavior. Emotional regulation is an essential process involved in neuropathophysiology and therapeutic efficacy in many psychiatric disorders. Yet, traditional psychiatric therapeutic has focused on symptomatic rather than neurophysiological criteria. Therefore, it was proposed to teach patients to modify their own brain activity directly, in order to obtain a therapeutic effect. These techniques, which are named neurofeedback, were originally developed using electroencephalography. Recent technical advances in fMRI enable real-time acquisition, and open opportunities to its utilization in neurofeedback. This seems particularly interesting in emotion regulation, which, at a neurofunctional level, lies on cortico-limbic pathways that, in great parts, were previously identified by traditional fMRI paradigms. This emotion regulation plays a central role in the etiopathogeny psychiatric, especially depressive and anxious, disorders. It is possible to devise new therapeutic strategies and research approach for addressing directly the neurophysiological processes of emotion regulation by integrating the neurofunctional activities of a subject. These prospects seem to be in line with the neurophenomenology project, which proposes to establish a link between subjective experiences and objective neurophysiological measures. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research

    PubMed Central

    Ruggiero, Rafael N.; Rossignoli, Matheus T.; De Ross, Jana B.; Hallak, Jaime E. C.; Leite, Joao P.; Bueno-Junior, Lezio S.

    2017-01-01

    Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools. PMID:28680405

  18. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research.

    PubMed

    Ruggiero, Rafael N; Rossignoli, Matheus T; De Ross, Jana B; Hallak, Jaime E C; Leite, Joao P; Bueno-Junior, Lezio S

    2017-01-01

    Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB 1 and TRPV 1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV 1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.

  19. Neurophysiological basis of creativity in healthy elderly people: a multiscale entropy approach.

    PubMed

    Ueno, Kanji; Takahashi, Tetsuya; Takahashi, Koichi; Mizukami, Kimiko; Tanaka, Yuji; Wada, Yuji

    2015-03-01

    Creativity, which presumably involves various connections within and across different neural networks, reportedly underpins the mental well-being of older adults. Multiscale entropy (MSE) can characterize the complexity inherent in EEG dynamics with multiple temporal scales. It can therefore provide useful insight into neural networks. Given that background, we sought to clarify the neurophysiological bases of creativity in healthy elderly subjects by assessing EEG complexity with MSE, with emphasis on assessment of neural networks. We recorded resting state EEG of 20 healthy elderly subjects. MSE was calculated for each subject for continuous 20-s epochs. Their relevance to individual creativity was examined concurrently with intellectual function. Higher individual creativity was linked closely to increased EEG complexity across higher temporal scales, but no significant relation was found with intellectual function (IQ score). Considering the general "loss of complexity" theory of aging, our finding of increased EEG complexity in elderly people with heightened creativity supports the idea that creativity is associated with activated neural networks. Results reported here underscore the potential usefulness of MSE analysis for characterizing the neurophysiological bases of elderly people with heightened creativity. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  1. Remote Sensing and the Kyoto Protocol: A Workshop Summary

    NASA Technical Reports Server (NTRS)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig

    2000-01-01

    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing

  2. [The links between neuropsychology and neurophysiology].

    PubMed

    Stolarska-Weryńska, Urszula; Biedroń, Agnieszka; Kaciński, Marek

    2016-01-01

    The aim of the study was to establish current scope of knowledge regarding associations between neurophysiological functioning, neuropsychology and psychoterapy. A systematic review was performed including 93 publications from Science Server, which contains the collections of Elsevier, Springer Journals, SCI-Ex/ICM, MEDLINE/PubMed, and SCOPUS. The works have been selected basing on following key words: 'neuropsychology, neurocognitive correlates, electrodermal response, event related potential, EEG, pupillography, electromiography' out of papers published between 2004-2015. Present reports on the use of neurophysiological methods in psychology can be divided into two areas: experimental research and research of the practical use of conditioning techniques and biofeedback in the treatment of somatic disease. Among the experimental research the following have been distinguished: research based on the startle reflex, physiological reaction to novelty, stress, type/amount of cognitive load and physiological correlates of emotion; research on the neurophysiological correlates of mental disorders, mostly mood and anxiety disorders, and neurocognitive correlates: of memory, attention, learning and intelligence. Among papers regarding the use of neurophysiological methods in psychology two types are the most frequent: on the mechanisms of biofeedback, related mainly to neuro- feedback, which is a quickly expanding method of various attention and mental disorders'treatment, and also research of the use of conditioning techniques in the treatment of mental disorders, especially depression and anxiety. A special place among all the above is taken by the research on electrophysiological correlates of psychotherapy, aiming to differentiate between the efficacy of various psychotherapeutic schools (the largest amount of publications regard the efficacy of cognitive-behavioral psychotherapy) in patients of different age groups and different diagnosis.

  3. Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder).

    PubMed

    Voon, Valerie; Cavanna, Andrea E; Coburn, Kerry; Sampson, Shirlene; Reeve, Alya; LaFrance, W Curt

    2016-01-01

    Much is known regarding the physical characteristics, comorbid symptoms, psychological makeup, and neuropsychological performance of patients with functional neurological disorders (FNDs)/conversion disorders. Gross neurostructural deficits do not account for the patients' deficits or symptoms. This review describes the literature focusing on potential neurobiological (i.e. functional neuroanatomic/neurophysiological) findings among individuals with FND, examining neuroimaging and neurophysiological studies of patients with the various forms of motor and sensory FND. In summary, neural networks and neurophysiologic mechanisms may mediate "functional" symptoms, reflecting neurobiological and intrapsychic processes.

  4. [Prof. Michiharu Matsuoka, founder of the Department of Orthopaedic Surgery, Kyoto University, and his achievements in orthopaedic surgery in the Meiji Era of Japan (part 1: establishment of the department)].

    PubMed

    Hirotani, Hayato

    2005-09-01

    The Department of Orthopaedic and Musculoskeletal Surgery, Graduate School of Medicine, Kyoto University (formerly the Department of Orthopaedic Surgery, Kyoto Medical School, Kyoto Imperial University) was founded by Imperial Ordinance, Article No. 89 issued on April 23, 1906. On May 4, 1906, Dr. Shinichiro Asahara, Assistant Professor of the Department of Surgery, was appointed as the first director of the Department of Orthopaedic Surgery, Kyoto Medical School, Kyoto Imperial University. Dr. Michiharu Matsuoka, Assistant Doctor of the Department of Surgery, Tokyo Medical School, Imperial University of Tokyo, was appointed Assistant Professor of Surgery, Kyoto Medical School, Kyoto Imperial University in March 1901. From August 1903 to May 1906, he studied orthopaedic surgery in Germany and returned on May 5, 1906. Dr. Matsuoka was appointed as the director and chief of the Department on May 13, 1906 and took over Dr. Asahara's position. On June 18, 1906, Dr. Matsuoka started his clinic and began giving lectures on orthopaedic surgery. This was the first department of orthopaedic surgery among the Japanese medical schools. Dr. Matsuoka was appointed as Professor in 1907. He had to overcome several obstacles to establish the medical department of a new discipline that had never existed in Japanese medical schools. This article discusses Dr. Matsuoka's contributions to establishing and developing orthopaedic surgery in Japan in the Meiji-era.

  5. Using Crickets to Introduce Neurophysiology to Early Undergraduate Students

    PubMed Central

    Dagda, Ruben K.; Thalhauser, Rachael M.; Dagda, Raul; Marzullo, Timothy C.; Gage, Gregory J.

    2013-01-01

    Anatomy and physiology instructors often face the daunting task of teaching the principles of neurophysiology as part of a laboratory course with very limited resources. Teaching neurophysiology can be a difficult undertaking as sophisticated electrophysiology and data acquisition equipment is often financially out-of-reach for two-year institutions, and for many preparations, instructors need to be highly skilled in electrophysiology techniques when teaching hands-on laboratories. In the absence of appropriate laboratory tools, many undergraduate students have difficulty understanding concepts related to neurophysiology. The cricket can serve as a reliable invertebrate model to teach the basic concepts of neurophysiology in the educational laboratory. In this manuscript, we describe a series of hands-on, demonstrative, technologically simple, and affordable laboratory activities that will help undergraduate students gain an understanding of the principles of neurophysiology. By using the cerci ganglion and leg preparation, students can quantify extracellular neural activity in response to sensory stimulation, understand the principles of rate coding and somatotopy, perform electrical microstimulation to understand the threshold of sensory stimulation, and do pharmacological manipulation of neuronal activity. We describe the utility of these laboratory activities, provide a convenient protocol for quantifying extracellular recordings, and discuss feedback provided by undergraduate students with regards to the quality of the educational experience after performing the lab activities. PMID:24319394

  6. Education and Empty Relationality: Thoughts on Education and the Kyoto School of Philosophy

    ERIC Educational Resources Information Center

    Sevilla, Anton Luis

    2016-01-01

    This article builds on the growing literature on the Kyoto School of Philosophy and its influences on the field of Education. First, I argue that the influence of the Kyoto School of Philosophy is historically significant in Japan, and that the connection between this philosophical school and the philosophy of education is by no means superficial.…

  7. Clinical and neurophysiologic characterization of an European family with hereditary sensory neuropathy, paroxysmal cough and gastroesophageal reflux.

    PubMed

    Barros, Pedro; Morais, Hugo; Santos, Catarina; Roriz, José; Coutinho, Paula

    2014-04-01

    In 2002, Spring et al reported a family with an autosomal dominant form of hereditary sensory neuropathy; patients also presented adult onset of gastroesophageal reflux and cough. Since then, no further families have been described. To study a new Portuguese family with these characteristics. To describe the clinical and neurophysiologic characteristics of one family with features of sensory neuropathy associated with cough and gastroesophageal erflux. Three of five siblings presented a similar history of paroxysmal cough (5th decade). About a decade later they experienced numbness and paraesthesia in the feet and in all cases there was evidence of an axonal sensory neuropathy. A history of gastroesophageal reflux of variable severity and age of onset was also present. Molecular genetic studies have demonstrated genetic heterogeneity between the hereditary sensory neuropathy type 1 subtypes. The identification of these families is of major importance because further work is required to identify the underlying genetic defect.

  8. A systems neurophysiology approach to voluntary event coding.

    PubMed

    Petruo, Vanessa A; Stock, Ann-Kathrin; Münchau, Alexander; Beste, Christian

    2016-07-15

    Mechanisms responsible for the integration of perceptual events and appropriate actions (sensorimotor processes) have been subject to intense research. Different theoretical frameworks have been put forward with the "Theory of Event Coding (TEC)" being one of the most influential. In the current study, we focus on the concept of 'event files' within TEC and examine what sub-processes being dissociable by means of cognitive-neurophysiological methods are involved in voluntary event coding. This was combined with EEG source localization. We also introduce reward manipulations to delineate the neurophysiological sub-processes most relevant for performance variations during event coding. The results show that processes involved in voluntary event coding included predominantly stimulus categorization, feature unbinding and response selection, which were reflected by distinct neurophysiological processes (the P1, N2 and P3 ERPs). On a system's neurophysiological level, voluntary event-file coding is thus related to widely distributed parietal-medial frontal networks. Attentional selection processes (N1 ERP) turned out to be less important. Reward modulated stimulus categorization in parietal regions likely reflecting aspects of perceptual decision making but not in other processes. The perceptual categorization stage appears central for voluntary event-file coding. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  10. The relationship between knowledge of pain neurophysiology and fear avoidance in people with chronic pain: A point in time, observational study.

    PubMed

    Fletcher, Claire; Bradnam, Lynley; Barr, Christopher

    2016-05-01

    Chronic pain is prevalent in the western world; however fear of pain often has a greater impact than the degree of initial injury. The aim of this study was to explore the relationship between knowledge of the neurophysiology of pain and fear avoidance in individuals diagnosed with chronic pain. Twenty-nine people with chronic musculoskeletal pain were recruited and completed questionnaires to determine their understanding of pain neurophysiology and the degree of their fear avoidance beliefs. There was an inverse relationship between knowledge of pain neurophysiology and the level of fear avoidance. Patients with higher pain knowledge reported less fear avoidance and lower perceived disability due to pain. There was no relationship with the educational level or compensable status for either variable. The findings suggest that fear avoidance is positively influenced by neurophysiology of pain education, so that a higher level of pain knowledge is associated with less activity-related fear. The clinical implication is that reducing fear avoidance/kinesiophobia using neurophysiology of pain education in people with chronic pain may provide an effective strategy to help manage fear avoidance and related disability in the chronic pain population in order to improve treatment outcomes.

  11. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties

  12. Revolution of Alzheimer Precision Neurology Passageway of Systems Biology and Neurophysiology.

    PubMed

    Hampel, Harald; Toschi, Nicola; Babiloni, Claudio; Baldacci, Filippo; Black, Keith L; Bokde, Arun L W; Bun, René S; Cacciola, Francesco; Cavedo, Enrica; Chiesa, Patrizia A; Colliot, Olivier; Coman, Cristina-Maria; Dubois, Bruno; Duggento, Andrea; Durrleman, Stanley; Ferretti, Maria-Teresa; George, Nathalie; Genthon, Remy; Habert, Marie-Odile; Herholz, Karl; Koronyo, Yosef; Koronyo-Hamaoui, Maya; Lamari, Foudil; Langevin, Todd; Lehéricy, Stéphane; Lorenceau, Jean; Neri, Christian; Nisticò, Robert; Nyasse-Messene, Francis; Ritchie, Craig; Rossi, Simone; Santarnecchi, Emiliano; Sporns, Olaf; Verdooner, Steven R; Vergallo, Andrea; Villain, Nicolas; Younesi, Erfan; Garaci, Francesco; Lista, Simone

    2018-03-16

    The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the

  13. Revolution of Alzheimer Precision Neurology: Passageway of Systems Biology and Neurophysiology

    PubMed Central

    Hampel, Harald; Toschi, Nicola; Babiloni, Claudio; Baldacci, Filippo; Black, Keith L.; Bokde, Arun L.W.; Bun, René S.; Cacciola, Francesco; Cavedo, Enrica; Chiesa, Patrizia A.; Colliot, Olivier; Coman, Cristina-Maria; Dubois, Bruno; Duggento, Andrea; Durrleman, Stanley; Ferretti, Maria-Teresa; George, Nathalie; Genthon, Remy; Habert, Marie-Odile; Herholz, Karl; Koronyo, Yosef; Koronyo-Hamaoui, Maya; Lamari, Foudil; Langevin, Todd; Lehéricy, Stéphane; Lorenceau, Jean; Neri, Christian; Nisticò, Robert; Nyasse-Messene, Francis; Ritchie, Craig; Rossi, Simone; Santarnecchi, Emiliano; Sporns, Olaf; Verdooner, Steven R.; Vergallo, Andrea; Villain, Nicolas; Younesi, Erfan; Garaci, Francesco; Lista, Simone

    2018-01-01

    The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an “omics”-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer’s disease (AD). The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group “Alzheimer Precision Medicine” (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development towards breakthrough innovation based on the investigation of

  14. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  15. Elucidating the neurophysiological underpinnings of autism spectrum disorder: new developments.

    PubMed

    Luckhardt, C; Jarczok, T A; Bender, S

    2014-09-01

    The study of neurophysiological approaches together with rare and common risk factors for Autism Spectrum Disorder (ASD) allows elucidating the specific underlying neurobiology of ASD. Whereas most neurophysiologically based research in ASD to date has focussed on case-control differences based on the DSM- or ICD-based categorical ASD diagnosis, more recent studies have aimed at studying genetically and/or neurophysiologically defined homogeneous ASD subgroups for specific neuronal biomarkers. This review addresses the neurophysiological investigation of ASD by evoked and event-related potentials, by EEG/MEG connectivity measures such as coherence, and transcranial magnetic stimulation. As an example of classical neurophysiological studies in ASD, we report event-related potential studies which have illustrated which brain areas and processing stages are affected in the visual perception of socially relevant stimuli. However, a paradigm shift has taken place in recent years focussing on how these findings can be tracked down to basic neuronal functions such as deficits in cortico-cortical connectivity and the interaction between brain areas. Disconnectivity, for example, can again be related to genetically induced shifts in the excitation/inhibition balance. Genetic causes of ASD may be grouped by their effects on the brain's system level to identify ASD subgroups which respond differentially to therapeutic interventions.

  16. Standard operating procedures for neurophysiologic assessment of male sexual dysfunction.

    PubMed

    Giuliano, Francois; Rowland, David L

    2013-05-01

    Can neurophysiological testing in male patients with sexual dysfunction benefit the decision-making process? The answer remains unclear. To provide standard operating procedures for the neurophysiologic assessment of male sexual dysfunction. Medical literature was reviewed and combined with expert opinion of the authors. Bulbocavernosus reflex latency time, pudendal somatosensory evoked potentials, and sympathetic skin responses have been considered as potential candidates for the diagnosis and assessment of erectile dysfunction (ED). Currently, there is no consensus on a standardized methodology for these neurophysiological investigations in the overall assessment of ED. These procedures are unable to assess the integrity of the efferent parasympathetic proerectile penile innervation; accordingly, none of these assessment procedures is recommended for ED patients. Corpus cavernosum electromyography (CC-EMG) can detect abnormalities in cavernous smooth muscle although these alterations can be attributed both to damage to autonomic penile innervation and to degenerative processes of the cavernous smooth muscle. CC-EMG is still considered experimental. Evidence does not support that men with premature ejaculation (PE) are consistently characterized by penile hypersensitivity; accordingly, penile threshold determination is not recommended to in the diagnosis of PE. Neurophysiological investigation of other components of the penile sensory pathways in PE patients has not provided any definitive contribution to the diagnosis. No neurophysiological assessment procedures yield additional information that consistently aids in the assessment of PE and ED. © 2013 International Society for Sexual Medicine.

  17. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults.

    PubMed

    Tatum, W O; Rubboli, G; Kaplan, P W; Mirsatari, S M; Radhakrishnan, K; Gloss, D; Caboclo, L O; Drislane, F W; Koutroumanidis, M; Schomer, D L; Kasteleijn-Nolst Trenite, D; Cook, Mark; Beniczky, S

    2018-05-01

    Electroencephalography (EEG) remains an essential diagnostic tool for people with epilepsy (PWE). The International Federation of Clinical Neurophysiology produces new guidelines as an educational service for clinicians to address gaps in knowledge in clinical neurophysiology. The current guideline was prepared in response to gaps present in epilepsy-related neurophysiological assessment and is not intended to replace sound clinical judgement in the care of PWE. Furthermore, addressing specific pathophysiological conditions of the brain that produce epilepsy is of primary importance though is beyond the scope of this guideline. Instead, our goal is to summarize the scientific evidence for the utility of EEG when diagnosing and monitoring PWE. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Neurophysiological correlates of word processing deficits in isolated reading and isolated spelling disorders.

    PubMed

    Bakos, Sarolta; Landerl, Karin; Bartling, Jürgen; Schulte-Körne, Gerd; Moll, Kristina

    2018-03-01

    In consistent orthographies, isolated reading disorders (iRD) and isolated spelling disorders (iSD) are nearly as common as combined reading-spelling disorders (cRSD). However, the exact nature of the underlying word processing deficits in isolated versus combined literacy deficits are not well understood yet. We applied a phonological lexical decision task (including words, pseudohomophones, legal and illegal pseudowords) during ERP recording to investigate the neurophysiological correlates of lexical and sublexical word-processing in children with iRD, iSD and cRSD compared to typically developing (TD) 9-year-olds. TD children showed enhanced early sensitivity (N170) for word material and for the violation of orthographic rules compared to the other groups. Lexical orthographic effects (higher LPC amplitude for words than for pseudohomophones) were the same in the TD and iRD groups, although processing took longer in children with iRD. In the iSD and cRSD groups, lexical orthographic effects were evident and stable over time only for correctly spelled words. Orthographic representations were intact in iRD children, but word processing took longer compared to TD. Children with spelling disorders had partly missing orthographic representations. Our study is the first to specify the underlying neurophysiology of word processing deficits associated with isolated literacy deficits. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. [Anaesthetic management of excision of a cervical intraspinal tumor with intraoperative neurophysiologic monitoring in a pregnant woman at 29 weeks].

    PubMed

    Guerrero-Domínguez, R; González-González, G; Rubio-Romero, R; Federero-Martínez, F; Jiménez, I

    2016-05-01

    The intraoperative neurophysiological monitoring is a technique used to test and monitor nervous function. This technique has become essential in some neurosurgery interventions, since it avoids neurological injuries during surgery and reduces morbidity. The experience of intraoperative neurophysiological monitoring is limited in some clinical cases due to the low incidence of pregnant women undergoing a surgical procedure. A case is presented of a 29-weeks pregnant woman suffering from a cervical intraspinal tumour with intense pain, which required surgery. The collaboration of a multidisciplinary team composed of anaesthesiologists, neurosurgeons, neurophysiologists and obstetricians, the continuous monitoring of the foetus, the intraoperative neurophysiological monitoring, and maintaining the neurophysiological and utero-placental variables were crucial for the proper development of the surgery. According to our experience and the limited publications in the literature, no damaging effects of this technique were detected at maternal-foetal level. On the contrary, it brings important benefits during the surgery and for the final result. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis

    PubMed Central

    Prerau, Michael J.; Brown, Ritchie E.; Bianchi, Matt T.; Ellenbogen, Jeffrey M.; Purdon, Patrick L.

    2016-01-01

    During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible—elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications. PMID:27927806

  1. Neurophysiological symptoms and aspartame: What is the connection?

    PubMed

    Choudhary, Arbind Kumar; Lee, Yeong Yeh

    2018-06-01

    Aspartame (α-aspartyl-l-phenylalanine-o-methyl ester), an artificial sweetener, has been linked to behavioral and cognitive problems. Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia. The consumption of aspartame, unlike dietary protein, can elevate the levels of phenylalanine and aspartic acid in the brain. These compounds can inhibit the synthesis and release of neurotransmitters, dopamine, norepinephrine, and serotonin, which are known regulators of neurophysiological activity. Aspartame acts as a chemical stressor by elevating plasma cortisol levels and causing the production of excess free radicals. High cortisol levels and excess free radicals may increase the brains vulnerability to oxidative stress which may have adverse effects on neurobehavioral health. We reviewed studies linking neurophysiological symptoms to aspartame usage and conclude that aspartame may be responsible for adverse neurobehavioral health outcomes. Aspartame consumption needs to be approached with caution due to the possible effects on neurobehavioral health. Whether aspartame and its metabolites are safe for general consumption is still debatable due to a lack of consistent data. More research evaluating the neurobehavioral effects of aspartame are required.

  2. Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe

    PubMed Central

    Papanastassiou, Alex M.; DiCarlo, James J.

    2013-01-01

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850

  3. In Brief: Kyoto Protocol moves forward

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-10-01

    The Russian cabinet's 30 September endorsement of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) likely clears the way for the treaty's ratification by that country's parliament and for its entry into force. The protocol enters into force when not less than 55 Parties to the Convention, including industrialized countries (so called ``Annex I Parties'') which accounted in total for at least 55 % of the total carbon dioxide emissions for 1990 from that group, officially have agreed to the treaty.

  4. Human skin wetness perception: psychophysical and neurophysiological bases.

    PubMed

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception.

  5. Human skin wetness perception: psychophysical and neurophysiological bases

    PubMed Central

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception. PMID:27227008

  6. Descartes' visit to the town library, or how Augustinian is Descartes' neurophysiology?

    PubMed

    Smith, C U

    1998-08-01

    Rene Descartes was early accused of taking his central philosophical proposition from St Augustine. Did he also take his central neurophysiological concept from the same source? This is the question which this paper sets out to answer. It is concluded that the foundational neurophysiology propounded in L'Homme does indeed show strong and interesting resemblences to Augustine's largely Erasistratean version. Descartes, however, working within the new paradigm of seventeenth-century physical science, introduced a new principle: whereas Augustine's neurophysiology is pervaded throughout by a vital factor, the pneuma, Descartes' theory involved only inanimate material forces. It is concluded, further, that in spite of the interesting similarities between Augustinian and Cartesian neurophysiology there is no evidence for any direct plagiarism. It seems more likely that Augustine's influence was filtered through the Galenical physiologists of Descartes' own time and of the preceding century.

  7. Fabrication of neurophysiological monitoring systems

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1974-01-01

    A system designed to collect electroencephalographic, electro-oculographic, electromyographic, and head motion data is described. The portable instrumentation provides a rapid and simple means by which neurophysiological data can be obtained by the patient in his home and the taped data returned to the laboratory for analysis. The system was designed primarily for the study of sleep.

  8. Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: a randomized controlled trial.

    PubMed

    Pires, Diogo; Cruz, Eduardo Brazete; Caeiro, Carmen

    2015-06-01

    The aim of this study was to compare the effectiveness of a combination of aquatic exercise and pain neurophysiology education with aquatic exercise alone in chronic low back pain patients. Single-blind randomized controlled trial. Outpatient clinic. Sixty-two chronic low back pain patients were randomly allocated to receive aquatic exercise and pain neurophysiology education (n = 30) or aquatic exercise alone (n = 32). Twelve sessions of a 6-week aquatic exercise programme preceded by 2 sessions of pain neurophysiology education. Controls received only 12 sessions of the 6-week aquatic exercise programme. The primary outcomes were pain intensity (Visual Analogue Scale) and functional disability (Quebec Back Pain Disability Scale) at the baseline, 6 weeks after the beginning of the aquatic exercise programme and at the 3 months follow-up. Secondary outcome was kinesiophobia (Tampa Scale of Kinesiophobia). Fifty-five participants completed the study. Analysis using mixed-model ANOVA revealed a significant treatment condition interaction on pain intensity at the 3 months follow-up, favoring the education group (mean SD change: -25.4± 26.7 vs -6.6 ± 30.7, P < 0.005). Although participants in the education group were more likely to report perceived functional benefits from treatment at 3 months follow-up (RR=1.63, 95%CI: 1.01-2.63), no significant differences were found in functional disability and kinesiophobia between groups at any time. This study's findings support the provision of pain neurophysiology education as a clinically effective addition to aquatic exercise. © The Author(s) 2014.

  9. [A Matter of Nerves - Applied Neurophysiology of Female Sexuality].

    PubMed

    Bischof, Karoline

    2015-06-17

    Sexual problems are often attributed to psychological or physical deficits that are difficult to modify, or to a poor lover. In contrast, the neurophysiological interaction between body and brain can be understood as fundamental for the genital and emotional experience of sexuality. Neuropsychological discoveries and clinical observations show that elevated muscle tension, superficial breathing and reduced body movement, as employed by many individuals during sexual arousal, will limit the perception of arousal and the degree of sexual pleasure. In contrast, deep breathing and variations in movement and muscle tension support it. Through the use of self awareness exercises and physical learning steps, patients can integrate their sexuality and increases its resistance to psychological, medical and relational interferences.

  10. Mechanisms of pain in distal symmetric polyneuropathy: a combined clinical and neurophysiological study.

    PubMed

    Truini, A; Biasiotta, A; La Cesa, S; Di Stefano, G; Galeotti, F; Petrucci, M T; Inghilleri, M; Cartoni, C; Pergolini, M; Cruccu, G

    2010-09-01

    In patients with distal symmetric polyneuropathy we assessed non-nociceptive Abeta- and nociceptive Adelta-afferents to investigate their role in the development of neuropathic pain. We screened 2240 consecutive patients with sensory disturbances and collected 150 patients with distal symmetric polyneuropathy (68 with pain and 82 without). All patients underwent the Neuropathic Pain Symptom Inventory to rate ongoing, paroxysmal and provoked pains, a standard nerve conduction study (NCS) to assess Abeta-fibre function, and laser-evoked potentials (LEPs) to assess Adelta-fibre function. Patients with pain had the same age (P>0.50), but a longer delay since symptom onset than those without (P<0.01). Whereas the LEP amplitude was significantly lower in patients with pain than in those without (P<0.0001), NCS data did not differ between groups (P>0.50). LEPs were more severely affected in patients with ongoing pain than in those with provoked pain (P<0.0001). Our findings indicate that the impairment of Abeta-fibres has no role in the development of ongoing or provoked pain. In patients with ongoing pain the severe LEP suppression and the correlation between pain intensity and LEP attenuation may indicate that this type of pain reflects damage to nociceptive axons. The partially preserved LEPs in patients with provoked pain suggest that this type of pain is related to the abnormal activity arising from partially spared and sensitised nociceptive terminals. Because clinical and neurophysiological abnormalities followed similar patterns regardless of aetiology, pain should be classified and treated on mechanism-based grounds. Copyright (c) 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Considering WTO law in the design of climate change regimes beyond Kyoto

    NASA Astrophysics Data System (ADS)

    Gaines, Sanford E.

    2009-11-01

    This article describes the most important provisions of World Trade Organization (WTO) agreements that should be considered in designing laws and regulations under likely post-Kyoto climate change mitigation regimes. The Kyoto Protocol and the expected post-Kyoto international climate agreement depend on national measures to implement market-based mitigation measures. This market strategy promotes international exchanges of goods, investments, and services such as cross-border trading of credits for emissions reductions and transnational financing for projects that avoid emissions through the Clean Development Mechanism. Moreover, the United States and other countries, concerned over "leakage" of greenhouse gas (GHG) emissions through relocation of industry to other countries coupled with political worry over manufacturing competitiveness, have proposed national climate legislation containing border adjustments on imported goods or implicit subsidies for national producers, raising additional WTO considerations. The article assesses the likely effectiveness of such trade-related measures in achieving climate change mitigation goals and the potential trade policy infringements and trade distortions that they might bring about. Alternative strategies for achieving GHG mitigation goals in closer conformity with WTO law and policy will be suggested.

  12. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    PubMed

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity

  13. Association between gastric cancer and the Kyoto classification of gastritis.

    PubMed

    Shichijo, Satoki; Hirata, Yoshihiro; Niikura, Ryota; Hayakawa, Yoku; Yamada, Atsuo; Koike, Kazuhiko

    2017-09-01

    Histological gastritis is associated with gastric cancer, but its diagnosis requires biopsy. Many classifications of endoscopic gastritis are available, but not all are useful for risk stratification of gastric cancer. The Kyoto Classification of Gastritis was proposed at the 85th Congress of the Japan Gastroenterological Endoscopy Society. This cross-sectional study evaluated the usefulness of the Kyoto Classification of Gastritis for risk stratification of gastric cancer. From August 2013 to September 2014, esophagogastroduodenoscopy was performed and the gastric findings evaluated according to the Kyoto Classification of Gastritis in a total of 4062 patients. The following five endoscopic findings were selected based on previous reports: atrophy, intestinal metaplasia, enlarged folds, nodularity, and diffuse redness. A total of 3392 patients (1746 [51%] men and 1646 [49%] women) were analyzed. Among them, 107 gastric cancers were diagnosed. Atrophy was found in 2585 (78%) and intestinal metaplasia in 924 (27%). Enlarged folds, nodularity, and diffuse redness were found in 197 (5.8%), 22 (0.6%), and 573 (17%), respectively. In univariate analyses, the severity of atrophy, intestinal metaplasia, diffuse redness, age, and male sex were associated with gastric cancer. In a multivariate analysis, atrophy and male sex were found to be independent risk factors. Younger age and severe atrophy were determined to be associated with diffuse-type gastric cancer. Endoscopic detection of atrophy was associated with the risk of gastric cancer. Thus, patients with severe atrophy should be examined carefully and may require intensive follow-up. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  14. Differential neurophysiological effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS) in non-human primates.

    PubMed

    Cycowicz, Yael M; Luber, Bruce; Spellman, Timothy; Lisanby, Sarah H

    2008-07-01

    Magnetic seizure therapy (MST) is under development as a means of reducing the side effects of electroconvulsive therapy (ECT) through enhanced control over patterns of seizure induction and spread. We previously reported that chronic treatment with MST resulted in less impairment in cognitive function than electroconvulsive shock (ECS) in a non-human primate model of convulsive therapy. Here we present quantitative analyses of ictal expression and post-ictal suppression following ECS, MST, and anesthesia-alone sham in the same model to test whether differential neurophysiological characteristics of the seizures could be identified. Rhesus monkeys received 4 weeks of daily treatment with ECS, MST, and anesthesia-alone sham in a counterbalanced order separated by a recovery period. Both ECS and MST were given bilaterally at 2.5 x seizure threshold. Neurophysiological characteristics were derived from two scalp EEG electrode recording sites during and immediately following the ictal period, and were compared to sham treatment. EEG power within four frequencies (delta, theta, alpha and beta) was calculated. Our results support earlier findings from intracerebral electrode recordings demonstrating that MST- and ECS- induced seizures elicit differential patterns of EEG activation. Specifically, we found that ECS shows significantly more marked ictal expression, and more intense post-ictal suppression than MST in the theta, alpha, and beta frequency bands (Ps < .05). However, the ECS and MST were indistinguishable in the delta frequency band during both ictal and post-ictal periods. These results demonstrate that magnetic seizure induction can result in seizures that differ in some neurophysiological respects compared with ECS, but that these modalities share some aspects of seizure expression. The clinical significance of these similarities and differences awaits clinical correlation.

  15. Prolonged neurophysiologic effects of levetiracetam after oral administration in humans.

    PubMed

    Epstein, Charles M; Girard-Siqueira, Lhys; Ehrenberg, Joshua Andrew

    2008-07-01

    To determine whether neurophysiological effects of levetiracetam (LEV) outlast its serum half-life of approximately 7 h. Demonstration of prolonged effects would help to explain the efficacy of LEV at conventional dosing intervals that are longer than the serum half-life. Following an oral dose of LEV 3 g in 12 normal volunteers, we compared transcranial magnetic stimulation (TMS) measures of motor threshold (MT) and recruitment with LEV serum levels and subjective ratings of toxicity over 48 h. Subjects used a two-dimensional visual-analog scale to estimate the time course of any side effects. LEV serum levels and subjective toxicity both peaked around 1 h after oral administration. MT elevation was delayed in comparison to peak serum levels and subjective toxicity. MT was maximally elevated at 6-9 h, and recruitment maximally reduced at 0.6-9 h. Changes in both measures had recovered by approximately 50% at 24 h. Despite the time difference between toxicity and TMS changes, toxicity estimates correlated with the maximum increase in MT. There is a substantial time lag between LEV serum levels and TMS measures of neuronal effects, and a similar temporal dissociation between subjective toxicity and maximum TMS change. The time course of neurophysiological effects, as measured by TMS, may help to explain the sustained clinical efficacy of LEV despite a short peripheral half-life.

  16. [Dr. Michiharu Matsuoka, founder of the Department of Orthopaedic Surgery, Kyoto University, and his achievements. Part 4: Prof. M. Matsuoka's lecture to medical and civic communities].

    PubMed

    Hirotani, Hayato

    2010-03-01

    Dr. M. Matsuoka gave many lectures to physicians at the Postdoctoral Course Lectures sponsored by the Kyoto Eisei Kensasho (Kyoto Bacterial and Biochemical Laboratory) run by the Kyoto Medical Association, and the Postdoctoral Course Lectures of the Kyoto Medical School, Kyoto Imperial University. He was also invited to give lectures at several regional medical associations. He also was a speaker at the Kyoto Imperial University Extension course and he lectured at the Enryakuji Temple on Mt. Hiei, sponsored by a newspaper company. It is remarkable that these activities were carried out in addition to his other notable academic work previously reported.

  17. Kyoto global consensus report on Helicobacter pylori gastritis and its impact on Chinese clinical practice.

    PubMed

    Chen, Qi; Lu, Hong

    2016-06-01

    The Kyoto global consensus report on Helicobacter pylori (H. pylori) gastritis has had a great effect on the field of H. pylori studies worldwide. For the first time H. pylori gastritis was defined entirely as an infectious disease and H. pylori-associated dyspepsia as a new category of organic dyspepsia apart from functional dyspepsia, together with a proposed diagnostic algorithm. Accordingly, the report states that the eradication of H. pylori should be regarded as the first-line treatment for dyspepsia. Moreover, H. pylori eradication before the development of pre-neoplastic changes is recommended to reduce the risk of more serious complications of H. pylori gastritis. Despite the recommendations of this new global consensus, the task of transforming them into feasible and practical recommendations for individual countries will require them to become region-specific, which requires further discussion. © 2016 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  18. [Beginnings of the study of Western sciences, "Rangaku," in Kyoto and Osaka in close relations with the Edo school].

    PubMed

    Murata, T

    2001-01-01

    Beginnings of the study of Western sciences, "Rangaku," in Kyoto and Osaka in the late 18th century are reviewed. Profiles and achievements of several active learners are briefly described; they include Koishi Genzui (Osaka-Kyoto), Tsuji Ranshitsu (Kyoto), Kimura Kenkadō (Osaka), and Hashimoto Sōkichi (Osaka). Genzui, after having successfully made good relations with Sugita Genpaku and Ohtsuki Gentaku, leading masters of the Edo school, played a role of an advocator for promoting "Rangaku" in Osaka and Kyoto. As a result, Kenkadō attained the publication of his book "Ikkaku Sankō," a monograph of the Western crude drug unicorn, with the help of Gentaku, who had translated a Dutch reference into Japanese for him. Ranshitsu and Sōkichi were taught the Dutch language by Gentaku; Sōkichi is known as the founder of "Rangaku" in Osaka.

  19. [In search for neurophysiological criteria of altered consciousness].

    PubMed

    Sviderskaia, N E

    2002-01-01

    Neurophysiological approaches to brain mechanisms of consciousness are discussed. The concept of spatial synchronization of nervous processes developed by M.N. Livanov is applied to neurophysiological analysis of higher brain functions. However, the spatial synchronization of brain potentials is only a condition for information processing and does not represent it as such. This imposes restrictions on conclusions about the neural mechanisms of consciousness. It is more adequate to use the concept of spatial synchronization in views of consciousness as a psychophysiological level along with sub- and superconsciousness in three-level structure of mind according to P.V. Simonov. Forms of consciousness interaction with other levels concern the problem of altered consciousness and may be reflected in various patterns of spatial organization of brain potentials.

  20. Evaluation of TV commercials using neurophysiological responses.

    PubMed

    Yang, Taeyang; Lee, Do-Young; Kwak, Youngshin; Choi, Jinsook; Kim, Chajoong; Kim, Sung-Phil

    2015-04-24

    In recent years, neuroscientific knowledge has been applied to marketing as a novel and efficient means to comprehend the cognitive and behavioral aspects of consumers. A number of studies have attempted to evaluate media contents, especially TV commercials using various neuroimaging techniques such as electroencephalography (EEG). Yet neurophysiological examination of detailed cognitive and affective responses in viewers is still required to provide practical information to marketers. Here, this study develops a method to analyze temporal patterns of EEG data and extract affective and cognitive indices such as happiness, surprise, and attention for TV commercial evaluation. Twenty participants participated in the study. We developed the neurophysiological indices for TV commercial evaluation using classification model. Specifically, these model-based indices were customized using individual EEG features. We used a video game for developing the index of attention and four video clips for developing indices of happiness and surprise. Statistical processes including one-way analyses of variance (ANOVA) and the cross validation scheme were used to select EEG features for each index. The EEG features were composed of the combinations of spectral power at selected channels from the cross validation for each individual. The Fisher's linear discriminant classifier (FLDA) was used to estimate each neurophysiological index during viewing four different TV commercials. Post hoc behavioral responses of preference, short-term memory, and recall were measured. Behavioral results showed significant differences for all preference, short-term memory rates, and recall rates between commercials, leading to a 'high-ranked' commercial group and a 'low-ranked' group (P < 0.05). Neural estimation of happiness results revealed a significant difference between the high-ranked and the low-ranked commercials in happiness index (P < 0.01). The order of rankings based on happiness and

  1. Neurophysiologic Correlates of Post-stroke Mood and Emotional Control

    PubMed Central

    Doruk, Deniz; Simis, Marcel; Imamura, Marta; Brunoni, André R.; Morales-Quezada, Leon; Anghinah, Renato; Fregni, Felipe; Battistella, Linamara R.

    2016-01-01

    Objective: Emotional disturbance is a common complication of stroke significantly affecting functional recovery and quality of life. Identifying relevant neurophysiologic markers associated with post-stroke emotional disturbance may lead to a better understanding of this disabling condition, guiding the diagnosis, development of new interventions and the assessments of treatment response. Methods: Thirty-five subjects with chronic stroke were enrolled in this study. The emotion sub-domain of Stroke Impact Scale (SIS-Emotion) was used to assess post-stroke mood and emotional control. The relation between SIS-Emotion and neurophysiologic measures was assessed by using covariance mapping and univariate linear regression. Multivariate analyses were conducted to identify and adjust for potential confounders. Neurophysiologic measures included power asymmetry and coherence assessed by electroencephalography (EEG); and motor threshold, intracortical inhibition (ICI) and intracortical facilitation (ICF) measured by transcranial magnetic stimulation (TMS). Results: Lower scores on SIS-Emotion was associated with (1) frontal EEG power asymmetry in alpha and beta bands, (2) central EEG power asymmetry in alpha and theta bands, and (3) lower inter-hemispheric coherence over frontal and central areas in alpha band. SIS-Emotion also correlated with higher ICF and MT in the unlesioned hemisphere as measured by TMS. Conclusions: To our knowledge, this is the first study using EEG and TMS to index neurophysiologic changes associated with post-stroke mood and emotional control. Our results suggest that inter-hemispheric imbalance measured by EEG power and coherence, as well as an increased ICF in the unlesioned hemisphere measured by TMS might be relevant markers associated with post-stroke mood and emotional control which can guide future studies investigating new diagnostic and treatment modalities in stroke rehabilitation. PMID:27625600

  2. Memory formation during anaesthesia: plausibility of a neurophysiological basis

    PubMed Central

    Veselis, R. A.

    2015-01-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of ‘hidden’ memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. PMID:25735711

  3. Clinical, neurophysiological and morphological study of dominant intermediate Charcot-Marie-Tooth type C neuropathy.

    PubMed

    Thomas, Florian P; Guergueltcheva, Velina; Gondim, Francisco A A; Tournev, Ivailo; Rao, Chitharanjan V; Ishpekova, Boryana; Kinsella, Laurence J; Pan, Yi; Geller, Thomas J; Litvinenko, Ivan; De Jonghe, Peter; Scherer, Steven S; Jordanova, Albena

    2016-03-01

    Dominant intermediate Charcot-Marie-Tooth neuropathy subtype C (DI-CMTC) was associated with mutations in the YARS gene, encoding tyrosyl-tRNA synthetase, in two large unrelated Bulgarian and US pedigrees and one sporadic case. Here for the first time we describe the clinical, neurophysiological and histopathological features, and phenotypic differences between these two DI-CMTC families. Twenty-one affected individuals from the US family and 27 from the Bulgarian family were evaluated. The mean age of onset in US subjects was 10.7 years in men and 7.3 years in women, while in the Bulgarian participants it was 18.2 years in men and 33.7 years in women. The course was slowly progressive. Extensor digitorum brevis atrophy was uniform. Atrophy and/or weakness of upper and lower limb muscles were found in over 50 % of the subjects. Nerve conduction studies (NCS) were abnormal in all US adults and five of six children and all Bulgarian patients except one asymptomatic 25-year-old man. Median motor NCS were in the range of 29.5-45.6 m/s in the US family and 24.7-57.8 m/s in the Bulgarian family. Sural sensory nerve action potentials were absent in 14/21 and 4/12 NCS from adult US and Bulgarian participants, respectively. Analysis of sural nerve biopsies from US patients revealed age-dependent morphological changes of axonal degeneration, absence of onion bulbs, and <10 % fibers with segmental remyelination. Our findings provide further insights into the diagnosis and pathology of intermediate CMT. They also extend the phenotypic spectrum of peripheral neuropathies associated with aminoacyl-tRNA synthetase mutations.

  4. Neurophysiological basis of rehabilitation of adolescent idiopathic scoliosis.

    PubMed

    Smania, Nicola; Picelli, Alessandro; Romano, Michele; Negrini, Stefano

    2008-01-01

    Knowledge on mechanisms of neurophysiological control of trunk movement and posture could help in the development of rehabilitation programs and brace treatment in adolescent idiopathic scoliosis (AIS). Reviewing up-to-date research on neurophysiology of movement and posture control with the aim of providing basis for new researches in the field of AIS rehabilitation and background understanding for clinicians engaged in management of AIS. Review of literature. We considered several neurophysiological issues relevant for AIS rehabilitation, namely, the peculiar organization of patterns of trunk muscle recruitment, the structure of the neural hardware subserving axial and arm muscle control, and the relevance of cognitive systems allowing mapping of spatial coordinates and building of body schema. We made clear the reason why trunk control is generally carried out by means of very fast, feedforward or feedback driven patterns of muscle activation which are deeply rooted in our neural control system and very difficult to modify by training. We hypothesized that augmented sensory feedback and strength exercises could be an important stage in a rehabilitation program aimed at hindering, or possibly reversing, scoliosis progression. In this context we considered bracing not only as a corrective biomechanical device but also as a tool for continuous sensory stimulation that could help awareness of body misalignment. Future research aimed at developing strategies of trunk postural control learning is essential in the rehabilitation of adolescent idiopathic scoliosis.

  5. Neurophysiological Markers of Emotion Processing in Burnout Syndrome.

    PubMed

    Golonka, Krystyna; Mojsa-Kaja, Justyna; Popiel, Katarzyna; Marek, Tadeusz; Gawlowska, Magda

    2017-01-01

    The substantial body of research employing subjective measures indicates that burnout syndrome is associated with cognitive and emotional dysfunctions. The growing amount of neurophysiological and neuroimaging research helps in broadening existing knowledge of the neural mechanisms underlying core burnout components (emotional exhaustion and depersonalization/cynicism) that are inextricably associated with emotional processing. In the presented EEG study, a group of 93 participants (55 women; mean age = 35.8) were selected for the burnout group or the demographically matched control group on the basis of the results of the Maslach Burnout Inventory - General Survey (MBI-GS) and the Areas of Worklife Survey (AWS). Subjects then participated in an EEG experiment using two experimental procedures: a facial recognition task and viewing of passive pictures. The study focuses on analyzing event-related potentials (ERPs): N170, VPP, EPN, and LPP, as indicators of emotional information processing. Our results show that burnout subjects, as compared to the control group, demonstrate significantly weaker response to affect-evoking stimuli, indexed by a decline in VPP amplitude to emotional faces and decreased EPN amplitude in processing emotional scenes. The analysis of N170 and LPP showed no significant between-group difference. The correlation analyses revealed that VPP and EPN, which are ERP components related to emotional processing, are associated with two core burnout symptoms: emotional exhaustion and cynicism. To our knowledge, we are one of the first research groups to use ERPs to demonstrate such a relationship between neurophysiological activity and burnout syndrome in the context of emotional processing. Thus, in conclusion we emphasized that the decreased amplitude of VPP and EPN components in the burnout group may be a neurophysiological manifestation of emotional blunting and may be considered as neurophysiological markers of emotional exhaustion and cynicism

  6. Neurophysiological Markers of Emotion Processing in Burnout Syndrome

    PubMed Central

    Golonka, Krystyna; Mojsa-Kaja, Justyna; Popiel, Katarzyna; Marek, Tadeusz; Gawlowska, Magda

    2017-01-01

    The substantial body of research employing subjective measures indicates that burnout syndrome is associated with cognitive and emotional dysfunctions. The growing amount of neurophysiological and neuroimaging research helps in broadening existing knowledge of the neural mechanisms underlying core burnout components (emotional exhaustion and depersonalization/cynicism) that are inextricably associated with emotional processing. In the presented EEG study, a group of 93 participants (55 women; mean age = 35.8) were selected for the burnout group or the demographically matched control group on the basis of the results of the Maslach Burnout Inventory – General Survey (MBI-GS) and the Areas of Worklife Survey (AWS). Subjects then participated in an EEG experiment using two experimental procedures: a facial recognition task and viewing of passive pictures. The study focuses on analyzing event-related potentials (ERPs): N170, VPP, EPN, and LPP, as indicators of emotional information processing. Our results show that burnout subjects, as compared to the control group, demonstrate significantly weaker response to affect-evoking stimuli, indexed by a decline in VPP amplitude to emotional faces and decreased EPN amplitude in processing emotional scenes. The analysis of N170 and LPP showed no significant between-group difference. The correlation analyses revealed that VPP and EPN, which are ERP components related to emotional processing, are associated with two core burnout symptoms: emotional exhaustion and cynicism. To our knowledge, we are one of the first research groups to use ERPs to demonstrate such a relationship between neurophysiological activity and burnout syndrome in the context of emotional processing. Thus, in conclusion we emphasized that the decreased amplitude of VPP and EPN components in the burnout group may be a neurophysiological manifestation of emotional blunting and may be considered as neurophysiological markers of emotional exhaustion and

  7. Unraveling the barriers to reconceptualization of the problem in chronic pain: the actual and perceived ability of patients and health professionals to understand the neurophysiology.

    PubMed

    Moseley, Lorimer

    2003-05-01

    To identify why reconceptualization of the problem is difficult in chronic pain, this study aimed to evaluate whether (1) health professionals and patients can understand currently accurate information about the neurophysiology of pain and (2) health professionals accurately estimate the ability of patients to understand the neurophysiology of pain. Knowledge tests were completed by 276 patients with chronic pain and 288 professionals either before (untrained) or after (trained) education about the neurophysiology of pain. Professionals estimated typical patient performance on the test. Untrained participants performed poorly (mean +/- standard deviation, 55% +/- 19% and 29% +/- 12% for professionals and patients, respectively), compared to their trained counterparts (78% +/- 21% and 61% +/- 19%, respectively). The estimated patient score (46% +/- 18%) was less than the actual patient score (P <.005). The results suggest that professionals and patients can understand the neurophysiology of pain but professionals underestimate patients' ability to understand. The implications are that (1) a poor knowledge of currently accurate information about pain and (2) the underestimation of patients' ability to understand currently accurate information about pain represent barriers to reconceptualization of the problem in chronic pain within the clinical and lay arenas.

  8. Recent neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC

    PubMed Central

    Benussi, Alberto; Cotelli, Maria Sofia; Padovani, Alessandro; Borroni, Barbara

    2018-01-01

    Niemann–Pick disease type C (NPC) is a rare autosomal recessive lysosomal storage disorder with extensive biological, molecular, and clinical heterogeneity. Recently, numerous studies have tried to shed light on the pathophysiology of the disease, highlighting possible disease pathways common to other neurodegenerative disorders, such as Alzheimer’s disease and frontotemporal dementia, and identifying possible candidate biomarkers for disease staging and response to treatment. Miglustat, which reversibly inhibits glycosphingolipid synthesis, has been licensed in the European Union and elsewhere for the treatment of NPC in both children and adults. A number of ongoing clinical trials might hold promise for the development of new treatments for NPC. The objective of the present work is to review and evaluate recent literature data in order to highlight the latest neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC pathophysiology. Furthermore, ongoing developments in disease-modifying treatments will be briefly discussed. PMID:29511534

  9. Resting-State Neurophysiological Activity Patterns in Young People with ASD, ADHD, and ASD + ADHD

    ERIC Educational Resources Information Center

    Shephard, Elizabeth; Tye, Charlotte; Ashwood, Karen L.; Azadi, Bahar; Asherson, Philip; Bolton, Patrick F.; McLoughlin, Grainne

    2018-01-01

    Altered power of resting-state neurophysiological activity has been associated with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. We compared resting-state neurophysiological power in children with ASD, ADHD, co-occurring ASD + ADHD, and typically developing controls. Children with ASD…

  10. Changes to CMS Reimbursement Rules for Intraoperative Neurophysiological Monitoring: Implications for Telemedicine

    PubMed Central

    2013-01-01

    Abstract Intraoperative neurophysiological monitoring (IONM) is used as an adjunct for surgeries that pose risk to nervous system structures. IONM is performed by a technologist in the operating room and is overseen by a highly trained fellowship-trained physician clinical neurophysiologist. Telemedicine has allowed the professional oversight component to be done remotely, with reimbursement for multiple simultaneous cases. Recent changes to Current Procedure Terminology coding and Medicare reimbursement policies provide options only for exclusive 1:1 technologist:oversight physician billing. This policy change may create profound repercussions in the practice of telemedicine by actively discouraging the leveraging of highly specialized and scarce expertise through on-site physician extenders. PMID:23952785

  11. DNA methylation regulates neurophysiological spatial representation in memory formation

    PubMed Central

    Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David

    2015-01-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947

  12. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis.

    PubMed

    Ward, Sarah; Pearce, Alan J; Pietrosimone, Brian; Bennell, Kim; Clark, Ross; Bryant, Adam L

    2015-03-01

    In addition to biomechanical disturbances, peripheral joint injuries (PJIs) can also result in chronic neuromuscular alterations due in part to loss of mechanoreceptor-mediated afferent feedback. An emerging perspective is that PJI should be viewed as a neurophysiological dysfunction, not simply a local injury. Neurophysiological and neuroimaging studies have provided some evidence for central nervous system (CNS) reorganization at both the cortical and spinal levels after PJI. The novel hypothesis proposed is that CNS reorganization is the underlying mechanism for persisting neuromuscular deficits after injury, particularly muscle weakness. There is a lack of direct evidence to support this hypothesis, but future studies utilizing force-matching tasks with superimposed transcranial magnetic stimulation may be help clarify this notion. © 2014 Wiley Periodicals, Inc.

  13. Clinical outcome and intraoperative neurophysiology for focal limb dystonic tremor without generalized dystonia treated with deep brain stimulation.

    PubMed

    Ramirez-Zamora, Adolfo; Kaszuba, Brian; Gee, Lucy; Prusik, Julia; Molho, Eric; Wilock, Meghan; Shin, Damian; Pilitsis, Julie G

    2016-11-01

    Dystonic tremor (DT) is defined as a postural/kinetic tremor occurring in the body region affected by dystonia. DT is typically characterized by focal tremors with irregular amplitudes and variable frequencies typically below 7Hz. Pharmacological treatment is generally unsuccessful and guidelines for deep brain stimulation (DBS) targeting and indications are scarce. In this article, we present the outcome and neurophysiologic data of two patients with refractory, focal limb DT treated with Globus Pallidus interna (Gpi) DBS and critically review the current literature regarding surgical treatment of DT discussing stereotactic targets and treatment considerations. A search of literature concerning treatment of DT was conducted. Additionally, Gpi DBS was performed in two patients with DT and microelectrode recordings for multi unit analysis (MUAs) and local field potentials (LFPs) were obtained. The mean percentage improvement in tremor severity was 80.5% at 3 years follow up. MUAs and LFPs did not show significant differences in DT patients compared with other forms of dystonia or PD except for higher interspikes bursting indices. LFP recordings in DT demonstrated high power at low frequencies with action (<3.5Hz). Gpi DBS is an effective treatment in patients with focal limb DT without associated generalized dystonia. Intraoperative neurophysiologic findings suggest that DT is part of phenotypic motor manifestations in dystonia. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. BRAIN ACONITASE ACTIVITY IN SPONTANEOUSLY HYPERTENSIVE (SHR) AND WISTAR-KYOTO (WKY) RATS.

    EPA Science Inventory

    Animal models of susceptibility are critical for human health risk assessment. Previous studies indicate that spontaneously hypertensive (SHR) rats are more sensitive than Wistar-Kyoto (WKY) rats to the cholinesterase (ChE) inhibitors such as carbaryl and chlorpyrifos. This diffe...

  15. Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Iwahashi, Kiyomi

    2017-10-01

    Red auroras were observed in Japan during an extreme magnetic storm that occurred on 17 September 1770. We show new evidence that the red aurora extended toward the zenith of Kyoto around midnight. The basic appearance of the historical painting of the red aurora is geometrically reproduced based on the inclination of the local magnetic field and a detailed description in a newly discovered diary. The presence of the inclined zenith aurora over Kyoto suggests that the intensity of the September 1770 magnetic storm is comparable to, or slightly larger than that of the September 1859 Carrington storm.

  16. Aging and emotional memory: the co-occurrence of neurophysiological and behavioral positivity effects.

    PubMed

    Langeslag, Sandra J E; van Strien, Jan W

    2009-06-01

    The positivity effect is a trend for adults to increasingly process positive and/or decreasingly process negative information compared with other information with advancing age. The positivity effect has been observed with behavioral measures, such as in attention and memory tests, and with measures of neurophysiological activity, such as in amygdala activation and the late positive potential (LPP). In this study, it was investigated whether these behavioral and neurophysiological positivity effects co-occur. The electroencephalogram of younger (19-26 years) and older (65-82 years) adults was recorded while they encoded unpleasant, neutral, and pleasant pictures for retrieval in free and cued recall tests. Positivity effects occurred in the late LPP amplitude (700-1,000 ms) and in the free recall test, with negativity biases in younger adults and no biases in older adults. The occurrence of a valence bias in the LPP was substantially but nonsignificantly correlated with the occurrence of a similar valence bias in memory in the older adults. In conclusion, neurophysiological and behavioral positivity effects appear to co-occur, a finding that awaits expansion using different neurophysiological and behavioral measures.

  17. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  18. VOJTA neurophysiologic therapy.

    PubMed

    Bauer, H; Appaji, G; Mundt, D

    1992-01-01

    The reflexlocomotion acc. to VOJTA is a neurophysiologic facilitation system for the whole CNS and neuromuscular apparatus. It consists of all components, in a reciprocal manner of locomotion: (i) automatic control of posture, (ii) uprighting, (iii) aimed movements. Consequently the indications for this type of kinesiologic facilitation are really extensive. In this article the following complete list of indications is described: CCD (central coordination disorder), CP (cerebral palsy), peripheral paresis, Spina bifida (MMC), Myopathies, congenital malformations, orthopaedic problems, traumatic cross sections, neuromuscular dysfunctions etc. Further the experiences of the treatment in each disease are discussed. Even EMG-detections have shown the effect of the therapy in peripheral and central damage. Therefore a good prognosis for improvement and rehabilitation can be given in a large number of disorders, irrespective of age.

  19. Neurophysiology of arthritis pain.

    PubMed

    McDougall, Jason J; Linton, Patrick

    2012-12-01

    Arthritis pain is a complex phenomenon involving intricate neurophysiological processing at all levels of the pain pathway. The treatment options available to alleviate joint pain are fairly limited and most arthritis patients report only modest pain relief with current treatments. A better understanding of the neural mechanisms responsible for musculoskeletal pain and the identification of new targets will help in the development of future pharmacological therapies. This article reviews some of the latest research into factors which contribute to joint pain and covers areas such as cannabinoids, proteinase activated receptors, sodium channels, cytokines and transient receptor potential channels. The emerging hypothesis that osteoarthritis may have a neuropathic component is also discussed.

  20. Preliminary evidence of a neurophysiological basis for individual discrimination in filial imprinting.

    PubMed

    Town, Stephen Michael

    2011-12-01

    Filial imprinting involves a predisposition for biologically important stimuli and a learning process directing preferences towards a particular stimulus. Learning underlies discrimination between imprinted and unfamiliar individuals and depends upon the IMM (intermediate and medial mesopallium). Here, IMM neurons responded differentially to familiar and unfamiliar conspecifics following socialization and the neurophysiological effects of social experience differed between hemispheres. Such findings may provide a neurophysiological basis for individual discrimination in imprinting. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Memory formation during anaesthesia: plausibility of a neurophysiological basis.

    PubMed

    Veselis, R A

    2015-07-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of 'hidden' memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Dynamic publication model for neurophysiology databases.

    PubMed

    Gardner, D; Abato, M; Knuth, K H; DeBellis, R; Erde, S M

    2001-08-29

    We have implemented a pair of database projects, one serving cortical electrophysiology and the other invertebrate neurones and recordings. The design for each combines aspects of two proven schemes for information interchange. The journal article metaphor determined the type, scope, organization and quantity of data to comprise each submission. Sequence databases encouraged intuitive tools for data viewing, capture, and direct submission by authors. Neurophysiology required transcending these models with new datatypes. Time-series, histogram and bivariate datatypes, including illustration-like wrappers, were selected by their utility to the community of investigators. As interpretation of neurophysiological recordings depends on context supplied by metadata attributes, searches are via visual interfaces to sets of controlled-vocabulary metadata trees. Neurones, for example, can be specified by metadata describing functional and anatomical characteristics. Permanence is advanced by data model and data formats largely independent of contemporary technology or implementation, including Java and the XML standard. All user tools, including dynamic data viewers that serve as a virtual oscilloscope, are Java-based, free, multiplatform, and distributed by our application servers to any contemporary networked computer. Copyright is retained by submitters; viewer displays are dynamic and do not violate copyright of related journal figures. Panels of neurophysiologists view and test schemas and tools, enhancing community support.

  3. Neurophysiology training in the Neurology Specialist Education Program in Spain.

    PubMed

    Rodríguez-Antigüedad, A; Matías-Guiu, J; Hernández-Pérez, M A; Jiménez Hernández, M D; Martín González, M R; Morales Ortiz, A; Delgado, G; Frank, A; López de Silanes, C; Martínez-Vila, E

    2011-06-01

    The training period in neurophysiology is a substantial part of the Neurology Specialist Program in Spain. The National Neurology Committee (La Comisión Nacional de Neurología (CNN), which is the body reporting to the Ministries of Health and Education, must ensure compliance to the Program. During the first trimester of 2008, the CNN sent a questionnaire, in which there was a question asking about this training period, to each of the managers of the 69 teaching units accredited for neurology training in Spain, for them to answer. Of the 69 questionnaires issued, 49 were received completed, which was a response rate of 71%. The neurophysiology training period of the neurology specialist program in Spain was carried out in the same hospital in 44 teaching unit (90%): the remaining 5 sent their neurology trainees to 4 different hospitals. The Unit that carried out the neurophysiology training period was incorporated into the Neurology Department in 27 (55%) cases, and the formula was mixed in 3 (6%). A total of 69% of tutors were satisfied with the training, but was 90% in the hospitals where the unit was integrated into Neurology, and was 65% where this relationship did not exist. The neurologists in training were informed about EEG in 49% of education units, performed EMG/ENG 57%, and informed about evoked potentials in 35% after their training period. Although the level of satisfaction is high, the level of responsibility assumed by the neurologists in training during their rotation into neurophysiology does not appear to comply to the demands laid out in the training program, particularly in these units not integrated into Neurology Departments. Copyright © 2010 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  4. The Kyoto Protocol and forestry practices in the United States

    Treesearch

    Bov B. Eav; Richard A. Birdsey; Linda S. Heath

    2000-01-01

    Forestry may play an important if not critical role in the ability of the U.S. to meet its greenhouse gas emissions target under the terms of the Kyoto Protocol. Given the low rate of change in the U.S. forest land area, the major anthropogenic influences on the current net forest carbon flux are forest management and protection activities that have resulted in...

  5. [Climate change and Kyoto protocol].

    PubMed

    Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

    2009-01-01

    Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy.

  6. New paradigm for understanding in-flight decision making errors: a neurophysiological model leveraging human factors.

    PubMed

    Souvestre, P A; Landrock, C K; Blaber, A P

    2008-08-01

    Human factors centered aviation accident analyses report that skill based errors are known to be cause of 80% of all accidents, decision making related errors 30% and perceptual errors 6%1. In-flight decision making error is a long time recognized major avenue leading to incidents and accidents. Through the past three decades, tremendous and costly efforts have been developed to attempt to clarify causation, roles and responsibility as well as to elaborate various preventative and curative countermeasures blending state of the art biomedical, technological advances and psychophysiological training strategies. In-flight related statistics have not been shown significantly changed and a significant number of issues remain not yet resolved. Fine Postural System and its corollary, Postural Deficiency Syndrome (PDS), both defined in the 1980's, are respectively neurophysiological and medical diagnostic models that reflect central neural sensory-motor and cognitive controls regulatory status. They are successfully used in complex neurotraumatology and related rehabilitation for over two decades. Analysis of clinical data taken over a ten-year period from acute and chronic post-traumatic PDS patients shows a strong correlation between symptoms commonly exhibited before, along side, or even after error, and sensory-motor or PDS related symptoms. Examples are given on how PDS related central sensory-motor control dysfunction can be correctly identified and monitored via a neurophysiological ocular-vestibular-postural monitoring system. The data presented provides strong evidence that a specific biomedical assessment methodology can lead to a better understanding of in-flight adaptive neurophysiological, cognitive and perceptual dysfunctional status that could induce in flight-errors. How relevant human factors can be identified and leveraged to maintain optimal performance will be addressed.

  7. [Approach to Teaching Kampo Medicine at Kyoto Pharmaceutical University].

    PubMed

    Matsuda, Hisashi

    2016-01-01

    An approach to educating our pharmaceutical students about Kampo medicine in the six-year system of undergraduate pharmacy education at Kyoto Pharmaceutical University is introduced, including the author's opinions. Curriculum revisions have been made in our university for students entering after 2012. In teaching Kampo medicine at present, a medical doctor and an on-site pharmacist share information difficult to give in a lecture with the teaching staff in my laboratory. For example, before the curriculum revision, we conferred with a pharmacist and a doctor in the course "Kampo Medicine A, B" for 4th year students, in which students were presented a basic knowledge of Kampo medicine, the application of important Kampo medicines, combinations of crude drugs, etc. Further, in our "Introduction to Kampo Medicine" for 6th year students, presented after they have practiced in hospitals and community pharmacies, we again lecture on the pharmacological characteristics of Kampo medicines, on "pattern (Sho)", and on evidence-based medicine (EBM) and research studies of important Kampo medicines. After our curriculum revision, "Kampo Medicine A, B" was rearranged into the courses "Kampo and Pharmacognosy" and "Clinical Kampo Medicine". "Kampo and Pharmacognosy" is now provided in the second semester of the 3rd year, and in this course we lecture on the basic knowledge of Kampo medicine. An advanced lecture will be given on "Clinical Kampo Medicine" in the 6th year. We are searching for the best way to interest students in Kampo medicine, and to counteract any misunderstandings about Kampo medicine.

  8. Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review

    PubMed Central

    Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L

    2013-01-01

    Abstract Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain. PMID:24701256

  9. Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review.

    PubMed

    Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L

    2013-01-01

    Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain.

  10. Understanding in an instant: neurophysiological evidence for mechanistic language circuits in the brain.

    PubMed

    Pulvermüller, Friedemann; Shtyrov, Yury; Hauk, Olaf

    2009-08-01

    How long does it take the human mind to grasp the idea when hearing or reading a sentence? Neurophysiological methods looking directly at the time course of brain activity indexes of comprehension are critical for finding the answer to this question. As the dominant cognitive approaches, models of serial/cascaded and parallel processing, make conflicting predictions on the time course of psycholinguistic information access, they can be tested using neurophysiological brain activation recorded in MEG and EEG experiments. Seriality and cascading of lexical, semantic and syntactic processes receives support from late (latency approximately 1/2s) sequential neurophysiological responses, especially N400 and P600. However, parallelism is substantiated by early near-simultaneous brain indexes of a range of psycholinguistic processes, up to the level of semantic access and context integration, emerging already 100-250ms after critical stimulus information is present. Crucially, however, there are reliable latency differences of 20-50ms between early cortical area activations reflecting lexical, semantic and syntactic processes, which are left unexplained by current serial and parallel brain models of language. We here offer a mechanistic model grounded in cortical nerve cell circuits that builds upon neuroanatomical and neurophysiological knowledge and explains both near-simultaneous activations and fine-grained delays. A key concept is that of discrete distributed cortical circuits with specific inter-area topographies. The full activation, or ignition, of specifically distributed binding circuits explains the near-simultaneity of early neurophysiological indexes of lexical, syntactic and semantic processing. Activity spreading within circuits determined by between-area conduction delays accounts for comprehension-related regional activation differences in the millisecond range.

  11. Tinnitus sensitization: a neurophysiological pathway of chronic complex tinnitus.

    PubMed

    Zenner, Hans P

    2006-01-01

    A novel neuro- and psychophysiological pathway for central cognition of tinnitus, i.e. tinnitus sensitization, is presented here. As a complement to the neurophysiological pathway for the conditioned reflex according to Jastreboff, which permits therapeutic procedures to bring about an extinction of the tinnitus (e.g. by the acoustic tinnitus retraining therapy), sensitization can be treated with procedures that act at the cognitive level. Since on the one hand therapeutic extinction procedures (e.g. the therapeutic application of sound) are still to be proven effective in controlled studies, while on the other cognitive interventions such as cognitive behavioral therapies have in fact acquired evidence level IIa in prospective studies, it is indeed appropriate to discuss whether the earlier neurophysiological model of a conditioned reflex is sufficient on its own, and whether in fact it needs to be complemented with the sensitization model.

  12. Chemotherapy-Induced Peripheral Neuropathy in Long-term Survivors of Childhood Cancer: Clinical, Neurophysiological, Functional, and Patient-Reported Outcomes.

    PubMed

    Kandula, Tejaswi; Farrar, Michelle Anne; Cohn, Richard J; Mizrahi, David; Carey, Kate; Johnston, Karen; Kiernan, Matthew C; Krishnan, Arun V; Park, Susanna B

    2018-05-14

    In light of the excellent long-term survival of childhood cancer patients, it is imperative to screen for factors affecting health, function, and quality of life in long-term survivors. To comprehensively assess chemotherapy-induced peripheral neuropathy in childhood cancer survivors to define disease burden and functional effect and to inform screening recommendations. In this cross-sectional observational study, cancer survivors who were treated with chemotherapy for extracranial malignancy before age 17 years were recruited consecutively between April 2015 and December 2016 from a single tertiary hospital-based comprehensive cancer survivorship clinic and compared with healthy age-matched controls. Investigators were blinded to the type of chemotherapy. A total of 169 patients met inclusion criteria, of whom 48 (28.4%) were unable to be contacted or declined participation. Chemotherapy agents known to be toxic to peripheral nerves. The clinical peripheral neurological assessment using the Total Neuropathy Score was compared between recipients of different neurotoxic chemotherapy agents and control participants and was correlated with neurophysiological, functional, and patient-reported outcome measures. Of the 121 childhood cancer survivors included in this study, 65 (53.7%) were male, and the cohort underwent neurotoxicity assessments at a median (range) age of 16 (7-47) years, a median (range) 8.5 (1.5-29) years after treatment completion. Vinca alkaloids and platinum compounds were the main neurotoxic agents. Clinical abnormalities consistent with peripheral neuropathy were common, seen in 54 of 107 participants (50.5%) treated with neurotoxic chemotherapy (mean Total Neuropathy Score increase, 2.1; 95% CI, 1.4-2.9; P < .001), and were associated with lower limb predominant sensory axonal neuropathy (mean amplitude reduction, 5.8 μV; 95% CI, 2.8-8.8; P < .001). Functional deficits were seen in manual dexterity, distal sensation, and balance. Patient

  13. Painful polyneuropathy in patients with and without diabetes: clinical, neurophysiologic, and quantitative sensory characteristics.

    PubMed

    Vrethem, Magnus; Boivie, Jörgen; Arnqvist, Hans; Holmgren, Helen; Lindström, Torbjörn

    2002-01-01

    To study pain characteristics and peripheral nerve involvement in patients with painful diabetic and nondiabetic polyneuropathy in comparison with patients with non-painful polyneuropathy. Fifty-five patients with polyneuropathy (37 with painful polyneuropathy, of whom 19 had diabetes and 18 had no diabetes; and 18 with painless polyneuropathy of different etiologies) were examined clinically using quantitative sensory tests and neurophysiology. Pain intensity and characteristics were analyzed by daily ratings on a 10-step verbal scale and by a questionnaire. Most patients experienced pain of more than one character. There was no clear difference in character or duration of pain between patients with and without diabetes. The mean value of the daily rating of pain intensity showed that pain was more severe in the evenings than in the mornings and that diabetic patients reported worse pain than nondiabetic patients. Thirty-two of the 37 patients with pain had paresthesias and/or dysesthesias, whereas only 7 of 18 patients without pain had paresthesias. Pain was always located in the feet, and, in most patients, also in the lower part of the legs. Some patients also experienced pain in the hands. Tactile sensibility, measured by quantitative tests, was more affected in both diabetic and nondiabetic patients with painful polyneuropathy compared with patients without pain (p = 0.02). Temperature, pain, and vibratory sensibility were equally affected in all patient groups. Nerve conduction velocity, amplitudes, and distal latency were equally affected in the pain group as compared with the control group, indicating that both thin and thick nerve afferents are affected in patients with painful as well as non-painful polyneuropathy and that etiology has no clear impact on nerve involvement. Neuropathy pain was always located in the feet and more severe in diabetic patients compared with patients with neuropathy pain of other etiologies. The authors also found evidence for

  14. The Homemade Alternative: Teaching Human Neurophysiology with Instrumentation Made (Almost) from Scratch

    PubMed Central

    Hauptman, Stephen; Du Bois, Katherine; Johnson, Bruce R.

    2012-01-01

    Recording human neurophysiological data in the teaching laboratory generally requires expensive instrumentation. From our experience in developing inexpensive equipment used in teaching neurophysiology laboratory exercises, we offer a strategy for the development of affordable and safe recording of human neurophysiological parameters. There are many resources available to guide the design and construction of electronic equipment that will record human biopotentials. An important consideration is subject safety, and the electrical characteristics of any equipment must meet strict galvanic isolation standards. Wireless data gathering offers the most complete isolation from 120VAC current. As an example, we present a homemade electrocardiogram recording circuit using only inexpensive and readily available components. We outline the feasibility of constructing equipment that meets the needs of the student laboratory for good data collection, and we consider the obstacles likely to be encountered in these projects. If students actively participate in the equipment design and construction, the process can also be a teaching tool. Students may gain a deeper understanding of the human neurobiology by making the electronic data acquisition and its presentation more transparent. PMID:23493343

  15. Efficacy of the Kyoto Classification of Gastritis in Identifying Patients at High Risk for Gastric Cancer.

    PubMed

    Sugimoto, Mitsushige; Ban, Hiromitsu; Ichikawa, Hitomi; Sahara, Shu; Otsuka, Taketo; Inatomi, Osamu; Bamba, Shigeki; Furuta, Takahisa; Andoh, Akira

    2017-01-01

    Objective The Kyoto gastritis classification categorizes the endoscopic characteristics of Helicobacter pylori (H. pylori) infection-associated gastritis and identifies patterns associated with a high risk of gastric cancer. We investigated its efficacy, comparing scores in patients with H. pylori-associated gastritis and with gastric cancer. Methods A total of 1,200 patients with H. pylori-positive gastritis alone (n=932), early-stage H. pylori-positive gastric cancer (n=189), and successfully treated H. pylori-negative cancer (n=79) were endoscopically graded according to the Kyoto gastritis classification for atrophy, intestinal metaplasia, fold hypertrophy, nodularity, and diffuse redness. Results The prevalence of O-II/O-III-type atrophy according to the Kimura-Takemoto classification in early-stage H. pylori-positive gastric cancer and successfully treated H. pylori-negative cancer groups was 45.1%, which was significantly higher than in subjects with gastritis alone (12.7%, p<0.001). Kyoto gastritis scores of atrophy and intestinal metaplasia in the H. pylori-positive cancer group were significantly higher than in subjects with gastritis alone (all p<0.001). No significant differences were noted in the rates of gastric fold hypertrophy or diffuse redness between the two groups. In a multivariate analysis, the risks for H. pylori-positive gastric cancer increased with intestinal metaplasia (odds ratio: 4.453, 95% confidence interval: 3.332-5.950, <0.001) and male sex (1.737, 1.102-2.739, p=0.017). Conclusion Making an appropriate diagnosis and detecting patients at high risk is crucial for achieving total eradication of gastric cancer. The scores of intestinal metaplasia and atrophy of the scoring system in the Kyoto gastritis classification may thus be useful for detecting these patients.

  16. Neural autoantibodies and neurophysiologic abnormalities in patients exposed to molds in water-damaged buildings.

    PubMed

    Campbell, Andrew W; Thrasher, Jack D; Madison, Roberta A; Vojdani, Aristo; Gray, Michael R; Johnson, Al

    2003-08-01

    Adverse health effects of fungal bioaerosols on occupants of water-damaged homes and other buildings have been reported. Recently, it has been suggested that mold exposure causes neurological injury. The authors investigated neurological antibodies and neurophysiological abnormalities in patients exposed to molds at home who developed symptoms of peripheral neuropathy (i.e., numbness, tingling, tremors, and muscle weakness in the extremities). Serum samples were collected and analyzed with the enzyme-linked immunosorbent assay (ELISA) technique for antibodies to myelin basic protein, myelin-associated glycoprotein, ganglioside GM1, sulfatide, myelin oligodendrocyte glycoprotein, alpha-B-crystallin, chondroitin sulfate, tubulin, and neurofilament. Antibodies to molds and mycotoxins were also determined with ELISA, as reported previously. Neurophysiologic evaluations for latency, amplitude, and velocity were performed on 4 motor nerves (median, ulnar, peroneal, and tibial), and for latency and amplitude on 3 sensory nerves (median, ulnar, and sural). Patients with documented, measured exposure to molds had elevated titers of antibodies (immunoglobulin [Ig]A, IgM, and IgG) to neural-specific antigens. Nerve conduction studies revealed 4 patient groupings: (1) mixed sensory-motor polyneuropathy (n = 55, abnormal), (2) motor neuropathy (n = 17, abnormal), (3) sensory neuropathy (n = 27, abnormal), and (4) those with symptoms but no neurophysiological abnormalities (n = 20, normal controls). All groups showed significantly increased autoantibody titers for all isotypes (IgA, IgM, and IgG) of antibodies to neural antigens when compared with 500 healthy controls. Groups 1 through 3 also exhibited abnormal neurophysiologic findings. The authors concluded that exposure to molds in water-damaged buildings increased the risk for development of neural autoantibodies, peripheral neuropathy, and neurophysiologic abnormalities in exposed individuals.

  17. Nascent body ego: metapsychological and neurophysiological aspects.

    PubMed

    Lehtonen, Johannes; Partanen, Juhani; Purhonen, Maija; Valkonen-Korhonen, Minna; Kononen, Mervi; Saarikoski, Seppo; Launiala, Kari

    2006-10-01

    For Freud, body ego was the organizing basis of the structural theory. He defined it as a psychic projection of the body surface. Isakower's and Lewin's classical findings suggest that the body surface experiences of nursing provide the infant with sensory-affective stimulation that initiates a projection of sensory processes towards the psychic realm. During nursing, somato-sensory, gustatory and olfactory modalities merge with a primitive somatic affect of satiation, whereas auditory modality is involved more indirectly and visual contact more gradually. Repeated regularly, such nascent experiences are likely to play a part in the organization of the primitive protosymbolic mental experience. In support of this hypothesis, the authors review findings from a neurophysiological study of infants before, during and after nursing. Nursing is associated with a significant amplitude change in the newborn electroencephalogram (EEG), which wanes before the age of 3 months, and is transformed at the age of 6 months into rhythmic 3-5 Hz hedonic theta-activity. Sucking requires active physiological work, which is shown in a regular rise in heart rate. The hypothesis of a sensory-affective organization of the nascent body ego, enhanced by nursing and active sucking, seems concordant with neurophysiological phenomena related to nursing.

  18. Neurophysiology of action anticipation in athletes: A systematic review.

    PubMed

    Smith, Daniel M

    2016-01-01

    The purpose of this study was to provide a systematic review of action anticipation studies using functional neuroimaging or brain stimulation during a sport-specific anticipation task. A total of 15 studies from 2008 to 2014 were evaluated and are reported in four sections: expert-novice samples, action anticipation tasks, neuroimaging and stimulation techniques, and key findings. Investigators examined a wide range of action anticipation scenarios specific to eight different sports and utilized functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and transcranial magnetic stimulation (TMS). Expert-novice comparisons were commonly used to investigate differences in action anticipation performance and neurophysiology. Experts tended to outperform novices, and an extensive array of brain structures were reported to be involved differently for experts and novices during action anticipation. However, these neurophysiological findings were generally inconsistent across the studies reviewed. The discussion focuses on strengths and four key limitations. The conclusion posits remaining questions and recommendations for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Efficacy of the Kyoto Classification of Gastritis in Identifying Patients at High Risk for Gastric Cancer

    PubMed Central

    Sugimoto, Mitsushige; Ban, Hiromitsu; Ichikawa, Hitomi; Sahara, Shu; Otsuka, Taketo; Inatomi, Osamu; Bamba, Shigeki; Furuta, Takahisa; Andoh, Akira

    2017-01-01

    Objective The Kyoto gastritis classification categorizes the endoscopic characteristics of Helicobacter pylori (H. pylori) infection-associated gastritis and identifies patterns associated with a high risk of gastric cancer. We investigated its efficacy, comparing scores in patients with H. pylori-associated gastritis and with gastric cancer. Methods A total of 1,200 patients with H. pylori-positive gastritis alone (n=932), early-stage H. pylori-positive gastric cancer (n=189), and successfully treated H. pylori-negative cancer (n=79) were endoscopically graded according to the Kyoto gastritis classification for atrophy, intestinal metaplasia, fold hypertrophy, nodularity, and diffuse redness. Results The prevalence of O-II/O-III-type atrophy according to the Kimura-Takemoto classification in early-stage H. pylori-positive gastric cancer and successfully treated H. pylori-negative cancer groups was 45.1%, which was significantly higher than in subjects with gastritis alone (12.7%, p<0.001). Kyoto gastritis scores of atrophy and intestinal metaplasia in the H. pylori-positive cancer group were significantly higher than in subjects with gastritis alone (all p<0.001). No significant differences were noted in the rates of gastric fold hypertrophy or diffuse redness between the two groups. In a multivariate analysis, the risks for H. pylori-positive gastric cancer increased with intestinal metaplasia (odds ratio: 4.453, 95% confidence interval: 3.332-5.950, <0.001) and male sex (1.737, 1.102-2.739, p=0.017). Conclusion Making an appropriate diagnosis and detecting patients at high risk is crucial for achieving total eradication of gastric cancer. The scores of intestinal metaplasia and atrophy of the scoring system in the Kyoto gastritis classification may thus be useful for detecting these patients. PMID:28321054

  20. Heidelberg-Kyoto partnership bridges life and materials sciences, strengthens bilateral ties.

    PubMed

    Iijima, Yutaka; Kornhauser, David H; Nakatsuji, Norio

    2012-06-01

    Coinciding with the 150(th) anniversary of German-Japanese friendship, Kyoto University and Heidelberg University, two universities replete with history and tradition strengthened their close ties at a joint meeting in Heidelberg, Germany, forming the core of a broad collaborative effort between the two countries. This forum article provides a background and overview of the collaborations. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of select neurophysiological, clinical and psychological tests for burning mouth syndrome.

    PubMed

    Mendak-Ziółko, Magdalena; Konopka, Tomasz; Bogucki, Zdzisław Artur

    2012-09-01

    The objective of this study was to identify, among an array of potential risk factors for burning mouth syndrome (BMS), those that are potentially the most significant in the development of the disease. Sixty-three participants, divided into group I (with BMS: 33 patients ages 41 to 82 years [mean age: 61.5 ± 9.4]) and group II (without BMS: 30 healthy volunteers ages 42-83 years [mean age: 60.5 ± 10.5]) were studied. All underwent a dental examination and psychological tests. Neurological tests (neurophysiological test, electroneurography, and tests of the autonomic nervous system) were performed. Mean parameters were analyzed by Student t test, Kruskal-Wallis test, and χ(2) test, and multifactor analysis was performed with logistic regression and by calculating the odds ratio. In the logistic regression test, 3 factors were significant in the etiopathogenesis of BMS: a value more than 39 μV for the amplitude of the positive peak of the potential induced by stimulating the trigeminal nerve on the left side (P2-L); a value above 5.96 ms for the latency of wave V of the brainstem auditory evoked potentials on the right side (V-R); and a value over 2.35 ms for the latency of the sensory ulnar nerve response. The BMS sufferer was characterized as having mild sensory and autonomic small fiber neuropathy with concomitant central disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Is appreciation of written education about pain neurophysiology related to changes in illness perceptions and health status in patients with fibromyalgia?

    PubMed

    van Ittersum, M W; van Wilgen, C P; Groothoff, J W; van der Schans, C P

    2011-11-01

    To investigate the appreciation of written education about pain neurophysiology in patients with fibromyalgia (FM) and its effects on illness perceptions and perceived health status. A booklet explaining pain neurophysiology was sent to participants with FM. Appreciation was assessed with 10 questions addressing relevance (0-30) and reassurance (0-30). Illness perceptions, catastrophizing and health status were measured with the Revised Illness Perception Questionnaire (IPQ-R), the Pain Catastrophizing Scale (PCS) and the Fibromyalgia Impact Questionnaire (FIQ) at baseline (T0), after a 2-week control period (T1) and 6 weeks after the intervention (T2). Forty-one patients participated. Mean (SD) scores for relevance and reassurance were 21.6 (5.6) and 18.7 (5.7), respectively. Only illness coherence, emotional representations, pain and fatigue changed significantly between T0 and T2. Correlations between appreciation and changes in outcomes ranged between r=0.00 and r=0.34. Although a majority of subjects appreciated the written information, it did not have clinically relevant effects on illness perceptions, catastrophizing or impact of FM on daily life. Written education about pain neurophysiology is inadequate toward changing illness perceptions, catastrophizing or perceived health status of participants with FM; education should be incorporated into a broader multidisciplinary self-management program. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Neurocognitive dysfunction in children with β thalassemia major: psychometric, neurophysiologic and radiologic evaluation.

    PubMed

    Elalfy, M S; Aly, R H; Azzam, H; Aboelftouh, K; Shatla, R H; Tarif, M; Abdatty, M; Elsayed, R M

    2017-12-01

    To evaluate the impact of iron chelating drugs and serum ferritin on the neurocognitive functions of patients with β thalassemia major (β-TM), using psychometric, neurophysiologic and radiologic tests. Eighty children with β-TM were enrolled into the study and were compared to 40 healthy controls. All participants were evaluated by measuring serum ferritin, neurocognitive assessment by Benton Visual Retention Test, Wechsler Intelligence Scale for Children, Wisconsin Card Sort Test, P300 and magnetic resonance spectroscopy (MRS). WISC in our study showed that 40% of cases were borderline mental function as regards total IQ. Neurophysiologic tests were significantly impaired in patients compared to control group, with significant impairment in those receiving desferrioxamine (DFO). P300 amplitude was significantly lower in cases compared to controls (2.24 and 4.66 uv, respectively), recording the shortest amplitude in patients receiving DFO. Altered metabolic markers in the brain were detected by MRS in the form of reduced N-acetylaspartate to creatine ratio in 78.3% of our cases. There were significant correlations between psychometric tests and both neurophysiologic (P300) and radiologic (MRS) tests. β-TM is associated with neurocognitive impairment that can be assessed by psychometric, neurophysiologic and radiologic tests. The role of hemosiderosis and iron chelation therapy on cognitive functioning still need more research. β-TM: beta thalassemia major; DFO: Dysferal; DFP: Deferiprone; DFX: Deferasirox; WISC: Wechsler Intelligence Scale for Children; VIQ: verbal IQ; PIQ: performance IQ; TIQ: total IQ; BVRT: Benton Visual Retention Test; WCST: Wisconsin Card Sort Test; MRS: Magnetic resonant spectroscopy; NAA/Cr ratio: N-acetylaspartate to creatine ratio.

  4. Neurophysiological findings relevant to echolocation in marine animals

    NASA Technical Reports Server (NTRS)

    Bullock, T. H.; Ridgway, S. H.

    1972-01-01

    A review of echolocation mechanisms in marine mammals, chiefly porpoises, is given. Data cover peripheral auditory and central neurophysiological specializations favorable to the analysis of echolocating clicks and their echoes. Conclusions show (1) signals are received from 50 up to at least 135 kHz, (2) sound is received through the mandible skin, and (3) the midbrain sites are insensitive to low frequencies (below 6 kHz).

  5. Resting-State Neurophysiological Activity Patterns in Young People with ASD, ADHD, and ASD + ADHD.

    PubMed

    Shephard, Elizabeth; Tye, Charlotte; Ashwood, Karen L; Azadi, Bahar; Asherson, Philip; Bolton, Patrick F; McLoughlin, Grainne

    2018-01-01

    Altered power of resting-state neurophysiological activity has been associated with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. We compared resting-state neurophysiological power in children with ASD, ADHD, co-occurring ASD + ADHD, and typically developing controls. Children with ASD (ASD/ASD + ADHD) showed reduced theta and alpha power compared to children without ASD (controls/ADHD). Children with ADHD (ADHD/ASD + ADHD) displayed decreased delta power compared to children without ADHD (ASD/controls). Children with ASD + ADHD largely presented as an additive co-occurrence with deficits of both disorders, although reduced theta compared to ADHD-only and reduced delta compared to controls suggested some unique markers. Identifying specific neurophysiological profiles in ASD and ADHD may assist in characterising more homogeneous subgroups to inform treatment approaches and aetiological investigations.

  6. Handling Metadata in a Neurophysiology Laboratory

    PubMed Central

    Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G.; Riehle, Alexa; Denker, Michael; Grün, Sonja

    2016-01-01

    To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework. PMID:27486397

  7. Handling Metadata in a Neurophysiology Laboratory.

    PubMed

    Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G; Riehle, Alexa; Denker, Michael; Grün, Sonja

    2016-01-01

    To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.

  8. Neurophysiological Studies of Auditory Verbal Hallucinations

    PubMed Central

    Ford, Judith M.; Dierks, Thomas; Fisher, Derek J.; Herrmann, Christoph S.; Hubl, Daniela; Kindler, Jochen; Koenig, Thomas; Mathalon, Daniel H.; Spencer, Kevin M.; Strik, Werner; van Lutterveld, Remko

    2012-01-01

    We discuss 3 neurophysiological approaches to study auditory verbal hallucinations (AVH). First, we describe “state” (or symptom capture) studies where periods with and without hallucinations are compared “within” a patient. These studies take 2 forms: passive studies, where brain activity during these states is compared, and probe studies, where brain responses to sounds during these states are compared. EEG (electroencephalography) and MEG (magnetoencephalography) data point to frontal and temporal lobe activity, the latter resulting in competition with external sounds for auditory resources. Second, we discuss “trait” studies where EEG and MEG responses to sounds are recorded from patients who hallucinate and those who do not. They suggest a tendency to hallucinate is associated with competition for auditory processing resources. Third, we discuss studies addressing possible mechanisms of AVH, including spontaneous neural activity, abnormal self-monitoring, and dysfunctional interregional communication. While most studies show differences in EEG and MEG responses between patients and controls, far fewer show symptom relationships. We conclude that efforts to understand the pathophysiology of AVH using EEG and MEG have been hindered by poor anatomical resolution of the EEG and MEG measures, poor assessment of symptoms, poor understanding of the phenomenon, poor models of the phenomenon, decoupling of the symptoms from the neurophysiology due to medications and comorbidites, and the possibility that the schizophrenia diagnosis breeds truer than the symptoms it comprises. These problems are common to studies of other psychiatric symptoms and should be considered when attempting to understand the basic neural mechanisms responsible for them. PMID:22368236

  9. Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans.

    PubMed

    Mano, Tadaaki; Iwase, Satoshi; Toma, Shinobu

    2006-11-01

    Microneurography is a method using metal microelectrodes to investigate directly identified neural traffic in myelinated as well as unmyelinated efferent and afferent nerves leading to and coming from muscle and skin in human peripheral nerves in situ. The present paper reviews how this technique has been used in clinical neurophysiology to elucidate the neural mechanisms of autonomic regulation, motor control and sensory functions in humans under physiological and pathological conditions. Microneurography is particularly important to investigate efferent and afferent neural traffic in unmyelinated C fibers. The recording of efferent discharges in postganglionic sympathetic C efferent fibers innervating muscle and skin (muscle sympathetic nerve activity; MSNA and skin sympathetic nerve activity; SSNA) provides direct information about neural control of autonomic effector organs including blood vessels and sweat glands. Sympathetic microneurography has become a potent tool to reveal neural functions and dysfunctions concerning blood pressure control and thermoregulation. This recording has been used not only in wake conditions but also in sleep to investigate changes in sympathetic neural traffic during sleep and sleep-related events such as sleep apnea. The same recording was also successfully carried out by astronauts during spaceflight. Recordings of afferent discharges from muscle mechanoreceptors have been used to understand the mechanisms of motor control. Muscle spindle afferent information is particularly important for the control of fine precise movements. It may also play important roles to predict behavior outcomes during learning of a motor task. Recordings of discharges in myelinated afferent fibers from skin mechanoreceptors have provided not only objective information about mechanoreceptive cutaneous sensation but also the roles of these signals in fine motor control. Unmyelinated mechanoreceptive afferent discharges from hairy skin seem to be

  10. Neurophysiological Correlates of Attentional Fluctuation in Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Cheung, Celeste H M; McLoughlin, Gráinne; Brandeis, Daniel; Banaschewski, Tobias; Asherson, Philip; Kuntsi, Jonna

    2017-05-01

    Cognitive performance in attention-deficit/hyperactivity disorder (ADHD) is characterised, in part, by frequent fluctuations in response speed, resulting in high reaction time variability (RTV). RTV captures a large proportion of the genetic risk in ADHD but, importantly, is malleable, improving significantly in a fast-paced, rewarded task condition. Using the temporal precision offered by event-related potentials (ERPs), we aimed to examine the neurophysiological measures of attention allocation (P3 amplitudes) and preparation (contingent negative variation, CNV), and their associations with the fluctuating RT performance and its improvement in ADHD. 93 participants with ADHD and 174 controls completed the baseline and fast-incentive conditions of a four-choice reaction time task, while EEG was simultaneously recorded. Compared to controls, individuals with ADHD showed both increased RTV and reduced P3 amplitudes during performance on the RT task. In the participants with ADHD, attenuated P3 amplitudes were significantly associated with high RTV, and the increase in P3 amplitudes from a slow baseline to a fast-paced, rewarded condition was significantly associated with the RTV decrease. Yet, the individuals with ADHD did not show the same increase in CNV from baseline to fast-incentive condition as observed in controls. ADHD is associated both with a neurophysiological impairment of attention allocation (P3 amplitudes) and an inability to adjust the preparatory state (CNV) in a changed context. Our findings suggest that both neurophysiological and cognitive performance measures of attention are malleable in ADHD, which are potential targets for non-pharmacological interventions.

  11. Cerebellar Structure and Function in Male Wistar-Kyoto Hyperactive Rats

    PubMed Central

    Thanellou, Alexandra; Green, John T.

    2014-01-01

    Previous research has suggested that the Wistar-Kyoto Hyperactive (WKHA) rat strain may model some of the behavioral features associated with attention-deficit/hyperactivity disorder (ADHD). We have shown that, in cerebellar-dependent eyeblink conditioning, WKHA emit eyeblink CRs with shortened onset latencies. To further characterize the shortened CR onset latencies seen in WKHA rats, we examined 750-ms delay conditioning with either a tone CS or a light CS, we extended acquisition training, and we included Wistar rats as an additional, outbred control strain. Our results indicated that WKHAs learned more quickly and showed a shortened CR onset latency to a tone CS compared to both Wistar-Kyoto Hypertensive (WKHT) and Wistars. WKHAs and Wistars show a lengthening of CR onset latency over conditioning with a tone CS and an increasing confinement of CRs to the later part of the tone CS (inhibition of delay). WKHAs learned more quickly to a light CS only in comparison to WKHTs and showed a shortened CR onset latency only in comparison to Wistars. Wistars showed an increasing confinement of CRs to the late part of the light CS over conditioning. We used unbiased stereology to estimate the number of Purkinje and granule cells in the cerebellar cortex of the three strains. Our results indicated that WKHAs have more granule cells than Wistars and WKHTs and more Purkinje cells than Wistars. Results are discussed in terms of CS processing and cerebellar cortical contributions to EBC. PMID:23398437

  12. Backwards and Forwards: Behavioral and Neurophysiological Investigations into Dependency Processing

    ERIC Educational Resources Information Center

    Witzel, Jeffrey D.

    2010-01-01

    This dissertation examines the processing of sentences involving long-distance linguistic dependencies, or sentences containing elements that must be linked across intervening words and phrases. Specifically, both behavioral (self-paced reading and eye tracking) and neurophysiological (electroencephalography) methods were used (a) to evaluate the…

  13. Science Education: An Experiment in Facilitating the Learning of Neurophysiology.

    ERIC Educational Resources Information Center

    Levitan, Herbert

    1981-01-01

    Summarizes the experiences of a zoology professor attempting to construct a student-centered course in neurophysiology. Various aspects of the organization and conduct of the course are described, including the beginning experience, topics of interest, lecture, laboratory, computer simulation, examinations, student lectures. Evaluation of the…

  14. Neurophysiological Facilitation of Eating Skills in Children with Severe Handicaps.

    ERIC Educational Resources Information Center

    Sobsey, Richard; Orelove, Fred P.

    1984-01-01

    Effectiveness of neurophysiological facilitation procedures (exteroceptive and proprioceptive stimulation) was evaluated on lip closure, rotary chewing, and food spilling from the mouth of four severely disabled children (3-12 years old). Some improvements in eating skills were found in each student following facilitation procedures. (CL)

  15. Analysis of the Impacts of an Early Start for Compliance with the Kyoto Protocol

    EIA Publications

    1999-01-01

    This report describes the Energy Information Administration's analysis of the impacts of an early start, using the same methodology as in Impacts of the Kyoto Protocol on U.S. Energy Markets and Economic Activity, with only those changes in assumptions caused by the early start date.

  16. Recognition of central sensitization in patients with musculoskeletal pain: Application of pain neurophysiology in manual therapy practice.

    PubMed

    Nijs, Jo; Van Houdenhove, Boudewijn; Oostendorp, Rob A B

    2010-04-01

    Central sensitization plays an important role in the pathophysiology of numerous musculoskeletal pain disorders, yet it remains unclear how manual therapists can recognize this condition. Therefore, mechanism based clinical guidelines for the recognition of central sensitization in patients with musculoskeletal pain are provided. By using our current understanding of central sensitization during the clinical assessment of patients with musculoskeletal pain, manual therapists can apply the science of nociceptive and pain processing neurophysiology to the practice of manual therapy. The diagnosis/assessment of central sensitization in individual patients with musculoskeletal pain is not straightforward, however manual therapists can use information obtained from the medical diagnosis, combined with the medical history of the patient, as well as the clinical examination and the analysis of the treatment response in order to recognize central sensitization. The clinical examination used to recognize central sensitization entails the distinction between primary and secondary hyperalgesia. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Evidence for the Late MMN as a Neurophysiological Endophenotype for Dyslexia

    PubMed Central

    Neuhoff, Nina; Bruder, Jennifer; Bartling, Jürgen; Warnke, Andreas; Remschmidt, Helmut; Müller-Myhsok, Bertram; Schulte-Körne, Gerd

    2012-01-01

    Dyslexia affects 5–10% of school-aged children and is therefore one of the most common learning disorders. Research on auditory event related potentials (AERP), particularly the mismatch negativity (MMN) component, has revealed anomalies in individuals with dyslexia to speech stimuli. Furthermore, candidate genes for this disorder were found through molecular genetic studies. A current challenge for dyslexia research is to understand the interaction between molecular genetics and brain function, and to promote the identification of relevant endophenotypes for dyslexia. The present study examines MMN, a neurophysiological correlate of speech perception, and its potential as an endophenotype for dyslexia in three groups of children. The first group of children was clinically diagnosed with dyslexia, whereas the second group of children was comprised of their siblings who had average reading and spelling skills and were therefore “unaffected” despite having a genetic risk for dyslexia. The third group consisted of control children who were not related to the other groups and were also unaffected. In total, 225 children were included in the study. All children showed clear MMN activity to/da/−/ba/contrasts that could be separated into three distinct MMN components. Whilst the first two MMN components did not differentiate the groups, the late MMN component (300–700 ms) revealed significant group differences. The mean area of the late MMN was attenuated in both the dyslexic children and their unaffected siblings in comparison to the control children. This finding is indicative of analogous alterations of neurophysiological processes in children with dyslexia and those with a genetic risk for dyslexia, without a manifestation of the disorder. The present results therefore further suggest that the late MMN might be a potential endophenotype for dyslexia. PMID:22606227

  18. Behavioral neurophysiology: insights into seeing and grasping.

    PubMed

    Wise, S P; Desimone, R

    1988-11-04

    One marvels at a batter's ability to hit a baseball traveling at 150 kilometers per hour or a monkey's skill in snatching a flying insect. Indeed, the ability of many animals to reach out, grasp, and manipulate objects is a feat of biological engineering unmatched by even state-of-the-art robots. But how are the objects of our attention chosen and how are the eyes and hands directed to it? Recent progress in behavioral neurophysiology has clarified some of the brain mechanisms at work.

  19. Multimodal neurophysiological and psychometric evaluation among patients with systemic lupus erythematosus

    PubMed Central

    Shehata, Ghaydaa A; Elserogy, Yasser MB; Ahmad, Hossam Eddin K; Abdel-Kareem, Mohamed I; Al-kabeer, Ashraf M; Rayan, Mohamed M; El-Baky, Mohamed ES Abd

    2011-01-01

    Objective: To determine some of the neuropsychiatric manifestations of systemic lupus erythematosus (SLE) by applying multimodal neurophysiological and psychometric studies. Patients and methods: Twenty-six SLE patients were evaluated for neurological and psychiatric disorders and compared with 26 healthy controls matched for age, sex, education, and social class. The severity of SLE disease was assessed. Each subject was subjected to the following examinations: laboratory, neurophysiology, magnetic resonance imaging of the brain, transcranial duplex, Modified Mini-mental State Examination, Cognitive Assessment Scale Inventory, Hamilton Depression Scale, and Hamilton Anxiety Scale. Results: The mean age of subjects was 25.9 ± 8.9 years. The most prevalent neurological manifestations were (in order of frequency) anxiety in 17 cases (65.4%), depression in 15 cases (57.7%), headache in 10 cases (38.5%), peripheral neuropathy in 7 cases (26.9%), seizures in 6 cases (23.1%), psychosis in 5 cases (19.2%), dementia in 4 cases (15.4%), radiculopathy in 4 cases (15.4%), myositis in 3 cases (11.5%), and stroke in 2 cases (7.7%). There was a significant affection in amplitude of the ulnar nerve, cognitive function impairment, and electroencephalography changes. There was a significant increased mean velocity and decreased Pulsatility Index of the most studied intracranial vessels in the patients. Conclusion: The use of multimodal neurophysiological, transcranial duplex, and psychometric scales increases the sensitivity for detecting nervous system involvement. PMID:21674025

  20. Punishment induced behavioural and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters

    PubMed Central

    Galea, Joseph M.; Ruge, Diane; Buijink, Arthur; Bestmann, Sven; Rothwell, John C.

    2013-01-01

    Action selection describes the high-level process which selects between competing movements. In animals, behavioural variability is critical for the motor exploration required to select the action which optimizes reward and minimizes cost/punishment, and is guided by dopamine (DA). The aim of this study was to test in humans whether low-level movement parameters are affected by punishment and reward in ways similar to high-level action selection. Moreover, we addressed the proposed dependence of behavioural and neurophysiological variability on DA, and whether this may underpin the exploration of kinematic parameters. Participants performed an out-and-back index finger movement and were instructed that monetary reward and punishment were based on its maximal acceleration (MA). In fact, the feedback was not contingent on the participant’s behaviour but pre-determined. Blocks highly-biased towards punishment were associated with increased MA variability relative to blocks with either reward or without feedback. This increase in behavioural variability was positively correlated with neurophysiological variability, as measured by changes in cortico-spinal excitability with transcranial magnetic stimulation over the primary motor cortex. Following the administration of a DA-antagonist, the variability associated with punishment diminished and the correlation between behavioural and neurophysiological variability no longer existed. Similar changes in variability were not observed when participants executed a pre-determined MA, nor did DA influence resting neurophysiological variability. Thus, under conditions of punishment, DA-dependent processes influence the selection of low-level movement parameters. We propose that the enhanced behavioural variability reflects the exploration of kinematic parameters for less punishing, or conversely more rewarding, outcomes. PMID:23447607

  1. SOME THOUGHTS ON NEUROPHYSIOLOGICAL BASIS OF YOGA

    PubMed Central

    Ramamurthi, B.

    1981-01-01

    Yoga presents the culmination of efforts made by mankind till now control mind and behaviour. It is living science, practiced in an elementary fashion by many in India. While a few perhaps are there who have attained mastery of this science. The background of the derivation and concept of yoga in India is presented followed by a simple exposition of yogic practices and some possible neurophysiologic explanations. Research in yoga will be rewarding as it gives means of exploring and enlarging the functions of the human brain. PMID:22556457

  2. At the Root of Embodied Cognition: Cognitive Science Meets Neurophysiology

    ERIC Educational Resources Information Center

    Garbarini, Francesca; Adenzato, Mauro

    2004-01-01

    Recent experimental research in the field of neurophysiology has led to the discovery of two classes of visuomotor neurons: canonical neurons and mirror neurons. In light of these studies, we propose here an overview of two classical themes in the cognitive science panorama: James Gibson's theory of affordances and Eleanor Rosch's principles of…

  3. Shortened Conditioned Eyeblink Response Latency in Male but not Female Wistar-Kyoto Hyperactive Rats

    PubMed Central

    Thanellou, Alexandra; Schachinger, Kira M.; Green, John T.

    2014-01-01

    Reductions in the volume of the cerebellum and impairments in cerebellar-dependent eyeblink conditioning have been observed in attention-deficit/hyperactivity disorder (ADHD). Recently, it was reported that subjects with ADHD as well as male spontaneously hypertensive rats (SHR), a strain that is frequently employed as an animal model in the study of ADHD, exhibit a parallel pattern of timing deficits in eyeblink conditioning. One criticism that has been posed regarding the validity of the SHR strain as an animal model for the study of ADHD is that SHRs are not only hyperactive but also hypertensive. It is conceivable that many of the behavioral characteristics seen in SHRs that seem to parallel the behavioral symptoms of ADHD are not solely due to hyperactivity but instead are the net outcome of the interaction between hyperactivity and hypertension. We used Wistar-Kyoto Hyperactive (WKHA) and Wistar-Kyoto Hypertensive (WKHT) rats (males and females), strains generated from recombinant inbreeding of SHRs and their progenitor strain, Wistar-Kyoto (WKY) rats, to compare eyeblink conditioning in strains that are exclusively hyperactive or hypertensive. We used a long-delay eyeblink conditioning task in which a tone conditioned stimulus was paired with a periorbital stimulation unconditioned stimulus (750-ms delay paradigm). Our results showed that WKHA and WKHT rats exhibited similar rates of conditioned response (CR) acquisition. However, WKHA males displayed shortened CR latencies (early onset and peak latency) in comparison to WKHT males. In contrast, female WKHAs and WKHTs did not differ. In subsequent extinction training, WKHA rats extinguished at similar rates in comparison to WKHT rats. The current results support the hypothesis of a relationship between cerebellar abnormalities and ADHD in an animal model of ADHD-like symptoms that does not also exhibit hypertension, and suggest that cerebellar-related timing deficits are specific to males. PMID:19485572

  4. Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees

    PubMed Central

    Sandoz, Jean Christophe

    2011-01-01

    The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioral and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odors, based on behavioral, neuroanatomical, and neurophysiological approaches. I first address the behavioral study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odor-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odor representation changes as a result of experience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion. PMID:22163215

  5. Early neurophysiological indices of second language morphosyntax learning

    PubMed Central

    Hanna, Jeff; Shtyrov, Yury; Williams, John; Pulvermüller, Friedemann

    2016-01-01

    Humans show variable degrees of success in acquiring a second language (L2). In many cases, morphological and syntactic knowledge remain deficient, although some learners succeed in reaching nativelike levels, even if they begin acquiring their L2 relatively late. In this study, we use psycholinguistic, online language proficiency tests and a neurophysiological index of syntactic processing, the syntactic mismatch negativity (sMMN) to local agreement violations, to compare behavioural and neurophysiological markers of grammar processing between native speakers (NS) of English and non-native speakers (NNS). Variable grammar proficiency was measured by psycholinguistic tests. When NS heard ungrammatical word sequences lacking agreement between subject and verb (e.g. *we kicks), the MMN was enhanced compared with syntactically legal sentences (e.g. he kicks). More proficient NNS also showed this difference, but less proficient NNS did not. The main cortical sources of the MMN responses were localised in bilateral superior temporal areas, where, crucially, source strength of grammar-related neuronal activity correlated significantly with grammatical proficiency of individual L2 speakers as revealed by the psycholinguistic tests. As our results show similar, early MMN indices to morpho-syntactic agreement violations among both native speakers and non-native speakers with high grammar proficiency, they appear consistent with the use of similar brain mechanisms for at least certain aspects of L1 and L2 grammars. PMID:26752451

  6. On the treatment of the alcoholic organic brain syndrome with an alpha-adrenergic agonist modafinil: double-blind, placebo-controlled clinical, psychometric and neurophysiological studies.

    PubMed

    Saletu, B; Saletu, M; Grünberger, J; Frey, R; Zatschek, I; Mader, R

    1990-01-01

    1. In a double-blind study forty abstinent hospitalized male patients with an alcoholic organic brain syndrome (OBS) were treated for 6 weeks with either 200 mg modafinil or placebo. 2. Modafinil (CRL 40476) is a putative central alpha-1 adrenergic agonist. It's pharmacological profile is quite different from that of amphetamine, which can be seen by the lack of peripheral sympathomimetic effects. The vigilance promoting effect of modafinil has been shown previously in pharmaco-EEG and psychometric studies as well as in clinical studies involving treatment of daytime sleepiness in idiopathic hypersomniacs and narcoleptics. 3. The present clinical investigations demonstrated that the spontaneous restitution of the alcoholic OBS was significantly augmented and accelerated by modafinil. 4. Psychometric tests did not show significant intergroup differences. Modafinil- and placebo-treated patients improved continously over the 6-week period. 5. Psychophysiological and autonomous nervous system parameters were affected neither by placebo nor by modafinil. 6. Neurophysiological investigations by means of quantitative pharmaco-EEG showed partly inconsistent findings. However, superimposed dosages of modafinil (on the top of 6 weeks chronic administration) induced a decrease of slow activity and an increase of alpha activity suggesting an improvement of vigilance after the daily drug intake. 7. Considering the beneficial effects of modafinil in abstinent chronic alcoholic patients, it may be said that activation and improvement of adaptive behaviour by an alpha-adrenergic agonist could be regarded as a therapeutic principle in the treatment of the OBS, eventually due to noradrenergic deficits.

  7. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations

    PubMed Central

    Turner, Duncan L.; Ramos-Murguialday, Ander; Birbaumer, Niels; Hoffmann, Ulrich; Luft, Andreas

    2013-01-01

    The recovery of functional movements following injury to the central nervous system (CNS) is multifaceted and is accompanied by processes occurring in the injured and non-injured hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are the consequence of functional and structural processes collectively termed neuroplasticity and these may occur spontaneously and/or be induced by movement practice. The neurophysiological mechanisms underlying such brain plasticity may take different forms in different types of injury, for example stroke vs. spinal cord injury (SCI). Recovery of movement can be enhanced by intensive, repetitive, variable, and rewarding motor practice. To this end, robots that enable or facilitate repetitive movements have been developed to assist recovery and rehabilitation. Here, we suggest that some elements of robot-mediated training such as assistance and perturbation may have the potential to enhance neuroplasticity. Together the elemental components for developing integrated robot-mediated training protocols may form part of a neurorehabilitation framework alongside those methods already employed by therapists. Robots could thus open up a wider choice of options for delivering movement rehabilitation grounded on the principles underpinning neuroplasticity in the human CNS. PMID:24312073

  8. Thorough specification of the neurophysiologic processes underlying behavior and of their manifestation in EEG - demonstration with the go/no-go task.

    PubMed

    Shahaf, Goded; Pratt, Hillel

    2013-01-01

    In this work we demonstrate the principles of a systematic modeling approach of the neurophysiologic processes underlying a behavioral function. The modeling is based upon a flexible simulation tool, which enables parametric specification of the underlying neurophysiologic characteristics. While the impact of selecting specific parameters is of interest, in this work we focus on the insights, which emerge from rather accepted assumptions regarding neuronal representation. We show that harnessing of even such simple assumptions enables the derivation of significant insights regarding the nature of the neurophysiologic processes underlying behavior. We demonstrate our approach in some detail by modeling the behavioral go/no-go task. We further demonstrate the practical significance of this simplified modeling approach in interpreting experimental data - the manifestation of these processes in the EEG and ERP literature of normal and abnormal (ADHD) function, as well as with comprehensive relevant ERP data analysis. In-fact we show that from the model-based spatiotemporal segregation of the processes, it is possible to derive simple and yet effective and theory-based EEG markers differentiating normal and ADHD subjects. We summarize by claiming that the neurophysiologic processes modeled for the go/no-go task are part of a limited set of neurophysiologic processes which underlie, in a variety of combinations, any behavioral function with measurable operational definition. Such neurophysiologic processes could be sampled directly from EEG on the basis of model-based spatiotemporal segregation.

  9. Assessing fitness-for-duty and predicting performance with cognitive neurophysiological measures

    NASA Astrophysics Data System (ADS)

    Smith, Michael E.; Gevins, Alan

    2005-05-01

    Progress is described in developing a novel test of neurocognitive status for fitness-for-duty testing. The Sustained Attention & Memory (SAM) test combines neurophysiologic (EEG) measures of brain activation with performance measures during a psychometric test of sustained attention and working memory, and then gauges changes in neurocognitive status relative to an individual"s normative baseline. In studies of the effects of common psychoactive substances that can affect job performance, including sedating antihistamines, caffeine, alcohol, marijuana, and prescription medications, test sensitivity was greater for the combined neurophysiological and performance measures than for task performance measures by themselves. The neurocognitive effects of overnight sleep deprivation were quite evident, and such effects predicted subsequent performance impairment on a flight simulator task. Sensitivity to diurnal circadian variations was also demonstrated. With further refinement and independent validation, the SAM Test may prove useful for assessing readiness-to-perform in high-asset personnel working in demanding, high risk situations.

  10. Biofuels E0, E15, E85 Neurophysiology Data

    EPA Pesticide Factsheets

    Visual, auditory, somatosensory, and peripheral nerve evoked responses.This dataset is associated with the following publication:Herr , D., D. Freeborn , L. Degn , S.A. Martin, J. Ortenzio, L. Pantlin, C. Hamm , and W. Boyes. Neurophysiological Assessment of Auditory, Peripheral Nerve, Somatosensory, and Visual System Function After Developmental Exposure to Gasoline, E15 and E85 Vapors. NEUROTOXICOLOGY AND TERATOLOGY. Elsevier Science Ltd, New York, NY, USA, 54: 78-88, (2016).

  11. The neurophysiology of the esophagus.

    PubMed

    Woodland, Philip; Sifrim, Daniel; Krarup, Anne Lund; Brock, Christina; Frøkjaer, Jens Brøndum; Lottrup, Christian; Drewes, Asbjørn Mohr; Swanstrom, Lee L; Farmer, Adam D

    2013-10-01

    This paper reports on the neurophysiology of the esophagus, including on the uneven distribution of innervation in the esophagus, reflected by the increased sensitivity and perception of gastroesophageal reflux disease (GERD) events in the proximal rather than distal esophagus; the role of the enteric nervous system (ENS) in swallowing; the role of the physiological stress-responsive systems, including the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis in mediating esophageal pain; the advances in understanding pain mechanisms and brain structure provided by technological imaging advances; investigations into the efficacy of the descending-pain control system, including diffuse noxious inhibitory control (DNIC); the role of abnormal nervous signaling in afferent pathways in the pathogenesis of Barrett's esophagus (BE); and the contribution of the esophageal mucosa to reflux symptoms. © 2013 New York Academy of Sciences.

  12. Overcoming Misconceptions in Neurophysiology Learning: An Approach Using Color-Coded Animations

    ERIC Educational Resources Information Center

    Guy, Richard

    2012-01-01

    Anyone who has taught neurophysiology would be aware of recurring concepts that students find difficult to understand. However, a greater problem is the development of misconceptions that may be difficult to change. For example, one common misconception is that action potentials pass directly across chemical synapses. Difficulties may be…

  13. An evaluation of a pain education programme for physiotherapists in clinical practice.

    PubMed

    Monaghan, Jenni; Adams, Nicola; Fothergill, Melissa

    2018-03-01

    The present study evaluated the implementation and acceptability of a pain education programme delivered to physiotherapists in clinical practice. A pre-test/post-test design with 10 physiotherapists was employed. Descriptive and inferential statistics were used for outcome measure data. Focus groups were carried out with seven physiotherapists within 1 month post-intervention. These data were analysed using the framework approach. Ten musculoskeletal physiotherapists were recruited. It was possible to develop and deliver the intervention and this was found to be acceptable to physiotherapists within clinical practice. The study explored trends within outcome measures, and one was considered appropriate. The focus groups yielded three interlinked themes, which related to the impact of the programme: "providing a context for pain education", "influence on aspects of the patient-therapist encounter" and "logistics of the education programme in clinical practice". A pain education programme delivered to physiotherapists in clinical practice was both possible to deliver and acceptable to participants. A key strength of the programme was the applicability to real-life practice, which was valued by physiotherapists. While physiotherapists felt that pain neurophysiology education was important, they reported lacking confidence in implementing their pain neurophysiology knowledge with patients. Thus, more time is needed to focus on pain neurophysiology education, with the aim of increasing confidence with the application of this approach in clinical practice. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Remote Sensing and the Kyoto Protocol: A Review of Available and Future Technology for Monitoring Treaty Compliance

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Rosenquist, A.; Milne, A. K.; Dobson, M. C.; Qi, J.

    2000-01-01

    An International workshop was held to address how remote sensing technology could be used to support the environmental monitoring requirements of the Kyoto Protocol. An overview of the issues addressed and the findings of the workshop are discussed.

  15. Monitoring Brain Activity of Geriatric Learners with Low-Cost Neurophysiological Technology

    ERIC Educational Resources Information Center

    Romero-Hall, Enilda; Scott, JoAnne

    2017-01-01

    Cultural stereotypes rooted in both antiquated data and misinterpretation of data have long perpetuated the belief that older adults are unable to learn new concepts because they are doomed to lose brain cells at an alarming rate during their geriatric years. However, advances in neurophysiological technologies that allow researchers to observe…

  16. Cannabinoid-induced effects on the nociceptive system: a neurophysiological study in patients with secondary progressive multiple sclerosis.

    PubMed

    Conte, Antonella; Bettolo, Chiara Marini; Onesti, Emanuela; Frasca, Vittorio; Iacovelli, Elisa; Gilio, Francesca; Giacomelli, Elena; Gabriele, Maria; Aragona, Massimiliano; Tomassini, Valentina; Pantano, Patrizia; Pozzilli, Carlo; Inghilleri, Maurizio

    2009-05-01

    Although clinical studies show that cannabinoids improve central pain in patients with multiple sclerosis (MS) neurophysiological studies are lacking to investigate whether they also suppress these patients' electrophysiological responses to noxious stimulation. The flexion reflex (FR) in humans is a widely used technique for assessing the pain threshold and for studying spinal and supraspinal pain pathways and the neurotransmitter system involved in pain control. In a randomized, double-blind, placebo-controlled, cross-over study we investigated cannabinoid-induced changes in RIII reflex variables (threshold, latency and area) in a group of 18 patients with secondary progressive MS. To investigate whether cannabinoids act indirectly on the nociceptive reflex by modulating lower motoneuron excitability we also evaluated the H-reflex size after tibial nerve stimulation and calculated the H wave/M wave (H/M) ratio. Of the 18 patients recruited and randomized 17 completed the study. After patients used a commercial delta-9-tetrahydrocannabinol (THC) and cannabidiol mixture as an oromucosal spray the RIII reflex threshold increased and RIII reflex area decreased. The visual analogue scale score for pain also decreased, though not significantly. Conversely, the H/M ratio measured before patients received cannabinoids remained unchanged after therapy. In conclusion, the cannabinoid-induced changes in the RIII reflex threshold and area in patients with MS provide objective neurophysiological evidence that cannabinoids modulate the nociceptive system in patients with MS.

  17. Neuropathic pain in post-burn hypertrophic scars: a psychophysical and neurophysiological study.

    PubMed

    Isoardo, Gianluca; Stella, Maurizio; Cocito, Dario; Risso, Daniela; Migliaretti, Giuseppe; Cauda, Franco; Palmitessa, Angela; Faccani, Giuliano; Ciaramitaro, Palma

    2012-06-01

    Pain complicates hypertrophic post-burn pathologic scars (PPS) METHODS: To investigate the possible neuropathic origin of pain, 13 patients with painful PPS involving at least 1 hand underwent clinical examination, including the Douleur Neuropathique en 4 questions (DN4) questionnaire; median, ulnar, and radial nerve conduction studies (NCS); cold- (CDT) and heat-induced pain threshold evaluation by quantitative sensory testing; and cutaneous silent period (CSP) testing of the abductor pollicis brevis. Controls included 9 patients with non-painful PPS, 52 healthy subjects, and 28 patients with carpal tunnel syndrome (CTS). All patients with painful PPS had possible neuropathic pain (DN4 score ≥4). NCS signs of CTS were similarly present in PPS subjects with or without pain. Hands with painful PPS had lower CDT and CSP duration, more frequent cold- and heat-pain hypesthesia, and more thermal allodynia than controls. In PPS, possible neuropathic pain is associated with psychophysical and neurophysiological abnormalities suggestive of small-fiber damage. Copyright © 2011 Wiley Periodicals, Inc.

  18. [Climatic change and public health: scenarios after the coming into force of the Kyoto Protocol].

    PubMed

    Ballester, Ferran; Díaz, Julio; Moreno, José Manuel

    2006-03-01

    According to the reports of the intergovernmental panel for climatic change (IPCC) human beings of the present and near future are going to experiment, in fact we are already experimenting, important changes in the world climate. Conscious of the magnitude of the problem, international organizations have taken a series of initiatives headed to stop the climatic change and to reduce its impact. This willingness has been shaped into the agreements established in the Kyoto protocol, where countries commit to reduce greenhouse-effect gas emissions. Kyoto protocol has come into force on February 16th 2005 with the support of 141 signing countries. Among the major worries are the effects which climatic change may have upon health, such as: 1) changes in the morbidity- mortality related to temperature; 2) Effects on health related with extreme meteorological events (tornados, storms, hurricanes and extreme raining); 3) Air pollution and increase of associated health effects; d) Diseases transmitted by food and water and 4) Infectious diseases transmitted by vectors and by rodents. Even if all the countries in the world committed to the Kyoto Protocol, some consequences of the climatic change will be inevitable; among them some will have a negative impact on health. It would be necessary to adapt a key response strategy to minimize the impacts of climatic change and to reduce, at minimum cost, its adverse effects on health. From the Public Health position, a relevant role can and must be played concerning the understanding of the risks for health of such climatic changes, the design of surveillance systems to evaluate possible impacts, and the establishment of systems to prevent or reduce damages as well as the identification and development of investigation needs.

  19. Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan.

    PubMed

    Tsuchihashi, Yasunari; Takamatsu, Terumasa; Hashimoto, Yukimasa; Takashima, Tooru; Nakano, Kooji; Fujita, Setsuya

    2008-07-15

    We started to use virtual slide (VS) and virtual microscopy (VM) systems for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. In the system we used a digital slide scanner, VASSALO by CLARO Inc., and a broadband optic fibre provided by NTT West Japan Inc. with the best effort capacity of 100 Mbps. The client is the pathology laboratory of Yamashiro Public Hospital, one of the local centre hospitals located in the south of Kyoto Prefecture, where a full-time pathologist is not present. The client is connected by VPN to the telepathology centre of our institute located in central Kyoto. As a result of the recent 15 test cases of VS telepathology diagnosis, including cases judging negative or positive surgical margins, we could estimate the usefulness of VS in intra-operative remote diagnosis. The time required for the frozen section VS file making was found to be around 10 min when we use x10 objective and if the maximal dimension of the frozen sample is less than 20 mm. Good correct focus of VS images was attained in all cases and all the fields of each tissue specimen. Up to now the capacity of best effort B-band appears to be sufficient to attain diagnosis on time in intra-operation. Telepathology diagnosis was achieved within 5 minutes in most cases using VS viewer provided by CLARO Inc. The VS telepathology system was found to be superior to the conventional still image telepathology system using a robotic microscope since in the former we can observe much greater image information than in the latter in a certain limited time of intra-operation and in the much more efficient ways. In the near future VS telepathology will replace conventional still image telepathology with a robotic microscope even in quick frozen intra-operative diagnosis.

  20. Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan

    PubMed Central

    Tsuchihashi, Yasunari; Takamatsu, Terumasa; Hashimoto, Yukimasa; Takashima, Tooru; Nakano, Kooji; Fujita, Setsuya

    2008-01-01

    We started to use virtual slide (VS) and virtual microscopy (VM) systems for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. In the system we used a digital slide scanner, VASSALO by CLARO Inc., and a broadband optic fibre provided by NTT West Japan Inc. with the best effort capacity of 100 Mbps. The client is the pathology laboratory of Yamashiro Public hospital, one of the local centre hospitals located in the south of Kyoto Prefecture, where a fulltime pathologist is not present. The client is connected by VPN to the telepathology centre of our institute located in central Kyoto. As a result of the recent 15 test cases of VS telepathology diagnosis, including cases judging negative or positive surgical margins, we could estimate the usefulness of VS in intra-operative remote diagnosis. The time required for the frozen section VS file making was found to be around 10 min when we use ×10 objective and if the maximal dimension of the frozen sample is less than 20 mm. Good correct focus of VS images was attained in all cases and all the fields of each tissue specimen. Up to now the capacity of best effort B-band appears to be sufficient to attain diagnosis on time in intra-operation. Telepathology diagnosis was achieved within 5 minutes in most cases using VS viewer provided by CLARO Inc. The VS telepathology system was found to be superior to the conventional still image telepathology system using a robotic microscope since in the former we can observe much greater image information than in the latter in a certain limited time of intra-operation and in the much more efficient ways. In the near future VS telepathology will replace conventional still image telepathology with a robotic microscope even in quick frozen intra-operative diagnosis. PMID:18673520

  1. Early neurophysiological indices of second language morphosyntax learning.

    PubMed

    Hanna, Jeff; Shtyrov, Yury; Williams, John; Pulvermüller, Friedemann

    2016-02-01

    Humans show variable degrees of success in acquiring a second language (L2). In many cases, morphological and syntactic knowledge remain deficient, although some learners succeed in reaching nativelike levels, even if they begin acquiring their L2 relatively late. In this study, we use psycholinguistic, online language proficiency tests and a neurophysiological index of syntactic processing, the syntactic mismatch negativity (sMMN) to local agreement violations, to compare behavioural and neurophysiological markers of grammar processing between native speakers (NS) of English and non-native speakers (NNS). Variable grammar proficiency was measured by psycholinguistic tests. When NS heard ungrammatical word sequences lacking agreement between subject and verb (e.g. *we kicks), the MMN was enhanced compared with syntactically legal sentences (e.g. he kicks). More proficient NNS also showed this difference, but less proficient NNS did not. The main cortical sources of the MMN responses were localised in bilateral superior temporal areas, where, crucially, source strength of grammar-related neuronal activity correlated significantly with grammatical proficiency of individual L2 speakers as revealed by the psycholinguistic tests. As our results show similar, early MMN indices to morpho-syntactic agreement violations among both native speakers and non-native speakers with high grammar proficiency, they appear consistent with the use of similar brain mechanisms for at least certain aspects of L1 and L2 grammars. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Influence of neurophysiological hippotherapy on the transference of the centre of gravity among children with cerebral palsy.

    PubMed

    Maćków, Anna; Małachowska-Sobieska, Monika; Demczuk-Włodarczyk, Ewa; Sidorowska, Marta; Szklarska, Alicja; Lipowicz, Anna

    2014-01-01

    The aim of the study was to present the influence of neurophysiological hippotherapy on the transference of the centre of gravity (COG) among children with cerebral palsy (CP). The study involved 19 children aged 4-13 years suffering from CP who demonstrated an asymmetric (A/P) model of compensation. Body balance was studied with the Cosmogamma Balance Platform. An examination on this platform was performed before and after a session of neurophysiological hippotherapy. In order to compare the correlations and differences between the examinations, the results were analysed using Student's T-test for dependent samples at p ≤ 0.05 as the level of statistical significance and descriptive statistics were calculated. The mean value of the body's centre of gravity in the frontal plane (COG X) was 18.33 (mm) during the first examination, changing by 21.84 (mm) after neurophysiological hippotherapy towards deloading of the antigravity lower limb (p ≤ 0.0001). The other stabilographic parameters increased; however, only the change in average speed of antero - posterior COG oscillation was statistically significant (p = 0.0354). 1. One session of neurophysiological hippotherapy induced statistically significant changes in the position of the centre of gravity in the body in the frontal plane and the average speed of COG oscillation in the sagittal plane among CP children demonstrating an asymmetric model of compensation (A/P).

  3. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  4. Promoting health during the American occupation of Japan the public health section, Kyoto Military Government Team, 1945-1949.

    PubMed

    Nishimura, Sey

    2008-03-01

    During the American occupation of Japan (1945-1952), young public health officers from the US Army Medical Corps were posted in local US Army military government teams. These young doctors (aged 25 to 27 years), who had not absorbed the strong anti-Japanese tradition of the US military during World War II, seem to have alleviated the initial resentment felt by the Japanese toward the new governors of their homeland. The case of the Kyoto Military Government Team illustrates the Kyoto citizenry's positive view of some American-directed public health measures. The team's services helped to counter widely held negative views on colonialism, occupation, and public health; lessened resentment toward the unilateral command structure of the occupation forces; and contributed to improved relations between the United States and Japan at the local level.

  5. Neurophysiological processes and functional neuroanatomical structures underlying proactive effects of emotional conflicts.

    PubMed

    Schreiter, Marie Luise; Chmielewski, Witold; Beste, Christian

    2018-07-01

    There is a strong inter-relation of cognitive and emotional processes as evidenced by emotional conflict monitoring processes. In the cognitive domain, proactive effects of conflicts have widely been studied; i.e. effects of conflicts in the n-1 trial on trial n. Yet, the neurophysiological processes and associated functional neuroanatomical structures underlying such proactive effects during emotional conflicts have not been investigated. This is done in the current study combining EEG recordings with signal decomposition methods and source localization approaches. We show that an emotional conflict in the n-1 trial differentially influences processing of positive and negative emotions in trial n, but not the processing of conflicts in trial n. The dual competition framework stresses the importance of dissociable 'perceptual' and 'response selection' or cognitive control levels for interactive effects of cognition and emotion. Only once these coding levels were isolated in the neurophysiological data, processes explaining the behavioral effects were detectable. The data show that there is not only a close correspondence between theoretical propositions of the dual competition framework and neurophysiological processes. Rather, processing levels conceptualized in the framework operate in overlapping time windows, but are implemented via distinct functional neuroanatomical structures; the precuneus (BA31) and the insula (BA13). It seems that decoding of information in the precuneus, as well as the integration of information during response selection in the insula is more difficult when confronted with angry facial emotions whenever cognitive control resources have been highly taxed by previous conflicts. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Conceptual Coordination Bridges Information Processing and Neurophysiology

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Norrig, Peter (Technical Monitor)

    2000-01-01

    Information processing theories of memory and skills can be reformulated in terms of how categories are physically and temporally related, a process called conceptual coordination. Dreaming can then be understood as a story understanding process in which two mechanisms found in everyday comprehension are missing: conceiving sequences (chunking categories in time as a categorization) and coordinating across modalities (e.g., relating the sound of a word and the image of its meaning). On this basis, we can readily identify isomorphisms between dream phenomenology and neurophysiology, and explain the function of dreaming as facilitating future coordination of sequential, cross-modal categorization (i.e., REM sleep lowers activation thresholds, "unlearning").

  7. Reward Prediction Errors in Drug Addiction and Parkinson's Disease: from Neurophysiology to Neuroimaging.

    PubMed

    García-García, Isabel; Zeighami, Yashar; Dagher, Alain

    2017-06-01

    Surprises are important sources of learning. Cognitive scientists often refer to surprises as "reward prediction errors," a parameter that captures discrepancies between expectations and actual outcomes. Here, we integrate neurophysiological and functional magnetic resonance imaging (fMRI) results addressing the processing of reward prediction errors and how they might be altered in drug addiction and Parkinson's disease. By increasing phasic dopamine responses, drugs might accentuate prediction error signals, causing increases in fMRI activity in mesolimbic areas in response to drugs. Chronic substance dependence, by contrast, has been linked with compromised dopaminergic function, which might be associated with blunted fMRI responses to pleasant non-drug stimuli in mesocorticolimbic areas. In Parkinson's disease, dopamine replacement therapies seem to induce impairments in learning from negative outcomes. The present review provides a holistic overview of reward prediction errors across different pathologies and might inform future clinical strategies targeting impulsive/compulsive disorders.

  8. Assessing a novel polymer-wick based electrode for EEG neurophysiological research.

    PubMed

    Pasion, Rita; Paiva, Tiago O; Pedrosa, Paulo; Gaspar, Hugo; Vasconcelos, Beatriz; Martins, Ana C; Amaral, Maria H; Nóbrega, João M; Páscoa, Ricardo; Fonseca, Carlos; Barbosa, Fernando

    2016-07-15

    The EEG technique has decades of valid applications in clinical and experimental neurophysiology. EEG equipment and data analysis methods have been characterized by remarkable developments, but the skin-to-electrode signal transfer remains a challenge for EEG recording. A novel quasi-dry system - the polymer wick-based electrode - was developed to overcome the limitations of conventional dry and wet silver/silver-chloride (Ag/AgCl) electrodes for EEG recording. Nine participants completed an auditory oddball protocol with simultaneous EEG acquisition using both the conventional Ag/AgCl and the wick electrodes. Wick system successfully recorded the expected P300 modulation. Standard ERP analysis, residual random noise analysis, and single-trial analysis of the P300 wave were performed in order to compare signal acquired by both electrodes. It was found that the novel wick electrode performed similarly to the conventional Ag/AgCl electrodes. The developed wick electrode appears to be a reliable alternative for EEG research, representing a promising halfway alternative between wet and dry electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS) DURING FALL SEASON IN WISTAR-KYOTO RATS

    EPA Science Inventory

    CONSISTENT INFLAMMATORY RESPONSE FOLLOWING EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPs) DURING FALL SEASON IN WISTAR-KYOTO RATS.
    UP Kodavanti, MC Schladweiler, AD Ledbetter, LC Walsh, PS Gilmour, MI Gilmour, WP Watkinson, JP Nolan, JH Richards, D Andrews, DL Costa. US EPA...

  10. Promoting Health During the American Occupation of Japan The Public Health Section, Kyoto Military Government Team, 1945-1949

    PubMed Central

    Nishimura, Sey

    2008-01-01

    During the American occupation of Japan (1945–1952), young public health officers from the US Army Medical Corps were posted in local US Army military government teams. These young doctors (aged 25 to 27 years), who had not absorbed the strong anti-Japanese tradition of the US military during World War II, seem to have alleviated the initial resentment felt by the Japanese toward the new governors of their homeland. The case of the Kyoto Military Government Team illustrates the Kyoto citizenry’s positive view of some American-directed public health measures. The team’s services helped to counter widely held negative views on colonialism, occupation, and public health; lessened resentment toward the unilateral command structure of the occupation forces; and contributed to improved relations between the United States and Japan at the local level. PMID:18235076

  11. Learned helplessness and social avoidance in the Wistar-Kyoto rat

    PubMed Central

    Nam, Hyungwoo; Clinton, Sarah M.; Jackson, Nateka L.; Kerman, Ilan A.

    2014-01-01

    The Wistar-Kyoto (WKY) rat is an established depression model characterized by elevated anxiety- and depression-like behavior across a variety of tests. Here we further characterized specific behavioral and functional domains relevant to depression that are altered in WKY rats. Moreover, since early-life experience potently shapes emotional behavior, we also determined whether aspects of WKYs' phenotype were modifiable by early-life factors using neonatal handling or maternal separation. We first compared WKYs' behavior to that of Sprague–Dawley (SD), Wistar, and Spontaneously Hypertensive (SHR) rats in: the open field test, elevated plus maze, novelty-suppressed feeding test, a social interaction test, and the forced swim test (FST). WKYs exhibited high baseline immobility in the FST and were the only strain to show increased immobility on FST Day 2 vs. Day 1 (an indicator of learned helplessness). WKYs also showed greater social avoidance, along with enlarged adrenal glands and hearts relative to other strains. We next tested whether neonatal handling or early-life maternal separation stress influenced WKYs' behavior. Neither manipulation affected their anxiety- and depressive-like behaviors, likely due to a strong genetic underpinning of their phenotype. Our findings indicate that WKY rats are a useful model that captures specific functional domains relevant to clinical depression including: psychomotor retardation, behavioral inhibition, learned helplessness, social withdrawal, and physiological dysfunction. WKY rats appear to be resistant to early-life manipulations (i.e., neonatal handling) that are therapeutic in other strains, and may be a useful model for the development of personalized anti-depressant therapies for treatment resistant depression. PMID:24744709

  12. Learned helplessness and social avoidance in the Wistar-Kyoto rat.

    PubMed

    Nam, Hyungwoo; Clinton, Sarah M; Jackson, Nateka L; Kerman, Ilan A

    2014-01-01

    The Wistar-Kyoto (WKY) rat is an established depression model characterized by elevated anxiety- and depression-like behavior across a variety of tests. Here we further characterized specific behavioral and functional domains relevant to depression that are altered in WKY rats. Moreover, since early-life experience potently shapes emotional behavior, we also determined whether aspects of WKYs' phenotype were modifiable by early-life factors using neonatal handling or maternal separation. We first compared WKYs' behavior to that of Sprague-Dawley (SD), Wistar, and Spontaneously Hypertensive (SHR) rats in: the open field test, elevated plus maze, novelty-suppressed feeding test, a social interaction test, and the forced swim test (FST). WKYs exhibited high baseline immobility in the FST and were the only strain to show increased immobility on FST Day 2 vs. Day 1 (an indicator of learned helplessness). WKYs also showed greater social avoidance, along with enlarged adrenal glands and hearts relative to other strains. We next tested whether neonatal handling or early-life maternal separation stress influenced WKYs' behavior. Neither manipulation affected their anxiety- and depressive-like behaviors, likely due to a strong genetic underpinning of their phenotype. Our findings indicate that WKY rats are a useful model that captures specific functional domains relevant to clinical depression including: psychomotor retardation, behavioral inhibition, learned helplessness, social withdrawal, and physiological dysfunction. WKY rats appear to be resistant to early-life manipulations (i.e., neonatal handling) that are therapeutic in other strains, and may be a useful model for the development of personalized anti-depressant therapies for treatment resistant depression.

  13. Syntax as a Reflex: Neurophysiological Evidence for Early Automaticity of Grammatical Processing

    ERIC Educational Resources Information Center

    Pulvermuller, Friedemann; Shtyrov, Yury; Hasting, Anna S.; Carlyon, Robert P.

    2008-01-01

    It has been a matter of debate whether the specifically human capacity to process syntactic information draws on attentional resources or is automatic. To address this issue, we recorded neurophysiological indicators of syntactic processing to spoken sentences while subjects were distracted to different degrees from language processing. Subjects…

  14. Neurophysiology and Neuroanatomy of Reflexive and Voluntary Saccades in Non-Human Primates

    ERIC Educational Resources Information Center

    Johnston, Kevin; Everling, Stefan

    2008-01-01

    A multitude of cognitive functions can easily be tested by a number of relatively simple saccadic eye movement tasks. This approach has been employed extensively with patient populations to investigate the functional deficits associated with psychiatric disorders. Neurophysiological studies in non-human primates performing the same tasks have…

  15. Capping the cost of compliance with the Kyoto Protocol and recycling revenues into land-use projects.

    PubMed

    Schlamadinger, B; Obersteiner, M; Michaelowa, A; Grubb, M; Azar, C; Yamagata, Y; Goldberg, D; Read, P; Kirschbaum, M U; Fearnside, P M; Sugiyama, T; Rametsteiner, E; Böswald, K

    2001-07-14

    There is the concern among some countries that compliance costs with commitments under the Kyoto Protocol may be unacceptably high. There is also the concern that technical difficulties with the inclusion of land use, land-use change, and forestry activities in non-Annex I countries might lead to an effective exclusion of such activities from consideration under the Protocol. This paper is proposing a mechanism that addresses both these concerns. In essence, it is suggested that parties should be able to purchase fixed-price offset certificates if they feel they cannot achieve compliance through other means alone, such as by improved energy efficiency, increased use of renewable energy, or use of the flexible mechanisms in the Kyoto Protocol. These offset certificates would act as a price cap for the cost of compliance for any party to the Protocol. Revenues from purchase of the offset certificates would be directed to forest-based activities in non-Annex I countries such as forest protection that may carry multiple benefits including enhancing net carbon sequestration.

  16. Comparison of pain neurophysiology knowledge among health sciences students: a cross-sectional study.

    PubMed

    Adillón, Cristina; Lozano, Èrik; Salvat, Isabel

    2015-10-22

    A key tool for use in approaching chronic pain treatment is educating patients to reconceptualize pain. Thus, health professionals are fundamental to the transmission of pain information to patients. Because their understanding of pain is acquired during the educational process, the aim of this study was to compare the knowledge about pain neurophysiology in first and final-year students from three different health science programs at a single University to determine their gain in knowledge using a well-known questionnaire designed to evaluate the understanding of pain. The Neurophysiology of Pain Questionnaire (19 closed-ended questions) was administered to students in their first and final years of study in Medicine, Physiotherapy, or Nutrition. The percentage of correct responses was determined and comparisons of the results were analyzed between the programs as well as between the first and final years of study within each program. For all tests, p-values were two-sided, and results with p-values below 0.05 were considered statistically significant. The participation rate was greater than 51% (n = 285). The mean percentage of correct responses, reported as mean (SD), among the first year students was 42.14 (12.23), without significant statistical differences detected between the programs. The mean percentages of correct responses for students in their final year were as follows: Medicine, 54.38 (13.87); Physiotherapy, 68.92 (16.22); Nutrition, 42.34 (10.11). We found statistically significant differences among all three programs and between the first and final years in Medicine and Physiotherapy. A question-by-question analysis showed that the percentage of correct responses for questions related to the biopsychosocial aspects of pain was higher for students in Physiotherapy than those in Medicine. Students in their final years of Medicine and Physiotherapy programs know more about the neurophysiology of pain than students in their first years of these programs

  17. Evaluation of Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma

    DTIC Science & Technology

    2015-02-01

    of Combat Casualties in a Swine Polytrauma PRINCIPAL INVESTIGATOR: Richard McCarron, PhD CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the...Neurophysiologic and Systematic Changes during Aeromedical Evacuation and en Route Care of Combat Casualties in a Swine Polytrauma 5a. CONTRACT NUMBER...of neurotrauma and polytrauma . We plan to investigate the effects of aero-medical evacuation on neurophysiology and lung function in swine models of

  18. Preliminary report on aerotoxic syndrome (AS) and the need for diagnostic neurophysiological tests.

    PubMed

    Hale, Margaret A; Al-Seffar, Judith A

    2009-09-01

    Researchers have found, in studies carried out over several years, that many passengers and crew, following their recent flights in commercial jet aeroplanes, have become unwell, with a range of symptoms in common. This condition, which has not yet been officially recognised, is called Aerotoxic Syndrome (AS). It seems to be caused, primarily, by neurotoxic organophosphates contaminating the air circulating in jet cabins. Patients with such symptoms may visit their GPs, who then arrange diagnostic tests. Some of their symptoms fall within the jurisdiction of diagnostic neurophysiological investigations, but neurophysiology practitioners may be unaware of this syndrome. Until AS is officially recognised as an illness, and guidelines for diagnostic procedures established, patients requiring specific investigations may not be appropriately referred, or tests may be performed unnecessarily. This report seeks to stimulate debate within the field, and facilitate studies, if needed, to help define the diagnostic criteria.

  19. Development of a national forest inventory for carbon accounting purposes in New Zealand's planted Kyoto forests

    Treesearch

    John Moore; Ian Payton; Larry Burrows; Chris Goulding; Peter Beets; Paul Lane; Peter Stephens

    2007-01-01

    This article discusses the development of a monitoring system to estimate carbon sequestration in New Zealand's planted Kyoto forests, those forests that have been planted since January 1, 1990, on land that previously did not contain forest. The system must meet the Intergovernmental Panel on Climate Change good practice guidance and must be seen to be unbiased,...

  20. Neurophysiologic Evaluation of Early Cognitive Development in High-Risk Infants and Toddlers

    ERIC Educational Resources Information Center

    deRegnier, Raye-Ann

    2005-01-01

    New knowledge of the perceptual, discriminative, and memory capabilities of very young infants has opened the door to further evaluation of these abilities in infants who have risk factors for cognitive impairments. A neurophysiologic technique that has been very useful in this regard is the recording of event-related potentials (ERPs). The…

  1. [Dr. Michiharu Matsuoka, founder of the Department of Orthopaedic Surgery, Kyoto University, and his achievements (Part 6: Studying abroad of Dr. Matsuoka and opening to public, reputation and achievement of the department)].

    PubMed

    Hirotani, Hayato

    2011-03-01

    Dr. Michiharu Matsuoka studied orthopaedic surgery in Germany, Austria and other countries during the period from August, 1902 to May, 1906. He visited many university pathological institutes and surgical and orthopaedic clinics to study pathology and to learn the practice of orthopaedic surgery. After that, he started his practice at the newly established Department of Orthopaedic Surgery in the Medical School of Kyoto Imperial University in June, 1906. The department was opened in 1907 and in 1911 it was opened to all citizens and practical doctors in Kyoto City and exhibited many orthopaedic specimens and instruments. In particular, the x-ray apparatus of the Department was so well equipped that a German radiologist who visited the Department admired it in his article that was published in the journal of radiology in 1911. The Department was not surpassed by others for the number of patients with the dislocation of the hip and tuberculous spondylitis as well as the advanced quality and variety of roentgenological and pathological researches on these diseases.

  2. Neuroanatomy, neurophysiology, and dysfunction of the female lower urinary tract: a review.

    PubMed

    Unger, Cécile A; Tunitsky-Bitton, Elena; Muffly, Tyler; Barber, Matthew D

    2014-01-01

    The 2 major functions of the lower urinary tract are the storage and emptying of urine. These processes are controlled by complex neurophysiologic mechanisms and are subject to injury and disease. When there is disruption of the neurologic control centers, dysfunction of the lower urinary tract may occur. This is sometimes referred to as the "neurogenic bladder." The manifestation of dysfunction depends on the level of injury and severity of disruption. Patients with lesions above the spinal cord often have detrusor overactivity with no disruption in detrusor-sphincter coordination. Patients with well-defined suprasacral spinal cord injuries usually present with intact reflex detrusor activity but have detrusor sphincter dyssynergia, whereas injuries to or below the sacral spinal cord usually lead to persistent detrusor areflexia. A complete gynecologic, urologic, and neurologic examination should be performed when evaluating patients with neurologic lower urinary tract dysfunction. In addition, urodynamic studies and neurophysiologic testing can be used in certain circumstances to help establish diagnosis or to achieve better understanding of a patient's vesicourethral functioning. In the management of neurogenic lower urinary tract dysfunction, the primary goal is improvement of a patient's quality of life. Second to this is the prevention of chronic damage to the bladder and kidneys, which can lead to worsening impairment and symptoms. Treatment is often multifactorial, including behavioral modifications, bladder training programs, and pharmacotherapy. Surgical procedures are often a last resort option for management. An understanding of the basic neurophysiologic mechanisms of the lower urinary tract can guide providers in their evaluation and treatment of patients who present with lower urinary tract disorders. As neurologic diseases progress, voiding function often changes or worsens, necessitating a good understanding of the underlying physiology in question.

  3. Neurophysiological Changes Measured Using Somatosensory Evoked Potentials.

    PubMed

    Macerollo, Antonella; Brown, Matt J N; Kilner, James M; Chen, Robert

    2018-05-01

    Measurements of somatosensory evoked potentials (SEPs), recorded using electroencephalography during different phases of movement, have been fundamental in understanding the neurophysiological changes related to motor control. SEP recordings have also been used to investigate adaptive plasticity changes in somatosensory processing related to active and observational motor learning tasks. Combining noninvasive brain stimulation with SEP recordings and intracranial SEP depth recordings, including recordings from deep brain stimulation electrodes, has been critical in identifying neural areas involved in specific temporal stages of somatosensory processing. Consequently, this fundamental information has furthered our understanding of the maladaptive plasticity changes related to pathophysiology of diseases characterized by abnormal movements, such as Parkinson's disease, dystonia, and functional movement disorders. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  4. Expectations affect psychological and neurophysiological benefits even after a single bout of exercise.

    PubMed

    Mothes, Hendrik; Leukel, Christian; Jo, Han-Gue; Seelig, Harald; Schmidt, Stefan; Fuchs, Reinhard

    2017-04-01

    The study investigated whether typical psychological, physiological, and neurophysiological changes from a single exercise are affected by one's beliefs and expectations. Seventy-six participants were randomly assigned to four groups and saw different multimedia presentations suggesting that the subsequent exercise (moderate 30 min cycling) would result in more or less health benefits (induced expectations). Additionally, we assessed habitual expectations reflecting previous experience and beliefs regarding exercise benefits. Participants with more positive habitual expectations consistently demonstrated both greater psychological benefits (more enjoyment, mood increase, and anxiety reduction) and greater increase of alpha-2 power, assessed with electroencephalography. Manipulating participants' expectations also resulted in largely greater increases of alpha-2 power, but not in more psychological exercise benefits. On the physiological level, participants decreased their blood pressure after exercising, but this was independent of their expectations. These results indicate that habitual expectations in particular affect exercise-induced psychological and neurophysiological changes in a self-fulfilling manner.

  5. Neurophysiology and itch pathways.

    PubMed

    Schmelz, Martin

    2015-01-01

    As we all can easily differentiate the sensations of itch and pain, the most straightforward neurophysiologic concept would consist of two specific pathways that independently encode itch and pain. Indeed, a neuronal pathway for histamine-induced itch in the peripheral and central nervous system has been described in animals and humans, and recently several non-histaminergic pathways for itch have been discovered in rodents that support a dichotomous concept differentiated into a pain and an itch pathway, with both pathways being composed of different "flavors." Numerous markers and mediators have been found that are linked to itch processing pathways. Thus, the delineation of neuronal pathways for itch from pain pathways seemingly proves that all sensory aspects of itch are based on an itch-specific neuronal pathway. However, such a concept is incomplete as itch can also be induced by the activation of the pain pathway in particular when the stimulus is applied in a highly localized spatial pattern. These opposite views reflect the old dispute between specificity and pattern theories of itch. Rather than only being of theoretic interest, this conceptual problem has key implication for the strategy to treat chronic itch as key therapeutic targets would be either itch-specific pathways or unspecific nociceptive pathways.

  6. A Study of the Effectiveness of Sensory Integration Therapy on Neuro-Physiological Development

    ERIC Educational Resources Information Center

    Reynolds, Christopher; Reynolds, Kathleen Sheena

    2010-01-01

    Background: Sensory integration theory proposes that because there is plasticity within the central nervous system (the brain is moldable) and because the brain consists of systems that are hierarchically organised, it is possible to stimulate and improve neuro-physiological processing and integration and thereby increase learning capacity.…

  7. A Structured-Inquiry Approach to Teaching Neurophysiology Using Computer Simulation

    PubMed Central

    Crisp, Kevin M.

    2012-01-01

    Computer simulation is a valuable tool for teaching the fundamentals of neurophysiology in undergraduate laboratories where time and equipment limitations restrict the amount of course content that can be delivered through hands-on interaction. However, students often find such exercises to be tedious and unstimulating. In an effort to engage students in the use of computational modeling while developing a deeper understanding of neurophysiology, an attempt was made to use an educational neurosimulation environment as the basis for a novel, inquiry-based research project. During the semester, students in the class wrote a research proposal, used the Neurodynamix II simulator to generate a large data set, analyzed their modeling results statistically, and presented their findings at the Midbrains Neuroscience Consortium undergraduate poster session. Learning was assessed in the form of a series of short term papers and two 10-min in-class writing responses to the open-ended question, “How do ion channels influence neuronal firing?”, which they completed on weeks 6 and 15 of the semester. Students’ answers to this question showed a deeper understanding of neuronal excitability after the project; their term papers revealed evidence of critical thinking about computational modeling and neuronal excitability. Suggestions for the adaptation of this structured-inquiry approach into shorter term lab experiences are discussed. PMID:23494064

  8. Neurophysiological differences between patients clinically at high risk for schizophrenia and neurotypical controls--first steps in development of a biomarker.

    PubMed

    Duffy, Frank H; D'Angelo, Eugene; Rotenberg, Alexander; Gonzalez-Heydrich, Joseph

    2015-11-02

    Schizophrenia is a severe, disabling and prevalent mental disorder without cure and with a variable, incomplete pharmacotherapeutic response. Prior to onset in adolescence or young adulthood a prodromal period of abnormal symptoms lasting weeks to years has been identified and operationalized as clinically high risk (CHR) for schizophrenia. However, only a minority of subjects prospectively identified with CHR convert to schizophrenia, thereby limiting enthusiasm for early intervention(s). This study utilized objective resting electroencephalogram (EEG) quantification to determine whether CHR constitutes a cohesive entity and an evoked potential to assess CHR cortical auditory processing. This study constitutes an EEG-based quantitative neurophysiological comparison between two unmedicated subject groups: 35 neurotypical controls (CON) and 22 CHR patients. After artifact management, principal component analysis (PCA) identified EEG spectral and spectral coherence factors described by associated loading patterns. Discriminant function analysis (DFA) determined factors' discrimination success between subjects in the CON and CHR groups. Loading patterns on DFA-selected factors described CHR-specific spectral and coherence differences when compared to controls. The frequency modulated auditory evoked response (FMAER) explored functional CON-CHR differences within the superior temporal gyri. Variable reduction by PCA identified 40 coherence-based factors explaining 77.8% of the total variance and 40 spectral factors explaining 95.9% of the variance. DFA demonstrated significant CON-CHR group difference (P <0.00001) and successful jackknifed subject classification (CON, 85.7%; CHR, 86.4% correct). The population distribution plotted along the canonical discriminant variable was clearly bimodal. Coherence factors delineated loading patterns of altered connectivity primarily involving the bilateral posterior temporal electrodes. However, FMAER analysis showed no CON

  9. Physiological and neurophysiological determinants of postcancer fatigue: design of a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Postcancer fatigue is a frequently occurring, severe, and invalidating problem, impairing quality of life. Although it is possible to effectively treat postcancer fatigue with cognitive behaviour therapy, the nature of the underlying (neuro)physiology of postcancer fatigue remains unclear. Physiological aspects of fatigue include peripheral fatigue, originating in muscle or the neuromuscular junction; central fatigue, originating in nerves, spinal cord, and brain; and physical deconditioning, resulting from a decreased cardiopulmonary function. Studies on physiological aspects of postcancer fatigue mainly concentrate on deconditioning. Peripheral and central fatigue and brain morphology and function have been studied for patients with fatigue in the context of chronic fatigue syndrome and neuromuscular diseases and show several characteristic differences with healthy controls. Methods/design Fifty seven severely fatigued and 21 non-fatigued cancer survivors will be recruited from the Radboud University Nijmegen Medical Centre. Participants should have completed treatment of a malignant, solid tumour minimal one year earlier and should have no evidence of disease recurrence. Severely fatigued patients are randomly assigned to either the intervention condition (cognitive behaviour therapy) or the waiting list condition (start cognitive behaviour therapy after 6 months). All participants are assessed at baseline and the severely fatigued patients also after 6 months follow-up (at the end of cognitive behaviour therapy or waiting list). Primary outcome measures are fatigue severity, central and peripheral fatigue, brain morphology and function, and physical condition and activity. Discussion This study will be the first randomized controlled trial that characterizes (neuro)physiological factors of fatigue in disease-free cancer survivors and evaluates to which extent these factors can be influenced by cognitive behaviour therapy. The results of this

  10. Maternal Behavior Predicts Infant Neurophysiological and Behavioral Attention Processes in the First Year

    ERIC Educational Resources Information Center

    Swingler, Margaret M.; Perry, Nicole B.; Calkins, Susan D.; Bell, Martha Ann

    2017-01-01

    We apply a biopsychosocial conceptualization to attention development in the 1st year and examine the role of neurophysiological and social processes on the development of early attention processes. We tested whether maternal behavior measured during 2 mother-child interaction tasks when infants (N = 388) were 5 months predicted infant medial…

  11. Contralesional Cathodal versus Dual Transcranial Direct Current Stimulation for Decreasing Upper Limb Spasticity in Chronic Stroke Individuals: A Clinical and Neurophysiological Study.

    PubMed

    Del Felice, Alessandra; Daloli, Verena; Masiero, Stefano; Manganotti, Paolo

    2016-12-01

    Different transcranial direct current stimulation (tDCS) paradigms have been implemented to treat poststroke spasticity, but discordant results have been reported. This study aimed to determine the efficacy and persistence of dual tDCS (anode over affected motor cortex [M1] and cathode over contralateral M1) compared with cathodal tDCS (cathode over contralateral M1) on upper limb (UL) functional, behavioral, and neurophysiological measures in chronic poststroke individuals. Ten subjects with UL spasticity (7 men; mean 62 years; 8 ischemic stroke; years from event: 2.3 years) were enrolled in a cross-over, double-blinded study. Cathodal and dual tDCS, both preceded by 1 week of sham stimulation 1 month before real stimulation, were applied with 3 months interval. Stimulating paradigm was 20 minutes for five consecutive days in each block. Evaluations were performed before (T1), after real or sham treatment (T2), and after 1 (T3), 4 (T4), and 8 weeks (T5). Functional, behavioral, and neurophysiological tests were performed at each time. Both tDCS paradigms decreased spasticity, increased strength, and ameliorated behavioral scales. Cathodal tDCS was superior to dual tDCS in reducing UL distal spasticity immediately after treatment (T2: cathodal > dual: P = .023) and provided a higher and longer lasting reduction at proximal districts (T3: cathodal > dual: P = .042; T4: cathodal > dual: P = .028; T5: cathodal > dual: P = .05). These findings are supported by an H-reflex modulation (overall time effect P > .002). Cathodal tDCS is slightly more effective than dual tDCS in reducing distal UL spasticity in chronic poststroke subjects. A modulation of spinal inhibitory mechanisms, demonstrated by H-reflex modifications, supports this finding. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Teaching neurophysiology, neuropharmacology, and experimental design using animal models of psychiatric and neurological disorders.

    PubMed

    Morsink, Maarten C; Dukers, Danny F

    2009-03-01

    Animal models have been widely used for studying the physiology and pharmacology of psychiatric and neurological diseases. The concepts of face, construct, and predictive validity are used as indicators to estimate the extent to which the animal model mimics the disease. Currently, we used these three concepts to design a theoretical assignment to integrate the teaching of neurophysiology, neuropharmacology, and experimental design. For this purpose, seven case studies were developed in which animal models for several psychiatric and neurological diseases were described and in which neuroactive drugs used to treat or study these diseases were introduced. Groups of undergraduate students were assigned to one of these case studies and asked to give a classroom presentation in which 1) the disease and underlying pathophysiology are described, 2) face and construct validity of the animal model are discussed, and 3) a pharmacological experiment with the associated neuroactive drug to assess predictive validity is presented. After evaluation of the presentations, we found that the students had gained considerable insight into disease phenomenology, its underlying neurophysiology, and the mechanism of action of the neuroactive drug. Moreover, the assignment was very useful in the teaching of experimental design, allowing an in-depth discussion of experimental control groups and the prediction of outcomes in these groups if the animal model were to display predictive validity. Finally, the highly positive responses in the student evaluation forms indicated that the assignment was of great interest to the students. Hence, the currently developed case studies constitute a very useful tool for teaching neurophysiology, neuropharmacology, and experimental design.

  13. Neurophysiological effects of mistletoe (Viscum album L.) on isolated rat intestines.

    PubMed

    Radenkovic, M; Ivetic, V; Popovic, M; Mimica-Dukic, N; Veljkovic, S

    2006-05-01

    Mistletoe (Viscum album L.) is well known as a medicine from ancient times and the earliest notes. Today it is used as a remedy. The aim of this research was to examine the effects of mistletoe extracts and their components on some neurophysiological parameters in rat intestines. The tonus and contractile responses of isolated intestinal segments (duodenum, ileum and distal colon) were analysed. The experiment was carried out in three groups. In the first group (control group) different concentrations of acetylcholine were added into the organ bath (10-50 nmol/L). In the second group, mistletoe extracts were added into the organ bath with increasing concentrations and in the third group, atropine, a non-selective muscarinic receptor antagonist, was added into the organ bath (concentration 10(-7) mol/L) and after atropine plant extracts were administered. The results obtained suggest that extracts from different parts of mistletoe have neurophysiological effects and change intestinal contractions. The results also suggest that the effects of mistletoe extracts on intestinal contractility act via cholinergic pathways, activating muscarinic receptors in the intestines. However, in order to establish the subtype of receptors, further investigations are necessary where selective antagonists of muscarinic cholinergic receptors should be used. Copyright 2006 John Wiley & Sons, Ltd.

  14. Existential neuroscience: neurophysiological correlates of proximal defenses against death-related thoughts

    PubMed Central

    Jonas, Eva; Kronbichler, Martin

    2013-01-01

    A great deal of evidence suggests that reminders of mortality increase ingroup support and worldview defense, presumably in order to deal with the potential for anxiety that roots in the knowledge that death is inevitable. Interestingly, these effects are obtained solely when thoughts of death are not in the focus of consciousness. When conscious, death-related thoughts are usually defended against using proximal defenses, which entail distraction or suppression. The present study aimed at demonstrating neurophysiological correlates of proximal defenses. We focused on the late positive potential (LPP), which is thought to reflect an increased allocation of attention toward, and processing of, motivationally relevant stimuli. Our prediction was that the LPP should be increased for death-related relative to death-unrelated, but equally unpleasant stimulus words. In Experiment 1, this prediction was confirmed. This finding was replicated in Experiment 2, which used a target word detection task. In Experiment 2, both death-related and pleasant words elicited an enhanced LPP, presumably because during the less demanding task, people might have distracted themselves from the mortality reminders by focusing on pleasant words. To summarize, we were able to identify a plausible neurophysiological marker of proximal defenses in the form of an increased LPP to death-related words. PMID:22267519

  15. Pudendal nerve neuromodulation with neurophysiology guidance: a potential treatment option for refractory chronic pelvi-perineal pain.

    PubMed

    Carmel, Maude; Lebel, Michel; Tu, Le Mai

    2010-05-01

    Refractory chronic pelvi-perineal pain (RCPPP) is a challenging entity that has devastating consequences for patient's quality of life. Many etiologies have been proposed including pudendal neuralgia. Multiple treatment options are used but the reported results are sub-optimal and temporary. In this article, we present the technique of pudendal nerve neuromodulation with neurophysiology guidance as a treatment option for RCPPP. This technique is a two-step procedure that includes electrode implantation under neurophysiology guidance followed by the implantation of a permanent generator after a successful trial period. We report the cases of three women who underwent this procedure as a last-resort treatment option. After 2 years of follow-up, their symptoms are still significantly improved. No major complication occurred.

  16. A removable silicone elastomer seal reduces granulation tissue growth and maintains the sterility of recording chambers for primate neurophysiology

    PubMed Central

    Spitler, Kevin M.; Gothard, Katalin M.

    2008-01-01

    The maintenance of the sterility of craniotomies for serial acute neurophysiological recordings is exacting and time consuming yet is vital to the health of valuable experimental animals. We have developed a method to seal the craniotomy with surgical grade silicone elastomer (Silastic®) in a hermetically sealed chamber. Under these conditions the tissues in the craniotomy and the inside surface of the chamber remain unpopulated by bacteria. The silicone elastomer sealant retarded the growth of granulation tissue on the dura and reduced the procedures required to maintain ideal conditions for neurophysiological recordings. PMID:18241928

  17. Neurocognitive rehabilitation for addiction medicine: From neurophysiological markers to cognitive rehabilitation and relapse prevention.

    PubMed

    Campanella, Salvatore

    2016-01-01

    Currently, relapse prevention remains the main challenge in addiction medicine, indicating that the established treatment methods combining psychotherapy with neuropharmacological interventions are not entirely effective. Therefore, there is a push to develop alternatives to psychotherapy- and medication-based approaches to addiction treatment. Two major cognitive factors have been identified that trigger relapse in addicted patients: attentional biases directed toward drug-related cues, which increase the urge to consume, and impaired response inhibition toward these cues, which makes it more difficult for addicted people to resist temptation. Recent studies on newly detoxified alcoholic patients have shown that by using the appropriate tasks to index these cognitive functions with event-related potentials (ERPs), it is possible to discriminate between future relapsers and nonrelapsers. These preliminary data suggest that the ERP technique has great clinical potential for preventing relapse in alcohol-dependent patients, as well as for addictive states in general. Indeed, ERPs may help to identify patients highly vulnerable to relapse and allow the development of individually adapted cognitive rehabilitation programs. The implementation of this combined approach requires an intense collaboration between psychiatry departments, clinical neurophysiology laboratories, and neuropsychological rehabilitation centers. The potential pitfalls and limitations of this approach are also discussed. © 2016 Elsevier B.V. All rights reserved.

  18. Anaerobic digestion of organic waste in Japan: the first demonstration plant at Kyoto City.

    PubMed

    Komatsu, T; Kimura, T; Kuriyama, Y; Isshiki, Y; Kawano, T; Hirao, T; Masuda, M; Yokoyama, K; Matsumoto, T; Takeda, M

    2002-01-01

    Recycling of Municipal Solid Waste is vigorously promoted in Japan and the necessity of energy recovery from organic waste is increasing. An anaerobic digestion demonstration plant for organic waste in Kyoto City, Japan has been operated for about two years. Three kinds of wastes (garbage and leftovers from hotels, yard waste and used paper) mixed at various ratios are used. The plant has maintained stable operations with each mixture, generating biogas by the decomposition of VS at the rate of about 820 m3N/ton-VS.

  19. Neurophysiological correlates of attention behavior in early infancy: Implications for emotion regulation during early childhood

    PubMed Central

    Perry, Nicole B.; Swingler, Margaret M.; Calkins, Susan D.; Bell, Martha Ann

    2015-01-01

    Current theoretical conceptualizations of regulatory development suggest that attention processes and emotion regulation processes share common neurophysiological underpinnings and behavioral antecedents such that emotion regulation abilities may build upon early attentional skills. To further elucidate this proposed relationship, we tested whether early neurophysiological processes measured during an attention task in infancy predicted in-task attention behavior, and whether infant's attention behavior was subsequently associated with their ability to regulate emotion in early childhood (N=388). Results indicated that, greater EEG power change (from baseline to task) at medial frontal locations (F3 and F4) during an attention task at 10 months were associated with concurrent observed behavioral attention. Specifically, greater change in EEG power at the right frontal location (F4) was associated with more attention, and greater EEG power at the left frontal location (F3) was associated with less attention, indicating a potential right hemisphere specialization for attention processes already present in the first year of life. In addition, after controlling for 5-month attention behavior, increased behavioral attention at 10-months was negatively associated with children's observed frustration to emotional challenge at age 3. Finally, the indirect effects from 10-month EEG power change at F3 and F4 to 3-year emotion regulation via infants' 10-month behavioral attention were significant, suggesting that infant's attention behavior is one mechanism through which early neurophysiological activity is related to emotion regulation abilities in childhood. PMID:26381926

  20. Cognitive and physical training for the elderly: evaluating outcome efficacy by means of neurophysiological synchronization.

    PubMed

    Frantzidis, Christos A; Ladas, Aristea-Kiriaki I; Vivas, Ana B; Tsolaki, Magda; Bamidis, Panagiotis D

    2014-07-01

    Recent neuroscientific research has demonstrated that both healthy and pathological aging induces alterations in the co-operative capacity of neuronal populations in the brain. Both compensatory and neurodegenerative mechanisms contribute to neurophysiological synchronization patterns, which provide a valuable marker for age-related cognitive decline. In this study, we propose that neuroplasticity-based training may facilitate coherent interaction of distant brain regions and consequently enhance cognitive performance in elderly people. If this is true, this would make neurophysiological synchronization a valid outcome measure to assess the efficacy of non-pharmacological interventions to prevent or delay age-related cognitive decline. The present study aims at providing an objective, synchronization-based tool to assess cognitive and/or physical interventions, adopting the notion of Relative Wavelet Entropy. This mathematical model employs a robust and parameter-free synchronization metric. By using data mining techniques, a distance value was computed for all participants so as to quantify the proximity of their individual profile to the mean group synchronization increase. In support of our hypothesis, results showed a significant increase in synchronization, for four electrode pairs, in the intervention group as compared to the active control group. It is concluded that the novel introduction of neurophysiological synchronization features could be used as a valid and reliable outcome measure; while the distance-based analysis could provide a reliable means of evaluating individual benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Neurophysiological evidence for the influence of past experience on figure-ground perception.

    PubMed

    Trujillo, Logan T; Allen, John J B; Schnyer, David M; Peterson, Mary A

    2010-02-10

    A fundamental aspect of perceptual organization entails segregating visual input into shaped figures presented against shapeless backgrounds; an outcome termed "figure-ground perception" or "shape assignment." The present study examined how early in processing past experience exerts an influence on shape assignment. Event-related potential (ERP) measures of brain activity were recorded while observers viewed silhouettes of novel objects that differed in whether or not a familiar shape was suggested on the outside-the groundside-of their bounding edges (experimental versus control silhouettes, respectively). Observers perceived both types of silhouettes as novel shapes and were unaware of the familiar shape suggested on the groundside of experimental silhouettes. Nevertheless, we expected that the familiar shape would be implicitly identified early in processing and would compete for figural status with the novel shape on the inside. Early (106-156 ms) ERPs were larger for experimental silhouettes than for control silhouettes lacking familiarity cues. The early ERP difference occurred during a time interval within which edge-segmentation-dependent response differences have been observed in previous neurophysiological investigations of figure-ground perception. These results provide the first neurophysiological evidence for an influence of past experience during the earliest stages of shape assignment.

  2. Bilirubin-Induced Neurological Dysfunction: A Clinico-Radiological-Neurophysiological Correlation in 30 Consecutive Children.

    PubMed

    van Toorn, Ronald; Brink, Philip; Smith, Johan; Ackermann, Christelle; Solomons, Regan

    2016-12-01

    The clinical expression of bilirubin-induced neurological dysfunction varies according to severity and location of the disease. Definitions have been proposed to describe different bilirubin-induced neurological dysfunction subtypes. Our objective was to describe the severity and clinico-radiological-neurophysiological correlation in 30 consecutive children with bilirubin-induced neurological dysfunction seen over a period of 5 years. Thirty children exposed to acute neonatal bilirubin encephalopathy were included in the study. The mean peak total serum bilirubin level was 625 μmol/L (range 480-900 μmol/L). Acoustic brainstem responses were abnormal in 73% (n = 22). Pallidal hyperintensity was observed on magnetic resonance imaging in 20 children. Peak total serum bilirubin levels correlated with motor severity (P = .03). Children with severe motor impairment were likely to manifest severe auditory neuropathy (P < .01). We found that in a resource-constrained setting, classical kernicterus was the most common bilirubin-induced neurological dysfunction subtype, and the majority of children had abnormal acoustic brainstem responses and magnetic resonance imaging. © The Author(s) 2016.

  3. Understanding in an Instant: Neurophysiological Evidence for Mechanistic Language Circuits in the Brain

    ERIC Educational Resources Information Center

    Pulvermuller, Friedemann; Shtyrov, Yury; Hauk, Olaf

    2009-01-01

    How long does it take the human mind to grasp the idea when hearing or reading a sentence? Neurophysiological methods looking directly at the time course of brain activity indexes of comprehension are critical for finding the answer to this question. As the dominant cognitive approaches, models of serial/cascaded and parallel processing, make…

  4. A two-channel action-potential generator for testing neurophysiologic data acquisition/analysis systems.

    PubMed

    Lisiecki, R S; Voigt, H F

    1995-08-01

    A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.

  5. Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children.

    PubMed

    Kim, Keewon; Cho, Charles; Bang, Moon-Suk; Shin, Hyung-Ik; Phi, Ji-Hoon; Kim, Seung-Ki

    2018-05-01

    Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal ageadjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar

  6. Do foreign direct investment and renewable energy consumption affect the CO2 emissions? New evidence from a panel ARDL approach to Kyoto Annex countries.

    PubMed

    Mert, Mehmet; Bölük, Gülden

    2016-11-01

    This study examines the impact of foreign direct investment (FDI) and the potential of renewable energy consumption on carbon dioxide (CO 2 ) emissions in 21 Kyoto countries using an unbalanced panel data. For this purpose, Environmental Kuznets Curve (EKC) hypothesis was tested using panel cointegration analysis. Panel causality tests show that there are significant long-run causalities from the variables to carbon emissions, renewable energy consumption, fossil fuel energy consumption and inflow foreign direct investments. The results of our model support the pollution haloes hypothesis which states that FDI brings in clean technology and improves the environmental standards. However, an inverted U-shaped relationship (EKC) was not supported by the estimated model for the 21 Kyoto countries. This means that economic growth cannot ensure environmental protection itself or environmental goals cannot await economic growth. Another important finding is that renewable energy consumption decreases carbon emissions. Based on the empirical results, some important policy implications emerge. Kyoto countries should stimulate the FDI inflows and usage of renewable energy consumption to mitigate the air pollution and meet the emission targets. This paper provides new insights into environment and energy policies through FDI inclusion.

  7. Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations

    PubMed Central

    Koester, Dirk; Schack, Thomas

    2016-01-01

    Handling our everyday life, we often react manually to verbal requests or instruction, but the functional interrelations of motor control and language are not fully understood yet, especially their neurophysiological basis. Here, we investigated whether specific motor representations for grip types interact neurophysiologically with conceptual information, that is, when reading nouns. Participants performed lexical decisions and, for words, executed a grasp-and-lift task on objects of different sizes involving precision or power grips while the electroencephalogram was recorded. Nouns could denote objects that require either a precision or a power grip and could, thus, be (in)congruent with the performed grasp. In a control block, participants pointed at the objects instead of grasping them. The main result revealed an event-related potential (ERP) interaction of grip type and conceptual information which was not present for pointing. Incongruent compared to congruent conditions elicited an increased positivity (100–200 ms after noun onset). Grip type effects were obtained in response-locked analyses of the grasping ERPs (100–300 ms at left anterior electrodes). These findings attest that grip type and conceptual information are functionally related when planning a grasping action but such an interaction could not be detected for pointing. Generally, the results suggest that control of behaviour can be modulated by task demands; conceptual noun information (i.e., associated action knowledge) may gain processing priority if the task requires a complex motor response. PMID:27973539

  8. PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring Complex Visual Stimuli and Online Behavioral Control.

    PubMed

    Eastman, Kyler M; Huk, Alexander C

    2012-01-01

    Neurophysiological studies in awake, behaving primates (both human and non-human) have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed a MATLAB toolbox that integrates several modern pieces of equipment, but still grants experimenters the flexibility of a high-level programming language. Our toolbox takes advantage of three popular and powerful technologies: the Plexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas, TX, USA), a Datapixx peripheral (Vpixx Technologies, Saint-Bruno, QC, Canada) for control of analog, digital, and video input-output signals, and the Psychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The PLDAPS ("Platypus") system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.

  9. Neurophysiological and Behavioral Differences between Older and Younger Adults When Processing Violations of Tonal Structure in Music

    PubMed Central

    Lagrois, Marie-Élaine; Peretz, Isabelle; Zendel, Benjamin Rich

    2018-01-01

    Aging is associated with decline in both cognitive and auditory abilities. However, evidence suggests that music perception is relatively spared, despite relying on auditory and cognitive abilities that tend to decline with age. It is therefore likely that older adults engage compensatory mechanisms which should be evident in the underlying functional neurophysiology related to processing music. In other words, the perception of musical structure would be similar or enhanced in older compared to younger adults, while the underlying functional neurophysiology would be different. The present study aimed to compare the electrophysiological brain responses of younger and older adults to melodic incongruities during a passive and active listening task. Older and younger adults had a similar ability to detect an out-of-tune incongruity (i.e., non-chromatic), while the amplitudes of the ERAN and P600 were reduced in older adults compared to younger adults. On the other hand, out-of-key incongruities (i.e., non-diatonic), were better detected by older adults compared to younger adults, while the ERAN and P600 were comparable between the two age groups. This pattern of results indicates that perception of tonal structure is preserved in older adults, despite age-related neurophysiological changes in how melodic violations are processed. PMID:29487498

  10. Neurophysiological and Behavioral Differences between Older and Younger Adults When Processing Violations of Tonal Structure in Music.

    PubMed

    Lagrois, Marie-Élaine; Peretz, Isabelle; Zendel, Benjamin Rich

    2018-01-01

    Aging is associated with decline in both cognitive and auditory abilities. However, evidence suggests that music perception is relatively spared, despite relying on auditory and cognitive abilities that tend to decline with age. It is therefore likely that older adults engage compensatory mechanisms which should be evident in the underlying functional neurophysiology related to processing music. In other words, the perception of musical structure would be similar or enhanced in older compared to younger adults, while the underlying functional neurophysiology would be different. The present study aimed to compare the electrophysiological brain responses of younger and older adults to melodic incongruities during a passive and active listening task. Older and younger adults had a similar ability to detect an out-of-tune incongruity (i.e., non-chromatic), while the amplitudes of the ERAN and P600 were reduced in older adults compared to younger adults. On the other hand, out-of-key incongruities (i.e., non-diatonic), were better detected by older adults compared to younger adults, while the ERAN and P600 were comparable between the two age groups. This pattern of results indicates that perception of tonal structure is preserved in older adults, despite age-related neurophysiological changes in how melodic violations are processed.

  11. [Mental Imagery: Neurophysiology and Implications in Psychiatry].

    PubMed

    Martínez, Nathalie Tamayo

    2014-03-01

    To provide an explanation about what mental imagery is and some implications in psychiatry. This article is a narrative literature review. There are many terms in which imagery representations are described in different fields of research. They are defined as perceptions in the absence of an external stimulus, and can be created in any sensory modality. Their neurophysiological substrate is almost the same as the one activated during sensory perception. There is no unified theory about its function, but it is possibly the way that our brain uses and manipulates the information to respond to the environment. Mental imagery is an everyday phenomenon, and when it occurs in specific patterns it can be a sign of mental disorders. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  12. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics.

    PubMed

    Akerman, Simon; Romero-Reyes, Marcela; Holland, Philip R

    2017-04-01

    Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT 1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dreaming and the brain: from phenomenology to neurophysiology

    PubMed Central

    Nir, Yuval; Tononi, Giulio

    2009-01-01

    Dreams are a most remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that our brain, disconnected from the environment, can generate by itself an entire world of conscious experiences. Content analysis and developmental studies have furthered our understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging, and neurophysiology have advanced our knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research in order to address some fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. PMID:20079677

  14. Energy drinks and the neurophysiological impact of caffeine.

    PubMed

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  15. Energy Drinks and the Neurophysiological Impact of Caffeine

    PubMed Central

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body. PMID:22025909

  16. Dreaming and the brain: from phenomenology to neurophysiology.

    PubMed

    Nir, Yuval; Tononi, Giulio

    2010-02-01

    Dreams are a remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that the human brain, disconnected from the environment, can generate an entire world of conscious experiences by itself. Content analysis and developmental studies have promoted understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging and neurophysiology have advanced current knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research to address fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. Published by Elsevier Ltd.

  17. Neurophysiological correlates of attention behavior in early infancy: Implications for emotion regulation during early childhood.

    PubMed

    Perry, Nicole B; Swingler, Margaret M; Calkins, Susan D; Bell, Martha Ann

    2016-02-01

    Current theoretical conceptualizations of regulatory development suggest that attention processes and emotion regulation processes share common neurophysiological underpinnings and behavioral antecedents such that emotion regulation abilities may build on early attentional skills. To further elucidate this proposed relationship, we tested whether early neurophysiological processes measured during an attention task in infancy predicted in-task attention behavior and whether infants' attention behavior was subsequently associated with their ability to regulate emotion during early childhood (N=388). Results indicated that greater electroencephalogram (EEG) power change (from baseline to task) at medial frontal locations (F3 and F4) during an attention task at 10months of age was associated with concurrent observed behavioral attention. Specifically, greater change in EEG power at the right frontal location (F4) was associated with more attention and greater EEG power at the left frontal location (F3) was associated with less attention, indicating a potential right hemisphere specialization for attention processes already present during the first year of life. In addition, after controlling for 5-month attention behavior, increased behavioral attention at 10months was negatively associated with children's observed frustration to emotional challenge at 3years of age. Finally, the indirect effects from 10-month EEG power change at F3 and F4 to 3-year emotion regulation via infants' 10-month behavioral attention were significant, suggesting that infants' attention behavior is one mechanism through which early neurophysiological activity is related to emotion regulation abilities during childhood. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Neurophysiologic Analysis of the Effects of Interactive Tailored Health Videos on Attention to Health Messages

    ERIC Educational Resources Information Center

    Lee, Jung A.

    2011-01-01

    Web-based tailored approaches hold much promise as effective means for delivering health education and improving public health. This study examines the effects of interactive tailored health videos on attention to health messages using neurophysiological changes measured by Electroencephalogram (EEG) and Electrocardiogram (EKG). Sixty-eight…

  19. [Industry-Academia Collaboration in the Clinical Laboratory Field: Chairmen's Introductory Remarks].

    PubMed

    Inaba, Tohru; Ikemoto, Toshiyuki

    2016-01-01

    Industry-academia collaboration has become essential in contemporary medicine. Therefore, many institutes including university corporations have promoted the establishment of an endowed chair and/or performed collaborative research. This symposium was held to overview the present status of industry-academia collaboration in the clinical laboratory field. As a representative of the industry, Mr. Taniguchi (Sysmex) presented the development process of M2BP Glycosylation Isomer, a new marker for liver fibrosis. Mr. Saitoh (Horiba) introduced the achievements of joint collaborative research with Kyoto Prefectural University of Medicine, especially the practical realization of an automated hematology analyzer capable of simultaneously measuring C-reactive protein. Mr. Setoyama (LSI Medience) presented on the characteristic collaboration between academia and commercial laboratories such as Tsukuba Medical Laboratory of Education and Research (TMER). On the other hand, as a representative of academia, Associate Prof. Imai (Kyoto Prefectural University of Medicine) summarized the necessity of clinical laboratories spread regenerative medicine. Finally, Prof. Koshiba (Hyogo College of Medicine) presented on the industry-academia collaboration in routine laboratory work in his institute.

  20. [A multidiscipline clinical and biological approach to the study of psychotic types of autistic spectrum disorders in children].

    PubMed

    Simashkova, N V; Iakupova, L P; Kliushnik, T P; Koval'-Zaĭtsev, A A

    2013-01-01

    The current problem of heterogeneity of psychotic types of autistic spectrum disorders (ASD) is reviewed. The authors present results of a multidiscipline psychopathological, pathopsychological, neurophysiological and immunological examination of 87 patients, aged from 3 to 14 years, with psychotic types of ASD: childhood psychosis (CP) and atypical childhood psychosis (ACP). Significant differences in clinical presentations of CP and ACP that were correlated with pathopsychological, neurophysiological and immunological disorders were found. These findings support different nosological entities of these types of ASD.

  1. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness.

    PubMed

    Borghini, Gianluca; Astolfi, Laura; Vecchiato, Giovanni; Mattia, Donatella; Babiloni, Fabio

    2014-07-01

    This paper reviews published papers related to neurophysiological measurements (electroencephalography: EEG, electrooculography EOG; heart rate: HR) in pilots/drivers during their driving tasks. The aim is to summarise the main neurophysiological findings related to the measurements of pilot/driver's brain activity during drive performance and how particular aspects of this brain activity could be connected with the important concepts of "mental workload", "mental fatigue" or "situational awareness". Review of the literature suggests that exists a coherent sequence of changes for EEG, EOG and HR variables during the transition from normal drive, high mental workload and eventually mental fatigue and drowsiness. In particular, increased EEG power in theta band and a decrease in alpha band occurred in high mental workload. Successively, increased EEG power in theta as well as delta and alpha bands characterise the transition between mental workload and mental fatigue. Drowsiness is also characterised by increased blink rate and decreased HR values. The detection of such mental states is actually performed "offline" with accuracy around 90% but not online. A discussion on the possible future applications of findings provided by these neurophysiological measurements in order to improve the safety of the vehicles will be also presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Pain neurophysiology education improves cognitions, pain thresholds, and movement performance in people with chronic whiplash: a pilot study.

    PubMed

    Van Oosterwijck, Jessica; Nijs, Jo; Meeus, Mira; Truijen, Steven; Craps, Julie; Van den Keybus, Nick; Paul, Lorna

    2011-01-01

    Chronic whiplash is a debilitating condition characterized by increased sensitivity to painful stimuli, maladaptive illness beliefs, inappropriate attitudes, and movement dysfunctions. Previous work in people with chronic low back pain and chronic fatigue syndrome indicates that pain neurophysiology education is able to improve illness beliefs and attitudes as well as movement performance. This single-case study (A-B-C design) with six patients with chronic whiplash associated disorders (WAD) was aimed at examining whether education about the neurophysiology of pain is accompanied by changes in symptoms, daily functioning, pain beliefs, and behavior. Periods A and C represented assessment periods, while period B consisted of the intervention (pain neurophysiology education). Results showed a significant decrease in kinesiophobia (Tampa Scale for Kinesiophobia), the passive coping strategy of resting (Pain Coping Inventory), self-rated disability (Neck Disability Index), and photophobia (WAD Symptom List). At the same time, significantly increased pain pressure thresholds and improved pain-free movement performance (visual analog scale on Neck Extension Test and Brachial Plexus Provocation Test) were established. Although the current results need to be verified in a randomized, controlled trial, they suggest that education about the physiology of pain is able to increase pain thresholds and improve pain behavior and pain-free movement performance in patients with chronic WAD.

  3. The neurophysiology of language processing shapes the evolution of grammar: evidence from case marking.

    PubMed

    Bickel, Balthasar; Witzlack-Makarevich, Alena; Choudhary, Kamal K; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina

    2015-01-01

    Do principles of language processing in the brain affect the way grammar evolves over time or is language change just a matter of socio-historical contingency? While the balance of evidence has been ambiguous and controversial, we identify here a neurophysiological constraint on the processing of language that has a systematic effect on the evolution of how noun phrases are marked by case (i.e. by such contrasts as between the English base form she and the object form her). In neurophysiological experiments across diverse languages we found that during processing, participants initially interpret the first base-form noun phrase they hear (e.g. she…) as an agent (which would fit a continuation like … greeted him), even when the sentence later requires the interpretation of a patient role (as in … was greeted). We show that this processing principle is also operative in Hindi, a language where initial base-form noun phrases most commonly denote patients because many agents receive a special case marker ("ergative") and are often left out in discourse. This finding suggests that the principle is species-wide and independent of the structural affordances of specific languages. As such, the principle favors the development and maintenance of case-marking systems that equate base-form cases with agents rather than with patients. We confirm this evolutionary bias by statistical analyses of phylogenetic signals in over 600 languages worldwide, controlling for confounding effects from language contact. Our findings suggest that at least one core property of grammar systematically adapts in its evolution to the neurophysiological conditions of the brain, independently of socio-historical factors. This opens up new avenues for understanding how specific properties of grammar have developed in tight interaction with the biological evolution of our species.

  4. A quarter-long exercise that introduces general education students to neurophysiology and scientific writing.

    PubMed

    Krilowicz, B I; Henter, H; Kamhi-Stein, L

    1997-06-01

    Providing large numbers of general education students with an introduction to science is a challenge. To meet this challenge, a quarter-long neurophysiology project was developed for use in an introductory biology course. The primary goals of this multistep project were to introduce students to the scientific method, scientific writing, on-line scientific bibliographic databases, and the scientific literature, while improving their academic literacy skills. Students began by collecting data on their own circadian rhythms in autonomic, motor, and cognitive function, reliably demonstrating the predicted circadian changes in heart rate, eye-hand coordination, and adding speed. Students wrote a journal-style article using pooled class data. Students were prepared to write the paper by several methods that were designed to improve academic language skills, including a library training exercise, "modeling" of the writing assignment, and drafting of subsections of the paper. This multistep neurophysiology project represents a significant commitment of time by both students and instructors, but produces a valuable finished product and ideally gives introductory students a positive first experience with science.

  5. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review.

    PubMed

    Horvath, Jared Cooney; Forte, Jason D; Carter, Olivia

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Neurophysiological approach to tinnitus patients.

    PubMed

    Jastreboff, P J; Gray, W C; Gold, S L

    1996-03-01

    The principal postulate of the neurophysiological model of tinnitus is that all levels of the auditory pathways and several nonauditory systems play essential roles in each case of tinnitus, stressing the dominance of nonauditory systems in determining the level of tinnitus annoyance. Thus it has been proposed to treat tinnitus by inducing and facilitating habituation to the tinnitus signal. The goal is to reach the stage at which, although patients may perceive tinnitus as unchanged when they focus on it, they are otherwise not aware of tinnitus. Furthermore, even when perceived, tinnitus does not evoke annoyance. Habituation is achieved by directive counseling combined with low-level, broad-band noise generated by wearable generators, and environmental sounds, according to a specific protocol. For habituation to occur, it is imperative to avoid masking tinnitus by these sounds. Since 1991, > 500 tinnitus patients have been seen in our center. About 40% exhibited hyperacusis to varying degrees. A survey of > 100 patients revealed > 80% of significant improvement in groups of patients treated with the full protocol involving counseling and the use of noise generators. Notably, in patients who received counseling only, the success rate was < 20%. The improvement in hyperacusis was observed in approximately 90% of treated patients.

  7. Guidelines for intraoperative neuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography: a position statement by the American Society of Neurophysiological Monitoring.

    PubMed

    Isley, Michael R; Edmonds, Harvey L; Stecker, Mark

    2009-12-01

    Electroencephalography (EEG) is one of the oldest and most commonly utilized modalities for intraoperative neuromonitoring. Historically, interest in the EEG patterns associated with anesthesia is as old as the discovery of the EEG itself. The evolution of its intraoperative use was also expanded to include monitoring for assessing cortical perfusion and oxygenation during a variety of vascular, cardiac, and neurosurgical procedures. Furthermore, a number of quantitative or computer-processed algorithms have also been developed to aid in its visual representation and interpretation. The primary clinical outcomes for which modern EEG technology has made significant intraoperative contributions include: (1) recognizing and/or preventing perioperative ischemic insults, and (2) monitoring of brain function for anesthetic drug administration in order to determine depth of anesthesia (and level of consciousness), including the tailoring of drug levels to achieve a predefined neural effect (e.g., burst suppression). While the accelerated development of microprocessor technologies has fostered an extraordinarily rapid growth in the use of intraoperative EEG, there is still no universal adoption of a monitoring technique(s) or of criteria for its neural end-point(s) by anesthesiologists, surgeons, neurologists, and neurophysiologists. One of the most important limitations to routine intraoperative use of EEG may be the lack of standardization of methods, alarm criteria, and recommendations related to its application. Lastly, refinements in technology and signal processing can be expected to advance the usefulness of the intraoperative EEG for both anesthetic and surgical management of patients. This paper is the position statement of the American Society of Neurophysiological Monitoring. It is the practice guidelines for the intraoperative use of raw (analog and digital) and quantitative EEG. The following recommendations are based on trends in the current scientific and

  8. Disorder-specific and shared neurophysiological impairments of attention and inhibition in women with attention-deficit/hyperactivity disorder and women with bipolar disorder.

    PubMed

    Michelini, G; Kitsune, G L; Hosang, G M; Asherson, P; McLoughlin, G; Kuntsi, J

    2016-02-01

    In adults, attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) have certain overlapping symptoms, which can lead to uncertainty regarding the boundaries of the two disorders. Despite evidence of cognitive impairments in both disorders separately, such as in attentional and inhibitory processes, data on direct comparisons across ADHD and BD on cognitive-neurophysiological measures are as yet limited. We directly compared cognitive performance and event-related potential measures from a cued continuous performance test in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. The NoGo-N2 was attenuated in women with BD, reflecting reduced conflict monitoring, compared with women with ADHD and controls (both p < 0.05). Both ADHD and BD groups showed a reduced NoGo-P3, reflecting inhibitory control, compared with controls (both p < 0.05). In addition, the contingent negative variation was significantly reduced in the ADHD group (p = 0.05), with a trend in the BD group (p = 0.07), compared with controls. These findings indicate potential disorder-specific (conflict monitoring) and overlapping (inhibitory control, and potentially response preparation) neurophysiological impairments in women with ADHD and women with BD. The identified neurophysiological parameters further our understanding of neurophysiological impairments in women with ADHD and BD, and are candidate biomarkers that may aid in the identification of the diagnostic boundaries of the two disorders.

  9. Pixel detectors for use in retina neurophysiology studies

    NASA Astrophysics Data System (ADS)

    Cunningham, W.; Mathieson, K.; Horn, M.; Melone, J.; McEwan, F. A.; Blue, A.; O'Shea, V.; Smith, K. M.; Litke, A.; Chichilnisky, E. J.; Rahman, M.

    2003-08-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed ˜500 electrode arrays with feature sizes down to below 2 μm. The neural signals from significant areas of the retina may thus be captured.

  10. Risk and Resilience: Early Manipulation of Macaque Social Experience and Persistent Behavioral and Neurophysiological Outcomes

    ERIC Educational Resources Information Center

    Stevens, Hanna E.; Leckman, James F.; Coplan, Jeremy D.; Suomi, Stephen J.

    2009-01-01

    A literature review on macaque monkeys finds that peer rearing of young macaques and rearing of young macaques by mothers that are undergoing variable foraging conditions result in emotional and neurophysiological disturbance. Certain genotypes contribute to resilience to this disturbance. The findings have implications to child mental health and…

  11. Sexual dysfunction in pre-menopausal diabetic women: clinical, metabolic, psychological, cardiovascular, and neurophysiologic correlates.

    PubMed

    Cortelazzi, Donatella; Marconi, Annamaria; Guazzi, Marco; Cristina, Maurizio; Zecchini, Barbara; Veronelli, Annamaria; Cattalini, Claudio; Innocenti, Alessandro; Bosco, Giovanna; Pontiroli, Antonio E

    2013-12-01

    An increased prevalence of female sexual dysfunction (FSD) has been reported in women with diabetes mellitus (DM). Our aim was to evaluate correlates (psychological, cardiovascular, and neurophysiologic) of FSD in DM women without chronic diabetic complications. Female Sexual Function Index (FSFI), Beck Depression Inventory (BDI), Michigan Diabetic Neuropathy Index (DNI), and the symptoms of diabetic neuropathy (SDN) questionnaires, metabolic variables, endothelial vascular function (flow-mediated dilation, FMD), echocardiography, and electromyography were studied. 109 pre-menopausal women (18-50 years) [48 with DM (14 type 1 DM, 34 type 2 DM, duration 12.6 ± 1.91 years), and 61 healthy women] received the above questionnaires; physical activity, smoking habits, parity, BMI, waist circumference, HOMA-IR index, fibrinogen, cholesterol (total, HDL, LDL), triglycerides, HbA1c, high-sensitivity C-reactive protein, total testosterone, and estradiol were measured; echocardiography, assessment of intima-media thickness (IMT), FMD, ECG (heart rate and Qtc, indexes of sympathetic activity), and electromyography were performed. FSFI total score and score for arousal, lubrication, and orgasm domains were lower in DM women than in controls (P < 0.05); DM women had higher BDI, Doppler A wave peak velocity, DNI, and SDN score (P < 0.001 to P < 0.04). Doppler E wave peak velocity, peroneal, posterior tibial and sural nerves conduction velocity and amplitude were lower in diabetic women than in controls (P < 0.05 to P < 0.001). FSFI score was positively correlated with physical activity, Doppler E wave peak velocity, and peroneal nerve amplitude and negatively with BDI, parity, IMT, SDN, and HbA1c (P < 0.05 to P < 0.001). At stepwise regression, SDN score (negatively) and Doppler E wave peak velocity (positively) predicted FSFI score (r = 507, P < 0.001). In conclusion, cardiovascular and neurological impairments are associated with FSD in diabetic women. Follow-up studies are

  12. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training.

    PubMed

    Li, Mingfen; Liu, Ye; Wu, Yi; Liu, Sirao; Jia, Jie; Zhang, Liqing

    2014-06-01

    We investigated the efficacy of motor imagery-based Brain Computer Interface (MI-based BCI) training for eight stroke patients with severe upper extremity paralysis using longitudinal clinical assessments. The results were compared with those of a control group (n = 7) that only received FES (Functional Electrical Stimulation) treatment besides conventional therapies. During rehabilitation training, changes in the motor function of the upper extremity and in the neurophysiologic electroencephalographic (EEG) were observed for two groups. After 8 weeks of training, a significant improvement in the motor function of the upper extremity for the BCI group was confirmed (p < 0.05 for ARAT), simultaneously with the activation of bilateral cerebral hemispheres. Additionally, event-related desynchronization (ERD) of the affected sensorimotor cortexes (SMCs) was significantly enhanced when compared to the pretraining course, which was only observed in the BCI group (p < 0.05). Furthermore, the activation of affected SMC and parietal lobe were determined to contribute to motor function recovery (p < 0.05). In brief, our findings demonstrate that MI-based BCI training can enhance the motor function of the upper extremity for stroke patients by inducing the optimal cerebral motor functional reorganization.

  13. A review of age differences in the neurophysiology of nociception and the perceptual experience of pain.

    PubMed

    Gibson, Stephen J; Farrell, Michael

    2004-01-01

    To better understand the nature of age differences in pain and nociception with the aging of the worlds' population. The evidence from numerous neurophysiologic and psychological studies suggest a small, but demonstrable age-related impairment in the early warning functions of pain. The increase in pain perception threshold and the widespread change in the structure and function of peripheral and CNS nociceptive pathways may place the older person at greater risk of injury. Moreover, the reduced efficacy of endogenous analgesic systems, a decreased tolerance of pain and the slower resolution of postinjury hyperalgesia may make it more difficult for the older adult to cope, once injury has occurred. These age-related changes may be best conceptualized as a reduced capacity in the functional reserve of the pain system, at both ends of the intensity spectrum. The clinical implications are obvious; older persons are likely to be especially vulnerable to the negative impacts of pain and pain associated events.

  14. The neurophysiological features of myoclonus-dystonia and differentiation from other dystonias.

    PubMed

    Popa, Traian; Milani, Paolo; Richard, Aliénor; Hubsch, Cécile; Brochard, Vanessa; Tranchant, Christine; Sadnicka, Anna; Rothwell, John; Vidailhet, Marie; Meunier, Sabine; Roze, Emmanuel

    2014-05-01

    Myoclonus-dystonia (M-D) is a clinical syndrome characterized by a combination of myoclonic jerks and mild to moderate dystonia. The syndrome is related to ε-sarcoglycan (SGCE) gene mutations in about half the typical cases. Whether the M-D phenotype reflects a primary dysfunction of the cerebellothalamocortical pathway or of the striatopallidothalamocortical pathway is unclear. The exact role of an additional cortical dysfunction in the pathogenesis of M-D is also unknown. To clarify the neurophysiological features of M-D and discuss whether M-D due to SGCE deficiency differs from other primary dystonias. We studied a referred sample of 12 patients with M-D (mean [SD] age, 28.8 [6.2] years; age range, 19-38 years; 5 women) belonging to 11 unrelated families with a proven mutation or deletion of the SGCE gene and a group of 12 age- and sex-matched healthy control individuals. Every participant underwent 3 sessions exploring the excitability of the primary motor cortex, the response of the primary motor cortex to a plasticity-inducing protocol, and the cerebellar-dependent eye-blink classic conditioning (EBCC). The clinical evaluation of patients included the Unified Myoclonus Rating Scale and Burke-Fahn-Marsden Dystonia Rating Scale. Myoclonus-dystonia with a proven SGCE mutation. We measured resting and active motor thresholds, and short-interval intracortical inhibition and facilitation. The plasticity of the motor cortex was evaluated before and for 30 minutes after 600 pulses of rapid paired associative stimulation. The cerebellar functioning was evaluated with the number of conditioned responses during the 6 blocks of EBCC and 1 extinction block. All data were compared between the 2 groups. For patients, correlations were explored between electrophysiological data and clinical scores. We found lower membrane excitability of the corticocortical axons and normal intracortical γ-aminobutyric acid inhibition in contrast with what has been described in other

  15. Cross-Level Effects Between Neurophysiology and Communication During Team Training.

    PubMed

    Gorman, Jamie C; Martin, Melanie J; Dunbar, Terri A; Stevens, Ronald H; Galloway, Trysha L; Amazeen, Polemnia G; Likens, Aaron D

    2016-02-01

    We investigated cross-level effects, which are concurrent changes across neural and cognitive-behavioral levels of analysis as teams interact, between neurophysiology and team communication variables under variations in team training. When people work together as a team, they develop neural, cognitive, and behavioral patterns that they would not develop individually. It is currently unknown whether these patterns are associated with each other in the form of cross-level effects. Team-level neurophysiology and latent semantic analysis communication data were collected from submarine teams in a training simulation. We analyzed whether (a) both neural and communication variables change together in response to changes in training segments (briefing, scenario, or debriefing), (b) neural and communication variables mutually discriminate teams of different experience levels, and (c) peak cross-correlations between neural and communication variables identify how the levels are linked. Changes in training segment led to changes in both neural and communication variables, neural and communication variables mutually discriminated between teams of different experience levels, and peak cross-correlations indicated that changes in communication precede changes in neural patterns in more experienced teams. Cross-level effects suggest that teamwork is not reducible to a fundamental level of analysis and that training effects are spread out across neural and cognitive-behavioral levels of analysis. Cross-level effects are important to consider for theories of team performance and practical aspects of team training. Cross-level effects suggest that measurements could be taken at one level (e.g., neural) to assess team experience (or skill) on another level (e.g., cognitive-behavioral). © 2015, Human Factors and Ergonomics Society.

  16. Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.

    PubMed

    Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz

    2018-01-01

    There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task.

    PubMed

    Bavassi, Luz; Kamienkowski, Juan E; Sigman, Mariano; Laje, Rodrigo

    2017-01-01

    Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.

  18. Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats.

    EPA Science Inventory

    SOT2014 Abstract for presentation: March 23-27, 2014; Phoenix, AZ Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats. V. Bass, D. Andrews, J. Richards, M. Schladweiler, A. Ledb...

  19. Predicting intraoperative feasibility of combined TES-mMEP and cSSEP monitoring during scoliosis surgery based on preoperative neurophysiological assessment.

    PubMed

    Azabou, Eric; Manel, Véronique; Abelin-Genevois, Kariman; Andre-Obadia, Nathalie; Cunin, Vincent; Garin, Christophe; Kohler, Remi; Berard, Jérôme; Ulkatan, Sedat

    2014-07-01

    Combined monitoring of muscle motor evoked potentials elicited by transcranial electric stimulation (TES-mMEP) and cortical somatosensory evoked potentials (cSSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, TES-mMEP/cSSEP is not always feasible. Predictors of feasibility would help to plan the monitoring strategy. To identify predictors of the feasibility of TES-mMEP/cSSEP during scoliosis surgery. Prospective cohort study in a clinical neurophysiology unit and pediatric orthopedic department of a French university hospital. A total of 103 children aged 2 to 19 years scheduled for scoliosis surgery. Feasibility rate of intraoperative TES-mMEP/cSSEP monitoring. All patients underwent a preoperative neurological evaluation and preoperative mMEP and cSSEP recordings at both legs. For each factor associated with feasibility, we computed sensitivity, specificity, positive predictive value (PPV), and negative predictive value. A decision tree was designed. Presence of any of the following factors was associated with 100% feasibility, 100% specificity, and 100% PPV: idiopathic scoliosis, normal preoperative neurological findings, and normal preoperative mMEP and cSSEP recordings. Feasibility was 0% in the eight patients with no recordable mMEPs or cSSEPs during preoperative testing. A decision tree involving three screening steps can be used to identify patients in whom intraoperative TES-mMEP/cSSEP is feasible. Preoperative neurological and neurophysiological assessments are helpful for identifying patients who can be successfully monitored by TES-mMEP/cSSEP during scoliosis surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition.

    PubMed

    Chmielewski, Witold X; Beste, Christian

    2016-05-25

    A multitude of sensory inputs needs to be processed during sensorimotor integration. A crucial factor for detecting relevant information is its complexity, since information content can be conflicting at a perceptual level. This may be central to executive control processes, such as response inhibition. This EEG study aims to investigate the system neurophysiological mechanisms behind effects of perceptual conflict on response inhibition. We systematically modulated perceptual conflict by integrating a Global-local task with a Go/Nogo paradigm. The results show that conflicting perceptual information, in comparison to non-conflicting perceptual information, impairs response inhibition performance. This effect was evident regardless of whether the relevant information for response inhibition is displayed on the global, or local perceptual level. The neurophysiological data suggests that early perceptual/ attentional processing stages do not underlie these modulations. Rather, processes at the response selection level (P3), play a role in changed response inhibition performance. This conflict-related impairment of inhibitory processes is associated with activation differences in (inferior) parietal areas (BA7 and BA40) and not as commonly found in the medial prefrontal areas. This suggests that various functional neuroanatomical structures may mediate response inhibition and that the functional neuroanatomical structures involved depend on the complexity of sensory integration processes.

  1. Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy.

    PubMed

    Kuo, Hsing-Ching; Friel, Kathleen M; Gordon, Andrew M

    2018-02-01

    Children with unilateral spastic cerebral palsy (CP) often have mirror movements, i.e. involuntary imitations of unilateral voluntary movements of the contralateral upper extremity. The pathophysiology of mirror movements has been investigated in small and heterogeneous cohorts in the literature. Specific pathophysiology of mirror movements and their impact on upper extremity function require systematic investigation in larger and homogeneous cohorts of children with unilateral spastic CP. Here we review two possible neurophysiological mechanisms underlying mirror movements in children with CP and those with typical development: (1) an ipsilateral corticospinal tract projecting from the contralesional motor cortex (M1) to both upper extremities; (2) insufficient interhemispheric inhibition between the two M1s. We also discuss clinical implications of mirror movements in children with unilateral CP and suggest that a thorough examination of the relationship between the pathophysiology and clinical manifestations of mirror movements is warranted. We suggest two premises: (1) the presence of mirror movements is indicative of an ipsilateral corticospinal tract reorganization; and (2) the corticospinal tract organization may affect patients' responses to certain treatment. If these premises are supported through future research, mirror movements should be clinically evaluated for patient selection to maximize benefits of therapy, hence promoting individualized medicine in this population. Mirror movements may be indicative of the underlying corticospinal tract reorganization in children with unilateral spastic cerebral palsy (CP). Future research will benefit from systematic investigations of the relationship between mirror movements and its pathophysiology. Mirror movements may be a potential biomarker for individualized medicine in children with unilateral spastic CP. © 2017 Mac Keith Press.

  2. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research.

    PubMed

    Campagnola, Luke; Kratz, Megan B; Manis, Paul B

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org.

  3. How good is the neurophysiology of pain questionnaire? A Rasch analysis of psychometric properties.

    PubMed

    Catley, Mark J; O'Connell, Neil E; Moseley, G Lorimer

    2013-08-01

    The Neurophysiology of Pain Questionnaire (NPQ) was devised to assess how an individual conceptualizes the biological mechanisms that underpin his or her pain. Despite its widespread use, its psychometric properties have not been comprehensively interrogated. Rasch analysis was undertaken on NPQ data from a convenience sample of 300 spinal pain patients, and test-retest reliability was assessed in a sample of 45 low back pain patients. The NPQ effectively targeted the ability of the sample and had acceptable internal consistency and test-retest reliability. However, some items functioned erratically for persons of differing abilities or were psychometrically redundant. The NPQ was reanalyzed with 7 questionable items excluded, and superior psychometric properties were observed. These findings suggest that the NPQ could be improved, but future prospective studies including qualitative measures are needed. In summary, the NPQ is a useful tool for assessing a patient's conceptualization of the biological mechanisms that underpin his or her pain and for evaluating the effects of cognitive interventions in clinical practice and research. These findings suggest that it has adequate psychometric properties for use with chronic spinal pain patients. Rasch analysis was used to analyze the NPQ. Despite several limitations, these results suggest that it is a useful tool with which to assess a patient's conceptualization of the biological mechanisms that underpin his or her pain and to evaluate the effects of cognitive interventions in clinical practice and research. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Serial neurophysiological and neurophysiological examinations for delayed facial nerve palsy in a patient with Fisher syndrome.

    PubMed

    Umekawa, Motoyuki; Hatano, Keiko; Matsumoto, Hideyuki; Shimizu, Takahiro; Hashida, Hideji

    2017-05-27

    The patient was a 47-year-old man who presented with diplopia and gait instability with a gradual onset over the course of three days. Neurological examinations showed ophthalmoplegia, diminished tendon reflexes, and truncal ataxia. Tests for anti-GQ1b antibodies and several other antibodies to ganglioside complex were positive. We made a diagnosis of Fisher syndrome. After administration of intravenous immunoglobulin, the patient's symptoms gradually improved. However, bilateral facial palsy appeared during the recovery phase. Brain MRI showed intensive contrast enhancement of bilateral facial nerves. During the onset phase of facial palsy, the amplitude of the compound muscle action potential (CMAP) in the facial nerves was preserved. During the peak phase, the facial CMAP amplitude was within the lower limit of normal values, or mildly decreased. During the recovery phase, the CMAP amplitude was normalized, and the R1 and R2 responses of the blink reflex were prolonged. The delayed facial nerve palsy improved spontaneously, and the enhancement on brain MRI disappeared. Serial neurophysiological and neuroradiological examinations suggested that the main lesions existed in the proximal part of the facial nerves and the mild lesions existed in the facial nerve terminals, probably due to reversible conduction failure.

  5. Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder.

    PubMed

    Schoenberg, Poppy L A; Hepark, Sevket; Kan, Cornelis C; Barendregt, Henk P; Buitelaar, Jan K; Speckens, Anne E M

    2014-07-01

    To examine whether mindfulness-based cognitive therapy (MBCT) would enhance attenuated amplitudes of event-related potentials (ERPs) indexing performance monitoring biomarkers of attention-deficit/hyperactivity disorder (ADHD). Fifty adult ADHD patients took part in a randomised controlled study investigating ERP and clinical measures pre-to-post MBCT. Twenty-six patients were randomly allocated to MBCT, 24 to a wait-list control. Main outcome measures included error processing (ERN, Pe), conflict monitoring (NoGo-N2), and inhibitory control (NoGo-P3) ERPs concomitant to a continuous performance task (CPT-X). Inattention and hyperactivity-impulsivity ADHD symptoms, psychological distress and social functioning, and mindfulness skills were also assessed. MBCT was associated with increased Pe and NoGo-P3 amplitudes, coinciding with reduced 'hyperactivity/impulsivity' and 'inattention' symptomatology. Specific to the MBCT; enhanced Pe amplitudes correlated with a decrease in hyperactivity/impulsivity symptoms and increased 'act-with-awareness' mindfulness skill, whereas, enhanced P3 correlated with amelioration in inattention symptoms. MBCT enhanced ERP amplitudes associated with motivational saliency and error awareness, leading to improved inhibitory regulation. MBCT suggests having comparable modulation on performance monitoring ERP amplitudes as pharmacological treatments. Further study and development of MBCT as a treatment for ADHD is warranted, in addition to its potential scope for clinical applicability to broader defined externalising disorders and clinical problems associated with impairments of the prefrontal cortex. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. The right tool and the right place for the job: the importance of the field in experimental neurophysiology, 1880-1945.

    PubMed

    Muka, Samantha K

    2016-09-01

    This paper seeks to contribute to understandings of practice and place in the history of early American neurophysiology by exploring research with jellyfish at marine stations. Jellyfish became a particularly important research tool to experimental physiologists studying neurological subjects at the turn of the twentieth century. But their enthusiasm for the potential of this organism was constrained by its delicacy in captivity. The discovery of hardier species made experimentation at the shore possible and resulted in two epicenters of neurophysiological research on the American East Coast: the Marine Biological Laboratory and the Carnegie Institution's Dry Tortugas Laboratory. Work done in these locations had impacts on a wide range of physiological questions. These centers were short lived-researchers at the MBL eventually focused on the squid giant axon and the Tortugas lab closed after the death of Mayer-but the development of basic requirements and best practices to sustain these organisms paints an important picture of early experimental neurophysiology. Marine organisms and locations have played an integral role in the development of experimental life sciences in America. By understanding the earliest experimental research done at these locations, and the organisms that lured researchers from the campus to the coastline, we can begin to integrate marine stations into the larger historical narrative of American physiology.

  7. Neurophysiological changes associated with implant-associated augmentation procedures in the lower jaw.

    PubMed

    Hartmann, Amely; Welte-Jzyk, Claudia; Seiler, Marcus; Daubländer, Monika

    2017-08-01

    Neurophysiological changes after oral and maxillofacial surgery remain one of the topics of current research. This study evaluated if implant placement associated with augmentation procedures increases the possibility of sensory disturbances or result in impaired quality of life during the healing period. Patients who had obtained an implant placement in the lower jaw in combination with augmentation procedures were examined by implementing a comprehensive Quantitative Sensory Testing (QST) protocol for extra- and intraoral use. As augmentation procedures, we used Guided Bone Regeneration (Group A) and Customized Bone Regeneration (Group B) techniques. Patients were tested bilaterally at the chin and mucosal lower lip. Results were compared to a group without augmentation procedures (Group C). Patients' quality of life and psychological comorbidity after the surgical procedures was assessed with the Oral Health Impact Profile and the Hospital Anxiety and Depression Scale. For groups A (n = 20) and B (n = 8), mechanical QST parameters showed no significant differences in all qualities of the inferior alveolar nerve compared to the contralateral side and compared to the nonaugmentation control group (n = 32) as well. Evaluation of quality of life and psychological factors showed no statistical differences. Augmentation procedures did not increase sensory disturbances, indicating no changes in the neurophysiological pathways. Extended augmentation procedures did not lead to sensory changes either or result in an impaired quality of life or modified anxiety and depression scores. © 2017 Wiley Periodicals, Inc.

  8. An Insight Into Neurophysiology of Pulpal Pain: Facts and Hypotheses

    PubMed Central

    Gupta, Abhishek; N., Meena

    2013-01-01

    Pain and pain control are important to the dental profession because the general perception of the public is that dental treatment and pain go hand in hand. Successful dental treatment requires that the source of pain be detected. If the origin of pain is not found, inappropriate dental care and, ultimately, extraction may result. Pain experienced before, during, or after endodontic therapy is a serious concern to both patients and endodontists, and the variability of discomfort presents a challenge in terms of diagnostic methods, endodontic therapy, and endodontic knowledge. This review will help clinicians understand the basic neurophysiology of pulpal pain and other painful conditions of the dental pulp that are not well understood. PMID:24156000

  9. An insight into neurophysiology of pulpal pain: facts and hypotheses.

    PubMed

    Jain, Niharika; Gupta, Abhishek; N, Meena

    2013-10-01

    Pain and pain control are important to the dental profession because the general perception of the public is that dental treatment and pain go hand in hand. Successful dental treatment requires that the source of pain be detected. If the origin of pain is not found, inappropriate dental care and, ultimately, extraction may result. Pain experienced before, during, or after endodontic therapy is a serious concern to both patients and endodontists, and the variability of discomfort presents a challenge in terms of diagnostic methods, endodontic therapy, and endodontic knowledge. This review will help clinicians understand the basic neurophysiology of pulpal pain and other painful conditions of the dental pulp that are not well understood.

  10. Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: Perspectives from impulsivity and compulsivity

    PubMed Central

    Kim, Minah; Lee, Tak Hyung; Choi, Jung-Seok; Kwak, Yoo Bin; Hwang, Wu Jeong; Kim, Taekwan; Lee, Ji Yoon; Lim, Jae-A; Park, Minkyung; Kim, Yeon Jin; Kim, Sung Nyun; Kim, Dai Jin; Kwon, Jun Soo

    2017-01-01

    Although internet gaming disorder (IGD) and obsessive-compulsive disorder (OCD) represent opposite ends of the impulsivity and compulsivity dimensions, the two disorders share common neurocognitive deficits in response inhibition. However, the similarities and differences in neurophysiological features of altered response inhibition between IGD and OCD have not been investigated sufficiently. In total, 27 patients with IGD, 24 patients with OCD, and 26 healthy control (HC) subjects participated in a Go/NoGo task with electroencephalographic recordings. N2-P3 complexes elicited during Go and NoGo condition were analyzed separately and compared among conditions and groups. NoGo-N2 latency at the central electrode site was delayed in IGD group versus the HC group and correlated positively with the severity of internet game addiction and impulsivity. NoGo-N2 amplitude at the frontal electrode site was smaller in OCD patients than in IGD patients. These findings suggest that prolonged NoGo-N2 latency may serve as a marker of trait impulsivity in IGD and reduced NoGo-N2 amplitude may be a differential neurophysiological feature between OCD from IGD with regard to compulsivity. We report the first differential neurophysiological correlate of the altered response inhibition in IGD and OCD, which may be a candidate biomarker for impulsivity and compulsivity. PMID:28134318

  11. Proceedings of the International Symposium on Multiple-Valued Logic (13th) Held at Kyoto, Japan on May 23-25, 1983.

    DTIC Science & Technology

    1983-05-01

    would like to thank the members of the Organizing Committee of ISMVL-Japan, listed on page vii of this Proceedings, for their generous support. Hisashi ...8217 °. °- . ’. . 6% Organizing Commnittee I *Chairman: Hisashi Mine Department of Applied Mathematics and Physics Kcyoto University, Kyoto...Masayuki Kimura (Tohoku University, Japan) Tadahiro Kitahashi (Toyohashi University of Technology, Japan) Yoshiaki Koga (National Defense Academy, Japan

  12. Neurophysiological model of tinnitus: dependence of the minimal masking level on treatment outcome.

    PubMed

    Jastreboff, P J; Hazell, J W; Graham, R L

    1994-11-01

    Validity of the neurophysiological model of tinnitus (Jastreboff, 1990), outlined in this paper, was tested on data from multicenter trial of tinnitus masking (Hazell et al., 1985). Minimal masking level, intensity match of tinnitus, and the threshold of hearing have been evaluated on a total of 382 patients before and after 6 months of treatment with maskers, hearing aids, or combination devices. The data has been divided into categories depending on treatment outcome and type of approach used. Results of analysis revealed that: i) the psychoacoustical description of tinnitus does not possess a predictive value for the outcome of the treatment; ii) minimal masking level changed significantly depending on the treatment outcome, decreasing on average by 5.3 dB in patients reporting improvement, and increasing by 4.9 dB in those whose tinnitus remained the same or worsened; iii) 73.9% of patients reporting improvement had their minimal masking level decreased as compared with 50.5% for patients not showing improvement, which is at the level of random change; iv) the type of device used has no significant impact on the treatment outcome and minimal masking level change; v) intensity match and threshold of hearing did not exhibit any significant changes which can be related to treatment outcome. These results are fully consistent with the neurophysiological interpretation of mechanisms involved in the phenomenon of tinnitus and its alleviation.

  13. Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy.

    PubMed

    Schniepp, Roman; Schlick, Cornelia; Schenkel, Fabian; Pradhan, Cauchy; Jahn, Klaus; Brandt, Thomas; Wuehr, Max

    2017-02-01

    Patients with bilateral vestibular failure (BVF) exhibit imbalance when standing and walking that is linked to a higher fall risk. The purpose of this study was to identify risk factors for falls in BVF. We therefore systematically investigated the interrelationship of clinical and demographic characteristics, gait impairments, and the fall frequency of these patients. Clinical and demographic characteristics as well as quantitative measures of gait performance on a pressure-sensitive gait carpet were collected from 55 patients with different etiologies of BVF. Clinical and demographic data as well as spatiotemporal gait characteristics were used for ANOVA testing and a logistic regression model with categorized fall events as dependent variables. The impairment of peripheral vestibular function, duration of disease, and the overall gait status were not associated with the history of falls in patients with BVF. In contrast, the most predictive factors for falls in BVF were an increase in temporal gait variability, especially at slow walking speeds (p < 0.001; OR = 1.3), and the presence of a concomitant peripheral neuropathy (p < 0.045; OR = 3.6). BVF patients with a high risk of falling exhibit specific gait alterations in a speed-dependent manner. In particular, increased gait fluctuations during slow walking are most predictive for an increased fall risk. The presence of a concomitant peripheral neuropathy further critically impairs postural stability in these patients. Clinical assessment of both these aspects is therefore important to identify those patients at a particularly high fall risk and to initiate preventive procedures early.

  14. ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research

    PubMed Central

    Campagnola, Luke; Kratz, Megan B.; Manis, Paul B.

    2014-01-01

    The complexity of modern neurophysiology experiments requires specialized software to coordinate multiple acquisition devices and analyze the collected data. We have developed ACQ4, an open-source software platform for performing data acquisition and analysis in experimental neurophysiology. This software integrates the tasks of acquiring, managing, and analyzing experimental data. ACQ4 has been used primarily for standard patch-clamp electrophysiology, laser scanning photostimulation, multiphoton microscopy, intrinsic imaging, and calcium imaging. The system is highly modular, which facilitates the addition of new devices and functionality. The modules included with ACQ4 provide for rapid construction of acquisition protocols, live video display, and customizable analysis tools. Position-aware data collection allows automated construction of image mosaics and registration of images with 3-dimensional anatomical atlases. ACQ4 uses free and open-source tools including Python, NumPy/SciPy for numerical computation, PyQt for the user interface, and PyQtGraph for scientific graphics. Supported hardware includes cameras, patch clamp amplifiers, scanning mirrors, lasers, shutters, Pockels cells, motorized stages, and more. ACQ4 is available for download at http://www.acq4.org. PMID:24523692

  15. The importance of polysomnography in the evaluation of prolonged disorders of consciousness: sleep recordings more adequately correlate than stimulus-related evoked potentials with patients' clinical status.

    PubMed

    de Biase, Stefano; Gigli, Gian Luigi; Lorenzut, Simone; Bianconi, Claudio; Sfreddo, Patrizia; Rossato, Gianluca; Basaldella, Federica; Fuccaro, Matteo; Corica, Antonio; Tonon, Davide; Barbone, Fabio; Valente, Mariarosaria

    2014-04-01

    The aim of our study was to evaluate the importance of sleep recordings and stimulus-related evoked potentials (EPs) in patients with prolonged disorders of consciousness (DOCs) by correlating neurophysiologic variables with clinical evaluation obtained using specific standardized scales. There were 27 vegetative state (VS) and 5 minimally conscious state (MCS) patients who were evaluated from a clinical and neurophysiologic perspective. Clinical evaluation included the Coma Recovery Scale-Revised (CRS-R), Disability Rating Scale (DRS), and Glasgow Coma Scale (GCS). Neurophysiologic evaluation included 24-h polysomnography (PSG), somatosensory EPs (SEPs), brainstem auditory EPs (BAEPs), and visual EPs (VEPs). Patients with preservation of each single sleep element (sleep-wake cycle, sleep spindles, K-complexes, and rapid eye movement [REM] sleep) always showed better clinical scores compared to those who did not have preservation. Statistical significance was only achieved for REM sleep. In 7 patients PSG showed the presence of all considered sleep elements, and they had a CRS-R score of 8.29±1.38. In contrast, 25 patients who lacked one or more of the sleep elements had a CRS-R score of 4.84±1.46 (P<.05). Our multivariate analysis clarified that concurrent presence of sleep spindles and REM sleep were associated with a much higher CRS-R score (positive interaction, P<.0001). On the other hand, no significant associations were found between EPs and CRS-R scores. PSG recordings have proved to be a reliable tool in the neurophysiologic assessment of patients with prolonged DOCs, correlating more adequately than EPs with the clinical evaluation and the level of consciousness. The main contribution to higher clinical scores was determined by the concomitant presence of REM sleep and sleep spindles. PSG recordings may be considered inexpensive, noninvasive, and easy-to-perform examinations to provide supplementary information in patients with prolonged DOCs. Copyright

  16. PREFACE: Beyond Kyoto - the necessary road

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2009-03-01

    The Beyond Kyoto conference in Aarhus March 2009 was organised in collaboration with other knowledge institutions, businesses and authorities. It brought together leading scientists, policy-makers, authorities, intergovernmental organisations, NGO's, business stakeholders and business organisations. The conference was a joint interdisciplinary project involving many academic areas and disciplines. These conference proceedings are organised in central and recurring themes that cut across many debates on climate change, the climatic challenges as well as the solutions. In the front there is a short presentation of the conference concept. Part I of the proceedings focuses on issues related to the society - covering climate policy, law, market based instruments, financial structure, behaviour and consumption, public participation, media communication and response from indigenous peoples etc. Part II of the proceedings concerns the scientific knowledge base on climate related issues - covering climate change processes per se, the potential impacts of projected climate change on biodiversity and adaptation possibilities, the interplay between climate, agriculture and biodiversity, emissions, agricultural systems, increasing pressure on the functioning of agriculture and natural areas, vulnerability to extreme weather events and risks in respect to sea-level rise etc. The conference proceedings committee consists of four professors from Aarhus University: Jens-Christian Svenning, Jørgen E Olesen, Mads Forchhammer and Ellen Margrethe Basse. Aarhus University's Climate Secretariat has had the overall responsibility for coordinating the many presentations, as well as the practical side of arranging the conference and supporting the publication of papers. As Head of the Climate Secretariat and Chair of Aarhus University's Climate Panel, I would like to thank everyone for their contribution. This applies both to the scientific and the practical efforts. Special thanks to

  17. Gravity and Neuronal Adaptation. Neurophysiology of Reflexes from Hypo- to Hypergravity Conditions

    NASA Astrophysics Data System (ADS)

    Ritzmann, Ramona; Krause, Anne; Freyler, Kathrin; Gollhofer, Albert

    2017-02-01

    Introduction: For interplanetary and orbital missions in human space flight, knowledge about the gravity-sensitivity of the central nervous system (CNS) is required. The objective of this study was to assess neurophysiological correlates in variable hetero gravity conditions in regard to their timing and shaping. Methods: In ten subjects, peripheral nerve stimulation was used to elicit H-reflexes and M-waves in the M. soleus in Lunar, Martian, Earth and hypergravity. Gravity-dependencies were described by means of reflex latency, inter-peak-interval, duration, stimulation threshold and maximal amplitudes. Experiments were executed during the CNES/ESA/DLR JEPPFs. Results: H-reflex latency, inter-peak-interval and duration decreased with increasing gravitation (P<0.05); likewise, M-wave inter-peak-interval was diminished and latency prolonged with increasing gravity (P<0.05). Stimulation threshold of H-reflexes and M-waves decreased (P<0.05) while maximal amplitudes increased with an increase in gravitation (P<0.05). Conclusion: Adaptations in neurophysiological correlates in hetero gravity are associated with a shift in timing and shaping. For the first time, our results indicate that synaptic and axonal nerve conduction velocity as well as axonal and spinal excitability are diminished with reduced gravitational forces on the Moon and Mars and gradually increased when gravitation is progressively augmented up to hypergravity. Interrelated with the adaptation in threshold we conclude that neuronal circuitries are significantly affected by gravitation. As a consequence, movement control and countermeasures may be biased in extended space missions involving transitions between different force environments.

  18. A post-Kyoto partner: Considering the Montreal Protocol as a tool to manage nitrous oxide

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Kanter, D.; Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W.; Grabiel, P.; Moomaw, W.; Galloway, J. N.

    2012-12-01

    While nitrous oxide (N2O) was recently identified as the largest remaining anthropogenic threat to the stratospheric ozone layer, it is currently regulated under the 1997 Kyoto Protocol due to its simultaneous ability to warm the climate. The threat N2O poses to the stratospheric ozone layer, coupled with the uncertain future of the international climate regime, motivates our exploration of issues that could be relevant to the Parties to the 1987 Montreal Protocol if they decide to take measures to manage N2O in the future. There are clear legal avenues for the Montreal Protocol and its parent treaty, the 1985 Vienna Convention, to regulate N2O, as well as several ways to share authority with the existing and future international climate treaties. N2O mitigation strategies exist to address its most significant anthropogenic sources, including agriculture, where behavioral practices and new technologies could contribute significantly to mitigation efforts. Existing policies managing N2O and other forms of reactive nitrogen could be harnessed and built upon by the Montreal Protocol's existing bodies to implement N2O controls. Given the tight coupling of the nitrogen cycle, such controls would likely simultaneously reduce emissions of reactive nitrogen and hence have co-benefits for ecosystems and public health. Nevertheless, there are at least three major regulatory challenges that are unique and central to N2O control: food security, equity, and the nitrogen cascade. The possible inclusion of N2O in the Montreal Protocol need not be viewed as a sign of the Kyoto Protocol's failure to adequately deal with climate change, given the complexity of the issue. Rather, it could represent an additional tool in the field of sustainable development diplomacy.lt;img border=0 src="images/B43K-06_B.jpg">

  19. The Promotion of Peace Education through Guides in Peace Museums. A Case Study of the Kyoto Museum for World Peace, Ritsumeikan University

    ERIC Educational Resources Information Center

    Tanigawa, Yoshiko

    2015-01-01

    This paper focuses on how peace education at a peace museum is promoted by a volunteer guide service for visitors. Peace museums are places where many materials related to war and peace history are on display. To support the learning experience of museum visitors, many peace museums in Japan provide a volunteer guide service. The Kyoto Museum for…

  20. A portable platform to collect and review behavioral data simultaneously with neurophysiological signals.

    PubMed

    Tianxiao Jiang; Siddiqui, Hasan; Ray, Shruti; Asman, Priscella; Ozturk, Musa; Ince, Nuri F

    2017-07-01

    This paper presents a portable platform to collect and review behavioral data simultaneously with neurophysiological signals. The whole system is comprised of four parts: a sensor data acquisition interface, a socket server for real-time data streaming, a Simulink system for real-time processing and an offline data review and analysis toolbox. A low-cost microcontroller is used to acquire data from external sensors such as accelerometer and hand dynamometer. The micro-controller transfers the data either directly through USB or wirelessly through a bluetooth module to a data server written in C++ for MS Windows OS. The data server also interfaces with the digital glove and captures HD video from webcam. The acquired sensor data are streamed under User Datagram Protocol (UDP) to other applications such as Simulink/Matlab for real-time analysis and recording. Neurophysiological signals such as electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings can be collected simultaneously in Simulink and fused with behavioral data. In addition, we developed a customized Matlab Graphical User Interface (GUI) software to review, annotate and analyze the data offline. The software provides a fast, user-friendly data visualization environment with synchronized video playback feature. The software is also capable of reviewing long-term neural recordings. Other featured functions such as fast preprocessing with multithreaded filters, annotation, montage selection, power-spectral density (PSD) estimate, time-frequency map and spatial spectral map are also implemented.

  1. Kyoto-Related Fossil-Fuel CO2 Emission Totals (1990 - 2009) (Version 2012) (Updated 01/16/2013)

    DOE Data Explorer

    Marland, Greg [Appalachian State University, Boone, NC (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN

    2013-01-16

    This table shows the total of CO2 emissions from fossil-fuel use and cement manufacture for those countries listed in Annex B of the Kyoto Protocol and for those countries not listed in Annex B. In keeping with the convention of the IPCC methodology for calculating national greenhouse gas emissions, emissions from international bunker fuels (fuels used in international commerce) are not included in the country totals but are shown separately under the country group in which final fuel loading occurred. Note, that the list of countries in Annex B of the Kyoto Protocol differs from the list of countries in Annex I of the Framework Convention on Climate Change by the addition of Croatia, Liechtenstein, Monaco, and Slovenia and the removal of Belarus and Turkey. We have estimated emissions for 1990 and 1991 from the republics that were formerly part of the USSR and of Yugoslavia by taking total emissions from the USSR (and Yugoslavia) for 1990 and 1991 and distributing them among the new republics in the same ratio as emissions from those republics in 1992. Because of minor differences in the method of estimating the global total of emissions and the national totals of emissions, the sum of emissions from all countries produces a number that is less than the global total by about 2%. Consequently we have inflated the sum of emissions from all Annex B countries and the sum of emissions from all non-Annex B countries by about 2% (the value differs from year to year) so that the sum of the two values plus emissions from bunker fuels is equal to our best estimate of the global total of emissions.

  2. [Neurophysiologic mechanisms of combat post-extreme state of health].

    PubMed

    Tsygan, V N

    2014-10-01

    The effects of ecological and occupational stress (EOS) on brain neurodynamics of Soviet and Afghanistan servicemen have been studied. The investigations have been made in Afghanistan. Neurophysiological characteristics of traumatic stress and consequences of combat trauma were studied in patients wounded in Afghanistan, in the acute phase as well as since 0.5-3 years after leaving the battlefield. The combined effect of combat situation, hot climate, highlands and desert forms EOS. It does not cause an adaptation process in servicemen. EOS is characterized by changes in bioelectrical indices of brain in interhemispheric relations both as a whole and in isolated rhythm components of EEG, by activating the stress limiting system. It exhibits pathopsychological and autonomic components which remain significant during 3 years after leaving the combat conditions. The formation of a general adaptation syndrome is prevented in explosion trauma under the influence of EOS.

  3. Neurophysiological model of the normal and abnormal human pupil

    NASA Technical Reports Server (NTRS)

    Krenz, W.; Robin, M.; Barez, S.; Stark, L.

    1985-01-01

    Anatomical, experimental, and computer simulation studies were used to determine the structure of the neurophysiological model of the pupil size control system. The computer simulation of this model demonstrates the role played by each of the elements in the neurological pathways influencing the size of the pupil. Simulations of the effect of drugs and common abnormalities in the system help to illustrate the workings of the pathways and processes involved. The simulation program allows the user to select pupil condition (normal or an abnormality), specific site along the neurological pathway (retina, hypothalamus, etc.) drug class input (barbiturate, narcotic, etc.), stimulus/response mode, display mode, stimulus type and input waveform, stimulus or background intensity and frequency, the input and output conditions, and the response at the neuroanatomical site. The model can be used as a teaching aid or as a tool for testing hypotheses regarding the system.

  4. The effect of task demand and incentive on neurophysiological and cardiovascular markers of effort.

    PubMed

    Fairclough, Stephen H; Ewing, Kate

    2017-09-01

    According to motivational intensity theory, effort is proportional to the level of task demand provided that success is possible and successful performance is deemed worthwhile. The current study represents a simultaneous manipulation of demand (working memory load) and success importance (financial incentive) to investigate neurophysiological (EEG) and cardiovascular measures of effort. A 2×2 repeated-measures study was conducted where 18 participants performed a n-back task under three conditions of demand: easy (1-back), hard (4-back) and very hard (7-back). In addition, participants performed these tasks in the presence of performance-contingent financial incentive or in a no-incentive (pilot trial) condition. Three bands of EEG activity were quantified: theta (4-7Hz), lower-alpha (7.5-10Hz) and upper-alpha (10.5-13Hz). Fronto-medial activity in the theta band and activity in the upper-alpha band at frontal, central and parietal sites were sensitive to demand and indicated greatest effort when the task was challenging and success was possible. Mean systolic blood pressure and activity in the lower-alpha band at parietal sites were also sensitive to demand but also increased in the incentive condition across all levels of task demand. The results of the study largely support the predictions of motivational intensity using neurophysiological markers of effort. Copyright © 2017. Published by Elsevier B.V.

  5. Neurophysiological detection of impending spinal cord injury during scoliosis surgery.

    PubMed

    Schwartz, Daniel M; Auerbach, Joshua D; Dormans, John P; Flynn, John; Drummond, Denis S; Bowe, J Andrew; Laufer, Samuel; Shah, Suken A; Bowen, J Richard; Pizzutillo, Peter D; Jones, Kristofer J; Drummond, Denis S

    2007-11-01

    Despite the many reports attesting to the efficacy of intraoperative somatosensory evoked potential monitoring in reducing the prevalence of iatrogenic spinal cord injury during corrective scoliosis surgery, these afferent neurophysiological signals can provide only indirect evidence of injury to the motor tracts since they monitor posterior column function. Early reports on the use of transcranial electric motor evoked potentials to monitor the corticospinal motor tracts directly suggested that the method holds great promise for improving detection of emerging spinal cord injury. We sought to compare the efficacy of these two methods of monitoring to detect impending iatrogenic neural injury during scoliosis surgery. We reviewed the intraoperative neurophysiological monitoring records of 1121 consecutive patients (834 female and 287 male) with adolescent idiopathic scoliosis (mean age, 13.9 years) treated between 2000 and 2004 at four pediatric spine centers. The same group of experienced surgical neurophysiologists monitored spinal cord function in all patients with use of a standardized multimodality technique with the patient under total intravenous anesthesia. A relevant neurophysiological change (an alert) was defined as a reduction in amplitude (unilateral or bilateral) of at least 50% for somatosensory evoked potentials and at least 65% for transcranial electric motor evoked potentials compared with baseline. Thirty-eight (3.4%) of the 1121 patients had recordings that met the criteria for a relevant signal change (i.e., an alert). Of those thirty-eight patients, seventeen showed suppression of the amplitude of transcranial electric motor evoked potentials in excess of 65% without any evidence of changes in somatosensory evoked potentials. In nine of the thirty-eight patients, the signal change was related to hypotension and was corrected with augmentation of the blood pressure. The remaining twenty-nine patients had an alert that was related directly to a

  6. Neurophysiological mechanisms involved in language learning in adults

    PubMed Central

    Rodríguez-Fornells, Antoni; Cunillera, Toni; Mestres-Missé, Anna; de Diego-Balaguer, Ruth

    2009-01-01

    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished. PMID:19933142

  7. Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease.

    PubMed

    Menezes, Manoj P; Rahman, Shamima; Bhattacharya, Kaustuv; Clark, Damian; Christodoulou, John; Ellaway, Carolyn; Farrar, Michelle; Pitt, Matthew; Sampaio, Hugo; Ware, Tyson L; Wedatilake, Yehani; Thorburn, David R; Ryan, Monique M; Ouvrier, Robert

    2016-09-01

    Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions. Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Nerve conductions studies were also performed prospectively on children attending a tertiary metabolic disease service. Results were classified and analysed according to the underlying genetic cause. Nerve conduction studies from 27 children with mitochondrial disease were included in the study (mitochondrial DNA (mtDNA) - 7, POLG - 7, SURF1 - 10, PDHc deficiency - 3). Four children with mtDNA mutations had a normal study while three had mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute stroke-like episode that resolved over 12months. Five children with POLG mutations and disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the neuropathy associated with mitochondrial disease was not length-dependent. This is the largest study to date of peripheral neuropathy in genetically- classified childhood mitochondrial disease. Characterising the underlying neuropathy may assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the assessment of children with suspected mitochondrial disease. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society

  8. Neurophysiology of Drosophila Models of Parkinson's Disease

    PubMed Central

    West, Ryan J. H.; Furmston, Rebecca; Williams, Charles A. C.; Elliott, Christopher J. H.

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing. PMID:25960916

  9. Neurophysiology and functional neuroanatomy of pain perception.

    PubMed

    Schnitzler, A; Ploner, M

    2000-11-01

    The traditional view that the cerebral cortex is not involved in pain processing has been abandoned during the past decades based on anatomic and physiologic investigations in animals, and lesion, functional neuroimaging, and neurophysiologic studies in humans. These studies have revealed an extensive central network associated with nociception that consistently includes the thalamus, the primary (SI) and secondary (SII) somatosensory cortices, the insula, and the anterior cingulate cortex (ACC). Anatomic and electrophysiologic data show that these cortical regions receive direct nociceptive thalamic input. From the results of human studies there is growing evidence that these different cortical structures contribute to different dimensions of pain experience. The SI cortex appears to be mainly involved in sensory-discriminative aspects of pain. The SII cortex seems to have an important role in recognition, learning, and memory of painful events. The insula has been proposed to be involved in autonomic reactions to noxious stimuli and in affective aspects of pain-related learning and memory. The ACC is closely related to pain unpleasantness and may subserve the integration of general affect, cognition, and response selection. The authors review the evidence on which the proposed relationship between cortical areas, pain-related neural activations, and components of pain perception is based.

  10. Developments in Neuropsychological and Neurophysiological Assessment: An Overview of Progress and Products of the JWGD3 (Joint Working Group on Drug Dependent Degradation) Level I Neuropsychology Task Area Group

    DTIC Science & Technology

    1986-01-01

    995AB.081 IDA303502 11. TITLE (Indclude Security Classafication) Developments in Neuropsychological and Neurophysiological Assessment: An overview of...progress and products of the JWGD3 Level I Neuropsychology Task Area Group 12. PERSONAL AU1TOR(S) Reeves, D.L.; Taube, S.L. 13a. TYPE OF REPORT I13b...Phone: (301) 588-0058 7 Developments in Neuropsychological and Neurophysiological Assessment An Overview of Progress and Products of the JWGD3 Level I

  11. Pain neurophysiology education for the management of individuals with chronic low back pain: systematic review and meta-analysis.

    PubMed

    Clarke, Clare Louise; Ryan, Cormac Gerard; Martin, Denis J

    2011-12-01

    Pain neurophysiology education (PNE) is a form of education for patients with chronic low back pain (CLBP). The purpose of this systematic review was to investigate the evidence for PNE in the management of pateints with CLBP. A literature search of MEDLINE, CINAHL and AMED was performed from 1996(01)-2010(09). RCT appraisal and synthesis was assessed using the Cochrane Back Review Group (CBRG) guidelines. The main outcome measures were pain, physical-function, psychological-function, and social-function. Two moderate quality RCTs (n=122) were included in the final review. According to the CBRG criteria there was very low quality evidence that PNE is beneficial for pain, physical-function, psychological-function, and social-function. Meta-analysis found PNE produced statistically significant but clinically small improvements in short-term pain of 5mm (0, 10.0mm) [mean difference (95%CI)] on the 100mm VAS. This review was limited by the small number of studies (n=2) that met the inclusion criteria and by the fact that both studies were produced by the same group that published the PNE manual. These factors contributed to the relatively low grading of the evidence. There is a need for more studies investigating PNE by different research groups to support early promising findings. Until then firm clinical recommendations cannot be made. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model.

    PubMed

    Althaus, A L; Sagher, O; Parent, J M; Murphy, G G

    2015-02-15

    Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model. Copyright © 2015 the American Physiological Society.

  13. Neurophysiological mechanisms in acceptance and commitment therapy in opioid-addicted patients with chronic pain.

    PubMed

    Smallwood, Rachel F; Potter, Jennifer S; Robin, Donald A

    2016-04-30

    Acceptance and Commitment Therapy (ACT) has been effectively utilized to treat both chronic pain and substance use disorder independently. Given these results and the vital need to treat the comorbidity of the two disorders, a pilot ACT treatment was implemented in individuals with comorbid chronic pain and opioid addiction. This pilot study supported using neurophysiology to characterize treatment effects and revealed that, following ACT, participants with this comorbidity exhibited reductions in brain activation due to painful stimulus and in connectivity at rest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives.

    PubMed

    Busan, P; Battaglini, P P; Sommer, M

    2017-06-01

    Developmental stuttering (DS) is a disruption of the rhythm of speech, and affected people may be unable to execute fluent voluntary speech. There are still questions about the exact causes of DS. Evidence suggests there are differences in the structure and functioning of motor systems used for preparing, executing, and controlling motor acts, especially when they are speech related. Much research has been obtained using neuroimaging methods, ranging from functional magnetic resonance to diffusion tensor imaging and electroencephalography/magnetoencephalography. Studies using transcranial magnetic stimulation (TMS) in DS have been uncommon until recently. This is surprising considering the relationship between the functionality of the motor system and DS, and the wide use of TMS in motor-related disturbances such as Parkinson's Disease, Tourette's Syndrome, and dystonia. Consequently, TMS could shed further light on motor aspects of DS. The present work aims to investigate the use of TMS for understanding DS neural mechanisms by reviewing TMS papers in the DS field. Until now, TMS has contributed to the understanding of the excitatory/inhibitory ratio of DS motor functioning, also helping to better understand and critically review evidence about stuttering mechanisms obtained from different techniques, which allowed the investigation of cortico-basal-thalamo-cortical and white matter/connection dysfunctions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Excessive bodybuilding as pathology? A first neurophysiological classification.

    PubMed

    Maier, Moritz Julian; Haeussinger, Florian Benedikt; Hautzinger, Martin; Fallgatter, Andreas Jochen; Ehlis, Ann-Christine

    2017-11-15

    Excessive bodybuilding as a pathological syndrome has been classified based on two different theories: bodybuilding as dependency or as muscle dysmorphic disorder (MDD). This study is a first attempt to find psychophysiological data supporting one of these classifications. Twenty-four participants (bodybuilders vs healthy controls) were presented with pictures of bodies, exercise equipment or general reward stimuli in a control or experimental condition, and were measured with functional near-infrared spectroscopy (fNIRS). Higher activation in the dorsolateral prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC) while watching bodies and training equipment in the experimental condition (muscular bodies and bodybuilding-typical equipment) would be an indicator for the addiction theory. Higher activation in motion-related areas would be an indicator for the MDD theory. We found no task-related differences between the groups in the DLPFC and OFC, but a significantly higher activation in bodybuilders in the primary somatosensory cortex (PSC) and left-hemispheric supplementary motor area (SMA) while watching body pictures (across conditions) as compared to the control group. These neurophysiological results could be interpreted as a first evidence for the MDD theory of excessive bodybuilding.

  16. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Behavioural and neurophysiological evidence for face identity and face emotion processing in animals

    PubMed Central

    Tate, Andrew J; Fischer, Hanno; Leigh, Andrea E; Kendrick, Keith M

    2006-01-01

    Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task. PMID:17118930

  18. Behavioural and neurophysiological evidence for face identity and face emotion processing in animals.

    PubMed

    Tate, Andrew J; Fischer, Hanno; Leigh, Andrea E; Kendrick, Keith M

    2006-12-29

    Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task.

  19. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.

    PubMed

    Jeunet, Camille; N'Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien

    2015-01-01

    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.

  20. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns

    PubMed Central

    Jeunet, Camille; N’Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien

    2015-01-01

    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user. PMID:26625261

  1. New directions in hypnosis research: strategies for advancing the cognitive and clinical neuroscience of hypnosis

    PubMed Central

    Jensen, Mark P; Jamieson, Graham A; Lutz, Antoine; Mazzoni, Giuliana; McGeown, William J; Santarcangelo, Enrica L; Demertzi, Athena; De Pascalis, Vilfredo; Bányai, Éva I; Rominger, Christian; Vuilleumier, Patrik; Faymonville, Marie-Elisabeth; Terhune, Devin B

    2017-01-01

    Abstract This article summarizes key advances in hypnosis research during the past two decades, including (i) clinical research supporting the efficacy of hypnosis for managing a number of clinical symptoms and conditions, (ii) research supporting the role of various divisions in the anterior cingulate and prefrontal cortices in hypnotic responding, and (iii) an emerging finding that high hypnotic suggestibility is associated with atypical brain connectivity profiles. Key recommendations for a research agenda for the next decade include the recommendations that (i) laboratory hypnosis researchers should strongly consider how they assess hypnotic suggestibility in their studies, (ii) inclusion of study participants who score in the middle range of hypnotic suggestibility, and (iii) use of expanding research designs that more clearly delineate the roles of inductions and specific suggestions. Finally, we make two specific suggestions for helping to move the field forward including (i) the use of data sharing and (ii) redirecting resources away from contrasting state and nonstate positions toward studying (a) the efficacy of hypnotic treatments for clinical conditions influenced by central nervous system processes and (b) the neurophysiological underpinnings of hypnotic phenomena. As we learn more about the neurophysiological mechanisms underlying hypnosis and suggestion, we will strengthen our knowledge of both basic brain functions and a host of different psychological functions. PMID:29034102

  2. Customizable cap implants for neurophysiological experimentation.

    PubMed

    Blonde, Jackson D; Roussy, Megan; Luna, Rogelio; Mahmoudian, Borna; Gulli, Roberto A; Barker, Kevin C; Lau, Jonathan C; Martinez-Trujillo, Julio C

    2018-04-22

    Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. The system neurophysiological basis of backward inhibition.

    PubMed

    Zhang, Rui; Stock, Ann-Kathrin; Fischer, Rico; Beste, Christian

    2016-12-01

    Task switching is regularly required in our everyday life. To succeed in switching, it is important to inhibit the most recently performed task and instead activate the currently relevant task. The process that inhibits a recently performed task when a new task is to be performed is referred to as 'backward inhibition' (BI). While the BI effect has been subject to intense research in cognitive psychology, little is known about the neuronal mechanisms that are related to the BI effect and those that relate to differences in the magnitude of the BI effect. In the current study, we examined the system neurophysiological basis of BI processes using event-related potentials (ERPs) and sLORETA by also taking inter-individual differences in the magnitude of the BI into account. The results suggest that BI processes and inter-individual differences in them strongly depend upon attentional selection mechanisms (reflected by N1-ERP modulations in the current task/trial) mediated via networks consisting of extrastriate occipital areas, the temporo-parietal junction and the inferior frontal gyrus. Other processes and mechanisms related to conflict monitoring, response selection, or the updating, organization and implementation of a new task-set (i.e. N2 and P3 processes) were not shown to be modulated by BI processes and differences in their magnitude, as evoked with a common BI paradigm.

  4. Individual neurophysiological profile in external effects investigation

    NASA Astrophysics Data System (ADS)

    Schastlivtseva, Daria; Tatiana Kotrovskaya, D..

    Cortex biopotentials are the significant elements in human psychophysiological individuality. Considered that cortical biopotentials are diverse and individually stable, therefore there is the existence of certain dependence between the basic properties of higher nervous activity and cerebral bioelectric activity. The main purpose of the study was to reveal the individual neurophysiological profile and CNS initial functional state manifestation in human electroencephalogram (EEG) under effect of inert gases (argon, xenon, helium), hypoxia, pressure changes (0.02 and 0.2 MPa). We obtained 5-minute eyes closed background EEG on 19 scalp positions using Ag/AgCl electrodes mounted in an electrode cap. All EEG signals were re-referenced to average earlobes; Fast Furies Transformation analysis was used to calculate the relative power spectrum of delta-, theta-, alpha- and beta frequency band in artifact-free EEG. The study involved 26 healthy men who provided written informed consent, aged 20 to 35 years. Data obtained depend as individual EEG type and initial central nervous functional state as intensity, duration and mix of factors. Pronounced alpha rhythm in the raw EEG correlated with their adaptive capacity under studied factor exposure. Representation change and zonal distribution perversion of EEG alpha rhythm were accompanied by emotional instability, increased anxiety and difficulty adapting subjects. High power factor or combination factor with psychological and emotional or physical exertion minimizes individual EEG pattern.

  5. An exploration of the extent and nature of reconceptualisation of pain following pain neurophysiology education: A qualitative study of experiences of people with chronic musculoskeletal pain.

    PubMed

    King, Rick; Robinson, Victoria; Ryan, Cormac G; Martin, Denis J

    2016-08-01

    Pain neurophysiology education (PNE), a method of pain education, purports to work by helping patients reconceptualise their pain, shifting from a tissue injury model towards a biopsychosocial understanding related to neural sensitivity. Better understanding of pain reconceptualisation following PNE is needed to improve the delivery of this educational approach to enhance its effectiveness. This study aimed to investigate the extent and nature of reconceptualisation following PNE. In a qualitative design, based on Interpretive Phenomenological Analysis, thematic analysis was carried out on individual interviews with 7 adults before and three weeks after receiving PNE at a pain clinic. Three themes emerged describing variable degrees of reconceptualisation; prior beliefs as facilitators and barriers to reconceptualisation; and the influence of reconceptualisation on clinical benefits of PNE. The results lend support to claims that reconceptualisation is an important mechanism in PNE and justify further investigation of this phenomenon. When delivering PNE to patients with chronic pain helping patients to reconceptualise their pain may be key to enhancing the clinical benefits of the intervention. Understanding prior beliefs may be an important step in facilitating reconceptualisation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Multiple Frequency Audio Signal Communication as a Mechanism for Neurophysiology and Video Data Synchronization

    PubMed Central

    Topper, Nicholas C.; Burke, S.N.; Maurer, A.P.

    2014-01-01

    BACKGROUND Current methods for aligning neurophysiology and video data are either prepackaged, requiring the additional purchase of a software suite, or use a blinking LED with a stationary pulse-width and frequency. These methods lack significant user interface for adaptation, are expensive, or risk a misalignment of the two data streams. NEW METHOD A cost-effective means to obtain high-precision alignment of behavioral and neurophysiological data is obtained by generating an audio-pulse embedded with two domains of information, a low-frequency binary-counting signal and a high, randomly changing frequency. This enabled the derivation of temporal information while maintaining enough entropy in the system for algorithmic alignment. RESULTS The sample to frame index constructed using the audio input correlation method described in this paper enables video and data acquisition to be aligned at a sub-frame level of precision. COMPARISONS WITH EXISTING METHOD Traditionally, a synchrony pulse is recorded on-screen via a flashing diode. The higher sampling rate of the audio input of the camcorder enables the timing of an event to be detected with greater precision. CONCLUSIONS While On-line analysis and synchronization using specialized equipment may be the ideal situation in some cases, the method presented in the current paper presents a viable, low cost alternative, and gives the flexibility to interface with custom off-line analysis tools. Moreover, the ease of constructing and implements this set-up presented in the current paper makes it applicable to a wide variety of applications that require video recording. PMID:25256648

  7. Multiple frequency audio signal communication as a mechanism for neurophysiology and video data synchronization.

    PubMed

    Topper, Nicholas C; Burke, Sara N; Maurer, Andrew Porter

    2014-12-30

    Current methods for aligning neurophysiology and video data are either prepackaged, requiring the additional purchase of a software suite, or use a blinking LED with a stationary pulse-width and frequency. These methods lack significant user interface for adaptation, are expensive, or risk a misalignment of the two data streams. A cost-effective means to obtain high-precision alignment of behavioral and neurophysiological data is obtained by generating an audio-pulse embedded with two domains of information, a low-frequency binary-counting signal and a high, randomly changing frequency. This enabled the derivation of temporal information while maintaining enough entropy in the system for algorithmic alignment. The sample to frame index constructed using the audio input correlation method described in this paper enables video and data acquisition to be aligned at a sub-frame level of precision. Traditionally, a synchrony pulse is recorded on-screen via a flashing diode. The higher sampling rate of the audio input of the camcorder enables the timing of an event to be detected with greater precision. While on-line analysis and synchronization using specialized equipment may be the ideal situation in some cases, the method presented in the current paper presents a viable, low cost alternative, and gives the flexibility to interface with custom off-line analysis tools. Moreover, the ease of constructing and implements this set-up presented in the current paper makes it applicable to a wide variety of applications that require video recording. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The study of human higher mental functions as they relate to neurophysiological processes and personal characteristics

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya; Zhuravlev, Maxim; Kulanin, Roman; Protasov, Pavel; Hramov, Alexander; Koronovskii, Alexey

    2018-02-01

    In this paper we study the correlation between the neurophysiological processes and personal characteristics arising in the processes of human higher mental functions. We find that the activity of the brain correlates with the results of psychological tests (according to the Cattell test). Experimental studies and math processing are described for operation design with the registration of human multi-channel EEG data in two phases (the processes of passive wakefulness (background) and special psychological testing (active phase)).

  9. A Neurophysiological Study of Semantic Processing in Parkinson's Disease.

    PubMed

    Angwin, Anthony J; Dissanayaka, Nadeeka N W; Moorcroft, Alison; McMahon, Katie L; Silburn, Peter A; Copland, David A

    2017-01-01

    Cognitive-linguistic impairments in Parkinson's disease (PD) have been well documented; however, few studies have explored the neurophysiological underpinnings of semantic deficits in PD. This study investigated semantic function in PD using event-related potentials. Eighteen people with PD and 18 healthy controls performed a semantic judgement task on written word pairs that were either congruent or incongruent. The mean amplitude of the N400 for new incongruent word pairs was similar for both groups, however the onset latency was delayed in the PD group. Further analysis of the data revealed that both groups demonstrated attenuation of the N400 for repeated incongruent trials, as well as attenuation of the P600 component for repeated congruent trials. The presence of N400 congruity and N400 repetition effects in the PD group suggests that semantic processing is generally intact, but with a slower time course as evidenced by the delayed N400. Additional research will be required to determine whether N400 and P600 repetition effects are sensitive to further cognitive decline in PD. (JINS, 2017, 23, 78-89).

  10. How the nerves reached the muscle: Bernard Katz, Stephen W. Kuffler, and John C. Eccles-Certain implications of exile for the development of twentieth-century neurophysiology.

    PubMed

    Stahnisch, Frank W

    2017-01-01

    This article explores the work by Bernard Katz (1911-2003), Stephen W. Kuffler (1913-1980), and John C. Eccles (1903-1997) on the nerve-muscle junction as a milestone in twentieth-century neurophysiology with wider scientific implications. The historical question is approached from two perspectives: (a) an investigation of twentieth-century solutions to a longer physiological dispute and (b) an examination of a new kind of laboratory and academic cooperation. From this vantage point, the work pursued in Sydney by Sir John Carew Eccles' team on the neuromuscular junction is particularly valuable, since it contributed a central functional element to modern physiological understanding regarding the function and structure of the human and animal nervous system. The reflex model of neuromuscular action had already been advanced by neuroanatomists such as Georg Prochaska (1749-1820) in Bohemia since the eighteenth century. It became a major component of neurophysiological theories during the nineteenth century, based on the law associated with the names of François Magendie (1783-1855) in France and Charles Bell (1774-1842) in Britain regarding the functional differences of the sensory and motor spinal nerves. Yet, it was not until the beginning of the twentieth century that both the histological and the neurophysiological understanding of the nerve-muscle connection became entirely understood and the chemical versus electrical transmission further elicited as the mechanisms of inhibition. John C. Eccles, Bernard Katz, and Stephen W. Kuffler helped to provide some of the missing links for modern neurophysiology. The current article explores several of their scientific contributions and investigates how the context of forced migration contributed to these interactions in contingently new ways.

  11. Dorsal midbrain syndrome associated with persistent neck extension: Clinical and diagnostic imaging findings in 2 dogs

    PubMed Central

    Canal, Sara; Baroni, Massimo; Falzone, Cristian; De Benedictis, Giulia M.; Bernardini, Marco

    2015-01-01

    Two young dogs were evaluated for an acute onset of abnormal head posture and eye movement. Neurological examination was characterized mostly by permanent neck extension, abnormalities of pupils, and eye movement. A mesencephalic mass lesion was detected on magnetic resonance imaging in both cases. Neurophysiological pathways likely responsible for this peculiar clinical presentation are discussed. PMID:26663922

  12. Visual neurophysiology: a field-effect amplifier designed and built by R. L. De Valois.

    PubMed

    Albrecht, Duane G; Creeger, Carl P; Crane, Alison M

    2005-10-01

    In the middle of the last century, R. L. De Valois designed and built a unique and effective amplifier based on the newly developed field-effect transistor (FET). This amplifier has many beneficial qualities for amplifying the signals of neurons with minimal disturbance. We have used this amplifier successfully for more than three decades. We describe the circuitry of the De Valois amplifier and provide performance specifications. The FET amplifier is one of De Valois's contributions to visual neurophysiology; we share the design in his honor, with the hope that it might prove useful to others.

  13. Microdosimetric evaluation of the neutron field for BNCT at Kyoto University reactor by using the PHITS code.

    PubMed

    Baba, H; Onizuka, Y; Nakao, M; Fukahori, M; Sato, T; Sakurai, Y; Tanaka, H; Endo, S

    2011-02-01

    In this study, microdosimetric energy distributions of secondary charged particles from the (10)B(n,α)(7)Li reaction in boron-neutron capture therapy (BNCT) field were calculated using the Particle and Heavy Ion Transport code System (PHITS). The PHITS simulation was performed to reproduce the geometrical set-up of an experiment that measured the microdosimetric energy distributions at the Kyoto University Reactor where two types of tissue-equivalent proportional counters were used, one with A-150 wall alone and another with a 50-ppm-boron-loaded A-150 wall. It was found that the PHITS code is a useful tool for the simulation of the energy deposited in tissue in BNCT based on the comparisons with experimental results.

  14. Neurophysiological evidence for transfer appropriate processing of memory: processing versus feature similarity.

    PubMed

    Schendan, Haune E; Kutas, Malra

    2007-08-01

    Transfer appropriate processing (TAP) accounts propose that memory is a function of the degree to which the same neural processes transfer appropriately from the study experience to the memory test. However, in prior research, study and test stimuli were often similar physically. In two experiments, event-related brain potentials (ERPs) were recorded to fragmented objects during an indirect memory test to isolate transfer of a specific perceptual process from overlap of physical features between experiences. An occipitotemporoparietal P2(00) at 200 msec showed implicit memory effects only when similar perceptual grouping processes of good continuation were repeatedly engaged-despite physical feature differences--as TAP accounts hypothesize. This result provides direct neurophysiological evidence for the critical role of process transfer across experiences for memory.

  15. Relevance of a neurophysiological marker of attention allocation for children's learning-related behaviors and academic performance.

    PubMed

    Willner, Cynthia J; Gatzke-Kopp, Lisa M; Bierman, Karen L; Greenberg, Mark T; Segalowitz, Sidney J

    2015-08-01

    Learning-related behaviors are important for school success. Socioeconomic disadvantage confers risk for less adaptive learning-related behaviors at school entry, yet substantial variability in school readiness exists within socioeconomically disadvantaged populations. Investigation of neurophysiological systems associated with learning-related behaviors in high-risk populations could illuminate resilience processes. This study examined the relevance of a neurophysiological measure of controlled attention allocation, amplitude of the P3b event-related potential, for learning-related behaviors and academic performance in a sample of socioeconomically disadvantaged kindergarteners. The sample consisted of 239 children from an urban, low-income community, approximately half of whom exhibited behavior problems at school entry (45% aggressive/oppositional; 64% male; 69% African American, 21% Hispanic). Results revealed that higher P3b amplitudes to target stimuli in a go/no-go task were associated with more adaptive learning-related behaviors in kindergarten. Furthermore, children's learning-related behaviors in kindergarten mediated a positive indirect effect of P3b amplitude on growth in academic performance from kindergarten to 1st grade. Given that P3b amplitude reflects attention allocation processes, these findings build on the scientific justification for interventions targeting young children's attention skills in order to promote effective learning-related behaviors and academic achievement within socioeconomically disadvantaged populations. (c) 2015 APA, all rights reserved).

  16. Neurophysiological Pharmacodynamic Measures of Groups and Individuals Extended from Simple Cognitive Tasks to More “Lifelike” Activities

    PubMed Central

    Gevins, Alan; Chan, Cynthia S.; Jiang, An; Sam-Vargas, Lita

    2012-01-01

    Objective Extend a method to track neurophysiological pharmacodynamics during repetitive cognitive testing to a more complex “lifelike” task. Methods Alcohol was used as an exemplar psychoactive substance. An equation, derived in an exploratory analysis to detect alcohol’s EEGs effects during repetitive cognitive testing, was validated in a confirmatory study on a new group whose EEGs after alcohol and placebo were recorded during working memory testing and while operating an automobile driving simulator. Results The equation recognized alcohol by combining five times beta plus theta power. It worked well (p<.0001) when applied to both tasks in the confirmatory group. The maximum EEG effect occurred 2–2.5 hours after drinking (>1hr after peak BAC) and remained at 90% at 3.5–4 hours (BAC <50% of peak). Individuals varied in the magnitude and timing of the EEG effect. Conclusion The equation tracked the EEG response to alcohol in the confirmatory study during both repetitive cognitive testing and a more complex “lifelike” task. The EEG metric was more sensitive to alcohol than several autonomic physiological measures, task performance measures or self-reports. Significance Using EEG as a biomarker to track neurophysiological pharmacodynamics during complex “lifelike” activities may prove useful for assessing how drugs affect integrated brain functioning. PMID:23194853

  17. Psychotherapeutics and the problematic origins of clinical psychology in America.

    PubMed

    Taylor, E

    2000-09-01

    The problematic place of psychotherapy within the larger history of scientific psychology is reviewed, especially in the absence of any definitive history of clinical psychology yet written. Although standard histories of psychology imply that psychotherapy was somehow derived from the tradition of German laboratory science, modern historiography reveals a dramatically different story. Personality, abnormal, social, and clinical psychology have their roots in an international psychotherapeutic alliance related more to French neurophysiology, and this alliance flourished for several decades before psychoanalysis. Reconstruction of the American contribution to this alliance, the so-called Boston school of abnormal psychology, suggests an era of medical psychology in advance of today. Note is also made of the possible misattribution of Lightner Witmer as the father of clinical psychology.

  18. Development of Exoplanet database "ExoKyoto" aiming for inter-comparison with different criteria of Habitable zones

    NASA Astrophysics Data System (ADS)

    Yamashiki, Yosuke; Notsu, Yuta; Sasaki, Takanori; Hosono, Natsuki; Kuroki, Ryusuke; Notsu, Shota; Murashima, Keiya; Takagi, Fuka; Doi, Takao

    2017-05-01

    An integrated database of confirmed exoplanets has been developed and launched as “ExoKyoto,” for the purpose of better comprehension of exoplanetary systems in different star systems. The HOSTSTAR module of the database includes not only host stars for confirmed exoplanets, but also hundreds of thousands of stars existing in the star database listed in (HYG database). Each hoststar can be referred to in the catalogue with its habitable zone calculated, based on the observed/estimated star parameters. For outreach and observation support purpose, ExoKyoto possesses Stellar Windows, developed by the Xlib & Ggd module, and interfaces with GoogleSky for easy comprehension of those celestial bodies on a stellar map. Target stars can be identified and listed by using this database, based on the target magnitude, transit frequency, and photon decrease ratio by its transit.If we interpolate deficient data using assumed functions about the exoplanets that were discovered until now, Sub-Neptune size (1.9-3.1R_Earth) are the most common (971); then Super Earth size (1.2-1.9 R_earth) have been allocated (681).Using the Solar Equivalent Astronomical Unit (SEAU), most of the exoplanets discovered are within a Venus equivalent orbit (3029), and 197 are located within the habitable zone (Venus to Mars equivalent orbit). If we classify them using Kopparapu et al.(2013), within Recent Venus equivalent orbit (3048), there are 130 located in the habitable zone (runaway greenhouse-maximum greenhouse). For example, Kepler-560b is defined as in the habitable zone by its SEAU, but not by Kopparapu et al. (2013). Furthermore, based on an exoplanet's solar revolution, radius, assumed mass (Larsen & Geoffrey, 2014), transit parameters , and main start information (location, class, spectral class, etc.); observation target selection is practical and possible.In addition to the previous habitable zone based on the normal radiation flux from the host star, we'll discuss stellar flares

  19. HIV-positive females show blunted neurophysiological responses in an emotion-attention dual task paradigm.

    PubMed

    Tartar, Jaime L; McIntosh, Roger C; Rosselli, Monica; Widmayer, Susan M; Nash, Allan J

    2014-06-01

    Although HIV is associated with decreased emotional and cognitive functioning, the mechanisms through which affective changes can alter cognitive processes in HIV-infected individuals are unknown. We aimed to clarify this question through testing the extent to which emotionally negative stimuli prime attention to a subsequent infrequently occurring auditory tone in HIV+ compared to HIV- females. Attention to emotional compared to non-emotional pictures was measured via the LPP ERP. Subsequent attention was indexed through the N1 and late processing negativity ERP. We also assessed mood and cognitive functioning in both groups. In HIV- females, emotionally negative pictures, compared to neutral pictures, resulted in an enhanced LPP to the pictures and an enhanced N1 to subsequent tones. The HIV+ group did not show a difference in the LPP measure between picture categories, and accordingly, did not show a priming effect to the subsequent infrequent tones. The ERP findings, combined with neuropsychological deficits, suggest that HIV+ females show impairments in attention to emotionally-laden stimuli and that this impairment might be related to a loss of affective priming. This study is the first to provide physiological evidence that the LPP, a measure of attention to emotionally-charged visual stimuli, is reduced in HIV-infected individuals. These results set the stage for future work aimed at localizing brain activation to emotional stimuli in HIV+ individuals. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Testing neurophysiological markers related to fear-potentiated startle.

    PubMed

    Seligowski, Antonia V; Bondy, Erin; Singleton, Paris; Orcutt, Holly K; Ressler, Kerry J; Auerbach, Randy P

    2018-06-11

    Fear-potentiated startle (FPS) paradigms provide insight into fear learning mechanisms that contribute to impairment among individuals with posttraumatic stress symptoms (PTSS). Electrophysiology also has provided insight into these mechanisms through the examination of event-related potentials (ERPs) such as the P100 and LPP. It remains unclear, however, whether the P100 and LPP may be related to fear learning processes within the FPS paradigm. To this end, we tested differences in ERP amplitudes for conditioned stimuli associated (CS+) and not associated (CS-) with an aversive unconditioned stimulus (US) during fear acquisition. Participants included 54 female undergraduate students (mean age = 20.26). The FPS response was measured via electromyography of the orbicularis oculi muscle. EEG data were collected during the FPS paradigm. While the difference between CS+ and CS- P100 amplitude was not significant, LPP amplitudes were significantly enhanced following the CS+ relative to CS-. Furthermore, the LPP difference wave (CS+ minus CS-) was associated with FPS scores for the CS- during the later portion of fear acquisition. These findings suggest that conditioned stimuli may have altered emotional encoding (LPP) during the FPS paradigm. Thus, the LPP may be a promising neurophysiological marker that is related to fear learning processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Influence of emotional states on inhibitory gating: Animals models to clinical neurophysiology

    PubMed Central

    Cromwell, Howard C.; Atchley, Rachel M.

    2014-01-01

    Integrating research efforts using a cross-domain approach could redefine traditional constructs used in behavioral and clinical neuroscience by demonstrating that behavior and mental processes arise not from functional isolation but from integration. Our research group has been examining the interface between cognitive and emotional processes by studying inhibitory gating. Inhibitory gating can be measured via changes in behavior or neural signal processing. Sensorimotor gating of the startle response is a well-used measure. To study how emotion and cognition interact during startle modulation in the animal model, we examined ultrasonic vocalization (USV) emissions during acoustic startle and prepulse inhibition. We found high rates of USV emission during the sensorimotor gating paradigm and revealed links between prepulse inhibition (PPI) and USV emission that could reflect emotional and cognitive influences. Measuring inhibitory gating as P50 event-related potential suppression has also revealed possible connections between emotional states and cognitive processes. We have examined the single unit responses during the traditional gating paradigm and found that acute and chronic stress can alter gating of neural signals in regions such as amygdala, striatum and medial prefrontal cortex. Our findings point to the need for more cross-domain research on how shifting states of emotion can impact basic mechanisms of information processing. Results could inform clinical work with the development of tools that depend upon cross-domain communication, and enable a better understanding and evaluation of psychological impairment. PMID:24861710

  2. Neuropsychological and neurophysiological evaluation in cirrhotic patients with minimal hepatic encephalopathy undergoing liver transplantation.

    PubMed

    Senzolo, M; Amodio, P; D'Aloiso, M C; Fagiuoli, S; Del Piccolo, F; Canova, D; Masier, A; Bassanello, M; Zanus, G; Burra, P

    2005-03-01

    Cirrhotic patients without overt hepatic encephalopathy may have cerebral function alterations called minimal hepatic encephalopathy (MHE). Our goal was to evaluate the role of partial pressure of ammonia (pNH3), neuropsychological, and neurophysiological assessment in detecting cognitive changes in cirrhotic patients awaiting liver transplantation. Fourteen cirrhotic patients listed for liver transplant were studied. All patients underwent the neuropsychological battery called PSE. Neurophysiological assessment including spectral EEG (sEEG), evoked potential P300 and pNH3 and venous and arterial ammonia levels was performed in all patients. Four patients were transplanted. Liver disease etiology was alcoholic in four patients, viral in six mixed in two, and cryptogenic in two. PSE scores revealed MHE in 8 patients; sEEG was altered in 6, and P300 in 1. No correlations were detected between P300, sEEG, and PSE. pNH3 and arterial ammonia levels were significantly higher in the subgroup of patients with altered sEEG and were correlated with theta band increase in sEEG but not with pathological PSE scores or P300 wave abnormalities. The combination of sEEG and PSE, and possibly also pNH3 and arterial ammonia, is useful in detecting cerebral function alterations in cirrhotic patients with no apparent encephalopathy, whereas P300 is not. The diagnosis of MHE obtained using the multimodal approach adopted in this study may enable the adequate treatment of these patients prior to surgery, which includes advising them not to drive and adjusting their priority on the waiting list for OLTx in the light of a condition that cannot be evaluated by Child Pugh score and MELD score.

  3. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades as Revealed by Lesion Studies with Neurological Patients and Transcranial Magnetic Stimulation (TMS)

    ERIC Educational Resources Information Center

    Muri, Rene M.; Nyffeler, Thomas

    2008-01-01

    This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess…

  4. Cognitive and neurophysiological markers of ADHD persistence and remission.

    PubMed

    Cheung, Celeste H M; Rijsdijk, Fruhling; McLoughlin, Gráinne; Brandeis, Daniel; Banaschewski, Tobias; Asherson, Philip; Kuntsi, Jonna

    2016-06-01

    Attention-deficit hyperactivity disorder (ADHD) persists in around two-thirds of individuals in adolescence and early adulthood. To examine the cognitive and neurophysiological processes underlying the persistence or remission of ADHD. Follow-up data were obtained from 110 young people with childhood ADHD and 169 controls on cognitive, electroencephalogram frequency, event-related potential (ERP) and actigraph movement measures after 6 years. ADHD persisters differed from remitters on preparation-vigilance measures (contingent negative variation, delta activity, reaction time variability and omission errors), IQ and actigraph count, but not on executive control measures of inhibition or working memory (nogo-P3 amplitudes, commission errors and digit span backwards). Preparation-vigilance measures were markers of remission, improving concurrently with ADHD symptoms, whereas executive control measures were not sensitive to ADHD persistence/remission. For IQ, the present and previous results combined suggest a role in moderating ADHD outcome. These findings fit with previously identified aetiological separation of the cognitive impairments in ADHD. The strongest candidates for the development of non-pharmacological interventions involving cognitive training and neurofeedback are the preparation-vigilance processes that were markers of ADHD remission. © The Royal College of Psychiatrists 2016.

  5. Music Evolution in the Laboratory: Cultural Transmission Meets Neurophysiology.

    PubMed

    Lumaca, Massimo; Ravignani, Andrea; Baggio, Giosuè

    2018-01-01

    In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and "users" of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs). We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems.

  6. A neurophysiologic model for aggressive behavior in the cat.

    PubMed

    Andy, O J; Giurintano, L P; Giurintano, S L

    1978-01-01

    A neurophysiologic model for aggressive behavior in the cat is proposed. Stimulus-bound and seizure-bound aggression was evaluated in relation to limbic and basal ganglia induced seizures (after-discharges). Electrically induced limbic and basal ganglia after-discharges were used because they are known to implicate septohypothalamic sites from which aggression can be elicited by direct stimulation. The occurrence of behavioral aggression is correlated with the discharge characteristics of a single discharging system and with two interacting discharging systems. Aggression is composed of autonomic and somato-motor components which poses relatively low and high thresholds, respectively, for their activation. Aggression occurring during a combined septum and amygdala discharge was more intense and prolonged than with a septum discharge alone. Participation of a slow frequency discharging basal ganglia system activated seizure-bound aggression in an otherwise nonaggressive limbic seizure. The limbic and basal ganglia stimulations and after-discharges lowered the excitability threshold of the aggression system and made it more vulnerable to being activated by external stimuli, such as visual and auditory stimuli. These observations are reminiscent of patients with aggressive behavior associated with psychomotor seizures.

  7. Experimental basis for a neurophysiological understanding of hypnoid states.

    PubMed

    Barolin, G S

    1982-01-01

    We postulate the hypnoid state of the human organism to be a third possible state besides waking and sleeping. This state can be equally induced by heterohypnotic and by autohypnotic means, by various techniques for meditation, relaxation and psychotherapy as well. It forms a basal status of the organism with partial deprivation of external stimuli. Out of this deprivation derives the possibility of stronger concentration on special stimuli (such as hypnotic suggestions) which would hence be able to act stronger in this state than in the waking state. Thus, it is possible to change external stimuli within their subjective perception (probably by ways of a subcortical modulating effect derived from the hypnotic suggestion). However, within their bioelectric parameters the stimuli pass unchanged through the peripheral receptor up to the cortex, which is measurable. If somebody produces actions within the hypnoid state these actions will have the same neurophysiological correlate as in the waking state, which means desynchronization. This does not exclude such actions (by concentration in the hypnoid state) having a stronger effect than in the waking state and/or having a different subjective perception.

  8. Music Evolution in the Laboratory: Cultural Transmission Meets Neurophysiology

    PubMed Central

    Lumaca, Massimo; Ravignani, Andrea; Baggio, Giosuè

    2018-01-01

    In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and “users” of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs). We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems. PMID:29713263

  9. Nipple pain associated with breastfeeding: incorporating current neurophysiology into clinical reasoning.

    PubMed

    Amir, Lisa H; Jones, Lester E; Buck, Miranda L

    2015-03-01

    New mothers frequently experience breastfeeding problems, in particular nipple pain. This is often attributed to compression, skin damage, infection or dermatitis. To outline an integrated approach to breastfeeding pain assessment that seeks to enhance current practice. Our clinical reasoning model resolves the complexity of pain into three categories: local stimulation, external influences and central modulation. Tissue pathology, damage or inflammation leads to local stimulation of nociceptors. External influences such as creams and breast pumps, as well as factors related to the mother, the infant and the maternal-infant interaction, may exacerbate the pain. Central nervous system modulation includes the enhancement of nociceptive transmission at the spinal cord and modification of the descending inhibitory influences. A broad range of factors can modulate pain through central mechanisms including maternal illness, exhaustion, lack of support, anxiety, depression or history of abuse. General practitioners (GPs) can use this model to explain nipple pain in complex settings, thus increasing management options for women.

  10. [Attention and eye movements in human: psychophysiological concepts, neurophysiological models and EEG correlates].

    PubMed

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2008-01-01

    A review. Recently published articles concerning the problem of attention are discussed, the most popular psychophysiological concepts and neurophysiological models of attention are described, and correlation of spatial attention and saccadic eyes movements is shown. The evidence for reflection of attention mechanisms and saccade preparation in intensity and topography of the visual evoked potentials and event-related potentials is given. On the basis of the results obtained by the authors and literature data, the contribution of attention to preparation of a saccade and its programming is shown. Different kinds of attention are reflected in a complex of EEG potentials of various duration and polarity. The analysis of parameters and topography of these potentials can serve a tool for investigation of the attention mechanisms.

  11. Pharmacokinetics & Neurophysiology

    ERIC Educational Resources Information Center

    Davis, Andrew S.; Salpekar, Jay A.

    2009-01-01

    Medications administered in clinical practice obtain their therapeutic effect only to the extent that the drug is present in the appropriate concentration at the desired site. To achieve this goal, the prescribing clinician must be aware of how a drug may interact with the physiology of the patient. Pharmacokinetics is the study of this process…

  12. Central pattern generators for social vocalization: Androgen-dependent neurophysiological mechanisms

    PubMed Central

    Bass, Andrew H.; Remage-Healey, Luke

    2008-01-01

    Historically, most studies of vertebrate central pattern generators (CPGs) have focused on mechanisms for locomotion and respiration. Here, we highlight new results for ectothermic vertebrates, namely teleost fish and amphibians, showing how androgenic steroids can influence the temporal patterning of CPGs for social vocalization. Investigations of vocalizing teleosts show how androgens can rapidly (within minutes) modulate the neurophysiological output of the vocal CPG (fictive vocalizations that mimic the temporal properties of natural vocalizations) inclusive of their divergent actions between species, as well as intraspecific differences between male reproductive morphs. Studies of anuran amphibians (frogs) demonstrate that long-term steroid treatments (wks) can masculinize the fictive vocalizations of females, inclusive of its sensitivity to rapid modulation by serotonin. Given the conserved organization of vocal control systems across vertebrate groups, the vocal CPGs of fish and amphibians provide tractable models for identifying androgen-dependent events that are fundamental to the mechanisms of vocal motor patterning. These basic mechanisms can also inform our understanding of the more complex CPGs for vocalization, and social behaviors in general, that have evolved among birds and mammals. PMID:18262186

  13. Targeting neuronal dysfunction in schizophrenia with nicotine: Evidence from neurophysiology to neuroimaging

    PubMed Central

    Smucny, Jason; Tregellas, Jason R

    2018-01-01

    Patients with schizophrenia self-administer nicotine at rates higher than is self-administered for any other psychiatric illness. Although the reasons are unclear, one hypothesis suggests that nicotine is a form of ‘self-medication’ in order to restore normal levels of nicotinic signaling and target abnormalities in neuronal function associated with cognitive processes. This brief review discusses evidence from neurophysiological and neuroimaging studies in schizophrenia patients that nicotinic agonists may effectively target dysfunctional neuronal circuits in the illness. Evidence suggests that nicotine significantly modulates a number of these circuits, although relatively few studies have used modern neuroimaging techniques (e.g. functional magnetic resonance imaging (fMRI)) to examine the effects of nicotinic drugs on disease-related neurobiology. The neuronal effects of nicotine and other nicotinic agonists in schizophrenia remain a priority for psychiatry research. PMID:28441884

  14. Structural bases for neurophysiological investigations of amygdaloid complex of the brain

    NASA Astrophysics Data System (ADS)

    Kalimullina, Liliya B.; Kalkamanov, Kh. A.; Akhmadeev, Azat V.; Zakharov, Vadim P.; Sharafullin, Ildus F.

    2015-11-01

    Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am’s structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes’, cannulae’s and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.

  15. Neurophysiology of spectrotemporal cue organization of spoken language in auditory memory.

    PubMed

    Moberly, Aaron C; Bhat, Jyoti; Welling, D Bradley; Shahin, Antoine J

    2014-03-01

    Listeners assign different weights to spectral dynamics, such as formant rise time (FRT), and temporal dynamics, such as amplitude rise time (ART), during phonetic judgments. We examined the neurophysiological basis of FRT and ART weighting in the /ba/-/wa/ contrast. Electroencephalography was recorded for thirteen adult English speakers during a mismatch negativity (MMN) design using synthetic stimuli: a /ba/ with /ba/-like FRT and ART; a /wa/ with /wa/-like FRT and ART; and a /ba/(wa) with /ba/-like FRT and /wa/-like ART. We hypothesized that because of stronger reliance on FRT, subjects would encode a stronger memory trace and exhibit larger MMN during the FRT than the ART contrast. Results supported this hypothesis. The effect was most robust in the later portion of MMN. Findings suggest that MMN is generated by multiple sources, differentially reflecting acoustic change detection (earlier MMN, bottom-up process) and perceptual weighting of ART and FRT (later MMN, top-down process). Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype.

    PubMed

    Bluschke, A; Roessner, V; Beste, C

    2016-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders in childhood. Besides inattention and hyperactivity, impulsivity is the third core symptom leading to diverse and serious problems. However, the neuronal mechanisms underlying impulsivity in ADHD are still not fully understood. This is all the more the case when patients with the ADHD combined subtype (ADHD-C) are considered who are characterized by both symptoms of inattention and hyperactivity/impulsivity. Combining high-density electroencephalography (EEG) recordings with source localization analyses, we examined what information processing stages are dysfunctional in ADHD-C (n = 20) compared with controls (n = 18). Patients with ADHD-C made more impulsive errors in a Go/No-go task than healthy controls. Neurophysiologically, different subprocesses from perceptual gating to attentional selection, resource allocation and response selection processes are altered in this patient group. Perceptual gating, stimulus-driven attention selection and resource allocation processes were more pronounced in ADHD-C, are related to activation differences in parieto-occipital networks and suggest attentional filtering deficits. However, only response selection processes, associated with medial prefrontal networks, predicted impulsive errors in ADHD-C. Although the clinical picture of ADHD-C is complex and a multitude of processing steps are altered, only a subset of processes seems to directly modulate impulsive behaviour. The present findings improve the understanding of mechanisms underlying impulsivity in patients with ADHD-C and might help to refine treatment algorithms focusing on impulsivity.

  17. Neurophysiological mechanism of possibly confounding peripheral activation of the facial nerve during corticobulbar tract monitoring.

    PubMed

    Téllez, Maria J; Ulkatan, Sedat; Urriza, Javier; Arranz-Arranz, Beatriz; Deletis, Vedran

    2016-02-01

    To improve the recognition and possibly prevent confounding peripheral activation of the facial nerve caused by leaking transcranial electrical stimulation (TES) current during corticobulbar tract monitoring. We applied a single stimulus and a short train of electrical stimuli directly to the extracranial portion of the facial nerve. We compared the peripherally elicited compound muscle action potential (CMAP) of the facial nerve with the responses elicited by TES during intraoperative monitoring of the corticobulbar tract. A single stimulus applied directly to the facial nerve at subthreshold intensities did not evoke a CMAP, whereas short trains of subthreshold stimuli repeatedly evoked CMAPs. This is due to the phenomenon of sub- or near-threshold super excitability of the cranial nerve. Therefore, the facial responses evoked by short trains TES, when the leaked current reaches the facial nerve at sub- or near-threshold intensity, could lead to false interpretation. Our results revealed a potential pitfall in the current methodology for facial corticobulbar tract monitoring that is due to the activation of the facial nerve by subthreshold trains of stimuli. This study proposes a new criterion to exclude peripheral activation during corticobulbar tract monitoring. The failure to recognize and avoid facial nerve activation due to leaking current in the peripheral portion of the facial nerve during TES decreases the reliability of corticobulbar tract monitoring by increasing the possibility of false interpretation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Neurophysiologic intraoperative monitoring of the vestibulocochlear nerve.

    PubMed

    Simon, Mirela V

    2011-12-01

    Neurosurgical procedures involving the skull base and structures within can pose a significant risk of damage to the brain stem and cranial nerves. This can have life-threatening consequences and/or result in devastating neurologic deficits. Over the past decade, intraoperative neurophysiology has significantly evolved and currently offers a great tool for live monitoring of the integrity of nervous structures. Thus, dysfunction can be identified early and prompt modification of the surgical management or operating conditions, leads to avoidance of permanent structural damage.Along these lines, the vestibulocochlear nerve (CN VIII) and, to a greater extent, the auditory pathways as they pass through the brain stem are especially at risk during cerebelopontine angle (CPA), posterior/middle fossa, or brain stem surgery. CN VIII can be damaged by several mechanisms, from vascular compromise to mechanical injury by stretch, compression, dissection, and heat injury. Additionally, cochlea itself can be significantly damaged during temporal bone drilling, by noise, mechanical destruction, or infarction, and because of rupture, occlusion, or vasospasm of the internal auditory artery.CN VIII monitoring can be successfully achieved by live recording of the function of one of its parts, the cochlear or auditory nerve (AN), using the brain stem auditory evoked potentials (BAEPs), electrocochleography (ECochG), and compound nerve action potentials (CNAPs) of the cochlear nerve.This is a review of these techniques, their principle, applications, methodology, interpretation of the evoked responses, and their change from baseline, within the context of surgical and anesthesia environments, and finally the appropriate management of these changes.

  19. [The post-discectomy syndrome: clinical and electroneuromyographic characteristics and methods of treatment].

    PubMed

    Musaev, A V; Guseĭnova, S G; Musaeva, I R

    2008-01-01

    The data of the Azerbaijan Neurosurgical Center, including 2618 case-reports of patients operated on for low back discal hernia between 1997 and 2002, have been analyzed. The retrospective analysis of the data reveals that 26,4% of patients need further restorative treatment due to the presence of various neurological disturbances: pain syndromes of different intensity, motor deficits (pareses), sensory disorders and functional disorders of pelvic organs. The retrospective analysis of the data reveals that 26,4% of patients need further restorative treatment due to the presence of various neurological disturbances: pain syndromes of different intensity, motor deficits (pareses), sensory disorders and functional disorders of pelvic organs. Along with these data, the results of our own clinical and neurophysiological study of 110 patients have been summarized as well. Along with these data, the results of our own clinical and neurophysiological study of 110 patients have been summarized as well. A high effectiveness of electrostimulation and naphthalan therapy alone and in combination with massage and medical gymnastics has been revealed. A high effectiveness of electrostimulation and naphthalan therapy alone and in combination with massage and medical gymnastics has been revealed. Electroneuromyographic data revealing the positive dynamics as a result of the treatment of patients with the post-discectomy syndrome are presented. Electroneuromyographic data revealing the positive dynamics as a result of the treatment of patients with the post-discectomy syndrome are presented.

  20. NIRS in clinical neurology - a 'promising' tool?

    PubMed

    Obrig, Hellmuth

    2014-01-15

    Near-infrared spectroscopy (NIRS) has become a relevant research tool in neuroscience. In special populations such as infants and for special tasks such as walking, NIRS has asserted itself as a low resolution functional imaging technique which profits from its ease of application, portability and the option to co-register other neurophysiological and behavioral data in a 'near natural' environment. For clinical use in neurology this translates into the option to provide a bed-side oximeter for the brain, broadly available at comparatively low costs. However, while some potential for routine brain monitoring during cardiac and vascular surgery and in neonatology has been established, NIRS is largely unknown to clinical neurologists. The article discusses some of the reasons for this lack of use in clinical neurology. Research using NIRS in three major neurologic diseases (cerebrovascular disease, epilepsy and headache) is reviewed. Additionally the potential to exploit the established position of NIRS as a functional imaging tool with regard to clinical questions such as preoperative functional assessment and neurorehabilitation is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. [Prof. Michiharu Matsuoka, founder of the Department of Orthopaedic Surgery at Kyoto University and his achievements in orthopaedic surgery in the Meiji era of Japan (Part 5, Faculty members and training of doctors from Nagoya)].

    PubMed

    Hirotani, Hayato

    2010-09-01

    During the years when Dr. M. Matsuoka was professor of the Department of Orthopaedic Surgery, Kyoto Medical School, Kyoto Imperial University (June, 1907-January, 1914), seven doctors worked as his faculty members and founded the base of the current development and reputation of the Department. After resignation from their academic positions, they served in orthopaedic practice in several areas in Japan where orthopaedic surgery was not well recognized. In addition, Prof. Matsuoka trained three doctors from the Aichi Prefectural Medical College (School of Medicine, Nagoya University) in the orthopaedic practice, including x-ray technique and they contributed to the development of orthopaedic surgery in the areas of Nagoya city and Tokai. Backgrounds and achievements of these ten doctors are described.

  2. Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data

    PubMed Central

    Ahn, Sangtae; Nguyen, Thien; Jang, Hyojung; Kim, Jae G.; Jun, Sung C.

    2016-01-01

    Investigations of the neuro-physiological correlates of mental loads, or states, have attracted significant attention recently, as it is particularly important to evaluate mental fatigue in drivers operating a motor vehicle. In this research, we collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states. Each subject performed simulated driving under two different conditions (well-rested and sleep-deprived) on different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and 8 channels for fNIRS recordings. We extracted the prominent features of each modality to distinguish between the well-rested and sleep-deprived conditions, and all multimodal features, except EOG, were combined to quantify mental fatigue during driving. Finally, a novel driving condition level (DCL) was proposed that distinguished clearly between the features of well-rested and sleep-deprived conditions. This proposed DCL measure may be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the combination of methods based on each classifier yielded substantial improvements in the classification accuracy between these two conditions. PMID:27242483

  3. Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls.

    PubMed

    Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J

    2017-06-01

    Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Behavioral and SCN neurophysiological disruption in the Tg-SwDI mouse model of Alzheimer's disease.

    PubMed

    Paul, Jodi R; Munir, Hira A; van Groen, Thomas; Gamble, Karen L

    2018-06-01

    Disruption of circadian rhythms is commonly reported in individuals with Alzheimer's disease (AD). Neurons in the primary circadian pacemaker, the suprachiasmatic nucleus (SCN), exhibit daily rhythms in spontaneous neuronal activity which are important for maintaining circadian behavioral rhythms. Disruption of SCN neuronal activity has been reported in animal models of other neurodegenerative disorders; however, the effect of AD on SCN neurophysiology remains unknown. In this study we examined circadian behavioral and electrophysiological changes in a mouse model of AD, using male mice from the Tg-SwDI line which expresses human amyloid precursor protein with the familial Swedish (K670N/M671L), Dutch (E693Q), Iowa (D694N) mutations. The free-running period of wheel-running behavior was significantly shorter in Tg-SwDI mice compared to wild-type (WT) controls at all ages examined (3, 6, and 10 months). At the SCN level, the day/night difference in spike rate was significantly dampened in 6-8 month-old Tg-SwDI mice, with decreased AP firing during the day and an increase in neuronal activity at night. The dampening of SCN excitability rhythms in Tg-SwDI mice was not associated with changes in input resistance, resting membrane potential, or action potential afterhyperpolarization amplitude; however, SCN neurons from Tg-SwDI mice had significantly reduced A-type potassium current (I A ) during the day compared to WT cells. Taken together, these results provide the first evidence of SCN neurophysiological disruption in a mouse model of AD, and highlight I A as a potential target for AD treatment strategies in the future. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Using pupil size and heart rate to infer affective states during behavioral neurophysiology and neuropsychology experiments

    PubMed Central

    Mitz, Andrew R.; Chacko, Ravi V.; Putnam, Philip T.; Rudebeck, Peter H.; Murray, Elisabeth A.

    2017-01-01

    Background Nonhuman primates (NHPs) are a valuable research model because of their behavioral, physiological and neuroanatomical similarities to humans. In the absence of language, autonomic activity can provide crucial information about cognitive and affective states during single-unit recording, inactivation and lesion studies. Methods standardized for use in humans are not easily adapted to NHPs and detailed guidance has been lacking. New Method We provide guidance for monitoring heart rate and pupil size in the behavioral neurophysiology setting by addressing the methodological issues, pitfalls and solutions for NHP studies. The methods are based on comparative physiology to establish a rationale for each solution. We include examples from both electrophysiological and lesion studies. Results Single-unit recording, pupil responses and heart rate changes represent a range of decreasing temporal resolution, a characteristic that impacts experimental design and analysis. We demonstrate the unexpected result that autonomic measures acquired before and after amygdala lesions are comparable despite disruption of normal autonomic function. Comparison with Existing Methods Species and study design differences can render standard techniques used in human studies inappropriate for NHP studies. We show how to manage data from small groups typical of NHP studies, data from the short behavioral trials typical of neurophysiological studies, issues associated with longitudinal studies, and differences in anatomy and physiology. Conclusions Autonomic measurement to infer cognitive and affective states in NHP is neither off-the-shelf nor onerous. Familiarity with the issues and solutions will broaden the use of autonomic signals in NHP single unit and lesion studies. PMID:28089759

  6. Insomnia in shift work disorder relates to occupational and neurophysiological impairment.

    PubMed

    Belcher, Ren; Gumenyuk, Valentina; Roth, Thomas

    2015-04-15

    To determine whether occupational and neurophysiological decrements within shift work disorder (SWD) are differentially related to its two diagnostic symptoms, insomnia and excessive sleepiness. Thirty-four permanent night workers participated in an overnight lab protocol including a multiple sleep latency test (MSLT) and an event-related brain potential (ERP) task testing auditory target detection (P3a and P3b). At 16:00, each subject completed an Endicott Work Productivity Scale (EWPS), two Insomnia Severity Indices (ISI-Day, ISI-Night), and an Epworth Sleepiness Scale (ESS). Subjects were grouped by ISI and ESS scores into clinical phenotypes. This study compared EWPS and ERP results between alert insomniacs ("AI," reporting insomnia without sleepiness), sleepy insomniacs ("SI," reporting both insomnia and sleepiness), and controls. The AI group was most impaired on the EWPS, significantly more impaired than controls (25.8 ± 14.8 vs. 12.3 ± 9.4, p < 0.05). SI were not statistically different from controls (19.5 ± 8.7 vs. 12.3 ± 9.4, p > 0.05). Compared to controls, AI showed significantly attenuated P3a response (Fcz, Czp, Cpz, mean difference [MD] 1.62-1.77, p < 0.05) and target-detection P3b response (Fcz, Czp, Cpz, MD 1.28-1.64, p < 0.05). P3b in SI was not different from controls (p > 0.10), and P3a was only different at one electrode site (Cpz, MD 1.43, p < 0.01). Neither the MSLT nor the ESS correlated with EWPS scores or ERP (P3a/P3b) amplitudes (p > 0.10). However, the mean of the ISI measurements correlated with the EWPS (r = 0.409, p < 0.01) and the attention-to-novelty P3a (r = -0.410, p < 0.01). Among shift work disorder patients, insomnia is linked to functional and cognitive impairments. Insomniacs with normal sleepiness showed more severe impairments than insomniacs who also reported excessive sleepiness. © 2015 American Academy of Sleep Medicine.

  7. Neurophysiological Organization of the Middle Face Patch in Macaque Inferior Temporal Cortex

    PubMed Central

    Aparicio, Paul L.; Issa, Elias B.

    2016-01-01

    While early cortical visual areas contain fine scale spatial organization of neuronal properties, such as orientation preference, the spatial organization of higher-level visual areas is less well understood. The fMRI demonstration of face-preferring regions in human ventral cortex and monkey inferior temporal cortex (“face patches”) raises the question of how neural selectivity for faces is organized. Here, we targeted hundreds of spatially registered neural recordings to the largest fMRI-identified face-preferring region in monkeys, the middle face patch (MFP), and show that the MFP contains a graded enrichment of face-preferring neurons. At its center, as much as 93% of the sites we sampled responded twice as strongly to faces than to nonface objects. We estimate the maximum neurophysiological size of the MFP to be ∼6 mm in diameter, consistent with its previously reported size under fMRI. Importantly, face selectivity in the MFP varied strongly even between neighboring sites. Additionally, extremely face-selective sites were ∼40 times more likely to be present inside the MFP than outside. These results provide the first direct quantification of the size and neural composition of the MFP by showing that the cortical tissue localized to the fMRI defined region consists of a very high fraction of face-preferring sites near its center, and a monotonic decrease in that fraction along any radial spatial axis. SIGNIFICANCE STATEMENT The underlying organization of neurons that give rise to the large spatial regions of activity observed with fMRI is not well understood. Neurophysiological studies that have targeted the fMRI identified face patches in monkeys have provided evidence for both large-scale clustering and a heterogeneous spatial organization. Here we used a novel x-ray imaging system to spatially map the responses of hundreds of sites in and around the middle face patch. We observed that face-selective signal localized to the middle face patch was

  8. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.

    PubMed

    Vasilyev, Anatoly; Liburkina, Sofya; Yakovlev, Lev; Perepelkina, Olga; Kaplan, Alexander

    2017-03-01

    Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase

  9. Neurophysiological Organization of the Middle Face Patch in Macaque Inferior Temporal Cortex.

    PubMed

    Aparicio, Paul L; Issa, Elias B; DiCarlo, James J

    2016-12-14

    While early cortical visual areas contain fine scale spatial organization of neuronal properties, such as orientation preference, the spatial organization of higher-level visual areas is less well understood. The fMRI demonstration of face-preferring regions in human ventral cortex and monkey inferior temporal cortex ("face patches") raises the question of how neural selectivity for faces is organized. Here, we targeted hundreds of spatially registered neural recordings to the largest fMRI-identified face-preferring region in monkeys, the middle face patch (MFP), and show that the MFP contains a graded enrichment of face-preferring neurons. At its center, as much as 93% of the sites we sampled responded twice as strongly to faces than to nonface objects. We estimate the maximum neurophysiological size of the MFP to be ∼6 mm in diameter, consistent with its previously reported size under fMRI. Importantly, face selectivity in the MFP varied strongly even between neighboring sites. Additionally, extremely face-selective sites were ∼40 times more likely to be present inside the MFP than outside. These results provide the first direct quantification of the size and neural composition of the MFP by showing that the cortical tissue localized to the fMRI defined region consists of a very high fraction of face-preferring sites near its center, and a monotonic decrease in that fraction along any radial spatial axis. The underlying organization of neurons that give rise to the large spatial regions of activity observed with fMRI is not well understood. Neurophysiological studies that have targeted the fMRI identified face patches in monkeys have provided evidence for both large-scale clustering and a heterogeneous spatial organization. Here we used a novel x-ray imaging system to spatially map the responses of hundreds of sites in and around the middle face patch. We observed that face-selective signal localized to the middle face patch was characterized by a gradual

  10. Afference copy as a quantitative neurophysiological model for consciousness.

    PubMed

    Cornelis, Hugo; Coop, Allan D

    2014-06-01

    Consciousness is a topic of considerable human curiosity with a long history of philosophical analysis and debate. We consider there is nothing particularly complicated about consciousness when viewed as a necessary process of the vertebrate nervous system. Here, we propose a physiological "explanatory gap" is created during each present moment by the temporal requirements of neuronal activity. The gap extends from the time exteroceptive and proprioceptive stimuli activate the nervous system until they emerge into consciousness. During this "moment", it is impossible for an organism to have any conscious knowledge of the ongoing evolution of its environment. In our schematic model, a mechanism of "afference copy" is employed to bridge the explanatory gap with consciously experienced percepts. These percepts are fabricated from the conjunction of the cumulative memory of previous relevant experience and the given stimuli. They are structured to provide the best possible prediction of the expected content of subjective conscious experience likely to occur during the period of the gap. The model is based on the proposition that the neural circuitry necessary to support consciousness is a product of sub/preconscious reflexive learning and recall processes. Based on a review of various psychological and neurophysiological findings, we develop a framework which contextualizes the model and briefly discuss further implications.

  11. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington's disease.

    PubMed

    Beste, Christian; Mückschel, Moritz; Elben, Saskia; J Hartmann, Christian; McIntyre, Cameron C; Saft, Carsten; Vesper, Jan; Schnitzler, Alfons; Wojtecki, Lars

    2015-07-01

    Deep brain stimulation of the dorsal pallidum (globus pallidus, GP) is increasingly considered as a surgical therapeutic option in Huntington's disease (HD), but there is need to identify outcome measures useful for clinical trials. Computational models consider the GP to be part of a basal ganglia network involved in cognitive processes related to the control of actions. We examined behavioural and event-related potential (ERP) correlates of action control (i.e., error monitoring) and evaluated the effects of deep brain stimulation (DBS). We did this using a standard flanker paradigm and evaluated error-related ERPs. Patients were recruited from a prospective pilot trial for pallidal DBS in HD (trial number NCT00902889). From the initial four patients with Huntington's chorea, two patients with chronic external dorsal pallidum stimulation were available for follow-up and able to perform the task. The results suggest that the external GP constitutes an important basal ganglia element not only for error processing and behavioural adaptation but for general response monitoring processes as well. Response monitoring functions were fully controllable by switching pallidal DBS stimulation on and off. When stimulation was switched off, no neurophysiological and behavioural signs of error and general performance monitoring, as reflected by the error-related negativity and post-error slowing in reaction times were evident. The modulation of response monitoring processes by GP-DBS reflects a side effect of efforts to alleviate motor symptoms in HD. From a clinical neurological perspective, the results suggest that DBS in the external GP segment can be regarded as a potentially beneficial treatment with respect to cognitive functions.

  12. Evaluation of factors associated with psychiatric patient dropout at a university outpatient clinic in Japan.

    PubMed

    Minamisawa, Atsumi; Narumoto, Jin; Yokota, Isao; Fukui, Kenji

    2016-01-01

    Patient dropout from treatment can lead to a deterioration in clinical condition, thereby increasing the need for more intensive therapy that incurs substantial social and economic losses. The aim of this study was to identify factors related to psychiatric patient dropout at a university outpatient clinic in Japan. We retrospectively examined the medical charts of new psychiatric patients who were diagnosed with either a mood disorder (International Classification of Diseases, 10th revision, code: F3) or an anxiety disorder (F4) in the outpatient clinic at Kyoto Prefectural University of Medicine Hospital in Kyoto, Japan, between April 2010 and March 2013. The baseline characteristics of the patients (age, sex, Global Assessment of Functioning score, Clinical Global Impression-Severity of Illness score, education, occupation, marital status, duration of treatment, and prior treatment history), treating psychiatrist experience in years, and sex concordance between the patients and their treating psychiatrists were analyzed using Cox regression models. From among 1,626 eligible new patients during the study period, 532 patients were enrolled in the study (F3: n=176; F4: n=356). The dropout rate was 35.7%, which was similar to that of previous studies. Higher educational level, being married, and lower Global Assessment of Functioning scores were associated with a lower dropout rate. Although psychiatrist experience was not significantly associated with patient dropout in the multivariate analysis, patients treated by less experienced psychiatrists had a higher hazard ratio for dropout (1.31; 95% confidence interval: 0.94-1.85). In order to reduce the dropout rate, special focus should be placed on patients with the factors identified in this study, and young psychiatrists should undergo further education to foster adherence.

  13. The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects.

    PubMed

    Tervaniemi, M; Ilvonen, T; Karma, K; Alho, K; Näätänen, R

    1997-04-18

    To reveal neurophysiological prerequisites of musicality, auditory event-related potentials (ERPs) were recorded from musical and non-musical subjects, musicality being here defined as the ability to temporally structure auditory information. Instructed to read a book and to ignore sounds, subjects were presented with a repetitive sound pattern with occasional changes in its temporal structure. The mismatch negativity (MMN) component of ERPs, indexing the cortical preattentive detection of change in these stimulus patterns, was larger in amplitude in musical than non-musical subjects. This amplitude enhancement, indicating more accurate sensory memory function in musical subjects, suggests that even the cognitive component of musicality, traditionally regarded as depending on attention-related brain processes, in fact, is based on neural mechanisms present already at the preattentive level.

  14. Political and technical issues of coal fire extinction in the Kyoto framework

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.

  15. Mirror neuron system and observational learning: behavioral and neurophysiological evidence.

    PubMed

    Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel

    2013-07-01

    Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Preventing lower cranial nerve injuries during fourth ventricle tumor resection by utilizing intraoperative neurophysiological monitoring.

    PubMed

    Jahangiri, Faisal R; Minhas, Mazhar; Jane, John

    2012-12-01

    We present two cases illustrating the benefit of utilizing intraoperative neurophysiological monitoring (IONM) for prevention of injuries to the lower cranial nerves during fourth ventricle tumor resection surgeries. Multiple cranial nerve nuclei are located on the floor of the fourth ventricle with a high risk of permanent damage. Two male patients (ages 8 and 10 years) presented to the emergency department and had brain magnetic resonance imaging (MRI) scans showing brainstem/fourth ventricle tumors. During surgery, bilateral posterior tibial and median nerve somatosensory evoked potentials (SSEPs); four-limb and cranial nerves transcranial electrical motor evoked potentials (TCeMEPs); brainstem auditory evoked responses (BAERs); and spontaneous electromyography (s-EMG) were recorded. Electromyography (EMG) was monitored bilaterally from cranial nerves V VII, IX, X, XI, and XII. Total intravenous anesthesia was used. Neuromuscular blockade was used only for initial intubation. Pre-incision baselines were obtained with good morphology of waveforms. After exposure the floor of the fourth ventricle was mapped by triggered-EMG (t-EMG) using 0.4 to 1.0 mA. In both patients the tumor was entangled with cranial nerves VII to XII on the floor of the fourth ventricle. The surgeon made the decision not to resect the tumor in one case and limited the resection to 70% of the tumor in the second case on the basis of neurophysiological monitoring. This decision was made to minimize any post-operative neurological deficits due to surgical manipulation of the tumor involving the lower cranial nerves. Intraoperative spontaneous and triggered EMG was effectively utilized in preventing injuries to cranial nerves during surgical procedures. All signals remained stable during the surgical procedure. Postoperatively both patients were well with no additional cranial nerve weakness. At three months follow-up, the patients continued to have no deficits.

  17. From Phenomenology to Neurophysiological Understanding of Hallucinations in Children and Adolescents

    PubMed Central

    Jardri, Renaud; Bartels-Velthuis, Agna A.; Debbané, Martin; Jenner, Jack A.; Kelleher, Ian; Dauvilliers, Yves; Plazzi, Giuseppe; Demeulemeester, Morgane; David, Christopher N.; Rapoport, Judith; Dobbelaere, Dries; Escher, Sandra; Fernyhough, Charles

    2014-01-01

    Typically reported as vivid, multisensory experiences which may spontaneously resolve, hallucinations are present at high rates during childhood. The risk of associated psychopathology is a major cause of concern. On the one hand, the risk of developing further delusional ideation has been shown to be reduced by better theory of mind skills. On the other hand, ideas of reference, passivity phenomena, and misidentification syndrome have been shown to increase the risk of self-injury or heteroaggressive behaviors. Cognitive psychology and brain-imaging studies have advanced our knowledge of the mechanisms underlying these early-onset hallucinations. Notably, specific functional impairments have been associated with certain phenomenological characteristics of hallucinations in youths, including intrusiveness and the sense of reality. In this review, we provide an update of associated epidemiological and phenomenological factors (including sociocultural context, social adversity, and genetics, considered in relation to the psychosis continuum hypothesis), cognitive models, and neurophysiological findings concerning hallucinations in children and adolescents. Key issues that have interfered with progress are considered and recommendations for future studies are provided. PMID:24936083

  18. Neurophysiology and new techniques to assess esophageal sensory function: an update.

    PubMed

    Brock, Christina; McCallum, Richard W; Gyawali, C Prakash; Farmer, Adam D; Frøkjaer, Jens Brøndum; McMahon, Barry P; Drewes, Asbjørn Mohr

    2016-09-01

    This review aims to discuss the neurophysiology of the esophagus and new methods to assess esophageal nociception. Pain and other symptoms can be caused by diseases in the mucosa or muscular or sphincter dysfunction, together with abnormal pain processing, either in the peripheral or central nervous systems. Therefore, we present new techniques in the assessment of esophageal function and the potential role of the mucosal barrier in the generation and propagation of pain. We discuss the assessment and role of esophageal sphincters in nociception, as well as imaging and electrophysiological techniques, with examples of their use in understanding the sensory system following noxious stimuli to the esophagus. Additionally, we discuss the mechanisms behind functional diseases of the esophagus. We conclude that the new methods have identified many of the mechanisms behind malfunction of the mucosa, disturbances of muscular and sphincter functions, and the central response to different stimuli. Taken together, this has increased our understanding of esophageal disorders and may lead to new treatment modalities. © 2016 New York Academy of Sciences.

  19. Chronic alcohol abuse and the acute sedative and neurophysiologic effects of midazolam.

    PubMed

    Bauer, L O; Gross, J B; Meyer, R E; Greenblatt, D J

    1997-10-01

    The aim of the present investigation was to examine benzodiazepine sensitivity in abstinent alcoholics. For this purpose, two escalating doses of the benzodiazepine midazolam were i.v. administered to nine alcohol-dependent patients after 2-3 weeks of abstinence and 12 healthy, non-alcoholic volunteers. A variety of dependent measures were examined, including the power spectrum of the resting electroencephalogram (EEG) and evoked EEG responses, saccadic eye movements, self-reported sedation, and vigilance task performance. Analyses revealed a significant association between plasma midazolam levels and changes in EEG beta power, pattern shift visual evoked potential amplitude, heart rate, and saccade amplitude and velocity. The patient and control groups differed significantly in the onset latencies of their saccadic eye movements, and marginally in EEG beta power, both before and after midazolam. However, no differences were detected between the groups in the dose of midazolam required to produce sedation or in midazolam's neurophysiological effects.

  20. An evaluation of Neuro-Physiological Psychotherapy: An integrative therapeutic approach to working with adopted children who have experienced early life trauma.

    PubMed

    McCullough, Elaine; Gordon-Jones, Susi; Last, Anna; Vaughan, Jay; Burnell, Alan

    2016-10-01

    Research into the effectiveness of therapeutic interventions for older children who have experienced multiple forms of trauma within the context of their early development is scant. This article explores the effectiveness of Neuro-Physiological Psychotherapy (NPP): a wrap-around multi-disciplinary, neuro-sequential, attachment-focussed intervention for children and families who present with multiple, clinically significant, emotional and behavioural difficulties. In total, 31 young people and their adoptive parents took part in the study. Baseline measures were repeated and parents and children interviewed. An assessment of the parent/child relationship and child attachment was undertaken but not analysed for this article. Analysis of the repeated measures received statistically significant changes in behavioural regulation, metacognitive executive functioning and externalising and internalising difficulties, alongside an improvement in thought and social problems. An analysis of the parent interviews provided positive results in terms of the children's engagement in education, an absence of further mental health diagnosis or involvement in the criminal justice system. Further hypotheses are posited regarding the impact of the treatment and further research into the effectiveness of the model outlined. © The Author(s) 2016.

  1. Neurophysiological intraoperative monitoring during an optic nerve schwannoma removal.

    PubMed

    San-Juan, Daniel; Escanio Cortés, Manuel; Tena-Suck, Martha; Orozco Garduño, Adolfo Josué; López Pizano, Jesús Alejandro; Villanueva Domínguez, Jonathan; Fernández Gónzalez-Aragón, Maricarmen; Gómez-Amador, Juan Luis

    2017-10-01

    This paper reports the case of a patient with optic nerve schwannoma and the first use of neurophysiological intraoperative monitoring of visual evoked potentials during the removal of such tumor with no postoperative visual damage. Schwannomas are benign neoplasms of the peripheral nervous system arising from the neural crest-derived Schwann cells, these tumors are rarely located in the optic nerve and the treatment consists on surgical removal leading to high risk of damage to the visual pathway. Case report of a thirty-year-old woman with an optic nerve schwannoma. The patient underwent surgery for tumor removal on the left optic nerve through a left orbitozygomatic approach with intraoperative monitoring of left II and III cranial nerves. We used Nicolet Endeavour CR IOM (Carefusion, Middleton WI, USA) to performed visual evoked potentials stimulating binocularly with LED flash goggles with the patient´s eyes closed and direct epidural optic nerve stimulation delivering rostral to the tumor a rectangular current pulse. At follow up examinations 7 months later, the left eye visual acuity was 20/60; Ishihara score was 8/8 in both eyes; the right eye photomotor reflex was normal and left eye was mydriatic and arreflectic; optokinetic reflex and ocular conjugate movements were normal. In this case, the epidural direct electrical stimulation of optic nerve provided stable waveforms during optic nerve schwannoma resection without visual loss.

  2. Acute perioperative pain in neonates: An evidence-based review of neurophysiology and management.

    PubMed

    Maitra, Souvik; Baidya, Dalim Kumar; Khanna, Puneet; Ray, Bikash Ranjan; Panda, Shasanka Shekhar; Bajpai, Minu

    2014-03-01

    Current literature lacks systematic data on acute perioperative pain management in neonates and mainly focuses only on procedural pain management. In the current review, the neurophysiological basis of neonatal pain perception and the role of different analgesic drugs and techniques in perioperative pain management in neonates are systematically reviewed. Intravenous opioids such as morphine or fentanyl as either intermittent bolus or continuous infusion remain the most common modality for the treatment of perioperative pain. Paracetamol has a promising role in decreasing opioid requirement. However, routine use of ketorolac or other nonsteroidal anti-inflammatory drugs is not usually recommended. Epidural analgesia is safe in experienced hands and provides several benefits over systemic opioids such as early extubation and early return of bowel function. Copyright © 2014. Published by Elsevier B.V.

  3. Perils of intraoperative neurophysiological monitoring: analysis of "false-negative" results in spine surgeries.

    PubMed

    Tamkus, Arvydas A; Rice, Kent S; McCaffrey, Michael T

    2018-02-01

    Although some authors have published case reports describing false negatives in intraoperative neurophysiological monitoring (IONM), a systematic review of causes of false-negative IONM results is lacking. The objective of this study was to analyze false-negative IONM findings in spine surgery. This is a retrospective cohort analysis. A cohort of 109 patients with new postoperative neurologic deficits was analyzed for possible false-negative IONM reporting. The causes of false-negative IONM reporting were determined. From a cohort of 62,038 monitored spine surgeries, 109 consecutive patients with new postoperative neurologic deficits were reviewed for IONM alarms. Intraoperative neurophysiological monitoring alarms occurred in 87 of 109 surgeries. Nineteen patients with new postoperative neurologic deficits did not have an IONM alarm and surgeons were not warned. In addition, three patients had no interpretable IONM baseline data and no alarms were possible for the duration of the surgery. Therefore, 22 patients were included in the study. The absence of IONM alarms during these 22 surgeries had different origins: "true" false negatives where no waveform changes meeting the alarm criteria occurred despite the appropriate IONM (7); a postoperative development of a deficit (6); failure to monitor the pathway, which became injured (5); the absence of interpretable IONM baseline data which precluded any alarm (3); and technical IONM application issues (1). Overall, the rate of IONM method failing to predict the patient's outcome was very low (0.04%, 22/62,038). Minimizing false negatives requires the application of a proper IONM technique with the limitations of each modality considered in their selection and interpretation. Multimodality IONM provides the most inclusive information, and although it might be impractical to monitor every neural structure that can be at risk, a thorough preoperative consideration of available IONM modalities is important. Delayed

  4. Global SF6 emission estimates inferred from atmospheric observations - a test case for Kyoto reporting

    NASA Astrophysics Data System (ADS)

    Levin, I.; Naegler, T.

    2009-04-01

    Sulphur hexafluoride (SF6) is one of the strongest greenhouse gases per molecule in the atmosphere. SF6 emissions are also one of the six greenhouse gases targeted for reduction under the Kyoto Protocol. Here we present a long-term data set of globally distributed high-precision atmospheric SF6 observations which show an increase in mixing ratios from near zero in the 1970s to a global mean value of 6.3 ppt by the end of 2007. Because of its long atmospheric lifetime of around 3000 years, the accumulation of SF6 in the atmosphere is a direct measure of its global emissions: Analysis of our long-term data records implies a decrease of global SF6 sources after 1995, most likely due to emission reductions in industrialised countries. However, after 1998 the global SF6 source increases again, which is probably due to enhanced emissions from transition economies such as in China and India. Moreover, observed north-south concentration differences in SF6 suggest that emissions calculated from statistical (bottom-up) information and reported by Annex II parties to the United Nations Framework Convention on Climate Change (UNFCCC) may be too low by up to 50%. This clearly shows the importance and need for atmospheric (top-down) validation of Kyoto reporting which is only feasible with a dense world-wide observational network for greenhouse and other trace gases. Other members of the Global SF6 Trends Team: R. Heinz (1), D. Osusko (1), E. Cuevas (2), A. Engel (3), J. Ilmberger (1), R.L. Langenfelds (4), B. Neininger (5), C.v. Rohden (1), L.P. Steele (4), A. Varlagin (6), R. Weller (7), D.E. Worthy (8), S.A. Zimov (9) (1) Institut für Umweltphysik, University of Heidelberg, 69120 Heidelberg, Germany, (2) Centro de Investigación Atmosférica de Izaña, Instituto Nacional de Meteorología (INM), 38071 Santa Cruz de Tenerife, Spain, (3) Institut für Atmosphäre und Umwelt, J.W. Goethe Universität Frankfurt, 60438 Frankfurt/Main, Germany, (4) Centre for Australian Weather and

  5. [Clinical laboratory tests supporting respiratory disease treatment--chairman's introductory remarks].

    PubMed

    Takai, Daiya

    2014-12-01

    The symposium consisted of four parts: history of lung function tests, nitric oxide for diagnosis and monitoring of bronchial asthma, radiological and functional changes of the lung in COPD, and combined pulmonary fibrosis and emphysema (CPFE) occasionally showing almost normal results in lung function tests. The history of lung function tests was presented by Dr. Naoko Tojo of the Tokyo Medical and Dental University. Nitric oxide tests in clinical use for diagnosis and monitoring of bronchial asthma were presented by Dr. Hiroyuki Nagase of Teikyo University. Radiological and functional changes of the lung in COPD were presented by Dr. Shigeo Muro of Kyoto University. Clinical features of combined pulmonary fibrosis and emphysema and their associated lung function were presented by Dr. Daiya Takai of the University of Tokyo. I hope that discussing the history of lung function tests until the present was useful for many medical technologists. (Review).

  6. Longitudinal analysis of behavioral, neurophysiological, viral and immunological effects of SIV infection in rhesus monkeys.

    PubMed

    Gold, L H; Fox, H S; Henriksen, S J; Buchmeier, M J; Weed, M R; Taffe, M A; Huitrón-Resendiz, S; Horn, T F; Bloom, F E

    1998-01-01

    A model is proposed in which a neurovirulent, microglial-passaged, simian immunodeficiency virus (SIV) is used to produce central nervous system (CNS) pathology and behavioral deficits in rhesus monkeys reminiscent of those seen in humans infected with human immunodeficiency virus (HIV). The time course of disease progression was characterized by using functional measures of cognition and motor skill, as well as neurophysiologic monitoring. Concomitant assessment of immunological and virological parameters illustrated correspondence between impaired behavioral performance and viral pathogenesis. Convergent results were obtained from neuropathological findings indicative of significant CNS disease. In ongoing studies, this SIV model is being used to explore the behavioral sequelae of immunodeficiency virus infection, the viral and host factors leading to neurologic dysfunction, and to begin testing potential therapeutic agents.

  7. Variation in neurophysiological function and evidence of quantitative electroencephalogram discordance: predicting cocaine-dependent treatment attrition.

    PubMed

    Venneman, Sandy; Leuchter, Andrew; Bartzokis, George; Beckson, Mace; Simon, Sara L; Schaefer, Melodie; Rawson, Richard; Newton, Tom; Cook, Ian A; Uijtdehaage, Sebastian; Ling, Walter

    2006-01-01

    Cocaine treatment trials suffer from a high rate of attrition. We examined pretreatment neurophysiological factors to identify participants at greatest risk. Twenty-five participants were divided into concordant and discordant groups following electroencephalogram (EEG) measures recorded prior to a double-blind, placebo-controlled treatment trial. Three possible outcomes were examined: successful completion, dropout, and removal. Concordant (high perfusion correlate) participants had an 85% rate of successful completion, while discordant participants had a 15% rate of successful completion. Twenty-five percent of dropouts and 50% of participants removed were discordant (low perfusion correlate), while only 25% of those who completed were discordant. Failure to complete the trial was not explained by depression, craving, benzoylecgonine levels or quantitative electroencephalogram (QEEG) power; thus cordance may help identify attrition risk.

  8. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG).

    PubMed

    Hari, Riitta; Baillet, Sylvain; Barnes, Gareth; Burgess, Richard; Forss, Nina; Gross, Joachim; Hämäläinen, Matti; Jensen, Ole; Kakigi, Ryusuke; Mauguière, François; Nakasato, Nobukatzu; Puce, Aina; Romani, Gian-Luca; Schnitzler, Alfons; Taulu, Samu

    2018-04-17

    Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Arousal vs. Relaxation: A Comparison of the Neurophysiological and Cognitive Correlates of Vajrayana and Theravada Meditative Practices

    PubMed Central

    Amihai, Ido; Kozhevnikov, Maria

    2014-01-01

    Based on evidence of parasympathetic activation, early studies defined meditation as a relaxation response. Later research attempted to categorize meditation as either involving focused or distributed attentional systems. Neither of these hypotheses received strong empirical support, and most of the studies investigated Theravada style meditative practices. In this study, we compared neurophysiological (EEG, EKG) and cognitive correlates of meditative practices that are thought to utilize either focused or distributed attention, from both Theravada and Vajrayana traditions. The results of Study 1 show that both focused (Shamatha) and distributed (Vipassana) attention meditations of the Theravada tradition produced enhanced parasympathetic activation indicative of a relaxation response. In contrast, both focused (Deity) and distributed (Rig-pa) meditations of the Vajrayana tradition produced sympathetic activation, indicative of arousal. Additionally, the results of Study 2 demonstrated an immediate dramatic increase in performance on cognitive tasks following only Vajrayana styles of meditation, indicating enhanced phasic alertness due to arousal. Furthermore, our EEG results showed qualitatively different patterns of activation between Theravada and Vajrayana meditations, albeit highly similar activity between meditations within the same tradition. In conclusion, consistent with Tibetan scriptures that described Shamatha and Vipassana techniques as those that calm and relax the mind, and Vajrayana techniques as those that require ‘an awake quality’ of the mind, we show that Theravada and Vajrayana meditations are based on different neurophysiological mechanisms, which give rise to either a relaxation or arousal response. Hence, it may be more appropriate to categorize meditations in terms of relaxation vs. arousal, whereas classification methods that rely on the focused vs. distributed attention dichotomy may need to be reexamined. PMID:25051268

  10. Peripheral nervous system involvement in essential cryoglobulinemia and nephropathy.

    PubMed

    Valli, G; De Vecchi, A; Gaddi, L; Nobile-Orazio, E; Tarantino, A; Barbieri, S

    1989-01-01

    The clinical and neurophysiological features of 23 patients affected by essential cryoglobulinemia (EC) have been studied. It was possible to perform sural nerve biopsy in 3 cases. Six patients were found to be affected by a peripheral neuropathy, according to the WHO criteria, while in 8 other patients clinical and neurophysiological signs of a milder peripheral nervous system (PNS) involvement were evident. The incidence of PNS involvement seems to be high (60.9%). Neurophysiological and histological studies were indicative of a mainly axonal damage.

  11. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks.

    PubMed

    Rosenberg, David M; Horn, Charles C

    2016-08-01

    Neurophysiology requires an extensive workflow of information analysis routines, which often includes incompatible proprietary software, introducing limitations based on financial costs, transfer of data between platforms, and the ability to share. An ecosystem of free open-source software exists to fill these gaps, including thousands of analysis and plotting packages written in Python and R, which can be implemented in a sharable and reproducible format, such as the Jupyter electronic notebook. This tool chain can largely replace current routines by importing data, producing analyses, and generating publication-quality graphics. An electronic notebook like Jupyter allows these analyses, along with documentation of procedures, to display locally or remotely in an internet browser, which can be saved as an HTML, PDF, or other file format for sharing with team members and the scientific community. The present report illustrates these methods using data from electrophysiological recordings of the musk shrew vagus-a model system to investigate gut-brain communication, for example, in cancer chemotherapy-induced emesis. We show methods for spike sorting (including statistical validation), spike train analysis, and analysis of compound action potentials in notebooks. Raw data and code are available from notebooks in data supplements or from an executable online version, which replicates all analyses without installing software-an implementation of reproducible research. This demonstrates the promise of combining disparate analyses into one platform, along with the ease of sharing this work. In an age of diverse, high-throughput computational workflows, this methodology can increase efficiency, transparency, and the collaborative potential of neurophysiological research. Copyright © 2016 the American Physiological Society.

  12. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks

    PubMed Central

    2016-01-01

    Neurophysiology requires an extensive workflow of information analysis routines, which often includes incompatible proprietary software, introducing limitations based on financial costs, transfer of data between platforms, and the ability to share. An ecosystem of free open-source software exists to fill these gaps, including thousands of analysis and plotting packages written in Python and R, which can be implemented in a sharable and reproducible format, such as the Jupyter electronic notebook. This tool chain can largely replace current routines by importing data, producing analyses, and generating publication-quality graphics. An electronic notebook like Jupyter allows these analyses, along with documentation of procedures, to display locally or remotely in an internet browser, which can be saved as an HTML, PDF, or other file format for sharing with team members and the scientific community. The present report illustrates these methods using data from electrophysiological recordings of the musk shrew vagus—a model system to investigate gut-brain communication, for example, in cancer chemotherapy-induced emesis. We show methods for spike sorting (including statistical validation), spike train analysis, and analysis of compound action potentials in notebooks. Raw data and code are available from notebooks in data supplements or from an executable online version, which replicates all analyses without installing software—an implementation of reproducible research. This demonstrates the promise of combining disparate analyses into one platform, along with the ease of sharing this work. In an age of diverse, high-throughput computational workflows, this methodology can increase efficiency, transparency, and the collaborative potential of neurophysiological research. PMID:27098025

  13. Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling

    PubMed Central

    Qiao, Yi; Chen, Jie; Guo, Xiaoli; Cantrell, Donald; Ruoff, Rodney; Troy, John

    2005-01-01

    The fabrication and characterization of tungsten nanoelectrodes insulated with cathodic electrophoretic paint is described together with their application within the field of neurophysiology. The tip of a 127 μm diameter tungsten wire was etched down to less than 100 nm and then insulated with cathodic electrophoretic paint. Focused ion beam (FIB) polishing was employed to remove the insulation at the electrode’s apex, leaving a nanoscale sized conductive tip of 100–1000 nm. The nanoelectrodes were examined by scanning electron microscopy (SEM) and their electrochemical properties characterized by steady state linear sweep voltammetry. Electrode impedance at 1 kHz was measured too. The ability of a 700 nm tipped electrode to record well-isolated action potentials extracellularly from single visual neurons in vivo was demonstrated. Such electrodes have the potential to open new populations of neurons to study. PMID:16467926

  14. A Neurophysiological and Neuropsychological Consideration of Mindful Movement: Clinical and Research Implications

    PubMed Central

    Russell, Tamara Anne; Arcuri, Silvia Maria

    2015-01-01

    In this article, we present ideas related to three key aspects of mindfulness training: the regulation of attention via noradrenaline, the importance of working memory and its various components (particularly the central executive and episodic buffer), and the relationship of both of these to mind-wandering. These same aspects of mindfulness training are also involved in the preparation and execution of movement and implicated in the pathophysiology of psychosis. We argue that by moving in a mindful way, there may be an additive effect of training as the two elements of the practice (mindfulness and movement) independently, and perhaps synergistically, engage common underlying systems (the default mode network). We discuss how working with mindful movement may be one route to mindfulness training for individuals who would struggle to sit still to complete the more commonly taught mindfulness practices. Drawing on our clinical experience working with individuals with severe and enduring mental health conditions, we show the real world application of these ideas and how they can be used to help those who are suffering and for whom current treatments are still far from adequate. PMID:26074800

  15. The clinical application of teaching people about pain.

    PubMed

    Louw, Adriaan; Zimney, Kory; O'Hotto, Christine; Hilton, Sandra

    2016-07-01

    Teaching people about the neurobiology and neurophysiology of their pain experience has a therapeutic effect and has been referred to as pain neuroscience education (PNE). Various high-quality randomized controlled trials and systematic reviews have shown increasing efficacy of PNE decreasing pain, disability, pain catastrophization, movement restrictions, and healthcare utilization. Research studies, however, by virtue of their design, are very controlled environments and, therefore, in contrast to the ever-increasing evidence for PNE, little is known about the clinical application of this emerging therapy. In contrast, case studies, case series, and expert opinion and perspectives by authorities in the world of pain science provide clinicians with a glimpse into potential "real" clinical application of PNE in the face of the ever-increasing chronic pain epidemic. By taking the material from the randomized controlled trials, systematic reviews, case series, case studies, and expert opinion, this article aims to provide a proposed layout of the clinical application of PNE. The article systematically discusses key elements of PNE including examination, educational content, and delivery methods, merging of PNE with movement, goal setting, and progression. This perspectives article concludes with a call for research into the clinical application of PNE.

  16. Antimicrobial Resistance and Molecular Typing of Neisseria gonorrhoeae Isolates in Kyoto and Osaka, Japan, 2010 to 2012: Intensified Surveillance after Identification of the First Strain (H041) with High-Level Ceftriaxone Resistance

    PubMed Central

    Shimuta, Ken; Unemo, Magnus; Nakayama, Shu-ichi; Morita-Ishihara, Tomoko; Dorin, Misato; Kawahata, Takuya

    2013-01-01

    In 2009, the first high-level ceftriaxone-resistant Neisseria gonorrhoeae strain (H041) was isolated in Kyoto, Japan. The present study describes an intensified surveillance (antimicrobial resistance and molecular typing) of Neisseria gonorrhoeae isolates in Kyoto and its neighboring prefecture Osaka, Japan, in 2010 to 2012, which was initiated after the identification of H041. From April 2010 to March 2012, 193 N. gonorrhoeae isolates were collected and the MICs (μg/ml) to six antimicrobials, including ceftriaxone, were determined. All isolates showed susceptibility to ceftriaxone and cefixime (MIC values, <0.5 μg/ml), and spectinomycin. The rates of resistance (intermediate susceptibility) to azithromycin, penicillin G, and ciprofloxacin were 3.6% (19.7%), 24.4% (71.0%), and 78.2% (0.5%), respectively. Multilocus sequence typing (MLST) showed that 40.9%, 19.2%, and 17.1% of isolates belonged to ST1901, ST7359, and ST7363, respectively. Furthermore, N. gonorrhoeae multiantigen sequence typing (NG-MAST) revealed that 12 (63%) of the 19 isolates with decreased susceptibility to ceftriaxone (MIC > 0.064 μg/ml) were of ST1407. NG-MAST ST1407 was also the most prevalent ST (16.1%; 31 of 193 isolates). In those NG-MAST ST1407 strains, several mosaic type penA alleles were found, including SF-A type (penicillin binding protein 2 allele XXXIV) and its derivatives. These were confirmed using transformation of the penA mosaic alleles as critical determinants for enhanced cefixime and ceftriaxone MICs. The intensified surveillance in Kyoto and Osaka, Japan, did not identify any dissemination of the high-level ceftriaxone-resistant N. gonorrhoeae strain H041, suggesting that H041 might have caused only a sporadic case and has not spread further. PMID:23939890

  17. Cough: neurophysiology, methods of research, pharmacological therapy and phonoaudiology

    PubMed Central

    Balbani, Aracy Pereira Silveira

    2012-01-01

    Summary Introduction: The cough is the more common respiratory symptom in children and adults. Objective: To present a revision on the neurophysiology and the methods for study of the consequence of the cough, as well as the pharmacotherapy and phonoaudiology therapy of the cough, based on the works published between 2005 and 2010 and indexed in the bases Medline, Lilacs and Library Cochrane under them to keywords “cough” or “anti-cough”. Synthesis of the data: The consequence of the cough involves activation of receiving multiples becomes vacant in the aerial ways and of neural projections of the nucleus of the solitary treatment for other structures of the central nervous system. Experimental techniques allow studying the consequence of the cough to the cellular and molecular level to develop new anti-cough agents. It does not have evidences of that anti-cough exempt of medical lapsing they have superior effectiveness to the one of placebo for the relief of the cough. The phonoaudiology therapy can benefit patients with refractory chronic cough to the pharmacological treatment, over all when paradoxical movement of the vocal folds coexists. Final Comments: The boarding to multidiscipline has basic paper in the etiological diagnosis and treatment of the cough. The otolaryngologist must inform the patients on the risks of the anti-cough of free sales in order to prevent adverse poisonings and effect, especially in children. PMID:25991944

  18. Neurophysiology underlying influence of stimulus reliability on audiovisual integration.

    PubMed

    Shatzer, Hannah; Shen, Stanley; Kerlin, Jess R; Pitt, Mark A; Shahin, Antoine J

    2018-01-24

    We tested the predictions of the dynamic reweighting model (DRM) of audiovisual (AV) speech integration, which posits that spectrotemporally reliable (informative) AV speech stimuli induce a reweighting of processing from low-level to high-level auditory networks. This reweighting decreases sensitivity to acoustic onsets and in turn increases tolerance to AV onset asynchronies (AVOA). EEG was recorded while subjects watched videos of a speaker uttering trisyllabic nonwords that varied in spectrotemporal reliability and asynchrony of the visual and auditory inputs. Subjects judged the stimuli as in-sync or out-of-sync. Results showed that subjects exhibited greater AVOA tolerance for non-blurred than blurred visual speech and for less than more degraded acoustic speech. Increased AVOA tolerance was reflected in reduced amplitude of the P1-P2 auditory evoked potentials, a neurophysiological indication of reduced sensitivity to acoustic onsets and successful AV integration. There was also sustained visual alpha band (8-14 Hz) suppression (desynchronization) following acoustic speech onsets for non-blurred vs. blurred visual speech, consistent with continuous engagement of the visual system as the speech unfolds. The current findings suggest that increased spectrotemporal reliability of acoustic and visual speech promotes robust AV integration, partly by suppressing sensitivity to acoustic onsets, in support of the DRM's reweighting mechanism. Increased visual signal reliability also sustains the engagement of the visual system with the auditory system to maintain alignment of information across modalities. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Y1R control of sciatic nerve blood flow in the Wistar Kyoto rat.

    PubMed

    Twynstra, Jasna; Medeiros, Philip J; Lacefield, James C; Jackson, Dwayne N; Shoemaker, J Kevin

    2012-09-01

    We hypothesized that neuropeptide Y (NPY) exerts vasoconstrictor properties in sciatic nerve blood supply by a Y1 receptor (Y1R) mechanism. Using Doppler ultrasound (40MHz), we measured blood flow velocity through a sciatic nerve supply artery during infusions of NPY and/or Y1R blockade with BIBP3226 in Wistar Kyoto rats before, and following, ganglionic blockade with Hexamethonium (Hex). Following Hex infusion, mean arterial pressure (baseline: 83±18, Hex: 57±3 mm Hg) was reduced. After 30 min, the index of conductance at the sciatic nerve (velocity/MAP expressed as % baseline) started to increase from 103±35 to 127±39% baseline in the following 30 min (p<0.05). Infusion of NPY (Y1 agonist) minimized this dilatory response (Hex baseline: 99±15, NPY: 104±11% baseline; NS). This NPY-induced attenuation was, in turn, minimized by BIBP3226 (Hex baseline: 73±12, NPY+BIBP3226: 89±14% baseline). Neither NPY nor BIBP3226 infusions without Hex affected the sciatic nerve arterial conductance. We conclude that the late dilation following Hex which is reversed by Y1R activation suggests some level of sympathetic control over sciatic nerve blood flow. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Inhalation of Roman chamomile essential oil attenuates depressive-like behaviors in Wistar Kyoto rats.

    PubMed

    Kong, Yingying; Wang, Ting; Wang, Rong; Ma, Yichuan; Song, Shanshan; Liu, Juan; Hu, Weiwei; Li, Shengtian

    2017-06-01

    The idea of aromatherapy, using essential oils, has been considered as an alternative antidepressant treatment. In the present study, we investigated the effect of Roman chamomile essential oil inhalation for two weeks on depressive-like behaviors in Wistar-Kyoto (WKY) rats. We found that inhalation of either Roman chamomile or one of its main components α-pinene, attenuated depressive-like behavior in WKY rats in the forced swim test. Using isobaric tags for relative and absolute quantitation analysis (iTRAQ), we found that inhalation of α-pinene increased expression of proteins that are involved in oxidative phosphorylation, such as cytochrome c oxidase subunit 6C-2, cytochrome c oxidase subunit 7A2, ATPase inhibitor in the hippocampus, and cytochrome c oxidase subunit 6C-2, ATP synthase subunit e, Acyl carrier protein, and Cytochrome b-c1 complex subunit 6 in the PFC (prefrontal cortex). In addition, using the quantitative real-time polymerase chain reaction technique, we confirmed an increase of parvalbumin mRNA expression in the hippocampus, which was shown to be upregulated by 2.8-fold in iTRAQ analysis, in α-pinene treated WKY rats. These findings collectively suggest the involvement of mitochondrial functions and parvalbumin-related signaling in the antidepressant effect of α-pinene inhalation.

  1. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology

    PubMed Central

    Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István

    2015-01-01

    Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks. PMID:26683306

  2. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation (tACS)

    PubMed Central

    Fröhlich, Flavio; Sellers, Kristin K.; Cordle, Asa L.

    2015-01-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack (1) demonstration of causal relationships between specific network activity patterns and cognitive capabilities and (2) treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. We here propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition (all performed in healthy participants) according to the Research Domain Criteria (RDoC) of the National Institute of Mental Health. PMID:25547149

  3. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.

    PubMed

    Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István

    2015-01-01

    Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.

  4. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    PubMed Central

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory). PMID:28713278

  5. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins.

    PubMed

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory).

  6. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology

    PubMed Central

    Berke, Joshua D.

    2017-01-01

    Many studies have implicated the basal ganglia in the suppression of action impulses (‘stopping’). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a ‘Go’ process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary ‘Stop’ process, there appear to be separate, complementary ‘Pause’ and ‘Cancel’ mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time—in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed–accuracy trade-offs. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242736

  7. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology.

    PubMed

    Schmidt, Robert; Berke, Joshua D

    2017-04-19

    Many studies have implicated the basal ganglia in the suppression of action impulses ('stopping'). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a 'Go' process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary 'Stop' process, there appear to be separate, complementary 'Pause' and 'Cancel' mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time-in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed-accuracy trade-offs.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Author(s).

  8. Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain: A Single-Blind Randomized Controlled Trial.

    PubMed

    Bodes Pardo, Gema; Lluch Girbés, Enrique; Roussel, Nathalie A; Gallego Izquierdo, Tomás; Jiménez Penick, Virginia; Pecos Martín, Daniel

    2018-02-01

    To assess the effect of a pain neurophysiology education (PNE) program plus therapeutic exercise (TE) for patients with chronic low back pain (CLBP). Single-blind randomized controlled trial. Private clinic and university. Patients with CLBP for ≥6 months (N=56). Participants were randomized to receive either a TE program consisting of motor control, stretching, and aerobic exercises (n=28) or the same TE program in addition to a PNE program (n=28), conducted in two 30- to 50-minute sessions in groups of 4 to 6 participants. The primary outcome was pain intensity rated on the numerical pain rating scale which was completed immediately after treatment and at 1- and 3-month follow-up. Secondary outcome measures were pressure pain threshold, finger-to-floor distance, Roland-Morris Disability Questionnaire, Pain Catastrophizing Scale, Tampa Scale for Kinesiophobia, and Patient Global Impression of Change. At 3-month follow-up, a large change in pain intensity (numerical pain rating scale: -2.2; -2.93 to -1.28; P<.001; d=1.37) was observed for the PNE plus TE group, and a moderate effect size was observed for the secondary outcome measures. Combining PNE with TE resulted in significantly better results for participants with CLBP, with a large effect size, compared with TE alone. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Using Recent BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review.

    PubMed

    Jeunet, Camille; Lotte, Fabien; Batail, Jean-Marie; Philip, Pierre; Micoulaud Franchi, Jean-Arthur

    2018-05-15

    In their recent paper, Alkoby et al. (2017) provide the readership with an extensive and very insightful review of the factors influencing NeuroFeedback (NF) performance. These factors are drawn from both the NF literature and the Brain-Computer Interface (BCI) literature. Our short review aims to complement Alkoby et al.'s review by reporting recent additions to the BCI literature. The object of this paper is to highlight this literature and discuss its potential relevance and usefulness to better understand the processes underlying NF and further improve the design of clinical trials assessing NF efficacy. Indeed, we are convinced that while NF and BCI are fundamentally different in many ways, both the BCI and NF communities could reach compelling achievements by building upon one another. By reviewing the recent BCI literature, we identified three types of factors that influence BCI performance: task-specific, cognitive/motivational and technology-acceptance-related factors. Since BCIs and NF share a common goal (i.e., learning to modulate specific neurophysiological patterns), similar cognitive and neurophysiological processes are likely to be involved during the training process. Thus, the literature on BCI training may help (1) to deepen our understanding of neurofeedback training processes and (2) to understand the variables that influence the clinical efficacy of NF. This may help to properly assess and/or control the influence of these variables during randomized controlled trials. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Drawing on student knowledge of neuroanatomy and neurophysiology.

    PubMed

    Slominski, Tara N; Momsen, Jennifer L; Montplaisir, Lisa M

    2017-06-01

    Drawings are an underutilized assessment format in Human Anatomy and Physiology (HA&P), despite their potential to reveal student content understanding and alternative conceptions. This study used student-generated drawings to explore student knowledge in a HA&P course. The drawing tasks in this study focused on chemical synapses between neurons, an abstract concept in HA&P. Using two preinstruction drawing tasks, students were asked to depict synaptic transmission and summation. In response to the first drawing task, 20% of students ( n = 352) created accurate representations of neuron anatomy. The remaining students created drawings suggesting an inaccurate or incomplete understanding of synaptic transmission. Of the 208 inaccurate student-generated drawings, 21% depicted the neurons as touching. When asked to illustrate summation, only 10 students (roughly 4%) were able to produce an accurate drawing. Overall, students were more successful at drawing anatomy (synapse) than physiology (summation) before formal instruction. The common errors observed in student-generated drawings indicate students do not enter the classroom as blank slates. The error of "touching" neurons in a chemical synapse suggests that students may be using intuitive or experiential knowledge when reasoning about physiological concepts. These results 1 ) support the utility of drawing tasks as a tool to reveal student content knowledge about neuroanatomy and neurophysiology; and 2 ) suggest students enter the classroom with better knowledge of anatomy than physiology. Collectively, the findings from this study inform both practitioners and researchers about the prevalence and nature of student difficulties in HA&P, while also demonstrating the utility of drawing in revealing student knowledge. Copyright © 2017 the American Physiological Society.

  11. Artificial gravity exposure impairs exercise-related neurophysiological benefits.

    PubMed

    Vogt, Tobias; Abeln, Vera; Strüder, Heiko K; Schneider, Stefan

    2014-01-17

    Artificial gravity (AG) exposure is suggested to counteract health deconditioning, theoretically complementing exercise during space habitations. Exercise-benefits on mental health are well documented (i.e. well-being, enhanced executive functions). Although AG is coherent for the integrity of fundamental physiological systems, the effects of its exposure on neurophysiological processes related to cognitive performance are poorly understood and therefore characterize the primary aim of this study. 16 healthy males participated in two randomly assigned sessions, AG and exercise (30minute each). Participants were exposed to AG at continuous +2Gz in a short-arm human centrifuge and performed moderate exercise (cycling ergometer). Using 64 active electrodes, resting EEG was recorded before (pre), immediately after (post), and 15min after (post15) each session. Alpha (7.5-12.5Hz) and beta frequencies (12.5-35.0Hz) were exported for analysis. Cognitive performance and mood states were assessed before and after each session. Cognitive performance improved after exercise (p<0.05), but not after AG. This was reflected by typical EEG patterns after exercise, however not after AG. Frontal alpha (post p<0.01, post15 p<0.001) and beta activity (post15 p<0.001) increased after AG compared to a decrease in frontal alpha (post15 p<0.05) and beta activity (post p<0.01) after exercise. Relaxed cortical states were indicated after exercise, but were less apparent after AG. Changes in mood states failed significance after both sessions. Summarized, the benefits to mental health, recorded after exercise, were absent after AG, indicating that AG might cause neurocognitive deconditioning. © 2013.

  12. Reading the mind in the touch: Neurophysiological specificity in the communication of emotions by touch.

    PubMed

    Kirsch, Louise P; Krahé, Charlotte; Blom, Nadia; Crucianelli, Laura; Moro, Valentina; Jenkinson, Paul M; Fotopoulou, Aikaterini

    2017-05-29

    Touch is central to interpersonal interactions. Touch conveys specific emotions about the touch provider, but it is not clear whether this is a purely socially learned function or whether it has neurophysiological specificity. In two experiments with healthy participants (N = 76 and 61) and one neuropsychological single case study, we investigated whether a type of touch characterised by peripheral and central neurophysiological specificity, namely the C tactile (CT) system, can communicate specific emotions and mental states. We examined the specificity of emotions elicited by touch delivered at CT-optimal (3cm/s) and CT-suboptimal (18cm/s) velocities (Experiment 1) at different body sites which contain (forearm) vs. do not contain (palm of the hand) CT fibres (Experiment 2). Blindfolded participants were touched without any contextual cues, and were asked to identify the touch provider's emotion and intention. Overall, CT-optimal touch (slow, gentle touch on the forearm) was significantly more likely than other types of touch to convey arousal, lust or desire. Affiliative emotions such as love and related intentions such as social support were instead reliably elicited by gentle touch, irrespective of CT-optimality, suggesting that other top-down factors contribute to these aspects of tactile social communication. To explore the neural basis of this communication, we also tested this paradigm in a stroke patient with right perisylvian damage, including the posterior insular cortex, which is considered as the primary cortical target of CT afferents, but excluding temporal cortex involvement that has been linked to more affiliative aspects of CT-optimal touch. His performance suggested an impairment in 'reading' emotions based on CT-optimal touch. Taken together, our results suggest that the CT system can add specificity to emotional and social communication, particularly with regards to feelings of desire and arousal. On the basis of these findings, we speculate

  13. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review

    PubMed Central

    Basso, Julia C.; Suzuki, Wendy A.

    2017-01-01

    A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research. PMID:29765853

  14. Basic mechanisms of urgency: preclinical and clinical evidence.

    PubMed

    Michel, Martin C; Chapple, Christopher R

    2009-08-01

    Urgency is the core symptom of the overactive bladder symptom complex, but the underlying mechanisms are not fully understood. To review clinical and experimental studies related to how bladder filling and urgency are sensed and what causes urgency and to discuss how this process affects potential therapeutic strategies. Review of published reports. The definition of urgency as a desire implies that it can only be assessed in cognitively intact patients and that animal studies have to rely on surrogate markers thereof, such as detrusor overactivity (DO); however, DO and urgency are not always associated. While the precise mechanisms of how urgency is sensed remain unclear, accumulating evidence suggests that they may differ from the physiologic sensation of bladder filling. Studies on the neurophysiology of urgency sensing are hampered by reliance on the surrogate marker DO. Functional brain imaging may help to understand the central neurophysiology, but, until now, it has not specifically focused on urgency. With regard to causes of urgency, multiple theories have been forwarded. While none of them has been proven, it should be noted that they are not mutually exclusive, and, in specific patients, different causes may be present. The development of improved therapeutic strategies against urgency will be helped by a better understanding of how urgency is perceived and the underlying causes. Rigorous use of existing definitions and the search for reliable surrogate markers will aid such attempts.

  15. Clinical classification and neuro-vestibular evaluation in chronic dizziness.

    PubMed

    Oh, Sun-Young; Kim, Do-Hyung; Yang, Tae-Ho; Shin, Byoung-Soo; Jeong, Seul-Ki

    2015-01-01

    This study attempts to clarify the clinical characteristics of chronic dizziness and its relationships with specific vestibular, oculomotor, autonomic and psychiatric dysfunctions. 73 Patients with idiopathic chronic dizziness were recruited and classified based on history taking and clinical examination into the following four clinical subgroups; vestibular migraine (VM), dysautonomia, psychogenic, and unspecified groups. They were also evaluated using oculomotor, otolithic and autonomic function tests, and psychologic investigation. Patients in the VM group showed a high proportion of abnormality on smooth pursuit and otolithic function testing compared to the other groups. The dysautonomia group revealed significant abnormalities in sympathetic and cardiovagal autonomic function, while the psychogenic group had a high frequency of abnormality in sympathetic autonomic testing and in Beck's anxiety inventory scale. The unspecified group showed abnormalities on saccade, smooth pursuit and autonomic function testing. Clinical classification of patients with chronic dizziness was relevant and they showed a correlation with disease-specific abnormal results in oculomotor, otolithic, autonomic function and psychology testing. Appropriate diagnostic investigation based on precise clinical diagnosis of chronic dizziness reduces the need for extensive laboratory testing, neuroimaging, and other low-yield tests. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Neurophysiological Pathways to Obesity: Below Awareness and Beyond Individual Control

    PubMed Central

    Cohen, Deborah A.

    2008-01-01

    A global obesity epidemic is occurring simultaneously with ongoing increases in the availability and salience of food in the environment. Obesity is increasing across all socioeconomic groups and educational levels and occurs even among individuals with the highest levels of education and expertise in nutrition and related fields. Given these circumstances, it is plausible that excessive food consumption occurs in ways that defy personal insight or are below individual awareness. The current food environment stimulates automatic reflexive responses that enhance the desire to eat and increase caloric intake, making it exceedingly difficult for individuals to resist, especially because they may not be aware of these influences. This article identifies 10 neurophysiological pathways that can lead people to make food choices subconsciously or, in some cases, automatically. These pathways include reflexive and uncontrollable neurohormonal responses to food images, cues, and smells; mirror neurons that cause people to imitate the eating behavior of others without awareness; and limited cognitive capacity to make informed decisions about food. Given that people have limited ability to shape the food environment individually and no ability to control automatic responses to food-related cues that are unconsciously perceived, it is incumbent upon society as a whole to regulate the food environment, including the number and types of food-related cues, portion sizes, food availability, and food advertising. PMID:18586908

  17. Acute motor, neurocognitive and neurophysiological change following concussion injury in Australian amateur football. A prospective multimodal investigation.

    PubMed

    Pearce, Alan J; Hoy, Kate; Rogers, Mark A; Corp, Daniel T; Davies, Charlotte B; Maller, Jerome J; Fitzgerald, Paul B

    2015-09-01

    This multimodal study investigated the motor, neurocognitive and neurophysiological responses following a sports related concussion injury in the acute-phase (up to 10 days) in sub-elite Australian football players. Between-group, repeated measures. Over the course of one season (six months), 43 male players from one football club (25.1 ± 4.5 years) were assessed for fine motor dexterity, visuomotor reaction time, implicit learning and attention. Motor cortex excitability and inhibition were assessed using transcranial magnetic stimulation. Of the 43 players, eight suffered concussion injuries, and were compared to 15 non-concussed players (active control) who returned for follow up testing. Post-concussion assessments using the aforementioned tests were carried out at 48 and 96 h, and 10 days. Compared to the non-concussed players, those who suffered concussion showed slowed fine dexterity (P = 0.02), response (P = 0.02) and movement times (P = 0.01) 48 h post-concussion. Similarly, attentional performance was reduced in the concussed group at all time points (48 h: P < 0.01; 96 h: P < 0.01; and 10 days: P = 0.02) post-concussion. TMS revealed significantly increased corticospinal inhibition at 48 (P = 0.04) and 96 h post concussion (P = 0.02) with significant correlations between increased corticospinal inhibition and response (r = 0.48; P < 0.01), movement time (r = 0.42; P = 0.02), and attention performance (r = 0.44; P = 0.01). This study has demonstrated that acutely concussed Australian football players show abnormalities in motor, cognitive and neurophysiological measures with variable rates of recovery. These findings suggest that measuring the recovery of concussed athletes should incorporate a range of testing modalities rather than relying on one area of measurement in determining return to play. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Intraoperative neurophysiological monitoring team's communiqué with anesthesia professionals.

    PubMed

    Tewari, Anurag; Francis, Lisa; Samy, Ravi N; Kurth, Dean C; Castle, Joshua; Frye, Tiffany; Mahmoud, Mohamed

    2018-01-01

    Intraoperative neurophysiological monitoring (IONM) is the standard of care during many spinal, vascular, and intracranial surgeries. High-quality perioperative care requires the communication and cooperation of several multidisciplinary teams. One of these multidisciplinary services is intraoperative neuromonitoring (IONM), while other teams represent anesthesia and surgery. Few studies have investigated the IONM team's objective communication with anesthesia providers. We conducted a retrospective review of IONM-related quality assurance data to identify how changes in the evoked potentials observed during the surgery were communicated within our IONM-anesthesia team and determined the resulting qualitative outcomes. Quality assurance records of 3,112 patients who underwent surgical procedures with IONM (from 2010 to 2015) were reviewed. We examined communications regarding perioperative evoked potential or electroencephalography (EEG) fluctuations that prompted neurophysiologists to alert/notify the anesthesia team to consider alteration of anesthetic depth/drug regimen or patient positioning and analyzed the outcomes of these interventions. Of the total of 1280 (41.13%) communications issued, there were 347 notifications and 11 alerts made by the neurophysiologist to the anesthesia team for various types of neuro/orthopedic surgeries. Prompt communication led to resolution of 90% of alerts and 80% of notifications after corrective measures were executed by the anesthesiologists. Notifications mainly related to limb malpositioning and extravasation of intravenous fluid. Based on our institutions' protocol and algorithm for intervention during IONM-supported surgeries, our findings of resolution in alerts and notifications indicate that successful communications between the two teams could potentially lead to improved anesthetic care and patient safety.

  19. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide

    PubMed Central

    Lober, Robert M.; Doan, Adam T.; Matsumoto, Craig I.; Kenning, Tyler J.; Evans, James J.

    2016-01-01

    Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route. PMID:27293965

  20. A liquid-delivery device that provides precise reward control for neurophysiological and behavioral experiments.

    PubMed

    Mitz, Andrew R

    2005-10-15

    Behavioral neurophysiology and other kinds of behavioral research often involve the delivery of liquid rewards to experimental subjects performing some kind of operant task. Available systems use gravity or pumps to deliver these fluids, but such methods are poorly suited to moment-to-moment control of the volume, timing, and type of fluid delivered. The design described here overcomes these limitations using an electronic control unit, a pressurized reservoir unit, and an electronically controlled solenoid. The control unit monitors reservoir pressure and provides precisely timed solenoid activation signals. It also stores calibration tables and does on-the-fly interpolation to support computer-controlled delivery calibrated directly in milliliters. The reservoir provides pressurized liquid to a solenoid mounted near the subject. Multiple solenoids, each supplied by a separate reservoir unit and control unit, can be stacked in close proximity to allow instantaneous selection of which liquid reward is delivered. The precision of droplet delivery was verified by weighing discharged droplets on a commercial analytical balance.

  1. Neuroethics vs neurophysiologically and neuropsychologically uninformed influences in child-rearing, education, emerging hunter-gatherers, and artificial intelligence models of the brain.

    PubMed

    Pontius, A A

    1993-04-01

    Potentially negative long-term consequences in four areas are emphasized, if specific neuromaturational, neurophysiological, and neuropsychological facts within a neurodevelopmental and ecological context are neglected in normal functional levels of child development and maturational lag of the frontal lobe system in "Attention Deficit Disorder," in education (reading/writing and arithmetic), in assessment of cognitive functioning in hunter-gatherer populations, specifically modified in the service of their survival, and in constructing computer models of the brain, neglecting consciousness and intentionality as criticized recently by Searle.

  2. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination

    PubMed Central

    Keller, Peter E.; Novembre, Giacomo; Hove, Michael J.

    2014-01-01

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social–psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. PMID:25385772

  3. Eye-movement assessment of the time course in facial expression recognition: Neurophysiological implications.

    PubMed

    Calvo, Manuel G; Nummenmaa, Lauri

    2009-12-01

    Happy, surprised, disgusted, angry, sad, fearful, and neutral faces were presented extrafoveally, with fixations on faces allowed or not. The faces were preceded by a cue word that designated the face to be saccaded in a two-alternative forced-choice discrimination task (2AFC; Experiments 1 and 2), or were followed by a probe word for recognition (Experiment 3). Eye tracking was used to decompose the recognition process into stages. Relative to the other expressions, happy faces (1) were identified faster (as early as 160 msec from stimulus onset) in extrafoveal vision, as revealed by shorter saccade latencies in the 2AFC task; (2) required less encoding effort, as indexed by shorter first fixations and dwell times; and (3) required less decision-making effort, as indicated by fewer refixations on the face after the recognition probe was presented. This reveals a happy-face identification advantage both prior to and during overt attentional processing. The results are discussed in relation to prior neurophysiological findings on latencies in facial expression recognition.

  4. How cognitive assessment through clinical neurophysiology may help optimize chronic alcoholism treatment.

    PubMed

    Campanella, S; Petit, G; Verbanck, P; Kornreich, C; Noel, X

    2011-07-01

    Alcohol dependence constitutes a serious worldwide public health problem. The last few decades have seen many pharmacological studies devoted to the improvement of alcoholism treatment. Although psychosocial treatments (e.g. individual or group therapy) have historically been the mainstay of alcoholism treatment, a successful approach for alcohol dependence consists in associating pharmacologic medications with therapy, as 40-70% of patients following only psychosocial therapy typically resume alcohol use within a year of post-detoxification treatment. Nowadays, two main pharmacological options, naltrexone and acomprosate, both approved by the US Food and Drug Administration, are available and seemingly improve on the results yielded by standard techniques employed in the management of alcoholism. However, insufficient data exist to confirm the superiority of one drug over the other, and research is ongoing to determine what type of alcohol-dependent individual benefits the most from using either medication. Available data on the application of both drugs clearly suggest different practical applications. Thus, a fundamental question remains as to how we can identify which alcoholic patients are likely to benefit from the use of naltrexone, acamprosate or both, and which are not. The aim of the present manuscript is to suggest the use of cognitive event-related potentials as an interesting way to identify subgroups of alcoholic patients displaying specific clinical symptoms and cognitive disturbances. We propose that this may help clinicians improve their treatment of alcoholic patients by focusing therapy on individual cognitive disturbances, and by adapting the pharmaceutical approach to the specific needs of the patient. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Epileptic activity in Alzheimer’s disease: causes and clinical relevance

    PubMed Central

    Vossel, Keith A; Tartaglia, Maria C; Nygaard, Haakon B; Zeman, Adam Z; Miller, Bruce L

    2018-01-01

    Epileptic activity is frequently associated with Alzheimer’s disease; this association has therapeutic implications, because epileptic activity can occur at early disease stages and might contribute to pathogenesis. In clinical practice, seizures in patients with Alzheimer’s disease can easily go unrecognised because they usually present as non-motor seizures, and can overlap with other symptoms of the disease. In patients with Alzheimer’s disease, seizures can hasten cognitive decline, highlighting the clinical relevance of early recognition and treatment. Some evidence indicates that subclinical epileptiform activity in patients with Alzheimer’s disease, detected by extended neurophysiological monitoring, can also lead to accelerated cognitive decline. Treatment of clinical seizures in patients with Alzheimer’s disease with select antiepileptic drugs (AEDs), in low doses, is usually well tolerated and efficacious. Moreover, studies in mouse models of Alzheimer’s disease suggest that certain classes of AEDs that reduce network hyperexcitability have disease-modifying properties. These AEDs target mechanisms of epileptogenesis involving amyloid β and tau. Clinical trials targeting network hyperexcitability in patients with Alzheimer’s disease will identify whether AEDs or related strategies could improve their cognitive symptoms or slow decline. PMID:28327340

  6. The origin, and application of somatosensory evoked potentials as a neurophysiological technique to investigate neuroplasticity.

    PubMed

    Passmore, Steven R; Murphy, Bernadette; Lee, Timothy D

    2014-06-01

    Somatosensory evoked potentionals (SEPs) can be used to elucidate differences in cortical activity associated with a spinal manipulation (SM) intervention. The purpose of this narrative review is to overview the origin and application of SEPs, a neurophysiological technique to investigate neuroplasticity. Summaries of: 1) parameters for SEP generation and waveform recording; 2) SEP peak nomenclature, interpretation and generators; 3) peaks pertaining to tactile information processing (relevant to both chiropractic and other manual therapies); 4) utilization and application of SEPs; 5) SEPs concurrent with an experimental task and at baseline/control/pretest; 6) SEPs pain studies; and 7) SEPs design (pre/post) and neural reorganization/neuroplasticity; and 8) SEPs and future chiropractic research are all reviewed. Understanding what SEPs are, and their application allows chiropractors, educators, and other manual therapists interested in SM to understand the context, and importance of research findings from SM studies that involve SEPs.

  7. Out of sight but not out of mind: the neurophysiology of iconic memory in the superior temporal sulcus.

    PubMed

    Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I

    2005-05-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.

  8. Future perspectives toward the early definition of a multivariate decision-support scheme employed in clinical decision making for senior citizens.

    PubMed

    Frantzidis, Christos A; Gilou, Sotiria; Billis, Antonis; Karagianni, Maria; Bratsas, Charalampos D; Bamidis, Panagiotis

    2016-03-01

    Recent neuroscientific studies focused on the identification of pathological neurophysiological patterns (emotions, geriatric depression, memory impairment and sleep disturbances) through computerised clinical decision-support systems. Almost all these research attempts employed either resting-state condition (e.g. eyes-closed) or event-related potentials extracted during a cognitive task known to be affected by the disease under consideration. This Letter reviews existing data mining techniques and aims to enhance their robustness by proposing a holistic decision framework dealing with comorbidities and early symptoms' identification, while it could be applied in realistic occasions. Multivariate features are elicited and fused in order to be compared with average activities characteristic of each neuropathology group. A proposed model of the specific cognitive function which may be based on previous findings (a priori information) and/or validated by current experimental data should be then formed. So, the proposed scheme facilitates the early identification and prevention of neurodegenerative phenomena. Neurophysiological semantic annotation is hypothesised to enhance the importance of the proposed framework in facilitating the personalised healthcare of the information society and medical informatics research community.

  9. [Clinical and neurophysiological data of neurofeedback therapy in children with ADHD].

    PubMed

    Kubik, Alicja; Kubik, Paweł; Stanios, Martyna; Kraj, Bogusława

    2016-01-01

    ADHD occurs in 3% of school-age children (and in 70% of them in adulthood) and represents an important medical and social problem. It is characterized by attention deficits, hyperactivity and impulsiveness. Neurofeedback therapy (EEG biofeedback, NF) is carried out based on the analysis of EEG. To investigate the effect of NF therapy on clinical status and parameters of the EEG in ADHD. In the years 2007-2014, 287 children (191 boys), aged 6-17 years were included into the study. Some children with ADHD had other coexisting disorders like: tics, dyslexia, emotional or behavior disorders. Visual analysis of EEG was made and 7 selected parameters of bioelectrical activity were assessed. EEG tracing before and after NF therapy were compared. NF therapy lasted from 9 months to 3 years (mean 1.5 years). 60-240 NF training sessions were performed with the use of NF device, video-games and 16-channel Elmiko devices. Statistical analysis of the results was made. Children with ADHD additionally presented low self-esteem, anxiety and sleep disorders. The baseline theta/beta ratio in children with ADHD and ADHD with cooccurring dyslexia was >4.0 and in children with ADHD and coexisting tics 3.0-3.8, with coexisting behavioral disorders 3.7-4.0 and emotional disorders 3.3-3.7. After therapy, this ratio decreased significantly in all groups, but most significantly in ADHD and ADHD with dyslexia group. In the group with dyslexia theta and alpha activity in the left fronto-temporo-parietal region (the speech centers) has been increased. In children with ADHD and behavior disorders right-sided paroxysmal changes in the form of slow and sharp waves in the temporo-centro-parietal regions were found. In emotionally disturbed children increased fast beta activity in the right hemisphere (anxiety, fear) was observed. Initially NF therapy reduced hyperactivity and impulsivity of children, subsequently improvement of attention was observed and eventually reduction of emotional and

  10. Mind-Body Practices and the Adolescent Brain: Clinical Neuroimaging Studies

    PubMed Central

    Sharma, Anup; Newberg, Andrew B

    2016-01-01

    Background Mind-Body practices constitute a large and diverse group of practices that can substantially affect neurophysiology in both healthy individuals and those with various psychiatric disorders. In spite of the growing literature on the clinical and physiological effects of mind-body practices, very little is known about their impact on central nervous system (CNS) structure and function in adolescents with psychiatric disorders. Method This overview highlights findings in a select group of mind-body practices including yoga postures, yoga breathing techniques and meditation practices. Results Mind-body practices offer novel therapeutic approaches for adolescents with psychiatric disorders. Findings from these studies provide insights into the design and implementation of neuroimaging studies for adolescents with psychiatric disorders. Conclusions Clinical neuroimaging studies will be critical in understanding how different practices affect disease pathogenesis and symptomatology in adolescents. Neuroimaging of mind-body practices on adolescents with psychiatric disorders will certainly be an open and exciting area of investigation. PMID:27347478

  11. Mind-Body Practices and the Adolescent Brain: Clinical Neuroimaging Studies.

    PubMed

    Sharma, Anup; Newberg, Andrew B

    Mind-Body practices constitute a large and diverse group of practices that can substantially affect neurophysiology in both healthy individuals and those with various psychiatric disorders. In spite of the growing literature on the clinical and physiological effects of mind-body practices, very little is known about their impact on central nervous system (CNS) structure and function in adolescents with psychiatric disorders. This overview highlights findings in a select group of mind-body practices including yoga postures, yoga breathing techniques and meditation practices. Mind-body practices offer novel therapeutic approaches for adolescents with psychiatric disorders. Findings from these studies provide insights into the design and implementation of neuroimaging studies for adolescents with psychiatric disorders. Clinical neuroimaging studies will be critical in understanding how different practices affect disease pathogenesis and symptomatology in adolescents. Neuroimaging of mind-body practices on adolescents with psychiatric disorders will certainly be an open and exciting area of investigation.

  12. Cognitive aspects of nociception and pain: bridging neurophysiology with cognitive psychology.

    PubMed

    Legrain, V; Mancini, F; Sambo, C F; Torta, D M; Ronga, I; Valentini, E

    2012-10-01

    The event-related brain potentials (ERPs) elicited by nociceptive stimuli are largely influenced by vigilance, emotion, alertness, and attention. Studies that specifically investigated the effects of cognition on nociceptive ERPs support the idea that most of these ERP components can be regarded as the neurophysiological indexes of the processes underlying detection and orientation of attention toward the eliciting stimulus. Such detection is determined both by the salience of the stimulus that makes it pop out from the environmental context (bottom-up capture of attention) and by its relevance according to the subject's goals and motivation (top-down attentional control). The fact that nociceptive ERPs are largely influenced by information from other sensory modalities such as vision and proprioception, as well as from motor preparation, suggests that these ERPs reflect a cortical system involved in the detection of potentially meaningful stimuli for the body, with the purpose to respond adequately to potential threats. In such a theoretical framework, pain is seen as an epiphenomenon of warning processes, encoded in multimodal and multiframe representations of the body, well suited to guide defensive actions. The findings here reviewed highlight that the ERPs elicited by selective activation of nociceptors may reflect an attentional gain apt to bridge a coherent perception of salient sensory events with action selection processes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Prevention, clinical, and pathophysiological research on vibration syndrome.

    PubMed

    Yamada, S; Sakakibara, H; Harada, N; Matsumoto, T

    1993-11-01

    In the 1950s, introduction of portable power tools into the production process of many industries began on a large scale around the world and resulted in many cases of occupational vibration syndrome after the 1960s. There was an urgent need to undertake preventive steps, medical assessment and therapy throughout the world. At the end of 1964, our investigation began in Japanese national forests, and then in mining and stone quarries. Our research and efforts resulted in a comprehensive system for prevention of vibration syndrome in the Japanese national forest industry. It has presented a good model of prevention for other industries in Japan. Clinical and pathophysiological research on vibration syndrome in the 1960s and 1970s clarified disturbances of the peripheral circulatory, nervous, and musculoskeletal systems. From the mid-1970s, neurophysiological, neurochemical, and clinical research on vibration syndrome in relation to the autonomic nervous system developed. Our studies contributed to the advancement of research in this field. More in-depth study is needed to determine the role of the autonomic nervous system in vibration syndrome.

  14. Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice.

    PubMed

    Micoulaud-Franchi, J-A; McGonigal, A; Lopez, R; Daudet, C; Kotwas, I; Bartolomei, F

    2015-12-01

    The technique of electroencephalographic neurofeedback (EEG NF) emerged in the 1970s and is a technique that measures a subject's EEG signal, processes it in real time, extracts a parameter of interest and presents this information in visual or auditory form. The goal is to effectuate a behavioural modification by modulating brain activity. The EEG NF opens new therapeutic possibilities in the fields of psychiatry and neurology. However, the development of EEG NF in clinical practice requires (i) a good level of evidence of therapeutic efficacy of this technique, (ii) a good practice guide for this technique. Firstly, this article investigates selected trials with the following criteria: study design with controlled, randomized, and open or blind protocol, primary endpoint related to the mental and brain disorders treated and assessed with standardized measurement tools, identifiable EEG neurophysiological targets, underpinned by pathophysiological relevance. Trials were found for: epilepsies, migraine, stroke, chronic insomnia, attentional-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, major depressive disorder, anxiety disorders, addictive disorders, psychotic disorders. Secondly, this article investigates the principles of neurofeedback therapy in line with learning theory. Different underlying therapeutic models are presented didactically between two continua: a continuum between implicit and explicit learning and a continuum between the biomedical model (centred on "the disease") and integrative biopsychosocial model of health (centred on "the illness"). The main relevant learning model is to link neurofeedback therapy with the field of cognitive remediation techniques. The methodological specificity of neurofeedback is to be guided by biologically relevant neurophysiological parameters. Guidelines for good clinical practice of EEG NF concerning technical issues of electrophysiology and of learning are suggested. These require validation by

  15. Spontaneous and drug-induced remission of alcoholic organic brain syndrome: clinical, psychometric, and neurophysiological studies.

    PubMed

    Saletu, B; Saletu, M; Grünberger, J; Mader, R

    1983-09-01

    The spontaneous and drug-induced remission of alcoholic organic brain syndrome was studied in a double-blind, placebo-controlled trial. Forty patients with alcoholic organic brain syndrome (OBS) were randomly assigned to a 6-week treatment with either placebo or piridoxilate, a reciprocal salt between two stereoisomers of the glyoxylic acid-substituted piridoxine. Clinical, psychometric, and computer-assisted spectral analyses of the electroencephalogram (EEG) were carried out in weeks 0, 2, 4, and 6. Piridoxale-5-phosphate (PLP) blood level determination and laboratory investigations were performed before therapy and also in weeks 4 and 6. Both groups of patients demonstrated significant clinical improvement over 6 weeks of treatment, but the improvement in the piridoxilate-treated group was significantly greater than that in the placebo group. This conclusion was also confirmed by psychometric tests demonstrating a greater improvement in attention, concentration, attention variability, tapping, visual and numerical memory, and aftereffect (Archimedean spiral) in the piridoxilate than in the placebo group. Spectral analysis of the EEG showed an increase in alpha and a decrease in fast beta activities in both groups, while delta activity was attenuated only in the piridoxilate-treated group. The latter was found to be significantly correlated with the improvement in psychopathology. The present data confirm previous predictions about the encephalotropic and psychotropic properties of piridoxilate; these predictions were based on pharmaco-EEG trials in the elderly that suggested vigilance-improving qualities of piridoxilate. The reversible alcoholic OBS appears to be a suitable model for the assessment of therapeutic efficacy of nootropic drugs.

  16. Daytime mother-calf relationships in reticulated giraffes (Giraffa cameloparadalis reticulate) at the Kyoto City Zoo.

    PubMed

    Nakamichi, Masayuki; Murata, Chisa; Eto, Ryo; Takagi, Naoko; Yamada, Kazunori

    2015-01-01

    The present study quantitatively assesses the relationships between a reticulated giraffe mother and her first- and second-born calves during the first 22 months of the older calf's and the first 12 months of the younger calf's life at the Kyoto City Zoo, Japan. The mother permitted her calves to suckle at over 70% of their suckling attempts in the first month after their births, and the calves ceased suckling spontaneously in 65 to 70% of the suckling bouts. From the second month on, she showed a clear tendency to reject the calves' suckling attempts and terminated almost all of their suckling bouts, which resulted in approximately 60 sec or less of suckling duration per bout. The frequency of proximity between the mother and her calves remained at 20 to 30% throughout the first year, with no apparent developmental changes being evident. The mother was mainly responsible for terminating proximity by walking away from her calves throughout their first year after birth, while both calves were mainly responsible for attempting proximity by approaching their mother after reaching 2 months of age. Our study also showed that the giraffe mother became pregnant again while nursing her calves and ceased lactation (i.e., weaned the calves) before the fetus's growth started accelerating. © 2015 Wiley Periodicals, Inc.

  17. Comprehensive review of neurophysiologic basis and diagnostic interventions in managing chronic spinal pain.

    PubMed

    Manchikanti, Laxmaiah; Boswell, Mark V; Singh, Vijay; Derby, Richard; Fellows, Bert; Falco, Frank J E; Datta, Sukdeb; Smith, Howard S; Hirsch, Joshua A

    2009-01-01

    Understanding the neurophysiological basis of chronic spinal pain and diagnostic interventional techniques is crucial in the proper diagnosis and management of chronic spinal pain. Central to the understanding of the structural basis of chronic spinal pain is the provision of physical diagnosis and validation of patient symptomatology. It has been shown that history, physical examination, imaging, and nerve conduction studies in non-radicular or discogenic pain are unable to diagnose the precise cause in 85% of the patients. In contrast, controlled diagnostic blocks have been shown to determine the cause of pain in as many as 85% of the patients. To provide evidence-based clinical practice guidelines for diagnostic interventional techniques. Best evidence synthesis. Strength of evidence was assessed by the U.S. Preventive Services Task Force (USPSTF) criteria utilizing 5 levels of evidence ranging from Level I to III with 3 subcategories in Level II. Diagnostic criteria established by systematic reviews were utilized with controlled diagnostic blocks. Diagnostic criteria included at least 80% pain relief with controlled local anesthetic blocks with the ability to perform multiple maneuvers which were painful prior to the diagnostic blocks for facet joint and sacroiliac joint blocks, whereas for provocation discography, the criteria included concordant pain upon stimulation of the target disc with 2 adjacent discs producing no pain at all. The indicated level of evidence for diagnostic lumbar, cervical, and thoracic facet joint nerve blocks is Level I or II-1. The indicated evidence is Level II-2 for lumbar and cervical discography, whereas it is Level II-3 for thoracic provocation discography. The evidence for diagnostic sacroiliac joint nerve blocks is Level II-2. Level of evidence for selective nerve root blocks for diagnostic purposes is Level II-3. Limitations of this guideline preparation include a continued paucity of literature and conflicts in preparation

  18. Neurophysiological measures of involuntary and voluntary attention allocation and dispositional differences in need for cognition.

    PubMed

    Enge, Sören; Fleischhauer, Monika; Brocke, Burkhard; Strobel, Alexander

    2008-06-01

    Need for cognition (NFC) refers to stable individual differences in the intrinsic motivation to engage in and enjoy effortful cognitive endeavors and has been a useful predictor of dispositional differences in information processing. Although cognitive resource allocation conceptualized as cognitive effort is assumed to be the key mediator of NFC-specific processing, to date no research has systematically addressed its underpinnings. Using a neurocognitive paradigm and recording event-related potentials associated with bottom-up and top-down-driven aspects of attention, the present research contributes to filling this gap. In Study 1, high-NFC individuals showed larger P3a amplitudes to contextually novel events, indicating greater involuntary (automatic) attention allocation. This effect was replicated in Study 2, where NFC also was positively correlated with the P3b to target stimuli, indicating voluntary (controlled) processes of attention allocation. Thus, our findings provide first evidence for neurophysiological correlates of NFC and can improve the understanding of NFC-specific processing.

  19. Subthreshold depressions: clinical and polysomnographic validation of dysthymic, residual and masked forms.

    PubMed

    Akiskal, H S; Judd, L L; Gillin, J C; Lemmi, H

    1997-08-01

    We summarize clinical and polysomnographic findings in support of the existence of a broad and prevalent spectrum of less than syndromal or subthreshold depressive conditions that constitute subeffective disorders. Many of these conditions were previously subsumed under such rubrics as 'neurotic,' 'characterological,' and 'existential' depressions. Prospective follow-up studies of neurotic depressions (defined by a predominance of the psychological features of, in most instances, less than syndromal depression) have demonstrated their transformation into moderate to melancholic or psychotic depressive, and even bipolar, disorders. Many characterological depressives (outpatients with early insidious onset and fluctuating chronicity of subthreshold manifestations falling short of full syndromal depression), were shown to have shortened REM latency, increased REM%, redistribution of REM to the first part of the night, classic diurnality, high rates of family history for mood disorders, positive response to antidepressants and sleep deprivation, and prospective follow-up course leading to major affective episodes. Shortened REM latency and related sleep neurophysiological disturbances have also been reported to characterize so-called 'borderline' personality disorder even when examined in the absence of concomitant major depression. Finally, among primary care referrals to a sleep disorders center, short REM latency was found in a large number of patients without subjective mood change but with somatic manifestations of depression (meeting Probable Feighner Depression and/or lesser subacute manifestations). Rather than being incidental, the REM disturbances in the foregoing studies appear consistently on consecutive nights of polysomnography in the subthreshold affective group; this was not the case for patients with non-affective personality and anxiety disorders. The findings overall tend to support a common neurophysiological substrate for subthreshold and

  20. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination.

    PubMed

    Keller, Peter E; Novembre, Giacomo; Hove, Michael J

    2014-12-19

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social-psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Neurophysiological tools to investigate consumer's gender differences during the observation of TV commercials.

    PubMed

    Vecchiato, Giovanni; Maglione, Anton Giulio; Cherubino, Patrizia; Wasikowska, Barbara; Wawrzyniak, Agata; Latuszynska, Anna; Latuszynska, Malgorzata; Nermend, Kesra; Graziani, Ilenia; Leucci, Maria Rita; Trettel, Arianna; Babiloni, Fabio

    2014-01-01

    Neuromarketing is a multidisciplinary field of research whose aim is to investigate the consumers' reaction to advertisements from a neuroscientific perspective. In particular, the neuroscience field is thought to be able to reveal information about consumer preferences which are unobtainable through conventional methods, including submitting questionnaires to large samples of consumers or performing psychological personal or group interviews. In this scenario, we performed an experiment in order to investigate cognitive and emotional changes of cerebral activity evaluated by neurophysiologic indices during the observation of TV commercials. In particular, we recorded the electroencephalographic (EEG), galvanic skin response (GSR), and heart rate (HR) in a group of 28 healthy subjects during the observation of a series of TV advertisements that have been grouped by commercial categories. Comparisons of cerebral indices have been performed to highlight gender differences between commercial categories and scenes of interest of two specific commercials. Findings show how EEG methodologies, along with the measurements of autonomic variables, could be used to obtain hidden information to marketers not obtainable otherwise. Most importantly, it was suggested how these tools could help to analyse the perception of TV advertisements and differentiate their production according to the consumer's gender.

  2. Neurophysiological Tools to Investigate Consumer's Gender Differences during the Observation of TV Commercials

    PubMed Central

    Maglione, Anton Giulio; Wasikowska, Barbara; Wawrzyniak, Agata; Graziani, Ilenia; Trettel, Arianna

    2014-01-01

    Neuromarketing is a multidisciplinary field of research whose aim is to investigate the consumers' reaction to advertisements from a neuroscientific perspective. In particular, the neuroscience field is thought to be able to reveal information about consumer preferences which are unobtainable through conventional methods, including submitting questionnaires to large samples of consumers or performing psychological personal or group interviews. In this scenario, we performed an experiment in order to investigate cognitive and emotional changes of cerebral activity evaluated by neurophysiologic indices during the observation of TV commercials. In particular, we recorded the electroencephalographic (EEG), galvanic skin response (GSR), and heart rate (HR) in a group of 28 healthy subjects during the observation of a series of TV advertisements that have been grouped by commercial categories. Comparisons of cerebral indices have been performed to highlight gender differences between commercial categories and scenes of interest of two specific commercials. Findings show how EEG methodologies, along with the measurements of autonomic variables, could be used to obtain hidden information to marketers not obtainable otherwise. Most importantly, it was suggested how these tools could help to analyse the perception of TV advertisements and differentiate their production according to the consumer's gender. PMID:25147579

  3. Clinical and non-clinical depression and anxiety in young people: A scoping review on heart rate variability.

    PubMed

    Paniccia, Melissa; Paniccia, David; Thomas, Scott; Taha, Tim; Reed, Nick

    2017-12-01

    Heart rate variability (HRV), a measure of cardiac autonomic nervous system functioning, has emerged as a physiological indicator for emotional regulation and psychological well-being. HRV is understudied in the context of depression and anxiety in young people (10-24years old). Main objectives: (1) describe the nature and breadth of reviewed studies; and (2) synthesize main findings in the context of clinical and non-clinical populations of young people with depression and/or anxiety. The Arksey and O'Malley methodology was utilized for this scoping review. CINHAL, EMBASE, Medline, PsychInfo, Scopus, Web of Science, as well as grey literature, were searched. Two reviewers screened titles, abstracts and full papers for inclusion. A total of 20 citations were included in the final review (19 citations peer-reviewed journal articles, 1 journal abstract). Numerical and thematic analysis was used to summarize study findings. In clinical populations of either depression or anxiety, HRV was lower compared to controls. In non-clinical populations of either depression or anxiety, HRV was found to be lower in those who reported more depression or anxiety symptoms. The quality of the reviewed articles was not assessed which limits the ability to generate conclusions regarding study findings. Changes in HRV were found across the spectrum of clinical and non-clinical populations of young people with depression or anxiety. Neurophysiological research on depression and anxiety in young people can act as a first step to understanding how physiological flexibility (i.e. HRV) is related to psychological flexibility (i.e. adaptive or maladaptive responses to life events). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The hypoxia model in human psychopharmacology: neurophysiological and psychometric studies with aniracetam i.v.

    PubMed

    Saletu, B; Grünberger, J

    1984-01-01

    Changes in human brain function and mental performance under hypoxic hypoxidosis as well as after intravenous injection of aniracetam - a new potentially nootropic 2-pyrrolidinone derivative - were investigated in a double-blind placebo-controlled study utilizing computer-assisted spectral analysis of the EEG and psychometric tests. Hypoxic hypoxidosis was induced by a fixed gas combination of 11.2% O2 and 88.8% N2, which was inhaled under normobaric conditions by 10 male healthy volunteers. The following substances were injected intravenously at weekly intervals according to a latin square design: placebo, 10 mg and 100 mg aniracetam and the solvent under hypoxic conditions as well as placebo under normoxic conditions. Spectral analysis of the EEG recorded under hypoxia demonstrated neurophysiological alterations indicative of a deterioration in vigilance, which was also reflected by a deterioration in psychomotor activity and mnestic performance in the psychometric tests. Aniracetam i.v. attenuated the hypoxia-induced deterioration of brain function and mental performance, thus exhibiting protective properties against hypoxia in man. The usefulness of the hypoxia model in the screening of antihypoxidotic compounds is discussed.

  5. Low gastric acid and high plasma gastrin in high-anxiety Wistar Kyoto rats.

    PubMed

    Florentzson, Malin; Svensson, Karin; Astin-Nielsen, Maria; Andersson, Kjell; Håkanson, Rolf; Lindstrom, Erik

    2009-01-01

    Wistar Kyoto (WKY) rats are more susceptible to stress-evoked ulcerations than Sprague-Dawley (SPD) rats. We have already demonstrated that gastrin cells are more active and ghrelin cells less active in WKY rats than in SPD rats. The purpose of this study was to compare endocrine cell activity and gastric acid output in WKY and SPD rats. Gastric acid output was determined in conscious rats with gastric fistula. Plasma gastrin and ghrelin levels were measured after an overnight fast. Acid secretagogues (gastrin, histamine and carbachol) were given by continuous subcutaneous infusion. The volume of gastric juice, and the acidity and acid output were all significantly lower (p <0.05) in fasted WKY rats than in fasted SPD rats. Gastrin evoked a 4-fold (p <0.01) and 3-fold (p <0.05) increase in gastric acid output in SPD rats and WKY rats, respectively. Histamine raised the acid output 1.6-fold in SPD rats (p=0.06) and 3-fold in WKY rats (p <0.05), while carbachol failed to affect the acid output (weak increase, p >0.05). Fasting plasma ghrelin levels were 2-fold higher in SPD rats than in WKY rats (p <0.01) while fasting gastrin levels were 10-fold higher in WKY rats than in SPD rats (p <0.05). Neither the parietal-cell density nor the oxyntic mucosal thickness differed between the two strains. The results of the present study suggest that a high gastrin cell activity in WKY rats is secondary to a low gastric acidity. Whether the high gastrin cell activity is linked to susceptibility to stress ulcer in WKY rats warrants further investigation.

  6. Clarifying springtime temperature reconstructions of the medieval period by gap-filling the cherry blossom phenological data series at Kyoto, Japan

    NASA Astrophysics Data System (ADS)

    Aono, Yasuyuki; Saito, Shizuka

    2010-03-01

    We investigated documents and diaries from the ninth to the fourteenth centuries to supplement the phenological data series of the flowering of Japanese cherry ( Prunus jamasakura) in Kyoto, Japan, to improve and fill gaps in temperature estimates based on previously reported phenological data. We then reconstructed a nearly continuous series of March mean temperatures based on 224 years of cherry flowering data, including 51 years of previously unused data, to clarify springtime climate changes. We also attempted to estimate cherry full-flowering dates from phenological records of other deciduous species, adding further data for 6 years in the tenth and eleventh centuries by using the flowering phenology of Japanese wisteria ( Wisteria floribunda). The reconstructed tenth century March mean temperatures were around 7°C, indicating warmer conditions than at present. Temperatures then fell until the 1180s, recovered gradually until the 1310s, and then declined again in the mid-fourteenth century.

  7. Clarifying springtime temperature reconstructions of the medieval period by gap-filling the cherry blossom phenological data series at Kyoto, Japan.

    PubMed

    Aono, Yasuyuki; Saito, Shizuka

    2010-03-01

    We investigated documents and diaries from the ninth to the fourteenth centuries to supplement the phenological data series of the flowering of Japanese cherry (Prunus jamasakura) in Kyoto, Japan, to improve and fill gaps in temperature estimates based on previously reported phenological data. We then reconstructed a nearly continuous series of March mean temperatures based on 224 years of cherry flowering data, including 51 years of previously unused data, to clarify springtime climate changes. We also attempted to estimate cherry full-flowering dates from phenological records of other deciduous species, adding further data for 6 years in the tenth and eleventh centuries by using the flowering phenology of Japanese wisteria (Wisteria floribunda). The reconstructed tenth century March mean temperatures were around 7 degrees C, indicating warmer conditions than at present. Temperatures then fell until the 1180s, recovered gradually until the 1310s, and then declined again in the mid-fourteenth century.

  8. Differences in monthly variation, cause, and place of injury between femoral neck and trochanteric fractures: 6-year survey (2008–2013) in Kyoto prefecture, Japan

    PubMed Central

    Horii, Motoyuki; Fujiwara, Hiroyoshi; Mikami, Yasuo; Ikeda, Takumi; Ueshima, Keiichiro; Ikoma, Kazuya; Shirai, Toshiharu; Nagae, Masateru; Oka, Yoshinobu; Sawada, Koshiro; Kuriyama, Nagato; Kubo, Toshikazu

    2016-01-01

    Summary Background The incidence of femoral neck and trochanteric fractures reportedly differ by age and regionality. We investigated differences in monthly variations of the occurrence of femoral neck and trochanteric fractures as well as place and cause of injury in the Kyoto prefecture over a 6-year period. Methods Fracture type (neck or trochanteric fracture), age, sex, place of injury, and cause of injury were surveyed among patients aged ≥ 65 years with hip fractures that occurred between 2008 and 2013 who were treated in 1 of 13 participating hospitals (5 in an urban area and 8 in a rural area). The proportion of sick beds in the participating hospitals was 24.7% (4,151/16,781). Monthly variations in the number of patients were investigated in urban and rural areas in addition to the entire Kyoto prefecture. Place of injury was classified as indoors or outdoors, and cause of injury was categorized as simple fall, accident, or uncertain. Results There were 2,826 patients with neck fractures (mean age, 82.1 years) and 3,305 patients with trochanteric fractures (mean age, 85.0 years). There were similarities in the monthly variation of the number of fractures in addition to the place and cause of injury between neck and trochanteric fractures. Indoors (approximately 74%) and simple falls (approximately 78%) were the primary place and cause of injury, respectively. The place of injury was not significantly different by fracture type with each age group. Significantly more patients with neck fracture had “uncertain” as the cause of injury than trochanteric fracture in all age groups. Conclusions Based on the results of the present study, the injury pattern might not have a great effect on the susceptibility difference between neck and trochanteric fractures. PMID:27252738

  9. Disorganization at the stage of schizophrenia clinical outcome: Clinical-biological study.

    PubMed

    Nestsiarovich, A; Obyedkov, V; Kandratsenka, H; Siniauskaya, M; Goloenko, I; Waszkiewicz, N

    2017-05-01

    According to the multidimensional model of schizophrenia, three basic psychopathological dimensions constitute its clinical structure: positive symptoms, negative symptoms and disorganization. The latter one is the newest and the least studied. Our aim was to discriminate disorganization in schizophrenia clinical picture and to identify its distinctive biological and socio-psychological particularities and associated genetic and environmental factors. We used SAPS/SANS psychometrical scales, scales for the assessment of patient's compliance, insight, social functioning, life quality. Neuropsychological tests included Wisconsin Card Sorting Test (WCST), Stroop Color-Word test. Neurophysiological examination included registration of P300 wave of the evoked cognitive auditory potentials. Environmental factors related to patient's education, family, surrounding and nicotine use, as well as subjectively significant traumatic events in childhood and adolescence were assessed. Using PCR we detected SNP of genes related to the systems of neurotransmission (COMT, SLC6A4 and DRD2), inflammatory response (IL6, TNF), cellular detoxification (GSTM1, GSTT1), DNA methylation (MTHFR, DNMT3b, DNMT1). Disorganization is associated with early schizophrenia onset and history of psychosis in family, low level of insight and compliance, high risk of committing delicts, distraction errors in WCST, lengthened P300 latency of evoked cognitive auditory potentials, low-functional alleles of genes MTHFR (rs1801133) and DNMT3b (rs2424913), high level of urbanicity and psychotraumatic events at early age. Severe disorganization at the stage of schizophrenia clinical outcome is associated with the set of specific biological and social-psychological characteristics that indicate its epigenetic nature and maladaptive social significance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. WebBioBank: a new platform for integrating clinical forms and shared neurosignal analyses to support multi-centre studies in Parkinson's Disease.

    PubMed

    Rossi, Elena; Rosa, Manuela; Rossi, Lorenzo; Priori, Alberto; Marceglia, Sara

    2014-12-01

    The web-based systems available for multi-centre clinical trials do not combine clinical data collection (Electronic Health Records, EHRs) with signal processing storage and analysis tools. However, in pathophysiological research, the correlation between clinical data and signals is crucial for uncovering the underlying neurophysiological mechanisms. A specific example is the investigation of the mechanisms of action for Deep Brain Stimulation (DBS) used for Parkinson's Disease (PD); the neurosignals recorded from the DBS target structure and clinical data must be investigated. The aim of this study is the development and testing of a new system dedicated to a multi-centre study of Parkinson's Disease that integrates biosignal analysis tools and data collection in a shared and secure environment. We designed a web-based platform (WebBioBank) for managing the clinical data and biosignals of PD patients treated with DBS in different clinical research centres. Homogeneous data collection was ensured in the different centres (Operative Units, OUs). The anonymity of the data was preserved using unique identifiers associated with patients (ID BAC). The patients' personal details and their equivalent ID BACs were archived inside the corresponding OU and were not uploaded on the web-based platform; data sharing occurred using the ID BACs. The system allowed researchers to upload different signal processing functions (in a .dll extension) onto the web-based platform and to combine them to define dedicated algorithms. Four clinical research centres used WebBioBank for 1year. The clinical data from 58 patients treated using DBS were managed, and 186 biosignals were uploaded and classified into 4 categories based on the treatment (pharmacological and/or electrical). The user's satisfaction mean score exceeded the satisfaction threshold. WebBioBank enabled anonymous data sharing for a clinical study conducted at multiple centres and demonstrated the capabilities of the signal

  11. Exogenous Cortisol Administration; Effects on Risk Taking Behavior, Exercise Performance, and Physiological and Neurophysiological Responses

    PubMed Central

    Robertson, Caroline V.; Immink, Maarten A.; Marino, Frank E.

    2016-01-01

    Rationale: Exogenous cortisol is a modulator of behavior related to increased motivated decision making (Putman et al., 2010), where risky choices yield potentially big reward. Making risk based judgments has been shown to be important to athletes in optimizing pacing during endurance events (Renfree et al., 2014; Micklewright et al., 2015). Objectives: Therefore, the aims of this study were to examine the effect of 50 mg exogenous cortisol on neurophysiological responses and risk taking behavior in nine healthy men. Further to this, to examine the effect of exogenous cortisol on exercise performance. Methods: Using a double blind counterbalanced design, cyclists completed a placebo (PLA), and a cortisol (COR) trial (50 mg cortisol), with drug ingestion at 0 min. Each trial consisted of a rest period from 0 to 60 min, followed by a risk taking behavior task, a 30 min time trial (TT) with 5 × 30 s sprints at the following time intervals; 5, 11, 17, 23, and 29 min. Salivary cortisol (SaCOR), Electroencephalography (EEG) and Near Infrared Spectroscopy (NIRs) were measured at 15, 30, 45, and 60 min post-ingestion. Glucose and lactate samples were taken at 0 and 60 min post-ingestion. During exercise, power output (PO), heart rate (HR), EEG, and NIRS were measured. SaCOR was measured 10 min post-exercise. Results: Cortisol increased risk taking behavior from baseline testing. This was in line with significant neurophysiological changes at rest and during exercise. At rest, SaCOR levels were higher (P < 0.01) in COR compared to PLA (29.7 ± 22.7 and 3.27 ± 0.7 nmol/l, respectively). At 60 min alpha slow EEG response was higher in COR than PLA in the PFC (5.5 ± 6.4 vs. −0.02 ± 8.7% change; P < 0.01). During the TT there was no difference in total km, average power or average sprint power, although Peak power (PP) achieved was lower in COR than PLA (465.3 ± 83.4 and 499.8 ± 104.3; P < 0.05) and cerebral oxygenation was lower in COR (P < 0.05). Conclusion: This is

  12. Exogenous Cortisol Administration; Effects on Risk Taking Behavior, Exercise Performance, and Physiological and Neurophysiological Responses.

    PubMed

    Robertson, Caroline V; Immink, Maarten A; Marino, Frank E

    2016-01-01

    Rationale: Exogenous cortisol is a modulator of behavior related to increased motivated decision making (Putman et al., 2010), where risky choices yield potentially big reward. Making risk based judgments has been shown to be important to athletes in optimizing pacing during endurance events (Renfree et al., 2014; Micklewright et al., 2015). Objectives: Therefore, the aims of this study were to examine the effect of 50 mg exogenous cortisol on neurophysiological responses and risk taking behavior in nine healthy men. Further to this, to examine the effect of exogenous cortisol on exercise performance. Methods: Using a double blind counterbalanced design, cyclists completed a placebo (PLA), and a cortisol (COR) trial (50 mg cortisol), with drug ingestion at 0 min. Each trial consisted of a rest period from 0 to 60 min, followed by a risk taking behavior task, a 30 min time trial (TT) with 5 × 30 s sprints at the following time intervals; 5, 11, 17, 23, and 29 min. Salivary cortisol (SaCOR), Electroencephalography (EEG) and Near Infrared Spectroscopy (NIRs) were measured at 15, 30, 45, and 60 min post-ingestion. Glucose and lactate samples were taken at 0 and 60 min post-ingestion. During exercise, power output (PO), heart rate (HR), EEG, and NIRS were measured. SaCOR was measured 10 min post-exercise. Results: Cortisol increased risk taking behavior from baseline testing. This was in line with significant neurophysiological changes at rest and during exercise. At rest, SaCOR levels were higher ( P < 0.01) in COR compared to PLA (29.7 ± 22.7 and 3.27 ± 0.7 nmol/l, respectively). At 60 min alpha slow EEG response was higher in COR than PLA in the PFC (5.5 ± 6.4 vs. -0.02 ± 8.7% change; P < 0.01). During the TT there was no difference in total km, average power or average sprint power, although Peak power (PP) achieved was lower in COR than PLA (465.3 ± 83.4 and 499.8 ± 104.3; P < 0.05) and cerebral oxygenation was lower in COR ( P < 0.05). Conclusion: This is

  13. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine.

    PubMed

    Kantrowitz, Joshua T; Epstein, Michael L; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M; Revheim, Nadine; Lehrfeld, Nayla P; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C

    2016-12-01

    Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated

  14. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine

    PubMed Central

    Kantrowitz, Joshua T.; Epstein, Michael L.; Beggel, Odeta; Rohrig, Stephanie; Lehrfeld, Jonathan M.; Revheim, Nadine; Lehrfeld, Nayla P.; Reep, Jacob; Parker, Emily; Silipo, Gail; Ahissar, Merav; Javitt, Daniel C.

    2016-01-01

    Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time–frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908. Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that

  15. [Cost analysis of intraoperative neurophysiological monitoring (IOM)].

    PubMed

    Kombos, T; Suess, O; Brock, M

    2002-01-01

    A number of studies demonstrate that a significant reduction of postoperative neurological deficits can be achieved by applying intraoperative neurophysiological monitoring (IOM) methods. A cost analysis of IOM is imperative considering the strained financial situation in the public health services. The calculation model presented here comprises two cost components: material and personnel. The material costs comprise consumer goods and depreciation of capital goods. The computation base was 200 IOM cases per year. Consumer goods were calculated for each IOM procedure respectively. The following constellation served as a basis for calculating personnel costs: (a) a medical technician (salary level BAT Vc) for one hour per case; (b) a resident (BAT IIa) for the entire duration of the measurement, and (c) a senior resident (BAT Ia) only for supervision. An IOM device consisting of an 8-channel preamplifier, an electrical and acoustic stimulator and special software costs 66,467 euros on the average. With an annual depreciation of 20%, the costs are 13,293 euros per year. This amounts to 66.46 euros per case for the capital goods. For reusable materials a sum of 0.75 euro; per case was calculated. Disposable materials were calculate for each procedure respectively. Total costs of 228.02 euro; per case were,s a sum of 0.75 euros per case was calculated. Disposable materials were calculate for each procedure respectively. Total costs of 228.02 euros per case were, calculated for surgery on the peripheral nervous system. They amount to 196.40 euros per case for spinal interventions and to 347.63 euros per case for more complex spinal operations. Operations in the cerebellopontine angle and brain stem cost 376.63 euros and 397.33 euros per case respectively. IOM costs amount to 328.03 euros per case for surgical management of an intracranial aneurysm and to 537.15 euros per case for functional interventions. Expenses run up to 833.63 euros per case for operations near the

  16. Interleukin-6 Modulates Colonic Transepithelial Ion Transport in the Stress-Sensitive Wistar Kyoto Rat

    PubMed Central

    O’Malley, Dervla; Dinan, Timothy G.; Cryan, John F.

    2012-01-01

    Immunological challenge stimulates secretion of the pro-inflammatory cytokine interleukin (IL)-6, resulting in variety of biological responses. In the gastrointestinal tract, IL-6 modulates the excitability of submucosal neurons and stimulates secretion into the colonic lumen. When considered in the context of the functional bowel disorder, irritable bowel syndrome (IBS), where plasma levels of IL-6 are elevated, this may reflect an important molecular mechanism contributing to symptom flares, particularly in the diarrhea-predominant phenotype. In these studies, colonic ion transport, an indicator of absorption and secretion, was assessed in the stress-sensitive Wistar Kyoto (WKY) rat model of IBS. Mucosa-submucosal colonic preparations from WKY and control Sprague Dawley (SD) rats were mounted in Ussing chambers and the basal short circuit current (ISC) was electrophysiologically recorded and compared between the strains. Exposure to IL-6 (1 nM) stimulated a secretory current of greater amplitude in WKY as compared to SD samples. Furthermore, the observed IL-6-mediated potentiation of secretory currents evoked by veratridine and capsaicin in SD rats was blunted in WKY rats. Exposure to IL-6 also stimulated an increase in transepithelial resistance in both SD and WKY colonic tissue. These studies demonstrate that the neuroexcitatory effects of IL-6 on submucosal plexi have functional consequences with alterations in both colonic secretory activity and permeability. The IL-6-induced increase in colonic secretory activity appears to neurally mediated. Thus, local increases in IL-6 levels and subsequent activation of enteric neurons may underlie alterations in absorpto-secretory function in the WKY model of IBS. PMID:23162465

  17. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    PubMed

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Hyperargininemia: 7-month follow-up under sodium benzoate therapy in an Italian child presenting progressive spastic paraparesis, cognitive decline, and novel mutation in ARG1 gene.

    PubMed

    Baranello, Giovanni; Alfei, Enrico; Martinelli, Diego; Rizzetto, Manuela; Cazzaniga, Fabiana; Dionisi-Vici, Carlo; Gellera, Cinzia; Castellotti, Barbara

    2014-09-01

    Hyperargininemia due to mutations in ARG1 gene is an autosomal recessive inborn error of metabolism caused by a defect in the final step of the urea cycle. Common clinical presentation is a variable association of progressive spastic paraparesis, epilepsy, and cognitive deficits. We describe the clinical history of an Italian child presenting progressive spastic paraparesis, carrying a new homozygous missense mutation in the ARG1 gene. A detailed clinical, biochemical, and neurophysiological follow-up after 7 months of sodium benzoate therapy is reported. Laboratory findings, gait abnormalities, spastic paraparesis, and electroencephalographic and neurophysiological abnormalities remained quite stable over the follow-up. Conversely, a mild cognitive deterioration has been detected by means of the neuropsychologic assessment. Further longitudinal studies by means of longer follow-up and using clinical, biochemical, radiological, and neurophysiological assessments are needed in such patients to describe natural history and monitor the effects of treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Ecology and Neurophysiology of Sleep in Two Wild Sloth Species

    PubMed Central

    Voirin, Bryson; Scriba, Madeleine F.; Martinez-Gonzalez, Dolores; Vyssotski, Alexei L.; Wikelski, Martin; Rattenborg, Niels C.

    2014-01-01

    Study Objectives: Interspecific variation in sleep measured in captivity correlates with various physiological and environmental factors, including estimates of predation risk in the wild. However, it remains unclear whether prior comparative studies have been confounded by the captive recording environment. Herein we examine the effect of predation pressure on sleep in sloths living in the wild. Design: Comparison of two closely related sloth species, one exposed to predation and one free from predation. Setting: Panamanian mainland rainforest (predators present) and island mangrove (predators absent). Participants: Mainland (Bradypus variegatus, five males and four females) and island (Bradypus pygmaeus, six males) sloths. Interventions: None. Measurements and Results: Electroencephalographic (EEG) and electromyographic (EMG) activity was recorded using a miniature data logger. Although both species spent between 9 and 10 h per day sleeping, the mainland sloths showed a preference for sleeping at night, whereas island sloths showed no preference for sleeping during the day or night. Standardized EEG activity during nonrapid eye movement (NREM) sleep showed lower low-frequency power, and increased spindle and higher frequency power in island sloths when compared to mainland sloths. Conclusions: In sloths sleeping in the wild, predation pressure influenced the timing of sleep, but not the amount of time spent asleep. The preference for sleeping at night in mainland sloths may be a strategy to avoid detection by nocturnal cats. The pronounced differences in the NREM sleep EEG spectrum remain unexplained, but might be related to genetic or environmental factors. Citation: Voirin B; Scriba MF; Martinez-Gonzalez D; Vyssotski AL; Wikelski M; Rattenborg NC. Ecology and neurophysiology of sleep in two wild sloth species. SLEEP 2014;37(4):753-761. PMID:24899764

  20. Neurophysiology of hypnosis.

    PubMed

    Vanhaudenhuyse, A; Laureys, S; Faymonville, M-E

    2014-10-01

    We here review behavioral, neuroimaging and electrophysiological studies of hypnosis as a state, as well as hypnosis as a tool to modulate brain responses to painful stimulations. Studies have shown that hypnotic processes modify internal (self awareness) as well as external (environmental awareness) brain networks. Brain mechanisms underlying the modulation of pain perception under hypnotic conditions involve cortical as well as subcortical areas including anterior cingulate and prefrontal cortices, basal ganglia and thalami. Combined with local anesthesia and conscious sedation in patients undergoing surgery, hypnosis is associated with improved peri- and postoperative comfort of patients and surgeons. Finally, hypnosis can be considered as a useful analogue for simulating conversion and dissociation symptoms in healthy subjects, permitting better characterization of these challenging disorders by producing clinically similar experiences. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology

    PubMed Central

    Marino, Alexandria C.; Mazer, James A.

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron’s spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820

  2. Epileptic negative drop attacks in atypical benign partial epilepsy: a neurophysiological study.

    PubMed

    Hirano, Yoshiko; Oguni, Hirokazu; Osawa, Makiko

    2009-03-01

    We conducted a computer-assisted polygraphic analysis of drop attacks in a child with atypical benign partial epilepsy (ABPE) to investigate neurophysiological characteristics. The patient was a six-year two-month-old girl, who had started to have focal motor seizures, later combined with daily epileptic negative myoclonus (ENM) and drop attacks, causing multiple injuries. We studied episodes of ENM and drop attacks using video-polygraphic and computer-assisted back-averaging analysis. A total of 12 ENM episodes, seven involving the left arm (ENMlt) and five involving both arms (ENMbil), and five drop attacks were captured for analysis. All episodes were time-locked to spike-and-wave complexes (SWC) arising from both centro-temporo-parietal (CTP) areas. The latency between the onset of SWC and ENMlt, ENMbil, and drop attacks reached 68 ms, 42 ms, and 8 ms, respectively. The height of the spike as well as the slow-wave component of SWC for drop attacks were significantly larger than that for both ENMlt and ENMbil (p < 0.05). Drop attacks were considered to be epileptic negative myoclonus involving not only upper proximal but also axial muscles, causing the body to fall. Thus, drop attacks in ABPE are considered to be epileptic negative drop attacks arising from bilateral CTP foci and differ from drop attacks of a generalized origin seen in Lennox-Gastaut syndrome and myoclonic-astatic epilepsy.

  3. God will forgive: reflecting on God's love decreases neurophysiological responses to errors.

    PubMed

    Good, Marie; Inzlicht, Michael; Larson, Michael J

    2015-03-01

    In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God's love may be more effective, relative to God's wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God's love reduces our ability to detect and emotionally react to conflict between one's behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God's love vs punishment on the error-related negativity (ERN)--a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made 'religious' errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God's love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God's punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God's love is prominent in the minds of believers. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Neurophysiological and neurocognitive mechanisms underlying the effects of yoga-based practices: towards a comprehensive theoretical framework

    PubMed Central

    Schmalzl, Laura; Powers, Chivon; Henje Blom, Eva

    2015-01-01

    During recent decades numerous yoga-based practices (YBP) have emerged in the West, with their aims ranging from fitness gains to therapeutic benefits and spiritual development. Yoga is also beginning to spark growing interest within the scientific community, and yoga-based interventions have been associated with measureable changes in physiological parameters, perceived emotional states, and cognitive functioning. YBP typically involve a combination of postures or movement sequences, conscious regulation of the breath, and various techniques to improve attentional focus. However, so far little if any research has attempted to deconstruct the role of these different component parts in order to better understand their respective contribution to the effects of YBP. A clear operational definition of yoga-based therapeutic interventions for scientific purposes, as well as a comprehensive theoretical framework from which testable hypotheses can be formulated, is therefore needed. Here we propose such a framework, and outline the bottom-up neurophysiological and top-down neurocognitive mechanisms hypothesized to be at play in YBP. PMID:26005409

  5. Neurophysiological and neurocognitive mechanisms underlying the effects of yoga-based practices: towards a comprehensive theoretical framework.

    PubMed

    Schmalzl, Laura; Powers, Chivon; Henje Blom, Eva

    2015-01-01

    During recent decades numerous yoga-based practices (YBP) have emerged in the West, with their aims ranging from fitness gains to therapeutic benefits and spiritual development. Yoga is also beginning to spark growing interest within the scientific community, and yoga-based interventions have been associated with measureable changes in physiological parameters, perceived emotional states, and cognitive functioning. YBP typically involve a combination of postures or movement sequences, conscious regulation of the breath, and various techniques to improve attentional focus. However, so far little if any research has attempted to deconstruct the role of these different component parts in order to better understand their respective contribution to the effects of YBP. A clear operational definition of yoga-based therapeutic interventions for scientific purposes, as well as a comprehensive theoretical framework from which testable hypotheses can be formulated, is therefore needed. Here we propose such a framework, and outline the bottom-up neurophysiological and top-down neurocognitive mechanisms hypothesized to be at play in YBP.

  6. Keep Your Eyes on Development: The Behavioral and Neurophysiological Development of Visual Mechanisms Underlying Form Processing

    PubMed Central

    van den Boomen, C.; van der Smagt, M. J.; Kemner, C.

    2012-01-01

    Visual form perception is essential for correct interpretation of, and interaction with, our environment. Form perception depends on visual acuity and processing of specific form characteristics, such as luminance contrast, spatial frequency, color, orientation, depth, and even motion information. As other cognitive processes, form perception matures with age. This paper aims at providing a concise overview of our current understanding of the typical development, from birth to adulthood, of form-characteristic processing, as measured both behaviorally and neurophysiologically. Two main conclusions can be drawn. First, the current literature conveys that for most reviewed characteristics a developmental pattern is apparent. These trajectories are discussed in relation to the organization of the visual system. The second conclusion is that significant gaps in the literature exist for several age-ranges. To complete our understanding of the typical and, by consequence, atypical development of visual mechanisms underlying form processing, future research should uncover these missing segments. PMID:22416236

  7. Neurophysiological Markers of Statistical Learning in Music and Language: Hierarchy, Entropy, and Uncertainty.

    PubMed

    Daikoku, Tatsuya

    2018-06-19

    Statistical learning (SL) is a method of learning based on the transitional probabilities embedded in sequential phenomena such as music and language. It has been considered an implicit and domain-general mechanism that is innate in the human brain and that functions independently of intention to learn and awareness of what has been learned. SL is an interdisciplinary notion that incorporates information technology, artificial intelligence, musicology, and linguistics, as well as psychology and neuroscience. A body of recent study has suggested that SL can be reflected in neurophysiological responses based on the framework of information theory. This paper reviews a range of work on SL in adults and children that suggests overlapping and independent neural correlations in music and language, and that indicates disability of SL. Furthermore, this article discusses the relationships between the order of transitional probabilities (TPs) (i.e., hierarchy of local statistics) and entropy (i.e., global statistics) regarding SL strategies in human's brains; claims importance of information-theoretical approaches to understand domain-general, higher-order, and global SL covering both real-world music and language; and proposes promising approaches for the application of therapy and pedagogy from various perspectives of psychology, neuroscience, computational studies, musicology, and linguistics.

  8. Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation.

    PubMed

    Holst, Sebastian C; Müller, Thomas; Valomon, Amandine; Seebauer, Britta; Berger, Wolfgang; Landolt, Hans-Peter

    2017-04-10

    Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D 2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.

  9. Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions.

    PubMed

    Lithari, C; Frantzidis, C A; Papadelis, C; Vivas, Ana B; Klados, M A; Kourtidou-Papadeli, C; Pappas, C; Ioannides, A A; Bamidis, P D

    2010-03-01

    Men and women seem to process emotions and react to them differently. Yet, few neurophysiological studies have systematically investigated gender differences in emotional processing. Here, we studied gender differences using Event Related Potentials (ERPs) and Skin Conductance Responses (SCR) recorded from participants who passively viewed emotional pictures selected from the International Affective Picture System (IAPS). The arousal and valence dimension of the stimuli were manipulated orthogonally. The peak amplitude and peak latency of ERP components and SCR were analyzed separately, and the scalp topographies of significant ERP differences were documented. Females responded with enhanced negative components (N100 and N200), in comparison to males, especially to the unpleasant visual stimuli, whereas both genders responded faster to high arousing or unpleasant stimuli. Scalp topographies revealed more pronounced gender differences on central and left hemisphere areas. Our results suggest a difference in the way emotional stimuli are processed by genders: unpleasant and high arousing stimuli evoke greater ERP amplitudes in women relatively to men. It also seems that unpleasant or high arousing stimuli are temporally prioritized during visual processing by both genders.

  10. Repeated sugammadex reversal of muscle relaxation during lumbar spine surgery with intraoperative neurophysiological multimodal monitoring.

    PubMed

    Errando, C L; Blanco, T; Díaz-Cambronero, Ó

    2016-11-01

    Intraoperative neurophysiological monitoring during spine surgery is usually acomplished avoiding muscle relaxants. A case of intraoperative sugammadex partial reversal of the neuromuscular blockade allowing adequate monitoring during spine surgery is presented. A 38 year-old man was scheduled for discectomy and vertebral arthrodesis throughout anterior and posterior approaches. Anesthesia consisted of total intravenous anesthesia plus rocuronium. Intraoperatively monitoring was needed, and the muscle relaxant reverted twice with low dose sugammadex in order to obtain adequate responses. The doses of sugammadex used were conservatively selected (0.1mg/kg boluses increases, total dose needed 0.4mg/kg). Both motor evoqued potentials, and electromyographic responses were deemed adequate by the neurophysiologist. If muscle relaxation was needed in the context described, this approach could be useful to prevent neurological sequelae. This is the first study using very low dose sugammadex to reverse rocuronium intraoperatively and to re-establish the neuromuscular blockade. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Neurodevelopmental retardation, as assessed clinically and with magnetoencephalography and electroencephalography, associated with perinatal dioxin exposure.

    PubMed

    Ten Tusscher, G W; Leijs, M M; de Boer, L C C; Legler, J; Olie, K; Spekreijse, H; van Dijk, B W; Vulsma, T; Briët, J; Ilsen, A; Koppe, J G

    2014-09-01

    In 1980s Western Europe, human perinatal exposure to background levels of dioxins was rather high. We therefore evaluated the neurodevelopment of our cohort during the prepubertal period and in adolescence. At prepubertal age (7-12 years) 41 children were tested. Both neuromotor functioning and psychological testing were performed (Dutch version of the Wechsler Intelligence Scale for Children (WISC-R) and the Dutch version of the Child Behavior Checklist for ages 4-18 years (CBCL 4-18) and the Teacher Report Form (TRF)). Neurophysiological tests were performed using magnetoencephalography and electroencephalography. In adolescence (14-18 years) the behavior of 33 children was studied again (CBCL and TRF). And the levels of dioxins and dioxin-like PCBs (dl-PCBs) were measured in serum. At prepubertal age no association was found between perinatal dioxin exposure and verbal, performal and total IQ or with the Touwen's test for neuromotor development. There were behavioral problems associated with both prenatal and postnatal dioxin exposure. In adolescence there were problems associated with the current dioxin levels and dioxin-like-PCBs. Neurophysiological tests revealed clear negative dysfunction. An increase in latency time after a motion stimulus (N2b) of 13 ms (= a delay of 10%) is associated with the higher prenatal dioxin exposure. A similar delay was measured in testing cognitive ability by analyzing the odd ball measurements, N200 and P300, together with an amplitude decrease of 12 %. The delay is indicative of a defective myelinisation and the decrease in amplitude of a loss of neurons. We found effects on behavior in association with the perinatal dioxin exposure and in adolescence in association with the current dioxin levels. Neurophysiological testing is instrumental in the detection of effects of perinatal background levels of chemicals on brain development in normal, healthy children. The clinical, neurological and psychological tests commonly used are

  12. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents.

    PubMed

    Manjaly, Zina M; Bruning, Nicole; Neufang, Susanne; Stephan, Klaas E; Brieber, Sarah; Marshall, John C; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Fink, Gereon R

    2007-03-01

    Previous studies found normal or even superior performance of autistic patients on visuospatial tasks requiring local search, like the Embedded Figures Task (EFT). A well-known interpretation of this is "weak central coherence", i.e. autistic patients may show a reduced general ability to process information in its context and may therefore have a tendency to favour local over global aspects of information processing. An alternative view is that the local processing advantage in the EFT may result from a relative amplification of early perceptual processes which boosts processing of local stimulus properties but does not affect processing of global context. This study used functional magnetic resonance imaging (fMRI) in 12 autistic adolescents (9 Asperger and 3 high-functioning autistic patients) and 12 matched controls to help distinguish, on neurophysiological grounds, between these two accounts of EFT performance in autistic patients. Behaviourally, we found autistic individuals to be unimpaired during the EFT while they were significantly worse at performing a closely matched control task with minimal local search requirements. The fMRI results showed that activations specific for the local search aspects of the EFT were left-lateralised in parietal and premotor areas for the control group (as previously demonstrated for adults), whereas for the patients these activations were found in right primary visual cortex and bilateral extrastriate areas. These results suggest that enhanced local processing in early visual areas, as opposed to impaired processing of global context, is characteristic for performance of the EFT by autistic patients.

  13. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents

    PubMed Central

    Manjaly, Zina M.; Bruning, Nicole; Neufang, Susanne; Stephan, Klaas E.; Brieber, Sarah; Marshall, John C.; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Fink, Gereon R.

    2007-01-01

    Previous studies found normal or even superior performance of autistic patients on visuospatial tasks requiring local search, like the Embedded Figures Task (EFT). A well-known interpretation of this is “weak central coherence”, i.e. autistic patients may show a reduced general ability to process information in its context and may therefore have a tendency to favour local over global aspects of information processing. An alternative view is that the local processing advantage in the EFT may result from a relative amplification of early perceptual processes which boosts processing of local stimulus properties but does not affect processing of global context. This study used functional magnetic resonance imaging (fMRI) in 12 autistic adolescents (9 Asperger and 3 high-functioning autistic patients) and 12 matched controls to help distinguish, on neurophysiological grounds, between these two accounts of EFT performance in autistic patients. Behaviourally, we found autistic individuals to be unimpaired during the EFT while they were significantly worse at performing a closely matched control task with minimal local search requirements. The fMRI results showed that activations specific for the local search aspects of the EFT were left-lateralised in parietal and premotor areas for the control group (as previously demonstrated for adults), whereas for the patients these activations were found in right primary visual cortex and bilateral extrastriate areas. These results suggest that enhanced local processing in early visual areas, as opposed to impaired processing of global context, is characteristic for performance of the EFT by autistic patients. PMID:17240169

  14. Outcome of L5 radiculopathy after reduction and instrumented transforaminal lumbar interbody fusion of high-grade L5-S1 isthmic spondylolisthesis and the role of intraoperative neurophysiological monitoring.

    PubMed

    Schär, Ralph T; Sutter, Martin; Mannion, Anne F; Eggspühler, Andreas; Jeszenszky, Dezsö; Fekete, Tamas F; Kleinstück, Frank; Haschtmann, Daniel

    2017-03-01

    To evaluate the incidence and course of iatrogenic L5 radiculopathy after reduction and instrumented fusion of high-grade L5-S1 isthmic spondylolisthesis and the role of intraoperative neurophysiological monitoring (IONM). Consecutive patients treated for high-grade spondylolisthesis with IONM from 2005 to 2013 were screened for eligibility. Prospectively collected clinical and surgical data as well as radiographic outcomes were analyzed retrospectively. Patients completed the multidimensional Core Outcome Measures Index (COMI) before and at 3, 12, and 24 months after surgery. Seventeen patients were included, with a mean age of 26.3 (±9.5) years. Mean preoperative L5-S1 slip was 72% (±21%) and was reduced to 19% (±13%) postoperatively. Mean loss of reduction at last follow-up [mean 19 months (±14, range 3-48 months)] was 3% (±4.3%). Rate of new L5 radiculopathy with motor deficit (L5MD) after surgery was 29% (five patients). Four patients fully recovered after 3 months, one patient was lost to neurologic follow-up. IONM sensitivity and specificity for postoperative L5MD was 20 and 100%, respectively. COMI, back pain and leg pain scores showed significant (p < 0.001) improvements at 3 months postoperatively, which were retained up to 24 months postoperatively. Transient L5 radiculopathy after reduction and instrumented fusion of high-grade spondylolisthesis is frequent. With IONM the risk of irreversible L5 radiculopathy is minimal. If IONM signal changes recover, full clinical recovery is expected within 3 months. Overall, patient-reported outcome of reduction and instrumented fusion of high-grade spondylolisthesis showed clinically important improvement.

  15. Ten years single institutional experience of treatment for advanced hypopharyngeal cancer in Kyoto University.

    PubMed

    Hirano, Shigeru; Tateya, Ichiro; Kitamura, Morimasa; Kada, Shinpei; Ishikawa, Seiji; Kanda, Tomoko; Tanaka, Shinzo; Ito, Juichi

    2010-11-01

    Treatment of advanced hypopharyngeal cancer has become more conservative and more multidisciplinary, and the prognosis has been improved. Induction chemotherapy has the potential to extend organ preservation therapy even in cases with locally advanced primary lesion. It is also important to develop a strategy to reduce distant metastasis and to keep track of second primary cancers. To update the therapeutic outcome of advanced hypopharyngeal cancer. A total of 72 cases with stage III/IV hypopharyngeal cancer were treated at Kyoto University Hospital during 2000-2008. Surgery was performed in 56 cases; total pharyngolaryngoesophagectomy (TPLE) in 39 cases and partial pharyngectomy (PPX) preserving the larynx in 17 cases. Radiotherapy (RT) with or without concurrent chemotherapy was applied in 16 cases. Induction chemotherapy (ICT) has been applied for 14 cases since 2006 to achieve organ preservation and reduction of distant metastasis. The follow-up period varied from 12 months to 96 months (mean 32 months). Therapeutic outcomes were chart reviewed. Five years cumulative overall and disease-specific survival (DSS) rates were 52.1% and 63.8%, respectively. DSS rates in cases treated with surgery and those with RT were 65.1% and 56.1%, respectively. N2c status showed the worst prognosis according to nodal disease classification. Local control rates for cases treated with TPLE, PPX, and RT were 97.3%, 100%, and 80.4%, respectively. The effective rate of ICT was 79%, and laryngeal preservation was achieved in 79% of the cases with ICT. Recurrence occurred in 20 cases. Approximately half of the recurrence was distant disease. In the end, 17 cases died of the primary disease, while 10 cases died of other causes, mainly second primary cancers.

  16. Neurophysiological responses to music and vibroacoustic stimuli in Rett syndrome.

    PubMed

    Bergström-Isacsson, Märith; Lagerkvist, Bengt; Holck, Ulla; Gold, Christian

    2014-06-01

    People with Rett syndrome (RTT) have severe communicative difficulties. They have as well an immature brainstem that implies dysfunction of the autonomic nervous system. Music plays an important role in their life, is often used as a motivating tool in a variety of situations and activities, and caregivers are often clear about people with RTTs favourites. The aim of this study was to investigate physiological and emotional responses related to six different musical stimuli in people with RTT. The study included 29 participants with RTT who were referred to the Swedish Rett Center for medical brainstem assessment during the period 2006-2007. 11 children with a typical developmental pattern were used as comparison. A repeated measures design was used, and physiological data were collected from a neurophysiological brainstem assessment. The continuous dependent variables measured were Cardiac Vagal Tone (CVT), Cardiac Sensitivity to Baroreflex (CSB), Mean Arterial Blood Pressure (MAP) and the Coefficient of Variation of Mean Arterial Blood Pressure (MAP-CV). These parameters were used to categorise brainstem responses as parasympathetic (calming) response, sympathetic (activating) response, arousal (alerting) response and unclear response. The results showed that all participants responded to the musical stimuli, but not always in the expected way. It was noticeable that both people with and without RTT responded with an arousal to all musical stimuli to begin with. Even though the initial expressions sometimes changed after some time due to poor control functions of their brainstem, the present results are consistent with the possibility that the RTT participants' normal responses to music are intact. These findings may explain why music is so important for individuals with RTT throughout life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Combined bio-engineering and neurophysiological in vivo technologies allow studying rat brain metabolism and neuronal activities in vivo in real time

    NASA Astrophysics Data System (ADS)

    Crespi, F.; Donini, M.; Bandera, A.; Congestri, F.; Heidbreder, C.; Rovati, L.

    2006-04-01

    Franz Joebsis first used near infrared spectroscopy (NIRS) as a tool for the in vivo monitoring of tissue oxygenation. Today, NIRS instruments are more and more used in clinical environments since these systems are now easy to use, sensitive, robust, give rapid analysis and have multiple measuring points. In the present work, optic fibre probes were used as optical head of a CW-NIR instrument adapted for in vivo NIRS measurements in the brain of rodents. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO II) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. In the present experiments it was applied to measure non- invasively HbO II and Hb levels in the rat brain; that are markers of the degree of tissue oxygenation, thus providing an index of blood levels and therefore of brain metabolism. In addition, the same animals set for central NIRS studies, were also surgically prepared for electrophysiological monitoring of cell firing in discrete brain areas. These are raphe dorsalis nucleus, locus coeruleus, ventral tegmental area that are defined as main serotoninergic, noradrenergic and dopaminergic cell containing regions of the CNS and therefore involved in the major cerebral syndromes. Then, following a control recording period, exogenous oxygen (O2, 0.1bar, 2min) or carbon dioxide (CO2 0.1bar, 20min) was inflated orally. The data gathered indicate an original relationship between NIRS analysis of brain metabolism and electrical changes in three major nuclei of CNS involved in neurophysiologic and pathologic activities.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION, AUGUST 3, 2000 AT BNL, OCTOBER 14, 2000 AT KYOTO UNIVERSITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUNCE, G.; VIGDOR, S.

    2001-03-15

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international naturemore » of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce.« less

  19. Recent theoretical, neural, and clinical advances in sustained attention research.

    PubMed

    Fortenbaugh, Francesca C; DeGutis, Joseph; Esterman, Michael

    2017-05-01

    Models of attention often distinguish among attention subtypes, with classic models separating orienting, switching, and sustaining functions. Compared with other forms of attention, the neurophysiological basis of sustaining attention has received far less notice, yet it is known that momentary failures of sustained attention can have far-ranging negative effects in healthy individuals, and lasting sustained attention deficits are pervasive in clinical populations. In recent years, however, there has been increased interest in characterizing moment-to-moment fluctuations in sustained attention, in addition to the overall vigilance decrement, and understanding how these neurocognitive systems change over the life span and across various clinical populations. The use of novel neuroimaging paradigms and statistical approaches has allowed for better characterization of the neural networks supporting sustained attention and has highlighted dynamic interactions within and across multiple distributed networks that predict behavioral performance. These advances have also provided potential biomarkers to identify individuals with sustained attention deficits. These findings have led to new theoretical models explaining why sustaining focused attention is a challenge for individuals and form the basis for the next generation of sustained attention research, which seeks to accurately diagnose and develop theoretically driven treatments for sustained attention deficits that affect a variety of clinical populations. © 2017 New York Academy of Sciences.

  20. Recent theoretical, neural, and clinical advances in sustained attention research

    PubMed Central

    Fortenbaugh, Francesca C.; DeGutis, Joseph; Esterman, Michael

    2017-01-01

    Models of attention often distinguish between attention subtypes, with classic models separating orienting, switching, and sustaining functions. Compared to other forms of attention, the neurophysiological basis of sustaining attention has received far less attention yet it is known that momentary failures of sustained attention can have far ranging negative impacts in healthy individuals and lasting sustained attention deficits are pervasive in clinical populations. In recent years, however, there has been increased interest in characterizing moment-to-moment fluctuations in sustained attention in addition to the overall vigilance decrement and understanding how these neurocognitive systems change over the lifespan and across various clinical populations. The use of novel neuroimaging paradigms and statistical approaches has allowed for better characterization of the neural networks supporting sustained attention, and highlighted dynamic interactions within and across multiple distributed networks that predict behavioral performance. These advances have also provided potential biomarkers to identify individuals with sustained attention deficits. These findings have led to new theoretical models of why sustaining focused attention is a challenge for individuals and form the basis for the next generation of sustained attention research, which seeks to accurately diagnose and develop theoretically-driven treatments for sustained attention deficits that affect a variety of clinical populations. PMID:28260249

  1. Dysfunction in Fatty Acid Amide Hydrolase Is Associated with Depressive-Like Behavior in Wistar Kyoto Rats

    PubMed Central

    Vinod, K. Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L.; Cooper, Thomas B.; Tejani-Butt, Shanaz M.

    2012-01-01

    Background While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. Methodology/Principal Findings The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. Conclusions/Significance These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder. PMID:22606285

  2. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    PubMed

    Vinod, K Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L; Cooper, Thomas B; Tejani-Butt, Shanaz M

    2012-01-01

    While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  3. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions.

    PubMed

    Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji

    2016-08-09

    Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.

  4. God will forgive: reflecting on God’s love decreases neurophysiological responses to errors

    PubMed Central

    Inzlicht, Michael; Larson, Michael J.

    2015-01-01

    In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God’s love may be more effective, relative to God’s wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God’s love reduces our ability to detect and emotionally react to conflict between one’s behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God’s love vs punishment on the error-related negativity (ERN)—a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made ‘religious’ errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God’s love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God’s punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God’s love is prominent in the minds of believers. PMID:25062839

  5. Ethograms indicate stable well-being during prolonged training phases in rhesus monkeys used in neurophysiological research.

    PubMed

    Hage, Steffen R; Ott, Torben; Eiselt, Anne-Kathrin; Jacob, Simon N; Nieder, Andreas

    2014-01-01

    Awake, behaving rhesus monkeys are widely used in neurophysiological research. Neural signals are typically measured from monkeys trained with operant conditioning techniques to perform a variety of behavioral tasks in exchange for rewards. Over the past years, monkeys' psychological well-being during experimentation has become an increasingly important concern. We suggest objective criteria to explore whether training sessions during which the monkeys work under controlled water intake over many days might affect their behavior. With that aim, we analyzed a broad range of species-specific behaviors over several months ('ethogram') and used these ethograms as a proxy for the monkeys' well-being. Our results show that monkeys' behavior during training sessions is unaffected by the duration of training-free days in-between. Independently of the number of training-free days (two or nine days) with ad libitum food and water supply, the monkeys were equally active and alert in their home group cages during training phases. This indicates that the monkeys were well habituated to prolonged working schedules and that their well-being was stably ensured during the training sessions.

  6. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

    PubMed

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.

  7. Neurophysiological study on the effect of various short durations of deep breathing: A randomized controlled trial.

    PubMed

    Cheng, Kok Suen; Han, Ray P S; Lee, Poh Foong

    2018-02-01

    The study aims to study the effects of short duration deep breathing on the EEG power with topography based on parallel group randomized controlled trial design which was lacking in prior reports. 50 participants were split into 4 groups: control (CONT), deep breathing (DB) for 5 (DB5), 7 (DB7), and 9 (DB9) minutes. EEG recordings were obtained during baseline, deep breathing session, after deep breathing, and a follow-up session after 7 days of consecutive practice. Frontal theta power of DB5 and DB9 was significantly larger than that of CONT after the deep breathing session (p = 0.027 and p = 0.006, respectively) and the profound finding showed that the theta topography obtained a central-focused distribution for DB7 and DB9. The result obtained was consistent with previous literature, albeit for certain deep breathing durations only, indicating a possible linkage between the deep breathing duration and the neurophysiology of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios

    PubMed Central

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260

  9. Clinical presentation of neurocysticercosis-related epilepsy.

    PubMed

    Duque, Kevin R; Burneo, Jorge G

    2017-11-01

    Neurocysticercosis (NCC) is the most common parasitic infection of the central nervous system and a major risk factor for seizures and epilepsy. Seizure types in NCC vary largely across studies and seizure semiology is poorly understood. We discuss here the studies regarding seizure types and seizure semiology in NCC, and examine the clinical presentation in patients with NCC and drug-resistant epilepsy. We also provide evidence of the role of MRI and EEG in the diagnosis of NCC-related epilepsy. Focal seizures are reported in 60-90% of patients with NCC-related epilepsy, and around 90% of all seizures registered prospectively are focal not evolving to bilateral tonic-clonic seizures. A great number of cases suggest that seizure semiology is topographically related to NCC lesions. Patients with hippocampal sclerosis and NCC have different clinical and neurophysiological characteristics than those with hippocampal sclerosis alone. Different MRI protocols have allowed to better differentiate NCC from other etiologies. Lesions' stages might account on the chances of finding an interictal epileptiform discharge. Studies pursuing the seizure onset in patients with NCC are lacking and they are specially needed to determine both whether the reported events of individual cases are seizures, and whether they are related to the NCC lesion or lesions. This article is part of a Special Issue entitled "Neurocysticercosis and Epilepsy". Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Free will: reconciling German civil law with Libet's neurophysiological studies on the readiness potential.

    PubMed

    Kawohl, Wolfram; Habermeyer, Elmar

    2007-01-01

    The free will debate widely exceeds the neuroscientific and philosophical fields due to profound implications for legislation, case law and psychiatric expert opinion. Data from Benjamin Libet's experiments on the readiness potential have been used as an argument against personal responsibility and for changes in the law. Due to the explicit use of the term "free will" in German civil law, the psychiatrist as an expert witness is confronted with this debate. In this article we outline the role of this crucial term in German civil law and we describe the neurophysiologic challenge in the form of Libet's experiments, which is led on three levels: the correctness of the data, the impact on the question of whether free will exists and possible consequences for the law. We conclude that the problem of free will cannot be debated on the basis of the data provided by Libet's experiments and that doubts about the existence of a free will must not lead to changes in the law or in psychiatric expert testimony. Therefore, advice for the psychiatrist as an expert witness is offered on the basis of a psychopathological approach that takes into account cognitive and motivational preconditions and the structure of values and personality. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. Neurophysiological evidence of an association between cognitive control and defensive reactivity processes in young children.

    PubMed

    Lo, Sharon L; Schroder, Hans S; Moran, Tim P; Durbin, C Emily; Moser, Jason S

    2015-10-01

    Interactions between cognitive control and affective processes, such as defensive reactivity, are intimately involved in healthy and unhealthy human development. However, cognitive control and defensive reactivity processes are often studied in isolation and rarely examined in early childhood. To address these gaps, we examined the relationships between multiple neurophysiological measures of cognitive control and defensive reactivity in young children. Specifically, we assessed two event-related potentials thought to index cognitive control processes--the error-related negativity (ERN) and error positivity (Pe)--measured across two tasks, and two markers of defensive reactivity processes--startle reflex and resting parietal asymmetry--in a sample of 3- to 7-year old children. Results revealed that measures of cognitive control and defensive reactivity were related such that evidence of poor cognitive control (smaller ERN) was associated with high defensive reactivity (larger startle and greater right relative to left parietal activity). The strength of associations between the ERN and measures of defensive reactivity did not vary by age, providing evidence that poor cognitive control relates to greater defensive reactivity across early childhood years. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Clinical features of the myasthenic syndrome arising from mutations in GMPPB.

    PubMed

    Rodríguez Cruz, Pedro M; Belaya, Katsiaryna; Basiri, Keivan; Sedghi, Maryam; Farrugia, Maria Elena; Holton, Janice L; Liu, Wei Wei; Maxwell, Susan; Petty, Richard; Walls, Timothy J; Kennett, Robin; Pitt, Matthew; Sarkozy, Anna; Parton, Matt; Lochmüller, Hanns; Muntoni, Francesco; Palace, Jacqueline; Beeson, David

    2016-08-01

    Congenital myasthenic syndrome (CMS) due to mutations in GMPPB has recently been reported confirming the importance of glycosylation for the integrity of neuromuscular transmission. Review of case notes of patients with mutations in GMPPB to identify the associated clinical, neurophysiological, pathological and laboratory features. In addition, serum creatine kinase (CK) levels within the Oxford CMS cohort were retrospectively analysed to assess its usefulness in the differential diagnosis of this new entity. All patients had prominent limb-girdle weakness with minimal or absent craniobulbar manifestations. Presentation was delayed beyond infancy with proximal muscle weakness and most patients recall poor performance in sports during childhood. Neurophysiology showed abnormal neuromuscular transmission only in the affected muscles and myopathic changes. Muscle biopsy showed dystrophic features and reduced α-dystroglycan glycosylation. In addition, myopathic changes were present on muscle MRI. CK was significantly increased in serum compared to other CMS subtypes. Patients were responsive to pyridostigimine alone or combined with 3,4-diaminopyridine and/or salbutamol. Patients with GMPPB-CMS have phenotypic features aligned with CMS subtypes harbouring mutations within the early stages of the glycosylation pathway. Additional features shared with the dystroglycanopathies include myopathic features, raised CK levels and variable mild cognitive delay. This syndrome underlines that CMS can occur in the absence of classic myasthenic manifestations such as ptosis and ophthalmoplegia or facial weakness, and links myasthenic disorders with dystroglycanopathies. This report should facilitate the recognition of this disorder, which is likely to be underdiagnosed and can benefit from symptomatic treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Late adverse events after implantation of sirolimus-eluting stent and bare-metal stent: long-term (5-7 years) follow-up of the Coronary Revascularization Demonstrating Outcome study-Kyoto registry Cohort-2.

    PubMed

    Natsuaki, Masahiro; Morimoto, Takeshi; Furukawa, Yutaka; Nakagawa, Yoshihisa; Kadota, Kazushige; Yamaji, Kyohei; Ando, Kenji; Shizuta, Satoshi; Shiomi, Hiroki; Tada, Tomohisa; Tazaki, Junichi; Kato, Yoshihiro; Hayano, Mamoru; Abe, Mitsuru; Tamura, Takashi; Shirotani, Manabu; Miki, Shinji; Matsuda, Mitsuo; Takahashi, Mamoru; Ishii, Katsuhisa; Tanaka, Masaru; Aoyama, Takeshi; Doi, Osamu; Hattori, Ryuichi; Kato, Masayuki; Suwa, Satoru; Takizawa, Akinori; Takatsu, Yoshiki; Shinoda, Eiji; Eizawa, Hiroshi; Takeda, Teruki; Lee, Jong-Dae; Inoko, Moriaki; Ogawa, Hisao; Hamasaki, Shuichi; Horie, Minoru; Nohara, Ryuji; Kambara, Hirofumi; Fujiwara, Hisayoshi; Mitsudo, Kazuaki; Nobuyoshi, Masakiyo; Kita, Toru; Kimura, Takeshi

    2014-04-01

    Late adverse events such as very late stent thrombosis (VLST) or late target-lesion revascularization (TLR) after first-generation sirolimus-eluting stents (SES) implantation have not been yet fully characterized at long term in comparison with those after bare-metal stent (BMS) implantation. Among 13 058 consecutive patients undergoing first percutaneous coronary intervention in the Coronary REvascularization Demonstrating Outcome study-Kyoto registry Cohort-2, 5078 patients were treated with SES only, and 5392 patients were treated with BMS only. During 7-year follow-up, VLST and late TLR beyond 1 year after SES implantation occurred constantly and without attenuation at 0.24% per year and at 2.0% per year, respectively. Cumulative 7-year incidence of VLST was significantly higher in the SES group than that in the BMS group (1.43% versus 0.68%, P<0.0001). However, there was no excess of all-cause death beyond 1 year in the SES group as compared with that in the BMS group (20.8% versus 19.6%, P=0.91). Cumulative incidences of late TLR (both overall and clinically driven) were also significantly higher in the SES group than in the BMS group (12.0% versus 4.1%, P<0.0001 and 8.5% versus 2.6%, P<0.0001, respectively), leading to late catch-up of the SES group to the BMS group regarding TLR through the entire 7-year follow-up (18.8% versus 25.2%, and 10.6% versus 10.2%, respectively). Clinical presentation as acute coronary syndrome was more common at the time of late SES TLR compared with early SES TLR (21.2% and 10.0%). Late catch-up phenomenon regarding stent thrombosis and TLR was significantly more pronounced with SES than that with BMS. This limitation should remain the target for improvements of DES technology.

  14. 3D Analysis of Human Embryos and Fetuses Using Digitized Datasets From the Kyoto Collection.

    PubMed

    Takakuwa, Tetsuya

    2018-06-01

    Three-dimensional (3D) analysis of the human embryonic and early-fetal period has been performed using digitized datasets obtained from the Kyoto Collection, in which the digital datasets play a primary role in research. Datasets include magnetic resonance imaging (MRI) acquired with 1.5 T, 2.35 T, and 7 T magnet systems, phase-contrast X-ray computed tomography (CT), and digitized histological serial sections. Large, high-resolution datasets covering a broad range of developmental periods obtained with various methods of acquisition are key elements for the studies. The digital data have gross merits that enabled us to develop various analysis. Digital data analysis accelerated the speed of morphological observations using precise and improved methods by providing a suitable plane for a morphometric analysis from staged human embryos. Morphometric data are useful for quantitatively evaluating and demonstrating the features of development and for screening abnormal samples, which may be suggestive in the pathogenesis of congenital malformations. Morphometric data are also valuable for comparing sonographic data in a process known as "sonoembryology." The 3D coordinates of anatomical landmarks may be useful tools for analyzing the positional change of interesting landmarks and their relationships during development. Several dynamic events could be explained by differential growth using 3D coordinates. Moreover, 3D coordinates can be utilized in mathematical analysis as well as statistical analysis. The 3D analysis in our study may serve to provide accurate morphologic data, including the dynamics of embryonic structures related to developmental stages, which is required for insights into the dynamic and complex processes occurring during organogenesis. Anat Rec, 301:960-969, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Wistar-Kyoto rats as an animal model of anxiety vulnerability: support for a hypervigilance hypothesis.

    PubMed

    McAuley, J D; Stewart, A L; Webber, E S; Cromwell, H C; Servatius, R J; Pang, K C H

    2009-12-01

    Inbred Wistar-Kyoto (WKY) rats have been proposed as a model of anxiety vulnerability as they display behavioral inhibition and a constellation of learning and reactivity abnormalities relative to outbred Sprague-Dawley (SD) rats. Together, the behaviors of the WKY rat suggest a hypervigilant state that may contribute to its anxiety vulnerability. To test this hypothesis, open-field behavior, acoustic startle, pre-pulse inhibition and timing behavior were assessed in WKY and Sprague-Dawley (SD) rats. Timing behavior was evaluated using a modified version of the peak-interval timing procedure. Training and testing of timing first occurred without audio-visual (AV) interference. Following this initial test, AV interference was included on some trials. Overall, WKY rats took much longer to leave the center of the arena, made fewer line crossings, and reared less, than did SD rats. WKY rats showed much greater startle responses to acoustic stimuli and significantly greater pre-pulse inhibition than did the SD rats. During timing conditions without AV interference, timing accuracy for both strains was similar; peak times for WKY and SD rats were not different. During interference conditions, however, the timing behavior of the two strains was very different. Whereas peak times for SD rats were similar between non-interference and interference conditions, peak times for WKY rats were shorter and response rates higher in interference conditions than in non-interference conditions. The enhanced acoustic startle response, greater prepulse inhibition and altered timing behavior with audio-visual interference supports a characterization of WKY strain as hypervigilant and provides further evidence for the use of the WKY strain as a model of anxiety vulnerability.

  16. The Kyoto protocol and payments for tropical forest: An interdisciplinary method for estimating carbon-offset supply and increasing the feasibility of a carbon market under the CDM

    USGS Publications Warehouse

    Pfaff, Alexander S.P.; Kerr, Suzi; Hughes, R. Flint; Liu, Shuguang; Sanchez-Azofeifa, G. Arturo; Schimel, David; Tosi, Joseph; Watson, Vicente

    2000-01-01

    Protecting tropical forests under the Clean Development Mechanism (CDM) could reduce the cost of emissions limitations set in Kyoto. However, while society must soon decide whether or not to use tropical forest-based offsets, evidence regarding tropical carbon sinks is sparse. This paper presents a general method for constructing an integrated model (based on detailed historical, remote sensing and field data) that can produce land-use and carbon baselines, predict carbon sequestration supply to a carbon-offsets market and also help to evaluate optimal market rules. Creating such integrated models requires close collaboration between social and natural scientists. Our project combines varied disciplinary expertise (in economics, ecology and geography) with local knowledge in order to create high-quality, empirically grounded, integrated models for Costa Rica.

  17. Neurofascin-155 IGG4 Neuropathy: Pathophysiological Insights, Spectrum of Clinical Severity and Response To treatment.

    PubMed

    Garg, Nidhi; Park, Susanna B; Yiannikas, Con; Vucic, Steve; Howells, James; Noto, Yu-Ichi; Mathey, Emily K; Pollard, John D; Kiernan, Matthew C

    2018-05-01

    Sensorimotor neuropathy associated with IgG4 antibodies to neurofascin-155 (NF155) was recently described. The clinical phenotype is typically associated with young onset, distal weakness, and in some cases, tremor. From a consecutive cohort of 55 patients diagnosed with chronic inflammatory demyelinating polyneuropathy, screening for anti-NF155 antibodies was undertaken. Patients underwent clinical assessment, diagnostic neurophysiology, including peripheral axonal excitability studies and nerve ultrasound. Three of 55 chronic inflammatory demyelinating polyneuropathy patients (5%) tested positive for anti-NF155 IgG4. Patients presenting with more severe disease had higher antibody titers. Ultrasound demonstrated diffuse nerve enlargement. Axonal excitability studies were markedly abnormal, with subsequent mathematical modeling of the results supporting disruption of the paranodal seal. A broad spectrum of disease severity and treatment response may be observed in anti-NF155 neuropathy. Excitability studies support the pathogenic role of anti-NF155 IgG4 antibodies targeting the paranodal region. Muscle Nerve 57: 848-851, 2018. © 2017 Wiley Periodicals, Inc.

  18. Chronic cannabis users show altered neurophysiological functioning on Stroop task conflict resolution.

    PubMed

    Battisti, Robert A; Roodenrys, Steven; Johnstone, Stuart J; Pesa, Nicole; Hermens, Daniel F; Solowij, Nadia

    2010-12-01

    Chronic cannabis use has been related to deficits in cognition (particularly memory) and the normal functioning of brain structures sensitive to cannabinoids. There is increasing evidence that conflict monitoring and resolution processes (i.e. the ability to detect and respond to change) may be affected. This study examined the ability to inhibit an automatic reading response in order to activate a more difficult naming response (i.e. conflict resolution) in a variant of the discrete trial Stroop colour-naming task. Event-related brain potentials to neutral, congruent and incongruent trials were compared between 21 cannabis users (mean 16.4 years of near daily use) in the unintoxicated state and 19 non-using controls. Cannabis users showed increased errors on colour-incongruent trials (e.g. "RED" printed in blue ink) but no performance differences from controls on colour congruent (e.g. "RED" printed in red ink) or neutral trials (e.g. "*****" printed in green ink). Poorer incongruent trial performance was predicted by an earlier age of onset of regular cannabis use. Users showed altered expression of a late sustained potential related to conflict resolution, evident by opposite patterns of activity between trial types at midline and central sites, and altered relationships between neurophysiological and behavioural outcome measures not evident in the control group. These findings indicate that chronic use of cannabis may impair the brain's ability to respond optimally in the presence of events that require conflict resolution and hold implications for the ability to refrain from substance misuse and/or maintain substance abstention behaviours.

  19. [Passive tactile stimulation and its clinical and neurophysiological repercussions (P300) in blind children with symptoms of attention deficit disorder].

    PubMed

    Serrano-Marugán, Isabel; Herrera, Begoña; Romero, Sara; Nogales, Ramón; Poch-Broto, Joaquín; Quintero, Javier; Ortiz, Tomás

    2014-02-24

    Tactile stimulation is key for the posterior brain re-organization activity and attention processes, however the impact of tactile stimulation on attention deficit disorder (ADD) in blind children remains unexplored. We carried out a study with children having or not ADD (four per group). The subjects have been exposed during six months to tactile stimulation protocol consisting in two daily sessions (morning and afternoon sessions) of 30 minutes each. We have measured the ability to detect an infrequent tactile stimulus, reaction time, latency of P300, sources of brain activity, and ADD clinical symptoms, before and after tactile training. Passive tactile stimulation significantly improves ADD clinical symptoms, particularly attention, behavior and self-control of involuntary movements and tics. In addition, tactile stimulation changes the pattern of brain activity in ADD blind children inducing activity in frontal and occipital areas, which could be associated to a compensation of the attention deficit. Passive tactile stimulation training may improve ADD clinical symptoms and can reorganize the pattern of brain activity in blind ADD children.

  20. Neurophysiological Outcomes of mTBI

    DTIC Science & Technology

    2017-03-28

    position : an experimental approach to timing and working memory deficits in schizophrenia. Journal of abnormal psychology . 2004 Nov; 113(4 ):509 . Gilaie...clinical boys with hyperactive behavior: the effect of methylphenidate on motor timing. Journal of abnormal child psychology . 2003 Jun 1 ;31 (3) :301-13...disorder (ADHD). Journal of abnormal child psychology . 2005 Oct 1 ;33(5):639-54. Toplak ME, Ruckl idge JJ , Hetherington R, John SC, Tannock R. Time