Science.gov

Sample records for closed field unbalanced

  1. Unbalanced field RF electron gun

    DOEpatents

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  2. High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system

    NASA Technical Reports Server (NTRS)

    Sproul, William D.; Rudnik, Paul J.; Graham, Michael E.; Rohde, Suzanne L.

    1990-01-01

    Attention is given to an opposed cathode sputtering system constructed with the ability to coat parts with a size up to 15 cm in diameter and 30 cm in length. Initial trials with this system revealed very low substrate bias currents. When the AlNiCo magnets in the two opposed cathodes were arranged in a mirrored configuration, the plasma density at the substrate was low, and the substrate bias current density was less than 1 mA/sq cm. If the magnets were arranged in a closed-field configuration where the field lines from one set of magnets were coupled with the other set, the substrate bias current density was as high as 5.7 mA/sq cm when NdFeB magnets were used. In the closed-field configuration, the substrate bias current density was related to the magnetic field strength between the two cathodes and to the sputtering pressure. Hard well-adhered TiN coatings were reactively sputtered in the opposed cathode system in the closed-field configuration, but the mirrored configuration produced films with poor adhesion because of etching problems and low plasma density at the substrate.

  3. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface. PMID:20355462

  4. Composition, structure and properties of SiN x films fabricated by pulsed reactive closed-field unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yao, Zh. Q.; Yang, P.; Huang, N.; Sun, H.; Wan, G. J.; Leng, Y. X.; Chen, J. Y.

    2005-11-01

    Silicon nitride (SiNx) thin films are of special interest in both scientific research and industrial applications due to their remarkable properties such as high thermal stability, chemical inertness, high hardness and good dielectric properties. In this work, SiNx films were fabricated by pulsed reactive closed-field unbalanced magnetron sputtering of high purity single crystal silicon targets in an Ar-N2 mixture. The effect of N2 partial pressure on the film composition, chemical bonding configurations, surface morphology, surface free energy, optical and mechanical properties were investigated. We showed that with increased N2 partial pressure, the N to Si ratio (N/Si) in the film increased and N atoms are preferentially incorporated in the NSi3 stoichiometric configuration. It leads the Si-N network a tendency to chemical order. Films deposited at a high N2 fraction were consistently N-rich. The film surface transformed from a loose granular structure with microporosity to a homogeneous, continuous, smooth and dense structure. A progressive densification of the film microstructure occurs as the N2 fraction is increased. The reduced surface roughness and the increased N incorporation in the film give rise to the increased contact angle with double-distilled water from 24° to 49.6°. To some extent, the SiNx films deposited by pulsed magnetron sputtering are hydrophilic in nature. The as-deposited SiNx films exhibit good optical transparency in the visible region and the optical band gap Eopt can be varied from 1.68 eV for a-Si to 3.62 eV for SiNx films, depending on the synthesis parameters. With the increase of the N/Si atomic ratio, wear resistance of the SiNx films was improved, a consequence of increased hardness and elastic modulus. The SiNx films have lower friction coefficient and better wear resistance than 316L stainless steel under dry sliding friction, where the SiNx films experienced only fatigue wear.

  5. Aluminium nitride piezoelectric thin films reactively deposited in closed field unbalanced magnetron sputtering for elevated temperature 'smart' tribological applications

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood

    "Smart" high temperature piezoelectric aluminum nitride (AlN) thin films were synthesized by reactive magnetron sputtering using DC; pulsed-DC, and deep oscillation modulated pulsed power (DOMPP) systems on variety of substrate materials. Process optimization was performed to obtain highly c-axis texture films with improved piezoelectric response via studying the interplay between process parameters, microstructure and properties. AlN thin films were sputtered with DC and pulsed-DC systems to investigate the effect of various deposition parameters such as reactive gas ratio, working pressure, target power, pulsing frequency, substrate bias, substrate heating and seed layers on the properties and performance of the film device. The c-axis texture, orientation, microstructure, and chemical composition of AlN films were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. Thin films with narrow AlN-(002) rocking curve of 2.5° were obtained with preliminary studies of DOMPP reactive sputtering. In-situ high temperature XRD showed excellent thermal stability and oxidation resistance of AlN films up to 1000 °C. AlN films with optimized processing parameters yielded an inverse piezoelectric coefficient, d33 of 4.9 pm/V close to 90 percent of its theoretical value.

  6. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    NASA Astrophysics Data System (ADS)

    Shi, Yongjing; Long, Siyuan; Yang, Shicai; Pan, Fusheng

    2008-09-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2. The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS).

  7. Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process.

    PubMed

    Yi, Peiyun; Peng, Linfa; Huang, Jiaqiang

    2016-02-01

    Ti6Al4V alloy has been widely used as a suitable material for surgical implants such as artificial hip joints. In this study, a series of multilayered gradient TiAlN coatings were deposited on Ti6Al4V substrate using closed field unbalanced magnetron sputter ion plating (CFUBMSIP) process. Taguchi design of experiment approach was used to reveal the influence of depositing parameters to the film composition and performance of TiAlN coatings. The phase structure and chemical composition of the TiAlN films were characterized by X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). Mechanical properties, including hardness, Young's modulus, friction coefficient, wear rate and adhesion strength were systematically evaluated. Potentiodynamic tests were conducted to evaluate the corrosion resistance of the coated samples in Ringer's solution at 37°C to simulate human body environment. Comprehensive performance of TiAlN films was evaluated by assigning different weight according to the application environment. S8, deposited by Ti target current of 8A, Al target current of 6A, bias voltage of -60V and nitrogen content with OEM (optical emission monitor) value of 45%, was found to achieve best performance in orthogonal experiments. Depositing parameters of S8 might be practically applied for commercialization of surgical implants. PMID:26652421

  8. Microstructure, Mechanical, and Scratch Resistance Properties of TiAlCrNbN-Graded Composite Coating Deposited on AISI H13 Steel Substrate with Pulsed DC Closed Field Unbalanced Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Kara, Levent; Küçükömeroğlu, Tevfik; Baran, Özlem; Efeoğlu, İhsan; Yamamoto, Kenji

    2014-04-01

    Structure and adhesion properties of TiAlCrNbN coatings were investigated. These coatings were deposited onto AISI H13 steel substrate using pulsed dc closed field unbalanced magnetron sputtering at different deposition parameters including duty cycle, bias voltage, and working pressure. The coatings have been characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The TiAlCrNbN-graded composite coatings have a dense and columnar structure. The X-ray diffraction patterns of coatings exhibited predominantly c-TiAlCrN, h-NbN, and h-TiAlN reflections. Scratch resistance test showed that the highest adhesion strength was attained as 68 N at 2.5 μs duty time, 100 V bias voltages, and 3 × 10-3 Torr deposition parameters. The lowest adhesion strength was obtained as 55 N at 0.5 μs duty time, 50V bias voltage, and 2 × 10-3 Torr deposition parameters.

  9. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen. PMID:20355470

  10. Closed string field theory from polyhedra

    NASA Astrophysics Data System (ADS)

    Saadi, Maha; Zwiebach, Barton

    1989-05-01

    A fully nonpolynomial framework for closed string field theory is studied. All interactions are geometrical, the pattern of string overlaps gives polyhedra with equal perimeter faces and three edges at each vertex. All interactions are cubic in the sense that at most three strings can coincide at a point. The three point vertex used is that of Witten which is seen to be quite natural in the framework of quadratic differentials and to induce a very symmetric decomposition of moduli space.

  11. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, James W.

    1998-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  12. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1998-03-03

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units. 12 figs.

  13. Closed-field capacitive liquid level sensor

    DOEpatents

    Kronberg, J.W.

    1995-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  14. Quantum fields on closed timelike curves

    SciTech Connect

    Pienaar, J. L.; Myers, C. R.; Ralph, T. C.

    2011-12-15

    Recently, there has been much interest in the evolution of quantum particles on closed timelike curves (CTCs). However, such models typically assume pointlike particles with only two degrees of freedom; a very questionable assumption given the relativistic setting of the problem. We show that it is possible to generalize the Deutsch model of CTCs to fields using the equivalent circuit formalism. We give examples for coherent, squeezed, and single-photon states interacting with the CTC via a beamsplitter. The model is then generalized further to account for the smooth transition to normal quantum mechanics as the CTC becomes much smaller than the size of the modes interacting on it. In this limit, we find that the system behaves like a standard quantum-mechanical feedback loop.

  15. Effects of an unbalanced magnetron in a unique dual-cathode, high rate reactive sputtering system

    NASA Technical Reports Server (NTRS)

    Rohde, S. L.; Petrov, I.; Sproul, W. D.; Barnett, S. A.; Rudnik, P. J.; Graham, M. E.

    1990-01-01

    Simple plasma and magnetic field measurements are presented to illustrate the opportunities afforded by using unbalanced magnetrons in a dual-cathode system. The system employs a pair of opposed cathodes, 38 cm x 13 cm, placed 27.5 cm apart, to coat specimens mounted on a rotational substrate holder. Comparisons are drawn between the original 'balanced' magnetron and several unbalanced configurations in terms of field strengths, deposition rates, etching characteristics, and substrate ion current densities for the growth of TiN films. The effects of 'unbalancing' on the nature of the plasma within the 3D geometry of the deposition chamber are elucidated via plasma probe and magnetic field studies performed under a variety of conditions. All the unbalanced configurations examined provided enhanced ion bombardment at the surface of the growing film. The closed-field or opposed magnet geometry resulted in a threefold or greater increase in current density when compared with that obtained using the corresponding mirrored geometry under the same conditions.

  16. Closed string cohomology in open string field theory

    NASA Astrophysics Data System (ADS)

    Moeller, Nicolas; Sachs, Ivo

    2011-07-01

    We show that closed string states in bosonic string field theory are encoded in the cyclic cohomology of cubic open string field theory (OSFT) which, in turn, classifies the deformations of OSFT. This cohomology is then shown to be independent of the open string background. Exact elements correspond to closed string gauge transformations, generic boundary deformations of Witten's 3-vertex and infinitesimal shifts of the open string background. Finally it is argued that the closed string cohomology and the cyclic cohomology of OSFT are isomorphic to each other.

  17. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  18. NS-NS sector of closed superstring field theory

    NASA Astrophysics Data System (ADS)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo

    2014-08-01

    We give a construction for a general class of vertices in superstring field theory which include integration over bosonic moduli as well as the required picture changing insertions. We apply this procedure to find a covariant action for the NS-NS sector of Type II closed superstring field theory.

  19. Unbalanced translocation (1;7) in childhood myelodysplasia.

    PubMed

    Horsman, D E; Massing, B G; Chan, K W; Kalousek, D K

    1988-03-01

    We have identified an unusual pediatric patient among twelve patients with myelodysplasia and an unbalanced translocation involving chromosomes 1 and 7: -7, +der(1)t(1;7)(p11;p11). This 16-year-old male patient developed myelodysplasia and evolving acute leukemia, which were preceded by a 7-year history of marrow hypoplasia. The remaining patients were adults with clinical and hematologic findings similar to other reported cases with this chromosomal abnormality. The late appearance of this unbalanced clonal abnormality in this patient with marrow hypoplasia documents the importance of close cytogenetic follow-up of all patients with suspected bone marrow injury. PMID:3348202

  20. Closed expressions for the magnetic field of toroidal multipole configurations

    SciTech Connect

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration.

  1. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  2. Computation of unbalanced radial force in permanent magnet motors

    SciTech Connect

    Salon, S.J.; Howe, M.; Slavik, C.J.; DeBortoli, M.J.; Nevins, R.J.

    1998-10-01

    Nonuniformity in magnet strength in permanent magnet motors results in a vibration-inducing unbalanced force acting on the rotor. This force is the difference of two large numbers and as such is difficult to determine precisely with numerical models. In this paper, a permanent magnet motor with unbalanced magnets is analyzed by the finite element method. Three different techniques for computing the net force on the rotor, including a recently developed field-correction approach, are compared. Sensitivities of the techniques to computational limitations and finite element mesh characteristics are discussed.

  3. Hamiltonian description of closed configurations of the vacuum magnetic field

    SciTech Connect

    Skovoroda, A. A.

    2015-05-15

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov’ev, and V.D. Shafranov.

  4. Hamiltonian description of closed configurations of the vacuum magnetic field

    NASA Astrophysics Data System (ADS)

    Skovoroda, A. A.

    2015-05-01

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov'ev, and V.D. Shafranov.

  5. Quantum field theory in spaces with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Boulware, David G.

    1992-11-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  6. Stoked nondynamos: sustaining field in magnetically non-closed systems

    NASA Astrophysics Data System (ADS)

    Byington, B. M.; Brummell, N. H.; Stone, J. M.; Gough, D. O.

    2014-08-01

    Much effort has gone into identifying and classifying systems that might be capable of dynamo action, i.e. capable of generating and sustaining magnetic field indefinitely against dissipative effects in a conducting fluid. However, it is difficult, if not almost technically impossible, to derive a method of determining in both an absolutely conclusive and a pragmatic manner whether a system is a dynamo or not in the nonlinear regime. This problem has generally been examined only for closed systems, despite the fact that most realistic situations of interest are not strictly closed. Here we examine the even more complex problem of whether a known nondynamo closed system can be distinguished pragmatically from a true dynamo when a small input of magnetic field to the system is allowed. We call such systems ‘stoked nondynamos’ owing to the ‘stoking’ or augmentation of the magnetic field in the system. It may seem obvious that magnetic energy can be sustained in such systems since there is an external source, but crucial questions remain regarding what level is maintained and whether such nondynamo systems can be distinguished from a true dynamo. In this paper, we perform 3D nonlinear numerical simulations with time-dependent ABC forcing possessing known dynamo properties. We find that magnetic field can indeed be maintained at a significant stationary level when stoking a system that is a nondynamo when not stoked. The maintained state results generally from an eventual rough balance of the rates of input and decay of magnetic field. We find that the relevance of this state is dictated by a parameter κ representing the correlation of the resultant field with the stoking forcing function. The interesting regime is where κ is small but non-zero, as this represents a middle ground between a state where the stoking has no effect on the pre-existing nondynamo properties and a state where the effect of stoking is easily detectable. We find that in this regime, (a

  7. The electric field close to an undulating interface

    NASA Astrophysics Data System (ADS)

    Kallunki, Jouni; Alava, Mikko; Hellén, E. K. O.

    2006-07-01

    The electric potential close to a boundary between two dielectric material layers reflects the geometry of such an interface. The local variations arise from the combination of material parameters and from the nature of the inhomogeneity. Here, the arising electric field is considered for both a sinusoidally varying boundary and for a "rough," Gaussian test case. We discuss the applicability of a one-dimensional model with the varying layer thickness as a parameter and the generic scaling of the results. As an application we consider the effect of paper roughness on toner transfer in electrophotographic printing.

  8. Electrons on closed field lines of lunar crustal fields in the solar wind wake

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Fujimoto, Masaki; Harada, Yuki; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2015-04-01

    Plasma signature around crustal magnetic fields is one of the most important topics of the lunar plasma sciences. Although recent spacecraft measurements are revealing solar-wind interaction with the lunar crustal fields on the dayside, plasma signatures around crustal fields on the night side have not been fully studied yet. Here we show evidence of plasma trapping on the closed field lines of the lunar crustal fields in the solar-wind wake, using SELENE (Kaguya) plasma and magnetic field data obtained at 14-15 km altitude from the lunar surface. In contrast to expectation on plasma cavity formation at the strong crustal fields, electron flux is enhanced above Crisium Antipode (CA) anomaly which is one of the strongest lunar crustal fields. The enhanced electron fluxes above CA are characterised by (1) occasional bi-directional field-aligned beams in the lower energy range (<150 eV) and (2) a medium energy component (150-300 eV) that has a double loss-cone distribution representing bounce motion between the two footprints of the crustal magnetic fields. The low-energy electrons on the closed field lines may come from the lunar night side surface, while supply mechanism of medium-energy electrons on the closed field line remains to be solved. We also report that a density cavity in the wake is observed not above the strongest magnetic field but in its vicinity.

  9. Electrons on closed field lines of lunar crustal fields in the solar wind wake

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Fujimoto, Masaki; Harada, Yuki; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2015-04-01

    Plasma signature around crustal magnetic fields is one of the most important topics of the lunar plasma sciences. Although recent spacecraft measurements are revealing solar-wind interaction with the lunar crustal fields on the dayside, plasma signatures around crustal fields on the night side have not been fully studied yet. Here we show evidence of plasma trapping on the closed field lines of the lunar crustal fields in the solar-wind wake, using SELENE (Kaguya) plasma and magnetic field data obtained at 14-15 km altitude from the lunar surface. In contrast to expectation on plasma cavity formation at the strong crustal fields, electron flux is enhanced above Crisium Antipode (CA) anomaly which is one of the strongest lunar crustal fields. The enhanced electron fluxes above CA are characterised by (1) occasional bi-directional field-aligned beams in the lower energy range (< 150 eV) and (2) a medium energy component (150-300 eV) that has a double loss-cone distribution representing bounce motion between the two footprints of the crustal magnetic fields. The low-energy electrons on the closed field lines may come from the lunar night side surface, while supply mechanism of medium-energy electrons on the closed field line remains to be solved. We also report that a density cavity in the wake is observed not above the strongest magnetic field but in its vicinity.

  10. Electrons on closed field lines of lunar crustal fields in the solar wind wake

    NASA Astrophysics Data System (ADS)

    Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Takahashi, F.; Fujimoto, M.; Yokota, S.; Harada, Y.; Matsushima, M.; Shibuya, H.; Shimizu, H.

    2014-12-01

    Plasma signature around crustal magnetic fields is one of the most important topics of the lunar plasma sciences. Although recent spacecraft measurements are revealing solar-wind interaction with the lunar crustal fields on the dayside, plasma signatures around crustal fields on the night side have not been fully studied yet. Here we show evidence of plasma trapping on the closed field lines of the lunar crustal fields in the solar-wind wake, using SELENE (Kaguya) plasma and magnetic field data obtained at 14-15 km altitude from the lunar surface. In contrast to expectation on plasma cavity formation at the strong crustal fields, electron flux is enhanced over Crisium Antipode (CA) anomaly which is one of the strongest lunar crustal fields. The enhanced electron fluxes over the CA anomaly are characterised by (1) occasional bi-directional field-aligned beams in the lower energy range (< 150 eV) and (2) a medium energy component (150-300 eV) that has a double loss-cone distribution that represents bounce motion between the two footprints of the crustal magnetic fields. The low-energy electrons on the closed field lines may come from the lunar night side surface, while supply mechanism of medium-energy electrons on the closed field line remains to be solved. We also report that a density cavity in the wake is observed not above the strongest magnetic field but in its vicinity.

  11. A vector-free ECG interpretation with P, QRS & T waves as unbalanced transitions between stable configurations of the heart electric field during P-R, S-T & T-P segments.

    PubMed

    Kurbel, Sven

    2014-01-01

    Since cell membranes are weak sources of electrostatic fields, this ECG interpretation relies on the analogy between cells and electrets. It is here assumed that cell-bound electric fields unite, reach the body surface and the surrounding space and form the thoracic electric field that consists from two concentric structures: the thoracic wall and the heart. If ECG leads measure differences in electric potentials between skin electrodes, they give scalar values that define position of the electric field center along each lead. Repolarised heart muscle acts as a stable positive electric source, while depolarized heart muscle produces much weaker negative electric field. During T-P, P-R and S-T segments electric field is stable, only subtle changes are detectable by skin electrodes.Diastolic electric field forms after ventricular depolarization (T-P segments in the ECG recording). Telediastolic electric field forms after the atria have been depolarized (P-Q segments in the ECG recording). Systolic electric field forms after the ventricular depolarization (S-T segments in the ECG recording). The three ECG waves (P, QRS and T) can then be described as unbalanced transitions of the heart electric field from one stable configuration to the next and in that process the electric field center is temporarily displaced. In the initial phase of QRS, the rapidly diminishing septal electric field makes measured potentials dependent only on positive charges of the corresponding parts of the left and the right heart that lie within the lead axes. If more positive charges are near the "DOWN" electrode than near the "UP" electrode, a Q wave will be seen, otherwise an R wave is expected. Repolarization of the ventricular muscle is dampened by the early septal muscle repolarization that reduces deflection of T waves. Since the "UP" electrode of most leads is near the usually larger left ventricle muscle, T waves are in these leads positive, although of smaller amplitude and longer

  12. Analysis on the roundness of bulb turbine generator based on the unbalanced magnetic

    NASA Astrophysics Data System (ADS)

    Li, Z. G.; Yang, F. Y.; Chen, J. H.; Si, G. L.

    2012-11-01

    Because of design, manufacture, installation and operation, there are some relatively eccentric in bulb tubular turbine units under operating condition. It easily caused uneven air gap, unbalanced magnetic field, unbalanced magnetic pull and torque. It could also increase the bending and torsion vibration of generator,at the same time, the roundness of stator and rotor would be aggravated which often caused by accidents such as generator sweep chamber. In this paper, basing on the design, installation and operation experience, the reasons of the unbalanced magnetic pull, mechanism and operation research were analyzed by theoretical calculation and the prototype test.

  13. Anomalies in non-polynomial closed string field theory

    NASA Astrophysics Data System (ADS)

    Kaku, Michio

    1990-11-01

    The complete classical action for the non-polynomial closed string field theory was written down last year by the author and the Kyoto group. It successfully reproduces all closed string tree diagrams, but fails to reproduce modular invariant loop amplitudes. In this paper we show that the classical action is also riddled with gauge anomalies. Thus, the classical action is not really gauge invariant and fails as a quantum theory. The presence of gauge anomalies and the violation of modular invariance appear to be a disaster for the theory. Actually, this is a blessing in disguise. We show that by adding new non-polynomial terms to the action, we can simultaneously eliminate both the gauge anomalies and the modular-violating loop diagrams. We show this explicitly at the one loop level and also for an infinite class of p-puncture, genus- g amplitudes, making use of a series of non-trivial identities. The theory is thus an acceptable quantum theory. We comment on the origin of this strange link between local gauge anomalies and global modular invariance.

  14. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  15. Dynamics of the Open Closed Field Line Boundary

    NASA Astrophysics Data System (ADS)

    Spanswick, E.; Roy, E.; Nishimura, T.; Unick, C.; Jackel, B. J.; Donovan, E.

    2015-12-01

    In most cases, large-scale features of the auroral distribution are the projection, along magnetic field lines, of corresponding magnetospheric features. The poleward boundary of the oval is a key example of such a feature. At almost all local times, this is most often interpreted as the ionospheric marker of the latitudinal transition between open lobe and closed central plasma sheet field lines. Earlier work by Blanchard et al. [J. Geophys. Res., 1995 & 1997] used ground-based photometric observations of 630 nm "redline" aurora and in situ particle observations from simultaneous DMSP overflights to demonstrate that the poleward boundary of the redline aurora is a particularly robust signature of the poleward boundary of the plasma sheet. Owing to the orbits of the DMSP spacecraft and the relative newness of the photometer program (CANOPUS) that provided the optical observations, the Blanchard results represent a limited sampling of magnetic local time and a limited number of events. In this paper we revisit the Blanchard et al study, using particle data from the NASA FAST satellite and the DMSP program, together with redline observations obtained by ground-based All-Sky Imagers. Our results indicate that the Blanchard technique for identifying the polar cap boundary holds true for essentially all magnetic local times on the night side, but that the picture is more nuanced than previously appreciated. Here we present these results, and discuss specific examples where the technique does not work (and explore why). Furthermore, this work is motivated by a new extensive network of highly sensitive redline imagers that has been deployed across northern and central Canada which provides high time resolution large-scale snapshots of the instantaneous polar cap boundary. This in turn enables us to explore magnetospheric dynamics at the interface between the lobe and central plasma sheet in fundamentally new and exciting ways.

  16. Closed Field Coronal Heating Models Inspired by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M. M.

    2013-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence dissipation (WTD) phenomenology for the heating of closed coronal loops. To do so, we employ an implementation of non-WKB equations designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an idealized loop, and the relevance to a range of solar conditions is established by computing solutions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing realistic heating scale heights and thermal non-equilibrium cycles is discussed, and preliminary 3D thermodynamic MHD simulations using this formulation are presented. Research supported by NASA and NSF.

  17. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    SciTech Connect

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-12-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The ordered

  18. The motion of closed hypersurfaces in the central force fields

    NASA Astrophysics Data System (ADS)

    Yan, Weiping

    2016-08-01

    This paper studies the large time existence for the motion of closed hypersurfaces in a radially symmetric potential. Physically, this surface can be considered as an electrically charged membrane with a constant charge per area in a radially symmetric potential. The evolution of such surface has been investigated by Schnürer and Smoczyk [20]. To study its motion, we introduce a quasi-linear degenerate hyperbolic equation which describes the motion of the surfaces extrinsically. Our main results show the large time existence of such Cauchy problem and the stability with respect to small initial data. When the radially symmetric potential function v ≡ 1, the local existence and stability results have been obtained by Notz [18]. The proof is based on a new Nash-Moser iteration scheme.

  19. Influence of strike object grounding on close lightning electric fields

    NASA Astrophysics Data System (ADS)

    Baba, Yoshihiro; Rakov, Vladimir A.

    2008-06-01

    Using the finite difference time domain (FDTD) method, we have calculated vertical electric field Ez, horizontal (radial) electric field Eh, and azimuthal magnetic field Hϕ produced on the ground surface by lightning strikes to 160-m- and a 553-m-high conical strike objects representing the Peissenberg tower (Germany) and the CN Tower (Canada), respectively. The fields were computed for a typical subsequent stroke at distances d' from the bottom of the object ranging from 5 to 100 m for the 160-m tower and from 10 to 300 m for the 553-m tower. Grounding of the 160-m object was assumed to be accomplished by its underground basement represented by a 10-m-radius and 8-m-long perfectly conducting cylinder with or without a reference ground plane located 2 m below. The reference ground plane simulates, to some extent, a higher-conducting ground layer that is expected to exist below the water table. The configuration without reference ground plane actually means that this plane is present, but is located at an infinitely large depth. Grounding of the 553-m object was modeled in a similar manner but in the absence of reference ground plane only. In all cases considered, waveforms of Eh and Hϕ are not much influenced by the presence of strike object, while waveforms of Ez are. Waveforms of Ez are essentially unipolar (as they are in the absence of strike object) when the ground conductivity σ is 10 mS/m (the equivalent transient grounding impedance is several ohms) or greater. Thus, for the CN Tower, for which σ ≥ 10 mS/m, the occurrence of Ez polarity change is highly unlikely. For the 160-m tower and for σ = 1 and 0.1 mS/m, waveforms of Ez become bipolar (exhibit polarity change) at d' ≤ 10 m and d' ≤ 50 m, respectively, regardless of the presence of the reference ground plane. The corresponding equivalent transient grounding impedances are about 30 and 50 Ω in the absence of the reference ground plane and smaller than 10 Ω in the presence of the reference

  20. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  1. Performance Analysis of a Permanent-Magnet Induction Generator under Unbalanced Grid Voltages

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    This paper presents electrical and magnetic characteristics of a permanent-magnet induction generator (PMIG) under unbalanced grid voltages. The method of symmetrical components and two-dimensional finite element analysis (2D-FEA) are used to calculate these characteristics and the results are confirmed through experiments. Even if the voltage of power grids is unbalanced, the PMIG can operate at high efficiency over a wide range of slip and the built-in permanent-magnet (PM) rotor is little affected by the negative-sequence rotating field.

  2. Existence of standard models of conic fibrations over non-algebraically-closed fields

    SciTech Connect

    Avilov, A A

    2014-12-31

    We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group. Bibliography: 16 titles.

  3. Testable Hypotheses for Unbalanced Neuroimaging Data

    PubMed Central

    McFarquhar, Martyn

    2016-01-01

    Unbalanced group-level models are common in neuroimaging. Typically, data for these models come from factorial experiments. As such, analyses typically take the form of an analysis of variance (ANOVA) within the framework of the general linear model (GLM). Although ANOVA theory is well established for the balanced case, in unbalanced designs there are multiple ways of decomposing the sums-of-squares of the data. This leads to several methods of forming test statistics when the model contains multiple factors and interactions. Although the Type I–III sums of squares have a long history of debate in the statistical literature, there has seemingly been no consideration of this aspect of the GLM in neuroimaging. In this paper we present an exposition of these different forms of hypotheses for the neuroimaging researcher, discussing their derivation as estimable functions of ANOVA models, and discussing the relative merits of each. Finally, we demonstrate how the different hypothesis tests can be implemented using contrasts in analysis software, presenting examples in SPM and FSL. PMID:27378839

  4. Electric-field effects on the closed orbits of the diamagnetic Kepler problem

    NASA Astrophysics Data System (ADS)

    Bleasdale, C.; Bruno-Alfonso, A.; Lewis, R. A.

    2016-02-01

    The nonrelativistic closed orbits of an electron interacting with a unit positive charge in the presence of homogeneous magnetic and electric fields are investigated. A simplified theoretical model is proposed utilizing appropriate initial conditions in semiparabolic coordinates for arbitrary magnetic- and electric-field alignments. The evolution of both the angular spectrum of orbits and the shape and duration of individual orbits, as the electric-field intensity and scaled energy are increased, is shown for the cases of both parallel and crossed fields. Orbit mixing in the high-field regime is investigated in the case of parallel fields, giving an indication of the system moving from the quasi-Landau chaotic regime to the electric-field-induced (Stark effect) regular regime. For crossed fields, it is shown that the Garton-Tomkins orbits lead to a pair of orbits that have opposite behaviors as a function of the electric-field intensity.

  5. Power Analysis in Two-Level Unbalanced Designs

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros

    2010-01-01

    Previous work on statistical power has discussed mainly single-level designs or 2-level balanced designs with random effects. Although balanced experiments are common, in practice balance cannot always be achieved. Work on class size is one example of unbalanced designs. This study provides methods for power analysis in 2-level unbalanced designs…

  6. Tongues, bottles, and disconnected loops: The opening and closing of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1994-06-01

    For years the field of Space Physics has had a problem, a really big problem for it occurs on the largest spatial scales in Space physics -- across the entire region under the Sun`s influence, the heliosphere. The problem is that the Sun appears to keep opening new magnetic flux into interplanetary space with no obvious way for this flux to close back off again. This state of affairs, without some previously unknown method for closing the open interplanetary magnetic field (IMF), leads to an ever growing amount of magnetic flux in interplanetary space: the magnetic flux catastrophe. Recently, considerable progress has been made in understanding why this catastrophic state is not the observed state of the heliosphere. This brief article paints the newly emerging picture of the opening and closing of the IMF and how these processes may account for the observed variation in the amount of magnetic flux in interplanetary space over the solar cycle.

  7. 78 FR 24765 - Notice of Intent To Close 16 Field Offices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Memorandum 2010-07--Disposing of Unneeded Federal Real Estate (75 FR 33987, June 16, 2010), HUD is publishing... following 16 field offices: Camden, NJ; Syracuse, NY; Orlando, FL; Tampa, FL; Springfield, IL; Cincinnati... closed are: Camden, NJ; Syracuse, NY; Orlando, FL; Tampa, FL; Springfield, IL; Cincinnati, OH; Flint,...

  8. Tracking performance of unbalanced QPSK demodulators. I - Biphase Costas loop with passive arm filters

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Alem, W. K.

    1978-01-01

    Unbalanced quadriphase-shift-keying (QPSK) is an attractive means for transmitting two digital data streams which in general have different average powers, data rates, and data formats. Previous analyses of the tracking performance of Costas loop demodulators of unbalanced QPSK have accounted only for the filtering effect produced by the loop's two arm filters on the equivalent additive noise perturbing the loop. When the bandwidth of these filters is selected on the basis of the order of the data rate, as is typical of optimum Costas loop design, the filtering degradations of the data modulations themselves and the cross-modulation noise produced by their multiplication in the loop often cannot be neglected. The purpose of this paper is to incorporate these additional filtering effects into the analysis. Many of the results obtained herein are in the form of closed-form expressions which can easily be evaluated numerically for design and performance prediction purposes.

  9. Cassini Multi-instrument Assessment of the Open-closed Field Line Boundary of Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Jinks, S. L.; Bunce, E. J.; Provan, G.; Yeoman, T. K.; Cowley, S. W. H.; Arridge, C. S.; Krupp, N.; Kurth, W. S.; Mitchell, D. G.; Wahlund, J. E.; Morooka, M.; Dougherty, M. K.

    2013-09-01

    In gas giant magnetospheres the balance between external solar wind driving and internal driving due to the planet's rotation is a critical issue which needs to be addressed. Following the high-latitude orbits of Cassini during 2006/7, 2008 and 2009 a region where magnetic field lines are "open" to the solar wind has been tentatively identified at Saturn. However, precisely where and how the open-closed field line boundary is determined from the various in situ instrument data sets has not yet been systematically investigated. Here we present a Cassini multi-instrument assessment (using magnetic field analysis, CAPS-ELS electrons, MIMI-LEMMS electrons, Langmuir Probe electron density, and RPWS measurements of the auroral hiss) of the location between "open" and "closed" magnetic field lines for the high-latitude orbits. We discuss the extent to which the different instruments can locate a common boundary and identify the average co-latitude of the boundary region in each hemisphere. The average co-latitude of the upward field-aligned current region is identified equatorward of the open-closed field line boundary in each hemisphere. There is possible evidence of displacement of the boundary equatorward towards midnight in both hemispheres indicating a local time dependence of the boundary location. Variation in southern co-latitude of the open-closed field line boundary with respect to the southern magnetic oscillation phase is shown to follow a sine relationship with an amplitude of ~2.4° co-latitude. Initial investigation shows no clear relationship in ordering the data by the northern magnetic oscillation phase.

  10. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hones, E. W., Jr.; Craven, J. D.; Frank, L. A.; Elphinstone, R. D.; Stern, D. P.

    1991-01-01

    The boundary between open and closed field lines is investigated in the empirical Tsyganenko (1987) magnetic field model. All field lines extending to distances beyond -70 R(E), the tailward velocity limit of the Tsyganenko model are defined as open, while all other field lines, which cross the equatorial plane earthward of -70 R(E) and are connected with the earth at both ends, are assumed closed. It is found that this boundary at the surface of the earth, identified as the polar cap boundary, can exhibit the arrowhead shape, pointed toward the sun, which is found in horse collar auroras. For increasing activity levels, the polar cap increases in area and becomes rounder, so that the arrowhead shape is less pronounced. The presence of a net B(y) component can also lead to considerable rounding of the open flux region. The arrowhead shape is found to be closely associated with the increase of B(z) from the midnight region to the flanks of the tail, consistent with a similar increase of the plasma sheet thickness.

  11. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    SciTech Connect

    Birn, J.; Hones, E.W. Jr. ); Craven, J.D.; Frank, L.A. ); Elphinstone, R.D. ); Stern, D.P. )

    1991-03-01

    Using the empirical Tsyganenko (1987) long model as a prime example of a megnetospheric field model, the authors have attempted to identify the boundary between open and closed field lines. They define as closed all field lines that are connested with the Earth at both ends and cross the equatorial plane earthward of x = {minus}70 R{sub E}, the tailward validity limit of the Tsyganenko model. They find that the form of the open/closed boundary at the Earth's surface, identified with the polar cap boundary, can exhibit the arrowhead shape, pointed toward the Sun, observed in horse collar auroras (Hones et al., 1989). The polar cap size in the Tsyganenko model increases with increasing K{sub p} values, and it becomes rounder and less pointed. The superposition of a net B{sub y} field, which is the expected consequence of an IMF B{sub y}, rotates the polar cap pattern and, for larger values, degrades the arrowhead shape, resulting in polar cap configurations consistent with known asymmetries in the aurora. The pointedness of the polar cap shape also diminishes or even completely disappears if the low-latitude magnetopause is assumed open and located considerably inside of the outermost magnetic flux surface in the Tsyganenko model. The arrowhead shape of the polar cap is found to be associated with a strong increase of B{sub z} from midnight toward the tail flanks, which is observed independently, and is possibly related to the NBZ field-aligned current system, observed during quiet times and strongly northward IMF B{sub z}. The larger B{sub z} values near the flanks of the tail cause more magnetic flux to close through these regions than through the midnight equatorial region.

  12. Quantum field theory in spaces with closed time-like curves

    NASA Astrophysics Data System (ADS)

    Boulware, D. G.

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27(pi). A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  13. Observations of the Ion Signatures of Double Merging and the Formation of Newly Closed Field Lines

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.

    2007-01-01

    Observations from the Polar spacecraft, taken during a period of northward interplanetary magnetic field (IMF) show magnetosheath ions within the magnetosphere with velocity distributions resulting from multiple merging sites along the same field line. The observations from the TIDE instrument show two separate ion energy-time dispersions that are attributed to two widely separated (-20Re) merging sites. Estimates of the initial merging times show that they occurred nearly simultaneously (within 5 minutes.) Along with these populations, cold, ionospheric ions were observed counterstreaming along the field lines. The presence of such ions is evidence that these field lines are connected to the ionosphere on both ends. These results are consistent with the hypothesis that double merging can produce closed field lines populated by solar wind plasma. While the merging sites cannot be unambiguously located, the observations and analyses favor one site poleward of the northern cusp and a second site at low latitudes.

  14. Quantum field theory in spaces with closed time-like curves. [Gott space

    SciTech Connect

    Boulware, D.G.

    1992-01-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27[pi]. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  15. Quantum field theory in spaces with closed time-like curves

    SciTech Connect

    Boulware, D.G.

    1992-12-31

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27{pi}. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  16. Dynamic effects of restoring footpoint symmetry on closed magnetic field lines

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Østgaard, N.; Tenfjord, P.; Laundal, K. M.; Snekvik, K.; Haaland, S.; Milan, S. E.; Oksavik, K.; Frey, H. U.; Grocott, A.

    2016-05-01

    Here we present an event where simultaneous global imaging of the aurora from both hemispheres reveals a large longitudinal shift of the nightside aurora of about 3 h, being the largest relative shift reported on from conjugate auroral imaging. This is interpreted as evidence of closed field lines having very asymmetric footpoints associated with the persistent positive y component of the interplanetary magnetic field before and during the event. At the same time, the Super Dual Auroral Radar Network observes the ionospheric nightside convection throat region in both hemispheres. The radar data indicate faster convection toward the dayside in the dusk cell in the Southern Hemisphere compared to its conjugate region. We interpret this as a signature of a process acting to restore symmetry of the displaced closed magnetic field lines resulting in flux tubes moving faster along the banana cell than the conjugate orange cell. The event is analyzed with emphasis on Birkeland currents (BC) associated with this restoring process, as recently described by Tenfjord et al. (2015). Using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during the same conditions as the presented event, the large-scale BC pattern associated with the event is presented. It shows the expected influence of the process of restoring symmetry on BCs. We therefore suggest that these observations should be recognized as being a result of the dynamic effects of restoring footpoint symmetry on closed field lines in the nightside.

  17. Spontaneous Formation of Closed-Field Torus Equilibrium via Current Jump Observed in an Electron-Cyclotron-Heated Plasma

    SciTech Connect

    Yoshinaga, T.; Uchida, M.; Tanaka, H.; Maekawa, T.

    2006-03-31

    Spontaneous current jump resulting in the formation of closed field equilibrium has been observed in electron-cyclotron-heated toroidal plasmas under steady external fields composed of a toroidal field and a relatively weak vertical field in the low aspect ratio torus experiment device. This bridges the gap between the open field equilibrium maintained by a pressure-driven current in the external field and the closed field equilibrium at a larger current. Experimental results and theoretical analyses suggest a current jump model that is based on the asymmetric electron confinement along the field line appearing upon simultaneous transitions of field topology and equilibrium.

  18. TRANSFORMER FOR JOINING UNBALANCED TO BALANCED TRANSMISSION MEANS

    DOEpatents

    Bittner, B.J.; Opperman, R.H.

    1960-06-28

    An improved transformer is invented for joining an unbalanced transmission means to a balanced transmission means and is useful, for example, in transmitting an electromagnetic signal from a coaxial cable to a balanced dipole antenna.

  19. Unbalanced estrogen metabolism in ovarian cancer.

    PubMed

    Zahid, Muhammad; Beseler, Cheryl L; Hall, James B; LeVan, Tricia; Cavalieri, Ercole L; Rogan, Eleanor G

    2014-05-15

    Greater exposure to estrogens is a risk factor for ovarian cancer. To investigate the role of estrogens in ovarian cancer, a spot urine sample and a saliva sample were obtained from 33 women with ovarian cancer and 34 age-matched controls. Thirty-eight estrogen metabolites, conjugates and DNA adducts were analyzed in the urine samples using ultraperformance liquid chromatography/tandem mass spectrometry, and the ratio of adducts to metabolites and conjugates was calculated for each sample. The ratio of depurinating estrogen-DNA adducts to estrogen metabolites and conjugates was significantly higher in cases compared to controls (p < 0.0001), demonstrating high specificity and sensitivity. DNA was purified from the saliva samples and analyzed for genetic polymorphisms in the genes for two estrogen-metabolizing enzymes. Women with two low-activity alleles of catechol-O-methyltransferase plus one or two high-activity alleles of cytochrome P450 1B1 had higher levels of estrogen-DNA adducts and were more likely to have ovarian cancer. These findings indicate that estrogen metabolism is unbalanced in ovarian cancer and suggest that formation of estrogen-DNA adducts plays a critical role in the initiation of ovarian cancer. PMID:24170413

  20. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  1. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation.

    PubMed

    Lupyan, Dmitry; Abramov, Yuriy A; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well. PMID:23053737

  2. Impact of close habitat on the entomological diversity and abundance in carrot open fields.

    PubMed

    Colignon, P; Gaspar, C; Haubruge, E; Francis, F

    2002-01-01

    Vegetable open fields areas have been increasing for the last decade in Wallonia (South part of Belgium), mainly in Hesbaye. To be in accordance with quality standards, especially in terms of agrochemical residues (R.M.L.), biological pest control was developed and reduces the insecticide use, leading to have safer fresh products. Carrot represents an important cultivated species in Wallonia. To asses the impact of close habitat on both pest (mainly aphids) and beneficial insects, carrot fields were investigated during all the production duration in 2000. Twelve fields between Waremme and Hannut were visited weekly from June to October. Insects were caught using yellow traps and determined to the family level. Approximately 90,000 insects belonging to 109 families were identified. Significant differences linked to field closed habitat were observed on 31 families. An increase of biodiversity in term of family number near set-asides and woody borders was observed. Evaluation of pest and beneficial diversity and density in vegetable crops was discussed to promote future IPM program. PMID:12696415

  3. Directly transmitted unbalanced chromosome abnormalities and euchromatic variants

    PubMed Central

    Barber, J

    2005-01-01

    In total, 200 families were reviewed with directly transmitted, cytogenetically visible unbalanced chromosome abnormalities (UBCAs) or euchromatic variants (EVs). Both the 130 UBCA and 70 EV families were divided into three groups depending on the presence or absence of an abnormal phenotype in parents and offspring. No detectable phenotypic effect was evident in 23/130 (18%) UBCA families ascertained mostly through prenatal diagnosis (group 1). In 30/130 (23%) families, the affected proband had the same UBCA as other phenotypically normal family members (group 2). In the remaining 77/130 (59%) families, UBCAs had consistently mild consequences (group 3). In the 70 families with established EVs of 8p23.1, 9p12, 9q12, 15q11.2, and 16p11.2, no phenotypic effect was apparent in 38/70 (54%). The same EV was found in affected probands and phenotypically normal family members in 30/70 families (43%) (group 2), and an EV co-segregated with mild phenotypic anomalies in only 2/70 (3%) families (group 3). Recent evidence indicates that EVs involve copy number variation of common paralogous gene and pseudogene sequences that are polymorphic in the normal population and only become visible at the cytogenetic level when copy number is high. The average size of the deletions and duplications in all three groups of UBCAs was close to 10 Mb, and these UBCAs and EVs form the "Chromosome Anomaly Collection" at http://www.ngrl.org.uk/Wessex/collection. The continuum of severity associated with UBCAs and the variability of the genome at the sub-cytogenetic level make further close collaboration between medical and laboratory staff essential to distinguish clinically silent variation from pathogenic rearrangement. PMID:16061560

  4. A New Bench Concept for Measuring Magnetic Fields of Big Closed Structure

    NASA Astrophysics Data System (ADS)

    Campmany, Josep; Ribó, Llibert; Colldelram, Carles; Becheri, Fulvio; Marcos, Jordi; Massana, Valentí

    The measurement of big closed magnetic structures is becoming a challenge of great interest. The main reason is the tendency towards building accelerators with high magnetic fields produced by small gap magnets, as well as the development of cryogenic or superconducting narrow-gap insertion devices. Usual approach, based on side-measurements made with a Hall probe mounted on the tip of a motorized arm based on a long granite bench is no more applicable to such closed structures. So, new concepts and approaches have been developed, mainly based on complex devices that insert a Hall probe inside the magnetic structure maintaining the desired position by close-loop controls. We present in this paper the characterization of a new bench that has been built at ALBA synchrotron that is simple, multi-purpose and can be a general solution for measuring big closed structures. Motion control is done via ICEpap motion driver system using the new trigger feature that has been implemented in this motor controller.

  5. Formation of accretion disks in close-binary systems with magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhilkin, A. G.; Bisikalo, D. V.

    2010-12-01

    We have developed a three-dimensional numerical model and applied it to simulate plasma flows in semi-detached binary systems whose accretor possesses a strong intrinsic magnetic field. The model is based on the assumption that the plasma dynamics are determined by the slow mean flow, which forms a backdrop for the rapid propagation of MHD waves. The equations describing the slow motion of matter were obtained by averaging over rapidly propagating pulsations. The numerical model includes the diffusion of magnetic field by current dissipation in turbulent vortices, magnetic buoyancy, and wave MHD turbulence. A modified three-dimensional, parallel, numerical code was used to simulate the flow structure in close binary systems with various accretor magnetic fields, from 105 to 108 G. The conditions for the formation of the accretion disk and the criteria distinguishing the two types of flow corresponding to intermediate polars and polars are discussed.

  6. Closed star product on noncommutative ℝ 3 and scalar field dynamics

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Poulain, Timothé; Wallet, Jean-Christophe

    2016-05-01

    We consider the noncommutative space ℝ θ 3 , a deformation of ℝ 3 for which the star product is closed for the trace functional. We study one-loop IR and UV properties of the 2-point function for real and complex noncommutative scalar field theories with quartic interactions and Laplacian on ℝ 3 as kinetic operator. We find that the 2-point functions for these noncommutative scalar field theories have no IR singularities in the external momenta, indicating the absence of UV/IR mixing. We also find that the 2-point functions are UV finite with the deformation parameter θ playing the role of a natural UV cut-off. The possible origin of the absence of UV/IR mixing in noncommutative scalar field theories on ℝ θ 3 as well as on ℝ λ 3 , another deformation of ℝ 3, is discussed.

  7. Low beta equilibrium and stability for anisotropic pressure closed field line plasma confinement systems

    SciTech Connect

    Pastukhov, V.P.; Ilgisonis, V.I.; Subbotin, A.A.

    1994-05-01

    General formalism is developed to analyze the equilibrium and stability of low beta anisotropic pressure plasmas confined in closed field line magnetic systems. The formalism allows one to consider rather general magnetic systems with nonuniform axis curvature and longitudinal profiles of toroidal and multipole poloidal field. It also allows having a strong pressure anisotropy corresponding to enhanced plasma pressure in mirror cells of the system. As an example of such a system the authors consider the recently proposed linked mirror neutron source (LMNS). Application of the above formalism to the LMNS analysis confirms most of the preliminary results, however, they obtain a considerable reduction of mirror cell axis curvature and an appreciable ellipticity of plasma cross-section in the mirror cell midplane. They have also optimized the longitudinal pressure and magnetic field distribution.

  8. The close classical T Tauri binary V4046 Sgr: complex magnetic fields and distributed mass accretion

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Gregory, S. G.; Montmerle, T.; Maggio, A.; Argiroffi, C.; Sacco, G.; Hussain, G.; Kastner, J.; Alencar, S. H. P.; Audard, M.; Bouvier, J.; Damiani, F.; Güdel, M.; Huenemoerder, D.; Wade, G. A.

    2011-11-01

    We report here the first results of a multi-wavelength campaign focusing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly convective classical T Tauri stars of masses ≃0.9 M⊙ and age ≃12 Myr. In this paper, we present time-resolved spectropolarimetric observations collected in 2009 September with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) and covering a full span of 7 d or ≃2.5 orbital/rotational cycles of V4046 Sgr. Small circularly polarized Zeeman signatures are detected in the photospheric absorption lines but not in the accretion-powered emission lines of V4046 Sgr, thereby demonstrating that both system components host large-scale magnetic fields weaker and more complex than those of younger, fully convective classical T Tauri stars (cTTSs) of only a few Myr and similar masses. Applying our tomographic imaging tools to the collected data set, we reconstruct maps of the large-scale magnetic field, photospheric brightness and accretion-powered emission at the surfaces of both stars of V4046 Sgr. We find that these fields include significant toroidal components, and that their poloidal components are mostly non-axisymmetric with a dipolar component of 50-100 G strongly tilted with respect to the rotation axis; given the similarity with fields of partly convective main-sequence stars of similar masses and rotation periods, we conclude that these fields are most likely generated by dynamo processes. We also find that both stars in the system show cool spots close to the pole and extended regions of low-contrast, accretion-powered emission; it suggests that mass accretion is likely distributed rather than confined in well-defined high-contrast accretion spots, in agreement with the derived magnetic field complexity.

  9. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-06-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  10. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-03-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  11. The {open_quotes}INVERSE PROBLEM{close_quotes} to the evaluation of the magnetic fields

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1995-06-01

    In the design of superconducting magnet elements, such as may be required to guide and focus ions in a particle accelerator, one frequently premises some particular current distribution and then proceeds to compute the consequent magnetic field through use of the laws of Blot and Savart or of Ampere. When working in this manner one of course may need to revise frequently the postulated current distribution before arriving at a resulting magnetic field of acceptable field quality. It therefore is of interest to consider an alternative ({open_quotes}inverse{close_quotes}) procedure in which one specifies a desired character for the field required in the region interior to the winding and undertakes then to evaluate the current distribution on the specified winding surface that would provide this desired field. By evaluating the specified potential in the region interior to the winding along the interface, the authors have determined that a relaxation solution to the potential in the region outside the winding can be converged and used to calculate wire location. They have demonstrated this method by applying a slightly modified version of the program POISSON to a periodic alternating sinusoidal quadrupole field.

  12. Acceleration of plasma flows in the closed magnetic fields: Simulation and analysis

    SciTech Connect

    Mahajan, Swadesh M.; Shatashvili, Nana L.; Mikeladze, Solomon V.; Sigua, Ketevan I.

    2006-06-15

    Within the framework of a two-fluid description, possible pathways for the generation of fast flows (dynamical as well as steady) in the closed magnetic fields are established. It is shown that a primary plasma flow (locally sub-Alfvenic) is accelerated while interacting with ambient arcade-like closed field structures. The time scale for creating reasonably fast flows (> or approx. 100 km/s) is dictated by the initial ion skin depth, while the amplification of the flow depends on local plasma {beta}. It is shown that distances over which the flows become 'fast' are {approx}0.01R{sub 0} from the interaction surface (R{sub 0} being a characteristic length of the system); later, the fast flow localizes (with dimensions < or approx. 0.05R{sub 0}) in the upper central region of the original arcade. For fixed initial temperature, the final speed (> or approx. 500 km/s) of the accelerated flow and the modification of the field structure are independent of the time duration (lifetime) of the initial flow. In the presence of dissipation, these flows are likely to play a fundamental role in the heating of the finely structured stellar atmospheres; their relevance to the solar wind is also obvious.

  13. Nonequilibrium problems in quantum field theory and Schwinger`s closed time path formalism

    SciTech Connect

    Cooper, F.

    1995-05-01

    We review the closed time path formalism of Schwinger using a path integral approach. We apply this formalism to the study of pair production from strong external fields as well as the time evolution of a nonequilibrium chiral phase transition. In 1961 in his classic paper ``Brownian Motion of a Quantum Particle,`` Schwinger solved the formidable technical problem of how to use the action principle to study initial value problems. Previously, the action principle was formulated to study only transition matrix elements from an earlier time to a later time. The elegant solution of this problem was the invention of the closed time path (CTP) formalism. This formalism was first used to study field theory problems by Mahanthappa and Bakshi. With the advent of supercomputers, it has now become possible to use this formalism to numerically solve important field theory questions which are presented as initial value problems. Two of these problems we shall review here. They are (1) The time evolution of the quark- gluon plasma. (2) Dynamical evolution of a non-equilibrium chiral phase transition following a relativistic heavy ion collision.

  14. The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.

    2016-08-01

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura & Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α, and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving for the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.

  15. The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.

    2016-08-01

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ˜0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura & Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α, and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving for the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.

  16. Application of closed-form solutions to a mesh point field in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.

    1985-01-01

    A computer simulation method is discussed that provides for equivalent simulation accuracy, but that exhibits significantly lower CPU running time per bias point compared to other techniques. This new method is applied to a mesh point field as is customary in numerical integration (NI) techniques. The assumption of a linear approximation for the dependent variable, which is typically used in the finite difference and finite element NI methods, is not required. Instead, the set of device transport equations is applied to, and the closed-form solutions obtained for, each mesh point. The mesh point field is generated so that the coefficients in the set of transport equations exhibit small changes between adjacent mesh points. Application of this method to high-efficiency silicon solar cells is described; and the method by which Auger recombination, ambipolar considerations, built-in and induced electric fields, bandgap narrowing, carrier confinement, and carrier diffusivities are treated. Bandgap narrowing has been investigated using Fermi-Dirac statistics, and these results show that bandgap narrowing is more pronounced and that it is temperature-dependent in contrast to the results based on Boltzmann statistics.

  17. A closed cycle-cryostat for high-field Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Janoschka, A.; Svenconis, G.; Schünemann, V.

    2010-03-01

    A closed cycle-cryostat coupled to a Mössbauer spectrometer has been installed at the University of Kaiserslautern and is in full operation since march 2007. The setup is equipped with a low vibrating two-stage pulse tube cooler and has a cool down time of 48 h. The sample can be top loaded without the need to shut off the refrigerator. With the static helium exchange gas in the variable temperature insert the sample may be cooled down from room temperature to 50 K within several hours. Dynamic exchange gas with external supply of gaseous helium is used to cool the sample down to 2 K. The superconducting self-shielding split-coil generates a magnetic field of up to 5 Tesla and a stray field of ca. 60 mT at the outer cryostat walls. Mössbauer measurements can be performed in perpendicular or parallel field orientations. The sample holder and the Mössbauer drive are rigidly connected to the cryostat. In this way a line width of the two inner α-Fe lines of 0.32 mm/s has been currently achieved.

  18. Open and closed loop manipulation of charged microchiplets in an electric field

    SciTech Connect

    Lu, J. P. Thompson, J. D.; Whiting, G. L.; Biegelsen, D. K.; Raychaudhuri, S.; Lujan, R.; Veres, J.; Lavery, L. L.; Völkel, A. R.; Chow, E. M.

    2014-08-04

    We demonstrate the ability to orient, position, and transport microchips (“chiplets”) with electric fields. In an open-loop approach, modified four phase traveling wave potential patterns manipulate chiplets in a dielectric solution using dynamic template agitation techniques. Repeatable parallel assembly of chiplets is demonstrated to a positional accuracy of 6.5 μm using electrodes of 200 μm pitch. Chiplets with dipole surface charge patterns are used to show that orientation can be controlled by adding unique charge patterns on the chiplets. Chip path routing is also demonstrated. With a closed-loop control system approach using video feedback, dielectric, and electrophoretic forces are used to achieve positioning accuracy of better than 1 μm with 1 mm pitch driving electrodes. These chip assembly techniques have the potential to enable future printer systems where inputs are electronic chiplets and the output is a functional electronic system.

  19. Wide field adaptive optics laboratory demonstration with closed-loop tomographic control.

    PubMed

    Costille, Anne; Petit, Cyril; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2010-03-01

    HOMER, the new bench developed at ONERA devoted to wide field adaptive optics (WFAO) laboratory research, has allowed the first experimental validations of multi-conjugate adaptive optics (MCAO) and laser tomography adaptive optics (LTAO) concepts with a linear quadratic Gaussian (LQG) control approach. Results obtained in LTAO in closed loop show the significant gain in performance brought by LQG control, which allows tomographic reconstruction. We present a calibration and model identification strategy. Experimental results are shown to be consistent with end-to-end simulations. These results are very encouraging and demonstrate robustness of performance with respect to inevitable experimental uncertainties. They represent a first step for the study of very large telescope (VLT) and extremely large telescopes (ELT) instruments. PMID:20208937

  20. Derivation of clones close to met by preparative field inversion gel electrophoresis

    SciTech Connect

    Michiels, F.; Burmeister, M.; Lehrach, H.

    1987-06-05

    The molecular analysis of genes identified by mutations is a major problems in mammalian genetics. As a step toward this goal, preparative field inversion gel electrophoresis (FIGE) was used to selectively isolate clones from the environment of genetically linked markers, and to select a subset of these clones containing sequences next to specific restriction sites rare in mammalian DNA. This approach has been used to generate a library highly enriched in sequences closely linked to the cystic fibrosis marker met. One clone derived from the end of a Not I restriction fragment containing the met sequence was analyzed in detail and localized within a long range map to a position of 300 kilobase pairs 5' of the metD sequence.

  1. Computational model for calculating the dynamical behaviour of generators caused by unbalanced magnetic pull and experimental validation

    NASA Astrophysics Data System (ADS)

    Pennacchi, Paolo

    2008-04-01

    The modelling of the unbalanced magnetic pull (UMP) in generators and the experimental validation of the proposed method are presented in this paper. The UMP is one of the most remarkable effects of electromechanical interactions in rotating machinery. As a consequence of the rotor eccentricity, the imbalance of the electromagnetic forces acting between rotor and stator generates a net radial force. This phenomenon can be avoided by means of a careful assembly and manufacture in small and stiff machines, like electrical motors. On the contrary, the eccentricity of the active part of the rotor with respect to the stator is unavoidable in big generators of power plants, because they operate above their first critical speed and are supported by oil-film bearings. In the first part of the paper, a method aimed to calculate the UMP force is described. This model is more general than those available in literature, which are limited to circular orbits. The model is based on the actual position of the rotor inside the stator, therefore on the actual air-gap distribution, regardless of the orbit type. The closed form of the nonlinear UMP force components is presented. In the second part, the experimental validation of the proposed model is presented. The dynamical behaviour in the time domain of a steam turbo-generator of a power plant is considered and it is shown that the model is able to reproduce the dynamical effects due to the excitation of the magnetic field in the generator.

  2. Closing the wildland fire heat budget - measurements in the field at intermediate and operational scales

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; Kremens, R.; Bova, A. S.

    2012-12-01

    Closing the wildland fire heat budget involves characterizing the heat source and energy dissipation across the range of variability in fuels and fire behavior. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. Here, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption, and the behavior of spreading flame fronts. Experiments were conducted in 8 m x 8 m outdoor plots using pre-conditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of about 18.5 m^2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density (FRED) over a range of fuel consumption between 0.15 kg m^-2 to 3.25 kg m^-2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection, and soil heating across a range of fuels. We introduce the Rx-CADRE project through which such measurements are being made.

  3. Methods of Using a Magnetic Field Response Sensor Within Closed, Electrically Conductive Containers

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Magnetic field response sensors are a class of sensors that are powered via oscillating magnetic fields, and when electrically active, respond with their own magnetic fields with attributes dependent upon the magnitude of the physical quantity being measured. A magnetic field response recorder powers and interrogates the magnetic sensors [see Magnetic-Field-Response Measurement- Acquisition System, NASA Tech Briefs Vol. 30, No, 6 (June 2006, page 28)]. Electrically conductive containers have low transmissivity for radio frequency (RF) energy and thus present problems for magnetic field response sensors. It is necessary in some applications to have a magnetic field response sensor s capacitor placed in these containers. Proximity to conductive surfaces alters the inductance and capacitance of the sensors. As the sensor gets closer to a conductive surface, the electric field and magnetic field energy of the sensor is reduced due to eddy currents being induced in the conductive surface. Therefore, the capacitors and inductors cannot be affixed to a conductive surface or embedded in a conductive material. It is necessary to have a fixed separation away from the conductive material. The minimum distance for separation is determined by the desired sensor response signal to noise ratio. Although the inductance is less than what it would be if it were not in proximity to the conductive surface, the inductance is fixed. As long as the inductance is fixed, all variations of the magnetic field response are due to capacitance changes. Numerous variations of inductor mounting can be utilized, such as providing a housing that provides separation from the conductive material as well as protection from impact damage. The sensor can be on the same flexible substrate with a narrow throat portion of the sensor between the inductor and the capacitor, Figure 1. The throat is of sufficient length to allow the capacitor to be appropriately placed within the container and the inductor

  4. Are Environmental Professors Unbalanced? Evidence from the Field

    ERIC Educational Resources Information Center

    Teisl, Mario F.; Anderson, Mark W.; Noblet, Caroline L.; Criner, George K.; Rubin, Jonathan; Dalton, Timothy

    2011-01-01

    Most outcomes assessment in higher education has focused on content knowledge or skills development; however, attitudinal change is also a legitimate focus of assessment. We use the New Ecological Paradigm (NEP) to test whether courses designed to meet the same university environmental literacy requirement changed student environmental attitudes,…

  5. Salvaging dipmeters using an oil field {open_quotes}Dinosaur{close_quotes}

    SciTech Connect

    Breimayer, A.R.P.; Puzio, L.B.

    1996-09-01

    Although state-of-the-art methods such as 3-D seismic and formation imaging tools are widely used, the advantages of the old standard dipmeter should not be dismissed. Seismic dip is subject to velocity errors, and formation imagers cannot be run in all borehole conditions. The dipmeter offers a relatively low cost, highly effective alternative for defining geologic features. The 60{double_prime}= 100{prime} scale playback of the raw dipmeter data may be an oil field {open_quotes}dinosaur,{close_quotes} but it is also the key to assessing the reliability of a dipmeter. This playback should be used to determine CORRELATION QUALITY, critical to the accuracy of any dipmeter. Computer computation of the raw dipmeter data does not always yield reliable dip information, particularly when dipmeters are run under adverse hole conditions or in complex geology. This data can be often salvaged by optical correlation of the 60{close_quote} playback - the process of manually correlating raw dipmeter resistivity curves to determine the attitude of bedding planes in the subsurface. Problems such as tool noise, tool pulls, and poor pad contact compromise data quality. These problems can be recognized and compensated for using optical correlation. Finally, at the 60{double_prime} scale many formation textures and structural characteristics visible on the formation imaging logs are also discernible on the standard dipmeter traces. We will offer many Gulf Coast examples and some hands-on demonstrations using the 60{double_prime} data, and show improved tadpole plots which result from optical correlation.

  6. Determination of magnetic-field components from inner-corona closed-loop propagation and IPS analysis

    NASA Astrophysics Data System (ADS)

    Jackson, Bernard; Tokumaru, Munetoshi; Gonzalez-Esparza, Americo; Hick, P.; Buffington, Andrew; Hong, Sunhak; Bisi, Mario M.; Kim, Jaehun; Yu, Hsiu-Shan

    2016-07-01

    We find that a portion of the interplanetary magnetic field measured in situ near Earth is present from a direct outward mapping of closed fields from the low solar corona. The Current-Sheet Source Surface (CSSS) model (Zhao & Hoeksema, 1995 JGR 100, 19), extrapolate magnetogram-derived fields upward from near the solar surface. Global velocities and densities inferred from a combination of observations of interplanetary scintillation (IPS), matched to in-situ velocities and densities measured by spacecraft instrumentation, then provide an accurate outward timing to 1 AU using the UCSD tomography model that assumes conservation of mass and mass flux. All three field components at 1 AU are present including the north-south (or Bn) component field, and are compared with the appropriate ACE magnetometer in-situ (RTN) field coordinate. A significant positive daily correlation variation sometimes as high as 0.8 exists between these closed loop components and those determined by in-situ measurement over the last ten years for individual Carrington rotations. We determine that a consistent small fraction of the static low-coronal component flux (˜2%), that includes the Bn component, regularly escapes from closed-field regions. However, this percentage of closed projected fields relative to those measured in situ at Earth varies somewhat, indicating that a more efficient process for this flux propagation exists at the peak of the solar cycle than at its minimum. Since the Bn field provides the major portion of the Geocentric Solar Magnetospheric (GSM) Bz field component that couples most closely to the Earth's geomagnetic field, the prospects of using this technique for space weather predictions are being actively developed.

  7. Measured close lightning leader-step electric-field-derivative waveforms.

    SciTech Connect

    Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.; Howard, Joseph Sean; Uman, Martin A.; Rakov, Vladimir A.

    2010-12-01

    We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak and becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.

  8. Determination of the North-South Heliospheric Magnetic-Field Component from Inner-Corona Closed-Loop Propagation

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Bisi, M. M.; Tokumaru, M.; Kim, J.; Hong, S.; Lee, B.; Yi, J.; Yun, J.

    2015-12-01

    We find that a portion of the north-south interplanetary magnetic field measured in situ near Earth is present from a direct outward mapping of closed fields from the low solar corona. Using the Current-Sheet Source Surface (CSSS) model (Zhao & Hoeksema, 1995 JGR 100, 19), these lower coronal fields are extrapolated upward from near the solar surface. Global velocities inferred from a combination of observations of interplanetary scintillation (IPS) matched to in-situ velocities and densities measured by spacecraft instrumentation provide an accurate outward timing to 1 AU from a model assuming conservation of mass and mass flux. The north-south field component at 1 AU is compared with the appropriate ACE magnetometer in-situ Normal (RTN) or Bn field coordinate (Jackson et al., 2015, ApJL, 803:L1). From a significant positive correlation between this method of determining the Bn field compared with in-situ measurements over a three-year period during the last solar minimum, we find that a small fraction of the low-coronal Bn component flux (~1%) regularly escapes from closed-field regions. Since the Bn field provides the major portion of the Geocentric Solar Magnetospheric (GSM) Bz field component that couples most closely to the Earth's geomagnetic field, the prospects for its determination using this technique for space weather use are being actively developed by our many colleague groups.

  9. Practical Method for Transient Stability with Unbalanced Condition based on Symmetric Coordinates

    NASA Astrophysics Data System (ADS)

    Fujiwara, Shuhei; Kono, Yoshiyuki; Kitayama, Masashi; Goda, Tadahiro

    The symmetric coordinates are very popular method to model unbalanced faults in power system analysis. It is not only easy to handle with a single fault, but also it can be extended to multiple faults. But it is not easy to model situations that those unbalanced situation will continuously change, like a SVC (Static Var Compensator) with unbalanced fault in power system or an unbalanced nonlinear load. Under these situations, we propose a practical use of multiple fault calculation method based on symmetric coordinates that can handle with these kinds of unbalanced situations.

  10. Optical coatings and thin films for display technologies using closed-field magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gibson, Desmond R.; Brinkley, Ian; Walls, J. M.

    2004-11-01

    "Closed field" magnetron (CFM) sputtering offers high throughput, flexible deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, depositing films over a large surface area at a high rate with excellent and reproducible properties. Machines based on CFM are scaleable to meet a range of batch and in-line size requirements. Thin film thickness control to <+/-1% is accomplished using time, although quartz crystal or optical monitoring are used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a special rotating shutter mechanism. This paper presents data on optical properties for CFM deposited coatings relevant to displays, including anti-reflection, IR blocker and color and thermal control filters, graded coatings, barrier coatings as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM process for a range of display technologies; OLED, EL and projection are described.

  11. Basic characterization of TORPEX electrostatic modes in closed field line configurations

    SciTech Connect

    Avino, F. Fasoli, A.; Furno, I.; Jolliet, S.; Ricci, P.

    2014-12-15

    Electrostatic coherent modes are studied in the TORPEX device [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)], in closed flux surfaces. The accessibility to this magnetic geometry is provided by a current-carrying in-vessel toroidal conductor developed to generate a poloidal magnetic field [Avino et al., Rev. Sci. Instrum. 85, 033506 (2014)]. The background plasma parameters are measured, and the ion saturation current fluctuations are characterized in terms of power spectral density to identify the dominant coherent modes and their spatial localization. A statistical approach is implemented to determine the mode spectral properties by computing the statistical dispersion relation. The poloidal wave number k{sub θ} and the toroidal wave number k{sub ϕ} are obtained, as well as the corresponding mode numbers. A three-dimensional linear code based on the drift-reduced Braginskii equations is used to investigate the nature of the instabilities. The linear analysis suggests a dominant ballooning character of the modes.

  12. A Determination of the North-South Heliospheric Magnetic Field Component from Inner Corona Closed-loop Propagation

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Hick, P. P.; Buffington, A.; Yu, H.-S.; Bisi, M. M.; Tokumaru, M.; Zhao, X.

    2015-04-01

    A component of the magnetic field measured in situ near the Earth in the solar wind is present from north-south fields from the low solar corona. Using the Current-sheet Source Surface model, these fields can be extrapolated upward from near the solar surface to 1 AU. Global velocities inferred from a combination of interplanetary scintillation observations matched to in situ velocities and densities provide the extrapolation to 1 AU assuming mass and mass flux conservation. The north-south field component is compared with the same ACE in situ magnetic field component—the Normal (Radial Tangential Normal) Bn coordinate—for three years throughout the solar minimum of the current solar cycle. We find a significant positive correlation throughout this period between this method of determining the Bn field compared with in situ measurements. Given this result from a study during the latest solar minimum, this indicates that a small fraction of the low-coronal Bn component flux regularly escapes from closed field regions. The prospects for Space Weather, where the knowledge of a Bz field at Earth is important for its geomagnetic field effects, is also now enhanced. This is because the Bn field provides the major portion of the Geocentric Solar Magnetospheric Bz field coordinate that couples most closely to the Earth’s geomagnetic field.

  13. Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram

    2005-01-01

    Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.

  14. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  15. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.

    PubMed

    Bergmann, Victor W; Weber, Stefan A L; Javier Ramos, F; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Li, Dan; Domanski, Anna L; Lieberwirth, Ingo; Ahmad, Shahzada; Berger, Rüdiger

    2014-01-01

    Perovskite-sensitized solar cells have reached power conversion efficiencies comparable to commercially available solar cells used for example in solar farms. In contrast to silicon solar cells, perovskite-sensitized solar cells can be made by solution processes from inexpensive materials. The power conversion efficiency of these cells depends substantially on the charge transfer at interfaces. Here we use Kelvin probe force microscopy to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells. We show that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction. On illumination under short-circuit conditions, holes accumulate in front of the hole-transport layer as a consequence of unbalanced charge transport in the device. After light illumination, we find that trapped charges remain inside the active device layers. Removing these traps and the unbalanced charge injection could enable further improvements in performance of perovskite-sensitized solar cells. PMID:25242041

  16. Closed-form SEM solution to the transient far-field response of a thin-wire antenna

    NASA Astrophysics Data System (ADS)

    Hoorfar, Ahmad

    1994-05-01

    A closed-form SEM representation for the transient far-field response of a thin-wire cylindrical antenna is derived, and explicit expressions for all of the corresponding SEM parameters are presented. In particular, a so-called time-dependent natural far-field mode is introduced, and its corresponding integral is analytically evaluated. Excellent agreements with the numerical results are obtained.

  17. Optimal Voltage Regulation for Unbalanced Distribution Networks Considering Distributed Energy Resources

    SciTech Connect

    Liu, Guodong; Ceylan, Oguzhan; Xu, Yan; Tomsovic, Kevin

    2015-01-01

    With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative quadratic constrained quadratic programming model to minimize voltage deviations and maximize distributed energy resource (DER) active power output in a three phase unbalanced distribution system is developed. The optimization model is based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DERs). To avoid the oscillation of solution when it is close to the optimum, a golden search method is introduced to control the step size. Numerical simulations on modified IEEE 13 nodes test feeders show the efficiency of the proposed model. Compared to the results solved by heuristic search (harmony algorithm), the proposed model converges quickly to the global optimum.

  18. Bi-directional electron distributions as tracers for the open-closed field line boundary in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Krupp, N.; Radioti, A.; Roussos, E.; Grodent, D.; Gurnett, D. A.; Mitchell, D. G.; Dougherty, M. K.

    2011-10-01

    In this presentation we use bi-directional energetic electron distributions from the MIMI-LEMMS instrument onboard Cassini, auroral observations from the Hubble Space Telescope (HST) and data from the UVIS instrument onboard Cassini to characterize the open-closed field line boundary in Saturn's magnetosphere. The high-latitude open-closed field line boundary at Saturn is thought to be related to the main auroral ring of emission of the planet varying in location, intensity and latitudinal extent as well as in its homogeneity. This study extends the work on the plasmapause/open-closed field line boundary published by [1] by covering a larger data set at different local times and comparing the electron distributions with auroral observations. Based on energetic electron data we characterize the open-closed field line boundary in terms of temporal, local time variations and other parameters and we correlate the Cassini in-situ measurements to the observations of the main auroral ring at Saturn.

  19. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption.

    PubMed

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuelas, Josep

    2014-04-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N : P applications under low, medium, and high input scenarios, for past (1975), current, and future N : P mass ratios of respectively, 1 : 0.29, 1 : 0.15, and 1 : 0.05. At low N inputs (10 kg ha(-1)), current yield deficits amount to 10% but will increase up to 27% under the assumed future N : P ratio, while at medium N inputs (50 kg N ha(-1)), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N : P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1 : 0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources. PMID:24470387

  20. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  1. Comparison of hydrodynamic and semi-kinetic treatments for plasma flow along closed field lines

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Wilson, G. R.; Horwitz, J. L.

    1993-01-01

    Hydrodynamic and semi-kinetic treatments of plasma flow along closed geomagnetic field lines are compared. The hydrodynamic treatment is based on a simplified 16-moment set of transport equations as the equations for the heat flows are not solved; the heat flows are treated heuristically. The semi-kinetic treatment is based on a particle code. The comparison deals with the distributions of the plasma density, flow velocity, and parallel and perpendicular temperatures as obtained from the two treatments during the various stages of the flow. In the kinetic treatment, the appropriate boundary condition is the prescription of the velocity distribution functions for the particles entering the flux tubes at the ionospheric boundaries; those particles leaving the system are determined by the processes occurring in the flux tube. The prescribed distributions are half-Maxwellian with temperature T(sub 0) and density n(sub 0). In the hydrodynamic model, the prescribed boundary conditions are on density (n(sub 0)), flow velocity (V(sub 0)) and temperature (T(sub 0). It was found that results from the hydrodynamic treatment critically depend on V(sub 0); for early stages of the flow this treatment yields results in good agreement with those from the kinetic treatment, when V(sub 0) = square root of (kT(sub 0)/2 (pi)m), which is the average velocity of particles moving in a given direction for a Maxwellian distribution. During this early stage, the flows developing form the conjugate ionospheres show some distinct transitions. For the first hour or so, the flows are highly supersonic and penetrate deep into the opposite hemispheres, and both hydrodynamics and kinetic treatments yield almost similar features. It is found that during this period heatflow effects are negligibly small. When a flow penetrates deep into the opposite hemisphere, the kinetic treatment predicts reflection and setting up of counterstreaming. In contrast, the hydrodynamic treatment yields a shock in the

  2. Closed-form near-field expressions for electromagnetic scattering by an electrically small circular aperture on a conducting screen

    NASA Astrophysics Data System (ADS)

    Christou, M. A.; Polycarpou, A. C.

    2015-10-01

    Closed-form expressions were derived for the near-zone scattered fields caused by an obliquely incident plane wave of arbitrary polarization on a sub-wavelength circular aperture on an infinite conducting screen with an infinitesimal thickness. The analysis is based on a quasi-static model of the governing fields in the aperture which was published in the mid 40's by Bethe and improved by Bouwkamp a few years later by incorporating additional terms. Starting with first-order analytical expressions for the magnetic surface current density in the aperture, the scattering problem was formulated using the vector potential F →, the equivalence principle, and the image theory resulting in surface integrals over the aperture which involve the free-space Green's function. Using valid approximations for the near-zone field formulation, closed-form analytical expressions were derived for the corresponding scattered fields along the axis of the aperture. Obtained results based on these closed-form expressions were compared with published data obtained using the spectral-domain method indicating a very good agreement.

  3. An accurate magnetic field solution for medical electromagnetic tracking coils at close range

    NASA Astrophysics Data System (ADS)

    Schroeder, Tobias

    2015-06-01

    Electromagnetic tracking uses transmitter field models to determine position and orientation of an object. An important application of this technology is surgical navigation, where instruments are frequently tracked at short distances from the transmitter. At short distances, conventional and widely used dipole field models can lead to errors in tracked position and orientation. To increase tracking accuracy in this scenario, this work describes a novel transmitter field model and compares its performance against the dipole model. Demonstrated tracking accuracy improvements could have far-reaching benefits for medical navigation applications.

  4. The mathematical models of electromagnetic field dynamics and heat transfer in closed electrical contacts including Thomson effect

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat

    2016-08-01

    We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.

  5. Microarray analysis of unbalanced translocation in Wolf-Hirschhorn syndrome.

    PubMed

    Dai, Ying; Yang, Jing; Chen, Yuanyuan; Bao, Liming; Cheng, Qian

    2013-06-01

    Wolf-Hirschhorn syndrome (WHS) is caused by deletions involving chromosome region 4p16.3, which is characterized by growth delay, mild-to-severe mental retardation, hypotonia, facial dysmorphisms and shows extensive phenotypic variability include feeding difficulties, epilepsy and congenital anomalies. Variation in the size of the deletion involving chromosome region 4p16.3 may explain the clinical variation. However, previous studies indicate that duplication for another chromosome region due to an unbalanced translocation elucidate approximately 40-45% WHS patients. Therefore, we used whole genomic cytogenetics array to analyze the entire genome at a significantly higher resolution over conventional cytogenetics to characterize the exact subtelomeric aberration region of one patient with developmental delay and several facial characteristics reminiscent Wolf-Hirschhorn syndrome. Here we report that our patient had 3.7 Mb deletion at the 4p16.2 and 6.8 Mb duplication at 8p23.1 resulted from the unbalanced translocations der(4)t(4;8)(p16.2;p23.1). We confirmed that our patient with monosomy 4p16.2 which is consistent with Wolf-Hirschhorn syndrome and trisomy 8p23.1. The combination of the 4p deletion with 8p partial trisomy explains the complex phenotype presented by our patient. PMID:23782367

  6. On the Effects of a Spacecraft Subcarrier Unbalanced Modulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1993-01-01

    This paper presents mathematical models with associated analysis of the deleterious effects which a spacecraft's subcarrier unbalanced modulator has on the performance of a phase-modulated residual carrier communications link. The undesired spectral components produced by the phase and amplitude imbalances in the subcarrier modulator can cause (1) potential interference to the carrier tracking and (2) degradation in the telemetry bit signal-to-noise ratio (SNR). A suitable model for the unbalanced modulator is developed and the threshold levels of undesired components that fall into the carrier tracking loop are determined. The distribution of the carrier phase error caused by the additive White Gaussian noise (AWGN) and undesired component at the residual RF carrier is derived for the limiting cases. Further, this paper analyses the telemetry bit signal-to-noise ratio degradations due to undesirable spectral components as well as the carrier tracking phase error induced by phase and amplitude imbalances. Numerical results which indicate the sensitivity of the carrier tracking loop and the telemetry symbol-error rate (SER) to various parameters of the models are also provided as a tool in the design of the subcarrier balanced modulator.

  7. Using phasors to analyze power system negative phase sequence voltages caused by unbalanced loads

    SciTech Connect

    Ledwich, G. ); George, T.A. )

    1994-08-01

    An analytical method is demonstrated which allows the level of negative phase sequence (NPS) voltage at a busbar to be expressed as a sum of phasors representing independent sources. The method is extended to enable the balancing capability of Static Var Compensators (SVCs) with individual phase voltage control to be assessed. The capability of such SVCs and the allowable levels of NPS voltage on the system, including any short term limits, can be combined in a capability chart showing the unbalanced loads which can be supplied from a substation. The approach facilitates the treatment of fixed unbalances due to filters or intentional offsets designed to maximize the SVC balancing range for specific loads. Field test results are presented which validate the analytical methods used.

  8. Fast closed-form calculation of THz field enhancement in a metal nanoslit

    SciTech Connect

    Novitsky, A. V.; Lavrinenko, A. V.

    2010-10-07

    Strong electric field enhancement in a metal nanoslit with THz field illumination is hardly calculated using the standard simulation packages. It is explained by the considerable difference of the values of nano sizes of the slit and the wavelength of the incident radiation (up to 10000 times). Therefore, significant computational resources or/and the home-made simulation code is needed. We offer the simple single-parameter model as an alternative to the time consuming calculations. The single parameter can be calculated either from the experimental or simulation data (one reference point is necessary to determine one parameter). Then we can find the field enhancement for different slit geometries and light wavelengths.

  9. Can a {open_quotes}superconductor{close_quotes} always expel the generalized magnetic field?

    SciTech Connect

    Mahajan, S.M.

    1998-03-10

    The conservation of generalized helicity in a perfectly conducting fluid may act as an electrodynamic barrier for the transition to the London (superconducting) state when the system is immersed in a topologically nontrival magnetic field (with a nonzero generalized helicity). An experiment is proposed to test whether the mechanism responsible (quantum correlations) for superconductivity respects the electrodynamic constraint.

  10. Closed-loop torque feedback for a universal field-oriented controller

    DOEpatents

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  11. Closed-loop torque feedback for a universal field-oriented controller

    SciTech Connect

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.; Haefner, Kenneth B.

    1992-01-01

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  12. Closing of the Midcontinent-Rift - a far-field effect on Grenvillian compression

    USGS Publications Warehouse

    Cannon, W.F.

    1994-01-01

    The Midcontinent rift formed in the Laurentian supercontinent between 1109 and 1094 Ma. Soon after rifting, stresses changed from extensional to compressional, and the central graben of the rift was partly inverted by thrusting on original extensional faults. Thrusting culminated at about 1060 Ma but may have begun as early as 1080 Ma. On the southwest-trending arm of the rift, the crust was shortened about 30km; on the southeast-trending arm, strike-slip motion was dominant. The rift developed adjacent to the tectonically active Grenville province, and its rapid evolution from an extensional to a compressional feature at c1080 Ma was coincident with renewal of northwest-directed thrusting in the Grenville, probably caused by continent-continent collision. A zone of weak lithosphere created by rifting became the locus for deformation within the otherwise strong continental lithosphere. Stresses transmitted from the Grenville province utilized this weak zone to close and invert the rift. -Author

  13. Frequency Shift and Sub-band Effect in Pair-Production Process Under Adiabatic Closing the External Field

    NASA Astrophysics Data System (ADS)

    Song, Xinfang; Wang, Wenyuan; Fu, Libin

    2016-09-01

    Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.

  14. Frequency Shift and Sub-band Effect in Pair-Production Process Under Adiabatic Closing the External Field

    NASA Astrophysics Data System (ADS)

    Song, Xinfang; Wang, Wenyuan; Fu, Libin

    2016-04-01

    Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.

  15. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-03-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials.

  16. Open-loop and closed-loop control of dissociative ionization of ethanol in intense laser fields

    SciTech Connect

    Yazawa, Hiroki; Tanabe, Takasumi; Okamoto, Tatsuyoshi; Yamanaka, Mio; Kannari, Fumihiko; Itakura, Ryuji; Yamanouchi, Kaoru

    2006-05-28

    The relative yield of the C-O bond breaking with respect to the C-C bond breaking in ethanol cation C{sub 2}H{sub 5}OH{sup +} is maximized in intense laser fields (10{sup 13}-10{sup 15} W/cm{sup 2}) by open-loop and closed-loop optimization procedures. In the open-loop optimization, a train of intense laser pulses are synthesized so that the temporal separation between the first and last pulses becomes 800 fs, and the number and width of the pulses within a train are systematically varied. When the duration of 800 fs is filled with laser fields by increasing the number of pulses or by stretching all pulses in a triple pulse train, the relative yield of the C-O bond breaking becomes significantly large. In the closed-loop optimization using a self-learning algorithm, the four dispersion coefficients or the phases of 128 frequency components of an intense laser pulse are adopted as optimized parameters. From these optimization experiments it is revealed that the yield ratio of the C-O bond breaking is maximized as far as the total duration of the intense laser field reaches as long as {approx}1 ps and that the intermittent disappearance of the laser field within a pulse does not affect the relative yields of the bond breaking pathways.

  17. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays

    PubMed Central

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-01-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials. PMID:26983501

  18. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.

    PubMed

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-01-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials. PMID:26983501

  19. Transverse field effect close to the critical point in the TGS ferroelectric

    NASA Astrophysics Data System (ADS)

    Fugiel, Bogusław; Kikuta, Toshio; Wojtków, Katarzyna

    2011-10-01

    A hysteresis loop was measured in a round-plate sample of triglycine sulfate (TGS) ferroelectric using two measurement and one side electrode. Due to a non-zero electric potential, V s, applied to the side electrode the hysteresis loop gradually decayed with time. It was shown that the higher the V s value, the shorter time t d is required for the hysteresis loop to disappear. The value of ? turned out to be proportional to the electric potential V s, generating a transverse field at a constant temperature. Within the limits of experimental error, the inverse of the slope of the dependence ? versus V s is proportional to the difference T C - T. A relationship between the temperature T, the spontaneous polarisation P ± (positive or negative) and the freezing parameter f has been proposed. The parameter f describes the influence of the transverse electric field. Arguments in favour of considering the transverse field effect as occurring due to free electric charges flowing into the crystal are given. A method is proposed by which the parameters of the hysteresis loop can be easily adjusted by an electric potential of an additional side electrode.

  20. Hydrous pyrolysis in the field: closed-system diagenesis at high fluid flow

    SciTech Connect

    Hutcheon, I.; Abercrombie, H.; Shevalier, M.; Nahnybida, C.

    1989-03-01

    Diagenetic processes are studied by observing natural systems or by experimental hydrous pyrolysis of water-organic-rock mixtures. Steam-enhanced recovery is similar to hydrous pyrolysis but is done in a previously undisturbed geological setting with mass, time, and temperature closer to natural diagenetic systems. Chemical and isotopic compositions of produced water and gas were determined for wellhead samples obtained from quartz-rich and lithic reservoirs. Estimates of reservoir temperature were made using the silica and Na-K geothermometers and agree with temperatures estimated from /sup 13/C//sup 13/C partitioning between bicarbonate and CO/sub 2/. Temperature and fluid composition data are portrayed on activity diagrams and show that minerals (illite, chalcedony, chlorite, analcime, and smectite) rapidly reach equilibrium with waters. Mineral reactions inferred from produced waters are different in quartz-rich and lithic reservoirs and agree with mineral reactions observed in post-steam cores. Carbon isotopic data indicate that carbonate minerals are the source of produced CO/sub 2/. Comparison of the buffering potential of aqueous carbonate species, carbonate minerals, organic acids, and silicate hydrolysis shows that silicates have the greatest potential to buffer pH. The authors data are consistent with pH control by silicate hydrolysis and indicate that silicate-carbonate reactions may be a major source of CO/sub 2/ during diagenesis. More generally, their results show that a diagenetic system of high fluid flow can be approximated by closed-system behavior.

  1. Large unbalanced credit scoring using Lasso-logistic regression ensemble.

    PubMed

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988

  2. Accurate parameter estimation for unbalanced three-phase system.

    PubMed

    Chen, Yuan; So, Hing Cheung

    2014-01-01

    Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for accurately finding the frequency, phase, and voltage parameters. The estimator is realized by the Newton-Raphson scheme, whose global convergence is studied in this paper. Computer simulations show that the mean square error performance of NLS method can attain the Cramér-Rao lower bound. Moreover, our proposal provides more accurate frequency estimation when compared with the complex least mean square (CLMS) and augmented CLMS. PMID:25162056

  3. Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble

    PubMed Central

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988

  4. Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Gilbert, L. J.

    1976-01-01

    Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated.

  5. Contact-free measurement of the flow field of a liquid metal inside a closed container

    NASA Astrophysics Data System (ADS)

    Heinicke, Christiane

    2014-03-01

    The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV) in which the metal flow is exposed to an external, permanent magnetic field. The interaction between the metal and the magnet not only leads to a force on the fluid, but also on the magnet. The force can be measured and is proportional to the velocity of the melt. Moreover, by using a small permanent magnet it is possible to resolve spatial structures inside the flow.We will demonstrate this using a model experiment that has been investigated with different reference techniques previously. The experimental setup is a cylindrical vessel filled with a eutectic alloy which is liquid at room temperature. The liquid metal can be set into motion by means of a propeller at the top of the liquid. Depending on the direction of rotation of the propeller, the flow inside the vessel takes on different states. Beside the vessel, we place a Lorentz Force Flowmeter (LFF) equipped with a small permanent magnet. By measuring the force on the magnet at different positions and different rotation speeds, we demonstrate that we can qualitatively and quantitatively reconstruct the flow field inside the vessel.

  6. Hamiltonian structure of Dubrovin{close_quote}s equation of associativity in 2-d topological field theory

    SciTech Connect

    Galvao, C.A.; Nutku, Y.

    1996-12-01

    mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}

  7. Canonical quantisation via conditional symmetries of the closed FLRW model coupled to a scalar field

    NASA Astrophysics Data System (ADS)

    Zampeli, Adamantia

    2015-09-01

    We study the classical, quantum and semiclassical solutions of a Robertson-Walker spacetime coupled to a massless scalar field. The Lagrangian of these minisuperspace models is singular and the application of the theory of Noether symmetries is modified to include the conditional symmetries of the corresponding (weakly vanishing) Hamiltonian. These are found to be the simultaneous symmetries of the supermetric and the superpotential. The quantisation is performed adopting the Dirac proposal for constrained systems. The innovation in the approach we use is that the integrals of motion related to the conditional symmetries are promoted to operators together with the Hamiltonian and momentum constraints. These additional conditions imposed on the wave function render the system integrable and it is possible to obtain solutions of the Wheeler-DeWitt equation. Finally, we use the wave function to perform a semiclassical analysis following Bohm and make contact with the classical solution. The analysis starts with a modified Hamilton-Jacobi equation from which the semiclassical momenta are defined. The solutions of the semiclassical equations are then studied and compared to the classical ones in order to understand the nature and behaviour of the classical singularities.

  8. Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin

    SciTech Connect

    Montgomery, S.L.

    1996-09-01

    Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

  9. Closed-loop tomographic control on HOMER wide-field AO bench: experimental results and identification issues

    NASA Astrophysics Data System (ADS)

    Parisot, Amelie; Costille, Anne; Petit, Cyril; Fusco, Thierry

    2010-07-01

    Adaptive Optics (AO) has a limited corrected field of view because of the anisoplanatism effect. Wide Field AO (WFAO) concepts, such as Multi-Conjugate AO (MCAO), have been developed to overcome this limitation. These complex WFAO systems raise critical challenges such as tomographic control and calibrations. We present new results obtained in closed-loop configuration with the laboratory bench HOMER which is devoted to implementation and validation of these WFAO concepts in the perspective of future VLT/ELT AO systems. Turbulence is generated with rotating phase screens and multi-directional analysis is performed. Tomographic control relies on Linear Quadratic Gaussian control (LQG). The correction can be applied thanks to two Deformable Mirrors (DM). We also focus on calibration issues and models identification. We investigate in particular identification of relative geometry of the wave front sensors, DM altitude and asterism and its impact on performance.

  10. Pc 3-4 Pulsations Near the Cusp: Latitude dependence near the open-closed field line boundary

    NASA Astrophysics Data System (ADS)

    Yeoman, T. K.; Wright, D. M.; Clausen, L. B.; Engebretson, M.; Lu, F.; Posch, J.; Lessard, M.; Kim, H.

    2008-12-01

    Dayside ground magnetometer records at high latitudes frequently show evidence of Pc 3-4 pulsations (f ~ 10-100 mHz) which originate in the ion foreshock upstream of the Earth's bow shock due to the interaction between reflected ions and the solar wind. Previous studies have noted increased Pc 3-4 wave power in the vicinity of the dayside cusp and inferred that the upstream waves gained entry via the cusp, although more recent studies have revealed a more complex picture. Here, we examine Pc3-4 wave power near local noon observed by search coil magnetometers at three closely-spaced stations on Svalbard. Three intervals are chosen when the upstream conditions are favourable for Pc3-4 generation, clear band-limited Pc3-4 wave power is observed near local noon, and an extended interval of HF radar backscatter indicative of the cusp is detected by the Hankasalmi SuperDARN radar. A stereo mode of radar operation is employed, such that 3 s time resolution is available on one radar beam, whilst the high latitude convection is revealed with 1 min. resolution. The location of the equatorward edge of the HF radar cusp may then be directly compared with the Pc3-4 wave power measured at three latitudes as the cusp migrates across the stations. The radar data show clear evidence of transient ionospheric flows and high spectral widths associated with field lines newly- opened by dayside reconnection processes, but no evidence of oscillations in the Pc3-4 frequency range. In the ground magnetic field a peak in Pc3-4 power is generally observed in the equatormost magnetometer, except when the cusp is significantly poleward of the stations, consistent with a peak in wave power ~4 degrees equatorward of the cusp, but suggesting a modest dependence of wave power with latitude on closed field lines When the cusp does move equatorward of the magnetometer stations the Pc3-4 power drops rapidly, and does so earliest at the most poleward magnetometer station, suggesting a sharp drop in

  11. Nuclear volume differences between balanced and unbalanced spermatozoa in chromosomal translocation carriers.

    PubMed

    Rouen, Alexandre; Lavillaureix, Alinoë; Hyon, Capucine; Heide, Solveig; Clède, Sylvain; Balet, Richard; Kott, Esther; Cassuto, Nino Guy; Siffroi, Jean-Pierre

    2015-03-01

    While chromosomal translocations are usually associated with a normal phenotype, they can still cause male infertility as well as recurrent miscarriages and fetal malformations related to their transmission in an unbalanced state. The distinction between balanced and unbalanced spermatozoa on morphological criteria is still unfeasible. However, we previously showed that: i) spermatozoa with an unbalanced content have a higher rate of DNA fragmentation; and ii) that density gradient centrifugation partially separates balanced from unbalanced sperm cells. We hypothesized that a chromosomal imbalance could alter the fine spermatic nuclear architecture and consequently the condensation of DNA, thus modifying normal sperm density. Spermatic nuclear volumes in four translocation carriers were analyzed using confocal microscopy. Secondarily, FISH analysis was used to establish the segregation mode of each spermatozoon. We found the average spermatic nuclei size to be higher among unbalanced spermatozoa in all patients but one. All the unbalanced modes were associated with larger nuclei in two patients, while this was the case for the 3:1 mode only in the other two, suggesting an abnormal condensation. This could be the first step in elaborating a procedure to completely eliminate unbalanced spermatozoa from semen prior to in vitro fertilization. PMID:25599825

  12. Field Performance Verification of Carbon Dioxide, Water, and Nitrous Oxide Closed-Path Eddy Covariance Systems with Vortex Intakes

    NASA Astrophysics Data System (ADS)

    Burgon, R. P., Jr.; Sargent, S.; Zha, T.; Jia, X.

    2015-12-01

    Closed-path eddy covariance systems measure the flux of greenhouse gasses such as carbon dioxide, water vapor, and nitrous oxide. The challenge is to make accurate field measurements at sites around the world, even in extreme environmental conditions. Sites with dirty air present a particular challenge. Gas concentration measurements may be degraded as dust or debris is deposited on the optical windows in the sample cell. The traditional solution has been to add an in-line filter upstream of the sample cell to keep the windows clean. However, these filters clog over time and must be changed periodically. An in-line filter also acts as a mixing volume and in some cases limits the frequency response of the analyzer. A novel eddy-covariance system that includes a vortex air cleaner at the inlet has been developed and field tested. This new system eliminates the need for a traditional in-line filter to keep the sample cell windows clean. The new system reduces system maintenance and down time. Eddy covariance systems with the vortex intake were tested at several sites ranging from sites with extremely dirty urban air to sites with relatively clean mountain air, and in agricultural areas. These flux systems were monitoring either CO2 and H2O, or N2O. Results show that the closed-path eddy covariance systems with a vortex intake perform very well and require lower maintenance compared to similar systems with in-line filters.

  13. Leaf Length Tracker: a novel approach to analyse leaf elongation close to the thermal limit of growth in the field

    PubMed Central

    Kirchgessner, Norbert; Yates, Steven; Hiltpold, Maya; Walter, Achim

    2016-01-01

    Leaf growth in monocot crops such as wheat and barley largely follows the daily temperature course, particularly under cold but humid springtime field conditions. Knowledge of the temperature response of leaf extension, particularly variations close to the thermal limit of growth, helps define physiological growth constraints and breeding-related genotypic differences among cultivars. Here, we present a novel method, called ‘Leaf Length Tracker’ (LLT), suitable for measuring leaf elongation rates (LERs) of cereals and other grasses with high precision and high temporal resolution under field conditions. The method is based on image sequence analysis, using a marker tracking approach to calculate LERs. We applied the LLT to several varieties of winter wheat (Triticum aestivum), summer barley (Hordeum vulgare), and ryegrass (Lolium perenne), grown in the field and in growth cabinets under controlled conditions. LLT is easy to use and we demonstrate its reliability and precision under changing weather conditions that include temperature, wind, and rain. We found that leaf growth stopped at a base temperature of 0°C for all studied species and we detected significant genotype-specific differences in LER with rising temperature. The data obtained were statistically robust and were reproducible in the tested environments. Using LLT, we were able to detect subtle differences (sub-millimeter) in leaf growth patterns. This method will allow the collection of leaf growth data in a wide range of future field experiments on different graminoid species or varieties under varying environmental or treatment conditions. PMID:26818912

  14. Leaf Length Tracker: a novel approach to analyse leaf elongation close to the thermal limit of growth in the field.

    PubMed

    Nagelmüller, Sebastian; Kirchgessner, Norbert; Yates, Steven; Hiltpold, Maya; Walter, Achim

    2016-04-01

    Leaf growth in monocot crops such as wheat and barley largely follows the daily temperature course, particularly under cold but humid springtime field conditions. Knowledge of the temperature response of leaf extension, particularly variations close to the thermal limit of growth, helps define physiological growth constraints and breeding-related genotypic differences among cultivars. Here, we present a novel method, called 'Leaf Length Tracker' (LLT), suitable for measuring leaf elongation rates (LERs) of cereals and other grasses with high precision and high temporal resolution under field conditions. The method is based on image sequence analysis, using a marker tracking approach to calculate LERs. We applied the LLT to several varieties of winter wheat (Triticum aestivum), summer barley (Hordeum vulgare), and ryegrass (Lolium perenne), grown in the field and in growth cabinets under controlled conditions. LLT is easy to use and we demonstrate its reliability and precision under changing weather conditions that include temperature, wind, and rain. We found that leaf growth stopped at a base temperature of 0°C for all studied species and we detected significant genotype-specific differences in LER with rising temperature. The data obtained were statistically robust and were reproducible in the tested environments. Using LLT, we were able to detect subtle differences (sub-millimeter) in leaf growth patterns. This method will allow the collection of leaf growth data in a wide range of future field experiments on different graminoid species or varieties under varying environmental or treatment conditions. PMID:26818912

  15. Effect of unbalanced magnetic pull and hydraulic seal force on the vibration of large rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Song, Z.; Guo, P.; Liu, Y.

    2014-03-01

    The influence of unbalanced magnetic pull (UMP) and hydraulic seal force on the vibration of large rotor-bearing systems is studied. The UMP caused by rotor eccentricity imposes important effects on rotating machinery, especially for large generators such as water turbine generator sets, because these machines operate above their first critical speed in some instances and are supported by oil film bearings. A magnetic stiffness matrix for studying the effects of the UMP is proposed. The magnetic stiffness matrix can be generated by decomposing the expression of air gap magnetic field energy. Two vibration models are constructed using the Lagrange equation. The difference between the two models lies in the boundary support condition: one has rigid support and the other has elastic bearing support. The influence of the magnetic stiffness and elastic support on the critical speed of the rotor is studied using Lyapunov nonlinear vibration stability theory. The vibration amplitude of the rotor is calculated, taking the magnetic stiffness and horizontal centrifugal force into account. The unbalanced hydraulic seal force is produced because of the asymmetry of seal clearance. This imbalance is one of the factors that causes self-excited vibration in rotating machinery, and is as important as the UMP for large water turbine generator sets. The rotor-bearing system is supported by an oil film journal bearing, whose characteristic also impose considerable influence on vibration. On the basis of the above-mentioned conditions, a three-dimensional finite element model of the rotating system that includes the oil film journal bearing is constructed. The effect of the UMP and unbalanced hydraulic seal force is considered in the construction, and studied in relation to the magnetic parameters, seal parameters, journal bearing stiffness, and outer diameter of the rotating machine critical speed. Conclusions may benefit the dynamic design and optimized operation of large rotating

  16. Magnetic field effects in RF magnetron sputtering of CdS/CdTe solar cells

    SciTech Connect

    Compaan, A.D.; Shao, M.; Tabory, C.N.; Feng, Z.; Fischer, A.; Shen, F.; Narayanswami, C.; Bohn, R.G.

    1996-01-01

    We have studied effects of magnetic field strength and configuration on rf planar magnetron sputtering of CdS and CdTe. This study was carried out with one sputter gun having an unbalanced magnetic field and a second gun having an approximately balanced magnetic field. The unbalanced field gun produces significantly higher ion and electron bombardment of the film during growth and slightly higher electron kinetic energies. Films produced with the unbalanced gun show much stronger photoluminescence and cell performance is much better when the CdTe is deposited with the unbalanced gun. {copyright} {ital 1996 American Institute of Physics.}

  17. The BinaMIcS project: understanding the origin of magnetic fields in massive stars through close binary systems

    NASA Astrophysics Data System (ADS)

    Alecian, E.; Neiner, C.; Wade, G. A.; Mathis, S.; Bohlender, D.; Cébron, D.; Folsom, C.; Grunhut, J.; Le Bouquin, J.-B.; Petit, V.; Sana, H.; Tkachenko, A.; ud-Doula, A.

    2015-01-01

    It is now well established that a fraction of the massive (M > 8 M ⊙) star population hosts strong, organised magnetic fields, most likely of fossil origin. The details of the generation and evolution of these fields are still poorly understood. The BinaMIcS project takes an important step towards the understanding of the interplay between binarity and magnetism during the stellar formation and evolution, and in particular the genesis of fossil fields, by studying the magnetic properties of close binary systems. The components of such systems are most likely formed together, at the same time and in the same environment, and can therefore help us to disentangle the role of initial conditions on the magnetic properties of the massive stars from other competing effects such as age or rotation. We present here the main scientific objectives of the BinaMIcS project, as well as preliminary results from the first year of observations from the associated ESPaDOnS and Narval spectropolarimetric surveys.

  18. Prenatal diagnosis of two different unbalanced forms of an inherited (Y;12) translocation.

    PubMed

    Mademont-Soler, Irene; Morales, Carme; Madrigal, Irene; Margarit, Ester; Bruguera, Jordi; Clusellas, Núria; Martínez, José M; Borrell, Antoni; Sánchez, Aurora; Soler, Anna

    2009-12-01

    The identification of an unexpected structural chromosome rearrangement at prenatal diagnosis can be problematic and raises unique genetic counseling issues. We describe two consecutive prenatal cases within a family with an inherited unbalanced (Y;12) translocation and discuss the genotype-phenotype correlation. The first fetus presented with 12qter monosomy and pseudoautosomal region 2 trisomy, while the second fetus had the alternative unbalanced state. Although the first fetus had a structural heart defect, such small imbalances might not give sonographic findings, making their prenatal diagnosis difficult. However, congenital abnormalities are expected in both unbalanced forms of the translocation, including mental retardation, which could be explained by the gene dosage variation of P2RX2. To our knowledge, these are the first published cases reporting this subtype of (Y;12) translocation, in both balanced and unbalanced states. PMID:19921651

  19. A New Linearization Method of Unbalanced Electrical Distribution Networks

    SciTech Connect

    Liu, Guodong; Xu, Yan; Ceylan, Oguzhan; Tomsovic, Kevin

    2014-01-01

    Abstract--- With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. As DN control and operation strategies are mostly based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages, line currents, power loss) and control variables (e.g., power injections, transformer tap positions), efficient and precise calculation of these sensitivity coefficients, i.e. linearization of DN, is of fundamental importance. In this paper, the derivation of the node voltages and power loss as functions of the nodal power injections and transformers' tap-changers positions is presented, and then solved by a Gauss-Seidel method. Compared to other approaches presented in the literature, the proposed method takes into account different load characteristics (e.g., constant PQ, constant impedance, constant current and any combination of above) of a generic multi-phase unbalanced DN and improves the accuracy of linearization. Numerical simulations on both IEEE 13 and 34 nodes test feeders show the efficiency and accuracy of the proposed method.

  20. Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria

    PubMed Central

    Flynn, Jeffrey M.; Ross, Daniel E.; Hunt, Kristopher A.; Bond, Daniel R.; Gralnick, Jeffrey A.

    2010-01-01

    Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints. To test this hypothesis, the metal-reducing bacterium Shewanella oneidensis was engineered to stoichiometrically convert glycerol into ethanol, a biotransformation that will not occur unless two electrons are removed via an external reaction, such as electrode reduction. Multiple modules were combined into a single plasmid to alter S. oneidensis metabolism: a glycerol module, consisting of glpF, glpK, glpD, and tpiA from Escherichia coli, and an ethanol module containing pdc and adh from Zymomonas mobilis. A further increase in product yields was accomplished through knockout of pta, encoding phosphate acetyltransferase, shifting flux toward ethanol and away from acetate production. In this first-generation demonstration, conversion of glycerol to ethanol required the presence of an electrode to balance the reaction, and electrode-linked rates were on par with volumetric conversion rates observed in engineered E. coli. Linking microbial biocatalysis to current production can eliminate redox constraints by shifting other unbalanced reactions to yield pure products and serve as a new platform for next-generation bioproduction strategies. PMID:21060736

  1. A balanced perspective on unbalanced growth and thymineless death

    PubMed Central

    Hanawalt, Philip C.

    2015-01-01

    The early history of the esoteric phenomenon of thymineless death (TLD) is recounted, from the pioneering discovery by Seymour Cohen and Hazel Barner, through my graduate studies at Yale and postdoctoral research in Copenhagen. My principal contribution was the discovery that restricted synthesis of protein and RNA permits cultures of Escherichia coli to complete their DNA replication cycles without initiating new ones, and that cells held in this physiological state are immune to the lethality of thymine deprivation; unbalanced growth is not the fundamental cause of TLD. The successful synchronization of the DNA replication cycle contributed to formulation of the replicon concept. Studies at Stanford revealed a specific requirement for transcription and led to the discovery of a TLD-resistant mutant in a new gene, termed recQ, with important homologs in humans and most other organisms. The lessons learned from research on TLD underscore the value of basic research in bacterial systems that can have profound implications for human health. PMID:26097468

  2. Use of unbalanced laminates as a screening method for microcracking

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Demetrios S.; Bowles, Kenneth J.

    1990-01-01

    State-of-the-art, high temperature polyimide matrix composites, reinforced with continuous graphite fibers are known to be susceptible to intraply cracking when thermally cycled over their useful service temperature range. It is believed that the transply cracking, in part, results from residual stresses caused by differences in coefficients of thermal expansion (CTE) between the polymer matrix and the reinforcement. Thermal cycling tests to investigate this phenomenon involve expensive time and energy consuming programs which are not economically feasible for use as a part of a materials screening process. As an alternative to thermal cycling studies, a study of unbalanced crossply graphite fiber reinforcement composites was conducted to assess the effect of the composite ply layup and surface condition on the residual stresses that remain after the processing of these materials. The residual stresses were assessed by measuring the radii of curvature of the types of laminates that were studied. The temperature at which stress-free conditions existed were determined and a dye penetrant method was used to observe surface damage resulting from excessive residual stress buildup. These results are compared with some published results of thermal cycling tests that were previously conducted on balanced polyimide composites.

  3. Overdose Intake of Curcumin Initiates the Unbalanced State of Bodies.

    PubMed

    Qiu, Peiyu; Man, Shuli; Li, Jing; Liu, Jing; Zhang, Liming; Yu, Peng; Gao, Wenyuan

    2016-04-01

    Curcumin is the major active component of turmeric and widely used as a spice and coloring agent in food. However, its safety evaluation has been little investigated. To evaluate the 90-day subchronic toxicity of curcumin in rats, its general observation, clinical biochemistry, pathology, and metabolomics were evaluated. The results showed that curcumin induced liver injury through the generation of the overexpression of reactive oxygen species (ROS) and pro-inflammatory cytokines IL-6 and the decreases of the levels of antioxidant enzyme SOD and detoxified enzyme GST. Meanwhile, for the self-protection of rats, curcumin treatment activated the transcription of Nrf-2 and elevated the expression of HO-1 to reduce tissue damage. Furthermore, curcumin significantly increased key mRNA levels of HK2, PKM2, LDHA, CES, Cpt1, Cpt2, FASN, and ATP5b and decreased levels of GLUT2 and ACC1 to enhance glycolysis and inhibit lipid metabolism and TCA cycle. Therefore, overdose or long-term intake of curcumin could initiate the unbalanced state of bodies through oxidative stress, inflammation, and metabolic disorders, which induces liver injury. Intermittent administration of curcumin is necessary in our daily lives. PMID:26978516

  4. Unbalanced quantized multiple description video transmission using path diversity

    NASA Astrophysics Data System (ADS)

    Ekmekci, Sila; Sikora, Thomas

    2003-05-01

    Multiple Description Coding is a forward error correction scheme where two or more descriptions of the source are sent to the receiver over different channels. If only one channel is received the signal can be reconstructed with distortion D1 or D2. On the other hand, if both channels rae received the combined information is used to achieve a lower distortion D0. Our approach is based on the Multiple State Video Coding with the novelty that we achieve a flexible unbalance rate of the two streams by varying the quantization step size while keeping the original frame rate constant. The total bitrate Rτ is fixed which is to be allocated between the two streams. If the assigned bitratres are not balanced there will be PSNR variations between neighboring frames after reconstruction. Our goal is to find the optimal rate allocation while maximizing the average reconstructed frame PSNR and minimizing the PSNR variations given the total bitrate Rτ and the packet loss probabilities p1 and p2 over the two paths. The reconstruction algorithm is also taken into account in the optimization process. The paper will report results presenting optimal system designs for balanced but also for unbalanced path conditions.

  5. Maps of average ionospheric vorticity ordered by relationship with the open-closed magnetic field line boundary

    NASA Astrophysics Data System (ADS)

    Chisham, Gareth

    2015-04-01

    Spatiotemporal variations of ionospheric vorticity are a measure of the dynamical coupling of the magnetosphere to the ionosphere via magnetic field-aligned currents (FACs). Indeed, ionospheric vorticity measurements have often been used as proxy measurements for FACs. Previously, we have determined statistical models of ionospheric vorticity using 6 years of ionospheric convection velocity measurements made by the SuperDARN HF radar network in the northern hemisphere ionosphere and shown that the spatial variation of these probability distributions is well organised according to the well-established large-scale FAC structure in the polar ionosphere. However, to date, these statistical models have been parameterised solely by the state of the interplanetary magnetic field (IMF), and as such do not account for the range of polar cap sizes that occur for a single IMF state. This leads to a distortion of the shape of the resulting statistical maps that makes features in the statistical variations appear smoother than those in instantaneous/short-time averaged measurements. This is because the averaging process does not consider the variable size of the polar cap, by which spatial features in the ionospheric vorticity variation are ordered. Using open-closed magnetic field line boundary measurements determined from FUV imager data from the IMAGE spacecraft, we investigate the parameterisation of the statistical ionospheric vorticity models with polar cap size in addition to the state of the IMF. The results of this analysis have implications for other statistical models determined in this way, such as those for FACs and ionospheric convection.

  6. Pointing and Scanning Control of Instruments Using Rotating Unbalanced Masses

    NASA Technical Reports Server (NTRS)

    Hung, John Y.

    1996-01-01

    Motions of telescopes, satellites, and other flight bodies have been controlled by various means in the past. For example, gimbal mounted devices can use electric motors to produce pointing and scanning motions. Reaction wheels, control moment gyros, and propellant-charged reaction jets are other technologies that have also been used. Each of these methods has its advantages, but all actuator systems used in a flight environment face the challenges of minimizing weight, reducing energy consumption, and maximizing reliability. Recently, Polites invented and patented the Rotating Unbalanced Mass (RUM) device as a means for generation scanning motion on flight experiments. RUM devices have been successfully used to generate various scanning motions. The basic principle: a RUM rotating at constant annular velocity exerts a cyclic centrifugal force on the instrument or main body, thus producing a periodic scanning motion. A system of RUM devices exerts no reaction forces on the main body, requires very little energy, and is very simple to construct and control. These are significant advantages over electric motors, reaction wheels, and control moment gyroscopes. Although the RUM device very easily produces scanning motion, an auxiliary control system may be required to maintain the proper orientation, or pointing of the main body. It has been suggested that RUM devices can be used to control pointing dynamics, as well as generate the desired periodic scanning motion. The idea is that the RUM velocity will not be constant, but will vary over the period of one RUM rotation. The thought is that the changing angular velocity produces a centrifugal force having time-varying magnitude and direction. The scope of the present research project is to further study the pointing control concept, and to implement a microcontroller program to control an experimental hardware system. This report is subdivided into three themes. The basic dynamic modeling and control principles are

  7. A closed-form solution of wake-fields in an elliptical pill-box by using an elliptical coordinate system

    NASA Astrophysics Data System (ADS)

    Yang, J. S.; Chen, K. W.

    1989-10-01

    It was known from a complete model analysis1,2 that the wake potential in the pill-box cavity is predominantly determined by a few longitudinal modes counting from the fundamental longitudinal mode. An approach to find the longitudinal modes of an elliptical cavity is developed by means of the coordinate transformation method. It is found that the field configuration and eigenfrequencies of the elliptical cavity can be expressed in a closed form in terms of Mathieu functions. Inserting the closed form solution of modes into the previous analytical formula for the wake field, the wake field is expressed too in a closed form solution, which is convenient for numerical calculation. Thus, a numerical method to calculate expediently the wake field is developed, and a model calculation is presented.

  8. Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower

    NASA Astrophysics Data System (ADS)

    Zhou, Helin; Diendorfer, Gerhard; Thottappillil, Rajeev; Pichler, Hannes; Mair, Martin

    2012-04-01

    We examine in detail the simultaneous lightning current waveforms, close electric field changes, and lightning location system data for upward lightning discharges initiated from the Gaisberg Tower (GBT) from 2005 to 2009. Out of 205 upward flashes, most of them (87% or 179/205) were initiated from the tower top without any nearby preceding lightning activity (called "self-initiated"), whereas 26 upward flashes (13%) were initiated from the tower top with immediately preceding nearby lightning activity (called "nearby-lightning-triggered"), including 15 positive ground flashes, one negative ground flashes, and 10 cloud discharges. The possible reasons for self-initiated upward flashes dominating at the GBT could be the field enhancement due to the Gaisberg Mountain above the surrounding terrain and low altitude of charge region during non-convective season (September to March), since we note that self-initiated lightning at the GBT occurred predominantly (79% or 142/179) during non-convective season. On the other hand the majority (85% or 22/26) of nearby-lightning-triggered upward flashes at the GBT occurring during convective season (April to August) and 80 nearby-lightning-triggered upward flashes out of 81 upward flashes observed at the ten tall towers in Rapid City in South Dakota of USA occurring during summer seasons, could be due to the result of high altitude of charge region. The triggering flashes were detected to be within 1 and 18 km distance and the time intervals between them and upward lightning initiation are in the range of 0.3 to 90.7 ms.

  9. Dynamic Models of Instruments Using Rotating Unbalanced Masses

    NASA Technical Reports Server (NTRS)

    Hung, John Y.; Gallaspy, Jason M.; Bishop, Carlee A.

    1998-01-01

    The motion of telescopes, satellites, and other flight bodies have been controlled by various means in the past. For example, gimbal mounted devices can use electric motors to produce pointing and scanning motions. Reaction wheels, control moment gyros, and propellant-charged reaction jets are other technologies that have also been used. Each of these methods has its advantages, but all actuator systems used in a flight environment face the challenges of minimizing weight, reducing energy consumption, and maximizing reliability. Recently, Polites invented and patented the Rotating Unbalanced Mass (RUM) device as a means for generation scanning motion on flight experiments. RUM devices together with traditional servomechanisms have been successfully used to generate various scanning motions: linear, raster, and circular. The basic principle can be described: A RUM rotating at constant angular velocity exerts a cyclic centrifugal force on the instrument or main body, thus producing a periodic scanning motion. A system of RUM devices exerts no reaction forces on the main body, requires very little energy to rotate the RUMS, and is simple to construct. These are significant advantages over electric motors, reaction wheels, and control moment gyroscopes. Although the RUM device very easily produces scanning motion, an auxiliary control system has been required to maintain the proper orientation, or pointing of the main body. It has been suggested that RUM devices can be used to control pointing dynamics, as well as generate the desired periodic scanning motion. The idea is that the RUM velocity will not be kept constant, but will vary over the period of one RUM rotation. The thought is that the changing angular velocity produces a centrifugal force having time-varying magnitude and direction. The scope of this ongoing research project is to study the pointing control concept, and recommend a direction of study for advanced pointing control using only RUM devices. This

  10. Non-inductive initiation of closed flux surfaces by ECH/ECCD on KSTAR using an oblique fundamental O-mode injection from the low-field side

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Uchida, M.; Maekawa, T.; Bae, Y.-S.; Joung, M.; Jeong, J. H.; KSTAR Team

    2016-04-01

    An experiment on non-inductive plasma current start-up by electron cyclotron (EC) heating and current drive (ECH/ECCD) has been carried out on KSTAR by injecting the fundamental O-mode wave from the low-field side obliquely to the toroidal magnetic field. A plasma current up to 14.5 kA is generated by 180 kW of 84 GHz microwave power and the magnetic measurement shows the formation of a large last-closed flux surface with a diameter of 0.4 m. The soft x-ray emission profile and fast CCD images also support the existence of closed flux surfaces. The current of the cross-field-passing electrons (CFPEs) is calculated according to the paper Nucl. Fusion 52 083008 in these experimental conditions, and it is shown that a CFPE current can produce the initial closed flux surfaces. The observed large increase of EC emission supports the generation of energetic electrons, like CFPEs. After the formation of the closed flux surfaces, the pressure-driven current and CFPE current do not flow in the closed flux surfaces. EC-driven current should flow in these surfaces and ramp up the plasma current. It is estimated that an EC-driven current of about one third of the total plasma current flows in the closed flux surface at the last stage.

  11. A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies

    SciTech Connect

    Oran, R.; Van der Holst, B.; Landi, E.; Jin, M.; Sokolov, I. V.; Gombosi, T. I.

    2013-12-01

    We describe, analyze, and validate the recently developed Alfvén Wave Solar Model, a three-dimensional global model starting from the top of the chromosphere and extending into interplanetary space (out to 1-2 AU). This model solves the extended, two-temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low-frequency Alfvén waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and to wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counterpropagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment in any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model; no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady state (in the corotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfvén waves, the perpendicular correlation length of the turbulence, and a pseudoreflection coefficient. We compare model results for Carrington rotation 2063 (2007 November-December) with remote observations in the extreme-ultraviolet and X-ray ranges from the Solar Terrestrial Relations Observatory, Solar and Heliospheric Observatory, and Hinode spacecraft and with in situ measurements by Ulysses. The results are in good agreement with observations. This is the first global simulation that is simultaneously consistent with observations of both the thermal structure of the lower corona and the wind structure beyond Earth's orbit.

  12. Patterns of transcriptome divergence in the male accessory gland of two closely related species of field crickets.

    PubMed

    Andrés, Jose A; Larson, Erica L; Bogdanowicz, Steven M; Harrison, Richard G

    2013-02-01

    One of the central questions in evolutionary genetics is how much of the genome is involved in the early stages of divergence between populations, causing them to be reproductively isolated. In this article, we investigate genomic differentiation in a pair of closely related field crickets (Gryllus firmus and G. pennsylvanicus). These two species are the result of allopatric divergence and now interact along an extensive hybrid zone in eastern North America. Genes encoding seminal fluid proteins (SFPs) are often divergent between species, and it has been hypothesized that these proteins may play a key role in the origin and maintenance of reproductive isolation between diverging lineages. Hence, we chose to scan the accessory gland transcriptome to enable direct comparisons of differentiation for genes known to encode SFPs with differentiation in a much larger set of genes expressed in the same tissue. We have characterized differences in allele frequency between two populations for >6000 SNPs and >26,000 contigs. About 10% of all SNPs showed nearly fixed differences between the two species. Genes encoding SFPs did not have significantly elevated numbers of fixed SNPs per contig, nor did they seem to show larger differences than expected in their average allele frequencies. The distribution of allele frequency differences across the transcriptome is distinctly bimodal, but the relatively high proportion of fixed SNPs does not necessarily imply "ancient" divergence between these two lineages. Further studies of linkage disequilibrium and introgression across the hybrid zone are needed to direct our attention to those genome regions that are important for reproductive isolation. PMID:23172857

  13. Integrated ExoMars PanCam, Raman, and close-up imaging field tests on AMASE 2009

    NASA Astrophysics Data System (ADS)

    Foss Amundsen, Hans Erik; Westall, Frances; Steele, Andrew; Vago, Jorge; Schmitz, Nicole; Bauer, Arnold; Cousins, Claire; Rull, Fernando; Sansano, Antonio; Midtkandal, Ivar

    2010-05-01

    Arctic Mars Analog Svalbard Expedition (AMASE) uses Mars analog field sites on the Arctic islands of Svalbard (Norway) for research within astrobiology and for testing of payload instruments onboard Mars missions Mars Science Laboratory, ExoMars and Mars Sample Return. AMASE 2009 marked the seventh consecutive year of field testing. Instrument shakedowns were arranged to mimic rover operations on Mars and included the panoramic camera (PanCam), mineral- and organic chemistry sensors (Raman-LIBS) and ground penetrating radar (Wisdom) onboard ExoMars together with CheMin and SAM instruments onboard MSL and testing of sampling and caching protocols using JPĹs Fido rover. Test sites included volcanic rocks within the Bockfjord Volcanic Complex (BVC) with carbonate deposits identical to those in ALH84001 and Carboniferous sandstones and paleosols at Ismåsestranda. In view of the 2018 ExoMars mission, field models of the PanCam and Raman instruments, as well as an Olympus E410 camera having similar technical specifications to the ExoMars Close-Up Imager (CLUPI) were used in an integrated exercise to characterise the geology and habitability of the different field sites. The BVC locality consisted of volcanclastic sediments deposited on the flanks of the 1 Ma old Sverrefjell volcano. This volcano is constructed of primitive alkaline basalt with abundant mantle xenoliths. The sediments were a mixture of hyaloclastite, ash, volcanic bombs, lava detritus, and xenoliths (peridotites, granulites) deposited in a roughly laminated fashion on the slopes of the volcano. Late stage carbonate deposits were also present. The Ismåsestranda locality consisted of fine-grained sandstone deposited in a littoral environment. The sandstones were characterised by a variety of sedimentary structures reflecting a marginal marine depositional environment. They were highly variegated in colour due to diagenetic remobilisation of trace elements. PanCam made general context observations using

  14. Unbalanced and Minimal Point Equivalent Estimation Second-Order Split-Plot Designs

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Kowalski, Scott M.; Vining, G. Geoffrey

    2007-01-01

    Restricting the randomization of hard-to-change factors in industrial experiments is often performed by employing a split-plot design structure. From an economic perspective, these designs minimize the experimental cost by reducing the number of resets of the hard-to- change factors. In this paper, unbalanced designs are considered for cases where the subplots are relatively expensive and the experimental apparatus accommodates an unequal number of runs per whole-plot. We provide construction methods for unbalanced second-order split- plot designs that possess the equivalence estimation optimality property, providing best linear unbiased estimates of the parameters; independent of the variance components. Unbalanced versions of the central composite and Box-Behnken designs are developed. For cases where the subplot cost approaches the whole-plot cost, minimal point designs are proposed and illustrated with a split-plot Notz design.

  15. Unbalanced-flow, fluid-mixing plug with metering capabilities

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)

    2009-01-01

    A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.

  16. Two brothers with an unbalanced 8;17 translocation and infantile pyloric stenosis.

    PubMed

    Hodgson, S V; Berry, A C; Dunbar, H M

    1995-12-01

    Two half-brothers are described who had developmental delay and minor dysmorphic features, both of whom had operative treatment for pyloric stenosis. They had identical unbalanced karyotypes: 46,XY,-17,+der(17)t(8;17) (q24;q25). This was inherited from their mother who had the balanced form of the translocation. She was of normal intelligence and had no history of pyloric stenosis herself or in her extended family. It is suggested that the unbalanced chromosomal rearrangement could have been associated with the development of pyloric stenosis in these two brothers. PMID:8835331

  17. Genotype by environment interaction and the use of unbalanced historical data for genomic selection in an international wheat breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) offers breeders the possibility of using historic data and unbalanced breeding trials to form training populations for predicting the performance of new lines. However, in using datasets that are unbalanced over time and space, there is increasing exposure to particular genoty...

  18. Magnetic field induced lattice effects in a quasi-two-dimensional organic conductor close to the Mott metal-insulator transition

    NASA Astrophysics Data System (ADS)

    de Souza, Mariano; Brühl, Andreas; Strack, Christian; Schweitzer, Dieter; Lang, Michael

    2012-08-01

    We present ultra-high-resolution dilatometric studies in magnetic fields on a quasi-two-dimensional organic conductor κ-(D8-BEDT-TTF)2Cu[N(CN)2]Br, which is located close to the Mott metal-insulator (MI) transition. The obtained thermal expansion coefficient, α(T), reveals two remarkable features: (i) the Mott MI transition temperature TMI=(13.6±0.6) K is insensitive to fields up to 10 T, the highest applied field; (ii) for fields along the interlayer b axis, a magnetic field induced (FI) phase transition at TFI=(9.5±0.5) K is observed above a threshold field Hc˜1 T, indicative of a spin reorientation with strong magnetoelastic coupling.

  19. Unbalanced Nature, Unbounded Bodies, and Unlimited Technology: Ecocriticism and Karen Traviss' Wess'har Series

    ERIC Educational Resources Information Center

    Sullivan, Heather I.

    2010-01-01

    While nature is often claimed to be a space of harmonized balance or an antidote to the chaos of the modern world, we need a more grounded assessment of nature as endlessly changing and much less predictable than we like to assume. In this essay, I explore Karen Traviss' provocative exploration of unbalanced nature and unbounded bodies in her…

  20. The Status of the "Weaker" Language in Unbalanced French/German Bilingual Language Acquisition

    ERIC Educational Resources Information Center

    Bonnesen, Matthias

    2009-01-01

    In this paper, I investigate the status of the so-called "weaker" language, French, in French/German bilingual first language acquisition, using data from two children from the DuFDE-corpus (see Schlyter, 1990a), Christophe and Francois. Schlyter (1993, 1994) proposes that the "weaker" language in the unbalanced children she studied has the status…

  1. Is This Object Balanced or Unbalanced? Judgments Are on the Safe Side

    ERIC Educational Resources Information Center

    Samuel, Francoise; Kerzel, Dirk

    2011-01-01

    Do we perceive correctly whether a 2-D object is balanced or unbalanced? What would be the cause of biased equilibrium judgments? In two psychometric studies, we varied independently the characteristics of the objects and the equilibrium states. First, we observed that observers were excessively sensitive to the eccentricity of the object top.…

  2. Tests of Hypotheses for Unbalanced Factorial Designs under Various Regression/ Coding Method Combinations.

    ERIC Educational Resources Information Center

    Blair, R. Clifford; Higgins, J.J.

    1978-01-01

    The controversy surrounding regression methods for unbalanced factorial designs is addressed. The statistical hypotheses being tested under the various methods, as well as salient issues in the use of these methods, are discussed. The use of statistical computer packages is also discussed. (Author/JKS)

  3. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    SciTech Connect

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  4. Closing the Performance Gap in a 4th Wave and Post-Modern Society: Lessons from the Field

    ERIC Educational Resources Information Center

    Adams, J. Q.

    2005-01-01

    The USA is undergoing tremendous cultural changes as we open the first decade of the 21st century. In this paper the author discusses the need to close the performance gap that exists between White, African American, and Latino/a students. To do so, educators must carefully consider several important cultural forces. The author examines the shift…

  5. Prenatal Diagnosis of Rare Familial Unbalanced Translocation of Chromosomes 7 and 12

    PubMed Central

    Tezcan, Berrin; Bredaki, Foteini Emmanouella

    2015-01-01

    Case Details. We report rare familial unbalanced translocation of chromosomes 7 and 12, which was diagnosed prenatally at 20+3 weeks of gestation. Woman's partner had been tested in the past and was found to be a carrier of a balanced translocation; his karyotype showed a balanced reciprocal translocation of 46, XY, t(7;12)(q34;q24,32). Partner's brother had an unbalanced form of the translocation with severe learning disability. The diagnosis of the anomaly was based on two- and three-dimensional ultrasound and microarray analysis. Ultrasonography findings included fetal microcephaly and alobar holoprosencephaly, dysmorphic face (flat occiput, absent nasal bone, microphthalmia, hypotelorism, and single nostril), and hyperechogenic bowel. Genome-wide array analysis and cytogenetic results from the amniotic fluid showed unbalanced translocation in chromosomes 7 and 12 with deletion of an approximately 16.5 Mb and a duplication of 6.1 Mb, respectively, Arr 7q34q36.3(142,668,576-159,161,648)x1,12q24.32q24.33(127,708,720-133,777,560)x3, karyotype (der (7) t(7;12) (q34;q24)pat). This unbalanced translocation was due to the segregation of the father's balanced translocation. In this particular case, the recurrence of an unbalanced translocation in the subsequent pregnancies is estimated to be 20%. Understanding the individuals' phenotype in association with the gain and loss of copy number is important and can further provide us with information on that particular region of the named chromosomes. PMID:26294991

  6. Model of the influence of magnetic fields on a plasma electrode Pockels cell

    SciTech Connect

    Boley, C.D.; Rhodes, M.A.

    1996-10-01

    We describe a model which gives the effects of magnetic fields on a plasma electrode Pockels cell. The fields arise from the return currents to the cathode as well as from neighboring devices such as amplifier flashlamps. In effect, electrons are treated as a static, planar fluid moving under the influence of magnetic fields, the electric field of the discharge, electron pressure gradients, and electron-atom elastic collisions. This leads to a closed two- dimensional equation for the electron density, which is solved subject to appropriate boundary collisions. The model is applied to four cases-. the baseline NIF configuration with magnetic fields due to balanced return currents; a case with unbalanced return currents; the reverser configuration containing an external field parallel to the main plasma current; and a configuration with a field perpendicular to both the current and the optical direction.

  7. Shielding of longitudinal magnetic fields with thin, closely, spaced concentric cylindrical shells with applications to atomic clocks

    NASA Technical Reports Server (NTRS)

    Wolf, S. A.; Gubser, D. U.; Cox, J. E.

    1978-01-01

    A general formula is given for the longitudinal shielding effectiveness of N closed concentric cylinders. The use of these equations is demonstrated by application to the design of magnetic shields for hydrogen maser atomic clocks. Examples of design tradeoffs such as size, weight, and material thickness are discussed. Experimental results on three sets of shields fabricated by three manufacturers are presented. Two of the sets were designed employing the techniques described. Agreement between the experimental results and the design calculations is then demonstrated.

  8. Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles

    SciTech Connect

    Ong, M M; Brown, C G; Perkins, M P; Speer, R D; Javedani, J B

    2010-12-07

    The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentrates the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component

  9. Nature of the boundary between open and closed magnetic field line regions at the Sun revealed by composition data and numerical models

    NASA Astrophysics Data System (ADS)

    Posner, Arik; Zurbuchen, Thomas H.; Schwadron, Nathan A.; Fisk, Lennard A.; Gloeckler, George; Linker, Jon A.; Mikić, Zoran; Riley, Pete

    2001-08-01

    Recently, Fisk et al. [1999] have presented a theory that describes a number of features of the large-scale coronal and heliospheric magnetic field. This theory predicts large-scale transport of magnetic flux across the boundaries of the polar coronal holes, which leads to reconnection processes of open field lines with preliminary closed magnetic structures. Reconnection processes reveal themselves in solar wind composition data: Plasma released out of previously closed magnetic field structures exhibits hotter charge state distributions and has a tendency to be enriched by elements with low first ionization potentials. The idea of reconnection at the boundaries of coronal holes is not new. For example, Wang and Sheeley [1993] and Luhmann et al. [1999] found evidence for that mechanism by comparison of observations of the rotation and evolution of coronal holes with potential field models of the solar corona. We use Ulysses Solar Wind Ion Composition Spectrometer composition measurements and sophisticated numerical models [Linker et al., 1999; Riley et al., 1999] to accurately map these observations back to the solar surface. We then constrain the thickness of the stream interface at the Sun and compare the location of the source region with SOHO observations of the low corona. The results are discussed in the context of the global structure of the heliospheric magnetic field.

  10. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    SciTech Connect

    Heiser, J.H.; Dwyer, B.

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.

  11. Interpretation of Galileo's Io plasma and field observations: I0, I24, and I27 flybys and close polar passes

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Neubauer, Fritz M.; Strobel, Darrell F.; Summers, Michael E.

    2002-12-01

    We interpret plasma and magnetic field observations taken during the Galileo spacecraft Io flybys I0 in December 1995, I24 in October 1999, and I27 in February 2000, and we give predictions for a generic pass over Io's northern pole with a three-dimensional, two-fluid plasma model. We show that all previous field and plasma observations by the Galileo spacecraft can be explained without the assumption of an internal magnetic field of Io in contrast to claims by [1996a, 1996b] and [1997]. We are also able to reproduce both the magnitude and the structure of the double-peak magnetic field signature of the I0 flyby. The origin of this structure can be attributed to diamagnetic and inertia currents. Observations by a polar flyby should answer Io's internal magnetic field question decisively. We also study the effect of different neutral atmosphere models on Io's electrodynamic interaction. Our analysis suggests that Io's atmosphere is longitudinally asymmetric with the scale height on the upstream side smaller than on the downstream side due to the drag force of the flowing plasma on Io's atmosphere. We also show how the Hall effect in Io's ionosphere generates rotated Alfvén wings. In addition, the high-energy electrons observed by [1996, 1999] and [1999] might play an important role for the formation of Io's downstream wake.

  12. Circular whirling and stability due to unbalanced magnetic pull and eccentric force

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Sun, Weipeng; Li, Zhengguang; Li, Zhihe

    2011-10-01

    This rapid communication is concerned with the circular whirling and stability of a model rotor in a synchronous generator under no load, subjected to unbalanced magnetic pull and mass eccentric force. The analysis is focused on the synchronous whirling of the rotor. Based on the existing analytical expression for unbalanced magnetic pull with any pole-pair number, the nonautonomous system of differential equations of motion with parametrically exciting force is transformed to an autonomous one by introducing a rotating coordinate frame. The circular whirlings of the model rotor are thus converted into equilibrium solutions to the autonomous system, which can be obtained by solving a system of polynomial equations with two unknowns only. Furthermore, stability of these equilibrium solutions is determined by applying the linearized stability criterion. An example is used to illustrate the proposed analytical method.

  13. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  14. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  15. Induced Unbalanced Linguistic Ordered Weighted Average and Its Application in Multiperson Decision Making

    PubMed Central

    Merigó, José M.

    2014-01-01

    Linguistic variables are very useful to evaluate alternatives in decision making problems because they provide a vocabulary in natural language rather than numbers. Some aggregation operators for linguistic variables force the use of a symmetric and uniformly distributed set of terms. The need to relax these conditions has recently been posited. This paper presents the induced unbalanced linguistic ordered weighted average (IULOWA) operator. This operator can deal with a set of unbalanced linguistic terms that are represented using fuzzy sets. We propose a new order-inducing criterion based on the specificity and fuzziness of the linguistic terms. Different relevancies are given to the fuzzy values according to their uncertainty degree. To illustrate the behaviour of the precision-based IULOWA operator, we present an environmental assessment case study in which a multiperson multicriteria decision making model is applied. PMID:25136677

  16. Frequency noise suppression of a single mode laser with an unbalanced fiber interferometer for subnanometer interferometry.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  17. Frequency Noise Suppression of a Single Mode Laser with an Unbalanced Fiber Interferometer for Subnanometer Interferometry

    PubMed Central

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  18. What drives health care expenditure?--Baumol's model of 'unbalanced growth' revisited.

    PubMed

    Hartwig, Jochen

    2008-05-01

    The share of health care expenditure in GDP rises rapidly in virtually all OECD countries, causing increasing concern among politicians and the general public. Yet, economists have to date failed to reach an agreement on what the main determinants of this development are. This paper revisits Baumol's [Baumol, W.J., 1967. Macroeconomics of unbalanced growth: the anatomy of urban crisis. American Economic Review 57 (3), 415-426] model of 'unbalanced growth', showing that the latter offers a ready explanation for the observed inexorable rise in health care expenditure. The main implication of Baumol's model in this context is that health care expenditure is driven by wage increases in excess of productivity growth. This hypothesis is tested empirically using data from a panel of 19 OECD countries. Our tests yield robust evidence in favor of Baumol's theory. PMID:18164773

  19. Prader-Willi syndrome with an unusually large 15q deletion due to an unbalanced translocation t(4;15).

    PubMed

    Varela, Monica C; Lopes, Graziela M P; Koiffmann, Celia P

    2004-01-01

    Prader-Willi syndrome (PWS) is a neurobehavioral disorder caused by deletions in the 15q11-q13 region, by maternal uniparental disomy of chromosome 15 or by imprinting defects. Structural rearrangements of chromosome 15 have been described in about 5% of the patients with typical or atypical PWS phenotype. An 8-year-old boy with a clinical diagnosis of PWS, severe neurodevelopmental delay, absence of speech and mental retardation was studied by cytogenetic and molecular techniques, and an unbalanced de novo karyotype 45,XY,der(4)t(4;15)(q35;q14),-15 was detected after GTG-banding. The patient was diagnosed by SNURF-SNRPN exon 1 methylation assay, and the extent of the deletions on chromosomes 4 and 15 was investigated by microsatellite analysis of markers located in 4qter and 15q13-q14 regions. The deletion of chromosome 4q was distal to D4S1652, and that of chromosome 15 was located between D15S1043 and D15S1010. Our patient's severely affected phenotype could be due to the extent of the deletion, larger than usually seen in PWS patients, although the unbalance of the derivative chromosome 4 cannot be ruled out as another possible cause. The breakpoint was located in the subtelomeric region, very close to the telomere, a region that has been described as having the lowest gene concentrations in the human genome. PMID:15337472

  20. A Thermodynamic-Based Interpretation of Protein Expression Heterogeneity in Different Glioblastoma Multiforme Tumors Identifies Tumor-Specific Unbalanced Processes.

    PubMed

    Kravchenko-Balasha, Nataly; Johnson, Hannah; White, Forest M; Heath, James R; Levine, R D

    2016-07-01

    We describe a thermodynamic-motivated, information theoretic analysis of proteomic data collected from a series of 8 glioblastoma multiforme (GBM) tumors. GBMs are considered here as prototypes of heterogeneous cancers. That heterogeneity is viewed here as manifesting in different unbalanced biological processes that are associated with thermodynamic-like constraints. The analysis yields a molecular description of a stable steady state that is common across all tumors. It also resolves molecular descriptions of unbalanced processes that are shared by several tumors, such as hyperactivated phosphoprotein signaling networks. Further, it resolves unbalanced processes that provide unique classifiers of tumor subgroups. The results of the theoretical interpretation are compared against those of statistical multivariate methods and are shown to provide a superior level of resolution for identifying unbalanced processes in GBM tumors. The identification of specific constraints for each GBM tumor suggests tumor-specific combination therapies that may reverse this imbalance. PMID:27035264

  1. Three-Phase Unbalanced Transient Dynamics and Powerflow for Modeling Distribution Systems With Synchronous Machines

    SciTech Connect

    Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.

    2016-01-01

    Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.

  2. Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors.

    PubMed

    Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal

    2016-01-15

    The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835  a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested. PMID:26766702

  3. Endotoxin deposits on the inner surfaces of closed-face cassettes during bioaerosol sampling: a field investigation at composting facilities.

    PubMed

    Duquenne, Philippe; Simon, Xavier; Demange, Valérie; Harper, Martin; Wild, Pascal

    2015-05-01

    A set of 270 bioaerosol samples was taken from 15 composting facilities using polystyrene closed-face filter cassettes (CFCs). The objective was to measure the quantity of endotoxin deposits on the inner surfaces of the cassettes (sometimes referred to as 'wall deposits'). The results show that endotoxins are deposited on the inner surfaces of the CFCs through sampling and/or handling of samples. The quantity of endotoxins measured on inner surfaces range between 0.05 (the limit of detection of the method) and 3100 endotoxin units per cassette. The deposits can represent a large and variable percentage of the endotoxins sampled. More than a third of the samples presented a percentage of inner surface deposits >40% of the total quantity of endotoxins collected (filter + inner surfaces). Omitting these inner surface deposits in the analytical process lead to measurement errors relative to sampling all particles entering the CFC sampler, corresponding to a developing consensus on matching the inhalable particulate sampling convention. The result would be underestimated exposures and could affect the decision as to whether or not a result is acceptable in comparison to airborne concentration limits defined in terms of the inhalability convention. The results of this study suggest including the endotoxins deposited on the inner surfaces of CFCs during analysis. Further researches are necessary to investigate endotoxin deposits on the inner cassette surfaces in other working sectors. PMID:25535181

  4. Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators: Preprint

    SciTech Connect

    Wu, Z.; Hsu, P.; Muljadi, E.; Gao, W.

    2015-04-06

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate this impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.

  5. Characterization of vertical electric fields and associated voltages induced on a overhead power line from close artificially initiated lightning

    NASA Technical Reports Server (NTRS)

    Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    Measurements were characterized of simultaneous vertical electric fields and voltages induced at both ends of a 448 m overhead power line by artificially initiated lightning return strokes. The lightning discharges struck ground about 20 m from one end of the line. The measured line voltages could be grouped into two categories: those in which multiple, similarly shaped, evenly spaced pulses were observed, which are called oscillatory; and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which are called impulsive. Voltage amplitudes range from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages.

  6. Evaluation of two new arsenic field test kits capable of detecting arsenic water concentrations close to 10 microg/L.

    PubMed

    Steinmaus, Craig M; George, Christine M; Kalman, David A; Smith, Allan H

    2006-05-15

    Millions of people worldwide are exposed to arsenic-contaminated drinking water. Arsenic field test kits may offer a cost-effective approach for measuring these exposures in the field, although the accuracy of some kits used in the past has been poor. In this study, arsenic concentrations were measured in 136 water sources in western Nevada using two relatively new arsenic test kits and compared to laboratory measurements using atomic fluorescence spectroscopy (AFS). Spearman's rank correlation coefficients comparing the Quick Arsenic and Hach EZ kits to laboratory measurements were 0.96 (p < 0.001) and 0.95 (p < 0.001), respectively. When analyzed in seven exposure categories (0-9, 10-19, 20-49, 50-99, 100-199, 200-499, and > or = 500 microg/L), test kit and AFS measurements were in the same category in 71% (Quick Arsenic) and 62% (Hach EZ) of samples, and within one category of each other in 99% (Quick Arsenic) and 97% (Hach EZ) of samples. Both kits identified all water samples with high arsenic concentrations (> 15 microg/L) as being above the United States Environmental Protection Agency's drinking water standard and the World Health Organization's guideline value for arsenic of 10 microg/L. These results suggestthatthese easily portable kits can be used to identify water sources with high arsenic concentrations and may provide an important tool for arsenic surveillance and remediation programs. PMID:16749706

  7. A close look on the lithosphere of Central North Africa with the new global gravity and gravity-gradient fields

    NASA Astrophysics Data System (ADS)

    Braitenberg, C. F.; Pivetta, T.; Mariani, P.

    2011-12-01

    The gravity satellite missions GRACE and GOCE have boosted the resolution of the global Earth gravity models (EGM), opening new possibilities of investigation. The EGMs must be distinguished in models based on pure satellite or mixed satellite-terrestrial observations. Satellite-only models are truly global, whereas satellite-terrestrial models have inhomogeneous quality, depending on availability and accuracy of the terrestrial data set. The advantage of the mixed models (e.g. EGM2008 by Pavlis et al. 2008) is their greater spatial resolution, reaching nominally 9 km, against the 80 km of the pure satellite models of satellite GOCE. The disadvantage is the geographically varying reliability due to problems in the terrestrial data, compiled from different measuring campaigns, using various acquisition methods, and different national geodetic reference systems. We present a method for quality assessment of the higher-resolution fields through the lower-resolution GOCE-field and apply it to northern Africa. We find that the errors locally are as great as 40 mGal, but can be flagged as "bad areas" by our method, leaving the "good areas" for reliable geophysical modeling and investigation. We analyze gravity and gravity gradients and their invariants over North-Central Africa derived from the EGM2008 and GOCE (e.g. Migliaccio et al., 2010) and quantify the resolution in terms of density variations associated to crustal thickness variations, rifts and magmatic underplating. We focus on the Benue rift and the Chad lineament, a 1300 km arcuate feature which links the Benue to the Tibesti Volcanic province. The existing seismological investigations are integrated to constrain the lithosphere structure in terms of seismic velocities, crustal thickness and top asthenosphere boundary, together with physical constraints based on thermal and isostatic considerations (McKenzie stretching model). Our modeling shows that the gravity signal can only be explained if the Benue rift

  8. Did the Mississippian Lodgepole buildup at Dickinson Field (North Dakota) form as a gas seep ({open_quotes}vent{close_quotes}) community?

    SciTech Connect

    Longman, M.W.

    1996-10-01

    The Lower Mississippian Lodgepole carbonate buildup reservoir at Dickinson Field in Stark County, North Dakota, has been widely reported as being a Waulsortian (or Waulsortian-like) mound. The term {open_quotes}Waulsortian mound{close_quotes} is used for a variety of Early Mississippian carbonate buildups that share a number of features including an abundance of carbonate mud, a {open_quotes}framework{close_quotes} of organisms such as fenestrate bryozoans and crinoids that tended to trap or baffle sediment, and a general absence of marine-cemented reef framework. Although the age of the Lodgepole mound at Dickinson Field qualifies it to be a Waulsortian mound, petrographic study of cores reveals that the reservoir rocks are quite unlike those in true Waulsortian mounds. Instead of being dominated by carbonate mud, the Lodgepole mound core is dominated by marine cement. Furthermore, ostracods and microbial limestones are common in the mound core where they occur with crinoid debris and small amounts of bryozoan, coral, and brachiopod debris. The abundant microbial limestones and marine cement indicate that the Dickinson mound formed as a lithified reef on the sea floor rather than as a Waulsortian mud mound. The microbial limestones, marine cement, and common ostracods in the mount core, and the fact that the mound nucleated almost directly o top of the Bakken Shale, suggest that the Dickinson Lodgepole mound formed at the site of a submarine spring and gas seep.

  9. Dynamic power balance for nonlinear waves in unbalanced gain and loss landscapes

    NASA Astrophysics Data System (ADS)

    Kominis, Yannis

    2015-12-01

    The presence of losses in nonlinear photonic structures necessitates the introduction of active parts for wave power compensation resulting in unbalanced gain and loss landscapes where localized beam propagation is, in general, dynamically unstable. Here we provide generic sufficient conditions for the relation between the gain-loss and the refractive index profiles in order to ensure efficient wave trapping and stable propagation for a wide range of beam launching conditions such as initial power, angle of incidence, and position. The stability is a consequence of an underlying dynamic power balance mechanism related to a conserved quantity of wave dynamics.

  10. Unbalanced 5;16 translocation in a boy with papillary thyroid carcinoma

    SciTech Connect

    McDonald, M.; Maynard, S.; Sheldon, S.; Innis, J.

    1994-02-01

    This is the first reported case of an unbalanced chromosome rearrangement resulting in trisomy 5q35.5{r_arrow}qter and monosomy 16p 13.3{r_arrow}pter, in a boy with mental and growth retardation, minor anomalies, and a history of bilateral papillary thyroid carcinoma. This was the result of a familial balanced translocation. The clinical and cytogenetic manifestations of the case are presented and the possible role of the chromosomal rearrangement in the etiology of the thyroid carcinoma is discussed. 25 refs., 5 figs., 1 tab.

  11. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    PubMed

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer. PMID:27607974

  12. Three new cases with a mosaicism involving a normal cell line and a cryptic unbalanced autosomal reciprocal translocation.

    PubMed

    Gijsbers, Antoinet C J; Dauwerse, Johannes G; Bosch, Cathy A J; Boon, Elles M J; van den Ende, Wilco; Kant, Sarina G; Hansson, Kerstin M B; Breuning, Martijn H; Bakker, Egbert; Ruivenkamp, Claudia A L

    2011-01-01

    Mosaicism involving a normal cell line and an unbalanced autosomal translocation are rare. In this study we present three new cases with such a mosaicism, which were detected by Single Nucleotide Polymorphism (SNP) array analysis in our routine diagnostic setting. These cases were further characterized using Fluorescence in situ Hybridisation (FISH) analysis and conventional karyotyping. The first case is a mentally retarded male who carries an unbalanced translocation in 87% of his cells. The phenotypically normal mother carries the balanced form of the translocation in all her cells. The second case is a phenotypically normal female who has an unbalanced translocation in 52% of her cells. The inheritance could not be determined. The third case is a female referred for Rubinstein-Taybi syndrome who carries an unbalanced translocation in 60% of her cells. Both parents of this case showed a normal karyotype. The mechanisms that might be responsible for these mosaic karyotypes are discussed. Furthermore, we demonstrate that high-resolution whole-genome SNP array is a powerful tool to reveal cryptic unbalanced translocations and mosaicisms, including the more rare cases. PMID:21664500

  13. Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study

    PubMed Central

    Detorakis, Georgios Is.; Chaillet, Antoine; Palfi, Stéphane; Senova, Suhan

    2015-01-01

    Several disorders are related to pathological brain oscillations. In the case of Parkinson's disease, sustained low-frequency oscillations (especially in the β-band, 13–30 Hz) correlate with motor symptoms. It is still under debate whether these oscillations are the cause of parkinsonian motor symptoms. The development of techniques enabling selective disruption of these β-oscillations could contribute to the understanding of the underlying mechanisms, and could be exploited for treatments. A particularly appealing technique is Deep Brain Stimulation (DBS). With clinical electrical DBS, electrical currents are delivered at high frequency to a region made of potentially heterogeneous neurons (the subthalamic nucleus (STN) in the case of Parkinson's disease). Even more appealing is DBS with optogenetics, which is until now a preclinical method using both gene transfer and deep brain light delivery and enabling neuromodulation at the scale of one given neural network. In this work, we rely on delayed neural fields models of STN and the external Globus Pallidus (GPe) to develop, theoretically validate and test in silico a closed-loop stimulation strategy to disrupt these sustained oscillations with optogenetics. First, we rely on tools from control theory to provide theoretical conditions under which sustained oscillations can be attenuated by a closed-loop stimulation proportional to the measured activity of STN. Second, based on this theoretical framework, we show numerically that the proposed closed-loop stimulation efficiently attenuates sustained oscillations, even in the case when the photosensitization effectively affects only 50% of STN neurons. We also show through simulations that oscillations disruption can be achieved when the same light source is used for the whole STN population. We finally test the robustness of the proposed strategy to possible acquisition and processing delays, as well as parameters uncertainty. PMID:26217171

  14. Neighborhood functions alter unbalanced facilitation on a stress gradient in an alpine treeline simulation

    NASA Astrophysics Data System (ADS)

    Malanson, G. P.; Resler, L. M.

    2014-12-01

    The stress-gradient hypothesis states that individual and species competitive and facilitative effects change in relative importance or intensity along environmental gradients of stress. The importance of the number of facilitators in the neighborhood of a potential beneficiary has not been explored. Evenly distributed and stress-correlated facilitation and the increase in the intensity of facilitation with neighbors as linear, logarithmic, and unimodal functions is simulated for two species such as Pinus albicaulis and Abies lasiocarpa. The mutualism is unbalanced in that the establishment of one species is enhanced by neighbors more than the other. Compared to no facilitation or evenly distributed facilitation, the stress gradient produces more edges in the spatially advancing population, more overall intensity of facilitation, and more individuals further advanced into the area of higher stress; the more enhanced species has increased population relative to the other - to the point where they are equal. Among three neighborhood functions, little difference exists in outcomes between the linear and logarithmic functions, but the unimodal function, which shifts peak facilitation intensity to fewer neighbors, increases the above state variables more than the differences between the even and stress gradient facilitation scenarios. The unbalanced mutualism may be important at treeline ecotones where the spatial pattern becomes central to facilitation.

  15. A lognormal distribution-based exposure assessment method for unbalanced data.

    PubMed

    Lyles, R H; Kupper, L L; Rappaport, S M

    1997-01-01

    We present a generalization of existing statistical methodology for assessing occupational exposures while explicitly accounting for between- and within-worker sources of variability. The approach relies upon an intuitively reasonable model for shift-long exposures, and requires repeated exposure measurements on at least some members of a random sample of workers from a job group. We make the methodology more readily applicable by providing the necessary details for its use when the exposure data are unbalanced (that is, when there are varying numbers of measurements per worker). The hypothesis testing strategy focuses on the probability that an arbitrary worker in a job group experiences a long-term mean exposure above the occupational exposure limit (OEL). We also provide a statistical approach to aid in the determination of an appropriate intervention strategy in the event that exposure levels are deemed unacceptable for a group of workers. We discuss important practical considerations associated with the methodology, and we provide several examples using unbalanced sets of shift-long exposure data-taken on workers in various sectors of the nickel-producing industry. We conclude that the statistical methods discussed afford sizable practical advantages, while maintaining similar overall performance to that of existing methods appropriate for balanced data only. PMID:9072951

  16. Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models

    PubMed Central

    Chen, Feng; Chen, Suren; Ma, Xiaoxiang

    2016-01-01

    Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling. PMID:27322306

  17. Impact Assessment of V2G on the Power Loss of Unbalanced Radial Distribution Network

    NASA Astrophysics Data System (ADS)

    Chukwu, Uwakwe Christian; Mahajan, Satish M.

    2013-08-01

    Electric distribution feeders are inherently unbalanced and therefore have potential for severe power loss. The penetration of vehicle-to-grid (V2G) into the distribution feeders is expected to impact the power losses in the system. This is a pressing issue since power loss affects the operations, economics, and quality of service for the electric power systems. In this article, the impact of V2G parking lots on power losses of a radial distribution network is investigated. Two test networks were used in the study, namely: IEEE 13 and IEEE 123 Node test feeder networks. The test feeders and the V2G facilities were modeled in Radial Distribution Analysis Package (RDAP). Load flow results provided information on the power losses of the network. Results show that for a given penetration level, the impact of 3-phase and system-wide V2G integration on the power loss results in less power losses than 1-phase V2G integration. Results also indicate that operating the entire system such that V2G facilities will not compromise "near-balanced" state of operation and will have an improved impact on the power loss than highly unbalanced operation. The results obtained will be a useful tool for studying the impact of V2G on the power loss of a distribution network.

  18. Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models.

    PubMed

    Chen, Feng; Chen, Suren; Ma, Xiaoxiang

    2016-01-01

    Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling. PMID:27322306

  19. Nonlinear model of a distribution transformer appropriate for evaluating the effects of unbalanced loads

    NASA Astrophysics Data System (ADS)

    Toman, Matej; Štumberger, Gorazd; Štumberger, Bojan; Dolinar, Drago

    Power packages for calculation of power system transients are often used when studying and designing electromagnetic power systems. An accurate model of a distribution transformer is needed in order to obtain realistic values from these calculations. This transformer model must be derived in such a way that it is applicable when calculating those operating conditions appearing in practice. Operation conditions where transformers are loaded with nonlinear and unbalanced loads are especially challenging. The purpose of this work is to derive a three-phase transformer model that is appropriate for evaluating the effects of nonlinear and unbalanced loads. A lumped parameter model instead of a finite element (FE) model is considered in order to ensure that the model can be used in power packages for the calculation of power system transients. The transformer model is obtained by coupling electric and magnetic equivalent circuits. The magnetic equivalent circuit contains only three nonlinear reluctances, which represent nonlinear behaviour of the transformer. They are calculated by the inverse Jiles-Atherton (J-A) hysteresis model, while parameters of hysteresis are identified using differential evolution (DE). This considerably improves the accuracy of the derived transformer model. Although the obtained transformer model is simple, the simulation results show good agreement between measured and calculated results.

  20. Effect of control surface mass unbalance on the stability of a closed-loop active control system

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The effects on stability of inertial forces arising from closed-loop activation of mass-unbalanced control surfaces are studied analytically using inertial energy approach, similar to the aerodynamic energy approach used for flutter suppression. The limitations of a single control surface like a leading-edge (LE) control or a trailing-edge (TE) control are demonstrated and compared to the superior combined LE-TE mass unbalanced system. It is shown that a spanwise section for sensor location can be determined which ensures minimum sensitivity to the mode shapes of the aircraft. It is shown that an LE control exhibits compatibility between inertial stabilization and aerodynamic stabilization, and that a TE control lacks such compatibility. The results of the present work should prove valuable, both for the purpose of flutter suppression using mass unbalanced control surfaces, or for the stabilization of structural modes of large space structures by means of inertial forces.

  1. Adaptive Phase Synchronization Techniques for Unbalanced and Distorted Three-Phase Voltage System

    NASA Astrophysics Data System (ADS)

    Woinowsky-Krieger, Alexis

    Interfacing and operating AC power electronic systems requires rapid and accurate estimation of the phase angle of the power source, and specifically of the positive sequence of the three-phase utility grid voltage. This is needed to ensure reliable operation of the power control devices and of the resulting power flow. However, the quality of this information is undermined by various distortions and unbalanced conditions of the three-phase grid voltage. Phase estimation and power control can both be performed in real time by a DSP, but a DSP typically has limited computational resources, especially in regards to speed and memory, which motivates the search for computationally efficient algorithms to accomplish these tasks. In contrast to conventional PLL techniques, recent approaches have used adaptive amplitude estimation to enhance the acquisition of the phase information, resulting in faster response and improved performance. This thesis presents a novel technique to estimate the phase of the positive sequence of a three-phase voltage in the presence of frequency variations and unbalanced conditions, referred to as hybrid negative sequence adaptive synchronous amplitude estimation with PLL, or H-NSASAE-PLL. The key feature consists of a feedback structure which embeds a positive sequence PLL and an adaptive synchronous negative sequence estimator to enhance the performance of the PLL. The resulting benefits include faster estimation of the phase of the positive sequence under unbalanced conditions with zero steady state error, simplified tuning of PLL parameters to address a wide range of application requirements, robust performance with respect to distortions and PLL parameters, a structure of minimal dynamical order (fifth) to estimate the main signal parameters of interest, simplified discretization, and reduced computational costs, making the proposed technique suitable for real time execution on a DSP. The H-NSASAE-PLL is developed in the Matlab

  2. Disruption of genes in the retinoid cascade may explain the microscopic neuroblastoma in a fetus with de novo unbalanced translocation

    SciTech Connect

    Goodman, A.B.

    1995-03-13

    The microscopic neuroblastoma in a fetus with de novo unbalanced translocation (3;10)(q21;q26) may be explained as the disruption of genes in the retinoid cascade, rather than simply a two-hit hypothesis for the development of tumor cells. 5 refs.

  3. Assumption or Fact? Line-to-Neutral Voltage Expression in an Unbalanced 3-Phase Circuit during Inverter Switching

    ERIC Educational Resources Information Center

    Masrur, M. A.

    2009-01-01

    This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…

  4. Accuracy of DIF Estimates and Power in Unbalanced Designs Using the Mantel-Haenszel DIF Detection Procedure

    ERIC Educational Resources Information Center

    Paek, Insu; Guo, Hongwen

    2011-01-01

    This study examined how much improvement was attainable with respect to accuracy of differential item functioning (DIF) measures and DIF detection rates in the Mantel-Haenszel procedure when employing focal and reference groups with notably unbalanced sample sizes where the focal group has a fixed small sample which does not satisfy the minimum…

  5. Analysis of motion stability of the flexible rotor-bearing system with two unbalanced disks

    NASA Astrophysics Data System (ADS)

    Wenhui, Xie; Yougang, Tang; Yushu, Chen

    2008-02-01

    The complicated dynamical behavior of a flexible rotor-bearing system is studied in this paper. The unsteady oil-film force model described by three functions is considered. The bifurcation and chaos behaviors were revealed by calculating the maximum Lyapunov exponent of the system. Two new phenomena were found in this system: first, the chaos with two attracting areas which cannot be distinguished from the stable period doubling motion on Poincarè section; second, for the flexible rotor system with two unbalanced disks, the response varies in a large extent when the phase angle between the eccentricities of disks is different. The experiments were also carried out. Comparison between experimental and calculated results shows that the significant use of the max Lyapunov exponent in revealing the bifurcation and chaos characteristics of the rotor-bearing system.

  6. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    PubMed

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties. PMID:27483857

  7. Speckle level suppression using an unbalanced nulling interferometer in a high-contrast imaging system.

    PubMed

    Yokochi, Kaito; Murakami, Naoshi; Nishikawa, Jun; Abe, Lyu; Tamura, Motohide; Tavrov, Alexander V; Takeda, Mistuo; Kurokawa, Takashi

    2011-03-14

    High-contrast imaging systems with a stellar halo suppression level of 10(-10) are required for direct detection of Earth-like extra-solar planets. We investigated a novel high-contrast imaging system with an unbalanced nulling interferometer (UNI) followed by phase and amplitude correction (PAC), which not only can reduce starlight but also can suppress the speckle level caused by wavefront aberrations. We successfully demonstrated that wavefront aberrations were sufficiently magnified by the UNI and the magnified aberrations were effectively corrected in amplitude and phase with two deformable mirrors. We confirmed that the suppression level of the speckle pattern with the proposed optics was beyond the limit of the adaptive optics performance. PMID:21445131

  8. Tracking performance of unbalanced QPSK demodulators. II - Biphase Costas loop with active arm filters

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1978-01-01

    In a Costas loop study for biphase modulation conducted by Simon and Lindsey (1977), it was demonstrated that considerable improvement in tracking performance could be obtained by employing active arm filters of the integrate-and-dump type as opposed to passive arm filters. An investigation is conducted concerning the possibility to obtain a similar performance improvement for an unbalanced quadriphase-shift-keying (QPSK) modulation. It is found that the biphase Costas loop can be used as an efficient demodulator of QPSK in cases in which the ratio of data rates is of the same order of magnitude as the inverse of the power ratio. These cases involve approximately equal signal energies in the two channels.

  9. A Capacitive Displacement Sensing Technique for Early Detection of Unbalanced Loads in a Washing Machine

    PubMed Central

    Ramasubramanian, Melur K.; Tiruthani, Karthik

    2009-01-01

    Horizontal axis washing machines are water and energy efficient and becoming popular in the USA. Unlike a vertical axis washer, these do not have an agitator and depend solely on tumbling for the agitation of laundry during the wash cycle. However, due to the constant shifting of laundry during washing, the load distribution is often unbalanced during the high speed spin cycle. We present a displacement-based sensing method to detect unbalance early while the spin rate (rpm) is well below the resonance frequency so that corrective actions may be taken prior to the high speed spin cycle. Experimental and analytical characterizations of the sensor configuration are presented. Results show that the displacement sensor is more appropriate than an accelerometer for this application and offer the potential for a simple, reliable, low cost detection of unbalance. PMID:22303139

  10. Minority language education in unbalanced bilingual situations: a case for the linguistic interdependence hypothesis.

    PubMed

    Huguet, A; Vila, I; Llurda, E

    2000-05-01

    This paper is placed in the linguistic and sociocultural context of Eastern Aragon, a region of Spain where two contact languages (Spanish and Catalan) coexist in an unbalanced situation favoring Spanish. The research was prompted by the regulation for the teaching of Catalan in that area, by means of the Cooperation Agreement signed by the Spanish Educational Ministry (MEC) and the local autonomous Cultural and Educational Department of the Diputación General de Aragon in November 1986. A comparative analysis is made between Eastern Aragon students' linguistic competence in Catalan and Spanish; a further comparison is established between these students and others living in bilingual Catalonia and in monolingual Aragon. We conclude by pointing out that the Linguistic Interdependence Hypothesis accounts for the results obtained in the study. PMID:10937367

  11. Unbalanced three-way chromosomal translocation leading to deletion 18q and duplication 20p.

    PubMed

    Oegema, Renske; van Zutven, Laura J C M; van Hassel, Daniella A C M; Huijbregts, Guido C M; Hoogeboom, A Jeannette M

    2012-04-01

    In 1980, a case report on a boy with cleft palate, club feet, dysmorphic features, and developmental delay was published by Bijlsma as a possible distinct syndrome. This case is listed in the London Medical Databases version 1.0. We have reevaluated this patient at adult age. Using high resolution karyotyping and Affymetrix 250k SNP array analysis we identified an unbalanced three-way translocation with breakpoints at 17q22, 18q22.1, and 20p12.2 leading to deletion 18q and duplication 20p. Also, a 715 kb duplication in 1p34.2 and a 245 kb deletion at 1p21.1 were found. Mental retardation, cleft palate, and club feet have repeatedly been reported in deletion 18q patients and therefore we conclude that most of the patient's features can be explained by an 18q deletion. PMID:22406089

  12. Gray Mold Populations in German Strawberry Fields Are Resistant to Multiple Fungicides and Dominated by a Novel Clade Closely Related to Botrytis cinerea

    PubMed Central

    Leroch, Michaela; Plesken, Cecilia; Weber, Roland W. S.; Kauff, Frank; Scalliet, Gabriel

    2013-01-01

    The gray mold fungus Botrytis cinerea is a major threat to fruit and vegetable production. Strawberry fields usually receive several fungicide treatments against Botrytis per season. Gray mold isolates from several German strawberry-growing regions were analyzed to determine their sensitivity against botryticides. Fungicide resistance was commonly observed, with many isolates possessing resistance to multiple (up to six) fungicides. A stronger variant of the previously described multidrug resistance (MDR) phenotype MDR1, called MDR1h, was found to be widely distributed, conferring increased partial resistance to two important botryticides, cyprodinil and fludioxonil. A 3-bp deletion mutation in a transcription factor-encoding gene, mrr1, was found to be correlated with MDR1h. All MDR1h isolates and the majority of isolates with resistance to multiple fungicides were found to be genetically distinct. Multiple-gene sequencing confirmed that they belong to a novel clade, called Botrytis group S, which is closely related to B. cinerea and the host-specific species B. fabae. Isolates of Botrytis group S genotypes were found to be widespread in all German strawberry-growing regions but almost absent from vineyards. Our data indicate a clear subdivision of gray mold populations, which are differentially distributed according to their host preference and adaptation to chemical treatments. PMID:23087030

  13. Computing the External Magnetic Scalar Potential due to an Unbalanced Six-Pole Permanent Magnet Motor

    SciTech Connect

    Selvaggi J, Salon S, Kwon O, Chari MVK

    2007-02-12

    The accurate computation of the external magnetic field from a permanent magnet motor is accomplished by first computing its magnetic scalar potential. In order to find a solution which is valid for any arbitrary point external to the motor, a number of proven methods have been employed. Firstly, A finite element model is developed which helps generate magnetic scalar potential values valid for points close to and outside the motor. Secondly, charge simulation is employed which generates an equivalent magnetic charge matrix. Finally, an equivalent multipole expansion is developed through the application of a toroidal harmonic expansion. This expansion yields the harmonic components of the external magnetic scalar potential which can be used to compute the magnetic field at any point outside the motor.

  14. Electrostatic Interpretation of Electric Fields Observed at Close Range from Intra-Cloud Stepped Leader and Mechanisms of Terrestrial Gamma Ray Flashes

    NASA Astrophysics Data System (ADS)

    Pasko, V. P.

    2013-12-01

    Winn et al. [JGR, 116, D23115, 2011] have reported time resolved observations of electric field components parallel and perpendicular to the intra-cloud (IC) stepped leader that passed within 200 m of a balloon-borne electric field change instrument at 9.1 km altitude and covered total length of ~11.6 km, with an average velocity of ~10^5 m/s. The stepping distances ranged between 50 m and 600 m and during each step the electric field component perpendicular to the channel exhibited a fast (during several 10s of microseconds) decrease on the order of 2 kV/m, followed by a slow recovery. We report quantitative modeling results allowing interpretation of these observations using the electrostatic moment method solutions for charges induced on a long (overall charge neutral) conducting leader channel placed in an external electric field, closely following approaches recently developed for calculations of electric fields and potential differences developing near tips of long lightning leaders that lead to terrestrial gamma ray flashes (TGFs) [e.g., Celestin et al., JGR, 117, A05315, 2012, and references cited therein]. It is demonstrated that the observed reduction of the electric field component perpendicular to the channel during step of the negative leader is a result of spatial shift of the negative charge in the direction of travel of the negative leader head, followed by the slow recovery to approximately pre-step levels during continuous advancement of the positive leader on the opposite end of the bi-directional leader system. In context of TGFs, results of Winn et al. [2011] are of special interest as they provide better understanding of step phenomenology and temporal evolution of large-scale charge distributions on long IC lightning leaders. In the considered electrostatic modeling the leader electric dipole moment is a quadratic function of the leader length, and the dipole moment changes due to the leader steps increase proportionally to the overall leader

  15. Simultaneous ground-based optical and HF radar observations of the ionospheric footprint of the open/closed field line boundary along the geomagnetic meridian

    NASA Astrophysics Data System (ADS)

    Chen, X.-C.; Lorentzen, D. A.; Moen, J. I.; Oksavik, K.; Baddeley, L. J.

    2015-11-01

    Previous studies have confirmed that the equatorward boundaries of OI 630.0 nm auroral emissions and broad Doppler spectral widths in Super Dual Auroral Radar Network (SuperDARN) data, the so-called spectral width boundary (SWB), are good empirical proxies for the dayside open/closed field line boundary (OCB) in the ionosphere. However, both observational techniques are associated with mapping errors. SuperDARN uses a virtual height model for mapping, but it is not well known how the mapping error responds to a changing background ionosphere or transient reconnection events. Optical instruments, such as the meridian-scanning photometers, have high spatial resolution near zenith, where the mapping error due to the assumed OI 630.0 nm auroral emission height becomes small by comparison. In this work, an adjusted method is introduced to identify the SWB, which does not require temporal smoothing across several scans. The difference in latitude between the SWB, as identified using this method, and the simultaneously observed OI 630.0 nm auroral emission boundary along a common line of sight is compared. Utilizing the OI 630.0 nm boundary as a reference location, we present two case studies observed at different levels of solar activity. In both instances the latitude offset of SWB from the reference location is discussed in relation to the background ionospheric electron density. The compared results indicate that the intake of high-density solar extreme ultraviolet ionized plasma from subauroral latitudes causes a refraction of the HF radar beam path, which results in an overestimation of range mapping. The adjusted method would thus be a useful tool for identifying the OCB under changing ionospheric conditions in the cusp region.

  16. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator

  17. A prescription and fast code for the long-term evolution of star clusters - II. Unbalanced and core evolution

    NASA Astrophysics Data System (ADS)

    Gieles, Mark; Alexander, Poul E. R.; Lamers, Henny J. G. L. M.; Baumgardt, Holger

    2014-01-01

    We introduce version two of the fast star cluster evolution code Evolve Me A Cluster of StarS (EMACSS). The first version (Alexander and Gieles) assumed that cluster evolution is balanced for the majority of the life cycle, meaning that the rate of energy generation in the core of the cluster equals the diffusion rate of energy by two-body relaxation, which makes the code suitable for modelling clusters in weak tidal fields. In this new version, we extend the model to include an unbalanced phase of evolution to describe the pre-collapse evolution and the accompanying escape rate such that clusters in strong tidal fields can also be modelled. We also add a prescription for the evolution of the core radius and density and a related cluster concentration parameter. The model simultaneously solves a series of first-order ordinary differential equations for the rate of change of the core radius, half-mass radius and the number of member stars N. About two thousand integration steps in time are required to solve for the entire evolution of a star cluster and this number is approximately independent of N. We compare the model to the variation of these parameters following from a series of direct N-body calculations of single-mass clusters and find good agreement in the evolution of all parameters. Relevant time-scales, such as the total lifetimes and core collapse times, are reproduced with an accuracy of about 10 per cent for clusters with various initial half-mass radii (relative to their Jacobi radii) and a range of different initial N up to N = 65 536. The current version of EMACSS contains the basic physics that allows us to evolve several cluster properties for single-mass clusters in a simple and fast way. We intend to extend this framework to include more realistic initial conditions, such as a stellar mass spectrum and mass-loss from stars. The EMACSS code can be used in star cluster population studies and in models that consider the co-evolution of (globular

  18. Effects of unbalanced carrier injection on the performance characteristics of InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Han, Dong-Pyo; Shim, Jong-In; Shin, Dong-Soo; Kim, Kyu-Sang

    2016-08-01

    Two kinds of InGaN-based light-emitting diodes (LEDs) having different electron concentrations in the n-GaN injection layer are investigated in order to understand the effects of unbalanced carrier injection on LED performance characteristics. Electrical and optical characteristics such as capacitance–voltage, current–voltage, external quantum efficiency, and electroluminescence spectrum are compared and analyzed. It is shown that the unbalanced carrier distribution in multiple quantum wells affects the forward operating voltage since a large disparity of injection rate between electrons and holes can induce a small effective active volume, thus leading to the severe overflow of electrons to the p-(Al)GaN layer in the LED devices.

  19. Effects of magnetic flux density and substrate bias voltage on Ni films prepared on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma

    SciTech Connect

    Koda, Tatsunori; Toyota, Hiroshi

    2014-03-15

    The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S} = −40 V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C} = 0, 3, and 5 mT was 88.2, 95.4, and 104.4 nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities of I(111)/I(200) increased with V{sub S}. For V{sub S} = −40 V and B{sub C} = 3 mT, a film resistivity ρ of 8.96 × 10{sup −6} Ω cm was observed, which is close to the Ni bulk value of 6.84 × 10{sup −6} Ω cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.

  20. Tracking performance of the polarity-type costas loop at low SNR for UQPSK signal. [Unbalanced Quadri-PSK

    NASA Technical Reports Server (NTRS)

    Park, Y. H.

    1981-01-01

    Carrier tracking performance of the polarity type costas loop is analyzed for unbalanced quadriphase-shift-keyed (UQPSK) signals at low SNR. Squaring losses for various SNR, IF bandwidth, and data rate ratios are presented. The RMS phase jitter for a particular loop is computed for various I and Q channel power and data rate ratios. Experimental results using a breadboard costas loop are also included.

  1. Effect of noisy phase reference on coherent detection of unbalanced QPSK signals

    NASA Technical Reports Server (NTRS)

    Osborne, H. C.

    1978-01-01

    A phase error in the reference signal used in coherent detection of PSK signals causes a degradation in performance; this effect on bit error probability has been much discussed in the literature for BPSK and balanced QPSK systems. For unbalanced QPSK (UQPSK) systems, where the power and data rates in the two channels are unequal, and where the channel data symbols might also be different, the problem of computing the error probability is more complex, and only approximate solutions have been previously given. In this paper, exact expressions are derived for the conditional probability of error for the I and Q channels as a function of the channel power and data rate ratio. This is done for all combinations of Manchester and NRZ signalling schemes, and it is shown that in some cases the low data rate channel can be more seriously affected by a phase offset. Numerical results are also given for the average probability of error, assuming a biphase Costas loop is used for carrier synchronization.

  2. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Aji, A. S.; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-01

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  3. Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content.

    PubMed

    Asencio, Claudio; Rodríguez-Hernandez, María A; Briones, Paz; Montoya, Julio; Cortés, Ana; Emperador, Sonia; Gavilán, Angela; Ruiz-Pesini, Eduardo; Yubero, Dèlia; Montero, Raquel; Pineda, Mercedes; O'Callaghan, María M; Alcázar-Fabra, María; Salviati, Leonardo; Artuch, Rafael; Navas, Plácido

    2016-03-01

    Coenzyme Q10 (CoQ10) deficiency is associated to a variety of clinical phenotypes including neuromuscular and nephrotic disorders. We report two unrelated boys presenting encephalopathy, ataxia, and lactic acidosis, who died with necrotic lesions in different areas of brain. Levels of CoQ10 and complex II+III activity were increased in both skeletal muscle and fibroblasts, but it was a consequence of higher mitochondria mass measured as citrate synthase. In fibroblasts, oxygen consumption was also increased, whereas steady state ATP levels were decreased. Antioxidant enzymes such as NQO1 and MnSOD and mitochondrial marker VDAC were overexpressed. Mitochondria recycling markers Fis1 and mitofusin, and mtDNA regulatory Tfam were reduced. Exome sequencing showed mutations in PDHA1 in the first patient and in PDHB in the second. These genes encode subunits of pyruvate dehydrogenase complex (PDH) that could explain the compensatory increase of CoQ10 and a defect of mitochondrial homeostasis. These two cases describe, for the first time, a mitochondrial disease caused by PDH defects associated with unbalanced of both CoQ10 content and mitochondria homeostasis, which severely affects the brain. Both CoQ10 and mitochondria homeostasis appears as new markers for PDH associated mitochondrial disorders. PMID:26014431

  4. Sparse Coding and Lateral Inhibition Arising from Balanced and Unbalanced Dendrodendritic Excitation and Inhibition

    PubMed Central

    Migliore, Michele; Hines, Michael L.; Shepherd, Gordon M.

    2014-01-01

    The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral–granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb. PMID:25297097

  5. Unbalanced X-chromosome inactivation in haemopoietic cells from normal women.

    PubMed

    Tonon, L; Bergamaschi, G; Dellavecchia, C; Rosti, V; Lucotti, C; Malabarba, L; Novella, A; Vercesi, E; Frassoni, F; Cazzola, M

    1998-09-01

    We studied X-chromosome inactivation patterns in blood cells from normal females in three age groups: neonates (umbilical cord blood), 25-32 years old (young women group) and >75 years old (elderly women). Using PCR, the differential allele methylation status was evaluated on active and inactive X chromosomes at the human androgen receptor (HUMARA) and phosphoglycerate kinase (PGK) loci. A cleavage ratio (CR) > or = 3.0 was adopted as a cut-off to discriminate between balanced and unbalanced X-chromosome inactivation. In adult women this analysis was also performed on hair bulbs. The frequency of skewed X-inactivation in polymorphonuclear (PMN) cells increased with age: CR > or = 3.0 was found in 3/36 cord blood samples, 5/30 young women and 14/31 elderly women. Mathematical analysis of patterns found in neonates indicated that X-chromosome inactivation probably occurs when the total number of haemopoietic stem cell precursors is 14-16. The inactivation patterns found in T lymphocytes were significantly related to those observed in PMNs in both young (P < 0.001) and elderly women (P < 0.01). However, the use of T lymphocytes as a control tissue for distinguishing between skewed inactivation and clonal proliferation proved to be reliable in young females, but not in elderly women, where overestimation of the frequency of clonal myelopoiesis may appear. PMID:9734650

  6. Unbalanced magnetron ion-assisted deposition and property modification of thin films

    SciTech Connect

    Savvides, N.; Window, B.

    1986-05-01

    Unbalanced magnetron (UM-gun) sputtering sources with the unique characteristic of a high deposition rate and concomitant high ion flux represent an exciting new development in ion-assisted deposition of thin films. We have used a UM-gun capable of producing ion current densities up to 5 mA cm/sup -2/ (ion flux 3 x 10/sup 16/ cm/sup -2/ s/sup -1/) when operated at a power of 500 W to produce a variety of thin films of amorphous and crystalline materials by varying both the bombarding ion energy in the range 2--100 eV and the ion/atom arrival rate ratio in the range 0.4--10. The great flexibility and usefulness of UM-guns is demonstrated with examples which include (a) hard diamondlike a-C films prepared under very low ion energy (13--16 eV) bombardment which possess a metastable bonding configuration consisting of a mixture of tetrahedral and trigonal coordination that varies with ion energy, (b) hard and wear-resistant TiN films whose electrical and optical properties change dramatically with ion bombardment, and (c) Ni/Cr alloy films showing ion-induced structural modifications.

  7. Carbon film deposition on SnO{sub 2}/Si(111) using DC unbalanced magnetron sputtering

    SciTech Connect

    Aji, A. S.; Darma, Y.

    2013-09-09

    In this paper, carbon deposition on SnO{sub 2} layer using DC unbalanced magnetron-sputtering technique at low temperature has been systematically studied. Sputtering process were carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature at 300 °C. SnO{sub 2} were growth on silicon (111) substrate using thermal evaporation and continuing with dry oxidation of Sn at 225 °C. Thermal evaporation for high purity Sn was conducted by maintain the current source as high as 40 ampere. The quality of SnO{sub 2} on Si(111) and the characteristic of carbon thin film on SnO{sub 2} were analized by mean XRD, FTIR and Raman spectra. XRD analysis shows that SnO{sub 2} film is growth uniformly on Si(111). FTIR and Raman spectra confirm the formation of thin film carbon on SnO{sub 2}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by Raman and XRD spectra.

  8. Breakpoint Features of Genomic Rearrangements in Neuroblastoma with Unbalanced Translocations and Chromothripsis

    PubMed Central

    Daveau, Romain; Combaret, Valérie; Pierre-Eugène, Cécile; Cazes, Alex; Louis-Brennetot, Caroline; Schleiermacher, Gudrun; Ferrand, Sandrine; Pierron, Gaëlle; Lermine, Alban; Frio, Thomas Rio; Raynal, Virginie; Vassal, Gilles; Barillot, Emmanuel; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2013-01-01

    Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis. PMID:23991058

  9. Unbalanced der(5)t(5;20) translocation associated with Megalencephaly, perisylvian Polymicrogyria, Polydactyly and Hydrocephalus

    PubMed Central

    Verkerk, Annemieke J.M.H.; Schot, Rachel; van Waterschoot, Laura; Douben, Hannie; Poddighe, Pino J.; Lequin, Maarten H.; de Vries, Linda S.; Terhal, Paulien; Hahnemann, Johanne M.D.; de Coo, Irenaeus F.M.; de Wit, Marie-Claire Y.; Wafelman, Leontien S.; Garavelli, Livia; Dobyns, William B.; Van der Spek, Peter J.; de Klein, Annelies; Mancini, Grazia M.S.

    2010-01-01

    The combination of megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus (MPPH) is a rare syndrome of unknown cause. We observed two first cousins affected by an MPPH-like phenotype with a submicroscopic chromosome 5q35 deletion as a result of an unbalanced der(5)t(5;20)(q35.2;q13.3) translocation, including the NSD1 Sotos syndrome locus. We describe the phenotype and the deletion breakpoints of the two MPPH-like patients and compare these with five unrelated MPPH and Sotos patients harboring a 5q35 microdeletion. Mapping of the breakpoints in the two cousins was performed by MLPA, FISH, high density SNP-arrays and Q-PCR for the 5q35 deletion and 20q13 duplication. The 5q35 deletion area of the two cousins almost completely overlaps with earlier described patients with an atypical Sotos microdeletion, except for the DRD1 gene. The five unrelated MPPH patients neither showed submicroscopic chromosomal aberrations nor DRD1 mutations. We reviewed the brain MRI of 10 Sotos patients and did not detect polymicrogyria in any of them. In our two cousins, the MPPH-like phenotype is probably caused by the contribution of genes on both chromosome 5q35 and 20q13. Some patients with MPPH may harbor a submicroscopic chromosomal aberration and therefore high-resolution array analysis should be part of the diagnostic workup. PMID:20503325

  10. 40 Gbit/s Metropolitan networks using power unbalanced polarization division multiplexing

    NASA Astrophysics Data System (ADS)

    Hayee, M. I.; Zhang, Qun

    2006-05-01

    The feasibility of a 40 Gbit/s wavelength division multiplexed system using a power unbalanced polarization division multiplexing (PUPDM) scheme has been explored for metropolitan distances using the standard single mode fiber and erbium doped fiber amplifiers. PUPDM is a quaternary communication scheme in which two subchannels, each carrying 20 Gbit/s information data, are combined on the same wavelength to effectively communicate 40 Gbits/s using only binary transmitters and binary receivers. PUPDM not only reduces the cost of the optics and electronics in metropolitan networks but also reduces the degrading effect of polarization mode dispersion (PMD) by actually transmitting at half of the effective data rate. The effects of fiber nonlinearity and PMD are extensively analyzed for each of two 20 Gbit/s subchannels for an aggregate 40 Gbit/s capacity per wavelength channel. The analysis suggests that a 40 Gbit/s PUPDM system with 50 GHz channel spacing is feasible for up to 600 km of transmission distance on single mode fiber, using 7% Reed-Solomon forward error correction and 20 Gbit/s electronics.

  11. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    SciTech Connect

    Aji, A. S. Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  12. Rotating Unbalanced-Mass devices for scanning: Results from the proof-of-concept test

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Polites, Michael E.

    1994-01-01

    Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed.

  13. Unbalanced oil filled sphere as rolling pendulum on a flat surface to damp horizontal structural vibrations

    NASA Astrophysics Data System (ADS)

    Bransch, Martin

    2016-04-01

    The passive damping of horizontal structural vibrations by means of an unbalanced oil filled sphere as a tuned mass damper (TMD) is examined. Due to the unbalance contained in the TMD, a pendulum-like motion is produced. The TMD lies unconstrained on the structure. As a result, forces are only transferred through the static friction between the TMD and the structure. The TMD is filled with oil to enable energy dissipation. This paper investigates the mechanical system of the proposed TMD and calculation methods for its tuning. Furthermore, experimental results of the TMD are presented. To determine the advantages and disadvantages of the proposed TMD, it will be compared to other passive tuned mass dampers. The advantages of the presented TMD are its robust design, simple mounting/demounting onto the main system and its adjustability after mounting. The oil filling makes the damper construction simple, as an additional container for the oil is no longer needed. Furthermore, the energy dissipating effect of breaking waves is used when the oil level inside the TMD is shallow. The disadvantages of the presented TMD when compared to a conventional tuned mass damper (linear spring-mass-damper-system) are its slightly lower performance and its complex tuning.

  14. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  15. Primary TKA Patients with Quantifiably Balanced Soft-Tissue Achieve Significant Clinical Gains Sooner than Unbalanced Patients

    PubMed Central

    Gustke, Kenneth A.; Golladay, Gregory J.; Roche, Martin W.; Elson, Leah C.; Anderson, Christopher R.

    2014-01-01

    Although total knee arthroplasty has a high success rate, poor outcomes and early revision are associated with ligament imbalance. This multicenter evaluation was performed in order to provide 1-year followup of a previously reported group of patients who had sensor-assisted TKA, comparing the clinical outcomes of quantitatively balanced versus unbalanced patients. At 1 year, the balanced cohort scored 179.3 and 10.4 in KSS and WOMAC, respectively; the unbalanced cohort scored 156.1 and 17.9 in KSS and WOMAC (P < 0.001; P = 0.085). The average activity level scores of quantitatively balanced patients were 68.6 (corresponding to tennis, light jogging, and heavy yard work), while the average activity level of unbalanced patients was 46.7 (corresponding to light housework, and limited walking distances) (P = 0.015). Out of all confounding variables, a balanced articulation was the most significant contributing factor to improved postoperative outcomes (P < 0.001). PMID:25210632

  16. Dynamic response and stability analysis of an unbalanced flexible rotating shaft equipped with n automatic ball-balancers

    NASA Astrophysics Data System (ADS)

    Ehyaei, J.; Moghaddam, Majid M.

    2009-04-01

    The paper presents analytical and numerical investigations of a system of unbalanced flexible rotating shaft equipped with n automatic ball-balancers, where the unbalanced masses are distributed in the length of the shaft. It includes the derivation of the equations of motion, the stability analysis on the basis of linearized equations of motion around the equilibrium position, and the results of the time responses of the system. The Stodola-Green rotor model, of which the shaft is assumed flexible, is proposed for the analysis step. The rotor model includes the influence of rigid-body rotations, due to the shaft flexibility. Utilizing Lagrange's method, the nonlinear equations of motion are derived. The study shows that for the angular velocities more than the first natural frequency and selecting the suitable values for the parameters of the automatic ball-balancers, which are in the stability region, the auto ball-balancers tend to improve the vibration behavior of the system, i.e., the partial balancing, but the complete balancing was achieved in a special case, where the imbalances are in the planes of the auto ball-balancers. Furthermore, it is shown that if the auto ball-balancers are closer to the unbalanced masses, a better vibration reduction is achieved.

  17. Simultaneous unbalanced shared local oscillator heterodyne interferometry for high signal-to-noise-ratio, minimally destructive dispersive detection of time-dependent atomic spins

    NASA Astrophysics Data System (ADS)

    Locke, Mary; Fertig, Chad

    2013-09-01

    We demonstrate "Simultaneous Unbalanced Shared Local Oscillator Heterodyne Interferometry (SUSHI)," a new method for minimally destructive, high SNR dispersive detection of atomic spins. In SUSHI a dual-frequency probe laser interacts with atoms in one arm of a Mach-Zehnder interferometer, then beats against a bright local oscillator beam traversing the other arm, resulting in two simultaneous, independent heterodyne measurements of the atom-induced phase shift. Measurement noise due to mechanical disturbances of beam paths is strongly rejected by the technique of \\emph{active subtraction} in which anti-noise is actively written onto the local oscillator beam via an optical phase-locked-loop. In SUSHI, technical noise due to phase, amplitude, and frequency fluctuations of the various laser fields is strongly rejected (i) for any mean phase bias between the interferometer arms, (ii) without the use of piezo actuated mirrors, and (iii) without signal balancing. We experimentally demonstrate an ultra-low technical noise limited sensitivity of 51 nrad$/\\sqrt{\\R{Hz}}$ over a measurement bandwidth of 60 Hz to 8 kHz using a 230 $\\mu$W probe, and stay within $\\sim$3 dB of the standard quantum limit as probe power is reduced by more than 5 orders of magnitude to as low as 650 pW. SUSHI is therefore well suited to performing QND measurements for preparing spin squeezed states and for high SNR, truly continuous observations of ground-state Rabi flopping in cold atom ensembles.

  18. EDITORIAL: Close contact Close contact

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-07-01

    means to produce nanoscale device elements, such as carbon nanotube transistors [5] and high-density memory crossbar circuits [6]. Recently, the use of scanning tunnelling microscopes has broached a new field of research, which is currently attracting enormous interest—single molecule detection. In issue 25 of Nanotechnology researchers in Houston reported unprecedented sensitivities using localized surface plasmon resonance shifts of gold bipyramids to detect concentrations of substances down to the single molecule level [7]. In issue 26 a collaboration of researchers from the US and Czech Republic describe a different approach, namely tunnelling recognition. In their topical review they describe hydrogen-bond mediated tunnelling and the associated experimental methods that facilitate the detection of single molecules in a tunnel junction using chemically functionalized electrodes [8]. The nanoworld depicted by scanning probe microgaphs over 20 years ago may have looked as extraterrestrial as any science fiction generated alien terrain, but though study and analysis these nano-landscapes have become significantly less alien territory. The work so far to unveil the intricacies of electronic contact has been a story of progress in investigating this new territory and manipulating the mechanisms that govern it to formulate new devices and delve deeper into phenomena at the nanoscale. References [1] Binning G, Rohrer H, Gerber Ch and Weibel E 1982 Phys. Rev. Lett. 49 57-61 [2] X D Cui, X Zarate, J Tomfohr, O F Sankey, A Primak, A L Moore, T A Moore, D Gust, G~Harris and S M Lindsay 2002 Nanotechnology 13 5-14 [3] Martin C A, van Ruitenbeek J M and van der Zant S J H 2010 Nanotechnology 21 265201 [4] Davis J J and Hanyu Y 2010 Nanotechnology 21 265302 [5] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49-52 [6] Chen Y, Jung G-Y, Ohlberg D A A, Li X, Stewart D R, Jeppesen J O, Nielsen K A, Stoddart J F and Williams R S 2003 Nanotechnology 14 462-8 [7] Mayer K M

  19. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. PMID:26089186

  20. Commission 42: Close Binaries

    NASA Astrophysics Data System (ADS)

    Giménez, Alvaro; Rucinski, Slavek; Szkody, P.; Gies, D.; Kang, Y.-W.; Linsky, J.; Livio, M.; Morrell, N.; Hilditch, R.; Nordström, B.; Ribas, I.; Sion, E.; Vrielman, S.

    2007-03-01

    The triennial report from Commission 42 covers various topics like massive binaries, contact systems, cataclysmic variables and low-mass binary stars. We try in a number of sections to provide an update on the current status of the main research areas in the field of close binaries. It is not a formal review, even complete or comprehensive, but an attempt to bring the main topics on recent research to astronomers working in other fields. References are also not comprehensive and simply added to the text to help the reader looking for deeper information on the subject. For this reason, we have chosen to include references (sometimes incomplete for ongoing work) not in a list at the end but integrated with the main text body. Complete references and additional sources can be easily obtained through web access of ADS or SIMBAD. Furthermore, the summary of papers on close-binary research contained in the Bibliography of Close Binaries (BCB) can be accessed from the web site of Commission 42. I would like to express the gratitude of the commission for the careful work of Colin Scarfe as Editor-in-Chief of BCB and Andras Holl and Attila Sragli for maintaining the web pages of the Commission within the structure of Division V. Finally, K. Olah and J. Jurcsik are gratefully acknowledged for their continued support as editors of the Information Bulletin on Variable Stars (IBVS), also accessible through the commission web page.

  1. Temporal manipulation of light propagation via cross-intensity modulation in unbalanced fiber Mach-Zehnder interferometers.

    PubMed

    Zou, Zhixin; Liu, Jinmei; Zhang, Liang; Wang, Zhiqiang; Zhan, Li

    2015-11-16

    We theoretically propose and experimentally demonstrate an approach to achieve temporal manipulation of light propagation via cross-intensity modulation (XIM) effect in an unbalanced fiber Mach-Zehnder interferometer (MZI). By changing the optical loss indices (which can also be gain indices theoretically) discrepantly in the two branches of the MZI, we can obtain the largest time shifts at the minima of the transmission frequency spectrum, while there shows no time shifts at the maxima. This scheme provides a flexibility of ultra-wide bandwidth operation both on optical wavelength and modulation frequency. PMID:26698441

  2. The Unbalanced Magnetic Pull and its Effects on Vibration in a Three-Phase Generator with Eccentric Rotor

    NASA Astrophysics Data System (ADS)

    GUO, D.; CHU, F.; CHEN, D.

    2002-07-01

    The unbalanced magnetic pull (UMP) in a three-phase generator under no-load, caused by dynamic and static eccentricity, is calculated theoretically. The air-gap permeance is expressed as a Fourier series. Analytical expressions of the UMP for any pole-pair number are obtained. Effects of relative eccentricity and pole number on the magnitude of the UMP are obtained. The vibration of a model rotor in a three-phase generator under the action of the UMP and the eccentric force is analyzed by the numerical method and the harmonic analysis.

  3. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  4. Unbalanced upregulation of ryanodine receptor 2 plays a particular role in early development of daunorubicin cardiomyopathy

    PubMed Central

    Kucerova, Dana; Doka, Gabriel; Kruzliak, Peter; Turcekova, Katarina; Kmecova, Jana; Brnoliakova, Zuzana; Kyselovic, Jan; Kirchhefer, Uwe; Müller, Frank U; Krenek, Peter; Boknik, Peter; Klimas, Jan

    2015-01-01

    .05), but not of other examined Ca2+ regulating proteins remained. In addition, we observed a significant reduction in alpha-tubulin (by 46% when compared to CON P<0.05). Indicators of oxidative injury were unaffected. In conclusion, unbalanced RyR2 overexpression plays a particular role in early development of daunorubicin cardiomyopathy characterized by discrepant in situ versus in vitro cardiac performance. PMID:26328012

  5. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  6. Closed-loop anesthesia.

    PubMed

    LE Guen, Morgan; Liu, Ngai; Chazot, Thierry; Fischler, Marc

    2016-05-01

    Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. The aim of these devices is to control a predefined target and to continuously titrate anesthetics whatever the patients' co morbidities and surgical events to reach this target. Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia. PMID:26554614

  7. Two encounters with the flank low-latitude boundary layer - Further evidence for closed field topology and investigation of the internal structure

    NASA Technical Reports Server (NTRS)

    Traver, D. P.; Mitchell, D. G.; Williams, D. J.; Frank, L. A.; Huang, C. Y.

    1991-01-01

    The structure of the flank low-latitude boundary layer (LLBL) is examined through differential energy spectra and particle angular anisotropies for traversals of the dawn flank (December 19, 1977) and dusk flank (July 7, 1978) during periods of predominantly northward magnetosheath field orientation. Spectra are presented that were obtained from combined ISEE 1 low-energy-proton and electron-differential-energy-analyzer and medium-energy-particle-instrument data extending over the 200-eV/q to 2-MeV energy range for the plasma sheet, stagnation region, outer LLBL, and magnetosheath regions. The stagnation region and the outer LLBL are each a mixture of plasma-sheet and magnetosheath populations, but the stagnation region contains a relatively higher fraction of plasma sheet particles, consistent with its placement earthward of the outer LLBL. Evidence for energization of thermal electrons appears during the dusk flank crossing. Bidirectional field-aligned ion distributions are observed with typically 5-to-1 enhancement of the flux along the magnetic field during certain portions of the dusk flank crossing.

  8. The role of growth form and correlated traits in competitive ranking of six perennial ruderal plant species grown in unbalanced mixtures

    NASA Astrophysics Data System (ADS)

    Dietz, Hansjörg; Steinlein, Thomas; Ullmann, Isolde

    1998-02-01

    The competitive abilities of six perennial ruderal plants of three different growth forms were compared via yield measures using an additive diallel experimental design with unbalanced mixtures (9:3 or 3:9 plants per pot, respectively). Thus, in a given mixture species A was grown in two configurations: three individuals in centre position of the pot together with nine plants of species B in border position and vice versa. Effect competitive abilities as well as response competitive abilities of the species were significantly related to canopy height and plant biomass. The species with lower rosette growth form and smaller biomasses were weaker competitors than the species possessing elevated canopies along with higher biomasses, whereas total leaf area was not significantly correlated with competitive ability between species. Species differences in competitive ability were stronger between the plants grown in the central position than between those grown in the border position. Furthermore, interactions between species-specific traits and configuration could be observed, indicating the importance of species proportions and arrangement patterns for evaluation of competitive outcome in the field. The degree of complete transitivity of the competitive network of the six ruderal species, which was significantly higher than expected under the null model in our experimental design, also seemed to depend on species proportions in mixture. Shifts in root:shoot ratio of the centre plants when faced with competition by the border plants were in the direction of higher shoot allocation for the weak competitors with rosette growth form irrespective of the neighbour species, except for Bunias orientalis, which showed a more plastic response. The stronger competitors showed higher root allocation ( Urtica dioica) or were hardly affected at all. Consistent with the results of our experiment, the weaker competitors occur at rather frequently disturbed and therefore transient

  9. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    DOE PAGESBeta

    Koliner, J. J.; Boguski, J.; Anderson, J. K.; Hanson, J. D.; Chapman, B. E.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Duff, J. R.; Goetz, J. A.; et al

    2016-03-25

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch(RFP)plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFPplasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B measurement loops around the plasma minor diameter with qualitative agreement between each other andmore » the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.« less

  10. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    NASA Astrophysics Data System (ADS)

    Koliner, J. J.; Cianciosa, M. R.; Boguski, J.; Anderson, J. K.; Hanson, J. D.; Chapman, B. E.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Duff, J. R.; Goetz, J. A.; McGarry, M.; Morton, L. A.; Parke, E.

    2016-03-01

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit Bθ measurement loops around the plasma minor diameter with qualitative agreement between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of Bθ at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.