Science.gov

Sample records for clostridium acetobutylicum genome

  1. Annotation of the Clostridium Acetobutylicum Genome

    SciTech Connect

    Daly, M. J.

    2004-06-09

    The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.

  2. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii.

    PubMed

    Li, Qi; Chen, Jun; Minton, Nigel P; Zhang, Ying; Wen, Zhiqiang; Liu, Jinle; Yang, Haifeng; Zeng, Zhe; Ren, Xiaodan; Yang, Junjie; Gu, Yang; Jiang, Weihong; Jiang, Yu; Yang, Sheng

    2016-07-01

    Solventogenic clostridia are important industrial microorganisms that produce various chemicals and fuels. Effective genetic tools would facilitate physiological studies aimed both at improving our understanding of metabolism and optimizing solvent productivity through metabolic engineering. Here we have developed an all-in-one, CRISPR-based genome editing plasmid, pNICKclos, that can be used to achieve successive rounds of gene editing in Clostridium acetobutylicum ATCC 824 and Clostridium beijerinckii NCIMB 8052 with efficiencies varying from 6.7% to 100% and 18.8% to 100%, respectively. The plasmid specifies the requisite target-specific guide RNA, the gene encoding the Streptococcus pyogenes Cas9 nickase and the genome editing template encompassing the gene-specific homology arms. It can be used to create single target mutants within three days, with a further two days required for the curing of the pNICKclos plasmid ready for a second round of mutagenesis. A S. pyogenes dCas9-mediated gene regulation control system, pdCASclos, was also developed and used in a CRISPRi strategy to successfully repress the expression of spo0A in C. acetobutylicum and C. beijerinckii. The combined application of the established high efficiency CRISPR-Cas9 based genome editing and regulation control systems will greatly accelerate future progress in the understanding and manipulation of metabolism in solventogenic clostridia. PMID:27213844

  3. Enhanced butanol production from cassava with Clostridium acetobutylicum by genome shuffling.

    PubMed

    Li, Shu-Bo; Qian, Yi; Liang, Zheng-Wu; Guo, Yuan; Zhao, Mou-Ming; Pang, Zong-Wen

    2016-04-01

    To obtain strains exhibiting high levels of solvent tolerance and butanol production, wild type strains of Clostridium acetobutylicum butanol-producing strain GX01 and Lactobacillus mucosae butanol-tolerant strain M26 were subjected to mutagenesis combining N-methyl-N-nitro-N-nitrosoguanidine induction with genome shuffling. After four successive rounds of genome shuffling, the C. acetobutylicum shuffled strain GS4-3 showing greater levels of fermentation performances (such as secreting a higher level of amylase, improving the thermal stability, and possessing greater environmental robustness) compared to the wild type strains was isolated. As a result, after optimization of culture conditions, mutant GS4-3 produced 32.6 g/L of total solvent, 20.1 g/L of butanol production, and 0.35 g/L/h of butanol productivity, which were, respectively, increased by 23.5, 23.3, and 40.0 % than the wild-type strain GX01, in a 10 L bioreactor. The enhanced production of butanol and tolerance of solvent of mutant associated with GS4-3 make it promising for acetone/butanol/ethanol fermentation from cassava (Manihot esculenta). PMID:26925615

  4. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018

    PubMed Central

    2011-01-01

    Background Clostridium acetobutylicum, a gram-positive and spore-forming anaerobe, is a major strain for the fermentative production of acetone, butanol and ethanol. But a previously isolated hyper-butanol producing strain C. acetobutylicum EA 2018 does not produce spores and has greater capability of solvent production, especially for butanol, than the type strain C. acetobutylicum ATCC 824. Results Complete genome of C. acetobutylicum EA 2018 was sequenced using Roche 454 pyrosequencing. Genomic comparison with ATCC 824 identified many variations which may contribute to the hyper-butanol producing characteristics in the EA 2018 strain, including a total of 46 deletion sites and 26 insertion sites. In addition, transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed expression-level changes of several key genes related to solvent formation. For example, spo0A and adhEII have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Interestingly, the results also showed that the variation in CEA_G2622 (CAC2613 in ATCC 824), a putative transcriptional regulator involved in xylose utilization, might accelerate utilization of substrate xylose. Conclusions Comparative analysis of C. acetobutylicum hyper-butanol producing strain EA 2018 and type strain ATCC 824 at both genomic and transcriptomic levels, for the first time, provides molecular-level understanding of non-sporulation, higher solvent production and enhanced xylose utilization in the mutant EA 2018. The information could be valuable for further genetic modification of C. acetobutylicum for more effective butanol production. PMID:21284892

  5. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    DOE PAGESBeta

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  6. [Genetic modification systems for Clostridium acetobutylicum].

    PubMed

    Dong, Hongjun; Zhang, Yanping; Li, Yin

    2010-10-01

    Clostridium acetobutylicum, a biofuel-butanol producer, has attracted worldwide interests. Strain improvement is important for the process of biobutanol industrialization where efficient genetic modification systems are essential. In this review, the history of genetic modification systems of C. acetobutylicum was introduced, and the types and principles of these systems and their disadvantages are summarized and analysed. The development of updated genetic modification systems for C. acetobutylicum is also proposed. PMID:21218624

  7. Cellulolytic Activity of Clostridium acetobutylicum

    PubMed Central

    Lee, Song F.; Forsberg, Cecil W.; Gibbins, L. N.

    1985-01-01

    Clostridium acetobutylicum NRRL B527 and ATCC 824 exhibited extracellular and cell-bound endoglucanase and cellobiase activities during growth in a chemically defined medium with cellobiose as the sole source of carbohydrate. For both strains, the endoglucanase was found to be mainly extracellular (70 to 90%) during growth in continuous or batch cultures with the pH maintained at 5.2, whereas the cellobiase was mainly cell associated (60 to 90%). During continuous cultivation of strain B527 with cellobiose as the limiting nutrient, maximum production of the endoglucanase and cellobiase occurred at pH values of 5.2 and 4.8, respectively. In the carbon-limited continuous cultures, strain 824 produced similar levels of endoglucanase, cellobiosidase, and cellobiase activities regardless of the carbon source used. However, in ammonium- or phosphate-limited cultures, with an excess of glucose, only 1/10 of the endoglucanase was produced, and neither cellobiosidase nor cellobiase activities were detectable. A crude extracellular enzyme preparation from strain B527 hydrolyzed carboxymethylcellulose and phosphoric acid-swollen cellulose readily and microcrystalline cellulose (A vicel) to a lesser extent. Glucose accounted for more than 90% of the reducing sugar produced by the hydrolysis of acid-swollen cellulose and Avicel. Strain B527 did not grow in medium with acid-swollen cellulose as the sole source of carbohydrate, although it grew readily on the products obtained by hydrolyzing the cellulose in vitro with a preparation of extracellular cellulase derived from the same organism. PMID:16346847

  8. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    SciTech Connect

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  9. Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells.

    PubMed

    Liu, Dong; Xu, Jiahui; Wang, Yanyan; Chen, Yong; Shen, Xiaoning; Niu, Huanqing; Guo, Ting; Ying, Hanjie

    2016-01-20

    Biofilm-based immobilization of solventogenic Clostridia has been extensively exploited to overcome traditional bottlenecks in biobutanol production like solvent toxicity and low productivities. However, the molecular basis of solventogenic Clostridia biofilm is rarely explored. Here, for the first time, we report DNA array-based study of Clostridium acetobutylicum biofilm cells to elucidate the transcriptional modulation. Results showed that 16.2% of the C. acetobutylicum genome genes within the biofilm cells were differentially expressed, with most genes being up-regulated. The most dramatic changes occurred with amino acid biosynthesis, with sulfur uptake and cysteine biosynthesis being the most up-regulated and histidine biosynthesis being the most down-regulated in the biofilm cells. It was demonstrated that C. acetobutylicum biofilm cells increased metabolic activities probably by up-regulating iron and sulfur uptake and Fe-S cluster biosynthesis genes as well as glycolysis genes. Furthermore, genes involved in sporulation, granulose formation, extracellular polymer degradation, pentose catabolisms, and various other processes were also notably regulated, indicating that the biofilm mode of growth rendered the cells a distinct phenotype. This study provides valuable insights into the transcriptional regulation in C. acetobutylicum biofilm cells and should be highly useful for understanding and developing the biofilm-based processes. PMID:26621081

  10. Effects of butanol on Clostridium acetobutylicum.

    PubMed Central

    Bowles, L K; Ellefson, W L

    1985-01-01

    The internal pH of Clostridium acetobutylicum was determined at various stages during the growth of the organism. Even in the presence of significant quantities of acetic, butyric, and lactic acids, an internal pH of 6.2 was maintained. Experiments using N,N'-dicyclohexylcarbodiimide indicated that a functioning H+-ATPase is necessary for internal pH control. Butanol, one of the end products of the fermentation, had numerous harmful effects on C. acetobutylicum. At a concentration high enough to inhibit growth, butanol destroyed the ability of the cell to maintain internal pH, lowered the intracellular level of ATP, and inhibited glucose uptake. Experiments done at two different external pH values suggested that the butanol-mediated decrease in ATP concentration was independent of the drop in internal pH. Glucose uptake was not affected by arsenate, suggesting that uptake was not ATP dependent. The effects of butanol on C. acetobutylicum are complex, inhibiting several interrelated membrane processes. PMID:2868690

  11. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    SciTech Connect

    Bao, Guanhui; Dong, Hongjun; Zhu, Yan; Mao, Shaoming; Zhang, Tianrui; Zhang, Yanping; Chen, Zugen; Li, Yin

    2014-08-08

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.

  12. Redox-Responsive Repressor Rex Modulates Alcohol Production and Oxidative Stress Tolerance in Clostridium acetobutylicum

    PubMed Central

    Zhang, Lei; Nie, Xiaoqun; Ravcheev, Dmitry A.; Rodionov, Dmitry A.; Sheng, Jia; Gu, Yang; Yang, Sheng; Jiang, Weihong

    2014-01-01

    Rex, a transcriptional repressor that modulates its DNA-binding activity in response to NADH/NAD+ ratio, has recently been found to play a role in the solventogenic shift of Clostridium acetobutylicum. Here, we combined a comparative genomic reconstruction of Rex regulons in 11 diverse clostridial species with detailed experimental characterization of Rex-mediated regulation in C. acetobutylicum. The reconstructed Rex regulons in clostridia included the genes involved in fermentation, hydrogen production, the tricarboxylic acid cycle, NAD biosynthesis, nitrate and sulfite reduction, and CO2/CO fixation. The predicted Rex-binding sites in the genomes of Clostridium spp. were verified by in vitro binding assays with purified Rex protein. Novel members of the C. acetobutylicum Rex regulon were identified and experimentally validated by comparing the transcript levels between the wild-type and rex-inactivated mutant strains. Furthermore, the effects of exposure to methyl viologen or H2O2 on intracellular NADH and NAD+ concentrations, expression of Rex regulon genes, and physiology of the wild type and rex-inactivated mutant were comparatively analyzed. Our results indicate that Rex responds to NADH/NAD+ ratio in vivo to regulate gene expression and modulates fermentation product formation and oxidative stress tolerance in C. acetobutylicum. It is suggested that Rex plays an important role in maintaining NADH/NAD+ homeostasis in clostridia. PMID:25182496

  13. Cultures of "Clostridium acetobutylicum" from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation.

    PubMed

    Johnson, J L; Toth, J; Santiwatanakul, S; Chen, J S

    1997-04-01

    The best-known acetone-butanol (solvent)-producing bacterium is the Weizmann organism, Clostridium acetobutylicum, which was used for starch-based industrial fermentation. In the past two decades, cultures of "C. acetobutylicum" from various culture collections have included organisms that were isolated for sugar (molasses)-based industrial solvent production. Recent biochemical and genetic studies have revealed significant differences among some of these "C. acetobutylicum" strains. We used DNA-DNA reassociation to analyze 39 cultures of "C. acetobutylicum" and phenotypically similar organisms from major collections. The results of this study clearly identified four groups intergroup reassociation values of less than 30%. All of the intragroup values except the value for one strain were 68% or more, which supported species status for each group. The C. acetobutylicum group (with ATCC 824 as the type strain) consisted of 17 cultures and had average reassociation values of 10% with the other three groups. All strains of C. acetobutylicum produced riboflavin in milk, and the cultures were bright yellow, which is useful for differentiating this species from the other three groups. The Clostridium beijerinckii group (with VPI 5481 [= ATCC 25752] as the type strain) consisted of 16 cultures and included strains NCIMB 8052 and NCP 270. Strains NCP 262 and NRRL B643 constituted the third group, whereas strain N1-4 ("Clostridium saccharoperbutylacetonicum") and its derivative, strain N1-4081, formed the fourth group. At present, the last two groups are each represented by only one independent strain; definitive descriptions of these two groups as two new or revived species will require further phenotypic characterization, as well as identification of additional strains. C. beijerinckii NCP 270, Clostridium sp. strain NRRL B643, and "C. saccharoperbutylacetonicum" were used in industrial solvent production from molasses, which confirms that the new organisms used for the

  14. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov.

    PubMed

    Keis, S; Shaheen, R; Jones, D T

    2001-11-01

    On the basis of 16S rRNA gene sequencing and DNA-DNA reassociation, industrial solvent-producing clostridia have been assigned to four species. In this study, the phenotypic characteristics of Clostridium acetobutylicum, Clostridium beijerinckii, 'Clostridium saccharoperbutylacetonicum', and an unnamed Clostridium sp. represented by the strains NCP 262T and NRRL B643 are compared. In addition, a further 40 strains of solvent-producing clostridia have been classified by biotyping, DNA fingerprinting and 16S rRNA gene sequencing. These included 14 C. beijerinckii strains, two strains currently designated as 'Clostridium kaneboi' and 'Clostridium butanologenum', and 24 production strains used in the commercial acetone-butanol fermentation. All of the C. beijerinckii strains were confirmed to have been classified correctly. The 'C. kaneboi' and 'C. butanologenum' strains require reclassification as C. acetobutylicum and C. beijerinckii, respectively. The commercial production strains were found to belong either to C. beijerinckii or to the unnamed Clostridium sp. For the comparative phenotypic studies of the four species, representative strains were selected from each of the DNA-fingerprint subgroups within each species. These strains were analysed for their ability to utilize different carbohydrates, hydrolyse gelatin or aesculin, and produce indole, and were tested for the presence of catalase and urease. On the basis of these results, several phenotypic traits were found to be useful for differentiating between the four species. The descriptions of C. acetobutylicum and C. beijerinckii have been emended. The names Clostridium saccharoperbutylacetonicum sp. nov. [type strain = N1-4 (HMT) = ATCC 27021T] and Clostridium saccharobutylicum sp. nov. (type strain = DSM 13864T = ATCC BAA-117T) are proposed for the two new species. PMID:11760952

  15. Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome.

    PubMed

    Keis, S; Sullivan, J T; Jones, D T

    2001-07-01

    A physical and genetic map of the Clostridium saccharobutylicum NCP 262 chromosome was constructed. The order of macrorestriction fragments was determined by analysing fragments generated after single and double digestion with the restriction enzymes BssHII, I-CeuI, Sse8387I, RsrII and SfiI and separation by PFGE. The I-CeuI backbone of C. saccharobutylicum was constructed by indirect end-labelling with rrs- and 3' rrl-specific probes located on either side of the I-CeuI site in the rrn operon, and reciprocal separation of BssHII and I-CeuI digestion products by two-dimensional PFGE. The positions of BssHII fragments on the physical map were determined using a library of linking clones containing BssHII cleavage sites. The size of the circular genome was estimated to be 5.3 Mb with a mean resolution of approximately 140 kb. The chromosome of C. saccharobutylicum contains 12 rrn operons, located on 46% of the chromosome, which are transcribed divergently from the deduced origin of replication. The genetic map was constructed by determining the location of 28 genes involved in house-keeping, heat-shock response, sporulation, electron transfer and acid- and solvent-formation. Comparison of the C. saccharobutylicum genetic map with those of the spore-forming bacteria Bacillus subtilis, Clostridium acetobutylicum, Clostridium perfringens and Clostridium beijerinckii indicated C. saccharobutylicum to be most similar to the latter two Clostridium species, with the order of the genes within the gyrAB and recA loci being conserved. PMID:11429467

  16. Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824.

    PubMed

    Yu, Yang; Tangney, Martin; Aass, Hans C; Mitchell, Wilfrid J

    2007-03-01

    Although the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum is currently uneconomic, the ability of the bacterium to metabolize a wide range of carbohydrates offers the potential for revival based on the use of cheap, low-grade substrates. We have investigated the uptake and metabolism of lactose, the major sugar in industrial whey waste, by C. acetobutylicum ATCC 824. Lactose is taken up via a phosphoenolpyruvate-dependent phosphotransferase system (PTS) comprising both soluble and membrane-associated components, and the resulting phosphorylated derivative is hydrolyzed by a phospho-beta-galactosidase. These activities are induced during growth on lactose but are absent in glucose-grown cells. Analysis of the C. acetobutylicum genome sequence identified a gene system, lacRFEG, encoding a transcriptional regulator of the DeoR family, IIA and IICB components of a lactose PTS, and phospho-beta-galactosidase. During growth in medium containing both glucose and lactose, C. acetobutylicum exhibited a classical diauxic growth, and the lac operon was not expressed until glucose was exhausted from the medium. The presence upstream of lacR of a potential catabolite responsive element (cre) encompassing the transcriptional start site is indicative of the mechanism of carbon catabolite repression characteristic of low-GC gram-positive bacteria. A pathway for the uptake and metabolism of lactose by this industrially important organism is proposed. PMID:17209069

  17. Role of chemotaxis in solvent production by Clostridium acetobutylicum

    SciTech Connect

    Gutierrez, N.A.; Maddox, I.S.

    1987-08-01

    The motility of Clostridium acetobutylicum has been investigated during a typical batch fermentation process for solvent production. The motility is characterized by runs during the early phase of sugar utilization and acid production, but this changes to tumbles during the onset of solventogenesis. Sugars and undissociated acetic and butyric acids have been shown to be attractants for the bacterium, while acetone, butanol, ethanol, and dissociated acetate and butyrate are repellents. It is suggested that chemotactic responses explain why highly motile cells are strongly solventogenic.

  18. Metronidazole activation and isolation of Clostridium acetobutylicum electron transport genes.

    PubMed Central

    Santangelo, J D; Jones, D T; Woods, D R

    1991-01-01

    An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum. Images PMID:1991710

  19. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum

    PubMed Central

    Kim, Sangwoo; Jang, Yu-Sin; Ha, Sung-Chul; Ahn, Jae-Woo; Kim, Eun-Jung; Hong Lim, Jae; Cho, Changhee; Shin Ryu, Yong; Kuk Lee, Sung; Lee, Sang Yup; Kim, Kyung-Jin

    2015-01-01

    Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHLV77Q/N153Y/A286K mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism. PMID:26391388

  20. In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply.

    PubMed

    Gallardo, Roberto; Acevedo, Alejandro; Quintero, Julián; Paredes, Ivan; Conejeros, Raúl; Aroca, Germán

    2016-02-01

    The biological production of butanol has become an important research field and thanks to genome sequencing and annotation; genome-scale metabolic reconstructions have been developed for several Clostridium species. This work makes use of the iCAC490 model of Clostridium acetobutylicum ATCC 824 to analyze its metabolic capabilities and response to an external electron supply through a constraint-based approach using the Constraint-Based Reconstruction Analysis Toolbox. Several analyses were conducted, which included sensitivity, production envelope, and phenotypic phase planes. The model showed that the use of an external electron supply, which acts as co-reducing agent along with glucose-derived reducing power (electrofermentation), results in an increase in the butanol-specific productivity. However, a proportional increase in the butyrate uptake flux is required. Besides, the uptake of external butyrate leads to the coupling of butanol production and growth, which coincides with results reported in literature. Phenotypic phase planes showed that the reducing capacity becomes more limiting for growth at high butyrate uptake fluxes. An electron uptake flux allows the metabolism to reach the growth optimality line. Although the maximum butanol flux does not coincide with the growth optimality line, a butyrate uptake combined with an electron uptake flux would result in an increased butanol volumetric productivity, being a potential strategy to optimize the production of butanol by C. acetobutylicum ATCC 824. PMID:26650720

  1. Protein phosphorylation in response to stress in Clostridium acetobutylicum

    SciTech Connect

    Balodimos, I.A.; Rapaport, E.; Kashket, E.R. )

    1990-07-01

    The possible involvement of protein phosphorylation in the clostridial stress response was investigated by radioactively labeling growing cells of Clostridium acetobutylicum with {sup 32}P{sub i} or cell extracts with ({gamma}-{sup 32}P)ATP. Several phosphoproteins were identified; these were not affected by the growth stage of the culture. Although the extent of protein phosphorylation was increased by heat stress, the phosphoproteins did not correspond to known stress proteins seen in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified clostridial DnaK, a stress protein, acted as a kinase catalyzing the phosphorylation of a 50-kilodalton protein. The phosphorylation of this protein was enhanced in extracts prepared from heat-stressed cells. Diadenosine-5{prime},5{double prime}{prime}-P{sup 1},P{sup 4}-tetraphosphate had no influence on protein phosphorylation.

  2. Physical map of the Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052 chromosome.

    PubMed Central

    Wilkinson, S R; Young, M

    1995-01-01

    A combined physical and genetic map of the single, circular, 6.7-Mbp chromosome of the NCIMB 8052 strain of Clostridium beijerinckii (formerly Clostridium acetobutylicum) has been constructed by using a combination of cloned DNA fragments as hybridization probes and a bank of strains harboring insertions of the conjugative transposon Tn1545. The positions of 81 restriction endonuclease cleavage sites and 32 genes have been determined. Eight genes concerned with solventogenic fermentation are found at three different locations. The chromosome contains at least 13 rrn operons, 11 of which have been located on the map. Their transcriptional orientation diverges from the presumed location of the replication origin. PMID:7814334

  3. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

    SciTech Connect

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B; Hettich, Robert {Bob} L; Verberkmoes, Nathan C; Lefsrud, Mark G

    2012-01-01

    Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of five proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.

  4. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity

    SciTech Connect

    Annous, B.A.; Blascheck, H.P. )

    1991-09-01

    Several schemes have been proposed for the fermentative production of butanol from various low-cost substrates. One of these economically viable approaches depends on use of a stable, high-yielding strain of Clostridium acetobutylicum, low-cost corn substrate and an increased market for butanol. Results from various laboratories suggested that amylolytic enzyme biosynthesis in C. acetobutylicum is subject to catabolite repression by glucose and induction by starch. In this study Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite derepressed) were isolated by using N-methyl-N{prime}-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 and 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.

  5. Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum

    SciTech Connect

    Bennett, G.N.; Rudolph, F.B.

    1998-05-01

    The anaerobic organism Clostridium acetobutylicum has been used for commercial production of important organic solvents due to its ability to convert a wide variety of crude substrates to acids and alcohols. Current knowledge concerning the molecular genetics, cell regulation and metabolic engineering of this organism is still rather limited. The objectives are to improve the knowledge of the molecular genetics and enzymology of Clostridia in order to make genetic alterations which will more effectively channel cell metabolism toward production of desired products. Two factors that limit butanol production in continuous cultures are: (1) The degeneration of the culture, with an increase in the proportion of cells which are incapable of solvent production. Currently isolated degenerate strains are being evaluated to analyze the molecular mechanism of degeneration to determine if it is due to a genetic loss of solvent related genes, loss of a regulatory element, or an increase in general mutagenesis. Recent studies show two general types of degenerates, one which seems to have lost essential solvent pathway genes and another which has not completely lost all solvent production capability and retains the DNA bearing solvent pathway genes. (2) The production of hydrogen which uses up reducing equivalents in the cell. If the reducing power were more fully directed to the reduction reactions involved in butanol production, the process would be more efficient. The authors have studied oxidation reduction systems related to this process. These studies focus on ferredoxin and rubredoxin and their oxidoreductases.

  6. A Quantitative System-Scale Characterization of the Metabolism of Clostridium acetobutylicum

    PubMed Central

    Yoo, Minyeong; Bestel-Corre, Gwenaelle; Croux, Christian; Riviere, Antoine; Meynial-Salles, Isabelle

    2015-01-01

    ABSTRACT Engineering industrial microorganisms for ambitious applications, for example, the production of second-generation biofuels such as butanol, is impeded by a lack of knowledge of primary metabolism and its regulation. A quantitative system-scale analysis was applied to the biofuel-producing bacterium Clostridium acetobutylicum, a microorganism used for the industrial production of solvent. An improved genome-scale model, iCac967, was first developed based on thorough biochemical characterizations of 15 key metabolic enzymes and on extensive literature analysis to acquire accurate fluxomic data. In parallel, quantitative transcriptomic and proteomic analyses were performed to assess the number of mRNA molecules per cell for all genes under acidogenic, solventogenic, and alcohologenic steady-state conditions as well as the number of cytosolic protein molecules per cell for approximately 700 genes under at least one of the three steady-state conditions. A complete fluxomic, transcriptomic, and proteomic analysis applied to different metabolic states allowed us to better understand the regulation of primary metabolism. Moreover, this analysis enabled the functional characterization of numerous enzymes involved in primary metabolism, including (i) the enzymes involved in the two different butanol pathways and their cofactor specificities, (ii) the primary hydrogenase and its redox partner, (iii) the major butyryl coenzyme A (butyryl-CoA) dehydrogenase, and (iv) the major glyceraldehyde-3-phosphate dehydrogenase. This study provides important information for further metabolic engineering of C. acetobutylicum to develop a commercial process for the production of n-butanol. PMID:26604256

  7. Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the engB gene.

    PubMed Central

    Kim, A Y; Attwood, G T; Holt, S M; White, B A; Blaschek, H P

    1994-01-01

    Heterologous expression of the Clostridium cellulovorans engB gene by Clostridium acetobutylicum BKW-1 was detected as zones of hydrolysis on carboxymethyl cellulose (CMC) Trypticase glucose yeast plates stained with Congo red. The extracellular cellulase preparation from C. acetobutylicum BKW-1 has a specific activity towards CMC which is more than fourfold that present in C. acetobutylicum ATCC 824. Western blot (immunoblot) analysis using the C. cellulovorans anti-EngB primary antibody demonstrated that an additional 44-kDa protein band was present in the supernatant derived from C. acetobutylicum BKW-1 but was not present in ATCC 824 or ATCC 824(pMTL500E). Images PMID:8117087

  8. Direct selection of Clostridium acetobutylicum fermentation mutants by a proton suicide method

    SciTech Connect

    Cueto, P.H.; Mendez, B.S. )

    1990-02-01

    Clostridium acetobutylicum ATCC 10132 mutants altered in acetic acid synthesis or in the shift to solventogenesis were directly selected by a proton suicide method after mutagenic treatment, by using bromide and bromate as selective agents. The mutants were characterized according to their solvent and acid production. On the selection plates they differed in colony phenotype from the parent strain.

  9. Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum

    PubMed Central

    2012-01-01

    Background Clostridium acetobutylicum has been used to produce butanol in industry. Catabolite control protein A (CcpA), known to mediate carbon catabolite repression (CCR) in low GC gram-positive bacteria, has been identified and characterized in C. acetobutylicum by our previous work (Ren, C. et al. 2010, Metab Eng 12:446–54). To further dissect its regulatory function in C. acetobutylicum, CcpA was investigated using DNA microarray followed by phenotypic, genetic and biochemical validation. Results CcpA controls not only genes in carbon metabolism, but also those genes in solvent production and sporulation of the life cycle in C. acetobutylicum: i) CcpA directly repressed transcription of genes related to transport and metabolism of non-preferred carbon sources such as d-xylose and l-arabinose, and activated expression of genes responsible for d-glucose PTS system; ii) CcpA is involved in positive regulation of the key solventogenic operon sol (adhE1-ctfA-ctfB) and negative regulation of acidogenic gene bukII; and iii) transcriptional alterations were observed for several sporulation-related genes upon ccpA inactivation, which may account for the lower sporulation efficiency in the mutant, suggesting CcpA may be necessary for efficient sporulation of C. acetobutylicum, an important trait adversely affecting the solvent productivity. Conclusions This study provided insights to the pleiotropic functions that CcpA displayed in butanol-producing C. acetobutylicum. The information could be valuable for further dissecting its pleiotropic regulatory mechanism in C. acetobutylicum, and for genetic modification in order to obtain more effective butanol-producing Clostridium strains. PMID:22846451

  10. Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome.

    PubMed Central

    Cornillot, E; Croux, C; Soucaille, P

    1997-01-01

    A physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome was constructed. The macrorestriction map for CeuI, EagI, and SstII was created by ordering the 38 restriction sites by one- and two-dimensional pulsed-field gel electrophoresis (PFGE) and by using an original strategy based on the CeuI enzyme and indirect end labelling by hybridization on both sides of the CeuI sites with rrs (16S RNA) and 3' rrl (23S RNA) probes. The circular chromosome was estimated to be 4.15 Mb in size, and the average resolution of the physical map is 110 kb. The chromosome contains 11 rrn loci, which are localized on 44% of the chromosome in a divergent transcriptional orientation regarding the presumed location of the replication origin. In addition to these 11 rrn operons, a total of 40 identified genes were mapped by hybridization experiments with genes from C. acetobutylicum and from various other clostridia as probes. The genetic map of C. acetobutylicum was compared to that of the three other endospore-forming bacteria characterized so far: Bacillus subtilis, Clostridium beijerinckii, and Clostridium perfringens. Parodoxically, the chromosomal backbone of C. acetobutylicum showed more similarity to that of B. subtilis than to those of the clostridia. PMID:9393708

  11. 13C metabolic flux analysis in Clostridium acetobutylicum during growth on L-arabinose

    NASA Astrophysics Data System (ADS)

    Hurley, Margaret; Sund, Christian; Liu, Sanchao; Germane, Katherine; Servinsky, Matthew; Gerlach, Elliot

    2015-03-01

    Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism are continuing to emerge. To elucidate the role of xylulose-5-P/fructose-6-P phosphoketolase (XFP), and the recently discovered Pentose Phosphate Pathway (PKP) in C. acetobutylicum, experimental and computational metabolic isotope analysis was performed under growth on glucose, xylose, and arabinose. Results indicate that PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. This was confirmed by mutation of the gene encoding XFP, which almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate:butyrate ratios. We discuss these experimental and computational results here, and the implications for our understanding of sugar metabolism in C. acetobutylicum.

  12. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    PubMed Central

    2011-01-01

    Background Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report. PMID:22008648

  13. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    SciTech Connect

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B; Hettich, Robert {Bob} L; Verberkmoes, Nathan C; Lefsrud, Mark G

    2011-01-01

    Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetonebutanol- ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

  14. Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum

    SciTech Connect

    Hermann, M.; Fayolle, f.; Marchal, R.; Podvin, L.; Sebald, M.; Vandecasteele, J.P.

    1985-11-01

    In a wild-type strain of Clostridium acetobutylicum isolated from soil, solvent production appeared limited by butanol toxicity. Butanol-resistant mutants have been obtained which produced significantly higher solvent concentrations (about 30%) than the wild-type strain. Some other physiological differences were observed between a selected resistant mutant and the wild-type strain at the level of solvent resistance and sporulation.

  15. Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation.

    PubMed

    Wang, Yan-Feng; Tian, Juan; Ji, Zhi-Hua; Song, Mao-Yong; Li, Hao

    2016-09-01

    During the fermentation process, Clostridium acetobutylicum cells are often inhibited by the accumulated butanol. However, the mechanism underlying response of C. acetobutylicum to butanol stress remains poorly understood. This study was performed to clarify such mechanism through investigating the butanol stress-associated intracellular biochemical changes at acidogenesis phase (i.e., middle exponential phase) and solventogenesis phase (i.e., early stationary phase) by a gas chromatography-mass spectrometry-based metabolomics strategy. With the aid of partial least-squares-discriminant analysis, a pairwise discrimination between control group and butanol-treated groups was revealed, and 27 metabolites with variable importance in the projection value greater than 1 were identified. Under butanol stress, the glycolysis might be inhibited while TCA cycle might be promoted. Moreover, changes of lipids and fatty acids compositions, amino acid metabolism and osmoregulator concentrations might be the key factors involved in C. acetobutylicum metabolic response to butanol stress. It was suggested that C. acetobutylicum cells might change the levels of long acyl chain saturated fatty acids and branched-chain amino acids to maintain the integrity of cell membrane through adjusting membrane fluidity under butanol stress. The increased level of glycerol was considered to be correlated with osmoregulation and regulating redox balance. In addition, increased levels of some amino acids (i.e., threonine, glycine, alanine, phenylalanine, tyrosine, tryptophan, aspartate and glutamate) might also confer butanol tolerance to C. acetobutylicum. These results highlighted our knowledge about the response or adaptation of C. acetobutylicum to butanol stress, and would contribute to the construction of feasible butanologenic strains with higher butanol tolerance. PMID:27477314

  16. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    SciTech Connect

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  17. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.

    PubMed

    Zhang, Yan; Han, Bei; Ezeji, Thaddeus Chukwuemeka

    2012-02-15

    The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol. PMID:21925629

  18. Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum

    PubMed Central

    Riebe, Oliver; Fischer, Ralf-Jörg; Wampler, David A.; Kurtz, Donald M.; Bahl, Hubert

    2009-01-01

    An unusual non-haem diiron protein, reverse rubrerythrin (revRbr), is known to be massively upregulated in response to oxidative stress in the strictly anaerobic bacterium Clostridium acetobutylicum. In the present study both in vivo and in vitro results demonstrate an H2O2 and O2 detoxification pathway in C. acetobutylicum involving revRbr, rubredoxin (Rd) and NADH: rubredoxin oxidoreductase (NROR). RevRbr exhibited both NADH peroxidase (NADH: H2O2 oxidoreductase) and NADH oxidase (NADH: O2 oxidoreductase) activities in in vitro assays using NROR as the electron-transfer intermediary from NADH to revRbr. Rd increased the NADH consumption rate by serving as an intermediary electron-transfer shuttle between NROR and revRbr. While H2O2 was found to be the preferred substrate for revRbr, its relative oxidase activity was found to be significantly higher than that reported for other Rbrs. A revRbr-overexpressing strain of C. acetobutylicum showed significantly increased tolerance to H2O2 and O2 exposure. RevRbr thus appears to protect C. acetobutylicum against oxidative stress by functioning as the terminal component of an NADH peroxidase and NADH oxidase. PMID:19118342

  19. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress

    PubMed Central

    2013-01-01

    Background Organisms of the genus Clostridium are Gram-positive endospore formers of great importance to the carbon cycle, human normo- and pathophysiology, but also in biofuel and biorefinery applications. Exposure of Clostridium organisms to chemical and in particular toxic metabolite stress is ubiquitous in both natural (such as in the human microbiome) and engineered environments, engaging both the general stress response as well as specialized programs. Yet, despite its fundamental and applied significance, it remains largely unexplored at the systems level. Results We generated a total of 96 individual sets of microarray data examining the transcriptional changes in C. acetobutylicum, a model Clostridium organism, in response to three levels of chemical stress from the native metabolites, butanol and butyrate. We identified 164 significantly differentially expressed transcriptional regulators and detailed the cellular programs associated with general and stressor-specific responses, many previously unexplored. Pattern-based, comparative genomic analyses enabled us, for the first time, to construct a detailed picture of the genetic circuitry underlying the stress response. Notably, a list of the regulons and DNA binding motifs of the stress-related transcription factors were identified: two heat-shock response regulators, HrcA and CtsR; the SOS response regulator LexA; the redox sensor Rex; and the peroxide sensor PerR. Moreover, several transcriptional regulators controlling stress-responsive amino acid and purine metabolism and their regulons were also identified, including ArgR (arginine biosynthesis and catabolism regulator), HisR (histidine biosynthesis regulator), CymR (cysteine metabolism repressor) and PurR (purine metabolism repressor). Conclusions Using an exceptionally large set of temporal transcriptional data and regulon analyses, we successfully built a STRING-based stress response network model integrating important players for the general and

  20. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Choi, Sung Jun; Im, Jung Ae; Song, Hyohak; Cho, Jung Hee; Seung, Do Young; Papoutsakis, E. Terry; Bennett, George N.

    2012-01-01

    Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adhB-593) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h. PMID:22210214

  1. Development of an inducible transposon system for efficient random mutagenesis in Clostridium acetobutylicum

    PubMed Central

    Zhang, Ying; Xu, Shu; Chai, Changsheng; Yang, Sheng; Jiang, Weihong; Minton, Nigel P.; Gu, Yang

    2016-01-01

    Clostridium acetobutylicum is an industrially important Gram-positive organism, which is capable of producing economically important chemicals in the ABE (Acetone, Butanol and Ethanol) fermentation process. Renewed interests in the ABE process necessitate the availability of additional genetics tools to facilitate the derivation of a greater understanding of the underlying metabolic and regulatory control processes in operation through forward genetic strategies. In this study, a xylose inducible, mariner-based, transposon system was developed and shown to allow high-efficient random mutagenesis in the model strain ATCC 824. Of the thiamphenicol resistant colonies obtained, 91.9% were shown to be due to successful transposition of the catP-based mini-transposon element. Phenotypic screening of 200 transposon clones revealed a sporulation-defective clone with an insertion in spo0A, thereby demonstrating that this inducible transposon system can be used for forward genetic studies in C. acetobutylicum. PMID:27001972

  2. Development of an inducible transposon system for efficient random mutagenesis in Clostridium acetobutylicum.

    PubMed

    Zhang, Ying; Xu, Shu; Chai, Changsheng; Yang, Sheng; Jiang, Weihong; Minton, Nigel P; Gu, Yang

    2016-04-01

    Clostridium acetobutylicum is an industrially important Gram-positive organism, which is capable of producing economically important chemicals in the ABE (Acetone, Butanol and Ethanol) fermentation process. Renewed interests in the ABE process necessitate the availability of additional genetics tools to facilitate the derivation of a greater understanding of the underlying metabolic and regulatory control processes in operation through forward genetic strategies. In this study, a xylose inducible, mariner-based, transposon system was developed and shown to allow high-efficient random mutagenesis in the model strain ATCC 824. Of the thiamphenicol resistant colonies obtained, 91.9% were shown to be due to successful transposition of the catP-based mini-transposon element. Phenotypic screening of 200 transposon clones revealed a sporulation-defective clone with an insertion in spo0A, thereby demonstrating that this inducible transposon system can be used for forward genetic studies in C. acetobutylicum. PMID:27001972

  3. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    PubMed

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum. PMID:25183671

  4. The kdp system of Clostridium acetobutylicum: cloning, sequencing, and transcriptional regulation in response to potassium concentration.

    PubMed Central

    Treuner-Lange, A; Kuhn, A; Dürre, P

    1997-01-01

    The complete sequence of the kdp gene region of Clostridium acetobutylicum has been determined. This part of the chromosome comprises two small open reading frames (orfZ and orfY), putatively encoding hydrophobic peptides, and the genes kdpA, kdpB, kdpC, and kdpX, followed by an operon encoding a pair of sensor-effector regulatory proteins (KdpD and KdpE). Except for orfZ, orfY, and kdpX, all genes showed significant homology to the kdp genes of Escherichia coli, encoding a high-affinity potassium transport ATPase and its regulators. The complete genome sequence of Synechocystis sp. strain PCC 6803 and a recently published part of the Mycobacterium tuberculosis genome indicate the existence of a kdp system in these organisms as well, but all three systems comprise neither a second orf upstream of kdpA nor an additional kdpX gene. Expression of the clostridial kdp genes, including the unique kdpX gene, was found to be inducible by low potassium concentrations. A transcription start point could be mapped upstream of orfZ. A promoter upstream of kdpD was active only under noninducing conditions. Lowering the potassium content of the medium led to formation of a common transcript (orfZYkdpABCXDE), with a putative internal RNase E recognition site, which could be responsible for the instability of the common transcript. Except for the two small peptides, all gene products could be detected in in vitro transcription-translation experiments. PMID:9226259

  5. Regulation of acetone butanol production in batch and continuous cultures of Clostridium acetobutylicum

    SciTech Connect

    Monot, F.; Engasser, J.M.; Petitdemange, H.

    1983-01-01

    The influence of pH and glucose concentration in batch and continuous cultures of Clostridium acetobutylicum is examined. At high pH and low glucose concentration only acids are produced. At low pH and high initial or feed glucose concentration, butanol and acetone are the main metabolites produced. According to a detailed kinetic analysis of the different fermentations, solvents are only produced if the concentration of undissociated butyric acid in the medium reaches a critical level. 10 references, 9 figures, 1 table.

  6. Isolation and characterization of an inducible NAD-dependent butyraldehyde dehydrogenase from clostridium acetobutylicum

    SciTech Connect

    Schreiber, W.; Duerre, P.

    1996-12-31

    A NAD-dependent butyraldehyde dehydrogenase (BAD) has been purified from C. acetobutylicum DSM 792 and DSM 173 1. This key enzyme of butanol production, catalyzing the conversion of butyryl-CoA to butyraldehyde, was induced shortly before the onset of butanol production and proved to be oxygen-sensitive. A one step purification procedure on reactive green 19 allowed to purify the enzyme to homogeneity. The purified protein was found to be extremely unstable and could only partially be stabilized by addition of mercaptoethanol and storage below -20{degrees}C. The enzyme subunit had a molecular mass of 39.5 kDa. In the reverse reaction (butyryl-CoA-forming) the apparent pH optimum was 9.75 and Vmax was significantly higher with butyraldehyde and propionaldehyde than with acetaldehyde. BAD could also use NADP+, but NAD+ was the preferred coenzyme for the reverse reaction. The N-terminal amino acid sequence of the C. acetobutylicurn DSM 792 protein showed high homology to glyceraldehyde-3-phosphate dehydrogenases (GAP), especially to the protein of C. pasteurianum. Genomic libraries of C. acetobutylicum DSM 792 were screened by hybridization using PCR-generated heterologous probes encoding the gap gene of C. pasteurianum. Sequence analysis of the positive clones revealed high homology, but no identity to the N-terminal amino acid sequence of the butyraldehyde dehydrogenase. Thus, BAD from C. acetobutylicum is distinctly different from other reported aldehyde dehydrogenases with butyraldehyde dehydrogenase activity.

  7. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    SciTech Connect

    Kino, Kuniki . E-mail: kkino@waseda.jp; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-12

    Glutathione (GSH) is synthesized by {gamma}-glutamylcysteine synthetase ({gamma}-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed {gamma}-GCS-GS catalyzing both {gamma}-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the {gamma}-GCS activity, S. agalactiae {gamma}-GCS-GS had different substrate specificities from those of Escherichia coli {gamma}-GCS. Furthermore, S. agalactiae {gamma}-GCS-GS synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-X{sub aa}-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding {gamma}-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae {gamma}-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed {gamma}-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-Cys-X{sub aa}. Whereas the substrate specificities of {gamma}-GCS domain protein and GS domain protein of S. agalactiae {gamma}-GCS-GS were the same as those of S. agalactiae {gamma}-GCS-GS.

  8. Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate

    PubMed Central

    Hartmanis, Maris G. N.; Gatenbeck, Sten

    1984-01-01

    The levels of seven intermediary enzymes involved in acetate and butyrate formation from acetyl coenzyme A in the saccharolytic anaerobe Clostridium acetobutylicum were investigated as a function of time in solvent-producing batch fermentations. Phosphate acetyltransferase and acetate kinase, which are known to form acetate from acetyl coenzyme A, both showed a decrease in specific activity when the organism reached the solvent formation stage. The three consecutive enzymes thiolase, β-hydroxybutyrylcoenzyme A dehydrogenase, and crotonase exhibited a coordinate expression and a maximal activity after growth had ceased. Only low levels of butyryl coenzyme A dehydrogenase activity were found. Phosphate butyryltransferase activity rapidly decreased after 20 h from 5 to 11 U/mg of protein to below the detection limit (1 mU/mg). Butyrate no longer can be formed, and the metabolic flux may be diverted to butanol. Butyrate kinase showed a 2.5- to 10-fold increase in specific activity after phosphate butyryltransferase activity no longer could be detected. These results suggest that the uptake of acetate and butyrate during solvent formation can not proceed via a complete reversal of the phosphate transferase and kinase reactions. The activities of all enzymes investigated as a function of time in vitro are much higher than the metabolic fluxes through them in vivo. This indicates that none of the maximal activities of the enzymes assayed is rate limiting in C. acetobutylicum. PMID:16346566

  9. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-01

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881

  10. Clostridium acetobutylicum mutants that produce butyraldehyde and altered quantities of solvents

    SciTech Connect

    Rogers, P.; Palosaari, N.

    1987-12-01

    Spontaneous mutants of Clostridium acetobutylicum NRRL B643 that were resistant to allyl alcohol (AA) were selected and characterized. These mutants contained 10- to 100-fold reduced activities of butanol and ethanol alcohol dehydrogenase. The AA mutants formed two groups and produced no ethanol. Type 1 AA mutants produced significant amounts of a new solvent, butyraldehyde, and contained normal levels of the coenzyme A-dependent butyraldehyde dehydrogenase (BAD). Type 2 AA mutants produced no significant butyraldehyde and lower levels of all solvents, and they contained 45- to 100-fold lower activity levels of BAD. Following ethyl methanesulfonate mutagenesis, low-acid-producing (Acid/sup -/) mutants were selected and characterized as superinduced solvent producers, yielding more than 99% of theoretical glucose carbon as solvents and only small amounts of acetate and butyrate. Following ethyl methanesulfonate mutagenesis, 13 sporulation-negative (Spo/sup -/) mutants were characterized; and 3 were found to produce only butyrate and acetate, a minor amount of acetone, and no alcohols. These Spo/sup -/ mutants contained reduced butanol dehydrogenase activity and no BAD enzyme activity. The data support the view that the type 2 AA, the Acid/sup -/, and the Spo/sup -/ mutants somehow alter normal regulated expression of the solvent pathway in C. acetobutylicum.

  11. Formic acid triggers the "Acid Crash" of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Wang, Shaohua; Zhang, Yanping; Dong, Hongjun; Mao, Shaoming; Zhu, Yan; Wang, Runjiang; Luan, Guodong; Li, Yin

    2011-03-01

    Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called "acid crash" phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation. PMID:21216898

  12. Clostridium acetobutylicum Mutants That Produce Butyraldehyde and Altered Quantities of Solvents

    PubMed Central

    Rogers, Palmer; Palosaari, Neil

    1987-01-01

    Spontaneous mutants of Clostridium acetobutylicum NRRL B643 that were resistant to allyl alcohol (AA) were selected and characterized. These mutants contained 10- to 100-fold reduced activities of butanol and ethanol alcohol dehydrogenase. The AA mutants formed two groups and produced no ethanol. Type 1 AA mutants produced significant amounts of a new solvent, butyraldehyde, and contained normal levels of the coenzyme A-dependent butyraldehyde dehydrogenase (BAD). Type 2 AA mutants produced no significant butyraldehyde and lower levels of all solvents, and they contained 45- to 100-fold lower activity levels of BAD. Following ethyl methanesulfonate mutagenesis, low-acid-producing (Acid−) mutants were selected and characterized as superinduced solvent producers, yielding more than 99% of theoretical glucose carbon as solvents and only small amounts of acetate and butyrate. Following ethyl methanesulfonate mutagenesis, 13 sporulation-negative (Spo−) mutants were characterized; and 3 were found to produce only butyrate and acetate, a minor amount of acetone, and no alcohols. These Spo− mutants contained reduced butanol dehydrogenase activity and no BAD enzyme activity. The data support the view that the type 2 AA, the Acid−, and the Spo− mutants somehow alter normal regulated expression of the solvent pathway in C. acetobutylicum. PMID:16347493

  13. The mechanism of switching from an acidogenic to butanol-acetone fermentation by Clostridium acetobutylicum

    SciTech Connect

    Rogers, P.

    1992-01-01

    The overall objective of this project is to elucidate the detailed mechanism by which solvent-forming bacteria such as Clostridium acetobutylicum regulate the well-known shift in fermentation pathway between alcohol-acetone and organic acid production. It is desired to eventually isolate and describe: (1) the regulatory genes and protein elements that determine induction of synthesis of the solvent-pathway enzymes; and (2) how this regulation system interacts with the sporulatin induction and development program and with related pathways such as granulse and exopolysaccharide formation in clostridia. A working model forhow clostridial control systems work can be derived from recent research on stress systems in E. coli and sporulation in Bacillus subtilis.

  14. Continuous xylose fermentation by Clostridium acetobutylicum--Assessment of solventogenic kinetics.

    PubMed

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Salatino, Piero; Marzocchella, Antonio

    2015-09-01

    This work deals with the specific butanol production rate of Clostridium acetobutylicum using xylose--a relevant fraction of lignocellulosic feedstock for biofuel production--as carbon source. The tests were carried out in a CSTR equipped with a microfiltration unit. The dilution rate (D) ranged between 0.02 and 0.22 h(-1) and the ratio R between the permeate stream rate and the stream fed to the reactor ranged between 14% and 88%. The biomass present in the broth was identified as a heterogeneous cell population consisting of: acidogenic cells, solventogenic cells and spores. The results were processed to assess the concentration of acidogenic cells, solventogenic cells and spores. The specific butanol production rate was also assessed. The max butanol productivity was 1.3 g L(-1) h(-1) at D = 0.17 h(-1) and R = 30%. A comparison between the results reported in a previous work carried out with lactose was made. PMID:26025352

  15. Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum

    PubMed Central

    Bahl, H.; Gottwald, M.; Kuhn, A.; Rale, V.; Andersch, W.; Gottschalk, G.

    1986-01-01

    Fermentation of whey by Clostridium acetobutylicum yielded butanol and acetone in a ratio of approximately 100:1. This ratio amounted to only 2:1 in synthetic media with glucose, lactose, or glucose plus galactose as substrates. Removal of citrate from whey and addition of minerals resulted in an increase in the amount of acetone produced. Experiments carried out in a chemostat with a low-phosphate synthetic medium revealed that the butanol/acetone ratio could be increased from 2:1 to 3.8:1 by cofermentation of l-lactate and from 2:1 to 8:1 by iron limitation. The performance of the fermentation in a low-iron glucose medium above pH 5.1 yielded l-lactate as the main product. PMID:16347104

  16. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production. PMID

  17. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.

    PubMed

    Bormann, Sebastian; Baer, Zachary C; Sreekumar, Sanil; Kuchenreuther, Jon M; Dean Toste, F; Blanch, Harvey W; Clark, Douglas S

    2014-09-01

    Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was

  18. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.

    PubMed

    Bruder, Mark; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2015-09-01

    The industrial Gram-positive anaerobe Clostridium acetobutylicum is a valued acetone, butanol, and ethanol (ABE) solvent producer that is able to utilize a vast array of carbon sources in fermentation. When glucose is present in the growth medium, however, C. acetobutylicum, like many Gram-positive organisms, exhibits biphasic growth characteristics in which glucose is used preferentially over secondary carbon sources, a phenomenon known as carbon catabolite repression (CCR). The secondary carbon source is only utilized when the supply of glucose is exhausted, resulting in inefficient use of complex carbon sources. As biofuel production is sought from cheap feedstock, attention has turned to lignocellulosic biomass. Growth of C. acetobutylicum on lignocellulose, however, can be limited by CCR. Here, we present a method to relieve the inhibitory effect of CCR and allow simultaneous utilization of the lignocellulosic sugars of glucose and xylose by C. acetobutylicum. First, we utilized an in vivo gene reporter assay to demonstrate that an identified 14-nucleotide catabolite responsive element (CRE) sequence was sufficient to introduce CCR-mediated transcriptional inhibition, while subsequent mutation of the CRE sequence relieved the inhibitory effect. Next, we demonstrated that C. acetobutylicum harboring a CRE-less plasmid-borne xylose and pentose phosphate pathway operon afforded a 7.5-fold increase in xylose utilization in the presence of glucose as compared to a wild-type CRE plasmid-borne operon, effectively overcoming native CCR effects. The methodology presented here should translate to other members of Clostridium that exhibit CCR to enable simultaneous utilization of a vast array of carbon sources. PMID:25981995

  19. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum.

    PubMed

    Jang, Yu-Sin; Lee, Jin Young; Lee, Joungmin; Park, Jin Hwan; Im, Jung Ae; Eom, Moon-Ho; Lee, Julia; Lee, Sang-Hyun; Song, Hyohak; Cho, Jung-Hee; Seung, Do Young; Lee, Sang Yup

    2012-01-01

    Butanol is an important industrial solvent and advanced biofuel that can be produced by biphasic fermentation by Clostridium acetobutylicum. It has been known that acetate and butyrate first formed during the acidogenic phase are reassimilated to form acetone-butanol-ethanol (cold channel). Butanol can also be formed directly from acetyl-coenzyme A (CoA) through butyryl-CoA (hot channel). However, little is known about the relative contributions of the two butanol-forming pathways. Here we report that the direct butanol-forming pathway is a better channel to optimize for butanol production through metabolic flux and mass balance analyses. Butanol production through the hot channel was maximized by simultaneous disruption of the pta and buk genes, encoding phosphotransacetylase and butyrate kinase, while the adhE1(D485G) gene, encoding a mutated aldehyde/alcohol dehydrogenase, was overexpressed. The ratio of butanol produced through the hot channel to that produced through the cold channel increased from 2.0 in the wild type to 18.8 in the engineered BEKW(pPthlAAD(**)) strain. By reinforcing the direct butanol-forming flux in C. acetobutylicum, 18.9 g/liter of butanol was produced, with a yield of 0.71 mol butanol/mol glucose by batch fermentation, levels which are 160% and 245% higher than those obtained with the wild type. By fed-batch culture of this engineered strain with in situ recovery, 585.3 g of butanol was produced from 1,861.9 g of glucose, with the yield of 0.76 mol butanol/mol glucose and productivity of 1.32 g/liter/h. Studies of two butanol-forming routes and their effects on butanol production in C. acetobutylicum described here will serve as a basis for further metabolic engineering of clostridia aimed toward developing a superior butanol producer. IMPORTANCE Renewable biofuel is one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has

  20. Genomics of Clostridium tetani.

    PubMed

    Brüggemann, Holger; Brzuszkiewicz, Elzbieta; Chapeton-Montes, Diana; Plourde, Lucile; Speck, Denis; Popoff, Michel R

    2015-05-01

    Genomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies. PMID:25638019

  1. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  2. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  3. Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Paquet, V; Croux, C; Goma, G; Soucaille, P

    1991-01-01

    The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying alpha-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the alpha-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. alpha-Amylase activity on soluble starch was optimal at pH 5.6 and 45 degrees C. The alpha-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a Km of 3.6 g . liter-1 and a Kcat of 122 mol of reducing sugars . s-1 . mol-1. The alpha-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the alpha-amylase. Images PMID:8967771

  4. Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli

    SciTech Connect

    Petersen, D.J.; Bennett, G.N. )

    1990-11-01

    In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia coli. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was screened by plaque hybridization, using oligodeoxynucleotide probes derived from the N-terminal amino acid sequence obtained from the purified protein. Phage DNA from positive plaques was analyzed by Southern hybridization. Restriction mapping and subsequent subcloning of DNA fragments hybridizing to the probes localized the gene within an {approximately}2.1-kb EcoRI/BglII fragment. A polypeptide with a molecular weight of {approximately}28,000 corresponding to that of the purified acetoacetate decarboxylase was observed in both Western blots (immunoblots) and maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. Although the expression of the gene is tightly regulated in C. acetobutylicum, it was well expressed in E. coli, although from a promoter sequence of clostridial origin.

  5. The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum

    PubMed Central

    2013-01-01

    Background Small non-coding RNAs (sRNA) are emerging as major components of the cell’s regulatory network, several possessing their own regulons. A few sRNAs have been reported as being involved in general or toxic-metabolite stress, mostly in Gram- prokaryotes, but hardly any in Gram+ prokaryotes. Significantly, the role of sRNAs in the stress response remains poorly understood at the genome-scale level. It was previously shown that toxic-metabolite stress is one of the most comprehensive and encompassing stress responses in the cell, engaging both the general stress (or heat-shock protein, HSP) response as well as specialized metabolic programs. Results Using RNA deep sequencing (RNA-seq) we examined the sRNome of C. acetobutylicum in response to the native but toxic metabolites, butanol and butyrate. 7.5% of the RNA-seq reads mapped to genome outside annotated ORFs, thus demonstrating the richness and importance of the small RNome. We used comparative expression analysis of 113 sRNAs we had previously computationally predicted, and of annotated mRNAs to set metrics for reliably identifying sRNAs from RNA-seq data, thus discovering 46 additional sRNAs. Under metabolite stress, these 159 sRNAs displayed distinct expression patterns, a select number of which was verified by Northern analysis. We identified stress-related expression of sRNAs affecting transcriptional (6S, S-box & solB) and translational (tmRNA & SRP-RNA) processes, and 65 likely targets of the RNA chaperone Hfq. Conclusions Our results support an important role for sRNAs for understanding the complexity of the regulatory network that underlies the stress response in Clostridium organisms, whether related to normophysiology, pathogenesis or biotechnological applications. PMID:24299206

  6. Continuous lactose fermentation by Clostridium acetobutylicum--assessment of solventogenic kinetics.

    PubMed

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Salatino, Piero; Marzocchella, Antonio

    2015-03-01

    This work reports the results of a series of tests on the specific butanol production rate by Clostridium acetobutylicum continuous cultures. The tests were carried out using lactose as carbon source to mimic cheese-whey. A continuous stirred tank reactor equipped with a microfiltration unit was used. The dilution rate (D) ranged between 0.02 and 0.15h(-1) and the ratio R of the permeate stream rate to the stream fed to the reactor ranged between 14% and 95%. For each set of D and R values, the continuous cultures were characterized in terms of concentration of cells, acids and solvents. Results were processed to assess the concentration of acidogenic cells, solventogenic cells, spores and the specific butanol production rate. The max butanol productivity was 0.5gL(-1)h(-1) at D=0.1h(-1) and R=95%. The butanol productivity referred to solventogenic cells was expressed as a function of concentration of lactose, acids and butanol. PMID:25621726

  7. [Butanol production from hydrolysate of Jerusalem artichoke juice by Clostridium acetobutylicum L7].

    PubMed

    Chen, Lijie; Xin, Chengxun; Deng, Pan; Ren, Jiangang; Liang, Huanhuan; Bai, Fengwu

    2010-07-01

    Butanol production from acid hydrolysate of Jerusalem artichoke juice by Clostridium acetobutylicum L7 was investigated, and it was found that natural components of the hydrolysate were suitable for solvent production with the species. With batch fermentation using the medium containing 48.36 g/L total sugars, 8.67 g/L butanol was produced at 60 h, and the ratio of butanol to acetone to ethanol was 0.58:0.36:0.06, which were similar to the fermentation with fructose as carbon source, but both of these two fermentations were slower than that with glucose as carbon source, indicating the fructose transport of the species might not be effective as that for glucose. When the total sugars of the medium were increased to 62.87 g/L, the residual sugars increased slightly from 3.09 g/L to 3.26 g/L, but butanol production of the fermentation system was improved significantly, with 11.21 g/L butanol produced and the ratio of butanol to acetone to ethanol at 0.64:0.29:0.05, which illustrated that an excess in sugars enhanced the butanol biosynthesis of the species by compromising its acetone production. When the sugar concentration of the medium was further increased, much more sugars were remained unconsumed, making the process economically unfavourable. PMID:20954401

  8. SpoIIE Regulates Sporulation but Does Not Directly Affect Solventogenesis in Clostridium acetobutylicum ATCC 824

    PubMed Central

    Scotcher, Miles C.; Bennett, George N.

    2005-01-01

    Using gene expression reporter vectors, we examined the activity of the spoIIE promoter in wild-type and spo0A-deleted strains of Clostridium acetobutylicum ATCC 824. In wild-type cells, the spoIIE promoter is active in a transient manner during late solventogenesis, but in strain SKO1, where the sporulation initiator spo0A is disrupted, no spoIIE promoter activity is detectable at any stage of growth. Strains 824(pMSpo) and 824(pASspo) were created to overexpress spoIIE and to decrease spoIIE expression via antisense RNA targeted against spoIIE, respectively. Some cultures of strains 824(pMSpo) degenerated during fermentations by losing the pSOL1 megaplasmid and hence did not produce the solvents ethanol, acetone, and butanol. The frequent degeneration event was shown to require an intact copy of spoIIE. Nondegenerate cultures of 824(pMSpo) exhibited normal growth and solvent production. Strain 824(pASspo) exhibited prolonged solventogenesis characterized by increased production of ethanol (225%), acetone (43%), and butanol (110%). Sporulation in strains harboring pASspo was significantly delayed, with sporulating cells exhibiting altered morphology. These results suggest that SpoIIE has no direct effect on the control of solventogenesis and that the changes in solvent production in spoIIE-downregulated cells are mediated by effects on the cell during sporulation. PMID:15743939

  9. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum.

    PubMed Central

    Driessen, A J; Ubbink-Kok, T; Konings, W N

    1988-01-01

    Membrane vesicles were isolated from the obligate anaerobic bacterium Clostridium acetobutylicum. Beef heart mitochondrial cytochrome c oxidase was inserted in these membrane vesicles by membrane fusion by using the freeze-thaw sonication technique (A. J. M. Driessen, W. de Vrij, and W. N. Konings, Proc. Natl. Acad. Sci. USA 82:7555-7559, 1985) to accommodate them with a functional proton motive force-generating system. With ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine-cytochrome c as the electron donor, a proton motive force (delta p) of -80 to -120 mV was generated in these fused membranes. This delta p drove the accumulation of leucine and lysine up to 40- and 100-fold, respectively. High transport activities were observed in fused membranes containing Escherichia coli lipids, whereas the transport activities in fused membranes containing mainly soybean lipids or phosphatidylcholine were low. It is suggested that branched-chain amino acids and lysine were taken up by separate systems. The effects of the ionophores nigericin and valinomycin indicated that lysine and leucine were translocated in symport with a proton. PMID:2828326

  10. Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum.

    PubMed

    Shen, Xiaoning; Liu, Dong; Liu, Jun; Wang, Yanyan; Xu, Jiahui; Yang, Zhengjiao; Guo, Ting; Niu, Huanqing; Ying, Hanjie

    2016-09-01

    Butanol is an important industrial chemical and an attractive transportation fuel. However, the deficiency of reducing equivalents NAD(P)H in butanol fermentation results in a large quantity of oxidation products, which is a major problem limiting the atom economy and economic viability of bio-butanol processes. Here, we integrated the butanol fermentation process with a NADH-generating, acetoin biosynthesis process to improve the butanol production. By overexpressing the α-acetolactate decarboxylase gene alsD from Bacillus subtilis in Clostridium acetobutylicum, acetoin yield was significantly increased at the cost of acetone. After optimization of fermentation conditions, butanol (12.9g/L), acetoin (6.5g/L), and ethanol (1.9g/L) were generated by the recombinant strain, with acetone no more than 1.8g/L. Thus, both mass yield and product value were greatly improved. This study demonstrates that reducing power compensation is effective to improve the atom economy of butanol fermentation, and provides a novel approach to improve the economic viability of bio-butanol production. PMID:27285575

  11. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum.

    PubMed

    Min, Kyoungseon; Kim, Seil; Yum, Taewoo; Kim, Yunje; Sang, Byoung-In; Um, Youngsoon

    2013-06-01

    In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4-90.3 % depending on the amount of AADC under optimum conditions (30 °C and pH 5.0) despite that acetoacetate, a β-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation. PMID:23624707

  12. Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kim, Jung Yeon; Cheong, Nam Yong; Kim, Kyoung Heon

    2016-10-01

    In this study, metabolic target reactions for strain engineering were searched via intracellular coenzyme A (CoA) metabolite analysis. The metabolic reactions catalyzed by thiolase (AtoB) and aldehyde-alcohol dehydrogenase (AdhE1) were considered potential rate-limiting steps. In addition, CoA transferase (CtfAB) was highlighted as being important for the assimilation of organic acids, in order to achieve high butanol production. Based on this quantitative analysis, the BEKW_E1AB-atoB strain was constructed by overexpressing the thl (atoB), adhE1, and ctfAB genes in Clostridium acetobutylicum strain BEKW, which has the phosphotransacetylase (pta) and butyrate kinase (buk) genes knocked out. After 100h of continuous fermentation coupled with adsorptive ex situ butanol recovery, the concentrations found after considering desorption, yield, and productivity for the BEKW_E1AB-atoB strain were 55.7g/L, 0.38g/g, and 2.64g/L/h, respectively. The level of butanol production achieved (2.64g/L/h) represents the highest reported value obtained after adsorptive, long-term fermentation. PMID:27441828

  13. Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum.

    PubMed Central

    Palosaari, N R; Rogers, P

    1988-01-01

    The coenzyme A (CoA)-linked butyraldehyde dehydrogenase (BAD) from Clostridium acetobutylicum was characterized and purified to homogeneity. The enzyme was induced over 200-fold, coincident with a shift from an acidogenic to a solventogenic fermentation, during batch culture growth. The increase in enzyme activity was found to require new protein synthesis since induction was blocked by the addition of rifampin and antibody against the purified enzyme showed the appearance of enzyme antigen beginning at the shift of the fermentation and increasing coordinately with the increase in enzyme specific activity. The CoA-linked acetaldehyde dehydrogenase was copurified with BAD during an 89-fold purification, indicating that one enzyme accounts for the synthesis of the two aldehyde intermediates for both butanol and ethanol production. Butanol dehydrogenase activity was clearly separate from the BAD enzyme activity on TEAE cellulose. A molecular weight of 115,000 was determined for the native enzyme, and the enzyme subunit had a molecular weight of 56,000 indicating that the active form is a homodimer. Kinetic constants were determined in both the forward and reverse directions. In the reverse direction both the Vmax and the apparent affinity for butyraldehyde and caproaldehyde were significantly greater than they were for acetaldehyde, while in the forward direction, the Vmax for butyryl-CoA was fivefold that for acetyl-CoA. These and other properties of BAD indicate that this enzyme is distinctly different from other reported CoA-dependent aldehyde dehydrogenases. Images PMID:3384801

  14. Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium

    SciTech Connect

    Monot, F.; Martin, J.R.; Petitdemange, H.; Gay, R.

    1982-12-01

    The effect of the component concentrations of a synthetic medium on acetone and butanol fermentation by Clostridium acetobutylicum ATCC 824 was investigated. Cell growth was dependent on the presence of Mg, Fe, and K in the medium. Mg and Mn had deleterious effects when in excess. Ammonium acetate in excess caused acid fermentation. The metabolism was composed of two phases: an acid phase and a solvent one. Low concentrations of glucose allowed the first phase only. The theoretical ratio of the conversion of glucose to solvents, which was 28 to 33%, was obtained with the following medium: MgSO/sub 4/, 50 to 200 mg/liter; MnSO/sub 4/, 0 to 20 mg/liter; KCl, 0.015 to 8 g/liter (an equivalent concentration of K+ was supplied in the form of KH/sub 2/PO/sub 4/ and K/sub 2/HPO/sub 4/); FeSO/sub 4/, 1 to 50 mg/liter; ammonium acetate, 1.1 to 2.2 g/liter; para-aminobenzoic acid, 1 mg/liter; biotin, 0.01 mg/liter; glucose, 20 to 60 g/liter. (Refs. 24).

  15. Purification and characterization of acidolysin, an acidic metalloprotease produced by Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Croux, C; Paquet, V; Goma, G; Soucaille, P

    1990-01-01

    Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported. Images PMID:2082818

  16. Effects of H2 and electrochemical reducing power on metabolite production by Clostridium acetobutylicum KCTC1037.

    PubMed

    Jeon, Boyoung; Yi, Junyeong; Park, Doohyun

    2014-01-01

    A conventional fermenter (CF), a single-cathode fermenter (SCF), and a double-cathode fermenter (DCF) were employed to evaluate and compare the effects of H2 and electrochemical reducing power on metabolite production by Clostridium acetobutylicum KCTC1037. The source of the external reducing power for CF was H2, for the SCF was electrochemically reduced neutral red-modified graphite felt electrode (NR-GF), and for the DCF was electrochemically reduced combination of NR-GF and platinum plate electrodes (NR-GF/PtP). The metabolites produced from glucose or CO2 by strain KCTC1037 cultivated in the DCF were butyrate, ethanol, and butanol, but ethanol and butanol were not produced from glucose or CO2 by strain KCTC1037 cultivated in the CF and SCF. It is possible that electrochemically reduced NR-GF/PtP is a more effective source of internal and external reducing power than H2 or NR-GF for strain KCTC1037 to produce metabolites from glucose and CO2. This research might prove useful in developing fermentation technology to actualize direct bioalcohol production of fermentation bacteria from CO2. PMID:25036842

  17. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  18. Predictive modeling in Clostridium acetobutylicum fermentations employing Raman spectroscopy and multivariate data analysis for real-time culture monitoring

    NASA Astrophysics Data System (ADS)

    Zu, Theresah N. K.; Liu, Sanchao; Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Mackie, David M.; Sund, Christian J.

    2016-05-01

    The coupling of optical fibers with Raman instrumentation has proven to be effective for real-time monitoring of chemical reactions and fermentations when combined with multivariate statistical data analysis. Raman spectroscopy is relatively fast, with little interference from the water peak present in fermentation media. Medical research has explored this technique for analysis of mammalian cultures for potential diagnosis of some cancers. Other organisms studied via this route include Escherichia coli, Saccharomyces cerevisiae, and some Bacillus sp., though very little work has been performed on Clostridium acetobutylicum cultures. C. acetobutylicum is a gram-positive anaerobic bacterium, which is highly sought after due to its ability to use a broad spectrum of substrates and produce useful byproducts through the well-known Acetone-Butanol-Ethanol (ABE) fermentation. In this work, real-time Raman data was acquired from C. acetobutylicum cultures grown on glucose. Samples were collected concurrently for comparative off-line product analysis. Partial-least squares (PLS) models were built both for agitated cultures and for static cultures from both datasets. Media components and metabolites monitored include glucose, butyric acid, acetic acid, and butanol. Models were cross-validated with independent datasets. Experiments with agitation were more favorable for modeling with goodness of fit (QY) values of 0.99 and goodness of prediction (Q2Y) values of 0.98. Static experiments did not model as well as agitated experiments. Raman results showed the static experiments were chaotic, especially during and shortly after manual sampling.

  19. Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    PubMed Central

    2014-01-01

    Background Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. Results KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. Conclusions Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency. PMID:24401161

  20. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105.

    PubMed

    Germane, Katherine L; Servinsky, Matthew D; Gerlach, Elliot S; Sund, Christian J; Hurley, Margaret M

    2015-08-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  1. Characterization and Development of Two Reporter Gene Systems for Clostridium acetobutylicum

    PubMed Central

    Feustel, Lothar; Nakotte, Stephan; Dürre, Peter

    2004-01-01

    The use of lacZ from Thermoanaerobacterium thermosulfurigenes (encoding β-galactosidase) and lucB from Photinus pyralis (encoding luciferase) as reporter genes in Clostridium acetobutylicum was analyzed with promoters of genes required for solventogenesis and acidogenesis. Both systems proved to be well suited and allowed the detection of differences in promoter strength at least up to 100-fold. The luciferase assay could be performed much faster and comes close to online measurement. Resequencing of lacZ revealed a sequence error in the original database entry, which resulted in β-galactosidase with an additional 31 amino acids. Cutting off part of the gene encoding this C terminus resulted in decreased enzyme activity. The lacZ reporter data showed that bdhA (encoding butanol dehydrogenase A) is expressed during the early growth phase, followed by sol (encoding butyraldehyde/butanol dehydrogenase E and coenzyme A transferase) and bdhB (encoding butanol dehydrogenase B) expression. adc (encoding acetoacetate decarboxylase) was also induced early. There is about a 100-fold difference in expression between adc and bdhB (higher) and bdhA and the sol operon (lower). The lucB reporter activity could be increased 10-fold by the addition of ATP to the assay. Washing of the cells proved to be important in order to prevent a red shift of bioluminescence in an acidic environment (for reliable data). lucB reporter measurements confirmed the expression pattern of the sol and ptb-buk (encoding phosphotransbutyrylase and butyrate kinase) operons as determined by the lacZ reporter and showed that the expression level from the ptb promoter is 59-fold higher than that from the sol operon promoter. PMID:14766557

  2. Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis.

    PubMed Central

    Wiesenborn, D P; Rudolph, F B; Papoutsakis, E T

    1989-01-01

    Phosphotransbutyrylase (phosphate butyryltransferase [EC 2.3.1.19]) from Clostridium acetobutylicum ATCC 824 was purified approximately 200-fold to homogeneity with a yield of 13%. Steps used in the purification procedure were fractional precipitation with (NH4)2SO4, Phenyl Sepharose CL-4B chromatography, DEAE-Sephacel chromatography, high-pressure liquid chromatography with an anion-exchange column, and high-pressure liquid chromatography with a hydrophobic-interaction column. Gel filtration and denaturing gel electrophoresis data were consistent with a native enzyme having eight 31,000-molecular-weight subunits. Within the physiological range of pH 5.5 to 7, the enzyme was very sensitive to pH change in the butyryl phosphate-forming direction and showed virtually no activity below pH 6. This finding indicates that a change in internal pH may be one important factor in the regulation of the enzyme. The enzyme was less sensitive to pH change in the reverse direction. The enzyme could use a number of substrates in addition to butyryl coenzyme A (butyryl-CoA) but had the highest relative activity with butyryl-CoA, isovaleryl-CoA, and valeryl-CoA. The Km values at 30 degrees C and pH 8.0 for butyryl-CoA, phosphate, butyryl phosphate, and CoASH (reduced form of CoA) were 0.11, 14, 0.26, and 0.077 mM, respectively. Results of product inhibition studies were consistent with a random Bi Bi binding mechanism in which phosphate binds at more than one site. Images PMID:2719475

  3. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    PubMed Central

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  4. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    PubMed Central

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology. PMID:26489085

  5. Synergistic effect of calcium and zinc on glucose/xylose utilization and butanol tolerance of Clostridium acetobutylicum.

    PubMed

    Wu, Youduo; Xue, Chuang; Chen, Lijie; Yuan, Wenjie; Bai, Fengwu

    2016-03-01

    Biobutanol outperforms bioethanol as an advanced biofuel, but is not economically competitive in terms of its titer, yield and productivity associated with feedstocks and energy cost. In this work, the synergistic effect of calcium and zinc was investigated in the acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum using glucose, xylose and glucose/xylose mixtures as carbon source(s). Significant improvements associated with enhanced glucose/xylose utilization, cell growth, acids re-assimilation and butanol biosynthesis were achieved. Especially, the maximum butanol and ABE production of 16.1 and 25.9 g L(-1) were achieved from 69.3 g L(-1) glucose with butanol/ABE productivities of 0.40 and 0.65 g L(-1) h(-1) compared to those of 11.7 and 19.4 g/L with 0.18 and 0.30 g L(-1) h(-1) obtained in the control respectively without any supplement. More importantly, zinc was significantly involved in the butanol tolerance based on the improved xylose utilization under various butanol-shock conditions (2, 4, 6, 8 and 10 g L(-1) butanol). Under the same conditions, calcium and zinc co-supplementation led to the best xylose utilization and butanol production. These results suggested that calcium and zinc could play synergistic roles improving ABE fermentation by C. acetobutylicum. PMID:26850441

  6. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum.

    PubMed

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Wan, Hui-Hui; Bai, Feng-Wu

    2015-01-01

    The micronutrient zinc plays vital roles in ABE fermentation by Clostridium acetobutylicum. In order to elucidate the zinc-associated response for enhanced glucose utilization and earlier solventogenesis, transcriptional analysis was performed on cells grown in glucose medium at the exponential growth phase of 16 h without/with supplementary zinc. Correspondingly, the gene glcG (CAC0570) encoding a glucose-specific PTS was significantly upregulated accompanied with the other two genes CAC1353 and CAC1354 for glucose transport in the presence of zinc. Additionally, genes involved in the metabolisms of six other carbohydrates (maltose, cellobiose, fructose, mannose, xylose and arabinose) were differentially expressed, indicating that the regulatory effect of micronutrient zinc is carbohydrate-specific with respects to the improved/inhibited carbohydrate utilization. More importantly, multiple genes responsible for glycolysis (glcK and pykA), acidogenesis (thlA, crt, etfA, etfB and bcd) and solventogenesis (ctfB and bdhA) of C. acetobutylicum prominently responded to the supplementary zinc at differential expression levels. Comparative analysis of intracellular metabolites revealed that the branch node intermediates such as acetyl-CoA, acetoacetyl-CoA, butyl-CoA, and reducing power NADH remained relatively lower whereas more ATP was generated due to enhanced glycolysis pathway and earlier initiation of solventogenesis, suggesting that the micronutrient zinc-associated response for the selected intracellular metabolisms is significantly pleiotropic. PMID:26586044

  7. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum

    PubMed Central

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Wan, Hui-Hui; Bai, Feng-Wu

    2015-01-01

    The micronutrient zinc plays vital roles in ABE fermentation by Clostridium acetobutylicum. In order to elucidate the zinc-associated response for enhanced glucose utilization and earlier solventogenesis, transcriptional analysis was performed on cells grown in glucose medium at the exponential growth phase of 16 h without/with supplementary zinc. Correspondingly, the gene glcG (CAC0570) encoding a glucose-specific PTS was significantly upregulated accompanied with the other two genes CAC1353 and CAC1354 for glucose transport in the presence of zinc. Additionally, genes involved in the metabolisms of six other carbohydrates (maltose, cellobiose, fructose, mannose, xylose and arabinose) were differentially expressed, indicating that the regulatory effect of micronutrient zinc is carbohydrate-specific with respects to the improved/inhibited carbohydrate utilization. More importantly, multiple genes responsible for glycolysis (glcK and pykA), acidogenesis (thlA, crt, etfA, etfB and bcd) and solventogenesis (ctfB and bdhA) of C. acetobutylicum prominently responded to the supplementary zinc at differential expression levels. Comparative analysis of intracellular metabolites revealed that the branch node intermediates such as acetyl-CoA, acetoacetyl-CoA, butyl-CoA, and reducing power NADH remained relatively lower whereas more ATP was generated due to enhanced glycolysis pathway and earlier initiation of solventogenesis, suggesting that the micronutrient zinc-associated response for the selected intracellular metabolisms is significantly pleiotropic. PMID:26586044

  8. The Two-Component System PhoPR of Clostridium acetobutylicum Is Involved in Phosphate-Dependent Gene Regulation ▿

    PubMed Central

    Fiedler, Tomas; Mix, Maren; Meyer, Uta; Mikkat, Stefan; Glocker, Michael O.; Bahl, Hubert; Fischer, Ralf-Jörg

    2008-01-01

    The phoPR gene locus of Clostridium acetobutylicum ATCC 824 comprises two genes, phoP and phoR. Deduced proteins are predicted to represent a response regulator and sensor kinase of a phosphate-dependent two-component regulatory system. We analyzed the expression patterns of phoPR in Pi-limited chemostat cultures and in response to Pi pulses. A basic transcription level under high-phosphate conditions was shown, and a significant increase in mRNA transcript levels was found when external Pi concentrations dropped below 0.3 mM. In two-dimensional gel electrophoresis experiments, a 2.5-fold increase in PhoP was observed under Pi-limiting growth conditions compared to growth with an excess of Pi. At least three different transcription start points for phoP were determined by primer extension analyses. Proteins PhoP and an N-terminally truncated *PhoR were individually expressed heterologously in Escherichia coli and purified. Autophosphorylation of *PhoR and phosphorylation of PhoP were shown in vitro. Electromobility shift assays proved that there was a specific binding of PhoP to the promoter region of the phosphate-regulated pst operon of C. acetobutylicum. PMID:18689481

  9. Stable and enhanced gene expression in Clostridium acetobutylicum using synthetic untranslated regions with a stem-loop.

    PubMed

    Lee, Joungmin; Jang, Yu-Sin; Papoutsakis, Eleftherios T; Lee, Sang Yup

    2016-07-20

    Gene overexpression is one of the most basic strategies in metabolic engineering, but the factors determining gene expression levels have been poorly studied in Clostridium species. In this study, we found that a short single-stranded 5' untranslated region (UTR) sequence led to decreased gene expression in Clostridium acetobutylicum. Using an in vitro enzyme assay and reverse transcription-quantitative PCR, we found that addition of a small stem-loop at the 5' end of mRNA increased mRNA levels and thereby protein expression levels up to 4.6-fold, possibly protecting mRNA from exonuclease attack. Gene-expression levels were apparently independent of the stability of the added stem-loop; the existence of a stem-loop itself appears to be more important. Our results indicate that efficient expression cassettes can be designed by taking the 5' UTR into consideration, as the expression levels can vary even though the same promoter and RBS are used. These findings will be useful for developing a more reliable gene expression system for metabolic engineering of Clostridium strains. PMID:27188957

  10. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.

    PubMed

    Nie, Xiaoqun; Yang, Bin; Zhang, Lei; Gu, Yang; Yang, Sheng; Jiang, Weihong; Yang, Chen

    2016-04-01

    The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domain (PRD)-containing enhancer binding proteins (EBPs) are an important class of σ(54) -interacting transcriptional activators. Although PRD-containing EBPs are present in many Firmicutes, most of their regulatory functions remain unclear. In this study, the transcriptional regulons of about 50 PRD-containing EBPs in diverse Firmicutes species are reconstructed by using a comparative genomic approach, which contain the genes associated with utilization of β-glucosides, fructose/levan, mannose/glucose, pentitols, and glucosamine/fructosamine. We then present experimental evidence that the cel operon involved in cellobiose utilization is directly regulated by CelR and σ(54) (SigL) in Clostridium acetobutylicum. The predicted three CelR-binding sites and σ(54) promoter elements upstream of the cel operon are verified by in vitro binding assays. We show that CelR has an ATPase activity, which is strongly stimulated by the presence of DNA containing the CelR-binding sites. Moreover, mutations in any one of the three CelR-binding sites significantly decreased the cel promoter activity probably due to the need for all three DNA sites for maximal ATPase activity of CelR. It is suggested that CelR is regulated by PTS-mediated phosphorylation at His-551 and His-829, which exerts a positive effect and an inhibitory effect, respectively, on the CelR activity. PMID:26691835

  11. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  12. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

    PubMed

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  13. Control of Carbon and Electron Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon Monoxide to Inhibit Hydrogen Production and to Enhance Butanol Yields

    PubMed Central

    Kim, Byung Hong; Bellows, Para; Datta, Rathin; Zeikus, J. G.

    1984-01-01

    Extracts prepared from non-solvent-producing cells of Clostridium acetobutylicum contained methyl viologen-linked hydrogenase activity (20 U/mg of protein at 37°C) but did not display carbon monoxide dehydrogenase activity. CO addition readily inhibited the hydrogenase activity of cell extracts or of viable metabolizing cells. Increasing the partial pressure of CO (2 to 10%) in unshaken anaerobic culture tube headspaces significantly inhibited (90% inhibition at 10% CO) both growth and hydrogen production by C. acetobutylicum. Growth was not sensitive to low partial pressures of CO (i.e., up to 15%) in pH-controlled fermentors (pH 4.5) that were continuously gassed and mixed. CO addition dramatically altered the glucose fermentation balance of C. acetobutylicum by diverting carbon and electrons away from H2, CO2, acetate, and butyrate production and towards production of ethanol and butanol. The butanol concentration was increased from 65 to 106 mM and the butanol productivity (i.e., the ratio of butanol produced/total acids and solvents produced) was increased by 31% when glucose fermentations maintained at pH 4.5 were continuously gassed with 85% N2-15% CO versus N2 alone. The results are discussed in terms of metabolic regulation of C. acetobutylicum saccharide fermentations to achieve maximal butanol or solvent yield. PMID:16346643

  14. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment.

    PubMed

    Barbé, Sofie; Van Mellaert, Lieve; Theys, Jan; Geukens, Nick; Lammertyn, Elke; Lambin, Philippe; Anné, Jozef

    2005-05-01

    The search for effective means of selectively delivering high therapeutic doses of anti-cancer agents to tumors has explored a variety of systems in the last decade. The ability of intravenously injected clostridial spores to infiltrate and thence selectively germinate in the hypoxic regions of solid tumors is exquisitely specific, making this system an interesting addition to the anti-cancer therapy arsenal. To increase the number of therapeutic proteins potentially useful for cancer treatment we have tested the possibility of Clostridium acetobutylicum to secrete rat interleukin-2 (rIL2). Therefore, rIL2 cDNA was placed under the control of the endo-beta-1,4-glucanase promoter and signal sequence of C. saccharobutylicum. Recombinant C. acetobutylicum containing the relevant construct secreted up to 800 microgl(-1) biologically active rIL2. The obtained yield should be sufficient to provoke in vivo effects. PMID:15869963

  15. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    PubMed Central

    2011-01-01

    Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required. PMID:21247470

  16. Modelling the role of CtfA/B in reverse shift continuous culture experiments of Clostridium acetobutylicum.

    PubMed

    Thorn, Graeme J; King, John R

    2016-06-01

    In continuous phosphate-limited conditions, under pH control from high pH (pH ≳ 5.2) to low pH (pH ≲ 5.2), the metabolism of the Gram-positive bacterium Clostridium acetobutylicum,switches from acid to solvent production. Three main enzymes are responsible for the shift, acetoacetate decarboxylase (Adc), alcohol dehydrogenase (AdhE1/2) and a CoA-transferase (CtfA/B), which are produced in increased quantities during solventogenesis. A two-population model, Millat et al. (2013) and fitted to such 'forward'-shift data, can explain this, as well as observed changes in optical density immediately following the shift: an acidogenic subpopulation is washed out and a solventogenic subpopulation grows in its place, each with distinct physiologies and proteomes. We fit this model to a 'reverse'-shift experiment, where the pH is increased from solventogenic to acidogenic conditions. We find corresponding changes in reaction rates, with AdhE1 and Adc production falling, as in the 'forward' experiments; however, for CtfA/B, the best fit surprisingly arises from the same level of production in both conditions. We propose experiments that would test whether this is a model artefact or accurately reflects cultures shifted in this reverse direction, and, if true, may suggest that over-expressing CtfA/B in both solventogenic and acidogenic conditions could improve the efficiency of fermentation. PMID:26997560

  17. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation.

    PubMed

    Dolejš, Igor; Krasňan, Vladimír; Stloukal, Radek; Rosenberg, Michal; Rebroš, Martin

    2014-10-01

    Clostridium acetobutylicum immobilised in polyvinylalcohol, lens-shaped hydrogel capsules (LentiKats(®)) was studied for production of butanol and other products of acetone-butanol-ethanol fermentation. After optimising the immobilisation protocol for anaerobic bacteria, continuous, repeated batch, and fed-batch fermentations in repeated batch mode were performed. Using glucose as a substrate, butanol productivity of 0.41 g/L/h and solvent productivity of 0.63 g/L/h were observed at a dilution rate of 0.05 h(-1) during continuous fermentation with a concentrated substrate (60 g/L). Through the process of repeated batch fermentation, the duration of fermentation was reduced from 27.8h (free-cell fermentation) to 3.3h (immobilised cells) with a solvent productivity of 0.77 g/L/h (butanol 0.57 g/L/h). The highest butanol and solvent productivities of 1.21 and 1.91 g/L/h were observed during fed-batch fermentation operated in repeated batch mode with yields of butanol (0.15 g/g) and solvents (0.24 g/g), respectively, produced per gram of glucose. PMID:25108474

  18. Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan.

    PubMed Central

    Croux, C; Canard, B; Goma, G; Soucaille, P

    1992-01-01

    An extracellular enzyme showing lytic activity on non-N-acetylated peptidoglycan has been isolated from Clostridium acetobutylicum ATCC 824. The lytic enzyme was purified to homogeneity by anion-exchange chromatography and gel filtration, with a recovery of 24%. The enzyme was monomeric and had an estimated molecular weight of 41,000 and an isoelectric point of 3.8. It has been characterized as a muramidase whose 23-amino-acid N terminus displayed 39% homology with the N,O-diacetyl muramidase of the fungus Chalaropsis sp. The muramidase hydrolyzed purified cell walls at an optimum pH of 3, with a maximum velocity of 9.1 mumol of reducing sugars released min-1 mg of muramidase-1 and a concentration of cell walls giving a half-maximum rate of 0.01 mg ml-1. Its activity was inhibited by glucosamine, N-acetylglucosamine, Hg2+, Fe3+, and Ag+ but not by choline. The muramidase-peptidoglycan complex rapidly dissociated before total hydrolysis of the chain and randomly reassociated on another peptidoglycan chain. The affinity of the muramidase was affected by the protein content and the acetylation of the cell wall. Images PMID:1599233

  19. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase) domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry. PMID:25170437

  20. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Han, Mee-Jung; Kim, Jin Young

    2016-01-01

    ABSTRACT Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C. tyrobutyricum KCTC 5387 (ATCC 25755), which consists of a 3.07-Mbp chromosome and a 63-kbp plasmid. The results of genomic analyses suggested that C. tyrobutyricum produces butyrate from butyryl-coenzyme A (butyryl-CoA) through acetate reassimilation by CoA transferase, differently from Clostridium acetobutylicum, which uses the phosphotransbutyrylase-butyrate kinase pathway; this was validated by reverse transcription-PCR (RT-PCR) of related genes, protein expression levels, in vitro CoA transferase assay, and fed-batch fermentation. In addition, the changes in protein expression levels during the course of batch fermentations on glucose were examined by shotgun proteomics. Unlike C. acetobutylicum, the expression levels of proteins involved in glycolytic and fermentative pathways in C. tyrobutyricum did not decrease even at the stationary phase. Proteins related to energy conservation mechanisms, including Rnf complex, NfnAB, and pyruvate-phosphate dikinase that are absent in C. acetobutylicum, were identified. Such features explain why this organism can produce butyric acid to a much higher titer and better tolerate toxic metabolites. This study presenting the complete genome sequence, global protein expression profiles, and genome-based metabolic characteristics during the batch fermentation of C. tyrobutyricum will be valuable in designing strategies for metabolic engineering of this strain. PMID:27302759

  1. Non-Conserved Residues in Clostridium acetobutylicum tRNAAla Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch

    PubMed Central

    Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination. PMID:26426057

  2. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.

    PubMed

    Hassan, Sedky H A; Morsy, Fatthy Mohamed

    2015-12-01

    Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications. PMID:26453472

  3. The mechanism of switching from an acidogenic to butanol-acetone fermentation by Clostridium acetobutylicum. Technical progress report, July 1990--June 1993

    SciTech Connect

    Rogers, P.

    1994-11-01

    The overall objective of this project was to elucidate the detailed mechanism by which solvent-forming bacteria such as Clostridium acetobutylicum regulate the well-known shift in fermentation pathway between alcohol-acetone and organic acid production. We eventually want to isolate and describe: (1) the regulatory genes and protein elements that determine induction of synthesis of the solvent-pathway enzymes; and (2) how this regulation system interacts with the sporulation induction and development program and with related pathways such as granulose and exopolysaccharide formation in clostridia. A working model for how clostridial control systems work can be derived from recent research on stress systems in E. coli and sporulation in Bacillus subtilis. This research was centered upon the technique of employing transposable elements that create gene fusions and mutations due to insertion in the chromosome of gram positive bacteria. Our approach was based on recent demonstration in our laboratory and by others of transconjugation of Tn916 into C. acetobutylicum and its insertion into the chromosome. A panel of strains with Tn916 inserts that are also solvent-negative and/or asporogenic were used to identify specific regulatory genes. A second approach was based upon electroporative transformation of plasmid PTV1 DNA carrying transposon Tn917 into C. acetobutylicum. Insertion of Tn917 lac to report activity of genes and functions in vegetative and stationary or slow-growing cells will be investigated.

  4. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. PMID:26476171

  5. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains.

    PubMed

    Collas, Florent; Kuit, Wouter; Clément, Benjamin; Marchal, Rémy; López-Contreras, Ana M; Monot, Frederic

    2012-01-01

    Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia. PMID:22909015

  6. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains

    PubMed Central

    2012-01-01

    Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia. PMID:22909015

  7. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  8. Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T

    PubMed Central

    Bruant, Guillaume; Lévesque, Marie-Josée; Peter, Chardeen; Guiot, Serge R.; Masson, Luke

    2010-01-01

    Increasing demand for the production of renewable fuels has recently generated a particular interest in microbial production of butanol. Anaerobic bacteria, such as Clostridium spp., can naturally convert carbohydrates into a variety of primary products, including alcohols like butanol. The genetics of microorganisms like Clostridium acetobutylicum have been well studied and their solvent-producing metabolic pathways characterized. In contrast, less is known about the genetics of Clostridium spp. capable of converting syngas or its individual components into solvents. In this study, the type of strain of a new solventogenic Clostridium species, C. carboxidivorans, was genetically characterized by genome sequencing. C. carboxidivorans strain P7T possessed a complete Wood-Ljungdahl pathway gene cluster, involving CO and CO2 fixation and conversion to acetyl-CoA. Moreover, with the exception of an acetone production pathway, all the genetic determinants of canonical ABE metabolic pathways for acetate, butyrate, ethanol and butanol production were present in the P7T chromosome. The functionality of these pathways was also confirmed by growth of P7T on CO and production of CO2 as well as volatile fatty acids (acetate and butyrate) and solvents (ethanol and butanol). P7T was also found to harbour a 19 Kbp plasmid, which did not include essential or butanol production related genes. This study has generated in depth knowledge of the P7T genome, which will be helpful in developing metabolic engineering strategies to improve C. carboxidivorans's natural capacity to produce potential biofuels from syngas. PMID:20885952

  9. Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production.

    PubMed

    Bruce, Thiago; Leite, Fernanda Gomes; Miranda, Milene; Thompson, Cristiane C; Pereira, Nei; Faber, Mariana; Thompson, Fabiano L

    2016-03-01

    Clostridium butyricum is widely used to produce organic solvents such as ethanol, butanol and acetone. We sequenced the entire genome of C. butyricum INCQS635 by using Ion Torrent technology. We found a high contribution of sequences assigned for carbohydrate subsystems (15-20 % of known sequences). Annotation based on protein-conserved domains revealed a higher diversity of glycoside hydrolases than previously found in C. acetobutylicum ATCC824 strain. More than 30 glycoside hydrolases (GH) families were found; families of GH involved in degradation of galactan, cellulose, starch and chitin were identified as most abundant (close to 50 % of all sequences assigned as GH) in C. butyricum INCQS635. KEGG metabolic pathways reconstruction allowed us to verify possible routes in the C. butyricum INCQS635 and C. acetobutylicum ATCC824 genomes. Metabolic pathways for ethanol synthesis are similar for both species, but alcohol dehydrogenase of C. butyricum INCQS635 and C. acetobutylicum ATCC824 was different. The genomic repertoire of C. butyricum is an important resource to underpin future studies towards improved solvents production. PMID:26525220

  10. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  11. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture

    PubMed Central

    Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2013-01-01

    Summary In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum. PMID:23332010

  12. Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicum ATCC 824 by a Putative Transcriptional Repressor

    PubMed Central

    Nair, Ramesh V.; Green, Edward M.; Watson, David E.; Bennett, George N.; Papoutsakis, Eleftherios T.

    1999-01-01

    A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871–885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain. PMID:9864345

  13. The mechanism of switching from an acidogenic to butanol-acetone fermentation by Clostridium acetobutylicum. Technical progress report, July 1990--December 1992

    SciTech Connect

    Rogers, P.

    1992-12-31

    The overall objective of this project is to elucidate the detailed mechanism by which solvent-forming bacteria such as Clostridium acetobutylicum regulate the well-known shift in fermentation pathway between alcohol-acetone and organic acid production. It is desired to eventually isolate and describe: (1) the regulatory genes and protein elements that determine induction of synthesis of the solvent-pathway enzymes; and (2) how this regulation system interacts with the sporulatin induction and development program and with related pathways such as granulse and exopolysaccharide formation in clostridia. A working model forhow clostridial control systems work can be derived from recent research on stress systems in E. coli and sporulation in Bacillus subtilis.

  14. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum

    PubMed Central

    2013-01-01

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h−1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production. PMID:23294525

  15. Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum.

    PubMed

    Jones, Alexander J; Venkataramanan, Keerthi P; Papoutsakis, Terry

    2016-04-01

    While extensively studied in several model organisms, the role of small, non-coding RNAs in the stress response remains largely unexplored in Clostridium organisms. About 100 years after the first industrial Acetone-Butanol-Ethanol fermentation process, based on the Weizmann Clostridium acetobutylicum strain, strain tolerance to butanol remains a crucial factor limiting the economics of the process. Several studies have examined the response of this organism to metabolite stress, and several genes have been engaged to impart enhanced tolerance, but no sRNAs have yet been directly engaged in this task. We show that the two stress-responsive sRNAs, 6S and tmRNA, upon overexpression impart tolerance to butanol as assessed by viability assays under process-relevant conditions. 6S overexpression enhances cell densities as well as butanol titres. We discuss the likely mechanisms that these two sRNAs might engage in this tolerance phenotype. Our data support the continued exploration of sRNAs as a basis for engineering enhanced tolerance and enhanced solvent production, especially because sRNA-based strategies impose a minimal metabolic burden on the cells. PMID:26989157

  16. Confirmation and Elimination of Xylose Metabolism Bottlenecks in Glucose Phosphoenolpyruvate-Dependent Phosphotransferase System-Deficient Clostridium acetobutylicum for Simultaneous Utilization of Glucose, Xylose, and Arabinose▿†

    PubMed Central

    Xiao, Han; Gu, Yang; Ning, Yuanyuan; Yang, Yunliu; Mitchell, Wilfrid J.; Jiang, Weihong; Yang, Sheng

    2011-01-01

    Efficient cofermentation of d-glucose, d-xylose, and l-arabinose, three major sugars present in lignocellulose, is a fundamental requirement for cost-effective utilization of lignocellulosic biomass. The Gram-positive anaerobic bacterium Clostridium acetobutylicum, known for its excellent capability of producing ABE (acetone, butanol, and ethanol) solvent, is limited in using lignocellulose because of inefficient pentose consumption when fermenting sugar mixtures. To overcome this substrate utilization defect, a predicted glcG gene, encoding enzyme II of the d-glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS), was first disrupted in the ABE-producing model strain Clostridium acetobutylicum ATCC 824, resulting in greatly improved d-xylose and l-arabinose consumption in the presence of d-glucose. Interestingly, despite the loss of GlcG, the resulting mutant strain 824glcG fermented d-glucose as efficiently as did the parent strain. This could be attributed to residual glucose PTS activity, although an increased activity of glucose kinase suggested that non-PTS glucose uptake might also be elevated as a result of glcG disruption. Furthermore, the inherent rate-limiting steps of the d-xylose metabolic pathway were observed prior to the pentose phosphate pathway (PPP) in strain ATCC 824 and then overcome by co-overexpression of the d-xylose proton-symporter (cac1345), d-xylose isomerase (cac2610), and xylulokinase (cac2612). As a result, an engineered strain (824glcG-TBA), obtained by integrating glcG disruption and genetic overexpression of the xylose pathway, was able to efficiently coferment mixtures of d-glucose, d-xylose, and l-arabinose, reaching a 24% higher ABE solvent titer (16.06 g/liter) and a 5% higher yield (0.28 g/g) compared to those of the wild-type strain. This strain will be a promising platform host toward commercial exploitation of lignocellulose to produce solvents and biofuels. PMID:21926197

  17. Light-driven amino acid uptake in Streptococcus cremoris or Clostridium acetobutylicum membrane vesicles fused with liposomes containing bacterial reaction centers

    SciTech Connect

    Crielaard, W.; Driessen, A.J.; Molenaar, D.; Hellingwerf, K.J.; Konings, W.N.

    1988-04-01

    Reaction centers of the phototrophic bacterium Rhodopseudomonas palustris were introduced as proton motive force-generating systems in membrane vesicles of two anaerobic bacteria. Liposomes containing reaction center-light-harvesting complex I pigment protein complexes were fused with membrane vesicles of Streptococcus cremoris or Clostridium acetobutylicum by freeze-thawing and sonication. Illumination of these fused membranes resulted in the generation of a proton motive force of approximately -110 mV. The magnitude of the proton motive force in these membranes could be varied by changing the light intensity. As a result of this proton motive force, amino acid transport into the fused membranes could be observed. The initial rate of leucine transport by membrane vesicles of S. cremoris increased exponentially with the proton motive force. An H+/leucine stoichiometry of 0.8 was determined from the steady-state level of leucine accumulation and the proton motive force, and this stoichiometry was found to be independent of the magnitude of the proton motive force. These results indicate that the introduction of bacterial reaction centers in membrane vesicles by the fusion procedure yields very attractive model systems for the study of proton motive force-consuming processes in membrane vesicles of (strict) anaerobic bacteria.

  18. Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane.

    PubMed

    Wu, Hao; Chen, Xiao-Peng; Liu, Gong-Ping; Jiang, Min; Guo, Ting; Jin, Wan-Qin; Wei, Ping; Zhu, Da-Wei

    2012-09-01

    PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning. PMID:22410754

  19. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma.

    PubMed

    Li, Han-guang; Luo, Wei; Wang, Qiang; Yu, Xiao-bin

    2014-04-01

    The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3 ± 0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8 ± 0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3 ± 0.9, 0.19, and 0.28 g/L(/)h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation. PMID:24519630

  20. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool.

    PubMed Central

    Girbal, L; Soucaille, P

    1994-01-01

    Glycerol-glucose-fed (molar ratio of 2) chemostat cultures of Clostridium acetobutylicum were glucose limited but glycerol sufficient and had a high intracellular NADH/NAD ratio (I. Vasconcelos, L. Girbal, and P. Soucaille, J. Bacteriol. 176:1443-1450, 1994). We report here that the glyceraldehyde-3-phosphate dehydrogenase, one of the key enzymes of the glycolytic pathway, is inhibited by high NADH/NAD ratios. Partial substitution of glucose by pyruvate while maintaining glycerol concentration at a constant level allowed a higher consumption of glycerol in steady-state continuous cultures. However, glycerol-sufficient cultures had a constant flux through the glyceraldehyde-3-phosphate dehydrogenase and a constant NADH/NAD ratio. A high substitution of glucose by pyruvate [P/(G+P) value of 0.67 g/g] provided a carbon-limited culture with butanol and butyrate as the major end products. In this alcohologenic culture, the induction of the NADH-dependent butyraldehyde and the ferredoxin-NAD(P) reductases and the higher expression of alcohol dehydrogenases were related to a high NADH/NAD ratio and a low intracellular ATP concentration. In three different steady-state cultures, the in vitro phosphotransbutyrylase and butyrate-kinase activities decreased with the intracellular ATP concentration, suggesting a transcriptional regulation of these two genes, which are arranged in an operon (K. A. Walter, R. V. Nair, R. V. Carry, G. N. Bennett, and E. T. Papoutsakis, Gene 134:107-111, 1993). PMID:7961393

  1. Complete Genome Sequence of Clostridium clariflavum DSM 19732

    SciTech Connect

    Goodwin, Lynne A.; Davenport, Karen W.; Teshima, Hazuki; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Land, Miriam L; Hauser, Loren John; Jeffries, Cynthia; Han, James; Pitluck, Sam; Nolan, Matt; Chen, Amy; Huntemann, Marcel; Mavromatis, K; Mikhailova, Natalia; Liolios, Konstantinos; Woyke, Tanja; Lynd, Lee R

    2012-01-01

    Clostridium clariflavum is a Cluster III Clostridium within the family Clostridiaceae isolated from thermophilic anaerobic sludge (Shiratori et al, 2009). This species is of interest because of its similarity to the model cellulolytic organism Clostridium thermocellum and for the ability of environmental isolates to break down cellulose and hemicellulose. Here we describe features of the 4,897,678 bp long genome and its annotation, consisting of 4,131 proteincoding and 98 RNA genes, for the type strain DSM 19732.

  2. Effect of some environmental parameters on biobutanol production by Clostridium acetobutylicum NCIMB 13357 in date fruit medium.

    PubMed

    Khamaiseh, Emran Issa Said; Hamid, Aidil Abd; Yusoff, Wan Mohtar Wan; Kalil, Mohd Sahaid

    2013-10-15

    Date fruit juice contains high concentration of simple sugars ranging from 65 to 75% (w/w) in dry form. In this study, the potential of date fruit juice as biobutanol fermentation medium by C. acetobutylicum was investigated. The fermentation process was carried out at initial pH of 5, 6 and 7, incubation temperature of 30, 35 and 40 degrees C for 72 hours. The date fruit concentrations tested were 10, 20, 30 and 40 g L(-1). Medium containing 30 g L(-1) of date fruit at 35 degrees C incubation temperature with initial medium pH 7.0 gave the highest concentration of solvents of 3.1, 0.1 and 1.1 g L(-1) butanol, ethanol and acetone respectively. The yield and productivity of biobutanol were 0.32 g g(-1) and 0.044 g L(-1)/h respectively, while for total ABE were 0.45 g g(-1) and 0.06 g L(-1) h, respectively. PMID:24506014

  3. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.

    PubMed

    Sillers, Ryan; Al-Hinai, Mohab Ali; Papoutsakis, Eleftherios T

    2009-01-01

    Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity. PMID:18726959

  4. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.

    PubMed

    Thorn, Graeme J; King, John R

    2016-01-01

    The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. PMID:26561777

  5. The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration

    PubMed Central

    Hartwich, Katrin; Poehlein, Anja; Daniel, Rolf

    2012-01-01

    Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. The only amino acid that can be degraded by C. acidurici is glycine but growth on glycine only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyltransferase and acetate kinase, whereas the transcription levels of formate dehydrogenase-encoding genes decreased. Sugars could not be utilized by C. acidurici but the full genetic repertoire for glycolysis was detected. In addition, genes encoding enzymes that mediate resistance against several antimicrobials and metals were identified. High resistance of C. acidurici towards bacitracin, acriflavine and azaleucine was experimentally confirmed. PMID:23240052

  6. Genome of a chronic osteitis-causing Clostridium tetani.

    PubMed

    Fournier, P-E; Levy, P-Y; Million, M; Croce, O; Blanc-Tailleur, C; Brouqui, P; Raoult, D

    2014-01-01

    We sequenced the genome of a Clostridium tetani strain that caused chronic tibial osteitis without any clinical sign of tetanus in a 26-year-old man previously vaccinated against this disease. The genome contained a plasmid that harboured the tetX-tetR tetanospasmin operon, and was highly similar to that of a tetanus-causing strain. PMID:25356334

  7. Genome of a chronic osteitis-causing Clostridium tetani

    PubMed Central

    Fournier, P-E; Levy, P-Y; Million, M; Croce, O; Blanc-Tailleur, C; Brouqui, P; Raoult, D

    2014-01-01

    We sequenced the genome of a Clostridium tetani strain that caused chronic tibial osteitis without any clinical sign of tetanus in a 26-year-old man previously vaccinated against this disease. The genome contained a plasmid that harboured the tetX-tetR tetanospasmin operon, and was highly similar to that of a tetanus-causing strain. PMID:25356334

  8. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation.

    PubMed

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (-19.50 ± 0.85%) and of ABE yield (-35.14 ± 3.50% acetone, -33.37 ± 0.74% butanol, -22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP(+)-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  9. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    PubMed Central

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  10. Draft Genome Sequence of Clostridium butyricum Strain NOR 33234, Isolated from an Elderly Patient with Diarrhea

    PubMed Central

    Kwok, Jamie S. L.; Ip, Margaret; Chan, Ting-Fung; Lam, Wai-Yip

    2014-01-01

    Clostridium butyricum is one of the species frequently present in patients’ stool samples. However, the identification of this species is sometimes difficult. Here, we present the draft genome of Clostridium butyricum NOR 33234, which was isolated from a patient with suspected Clostridium difficile infection-associated diarrhea and resembles Clostridium clostridioforme in biochemical tests. PMID:25540356

  11. Lytic Clostridium perfringens Bacteriophage 39-O Genomic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening for bacteriophages lytic for Clostridium perfringens was completed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Following limit dilution cloning and three rounds of plaque purification lytic phage preparations ...

  12. Genome Sequence of the Autotrophic Acetogen Clostridium magnum DSM 2767

    PubMed Central

    Uhlig, Ronny; Fischer, Ralf-Jörg; Daniel, Rolf

    2016-01-01

    Here we report the draft genome sequence (6.6 Mbp) of the type strain Clostridium magnum, an acetogen with two operons coding for two separate Rnf complexes. C. magnum grows on a broad range of organic substrates and converts CO2 and H2 to acetate using the Wood-Ljungdahl pathway. PMID:27284147

  13. Closed Genome Sequence of Clostridium pasteurianum ATCC 6013

    PubMed Central

    Rotta, Carlo; Poehlein, Anja; Schwarz, Katrin; McClure, Peter; Daniel, Rolf

    2015-01-01

    We report here the closed genome of Clostridium pasteurianum ATCC 6013, a saccharolytic, nitrogen-fixing, and spore-forming Gram-positive obligate anaerobe. The organism is of biotechnological interest due to the production of solvents (butanol and 1,3-propanediol) but can be associated with food spoilage. The genome comprises a total of 4,351,223 bp. PMID:25700419

  14. Inactivation of σE and σG in Clostridium acetobutylicum Illuminates Their Roles in Clostridial-Cell-Form Biogenesis, Granulose Synthesis, Solventogenesis, and Spore Morphogenesis ▿ †

    PubMed Central

    Tracy, Bryan P.; Jones, Shawn W.; Papoutsakis, Eleftherios T.

    2011-01-01

    Central to all clostridia is the orchestration of endospore formation (i.e., sporulation) and, specifically, the roles of differentiation-associated sigma factors. Moreover, there is considerable applied interest in understanding the roles of these sigma factors in other stationary-phase phenomena, such as solvent production (i.e., solventogenesis). Here we separately inactivated by gene disruption the major sporulation-specific sigma factors, σE and σG, and performed an initial analysis to elucidate their roles in sporulation-related morphogenesis and solventogenesis in Clostridium acetobutylicum. The terminal differentiation phenotype for the sigE inactivation mutant stalled in sporulation prior to asymmetric septum formation, appeared vegetative-like often with an accumulation of DNA at both poles, frequently exhibited two longitudinal internal membranes, and did not synthesize granulose. The sigE inactivation mutant did produce the characteristic solvents (i.e., butanol and acetone), but the extent of solventogenesis was dependent on the physiological state of the inoculum. The sigG inactivation mutant stalled in sporulation during endospore maturation, exhibiting engulfment and partial cortex and spore coat formation. Lastly, the sigG inactivation mutant did produce granulose and exhibited wild-type-like solventogenesis. PMID:21217008

  15. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4.

    PubMed

    Pang, Zong-Wen; Lu, Wei; Zhang, Hui; Liang, Zheng-Wu; Liang, Jing-Juan; Du, Liang-Wei; Duan, Cheng-Jie; Feng, Jia-Xun

    2016-07-01

    Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB. PMID:27089425

  16. Genome sequence of Clostridium tunisiense TJ, isolated from drain sediment from a pesticide factory.

    PubMed

    Sun, Lili; Wang, Yu; Yu, Chunyan; Zhao, Yongqin; Gan, Yinbo

    2012-12-01

    Clostridium tunisiense is a Gram-positive, obligate anaerobe that was first isolated in an anaerobic environment under eutrophication. Here we report the first genome sequence of the Clostridium tunisiense TJ isolated from drain sediment of a pesticide factory in Tianjin, China. The genome is of great importance for both basic and application research. PMID:23209212

  17. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable rates of evolution within a core genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context. We sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricu...

  18. Genomic characterization of Italian Clostridium botulinum group I strains.

    PubMed

    Giordani, Francesco; Fillo, Silvia; Anselmo, Anna; Palozzi, Anna Maria; Fortunato, Antonella; Gentile, Bernardina; Azarnia Tehran, Domenico; Ciammaruconi, Andrea; Spagnolo, Ferdinando; Pittiglio, Valentina; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Lista, Florigio

    2015-12-01

    Clostridium botulinum is a gram-positive bacterium capable of producing the botulinum neurotoxin, a powerful poison that causes botulism, a severe neuroparalytic disease. Its genome has been sequenced entirely and its gene content has been analyzed. To date, 19 full genomes and 64 draft genomes are available. The geographical origin of these genomes is predominantly from the US. In the present study, 10 Italian genomes of C. botulinum group I were analyzed and compared with previously sequenced group I genomes, in order to genetically characterize the Italian population of C. botulinum group I and to investigate the phylogenetic relationships among different lineages. Using the suites of software ClonalFrame and ClonalOrigin to perform genomic analysis, we demonstrated that Italian C. botulinum group I population is phylogenetically heterogeneous encompassing different and distant lineages including overseas strains, too. Moreover, a high recombination rate was demonstrated in the evolution of C. botulinum group I species. Finally, genome sequencing of the strain 357 led us to identify a novel botulinum neurotoxin subtype, F8. PMID:26341861

  19. The complete genome sequence of Clostridium indolis DSM 755T

    PubMed Central

    Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P.; Cantor, Michael N.; Hua, Susan X.; Woyke, Tanja; Blanchard, Jeffrey L.

    2014-01-01

    Clostridium indolis DSM 755T is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755T reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species. PMID:25197485

  20. Group II Intron-Anchored Gene Deletion in Clostridium

    PubMed Central

    Jia, Kaizhi; Zhu, Yan; Zhang, Yanping; Li, Yin

    2011-01-01

    Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron “ClosTron” system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493–1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established. PMID:21304965

  1. Draft Genome Sequence of Clostridium sporogenes Strain UC9000 Isolated from Raw Milk

    PubMed Central

    La Torre, Angela; Zotta, Teresa; Orrù, Luigi; Lamontanara, Antonella; Cocconcelli, Pier Sandro

    2016-01-01

    Clostridium sporogenes is a causative agent of food spoilage and is often used as the nontoxigenic surrogate for Clostridium botulinum. Here, we described the draft genome sequence and annotation of C. sporogenes strain UC9000 isolated from raw milk. PMID:27081128

  2. Draft Genome Sequence of Clostridium sporogenes Strain UC9000 Isolated from Raw Milk.

    PubMed

    La Torre, Angela; Bassi, Daniela; Zotta, Teresa; Orrù, Luigi; Lamontanara, Antonella; Cocconcelli, Pier Sandro

    2016-01-01

    Clostridium sporogenesis a causative agent of food spoilage and is often used as the nontoxigenic surrogate forClostridium botulinum Here, we described the draft genome sequence and annotation ofC. sporogenesstrain UC9000 isolated from raw milk. PMID:27081128

  3. Complete Genome Sequence of Clostridium sp. Strain DL-VIII, a Novel Solventogenic Clostridium Species Isolated from Anaerobic Sludge

    PubMed Central

    Taghavi, Safiyh; Izquierdo, Javier A.

    2013-01-01

    We report the genome sequence of Clostridium sp. strain DL-VIII, a novel Gram-positive, endospore-forming, solventogenic bacterium isolated from activated anaerobic sludge of a wastewater treatment plant. Aside from a complete sol operon, the 6,477,357-bp genome of DL-VIII reveals genes for several unique enzymes with applications in lignocellulose degradation, including two phenolic acid decarboxylases. PMID:23929491

  4. Clostridium difficile Genome Editing Using pyrE Alleles.

    PubMed

    Ehsaan, Muhammad; Kuehne, Sarah A; Minton, Nigel P

    2016-01-01

    Precise manipulation (in-frame deletions and substitutions) of the Clostridium difficile genome is possible through a two-stage process of single-crossover integration and subsequent isolation of double-crossover excision events using replication-defective plasmids that carry a counterselection marker. Use of a codA (cytosine deaminase) or pyrE (orotate phosphoribosyltransferase) as counter selection markers appears equally effective, but there is considerable merit in using a pyrE mutant as the host as, through the use of allele-coupled exchange (ACE) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high-copy-number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. PMID:27507332

  5. Draft Genome Sequence of Clostridium pasteurianum NRRL B-598, a Potential Butanol or Hydrogen Producer.

    PubMed

    Kolek, Jan; Sedlár, Karel; Provazník, Ivo; Patáková, Petra

    2014-01-01

    We present a draft genome sequence of Clostridium pasteurianum NRRL B-598. This strain ferments saccharides by two-stage acetone-butanol (AB) fermentation, is oxygen tolerant, and has high hydrogen yields. PMID:24652980

  6. Genomic analyses of Clostridium perfringens isolates from five toxinotypes.

    PubMed

    Hassan, Karl A; Elbourne, Liam D H; Tetu, Sasha G; Melville, Stephen B; Rood, Julian I; Paulsen, Ian T

    2015-05-01

    Clostridium perfringens can be isolated from a range of environments, including soil, marine and fresh water sediments, and the gastrointestinal tracts of animals and humans. Some C. perfringens strains have attractive industrial applications, e.g., in the degradation of waste products or the production of useful chemicals. However, C. perfringens has been most studied as the causative agent of a range of enteric and soft tissue infections of varying severities in humans and animals. Host preference and disease type in C. perfringens are intimately linked to the production of key extracellular toxins and on this basis toxigenic C. perfringens strains have been classified into five toxinotypes (A-E). To date, twelve genome sequences have been generated for a diverse collection of C. perfringens isolates, including strains associated with human and animal infections, a human commensal strain, and a strain with potential industrial utility. Most of the sequenced strains are classified as toxinotype A. However, genome sequences of representative strains from each of the other four toxinotypes have also been determined. Analysis of this collection of sequences has highlighted a lack of features differentiating toxinotype A strains from the other isolates, indicating that the primary defining characteristic of toxinotype A strains is their lack of key plasmid-encoded extracellular toxin genes associated with toxinotype B to E strains. The representative B-E strains sequenced to date each harbour many unique genes. Additional genome sequences are needed to determine if these genes are characteristic of their respective toxinotypes. PMID:25445567

  7. The Complete Genome Sequence of Moorella thermoacetica (f. Clostridium thermoaceticum)

    PubMed Central

    Pierce, Elizabeth; Xie, Gary; Barabote, Ravi D.; Saunders, Elizabeth; Han, Cliff S.; Detter, John C.; Richardson, Paul; Brettin, Thomas S.; Das, Amaresh; Ljungdahl, Lars G.; Ragsdale, Stephen W.

    2008-01-01

    Summary This paper describes the genome sequence of M. thermoacetica (f. Clostridium thermoaceticum), which is the model acetogenic bacterium that has been widely used for elucidating the Wood-Ljungdahl pathway of CO and CO2 fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into three mol of acetate and to grow autotrophically using H2 and CO as electron donors and CO2 as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO2. Acetogenic bacteria also couple the Wood-Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols, and aromatic compounds) and electron acceptors (CO2, nitrate, nitrite, thiosulfate, dimethylsulfoxide, and aromatic carboxyl groups). The genome consists of a single circular 2628784 bp chromosome encoding 2615 open reading frames, which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. Two thousand three hundred eighty-four (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in ortholog clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood-Ljungdahl pathway. PMID:18631365

  8. Diversity and Evolution in the Genome of Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.

    2015-01-01

    SUMMARY Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen. PMID:26085550

  9. Reannotation of the genome sequence of Clostridium difficile strain 630.

    PubMed

    Monot, Marc; Boursaux-Eude, Caroline; Thibonnier, Marie; Vallenet, David; Moszer, Ivan; Medigue, Claudine; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2011-08-01

    A regular update of genome annotations is a prerequisite step to help maintain the accuracy and relevance of the information they contain. Five years after the first publication of the complete genome sequence of Clostridium difficile strain 630, we manually reannotated each of the coding sequences (CDSs), using a high-level annotation platform. The functions of more than 500 genes annotated previously with putative functions were reannotated based on updated sequence similarities to proteins whose functions have been recently identified by experimental data from the literature. We also modified 222 CDS starts, detected 127 new CDSs and added the enzyme commission numbers, which were not supplied in the original annotation. In addition, an intensive project was undertaken to standardize the names of genes and gene products and thus harmonize as much as possible with the HAMAP project. The reannotation is stored in a relational database that will be available on the MicroScope web-based platform (https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?S_id=752&wwwpkgdb=a78e3466ad5db29aa8fe49e8812de8a7). The original submission stored in the (International Nucleotide Sequence Database Collaboration) INSDC nucleotide sequence databases was also updated. PMID:21349987

  10. Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system.

    PubMed

    Luan, Guodong; Cai, Zhen; Gong, Fuyu; Dong, Hongjun; Lin, Zhao; Zhang, Yanping; Li, Yin

    2013-11-01

    Development of controllable hypermutable cells can greatly benefit understanding and harnessing microbial evolution. However, there have not been any similar systems developed for Clostridium, an important bacterial genus. Here we report a novel two-step strategy for developing controllable hypermutable cells of Clostridium acetobutylicum, an important and representative industrial strain. Firstly, the mutS/L operon essential for methyldirected mismatch repair (MMR) activity was inactivated from the genome of C. acetobutylicum to generate hypermutable cells with over 250-fold increased mutation rates. Secondly, a proofreading control system carrying an inducibly expressed mutS/L operon was constructed. The hypermutable cells and the proofreading control system were integrated to form a controllable hypermutable system SMBMutC, of which the mutation rates can be regulated by the concentration of anhydrotetracycline (aTc). Duplication of the miniPthl-tetR module of the proofreading control system further significantly expanded the regulatory space of the mutation rates, demonstrating hypermutable Clostridium cells with controllable mutation rates are generated. The developed C. acetobutylicum strain SMBMutC2 showed higher survival capacities than the control strain facing butanol-stress, indicating greatly increased evolvability and adaptability of the controllable hypermutable cells under environmental challenges. PMID:24214875

  11. Draft Genome Sequences of 17 French Clostridium botulinum Group III Strains

    PubMed Central

    Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Mermoud, Isabelle; Desoutter, Denise; Fach, Patrick

    2015-01-01

    Animal botulism is mainly associated with Clostridium botulinum group III strains producing neurotoxin types C, C/D, D, and D/C. In this report, we present the draft genome sequences of fourteen strains of Clostridium botulinum producing type C/D and two strains producing type D/C isolated in France, and one strain producing type D/C that originated from New Caledonia. PMID:26430029

  12. Draft Genome Sequences of 17 French Clostridium botulinum Group III Strains.

    PubMed

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Mermoud, Isabelle; Desoutter, Denise; Fach, Patrick

    2015-01-01

    Animal botulism is mainly associated with Clostridium botulinum group III strains producing neurotoxin types C, C/D, D, and D/C. In this report, we present the draft genome sequences of fourteen strains of Clostridium botulinum producing type C/D and two strains producing type D/C isolated in France, and one strain producing type D/C that originated from New Caledonia. PMID:26430029

  13. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923)

    PubMed Central

    Clément, Benjamin; Lopes Ferreira, Nicolas

    2016-01-01

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain. PMID:26941139

  14. Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium.

    PubMed

    Manzoor, Shahid; Müller, Bettina; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2013-01-01

    Clostridium ultunense strain Esp belongs to the functional group of syntrophic acetate-oxidizing bacteria (SAOB), which have been identified as key organisms for efficient biogas production from protein-rich materials. Genome analysis and comparative genomics might aid us to define physiological features that are essential for maintaining this particular syntrophic lifestyle. PMID:23538905

  15. Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium

    PubMed Central

    Manzoor, Shahid; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2013-01-01

    Clostridium ultunense strain Esp belongs to the functional group of syntrophic acetate-oxidizing bacteria (SAOB), which have been identified as key organisms for efficient biogas production from protein-rich materials. Genome analysis and comparative genomics might aid us to define physiological features that are essential for maintaining this particular syntrophic lifestyle. PMID:23538905

  16. Complete Genome Sequence of the Nitrogen-Fixing and Solvent-Producing Clostridium pasteurianum DSM 525

    PubMed Central

    Poehlein, Anja; Grosse-Honebrink, Alexander; Zhang, Ying; Minton, Nigel P.

    2015-01-01

    Here, we report on the closed genome sequence of Clostridium pasteurianum DSM 525, which is an anaerobic, Gram-positive and endospore-forming organism. C. pasteurianum can fix N2 and produce solvents such as butanol and 1,3-propanediol from carbohydrates. The genome consists of a single 4,350,673-bp replicon. PMID:25700415

  17. Exploring the Genome of a Butyric Acid Producer, Clostridium butyricum INCQS635

    PubMed Central

    Leite, Fernanda Gomes; Tschoeke, Diogo Antonio; Miranda, Milene; Pereira, Nei; Valle, Rogério; Thompson, Cristiane C.

    2014-01-01

    The draft genome sequence of Clostridium butyricum INCQS635 was obtained by means of ion sequencing. The genome provides further insight into the genetic repertoire involved with metabolic pathways related to the fermentation of different compounds and organic solvents synthesis (i.e., butyric acid) with biofuel applications. PMID:25414496

  18. Exploring the Genome of a Butyric Acid Producer, Clostridium butyricum INCQS635.

    PubMed

    Bruce, Thiago; Leite, Fernanda Gomes; Tschoeke, Diogo Antonio; Miranda, Milene; Pereira, Nei; Valle, Rogério; Thompson, Cristiane C; Thompson, Fabiano L

    2014-01-01

    The draft genome sequence of Clostridium butyricum INCQS635 was obtained by means of ion sequencing. The genome provides further insight into the genetic repertoire involved with metabolic pathways related to the fermentation of different compounds and organic solvents synthesis (i.e., butyric acid) with biofuel applications. PMID:25414496

  19. Draft Genome Sequence of Purine-Degrading Gottschalkia purinilyticum (Formerly Clostridium purinilyticum) WA1 (DSM 1384)

    PubMed Central

    Poehlein, Anja; Bengelsdorf, Frank R.; Schiel-Bengelsdorf, Bettina; Daniel, Rolf

    2015-01-01

    Here, we report the draft genome sequence of Gottschalkia purinilyticum (formerly Clostridium purinilyticum) WA1, an anaerobic bacterium specialized on degradation of purines (including adenine) and glycine, which uses the selenoprotein glycine reductase for substrate degradation. The genome consists of a single chromosome (3.40 Mb). PMID:26404607

  20. Draft genome sequences of clostridium strains native to Colombia with the potential to produce solvents.

    PubMed

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana; Montoya Castaño, Dolly; Riaño-Pachón, Diego Mauricio

    2015-01-01

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies. PMID:25999575

  1. Draft Genome Sequences of Clostridium Strains Native to Colombia with the Potential To Produce Solvents

    PubMed Central

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana

    2015-01-01

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies. PMID:25999575

  2. Draft Genome Sequence of the Strict Anaerobe Clostridium neopropionicum X4 (DSM 3847T)

    PubMed Central

    Beck, Matthias H.; Poehlein, Anja; Bengelsdorf, Frank R.; Schiel-Bengelsdorf, Bettina; Daniel, Rolf

    2016-01-01

    Here, we report the draft genome sequence of Clostridium neopropionicum X4 (DSM 3847T), a strictly anaerobic bacterium capable of fermenting ethanol and CO2 to propionate, acetate, and propanol. The genome consists of a single chromosome (3.19 Mb). PMID:27081124

  3. First Complete Genome Sequence of Clostridium sporogenes DSM 795T, a Nontoxigenic Surrogate for Clostridium botulinum, Determined Using PacBio Single-Molecule Real-Time Technology

    PubMed Central

    Terabayashi, Yasunobu; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2015-01-01

    The first complete genome sequence of Clostridium sporogenes DSM 795T, a nontoxigenic surrogate for Clostridium botulinum, was determined in a single contig using the PacBio single-molecule real-time technology. The genome (4,142,990 bp; G+C content, 27.98%) included 86 sets of >1,000-bp identical sequence pairs and 380 tandem repeats. PMID:26227598

  4. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium

    PubMed Central

    Pyne, Michael E.; Bruder, Mark R.; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  5. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.

    PubMed

    Pyne, Michael E; Bruder, Mark R; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  6. Non-contiguous finished genome sequence and description of Clostridium dakarense sp. nov.

    PubMed Central

    Lo, Cheikh Ibrahima; Mishra, Ajay Kumar; Padhmanabhan, Roshan; Samb, Bissoume; Sow, Amy Gassama; Robert, Catherine; Couderc, Carine; Faye, Ngor; Raoult, Didier; Fournier, Pierre-Edouard; Fenollar, Florence

    2013-01-01

    Clostridium dakarense strain FF1T, is the type strain of Clostridium dakarense sp. nov., a new species within the genus Clostridium. This strain, whose genome is described here, was isolated from the fecal flora of a 4-month-old Senegalese child suffering from gastroenteritis. C. dakarense sp. nov. strain FF1T is an obligate anaerobic Gram-positive bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,735,762 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 27.98% and contains 3,843 protein-coding and 73 RNA genes, including 8 rRNA genes. PMID:24501642

  7. Non-contiguous finished genome sequence and description of Clostridium senegalense sp. nov.

    PubMed Central

    Mishra, Ajay Kumar; Lagier, Jean-Christophe; Robert, Catherine; Raoult, Didier; Fournier, Pierre-Edouard

    2012-01-01

    Clostridium senegalense strain JC122T, is the type strain of Clostridium senegalense sp. nov., a new species within the genus Clostridium. This strain, whose genome is described here, was isolated from the fecal flora of a healthy patient. C. senegalense strain JC122T is an obligate anaerobic Gram-positive rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,893,008 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 26.8% and contains 3,704 protein-coding and 57 RNA genes, including 6 rRNA genes. PMID:23408737

  8. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II

    PubMed Central

    Carter, Andrew T.; Peck, Michael W.

    2015-01-01

    Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised. PMID:25445012

  9. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a.

    PubMed

    Rooney, Elise A; Rowe, Kenneth T; Guseva, Anna; Huntemann, Marcel; Han, James K; Chen, Amy; Kyrpides, Nikos C; Mavromatis, Konstantinos; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Liolios, Konstantinos; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Shapiro, Nicole; Woyke, Tanja; Lynd, Lee R; Izquierdo, Javier A

    2015-01-01

    Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain. PMID:26205857

  10. Draft Genome Sequence of Clostridium aceticum DSM 1496, a Potential Butanol Producer through Syngas Fermentation

    PubMed Central

    Song, Yoseb; Hwang, Soonkyu

    2015-01-01

    Clostridium aceticum DSM 1496 is a Gram-negative anaerobic chemolithoautotrophic acetogenic bacterium that is capable of producing commodity chemicals from syngas fermentation. In this study, we report the draft genome sequence of the C. aceticum DSM 1496 strain (4.16 Mb) to elucidate the syngas fermentation metabolic pathway. PMID:25931594

  11. Draft Genome Sequence of Clostridium ultunense Strain BS (DSMZ 10521), Recovered from a Mixed Culture.

    PubMed

    Wei, Yongjun; Zhou, Haokui; Zhang, Lei; Zhang, Jun; Wang, Yuezhu; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2014-01-01

    Clostridium ultunense BS is the first isolated strain (type strain) of C. ultunense that was identified as a mesophilic syntrophic acetate-oxidizing bacterium (SAOB). Here, we report the draft genome sequence of this strain, which will help us to elucidate the mechanism of syntrophic acetate oxidization. PMID:24504003

  12. Draft Genome Sequence of Clostridium ultunense Strain BS (DSMZ 10521), Recovered from a Mixed Culture

    PubMed Central

    Wei, Yongjun; Zhou, Haokui; Zhang, Lei; Zhang, Jun; Wang, Yuezhu; Wang, Shengyue

    2014-01-01

    Clostridium ultunense BS is the first isolated strain (type strain) of C. ultunense that was identified as a mesophilic syntrophic acetate-oxidizing bacterium (SAOB). Here, we report the draft genome sequence of this strain, which will help us to elucidate the mechanism of syntrophic acetate oxidization. PMID:24504003

  13. Complete Genome Sequence of the Solvent Producer Clostridium saccharoperbutylacetonicum Strain DSM 14923

    PubMed Central

    Poehlein, Anja; Krabben, Preben; Dürre, Peter

    2014-01-01

    Clostridium saccharoperbutylacetonicum strain DSM 14923 is known as a butanol-producing bacterium. Various organic compounds such as glucose, fructose, sucrose, mannose, and cellobiose are fermented. The genome consists of one chromosome and one circular megaplasmid. C. saccharoperbutylacetonicum was used in industrial fermentation processes to produce the solvents acetone, butanol, and ethanol. PMID:25323722

  14. Complete Genome Sequence of the Solvent Producer Clostridium saccharobutylicum NCP262 (DSM 13864)

    PubMed Central

    Poehlein, Anja; Hartwich, Katrin; Krabben, Preben; Ehrenreich, Armin; Liebl, Wolfgang; Dürre, Peter; Gottschalk, Gerhard

    2013-01-01

    Clostridium saccharobutylicum was employed for the production of acetone and butanol in South Africa until the 1970s. The genome comprises a single replicon (5,107,814 bp) harboring all the genes necessary for solvent production and the degradation of various organic compounds, such as fructose, cellobiose, sucrose, and mannose. PMID:24285650

  15. Complete Genome Sequence of the Solvent Producer Clostridium saccharobutylicum NCP262 (DSM 13864).

    PubMed

    Poehlein, Anja; Hartwich, Katrin; Krabben, Preben; Ehrenreich, Armin; Liebl, Wolfgang; Dürre, Peter; Gottschalk, Gerhard; Daniel, Rolf

    2013-01-01

    Clostridium saccharobutylicum was employed for the production of acetone and butanol in South Africa until the 1970s. The genome comprises a single replicon (5,107,814 bp) harboring all the genes necessary for solvent production and the degradation of various organic compounds, such as fructose, cellobiose, sucrose, and mannose. PMID:24285650

  16. Complete Genome Sequence of the Cellulolytic Thermophile Clostridium thermocellum DSM1313

    SciTech Connect

    Feinberg, Lawrence F; Foden, Justine; Barrett, Trisha; Davenport, Karen W.; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Lapidus, Alla L.; Lucas, Susan; Cheng, Jan-Fang; Pitluck, Sam; Woyke, Tanja; Ivanova, N; Mikhailova, Natalia; Land, Miriam L; Hauser, Loren John; Argyros, Aaron; Goodwin, Lynne A.; Hogsett, David; Caiazza, Nicky

    2011-01-01

    Clostridium thermocellum DSM1313 is a thermophilic, anaerobic bacterium with some of the highest rates of cellulose hydrolysis reported. The complete genome sequence reveals a suite of carbohydrate-active enzymes and demonstrates a level of diversity at the species level distinguishing it from the type strain ATCC27405.

  17. Near-Complete Genome Sequence of Clostridium paradoxum Strain JW-YL-7

    PubMed Central

    Lancaster, W. Andrew; Utturkar, Sagar M.; Poole, Farris L.; Klingeman, Dawn M.; Elias, Dwayne A.

    2016-01-01

    Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data. PMID:27151784

  18. Near complete genome sequence of Clostridium paradoxum strain JW-YL-7

    DOE PAGESBeta

    Lancaster, Andrew; Utturkar, Sagar M.; Poole, Farris; Klingeman, Dawn Marie; Elias, Dwayne A.; Adams, Michael W. W.; Brown, Steven D.

    2016-05-05

    Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data.

  19. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    PubMed

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  20. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    PubMed Central

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  1. First Insights into the Draft Genome of Clostridium colicanis DSM 13634, Isolated from Canine Feces

    PubMed Central

    Poehlein, Anja; Schilling, Tobias; Bhaskar Sathya Narayanan, Udhaya

    2016-01-01

    Clostridium colicanis DSM 13634 is a strictly anaerobic, rod-shaped, and spore-forming bacterium. It produces acids from common sugars such as glucose and fructose. The draft genome consists of one chromosome (2.6 Mbp) and contains 2,159 predicted protein-encoding genes. PMID:27198021

  2. Draft Genome Sequence of Clostridium difficile Belonging to Ribotype 018 and Sequence Type 17.

    PubMed

    Riccobono, E; Di Pilato, V; Della Malva, N; Meini, S; Ciraolo, F; Torricelli, F; Rossolini, G M

    2016-01-01

    Clostridium difficile, belonging to ribotype 018 (RT018), is one of the most prevalent genotypes circulating in hospital settings in Italy. Here, we report the draft genome of C. difficile CD8-15 belonging to RT018, isolated from a patient with fatal C. difficile-associated infection. PMID:27587821

  3. Draft Genome Sequence of Clostridium difficile Belonging to Ribotype 018 and Sequence Type 17

    PubMed Central

    Riccobono, E.; Di Pilato, V.; Della Malva, N.; Meini, S.; Ciraolo, F.; Torricelli, F.

    2016-01-01

    Clostridium difficile, belonging to ribotype 018 (RT018), is one of the most prevalent genotypes circulating in hospital settings in Italy. Here, we report the draft genome of C. difficile CD8-15 belonging to RT018, isolated from a patient with fatal C. difficile-associated infection. PMID:27587821

  4. First Insights into the Draft Genome of Clostridium colicanis DSM 13634, Isolated from Canine Feces.

    PubMed

    Poehlein, Anja; Schilling, Tobias; Bhaskar Sathya Narayanan, Udhaya; Daniel, Rolf

    2016-01-01

    Clostridium colicanis DSM 13634 is a strictly anaerobic, rod-shaped, and spore-forming bacterium. It produces acids from common sugars such as glucose and fructose. The draft genome consists of one chromosome (2.6 Mbp) and contains 2,159 predicted protein-encoding genes. PMID:27198021

  5. Genome Sequence of the Butanol Hyperproducer Clostridium saccharoperbutylacetonicum N1-4

    PubMed Central

    del Cerro, Carlos; Felpeto-Santero, Carmen; Rojas, Antonia; Tortajada, Marta; Ramón, Daniel

    2013-01-01

    Clostridium saccharoperbutylacetonicum is one of the most important acetone-butanol-ethanol (ABE)-generating industrial microorganisms and one of the few bacteria containing choline in its cell wall. Here, we report the draft genome sequence of C. saccharoperbutylacetonicum strain N1-4 (6.6 Mbp; G+C content, 29.4%) and the findings obtained from the annotation of the genome. PMID:23516201

  6. Complete Genome Sequence of the Amino Acid-Fermenting Clostridium propionicum X2 (DSM 1682)

    PubMed Central

    Poehlein, Anja; Schlien, Katja; Chowdhury, Nilanjan Pal; Gottschalk, Gerhard; Buckel, Wolfgang

    2016-01-01

    Clostridium propionicum is a strict anaerobic, Gram positive, rod-shaped bacterium that belongs to the clostridial cluster XIVb. The genome consists of one replicon (3.1 Mb) and harbors 2,936 predicted protein-encoding genes. The genome encodes all enzymes required for fermentation of the amino acids α-alanine, β-alanine, serine, threonine, and methionine. PMID:27081148

  7. Draft Genome Sequence of Clostridium sp. Ne2, Clostridia from an Enrichment Culture Obtained from Australian Subterranean Termite, Nasutitermes exitiosus.

    PubMed

    Wang, Han; Lin, Hai; Tran-Dinh, Nai; Li, Dongmei; Greenfield, Paul; Midgley, David J

    2015-01-01

    The draft genome sequence of Clostridium sp. Ne2 was reconstructed from a metagenome of a hydrogenogenic microbial consortium. The organism is most closely related to Clostridium magnum and is a strict anaerobe that is predicted to ferment a range of simple sugars. PMID:25908129

  8. Draft Genome Sequence of Clostridium sp. Ne2, Clostridia from an Enrichment Culture Obtained from Australian Subterranean Termite, Nasutitermes exitiosus

    PubMed Central

    Lin, Hai; Tran-Dinh, Nai; Li, Dongmei; Greenfield, Paul; Midgley, David J.

    2015-01-01

    The draft genome sequence of Clostridium sp. Ne2 was reconstructed from a metagenome of a hydrogenogenic microbial consortium. The organism is most closely related to Clostridium magnum and is a strict anaerobe that is predicted to ferment a range of simple sugars. PMID:25908129

  9. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy

    PubMed Central

    Weigand, Michael R.; Pena-Gonzalez, Angela; Shirey, Timothy B.; Broeker, Robin G.; Ishaq, Maliha K.; Konstantinidis, Konstantinos T.

    2015-01-01

    Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification. PMID:26048939

  10. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes

    PubMed Central

    Sebaihia, Mohammed; Peck, Michael W.; Minton, Nigel P.; Thomson, Nicholas R.; Holden, Matthew T.G.; Mitchell, Wilfrid J.; Carter, Andrew T.; Bentley, Stephen D.; Mason, David R.; Crossman, Lisa; Paul, Catherine J.; Ivens, Alasdair; Wells-Bennik, Marjon H.J.; Davis, Ian J.; Cerdeño-Tárraga, Ana M.; Churcher, Carol; Quail, Michael A.; Chillingworth, Tracey; Feltwell, Theresa; Fraser, Audrey; Goodhead, Ian; Hance, Zahra; Jagels, Kay; Larke, Natasha; Maddison, Mark; Moule, Sharon; Mungall, Karen; Norbertczak, Halina; Rabbinowitsch, Ester; Sanders, Mandy; Simmonds, Mark; White, Brian; Whithead, Sally; Parkhill, Julian

    2007-01-01

    Clostridium botulinum is a heterogeneous Gram-positive species that comprises four genetically and physiologically distinct groups of bacteria that share the ability to produce botulinum neurotoxin, the most poisonous toxin known to man, and the causative agent of botulism, a severe disease of humans and animals. We report here the complete genome sequence of a representative of Group I (proteolytic) C. botulinum (strain Hall A, ATCC 3502). The genome consists of a chromosome (3,886,916 bp) and a plasmid (16,344 bp), which carry 3650 and 19 predicted genes, respectively. Consistent with the proteolytic phenotype of this strain, the genome harbors a large number of genes encoding secreted proteases and enzymes involved in uptake and metabolism of amino acids. The genome also reveals a hitherto unknown ability of C. botulinum to degrade chitin. There is a significant lack of recently acquired DNA, indicating a stable genomic content, in strong contrast to the fluid genome of Clostridium difficile, which can form longer-term relationships with its host. Overall, the genome indicates that C. botulinum is adapted to a saprophytic lifestyle both in soil and aquatic environments. This pathogen relies on its toxin to rapidly kill a wide range of prey species, and to gain access to nutrient sources, it releases a large number of extracellular enzymes to soften and destroy rotting or decayed tissues. PMID:17519437

  11. Comparison of Whole-Genome Sequencing and Molecular-Epidemiological Techniques for Clostridium difficile Strain Typing.

    PubMed

    Dominguez, Samuel R; Anderson, Lydia J; Kotter, Cassandra V; Littlehorn, Cynthia A; Arms, Lesley E; Dowell, Elaine; Todd, James K; Frank, Daniel N

    2016-09-01

    We analyzed in parallel 27 pediatric Clostridium difficile isolates by repetitive sequence-based polymerase chain reaction (RepPCR), pulsed-field gel electrophoresis (PFGE), and whole-genome next-generation sequencing. Next-generation sequencing distinguished 3 groups of isolates that were indistinguishable by RepPCR and 1 isolate that clustered in the same PFGE group as other isolates. PMID:26407257

  12. Genome Sequence of a Clostridium neonatale Strain Isolated in a Canadian Neonatal Intensive Care Unit

    PubMed Central

    Benamar, Samia; Cassir, Nadim

    2016-01-01

    Clostridium neonatale is a Gram-positive endospore-forming obligate anaerobe first isolated from the feces of premature neonates during an intensive care unit outbreak of necrotizing enterocolitis (NEC) in a Canadian neonatal intensive care unit. Here, we announce the genome draft sequence of this bacterium. It is composed of 4,710,818 bp and contains 4,169 protein-coding genes and 80 RNA genes, including 11 rRNA genes. PMID:26798088

  13. Genomic approach to studying nutritional requirements of Clostridium tyrobutyricum and other Clostridia causing late blowing defects.

    PubMed

    Storari, Michelangelo; Kulli, Sandra; Wüthrich, Daniel; Bruggmann, Rémy; Berthoud, Hélène; Arias-Roth, Emmanuelle

    2016-10-01

    Clostridium tyrobutyricum is the main microorganism responsible for the late blowing defect in hard and semi-hard cheeses, causing considerable economic losses to the cheese industry. Deeper knowledge of the metabolic requirements of this microorganism can lead to the development of more effective control approaches. In this work, the amino acids and B vitamins essential for sustaining the growth of C. tyrobutyricum were investigated using a genomic approach. As the first step, the genomes of four C. tyrobutyricum strains were analyzed for the presence of genes putatively involved in the biosynthesis of amino acids and B vitamins. Metabolic pathways could be reconstructed for all amino acids and B vitamins with the exception of biotin (vitamin B7) and folate (vitamin B9). The biotin pathway was missing the enzyme amino-7-oxononanoate synthase that catalyzes the condensation of pimeloyl-ACP and l-alanine to 8-amino-7-oxononanoate. In the folate pathway, the missing genes were those coding for para-aminobenzoate synthase and aminodeoxychorismate lyase enzymes. These enzymes are responsible for the conversion of chorismate into para-aminobenzoate (PABA). Two C. tyrobutyircum strains whose genome was analyzed in silico as well as other 10 strains isolated from cheese were tested in liquid media to confirm these observations. 11 strains showed growth in a defined liquid medium containing biotin and PABA after 6-8 days of incubation. No strain showed growth when only one or none of these compounds were added, confirming the observations obtained in silico. Furthermore, the genome analysis was extended to genomes of single strains of other Clostridium species potentially causing late blowing, namely Clostridium beijerinckii, Clostridium sporogenes and Clostridium butyricum. Only the biotin biosynthesis pathway was incomplete for C. butyricum and C. beijerincki. In contrast, C. sporogenes showed missing enzymes in biosynthesis pathways of several amino acids as well

  14. Complete Genome Sequence of Clostridium septicum Strain CSUR P1044, Isolated from the Human Gut Microbiota.

    PubMed

    Benamar, Samia; Cassir, Nadim; Caputo, Aurélia; Cadoret, Frédéric; La Scola, Bernard

    2016-01-01

    Clostridium septicum is one of the first pathogenic anaerobes to be identified. Here, we announce the genome draft sequence of C. septicum strain CSUR P1044 isolated from the gut of a healthy adult. Its chromosome genome consists of 3.2 Mbp with a plasmid of 32 Kbp. C. septicum strain CSUR P1044 has a G+C content of 27.5%, and is composed of 3,125 protein-coding genes together with 103 RNA genes, including 22 rRNA genes. PMID:27609912

  15. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus

    PubMed Central

    Lee, Yookyung; Lim, Sooyeon; Rhee, Moon-Soo; Chang, Dong-Ho; Kim, Byoung-Chan

    2016-01-01

    Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000. PMID:26981432

  16. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus.

    PubMed

    Lee, Yookyung; Lim, Sooyeon; Rhee, Moon-Soo; Chang, Dong-Ho; Kim, Byoung-Chan

    2016-03-01

    Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000. PMID:26981432

  17. Tracing the Spread of Clostridium difficile Ribotype 027 in Germany Based on Bacterial Genome Sequences

    PubMed Central

    Steglich, Matthias; Nitsche, Andreas; von Müller, Lutz; Herrmann, Mathias; Kohl, Thomas A.; Niemann, Stefan; Nübel, Ulrich

    2015-01-01

    We applied whole-genome sequencing to reconstruct the spatial and temporal dynamics underpinning the expansion of Clostridium difficile ribotype 027 in Germany. Based on re-sequencing of genomes from 57 clinical C. difficile isolates, which had been collected from hospitalized patients at 36 locations throughout Germany between 1990 and 2012, we demonstrate that C. difficile genomes have accumulated sequence variation sufficiently fast to document the pathogen's spread at a regional scale. We detected both previously described lineages of fluoroquinolone-resistant C. difficile ribotype 027, FQR1 and FQR2. Using Bayesian phylogeographic analyses, we show that fluoroquinolone-resistant C. difficile 027 was imported into Germany at least four times, that it had been widely disseminated across multiple federal states even before the first outbreak was noted in 2007, and that it has continued to spread since. PMID:26444881

  18. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    DOE PAGESBeta

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; et al

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less

  19. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    SciTech Connect

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  20. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    PubMed Central

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-01-01

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels. PMID:26035711

  1. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    PubMed

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet. PMID:26852409

  2. Mobile genetic elements in Clostridium difficile and their role in genome function

    PubMed Central

    Mullany, Peter; Allan, Elaine; Roberts, Adam P.

    2015-01-01

    Approximately 11% the Clostridium difficile genome is made up of mobile genetic elements which have a profound effect on the biology of the organism. This includes transfer of antibiotic resistance and other factors that allow the organism to survive challenging environments, modulation of toxin gene expression, transfer of the toxin genes themselves and the conversion of non-toxigenic strains to toxin producers. Mobile genetic elements have also been adapted by investigators to probe the biology of the organism and the various ways in which these have been used are reviewed. PMID:25576774

  3. Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase

    PubMed Central

    Xu, Tao; Li, Yongchao; Shi, Zhou; Hemme, Christopher L.; Li, Yuan; Zhu, Yonghua; Van Nostrand, Joy D.; He, Zhili

    2015-01-01

    The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum, a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency (>95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes. PMID:25911483

  4. Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase.

    PubMed

    Xu, Tao; Li, Yongchao; Shi, Zhou; Hemme, Christopher L; Li, Yuan; Zhu, Yonghua; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong

    2015-07-01

    The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum, a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency (>95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes. PMID:25911483

  5. Small RNAs in the Genus Clostridium

    PubMed Central

    Chen, Yili; Indurthi, Dinesh C.; Jones, Shawn W.; Papoutsakis, Eleftherios T.

    2011-01-01

    The genus Clostridium includes major human pathogens and species important to cellulose degradation, the carbon cycle, and biotechnology. Small RNAs (sRNAs) are emerging as crucial regulatory molecules in all organisms, but they have not been investigated in clostridia. Research on sRNAs in clostridia is hindered by the absence of a systematic method to identify sRNA candidates, thus delegating clostridial sRNA research to a hit-and-miss process. Thus, we wanted to develop a method to identify potential sRNAs in the Clostridium genus to open up the field of sRNA research in clostridia. Using comparative genomics analyses combined with predictions of rho-independent terminators and promoters, we predicted sRNAs in 21 clostridial genomes: Clostridium acetobutylicum, C. beijerinckii, C. botulinum (eight strains), C. cellulolyticum, C. difficile, C. kluyveri (two strains), C. novyi, C. perfringens (three strains), C. phytofermentans, C. tetani, and C. thermocellum. Although more than one-third of predicted sRNAs have Shine-Dalgarno (SD) sequences, only one-sixth have a start codon downstream of SD sequences; thus, most of the predicted sRNAs are noncoding RNAs. Quantitative reverse transcription-PCR (Q-RT-PCR) and Northern analysis were employed to test the presence of a randomly chosen set of sRNAs in C. acetobutylicum and several C. botulinum strains, leading to the confirmation of a large fraction of the tested sRNAs. We identified a conserved, novel sRNA which, together with the downstream gene coding for an ATP-binding cassette (ABC) transporter gene, responds to the antibiotic clindamycin. The number of predicted sRNAs correlated with the physiological function of the species (high for pathogens, low for cellulolytic, and intermediate for solventogenic), but not with 16S rRNA-based phylogeny. PMID:21264064

  6. Draft Genome Sequence of Clostridium beijerinckii Ne1, Clostridia from an Enrichment Culture Obtained from Australian Subterranean Termite, Nasutitermes exitiosus.

    PubMed

    Wang, Han; Lin, Hai; Tran-Dinh, Nai; Li, Dongmei; Greenfield, Paul; Midgley, David J

    2015-01-01

    The draft genome of Clostridium beijerinckii strain Ne1 was reconstructed from the metagenomic sequence of a mixed-microbial consortium that produced commercially significant quantities of hydrogen from xylan as a sole feedstock. The organism possesses relatively limited hemicellulolytic capacity and likely requires the action of other organisms to completely degrade xylan. PMID:25908128

  7. Draft Genome Sequences of Two Clostridium botulinum Group II (Nonproteolytic) Type B Strains (DB-2 and KAPB-3).

    PubMed

    Petronella, Nicholas; Kenwell, Robyn; Pagotto, Franco; Pightling, Arthur W

    2014-01-01

    Clostridium botulinum is important for food safety and studies of neurotoxins associated with human botulism. We present the draft genome sequences of two strains belonging to group II type B: one collected from Pacific Ocean sediments (DB-2) and another obtained during a botulism outbreak (KAPB-3). PMID:25377702

  8. Draft Genome Sequence of Clostridium beijerinckii Ne1, Clostridia from an Enrichment Culture Obtained from Australian Subterranean Termite, Nasutitermes exitiosus

    PubMed Central

    Lin, Hai; Tran-Dinh, Nai; Li, Dongmei; Greenfield, Paul; Midgley, David J.

    2015-01-01

    The draft genome of Clostridium beijerinckii strain Ne1 was reconstructed from the metagenomic sequence of a mixed-microbial consortium that produced commercially significant quantities of hydrogen from xylan as a sole feedstock. The organism possesses relatively limited hemicellulolytic capacity and likely requires the action of other organisms to completely degrade xylan. PMID:25908128

  9. Draft Genome Sequence of Clostridium difficile Strain IT1118, an Epidemic Isolate Belonging to the Emerging PCR Ribotype 018

    PubMed Central

    Wasels, François; Barbanti, Fabrizio

    2016-01-01

    Clostridium difficile PCR ribotype 018 has emerged in Italy, South Korea, and Japan, causing severe infections and outbreaks. In this study, we sequenced the genome of IT1118, an Italian clinical isolate, to clarify the molecular features contributing to the success of this epidemic type. PMID:27445391

  10. Genomic Organization and Molecular Characterization of Clostridium difficile Bacteriophage ΦCD119

    PubMed Central

    Govind, Revathi; Fralick, Joe A.; Rolfe, Rial D.

    2006-01-01

    In this study, we have isolated a temperate phage (ΦCD119) from a pathogenic Clostridium difficile strain and sequenced and annotated its genome. This virus has an icosahedral capsid and a contractile tail covered by a sheath and contains a double-stranded DNA genome. It belongs to the Myoviridae family of the tailed phages and the order Caudovirales. The genome was circularly permuted, with no physical ends detected by sequencing or restriction enzyme digestion analysis, and lacked a cos site. The DNA sequence of this phage consists of 53,325 bp, which carries 79 putative open reading frames (ORFs). A function could be assigned to 23 putative gene products, based upon bioinformatic analyses. The ΦCD119 genome is organized in a modular format, which includes modules for lysogeny, DNA replication, DNA packaging, structural proteins, and host cell lysis. The ΦCD119 attachment site attP lies in a noncoding region close to the putative integrase (int) gene. We have identified the phage integration site on the C. difficile chromosome (attB) located in a noncoding region just upstream of gene gltP, which encodes a carrier protein for glutamate and aspartate. This genetic analysis represents the first complete DNA sequence and annotation of a C. difficile phage. PMID:16547044

  11. Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data.

    PubMed

    Weedmark, K A; Mabon, P; Hayden, K L; Lambert, D; Van Domselaar, G; Austin, J W; Corbett, C R

    2015-09-01

    Clostridium botulinum group II isolates (n = 163) from different geographic regions, outbreaks, and neurotoxin types and subtypes were characterized in silico using whole-genome sequence data. Two clusters representing a variety of botulinum neurotoxin (BoNT) types and subtypes were identified by multilocus sequence typing (MLST) and core single nucleotide polymorphism (SNP) analysis. While one cluster included BoNT/B4/F6/E9 and nontoxigenic members, the other comprised a wide variety of different BoNT/E subtype isolates and a nontoxigenic strain. In silico MLST and core SNP methods were consistent in terms of clade-level isolate classification; however, core SNP analysis showed higher resolution capability. Furthermore, core SNP analysis correctly distinguished isolates by outbreak and location. This study illustrated the utility of next-generation sequence-based typing approaches for isolate characterization and source attribution and identified discrete SNP loci and MLST alleles for isolate comparison. PMID:26116673

  12. Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data

    PubMed Central

    Weedmark, K. A.; Mabon, P.; Hayden, K. L.; Lambert, D.; Van Domselaar, G.; Austin, J. W.

    2015-01-01

    Clostridium botulinum group II isolates (n = 163) from different geographic regions, outbreaks, and neurotoxin types and subtypes were characterized in silico using whole-genome sequence data. Two clusters representing a variety of botulinum neurotoxin (BoNT) types and subtypes were identified by multilocus sequence typing (MLST) and core single nucleotide polymorphism (SNP) analysis. While one cluster included BoNT/B4/F6/E9 and nontoxigenic members, the other comprised a wide variety of different BoNT/E subtype isolates and a nontoxigenic strain. In silico MLST and core SNP methods were consistent in terms of clade-level isolate classification; however, core SNP analysis showed higher resolution capability. Furthermore, core SNP analysis correctly distinguished isolates by outbreak and location. This study illustrated the utility of next-generation sequence-based typing approaches for isolate characterization and source attribution and identified discrete SNP loci and MLST alleles for isolate comparison. PMID:26116673

  13. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review.

    PubMed

    Lacey, Jake A; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J

    2016-06-01

    The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease. PMID:26949841

  14. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  15. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater.

    PubMed

    Shimizu, Tohru; Ohtani, Kaori; Hirakawa, Hideki; Ohshima, Kenshiro; Yamashita, Atsushi; Shiba, Tadayoshi; Ogasawara, Naotake; Hattori, Masahira; Kuhara, Satoru; Hayashi, Hideo

    2002-01-22

    Clostridium perfringens is a Gram-positive anaerobic spore-forming bacterium that causes life-threatening gas gangrene and mild enterotoxaemia in humans, although it colonizes as normal intestinal flora of humans and animals. The organism is known to produce a variety of toxins and enzymes that are responsible for the severe myonecrotic lesions. Here we report the complete 3,031,430-bp sequence of C. perfringens strain 13 that comprises 2,660 protein coding regions and 10 rRNA genes, showing pronounced low overall G + C content (28.6%). The genome contains typical anaerobic fermentation enzymes leading to gas production but no enzymes for the tricarboxylic acid cycle or respiratory chain. Various saccharolytic enzymes were found, but many enzymes for amino acid biosynthesis were lacking in the genome. Twenty genes were newly identified as putative virulence factors of C. perfringens, and we found a total of five hyaluronidase genes that will also contribute to virulence. The genome analysis also proved an efficient method for finding four members of the two-component VirR/VirS regulon that coordinately regulates the pathogenicity of C. perfringens. Clearly, C. perfringens obtains various essential materials from the host by producing several degradative enzymes and toxins, resulting in massive destruction of the host tissues. PMID:11792842

  16. Construction and Evaluation of a Clostridium thermocellum ATCC 27405 Whole-Genome Oligonucleotide Microarray

    NASA Astrophysics Data System (ADS)

    Brown, Steven D.; Raman, Babu; McKeown, Catherine K.; Kale, Shubha P.; He, Zhili; Mielenz, Jonathan R.

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  17. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  18. A Universal Mariner Transposon System for Forward Genetic Studies in the Genus Clostridium

    PubMed Central

    Zhang, Ying; Grosse-Honebrink, Alexander; Minton, Nigel P.

    2015-01-01

    DNA transposons represent an essential tool in the armoury of the molecular microbiologist. We previously developed a catP-based mini transposon system for Clostridium difficile in which the expression of the transposase gene was dependent on a sigma factor unique to C. difficile, TcdR. Here we have shown that the host range of the transposon is easily extended through the rapid chromosomal insertion of the tcdR gene at the pyrE locus of the intended clostridial target using Allele-Coupled Exchange (ACE). To increase the effectiveness of the system, a novel replicon conditional for plasmid maintenance was developed, which no longer supports the effective retention of the transposon delivery vehicle in the presence of the inducer isopropyl β-D-1-thiogalactopyranoside (IPTG). As a consequence, those thiamphenicol resistant colonies that arise in clostridial recipients, following plating on agar medium supplemented with IPTG, are almost exclusively due to insertion of the mini transposon into the genome. The system has been exemplified in both Clostridium acetobutylicum and Clostridium sporogenes, where transposon insertion has been shown to be entirely random. Moreover, appropriate screening of both libraries resulted in the isolation of auxotrophic mutants as well as cells deficient in spore formation/germination. This strategy is capable of being implemented in any Clostridium species. PMID:25836262

  19. Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence

    PubMed Central

    Kumar, Nitin; Miyajima, Fabio; He, Miao; Roberts, Paul; Swale, Andrew; Ellison, Louise; Pickard, Derek; Smith, Godfrey; Molyneux, Rebecca; Dougan, Gordon; Parkhill, Julian; Wren, Brendan W.; Parry, Christopher M.; Pirmohamed, Munir; Lawley, Trevor D.

    2016-01-01

    Background. Accurate tracking of Clostridium difficile transmission within healthcare settings is key to its containment but is hindered by the lack of discriminatory power of standard genotyping methods. We describe a whole-genome phylogenetic-based method to track the transmission of individual clones in infected hospital patients from the epidemic C. difficile 027/ST1 lineage, and to distinguish between the 2 causes of recurrent disease, relapse (same strain), or reinfection (different strain). Methods. We monitored patients with C. difficile infection in a UK hospital over a 2-year period. We performed whole-genome sequencing and phylogenetic analysis of 108 strains isolated from symptomatic patients. High-resolution phylogeny was integrated with in-hospital transfers and contact data to create an infection network linking individual patients and specific hospital wards. Results. Epidemic C. difficile 027/ST1 caused the majority of infections during our sampling period. Integration of whole-genome single nucleotide polymorphism (SNP) phylogenetic analysis, which accurately discriminated between 27 distinct SNP genotypes, with patient movement and contact data identified 32 plausible transmission events, including ward-based contamination (66%) or direct donor–recipient contact (34%). Highly contagious donors were identified who contributed to the persistence of clones within distinct hospital wards and the spread of clones between wards, especially in areas of intense turnover. Recurrent cases were identified between 4 and 26 weeks, highlighting the limitation of the standard <8-week cutoff used for patient diagnosis and management. Conclusions. Genome-based infection tracking to monitor the persistence and spread of C. difficile within healthcare facilities could inform infection control and patient management. PMID:26683317

  20. New Insights into the Genetic Diversity of Clostridium botulinum Group III through Extensive Genome Exploration.

    PubMed

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Mermoud, Isabelle; Desoutter, Denise; Fach, Patrick

    2016-01-01

    Animal botulism is caused by group III Clostridium botulinum strains producing type C and D toxins, or their chimeric forms C/D and D/C. Animal botulism is considered an emerging disease in Europe, notably in poultry production. Before our study, 14 genomes from different countries were available in the public database, but none were from France. In order to investigate the genetic relationship of French strains with different geographical areas and find new potential typing targets, 17 strains of C. botulinum group III were sequenced (16 from France and one from New Caledonia). Fourteen were type C/D strains isolated from chickens, ducks, guinea fowl and turkeys and three were type D/C strains isolated from cattle. The New Caledonian strain was a type D/C strain. Whole genome sequence analysis showed the French strains to be closely related to European strains from C. botulinum group III lineages Ia and Ib. The investigation of CRISPR sequences as genetic targets for differentiating strains in group III proved to be irrelevant for type C/D due to a deficient CRISPR/Cas mechanism, but not for type D/C. Conversely, the extrachromosomal elements of type C/D strains could be used to generate a genetic ID card. The highest level of discrimination was achieved with SNP core phylogeny, which allowed differentiation up to strain level and provide the most relevant information for genetic epidemiology studies and discrimination. PMID:27242769

  1. New Insights into the Genetic Diversity of Clostridium botulinum Group III through Extensive Genome Exploration

    PubMed Central

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Mermoud, Isabelle; Desoutter, Denise; Fach, Patrick

    2016-01-01

    Animal botulism is caused by group III Clostridium botulinum strains producing type C and D toxins, or their chimeric forms C/D and D/C. Animal botulism is considered an emerging disease in Europe, notably in poultry production. Before our study, 14 genomes from different countries were available in the public database, but none were from France. In order to investigate the genetic relationship of French strains with different geographical areas and find new potential typing targets, 17 strains of C. botulinum group III were sequenced (16 from France and one from New Caledonia). Fourteen were type C/D strains isolated from chickens, ducks, guinea fowl and turkeys and three were type D/C strains isolated from cattle. The New Caledonian strain was a type D/C strain. Whole genome sequence analysis showed the French strains to be closely related to European strains from C. botulinum group III lineages Ia and Ib. The investigation of CRISPR sequences as genetic targets for differentiating strains in group III proved to be irrelevant for type C/D due to a deficient CRISPR/Cas mechanism, but not for type D/C. Conversely, the extrachromosomal elements of type C/D strains could be used to generate a genetic ID card. The highest level of discrimination was achieved with SNP core phylogeny, which allowed differentiation up to strain level and provide the most relevant information for genetic epidemiology studies and discrimination. PMID:27242769

  2. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans

    PubMed Central

    Zuroff, Trevor R.; Ramya, Mohandass; Boutard, Magali; Cerisy, Tristan; Curtis, Wayne R.

    2015-01-01

    Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance. PMID:26048945

  3. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans.

    PubMed

    Tolonen, Andrew C; Zuroff, Trevor R; Ramya, Mohandass; Boutard, Magali; Cerisy, Tristan; Curtis, Wayne R

    2015-08-15

    Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance. PMID:26048945

  4. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.

    PubMed

    Seedorf, Henning; Fricke, W Florian; Veith, Birgit; Brüggemann, Holger; Liesegang, Heiko; Strittmatter, Axel; Miethke, Marcus; Buckel, Wolfgang; Hinderberger, Julia; Li, Fuli; Hagemeier, Christoph; Thauer, Rudolf K; Gottschalk, Gerhard

    2008-02-12

    Clostridium kluyveri is unique among the clostridia; it grows anaerobically on ethanol and acetate as sole energy sources. Fermentation products are butyrate, caproate, and H2. We report here the genome sequence of C. kluyveri, which revealed new insights into the metabolic capabilities of this well studied organism. A membrane-bound energy-converting NADH:ferredoxin oxidoreductase (RnfCDGEAB) and a cytoplasmic butyryl-CoA dehydrogenase complex (Bcd/EtfAB) coupling the reduction of crotonyl-CoA to butyryl-CoA with the reduction of ferredoxin represent a new energy-conserving module in anaerobes. The genes for NAD-dependent ethanol dehydrogenase and NAD(P)-dependent acetaldehyde dehydrogenase are located next to genes for microcompartment proteins, suggesting that the two enzymes, which are isolated together in a macromolecular complex, form a carboxysome-like structure. Unique for a strict anaerobe, C. kluyveri harbors three sets of genes predicted to encode for polyketide/nonribosomal peptide synthetase hybrides and one set for a nonribosomal peptide synthetase. The latter is predicted to catalyze the synthesis of a new siderophore, which is formed under iron-deficient growth conditions. PMID:18218779

  5. Draft Genome Sequence of Bivalent Clostridium botulinum Strain IBCA10-7060, Encoding Botulinum Neurotoxin B and a New FA Mosaic Type.

    PubMed

    Gonzalez-Escalona, Narjol; Thirunavukkarasu, Nagarajan; Singh, Ajay; Toro, Magaly; Brown, Eric W; Zink, Donald; Rummel, Andreas; Sharma, Shashi K

    2014-01-01

    Here we report the genome sequence of a Clostridium botulinum strain IBCA10-7060 producing botulinum neurotoxin serotype B and a new toxin serotype. Multilocus sequence typing analysis revealed that this strain belongs to a new sequence type, and whole-genome single nucleotide polymorphism analysis showed that this strain clustered with strains in lineage 2 from group I. PMID:25502671

  6. Identification of accessory genome regions in poultry Clostridium perfringens isolates carrying the netB plasmid.

    PubMed

    Lepp, D; Gong, J; Songer, J G; Boerlin, P; Parreira, V R; Prescott, J F

    2013-03-01

    Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. NE pathogenesis involves the NetB toxin, which is encoded on a large conjugative plasmid within a 42-kb pathogenicity locus. Recent multilocus sequence type (MLST) studies have identified two predominant NE-associated clonal groups, suggesting that host genes are also involved in NE pathogenesis. We used microarray comparative genomic hybridization (CGH) to assess the gene content of 54 poultry isolates from birds that were healthy or that suffered from NE. A total of 400 genes were variably present among the poultry isolates and nine nonpoultry strains, many of which had putative functions related to nutrient uptake and metabolism and cell wall and capsule biosynthesis. The variable genes were organized into 142 genomic regions, 49 of which contained genes significantly associated with netB-positive isolates. These regions included three previously identified NE-associated loci as well as several apparent fitness-related loci, such as a carbohydrate ABC transporter, a ferric-iron siderophore uptake system, and an adhesion locus. Additional loci were related to plasmid maintenance. Cluster analysis of the CGH data grouped all of the netB-positive poultry isolates into two major groups, separated according to two prevalent clonal groups based on MLST analysis. This study identifies chromosomal loci associated with netB-positive poultry strains, suggesting that the chromosomal background can confer a selective advantage to NE-causing strains, possibly through mechanisms involving iron acquisition, carbohydrate metabolism, and plasmid maintenance. PMID:23292780

  7. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    PubMed Central

    2013-01-01

    Background The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H2/CO2, and more importantly on synthesis gas (H2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels. PMID:24274140

  8. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    SciTech Connect

    Nagarajan, H; Sahin, M; Nogales, J; Latif, H; Lovley, DR; Ebrahim, A; Zengler, K

    2013-11-25

    Background: The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H-2/CO2, and more importantly on synthesis gas (H-2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results: Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions: iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels.

  9. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    PubMed Central

    2010-01-01

    Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Conclusions Analysis of the C. sticklandii genome and

  10. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile.

    PubMed

    Soutourina, Olga A; Monot, Marc; Boudry, Pierre; Saujet, Laure; Pichon, Christophe; Sismeiro, Odile; Semenova, Ekaterina; Severinov, Konstantin; Le Bouguenec, Chantal; Coppée, Jean-Yves; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2013-05-01

    Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA-seq and differential 5'-end RNA-seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA-based regulation of gene expression in this emergent enteropathogen. PMID:23675309

  11. Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile

    PubMed Central

    Soutourina, Olga A.; Monot, Marc; Boudry, Pierre; Saujet, Laure; Pichon, Christophe; Sismeiro, Odile; Semenova, Ekaterina; Severinov, Konstantin; Le Bouguenec, Chantal; Coppée, Jean-Yves; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen. PMID:23675309

  12. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  13. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    NASA Astrophysics Data System (ADS)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  14. Draft Genome Sequence of an Oxalate-Degrading Strain of Clostridium sporogenes from the Gastrointestinal Tract of the White-Throated Woodrat (Neotoma albigula).

    PubMed

    Oakeson, Kelly F; Miller, Aaron; Dale, Colin; Dearing, Denise

    2016-01-01

    The gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula. PMID:27198026

  15. Draft Genome Sequence of an Oxalate-Degrading Strain of Clostridium sporogenes from the Gastrointestinal Tract of the White-Throated Woodrat (Neotoma albigula)

    PubMed Central

    Miller, Aaron; Dale, Colin; Dearing, Denise

    2016-01-01

    The gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula. PMID:27198026

  16. Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2

    SciTech Connect

    Brown, Steven D; Lamed, Raphael; Morag, Ely; Borovok, Ilya; Shoham, Yuval; Klingeman, Dawn Marie; Johnson, Courtney M; Yang, Zamin; Land, Miriam L; Utturkar, Sagar M; Keller, Martin; Bayer, Edward A

    2012-01-01

    Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain AD2 played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.

  17. The Genome Sequence of Bacteriophage CPV1 Virulent for Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents. P...

  18. Complete genome sequence of the podoviral bacteriophage CP24R virulent for Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage 'CP24R was isolated from raw sewage of a waste treatment plant and lytic activity was observed against a type C Clostridium perfringens isolate. Electron microscopy revealed a small virion (44nm diameter icosahedral capsid) with a short, non-contractile tail, indicative of the family ...

  19. THE GENOME SEQUENCE OF BACTERIOPHAGE CpV1 LYTIC FOR CLOSTRIDIUM PERFRINGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of bacteriophages and their lytic enzymes to control Clostri-dium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. We have established a collection of 30 bacteriophages lytic for C. perfringens. These were isolated from s...

  20. Draft Genome Sequences of Three Novel Clostridium Isolates from Northern Iraq

    PubMed Central

    Rashid, Srwa R. J.; Clokie, Martha R. J.

    2016-01-01

    Three Clostridium sp. strains were isolated from soil and sediment collected from the Kurdistan region of Iraq. All three isolates were found to harbor putative prophages, with a CRISPR-Cas system found in strains C105KSO13 and C105KSO14. PMID:26950326

  1. Complete Genome Sequence of the Nonpathogenic Soil-Dwelling Bacterium Clostridium sporogenes Strain NCIMB 10696

    PubMed Central

    Kubiak, Aleksandra M.; Poehlein, Anja; Budd, Patrick; Kuehne, Sarah A.; Winzer, Klaus; Theys, Jan; Lambin, Philip; Daniel, Rolf

    2015-01-01

    Clostridium sporogenes is a harmless spore-forming anaerobe that is widely distributed in soil/water and in the intestines of humans and animals. It is extensively used as a safe model to test the suitability of new preservative methods by the food industry and has potential to deliver therapeutic agents to tumors. PMID:26294634

  2. Comparative genomic analysis of single-molecule sequencing and hybrid approaches for finishing the Clostridium autoethanogenum JA1-1 strain DSM 10061 genome

    SciTech Connect

    Brown, Steven D; Nagaraju, Shilpa; Utturkar, Sagar M; De Tissera, Sashini; Segovia, Simón; Mitchell, Wayne; Land, Miriam L; Dassanayake, Asela; Köpke, Michael

    2014-01-01

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a

  3. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011

    PubMed Central

    Knetsch, C W; Connor, T R; Mutreja, A; van Dorp, S M; Sanders, I M; Browne, H P; Harris, D; Lipman, L; Keessen, E C; Corver, J; Kuijper, E J; Lawley, T D

    2015-01-01

    Farm animals are a potential reservoir for human Clostridium difficile infection (CDI), particularly PCR ribotype 078 which is frequently found in animals and humans. Here, whole genome single-nucleotide polymorphism (SNP) analysis was used to study the evolutionary relatedness of C. difficile 078 isolated from humans and animals on Dutch pig farms. All sequenced genomes were surveyed for potential antimicrobial resistance determinants and linked to an antimicrobial resistance phenotype. We sequenced the whole genome of 65 C. difficile 078 isolates collected between 2002 and 2011 from pigs (n = 19), asymptomatic farmers (n = 15) and hospitalised patients (n = 31) in the Netherlands. The collection included 12 pairs of human and pig isolates from 2011 collected at 12 different pig farms. A mutation rate of 1.1 SNPs per genome per year was determined for C. difficile 078. Importantly, we demonstrate that farmers and pigs were colonised with identical (no SNP differences) and nearly identical (less than two SNP differences) C. difficile clones. Identical tetracycline and streptomycin resistance determinants were present in human and animal C. difficile 078 isolates. Our observation that farmers and pigs share identical C. difficile strains suggests transmission between these populations, although we cannot exclude the possibility of transmission from a common environmental source. PMID:25411691

  4. Comparison of GenomEra C. difficile and Xpert C. difficile as Confirmatory Tests in a Multistep Algorithm for Diagnosis of Clostridium difficile Infection

    PubMed Central

    Reigadas, Elena; Marín, Mercedes; Fernández-Chico, Antonia; Catalán, Pilar; Bouza, Emilio

    2014-01-01

    We compared two multistep diagnostic algorithms based on C. Diff Quik Chek Complete and, as confirmatory tests, GenomEra C. difficile and Xpert C. difficile. The sensitivity, specificity, positive predictive value, and negative predictive value were 87.2%, 99.7%, 97.1%, and 98.3%, respectively, for the GenomEra-based algorithm and 89.7%, 99.4%, 95.5%, and 98.6%, respectively, for the Xpert-based algorithm. GenomEra represents an alternative to Xpert as a confirmatory test of a multistep algorithm for Clostridium difficile infection (CDI) diagnosis. PMID:25392360

  5. Sequence Similarity of Clostridium difficile Strains by Analysis of Conserved Genes and Genome Content Is Reflected by Their Ribotype Affiliation

    PubMed Central

    Kurka, Hedwig; Ehrenreich, Armin; Ludwig, Wolfgang; Monot, Marc; Rupnik, Maja; Barbut, Frederic; Indra, Alexander; Dupuy, Bruno; Liebl, Wolfgang

    2014-01-01

    PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S–23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation. PMID:24482682

  6. Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation.

    PubMed

    Kurka, Hedwig; Ehrenreich, Armin; Ludwig, Wolfgang; Monot, Marc; Rupnik, Maja; Barbut, Frederic; Indra, Alexander; Dupuy, Bruno; Liebl, Wolfgang

    2014-01-01

    PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S-23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation. PMID:24482682

  7. The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens

    PubMed Central

    Poehlein, Anja; Cebulla, Martin; Ilg, Marcus M.; Bengelsdorf, Frank R.; Schiel-Bengelsdorf, Bettina; Whited, Gregg; Andreesen, Jan R.; Gottschalk, Gerhard; Daniel, Rolf

    2015-01-01

    ABSTRACT Clostridium aceticum was the first isolated autotrophic acetogen, converting CO2 plus H2 or syngas to acetate. Its genome has now been completely sequenced and consists of a 4.2-Mbp chromosome and a small circular plasmid of 5.7 kbp. Sequence analysis revealed major differences from other autotrophic acetogens. C. aceticum contains an Rnf complex for energy conservation (via pumping protons or sodium ions). Such systems have also been found in C. ljungdahlii and Acetobacterium woodii. However, C. aceticum also contains a cytochrome, as does Moorella thermoacetica, which has been proposed to be involved in the generation of a proton gradient. Thus, C. aceticum seems to represent a link between Rnf- and cytochrome-containing autotrophic acetogens. In C. aceticum, however, the cytochrome is probably not involved in an electron transport chain that leads to proton translocation, as no genes for quinone biosynthesis are present in the genome. PMID:26350967

  8. Butanol Production from Crystalline Cellulose by Cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4 ▿

    PubMed Central

    Nakayama, Shunichi; Kiyoshi, Keiji; Kadokura, Toshimori; Nakazato, Atsumi

    2011-01-01

    We investigated butanol production from crystalline cellulose by cocultured cellulolytic Clostridium thermocellum and the butanol-producing strain, Clostridium saccharoperbutylacetonicum (strain N1-4). Butanol was produced from Avicel cellulose after it was incubated with C. thermocellum for at least 24 h at 60°C before the addition of strain N1-4. Butanol produced by strain N1-4 on 4% Avicel cellulose peaked (7.9 g/liter) after 9 days of incubation at 30°C, and acetone was undetectable in this coculture system. Less butanol was produced by cocultured Clostridium acetobutylicum and Clostridium beijerinckii than by strain N1-4, indicating that strain N1-4 was the optimal strain for producing butanol from crystalline cellulose in this coculture system. PMID:21764954

  9. Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales, Australia.

    PubMed

    McCallum, Nadine; Gray, Timothy J; Wang, Qinning; Ng, Jimmy; Hicks, Leanne; Nguyen, Trang; Yuen, Marion; Hill-Cawthorne, Grant A; Sintchenko, Vitali

    2015-09-01

    Infant botulism is a potentially life-threatening paralytic disease that can be associated with prolonged morbidity if not rapidly diagnosed and treated. Four infants were diagnosed and treated for infant botulism in NSW, Australia, between May 2011 and August 2013. Despite the temporal relationship between the cases, there was no close geographical clustering or other epidemiological links. Clostridium botulinum isolates, three of which produced botulism neurotoxin serotype A (BoNT/A) and one BoNT serotype B (BoNT/B), were characterized using whole-genome sequencing (WGS). In silico multilocus sequence typing (MLST) found that two of the BoNT/A-producing isolates shared an identical novel sequence type, ST84. The other two isolates were single-locus variants of this sequence type (ST85 and ST86). All BoNT/A-producing isolates contained the same chromosomally integrated BoNT/A2 neurotoxin gene cluster. The BoNT/B-producing isolate carried a single plasmid-borne bont/B gene cluster, encoding BoNT subtype B6. Single nucleotide polymorphism (SNP)-based typing results corresponded well with MLST; however, the extra resolution provided by the whole-genome SNP comparisons showed that the isolates differed from each other by >3,500 SNPs. WGS analyses indicated that the four infant botulism cases were caused by genomically distinct strains of C. botulinum that were unlikely to have originated from a common environmental source. The isolates did, however, cluster together, compared with international isolates, suggesting that C. botulinum from environmental reservoirs throughout NSW have descended from a common ancestor. Analyses showed that the high resolution of WGS provided important phylogenetic information that would not be captured by standard seven-loci MLST. PMID:26109442

  10. Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales, Australia

    PubMed Central

    Gray, Timothy J.; Wang, Qinning; Ng, Jimmy; Hicks, Leanne; Nguyen, Trang; Yuen, Marion; Hill-Cawthorne, Grant A.; Sintchenko, Vitali

    2015-01-01

    Infant botulism is a potentially life-threatening paralytic disease that can be associated with prolonged morbidity if not rapidly diagnosed and treated. Four infants were diagnosed and treated for infant botulism in NSW, Australia, between May 2011 and August 2013. Despite the temporal relationship between the cases, there was no close geographical clustering or other epidemiological links. Clostridium botulinum isolates, three of which produced botulism neurotoxin serotype A (BoNT/A) and one BoNT serotype B (BoNT/B), were characterized using whole-genome sequencing (WGS). In silico multilocus sequence typing (MLST) found that two of the BoNT/A-producing isolates shared an identical novel sequence type, ST84. The other two isolates were single-locus variants of this sequence type (ST85 and ST86). All BoNT/A-producing isolates contained the same chromosomally integrated BoNT/A2 neurotoxin gene cluster. The BoNT/B-producing isolate carried a single plasmid-borne bont/B gene cluster, encoding BoNT subtype B6. Single nucleotide polymorphism (SNP)-based typing results corresponded well with MLST; however, the extra resolution provided by the whole-genome SNP comparisons showed that the isolates differed from each other by >3,500 SNPs. WGS analyses indicated that the four infant botulism cases were caused by genomically distinct strains of C. botulinum that were unlikely to have originated from a common environmental source. The isolates did, however, cluster together, compared with international isolates, suggesting that C. botulinum from environmental reservoirs throughout NSW have descended from a common ancestor. Analyses showed that the high resolution of WGS provided important phylogenetic information that would not be captured by standard seven-loci MLST. PMID:26109442

  11. Comparative genomic analysis of a neurotoxigenic Clostridium species using partial genome sequence: Phylogenetic analysis of a few conserved proteins involved in cellular processes and metabolism.

    PubMed

    Alam, Syed Imteyaz; Dixit, Aparna; Tomar, Arvind; Singh, Lokendra

    2010-04-01

    Clostridial organisms produce neurotoxins, which are generally regarded as the most potent toxic substances of biological origin and potential biological warfare agents. Clostridium tetani produces tetanus neurotoxin and is responsible for the fatal tetanus disease. In spite of the extensive immunization regimen, the disease is an important cause of death especially among neonates. Strains of C. tetani have not been genetically characterized except the complete genome sequencing of strain E88. The present study reports the genetic makeup and phylogenetic affiliations of an environmental strain of this bacterium with respect to C. tetani E88 and other clostridia. A shot gun library was constructed from the genomic DNA of C. tetani drde, isolated from decaying fish sample. Unique clones were sequenced and sequences compared with its closest relative C. tetani E88. A total of 275 clones were obtained and 32,457 bases of non-redundant sequence were generated. A total of 150 base changes were observed over the entire length of sequence obtained, including, additions, deletions and base substitutions. Of the total 120 ORFs detected, 48 exhibited closest similarity to E88 proteins of which three are hypothetical proteins. Eight of the ORFs exhibited similarity with hypothetical proteins from other organisms and 10 aligned with other proteins from unrelated organisms. There is an overall conservation of protein sequences among the two strains of C. tetani and. Selected ORFs involved in cellular processes and metabolism were subjected to phylogenetic analysis. PMID:19527791

  12. Clostridium perfringens bacteriophages FCP39O and FCP26F: genomic organization and proteomic analysis of the virions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initial screening for bacteriophages lytic for Clostridium perfringens was performed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Lytic phage preparations were initially characterized by transmission electron microscopy ...

  13. Genome sequencing and analysis of a type A Clostridium perfringens isolate from a case of bovine clostridial abomasitis.

    PubMed

    Nowell, Victoria J; Kropinski, Andrew M; Songer, J Glenn; MacInnes, Janet I; Parreira, Valeria R; Prescott, John F

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860

  14. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii.

    PubMed

    Zagrodnik, R; Laniecki, M

    2016-01-01

    The role of light intensity on biohydrogen production from glucose by Clostridium beijerinckii, Clostridium acetobutylicum, and Rhodobacter sphaeroides was studied to evaluate the performance and possible application in co-culture fermentation system. The applied source of light had spectrum similar to the solar radiation. The influence of light intensity on hydrogen production in dark process by C. acetobutylicum was negligible. In contrast, dark fermentation by C. beijerinckii bacteria showed a significant decrease (83%) in produced hydrogen at light intensity of 540W/m(2). Here, the redirection of metabolism from acetic and butyric acid formation towards lactic acid was observed. This not yet reported effect was probably caused by irradiation of these bacteria by light within UVA range, which is an important component of the solar radiation. The excessive illumination with light of intensity higher than 200W/m(2) resulted in decrease in hydrogen production with photofermentative bacteria as well. PMID:26602144

  15. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.

    PubMed

    Wang, Yi; Zhang, Zhong-Tian; Seo, Seung-Oh; Lynn, Patrick; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2016-07-15

    CRISPR-Cas9 has been demonstrated as a transformative genome engineering tool for many eukaryotic organisms; however, its utilization in bacteria remains limited and ineffective. Here we explored Streptococcus pyogenes CRISPR-Cas9 for genome editing in Clostridium beijerinckii (industrially significant but notorious for being difficult to metabolically engineer) as a representative attempt to explore CRISPR-Cas9 for genome editing in microorganisms that previously lacked sufficient genetic tools. By combining inducible expression of Cas9 and plasmid-borne editing templates, we successfully achieved gene deletion and integration with high efficiency in single steps. We further achieved single nucleotide modification by applying innovative two-step approaches, which do not rely on availability of Protospacer Adjacent Motif sequences. Severe vector integration events were observed during the genome engineering process, which is likely difficult to avoid but has never been reported by other researchers for the bacterial genome engineering based on homologous recombination with plasmid-borne editing templates. We then further successfully employed CRISPR-Cas9 as an efficient tool for selecting desirable "clean" mutants in this study. The approaches we developed are broadly applicable and will open the way for precise genome editing in diverse microorganisms. PMID:27115041

  16. Complete genome analysis of Clostridium bornimense strain M2/40(T): A new acidogenic Clostridium species isolated from a mesophilic two-phase laboratory-scale biogas reactor.

    PubMed

    Tomazetto, Geizecler; Hahnke, Sarah; Koeck, Daniela E; Wibberg, Daniel; Maus, Irena; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas

    2016-08-20

    Taxonomic and functional profiling based on metagenome analyses frequently revealed that members of the class Clostridia dominate biogas reactor communities and perform different essential metabolic pathways in the biogas fermentation process. Clostridium bornimense strain M2/40(T) was recently isolated from a mesophilic two-phase lab-scale biogas reactor continuously fed with maize silage and wheat straw. The genome of the strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding carbohydrate active enzyme production and fermentation of organic compounds for consolidated biofuel production from biomass. The C. bornimense M2/40(T) genome consists of a chromosome (2,917,864bp in size) containing 2613 protein coding sequences, and a 699,161bp chromid (secondary replicon) harboring 680 coding sequences. Both replicons feature very similar GC-contents of approximately 29%. The complex genome comprises three prophage regions, two CRISPR-cas systems and a putative cellulosomal gene cluster that is located on the second replicon (chromid) of the strain. The overexpressed glycosyl hydrolases (GH) CelK (GH9) and CelA (GH48) encoded in the cellulosomal gene cluster were shown to be active on the substrates xylan and xyloglucan whereas XghA (GH74) is highly active on xyloglucan. Reconstruction of fermentation pathways from genome sequence data revealed that strain M2/40(T) encodes all enzymes for hydrogen, acetate, formate, lactate, butyrate, and ethanol production, leading to the classification of the isolate as acidogenic bacterium. Phylogenetic analyses uncovered that the closest characterized relative of C. bornimense is C. cellulovorans. Comparative analyses of the C. bornimense and C. cellulovorans genomes revealed considerable rearrangements within their chromosomes suggesting that both species evolved separately for a relatively long period of time and adapted to specific tasks within microbial consortia responsible for

  17. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia

    PubMed Central

    2014-01-01

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a

  18. Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in Clostridium difficile

    PubMed Central

    Saujet, Laure; Soutourina, Olga; Monot, Marc; Shelyakin, Pavel V.; Gelfand, Mikhail S.; Dupuy, Bruno; Henriques, Adriano O.; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σF and σG in the forespore and σE and σK in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σF, σE, σG and σK regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σF regulon, 97 σE-dependent genes, 50 σG-governed genes and 56 genes under σK control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σE or σK control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σE regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σE regulon in the mother cell was not strictly under the control of σF despite the fact that the forespore product SpoIIR was required for the processing of pro-σE. In addition, the σK regulon was not controlled by σG in C. difficile in agreement with the lack of pro-σK processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes. PMID:24098137

  19. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile.

    PubMed

    Saujet, Laure; Pereira, Fátima C; Serrano, Monica; Soutourina, Olga; Monot, Marc; Shelyakin, Pavel V; Gelfand, Mikhail S; Dupuy, Bruno; Henriques, Adriano O; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes. PMID:24098137

  20. Evaluation of a New Automated Homogeneous PCR Assay, GenomEra C. difficile, for Rapid Detection of Toxigenic Clostridium difficile in Fecal Specimens

    PubMed Central

    Mentula, Silja; Kaukoranta, Suvi-Sirkku

    2013-01-01

    We evaluated a new automated homogeneous PCR assay to detect toxigenic Clostridium difficile, the GenomEra C. difficile assay (Abacus Diagnostica, Finland), with 310 diarrheal stool specimens and with a collection of 33 known clostridial and nonclostridial isolates. Results were compared with toxigenic culture results, with discrepancies being resolved by the GeneXpert C. difficile PCR assay (Cepheid). Among the 80 toxigenic culture-positive or GeneXpert C. difficile assay-positive fecal specimens, 79 were also positive with the GenomEra C. difficile assay. Additionally, one specimen was positive with the GenomEra assay but negative with the confirmatory methods. Thus, the sensitivity and specificity were 98.8% and 99.6%, respectively. With the culture collection, no false-positive or -negative results were observed. The analytical sensitivity of the GenomEra C. difficile assay was approximately 5 CFU per PCR test. The short hands-on (<5 min for 1 to 4 samples) and total turnaround (<1 h) times, together with the high positive and negative predictive values (98.8% and 99.6%, respectively), make the GenomEra C. difficile assay an excellent option for toxigenic C. difficile detection in fecal specimens. PMID:23804386

  1. Genomics of Clostridium

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Joseph; Johnson, Eric A.

    The clostridia have a rich history and contemporary importance in industrial, environmental, and medical microbiology. Due to their ability to form endospores, clostridia are ubiquitous in nature and are found in many environments, especially in soils and the intestinal tract of animals including humans. Many clostridia cause devastating diseases of humans and animals, such as botulism, tetanus, and gas gangrene, through the production of protein toxins. The clostridia produce more protein toxins that are lethal for humans and animals than any other bacterial genus (Johnson, 2005; Van Heyningen, 1950). Other species are important in the formation of solvents and organic acids by anaerobic fermentations or as a source of unique enzymes for biocatalysis (Bradshaw and Johnson, 2010; Hatheway and Johnson, 1998).

  2. Biotechnological potential of Clostridium butyricum bacteria

    PubMed Central

    Szymanowska-Powałowska, Daria; Orczyk, Dorota; Leja, Katarzyna

    2014-01-01

    In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobutylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L). A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties. PMID:25477923

  3. Selective medium for isolation of Clostridium butyricum from human feces.

    PubMed Central

    Popoff, M R

    1984-01-01

    A selective medium, Clostridium butyricum isolation medium (BIM), is described for the isolation of C. butyricum from human feces. The BIM is a synthetic minimal medium and contains trimethoprim (16 micrograms/ml), D-cycloserine (10 micrograms/ml), and polymyxin B sulfate (20 micrograms/ml) as selective inhibitory agents. Qualitative tests indicated that C. butyricum and other butyric acid-producing clostridia grew on BIM, Clostridium sphenoides and Bacillus cereus produced small colonies, and other clostridia and other obligate anaerobic or facultatively anerobic bacteria were inhibited. Quantitative recovery of C. butyricum from cultures or seeded fecal samples was comparable with BIM and with complex medium, but the quantitative recovery of the other butyric acid-producing clostridia tested (C. beijerinckii, C. acetobutylicum) was lower with BIM than with complex medium. The BIM should aid the rapid isolation of C. butyricum from fecal samples and should be useful for bacteriological investigation of neonatal necrotizing enterocolitis. PMID:6490827

  4. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile

    PubMed Central

    Hargreaves, Katherine R.; Otieno, James R.; Thanki, Anisha; Blades, Matthew J.; Millard, Andrew D.; Browne, Hilary P.; Lawley, Trevor D.; Clokie, Martha R.J.

    2015-01-01

    The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile “mobilome,” which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. PMID:26019165

  5. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile.

    PubMed

    Hargreaves, Katherine R; Otieno, James R; Thanki, Anisha; Blades, Matthew J; Millard, Andrew D; Browne, Hilary P; Lawley, Trevor D; Clokie, Martha R J

    2015-07-01

    The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile "mobilome," which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. PMID:26019165

  6. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528.

    PubMed

    Tan, Yang; Liu, Juanjuan; Liu, Zhen; Li, Fuli

    2014-09-01

    Syngas utilizing bacterium Clostridium ljungdahlii DSM 13528 is a promising platform organism for a whole variety of different biofuels and biochemicals production from syngas. During syngas fermentation, C. ljungdahlii DSM 13528 could convert butanol into butyrate, which significantly reduces productivity of butanol. However, there has been no any enzyme involved in the degradation of butanol characterized in C. ljungdahlii DSM 13528. In this study two genes, CLJU_c24880 and CLJU_c39950, encoding putative butanol dehydrogenase (designated as BDH1 and BDH2) were identified in the genome of C. ljungdahlii DSM 13528 and qRT-PCR analysis showed the expression of bdh1 and bdh2 was significantly upregulated in the presence of 0.25% butanol. And the deduced amino acid sequence for BDH1 and BDH2 showed 69.85 and 68.04% identity with Clostridium acetobutylicum ADH1, respectively. Both BDH1 and BDH2 were oxygen-sensitive and preferred NADP(+) as cofactor and butanol as optimal substrate. The optimal temperature and pH for BDH1 were at 55 °C and pH 7.5 and specific activity was 18.07 ± 0.01 µmol min(-1)  mg(-1) . BDH2 was a thermoactive dehydrogenase with maximum activity at 65 °C and at pH 7.0. The specific activity for BDH2 was 11.21 ± 0.02 µmol min(-1)  mg(-1) . This study provided important information for understanding the molecular mechanism of butanol degradation and determining the targets for gene knockout to improve the productivity of butanol from syngas in C. ljungdahlii DSM 13528 in future. PMID:23720212

  7. Alternative non-chromatographic method for alcohols determination in Clostridium acetobutylicum fermentations.

    PubMed

    Noriega-Medrano, Laura J; Vega-Estrada, Jesús; Ortega-López, Jaime; Ruiz-Medrano, Roberto; Cristiani-Urbina, Eliseo; Montes-Horcasitas, Maria Del Carmen

    2016-07-01

    An economic, simple, quantitative, and non-chromatographic method for the determination of alcohols using microdiffusion principle has been adapted and validated for acetone-butanol-ethanol (ABE) fermentation samples. This method, based on alcohols oxidation using potassium dichromate in acid medium, and detection by spectrophotometry, was evaluated varying, both, temperature (35°C, 45°C, and 55°C) and reaction time (0 to 125min). With a sample analysis time of 90min at 45°C, a limit of detection (LOD), and a limit of quantification (LOQ) of 0.10, and 0.40g/L, respectively. The proposed method has been successfully applied to determine butanol and ethanol concentrations in ABE fermentation samples with the advantage that multiple samples can be analyzed simultaneously. The measurements obtained with the proposed method were in good agreement with those obtained with the Gas Chromatography Method (GCM). This proposed method is useful for routine analysis of alcohols and screening samples in laboratories and industries. PMID:27155258

  8. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.

    PubMed

    Kudahettige-Nilsson, Rasika L; Helmerius, Jonas; Nilsson, Robert T; Sjöblom, Magnus; Hodge, David B; Rova, Ulrika

    2015-01-01

    Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol. PMID:25460986

  9. TRANSFORMATION OF TNT AND RELATED NITROAROMATIC COMPOUNDS BY CLOSTRIDIUM ACETOBUTYLICUM. (R825513C006)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics

    PubMed Central

    Xiao, Yinghua; van Hijum, Sacha A. F. T.; Abee, Tjakko; Wells-Bennik, Marjon H. J.

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies. PMID:25978838

  11. Clostridium perfringens

    PubMed Central

    Clifford, Walter J.; Anellis, Abe

    1971-01-01

    A biphasic culture medium suitable for cultivation and sporulation of Clostridium perfringens, C. botulinum, and C. sporogenes was devised. The medium designed for use in a disposable, compartmented, plastic film container contained peptones, yeast extract, minerals, an anion exchange resin, and glucose in 4% agar as the solid phase and (NH4)2SO4 and 0.1% agar as the liquid phase. With the biphasic system, it was not necessary to use active cultures as inocula. Growth was at least equal to that obtained in conventional media, and spore production of 9 out of 12 strains of C. perfringens equalled or usually exceeded that of conventional media. Images PMID:4332043

  12. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq

    PubMed Central

    2013-01-01

    Background Butanol (n-butanol) has high values as a promising fuel source and chemical feedstock. Biobutanol is usually produced by the solventogenic clostridia through a typical biphasic (acidogenesis and solventogenesis phases) acetone-butanol-ethanol (ABE) fermentation process. It is well known that the acids produced in the acidogenic phase are significant and play important roles in the switch to solventogenesis. However, the mechanism that triggers the metabolic switch is still not clear. Results Sodium butyrate (40 mM) was supplemented into the medium for the ABE fermentation with Clostridium beijerinckii NCIMB 8052. With butyrate addition (reactor R1), solvent production was triggered early in the mid-exponential phase and completed quickly in < 50 h, while in the control (reactor R2), solventogenesis was initiated during the late exponential phase and took > 90 h to complete. Butyrate supplementation led to 31% improvement in final butanol titer, 58% improvement in sugar-based yield, and 133% improvement in butanol productivity, respectively. The butanol/acetone ratio was 2.4 versus 1.8 in the control, indicating a metabolic shift towards butanol production due to butyrate addition. Genome-wide transcriptional dynamics was investigated with RNA-Seq analysis. In reactor R1, gene expression related to solventogenesis was induced about 10 hours earlier when compared to that in reactor R2. Although the early sporulation genes were induced after the onset of solventogenesis in reactor R1 (mid-exponential phase), the sporulation events were delayed and uncoupled from the solventogenesis. In contrast, in reactor R2, sporulation genes were induced at the onset of solventogenesis, and highly expressed through the solventogenesis phase. The motility genes were generally down-regulated to lower levels prior to stationary phase in both reactors. However, in reactor R2 this took much longer and gene expression was maintained at comparatively higher levels

  13. The Role of PerR in O2-Affected Gene Expression of Clostridium acetobutylicum▿ †

    PubMed Central

    Hillmann, Falk; Döring, Christina; Riebe, Oliver; Ehrenreich, Armin; Fischer, Ralf-Jörg; Bahl, Hubert

    2009-01-01

    In the strict anaerobe Clostridium acetobutylicum, a PerR-homologous protein has recently been identified as being a key repressor of a reductive machinery for the scavenging of reactive oxygen species and molecular O2. In the absence of PerR, the full derepression of its regulon resulted in increased resistance to oxidative stress and nearly full tolerance of an aerobic environment. In the present study, the complementation of a Bacillus subtilis PerR mutant confirmed that the homologous protein from C. acetobutylicum acts as a functional peroxide sensor in vivo. Furthermore, we used a transcriptomic approach to analyze gene expression in the aerotolerant PerR mutant strain and compared it to the O2 stimulon of wild-type C. acetobutylicum. The genes encoding the components of the alternative detoxification system were PerR regulated. Only few other targets of direct PerR regulation were identified, including two highly expressed genes encoding enzymes that are putatively involved in the central energy metabolism. All of them were highly induced when wild-type cells were exposed to sublethal levels of O2. Under these conditions, C. acetobutylicum also activated the repair and biogenesis of DNA and Fe-S clusters as well as the transcription of a gene encoding an unknown CO dehydrogenase-like enzyme. Surprisingly few genes were downregulated when exposed to O2, including those involved in butyrate formation. In summary, these results show that the defense of this strict anaerobe against oxidative stress is robust and by far not limited to the removal of O2 and its reactive derivatives. PMID:19648241

  14. The ClosTron: Mutagenesis in Clostridium refined and streamlined.

    PubMed

    Heap, John T; Kuehne, Sarah A; Ehsaan, Muhammad; Cartman, Stephen T; Cooksley, Clare M; Scott, Jamie C; Minton, Nigel P

    2010-01-01

    The recent development of the ClosTron Group II intron directed mutagenesis tool for Clostridium has advanced genetics in this genus, and here we present several significant improvements. We have shown how marker re-cycling can be used to construct strains with multiple mutations, demonstrated using FLP/FRT in Clostridium acetobutylicum; tested the capacity of the system for the delivery of transgenes to the chromosome of Clostridium sporogenes, which proved feasible for 1.0kbp transgenes in addition to a marker; and extended the host range of the system, constructing mutants in Clostridium beijerinckii and, for the first time, in a B1/NAP1/027 'epidemic' strain of Clostridium difficile. Automated intron design bioinformatics are now available free-of-charge at our website http://clostron.com; the out-sourced construction of re-targeted intron plasmids has become cost-effective as well as rapid; and the combination of constitutive intron expression with direct selection for intron insertions has made mutant isolation trivial. These developments mean mutants can now be constructed with very little time and effort for the researcher. Those who prefer to construct plasmids in-house are no longer reliant on a commercial kit, as a mixture of two new plasmids provides unlimited template for intron re-targeting by Splicing by Overlap Extension (SOE) PCR. The new ClosTron plasmids also offer blue-white screening and other options for identification of recombinant plasmids. The improved ClosTron system supersedes the prototype plasmid pMTL007 and the original method, and exploits the potential of Group II introns more fully. PMID:19891996

  15. Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528.

    PubMed

    Tan, Yang; Liu, Zi-Yong; Liu, Zhen; Li, Fu-Li

    2015-11-01

    Acetoin reductase catalyzes the formation of 2,3-butanediol from acetoin. In Clostridium ljungdahlii DSM 13528, the gene CLJU_c23220 encoding the putative Zn(2+)-dependent alcohol dehydrogenase was cloned and expressed in Escherichia coli. The recombinant enzyme, CLAR, can catalyze the conversion of acetoin to 2,3-butanediol with NADPH as the cofactor. Furthermore, the gene CLJU_c23220 was introduced into Clostridium acetobutylicum ATCC 824 and the transformant was conferred the capacity of 2,3-butanediol production. In batch fermentation the transformant produced up to 3.1g/L of 2,3-butanediol, as well as acetone, butanol and ethanol (ABE, 17.8 g/L) in amounts similar to those produced by the wild type strain. This study provides conclusive evidence at the protein level that CLJU_c23220 is the key gene responsible for the conversion of acetoin to 2,3-butanediol in C. ljungdahlii DSM 13528. Moreover, the C. acetobutylicum ATCC 824 was modified via one-step metabolic engineering to produce 2,3-butanediol without influencing the ABE production. PMID:26320708

  16. Comparison of the prevalence and genomic characteristics of Clostridium difficile isolated from various production groups in a vertically integrated swine operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006. Isolation of C. difficile was performed utilizing an enrichment technique and restrictive media. Prelim...

  17. Comparison of BD Max Cdiff and GenomEra C. difficile molecular assays for detection of toxigenic Clostridium difficile from stools in conventional sample containers and in FecalSwabs.

    PubMed

    Hirvonen, J J; Kaukoranta, S-S

    2015-05-01

    In this study, the usability and performance of GenomEra™ C. difficile and BD Max™ Cdiff nucleic acid amplification tests (NAATs) for the detection of toxigenic Clostridium difficile were investigated in comparison with toxigenic culture and C. difficile toxin A- and toxin B-detecting immunochromatographic antigen (IA) test, the Tox A/B QuikChek®. In total, 302 faecal specimens were collected, 113 of which were in parallel to conventional sample containers and FecalSwab liquid-based microbiology (LBM) tubes. Seventy-nine specimens were considered true-positives for toxigenic C. difficile. The sensitivity and specificity were 97.5 % and 99.6 % and 93.7 % and 98.7 % for the GenomEra and BD Max assays respectively. Toxigenic culture and Tox A/B QuikChek had sensitivity and specificity of 91.1 % and 100 % and 34.2 % and 100 % respectively. Hands-on time for analysing 1 to 24 specimens using NAATs was 1 to 15 min. The rate of PCR inhibition was 0 % for both NAATs with faeces in LBM tubes, while with faeces in conventional sample containers the respective inhibition rates were 5.3 % and 4.4 % for the GenomEra and the BD Max assays. The NAATs demonstrated an excellent analytical performance, reducing significantly the overall workload of laboratory personnel compared with culture and IA test. PMID:25616552

  18. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani.

    PubMed

    Connan, Chloé; Denève, Cécile; Mazuet, Christelle; Popoff, Michel R

    2013-12-01

    Botulinum and tetanus neurotoxins are structurally and functionally related proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin (BoNT) associates with non-toxic proteins (ANTPs) to form complexes of various sizes, whereas tetanus toxin (TeNT) does not form any complex. The BoNT and ANTP genes are clustered in a DNA segment called the botulinum locus, which has different genomic localization (chromosome, plasmid, phage) in the various Clostridium botulinum types and subtypes. The botulinum locus genes are organized in two polycistronic operons (ntnh-bont and ha/orfX operons) transcribed in opposite orientations. A gene called botR lying between the two operons in C. botulinum type A encodes an alternative sigma factor which regulates positively the synthesis of BoNT and ANTPs at the late exponential growth phase and beginning of the stationary phase. In Clostridium tetani, the gene located immediately upstream of tent encodes a positive regulatory protein, TetR, which is related to BotR. C. botulinum and C. tetani genomes contain several two-component systems and predicted regulatory orphan genes. In C. botulinum type A, four two-component systems have been found that positively or negatively regulate the synthesis of BoNT and ANTPs independently of BotR/A. The synthesis of neurotoxin in Clostridia seems to be under the control of complex network of regulation. PMID:23769754

  19. Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp.

    PubMed

    Komonkiat, Itsara; Cheirsilp, Benjamas

    2013-10-01

    This study aimed to convert felled oil palm trunk to biobutanol by Clostridium spp. For efficient utilization of oil palm trunk, it was separated into sap and trunk fiber. The sap was used directly while the trunk fiber was hydrolyzed to fermentable sugars before use. Among five clostridia strains screened, Clostridium acetobutylicum DSM 1731 was the most suitable strain for butanol production from the sap without any supplementation of nutrients. It produced the highest amount of butanol (14.4 g/L) from the sap (sugar concentration of 50 g/L) with butanol yield of 0.35 g/g. When hydrolysate from the trunk fiber was used as an alternative carbon source (sugar concentration of 30 g/L), of the strains tested Clostridium beijerinckii TISTR 1461 produced the highest amount of butanol (10.0 g/L) with butanol yield of 0.41 g/g. The results presented herein suggest that oil palm trunk is a promising renewable substrate for biobutanol production. PMID:23933028

  20. Clostridium Difficile Infections

    MedlinePlus

    Clostridium difficile (C. difficile) is a bacterium that causes diarrhea and more serious intestinal conditions such as colitis. Symptoms include Watery ... Nausea Abdominal pain or tenderness You might get C. difficile disease if you have an illness that ...

  1. Collagenase Clostridium Histolyticum Injection

    MedlinePlus

    ... disease (a thickening of tissue [plaque] inside the penis that causes the penis to curve). Collagenase Clostridium histolyticum injection is in ... the plaque of thickened tissue and allows the penis to be straightened.

  2. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis

    PubMed Central

    Bengelsdorf, Frank R.; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood–Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (PthlA) from C. acetobutylicum or native pta-ack promoter (Ppta-ack) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  3. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.

    PubMed

    Bengelsdorf, Frank R; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood-Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (P thlA ) from C. acetobutylicum or native pta-ack promoter (P pta-ack ) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  4. Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum. Progress report, September 1, 1992--July 31, 1996

    SciTech Connect

    Bennett, G.N.; Rudolph, F.B.

    1997-01-01

    Several degenerate strains were isolated and characterized by sporulation, motility and growth properties. Cell appearance and colony morphology were also recorded. Enzymatic assays revealed reduced butyraldehyde dehydrogenase and Co-A transferase enzyme activities in the degenerates. DNA analysis revealed that in complete degenerate strains the genes of the solvent locus were absent. Gyrase inhibitors slightly reduced the growth rate and decreased acetone formation preferentially. In an effort to analyze the role of sporulation sigma factors in solvent gene expression, recombination experiments were conducted and led to strains with increased solvent production. Analysis of redox systems has resulted in the sequence analysis of a cluster encoding formyl transferase proteins and an oxidoreductase-like gene. The genes for the two subunits of an apparent electron transfer flavoprotein were sequenced and suggest this factor acts to carry electrons to the butyryl-CoA dehydrogenase. The genes encoding the Fo subunits of the membrane ATPase have been sequenced.

  5. Bacteriophages of Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specific aims of the book chapter are to: (1) Briefly review the nomenclature of bacteriophages and how these agents are classified. (2) Discuss the problems associated with addition/removal of antibiotics in commercial animal feeds. (3) Provide a brief overview of Clostridium perfringens biolog...

  6. Clostridium tetani bacteraemia.

    PubMed

    Hallit, Rabih Riad; Afridi, Muhammad; Sison, Raymund; Salem, Elie; Boghossian, Jack; Slim, Jihad

    2013-01-01

    Tetanus is a neuromuscular disease in which Clostridium tetani exotoxin (tetanospasmin) produces muscle spasms, incapacitating its host. To our knowledge, C. tetani bacteraemia has never been reported in the literature. The ideal management of this entity remains unresolved given that there is no literature to guide the therapy. PMID:22977074

  7. Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation.

    PubMed

    Ni, Ye; Wang, Yun; Sun, Zhihao

    2012-04-01

    Clostridium acetobutylicum strains used in most Chinese ABE (acetone-butanol-ethanol) plants favorably ferment starchy materials like corn, cassava, etc., rather than sugar materials. This is one major problem of ABE industry in China and significantly limits the exploitation of cheap waste sugar materials. In this work, cane molasses were utilized as substrate in ABE production by Clostridium saccharobutylicum DSM 13864. Under optimum conditions, total solvent of 19.80 g/L (13.40 g/L butanol) was reached after 72 h of fermentation in an Erlenmeyer flask. In a 5-L bioreactor, total solvent of 17.88 g/L was attained after 36 h of fermentation, and the productivity and yield were 0.50 g/L/h and 0.33 g ABE/g sugar consumption, respectively. To further enhance the productivity, a two-stage semicontinuous fermentation process was steadily operated for over 8 days (205 h, 26 cycles) with average productivity (stage II) of 1.05 g/L/h and cell concentration (stage I) of 7.43 OD(660), respectively. The average batch fermentation time (stage I and II) was reduced to 21-25 h with average solvent of 15.27 g/L. This study provides valuable process data for the development of industrial ABE fermentation process using cane molasses as substrate. PMID:22362519

  8. Clostridium difficile infection

    PubMed Central

    Viswanathan, VK; Mallozzi, MJ

    2010-01-01

    Clostridium difficile infection (CDI) is the primary cause of antibiotic-associated diarrhea and is a significant nosocomial disease. In the past ten years, variant toxin-producing strains of C. difficile have emerged, that have been associated with severe disease as well as outbreaks worldwide. This review summarizes current information on C. difficile pathogenesis and disease, and highlights interventions used to combat single and recurrent episodes of CDI. PMID:21327030

  9. [Oncologic aspects of Clostridium difficile].

    PubMed

    Telekes, András

    2016-07-01

    Clostridium difficile infection is one of the most frequent among cancer patients. Its diagnosis is complicated by the fact that the symptoms of the infection and the side effects of the anticancer treatments could be similar. Chemotherapy itself might facilitate Clostridium difficile infection. Several risk factors are known but Clostridium difficile infection can develop in the absence of these. Neutreopenia is a risk factor for fatal Clostridium difficile infection and also the side effect of chemotherapy. Therefore, if symptoms of the potential infection develop (eg. diarrhoea more than three times a day, fever above 38.5 °C, colitis, rapid increase of serum creatinin) Clostridium difficile infection should be excluded. If the infection is confirmed it should be managed in the most efficient way. Orv. Hetil., 2016, 157(28), 1110-1116. PMID:27397423

  10. Clostridium difficile phages: still difficult?

    PubMed Central

    Hargreaves, Katherine R.; Clokie, Martha R. J.

    2014-01-01

    Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893

  11. Vaccines against Clostridium difficile

    PubMed Central

    Leuzzi, Rosanna; Adamo, Roberto; Scarselli, Maria

    2014-01-01

    Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens. PMID:24637887

  12. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    PubMed

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources. PMID:26780375

  13. 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum

    SciTech Connect

    Huang, S.; Lindahl, P.A.; Wang, C.; Bennett, G.N.; Rudolph, F.B.; Hughes, J.B.

    2000-03-01

    Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2 HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2,4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent K{sub m} and k{sub cat} values of TNT reduction were 165 {+-} 43 {micro}M for TNT and 400 {+-} 94 s{sup {minus}1}, respectively. Cyanide, an inhibitor for the CO/CO{sub 2} oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.

  14. Characterization of Functional Prophages in Clostridium difficile.

    PubMed

    Sekulović, Ognjen; Fortier, Louis-Charles

    2016-01-01

    Bacteriophages (phages) are present in almost, if not all ecosystems. Some of these bacterial viruses are present as latent "prophages," either integrated within the chromosome of their host, or as episomal DNAs. Since prophages are ubiquitous throughout the bacterial world, there has been a sustained interest in trying to understand their contribution to the biology of their host. Clostridium difficile is no exception to that rule and with the recent release of hundreds of bacterial genome sequences, there has been a growing interest in trying to identify and classify these prophages. Besides their identification in bacterial genomes, there is also growing interest in determining the functionality of C. difficile prophages, i.e., their capacity to escape their host and reinfect a different strain, thereby promoting genomic evolution and horizontal transfer of genes through transduction, for example of antibiotic resistance genes. There is also some interest in using therapeutic phages to fight C. difficile infections.The objective of this chapter is to share with the broader C. difficile research community the expertise we developed in the study of C. difficile temperate phages. In this chapter, we describe a general "pipeline" comprising a series of experiments that we use in our lab to identify, induce, isolate, propagate, and characterize prophages. Our aim is to provide readers with the necessary basic tools to start studying C. difficile phages. PMID:27507339

  15. Multidisciplinary Analysis of a Nontoxigenic Clostridium difficile Strain with Stable Resistance to Metronidazole

    PubMed Central

    Moura, Ines; Monot, Marc; Tani, Chiara; Barbanti, Fabrizio; Norais, Nathalie; Dupuy, Bruno; Bouza, Emilio; Mastrantonio, Paola

    2014-01-01

    Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress. PMID:24913157

  16. Multidisciplinary analysis of a nontoxigenic Clostridium difficile strain with stable resistance to metronidazole.

    PubMed

    Moura, Ines; Monot, Marc; Tani, Chiara; Spigaglia, Patrizia; Barbanti, Fabrizio; Norais, Nathalie; Dupuy, Bruno; Bouza, Emilio; Mastrantonio, Paola

    2014-08-01

    Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress. PMID:24913157

  17. Clostridium difficile infection.

    PubMed

    Smits, Wiep Klaas; Lyras, Dena; Lacy, D Borden; Wilcox, Mark H; Kuijper, Ed J

    2016-01-01

    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota. PMID:27158839

  18. [Toxins of Clostridium perfringens].

    PubMed

    Morris, W E; Fernández-Miyakawa, M E

    2009-01-01

    Clostridium perfringens is an anaerobic gram-positive spore-forming bacillus. It is one of the pathogens with larger distribution in the environment; it can be isolated from soil and water samples, which also belongs to the intestinal flora of animals and humans. However, on some occasions it can act as an opportunistic pathogen, causing diseases such as gas gangrene, enterotoxemia in sheep and goats and lamb dysentery, among others. In human beings, it is associated to diseases such as food poisoning, necrotic enterocolitis of the infant and necrotic enteritis or pigbel in Papua-New Guinea tribes. The renewed interest existing nowadays in the study of C. perfringens as a veterinarian and human pathogen, together with the advance of molecular biology, had enabled science to have deeper knowledge of the biology and pathology of these bacteria. In this review, we discuss and update the principal aspects of C. perfringens intestinal pathology, in terms of the toxins with major medical relevance at present. PMID:20085190

  19. Isolation of Clostridium thermocellum auxotrophs

    SciTech Connect

    Mendez, B.S.; Gomez, R.F.

    1982-02-01

    The conversion of biomass of fuels and chemical feedstocks by microbial fermentation offers the potential of solving two of today's important problems: waste accumulation and exhaustion of fossil fuels. Microorganisms with the capabilities of converting biomass components such as cellulos and hemicellulose to chemicals and fuels in a single step are of particular interest. One such microorganism is Clostridium thermocellum, a thermophilic anaerobe which degrades cellulose to ethanol and organic acids. For efficient industrial use, the cellulolytic capacity of this strain must be improved by genetic means. Spontaneous and UV irradiation-induced auxotrophic mutants of Clostridium thermocellum, an anaerobic cellulolytic thermophile, were isolated after penicillin enrichment in a chemically defined medium.

  20. Autism and Clostridium tetani.

    PubMed

    Bolte, E R

    1998-08-01

    Autism is a severe developmental disability believed to have multiple etiologies. This paper outlines the possibility of a subacute, chronic tetanus infection of the intestinal tract as the underlying cause for symptoms of autism observed in some individuals. A significant percentage of individuals with autism have a history of extensive antibiotic use. Oral antibiotics significantly disrupt protective intestinal microbiota, creating a favorable environment for colonization by opportunistic pathogens. Clostridium tetani is an ubiquitous anaerobic bacillus that produces a potent neurotoxin. Intestinal colonization by C. tetani, and subsequent neurotoxin release, have been demonstrated in laboratory animals which were fed vegetative cells. The vagus nerve is capable of transporting tetanus neurotoxin (TeNT) and provides a route of ascent from the intestinal tract to the CNS. This route bypasses TeNT's normal preferential binding sites in the spinal cord, and therefore the symptoms of a typical tetanus infection are not evident. Once in the brain, TeNT disrupts the release of neurotransmitters by the proteolytic cleavage of synaptobrevin, a synaptic vesicle membrane protein. This inhibition of neurotransmitter release would explain a wide variety of behavioral deficits apparent in autism. Lab animals injected in the brain with TeNT have exhibited many of these behaviors. Some children with autism have also shown a significant reduction in stereotyped behaviors when treated with antimicrobials effective against intestinal clostridia. When viewed as sequelae to a subacute, chronic tetanus infection, many of the puzzling abnormalities of autism have a logical basis. A review of atypical tetanus cases, and strategies to test the validity of this paper's hypothesis, are included. PMID:9881820

  1. Cellulosomics of the cellulolytic thermophile Clostridium clariflavum

    PubMed Central

    2014-01-01

    Background Clostridium clariflavum is an anaerobic, thermophilic, Gram-positive bacterium, capable of growth on crystalline cellulose as a single carbon source. The genome of C. clariflavum has been sequenced to completion, and numerous cellulosomal genes were identified, including putative scaffoldin and enzyme subunits. Results Bioinformatic analysis of the C. clariflavum genome revealed 49 cohesin modules distributed on 13 different scaffoldins and 79 dockerin-containing proteins, suggesting an abundance of putative cellulosome assemblies. The 13-scaffoldin system of C. clariflavum is highly reminiscent of the proposed cellulosome system of Acetivibrio cellulolyticus. Analysis of the C. clariflavum type I dockerin sequences indicated a very high level of conservation, wherein the putative recognition residues are remarkably similar to those of A. cellulolyticus. The numerous interactions among the cellulosomal components were elucidated using a standardized affinity ELISA-based fusion-protein system. The results revealed a rather simplistic recognition pattern of cohesin-dockerin interaction, whereby the type I and type II cohesins generally recognized the dockerins of the same type. The anticipated exception to this rule was the type I dockerin of the ScaB adaptor scaffoldin which bound selectively to the type I cohesins of ScaC and ScaJ. Conclusions The findings reveal an intricate picture of predicted cellulosome assemblies in C. clariflavum. The network of cohesin-dockerin pairs provides a thermophilic alternative to those of C. thermocellum and a basis for subsequent utilization of the C. clariflavum cellulosomal system for biotechnological application. PMID:26413154

  2. Challenges for standardization of Clostridium difficile typing methods.

    PubMed

    Huber, Charlotte A; Foster, Niki F; Riley, Thomas V; Paterson, David L

    2013-09-01

    Typing of Clostridium difficile facilitates understanding of the epidemiology of the infection. Some evaluations have shown that certain strain types (for example, ribotype 027) are more virulent than others and are associated with worse clinical outcomes. Although restriction endonuclease analysis (REA) and pulsed-field gel electrophoresis have been widely used in the past, PCR ribotyping is the current method of choice for typing of C. difficile. However, global standardization of ribotyping results is urgently needed. Whole-genome sequencing of C. difficile has the potential to provide even greater epidemiologic information than ribotyping. PMID:23784128

  3. Electrotransformation of Clostridium thermocellum.

    PubMed

    Tyurin, Michael V; Desai, Sunil G; Lynd, Lee R

    2004-02-01

    Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presumptive transformants of C. thermocellum with subsequent PCR specific to the mls gene on the plasmid, as well as by retransformation of Escherichia coli. Optimization carried out with strain DSM 1313 increased transformation efficiencies from <1 to (2.2 +/- 0.5) x 10(5) transformants per micro g of plasmid DNA. Factors conducive to achieving high transformation efficiencies included optimized periods of incubation both before and after electric pulse application, chilling during cell collection and washing, subculture in the presence of isoniacin prior to electric pulse application, a custom-built cuvette embedded in an ice block during pulse application, use of a high (25-kV/cm) field strength, and induction of the mls gene before plating the cells on selective medium. The protocol and preferred conditions developed for strain DSM 1313 resulted in transformation efficiencies of (5.0 +/- 1.8) x 10(4) transformants per micro g of plasmid DNA for strain ATCC 27405 and approximately 1 x 10(3) transformants per micro g of plasmid DNA for strains DSM 4150 and 7072. Cell viability under optimal conditions was approximately 50% of that of controls not exposed to an electrical pulse. Dam methylation had a beneficial but modest (7-fold for strain ATCC 27405; 40-fold for strain DSM 1313) effect on transformation efficiency. The effect of isoniacin was also strain specific. The results reported here provide for the first time a gene transfer method functional in C. thermocellum that is suitable for molecular manipulations involving either the introduction of genes associated with foreign

  4. Enhancement of butanol production in Clostridium acetobutylicum SE25 through accelerating phase shift by different phases pH regulation from cassava flour.

    PubMed

    Li, Han-guang; Zhang, Qing-hua; Yu, Xiao-bin; Wei, Luo; Wang, Qiang

    2016-02-01

    A prominent delay with 12h was encountered in the phase shift from acidogenesis to solventogenesis in butanol production when the substrate-glucose was replaced by cassava flour. To solve this problem, different phase of pH regulation strategies were performed to shorten this delay time. With this effort, the phase shift occurred smoothly and the fermentation time was shortened. Under the optimal conditions, 16.24g/L butanol and 72h fermentation time were achieved, which were 25.3% higher and 14.3% shorter than those in the case of without pH regulation. Additionally, the effect of CaCO3 on "acid crash" and butanol production was also investigated. It was found that organic acids reassimilation would be of benefit to enhance butanol production. These results indicated that the simple but effective approach for acceleration of phase shift is a promising technique for shortening the fermentation time and improvement of butanol production. PMID:26642220

  5. Clostridium perfringens in retail chicken.

    PubMed

    Nowell, Victoria J; Poppe, Cornelis; Parreira, Valeria R; Jiang, Yan-Fen; Reid-Smith, Richard; Prescott, John F

    2010-06-01

    Clostridium perfringens isolates were recovered by enrichment from retail grocery chicken samples (n = 88) in Ontario, Canada, with one sample per site. The gene associated with necrotic enteritis in chickens, netB, was found in 21% of the isolates. The tpeL gene was found in 2% and the cpb2 gene in 68% (95% "atypical" genes) of isolates. This study suggests that netB-positive C. perfringens can reach people through retail chicken. PMID:19961943

  6. ClosTron-mediated engineering of Clostridium

    PubMed Central

    Kuehne, Sarah A.; Minton, Nigel P.

    2012-01-01

    Members of the genus Clostridium are of both medical and industrial importance. The molecular tools necessary to study and exploit their wide ranging physiological diversity through directed mutational analysis have until recently been lacking. The situation was transformed in the mid-2000s with the specific adaptation of intron re-targeting technology to the genus, through the development of the ClosTron. By making a handful of nucleotide changes to the group II intron encoding region, the intron can be directed to insert into almost any region within the genome. Through the use of a retrotransposition-activated marker (RAM), based on the ermB gene, successful insertion is selected on the basis of acquisition of resistance to erythromycin. The re-targeted region is designed using an online re-targeting algorithm (www.clostron.com), and then an order is placed with DNA2.0 for both the synthesis of the re-targeted region and its custom cloning into the ClosTron vector. Re-targeted ClosTrons are delivered ready for use in 10–14 days, allowing mutants to be isolated 5–7 days after receipt. Its availability has revolutionized clostridial molecular biology. PMID:22750794

  7. Current status of Clostridium difficile infection epidemiology.

    PubMed

    Lessa, Fernanda C; Gould, Carolyn V; McDonald, L Clifford

    2012-08-01

    The dramatic changes in the epidemiology of Clostridium difficile infection (CDI) during recent years, with increases in incidence and severity of disease in several countries, have made CDI a global public health challenge. Increases in CDI incidence have been largely attributed to the emergence of a previously rare and more virulent strain, BI/NAP1/027. Increased toxin production and high-level resistance to fluoroquinolones have made this strain a very successful pathogen in healthcare settings. In addition, populations previously thought to be at low risk are now being identified as having severe CDI. Recent genetic analysis suggests that C. difficile has a highly fluid genome with multiple mechanisms to modify its content and functionality, which can make C. difficile adaptable to environmental changes and potentially lead to the emergence of more virulent strains. In the face of these changes in the epidemiology and microbiology of CDI, surveillance systems are necessary to monitor trends and inform public health actions. PMID:22752867

  8. Phylogenetic analysis and PCR detection of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum based on the flagellin gene.

    PubMed

    Sasaki, Yoshimasa; Kojima, Akemi; Aoki, Hiroshi; Ogikubo, Yasuaki; Takikawa, Noriyasu; Tamura, Yutaka

    2002-05-01

    The flagellin genes (fliC) of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum were analysed by PCR amplification and DNA sequencing. The five Clostridium species have at least two copies of the flagellin gene (fliC) arranged in tandem on the chromosome. The deduced N- and C-terminal aminoacid sequences of the flagellin proteins (FliCs) of these clostridia are well conserved but their central region aminoacid sequences are not. Phylogenic analysis based on the N-terminal aminoacid sequence of the FliC protein revealed that these clostridia, which belong to Clostridium 16S rDNA phylogenic cluster I (), are more closely related to Bacillus subtilis than to Clostridium difficile, which belongs to the cluster XI. Moreover, a multiplex polymerase reaction (PCR) system based on the fliC sequence was developed to rapidly identify C. chauvoei, C. haemolyticum, C. novyi types A and B, and C. septicum. PCR of each Clostridium amplified a species-specific band. The multiplex PCR system may be useful for rapid identification of pathogenic clostridia. PMID:11900959

  9. Clostridium difficile and the microbiota

    PubMed Central

    Seekatz, Anna M.; Young, Vincent B.

    2014-01-01

    Clostridium difficile infection (CDI) is the leading health care–associated illness. Both human and animal models have demonstrated the importance of the gut microbiota’s capability of providing colonization resistance against C. difficile. Risk factors for disease development include antibiotic use, which disrupts the gut microbiota, leading to the loss of colonization resistance and subsequent CDI. Identification of the specific microbes capable of restoring this function remains elusive. Future studies directed at how microbial communities influence the metabolic environment may help elucidate the role of the microbiota in disease development. These findings will improve current biotherapeutics for patients with CDI, particularly those with recurrent disease. PMID:25036699

  10. Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse.

    PubMed

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-10-01

    Sugarcane bagasse (SCB) was ozone pretreated and detoxified by water washing, applying a L9(3)(4) orthogonal array (OA) design of experiments to study the effect of pretreatment parameters (moisture content, ozone concentration, ozone/oxygen flow and particle size) on the generation of inhibitory compounds and on the composition of hydrolysates of ozonated-washed samples. Ozone concentration resulted the highest influence process parameter on delignification and sugar release after washing; while, for inhibitory compound formation, moisture content also had an important role. Ozone expended in pretreatment related directly with sugar release and inhibitory compound formation. Washing detoxification was effective, providing non-inhibitory hydrolysates. Maximum glucose and xylose release yields obtained were 84% and 67%, respectively, for ozonated-washed SCB. Sugar concentration resulted in the decisive factor for biofuels yields. Ethanol production achieved an 88% yield by Pichia stipitis, whereas Clostridium acetobutylicum produced 0.072gBUTANOL/gSUGAR and 0.188gABE/gSUGAR, and, Clostridium beijerinckii 0.165gBUTANOL/gSUGAR and 0.257gABE/gSUGAR. PMID:27428302

  11. Clostridium thermosaccharolyticum strain deficient in acetate production

    SciTech Connect

    Rothstein, D.M.

    1986-01-01

    A mutant of Clostridium thermosaccharolyticum that is blocked in acetate production was isolated after treatment with nitrosoguanidine and selection for fluoroacetate resistance. The mutant produced more ethanol than the parent strain did.

  12. Clostridium difficile and C. difficile Toxin Testing

    MedlinePlus

    ... C diff antigen; GDH Formal name: Clostridium difficile Culture; C. difficile Toxin, A and B; C. difficile Cytotoxin Assay; Glutamate Dehydrogenase Test Related tests: Stool Culture ; O&P At a Glance Test Sample The ...

  13. Identification and Characterization of Clostridium sordellii Toxin Gene Regulator

    PubMed Central

    Sirigi Reddy, Apoorva Reddy; Girinathan, Brintha Parasumanna; Zapotocny, Ryan

    2013-01-01

    Toxigenic Clostridium sordellii causes uncommon but highly lethal infections in humans and animals. Recently, an increased incidence of C. sordellii infections has been reported in women undergoing obstetric interventions. Pathogenic strains of C. sordellii produce numerous virulence factors, including sordellilysin, phospholipase, neuraminidase, and two large clostridial glucosylating toxins, TcsL and TcsH. Recent studies have demonstrated that TcsL toxin is an essential virulence factor for the pathogenicity of C. sordellii. In this study, we identified and characterized TcsR as the toxin gene (tcsL) regulator in C. sordellii. High-throughput sequencing of two C. sordellii strains revealed that tcsR lies within a genomic region that encodes TcsL, TcsH, and TcsE, a putative holin. By using ClosTron technology, we inactivated the tcsR gene in strain ATCC 9714. Toxin production and tcsL transcription were decreased in the tcsR mutant strain. However, the complemented tcsR mutant produced large amounts of toxins, similar to the parental strain. Expression of the Clostridium difficile toxin gene regulator tcdR also restored toxin production to the C. sordellii tcsR mutant, showing that these sigma factors are functionally interchangeable. PMID:23873908

  14. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellumto utilize hemicellulose and unpretreated plant material

    SciTech Connect

    Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna; Hahn, Michael G.; Lynd, Lee R.

    2014-11-18

    Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass, and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.

  15. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellumto utilize hemicellulose and unpretreated plant material

    DOE PAGESBeta

    Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna; Hahn, Michael G.; Lynd, Lee R.

    2014-11-18

    Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass,more » and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.« less

  16. Clostridium difficile in paediatric populations

    PubMed Central

    Allen, Upton D

    2014-01-01

    An increase in Clostridium difficile infection incidence has been observed among hospitalized children in the United States. The present statement, targeted at clinicians caring for infants and children in community and institutional settings, summarizes the relevant information relating to the role of C difficile in childhood diarrhea and provides recommendations for diagnosis, prevention and treatment. Significant differences between adult and paediatric risk factors and disease are discussed, along with emerging therapies. The relationship between age and disease severity in children with a newly emergent and more fluoroqinolone-resistant strain of C difficile (North American Pulse-field type-1 [NAP1]) remains unknown. The importance of antimicrobial stewardship as a preventive strategy is highlighted. This statement replaces a previous Canadian Paediatric Society position statement on C difficile published in 2000. PMID:24627655

  17. Clostridium perfringens Type C Enterotoxemia.

    PubMed

    Niilo, L

    1988-08-01

    Forms of enteric disease caused by Clostridium perfringens type C are critically reviewed with emphasis on practical aspects and recent research findings. Available data indicate that more animal species may be fatally infected by type C of this organism than by any other type of C. perfringens. Fatal cases have been recorded in pigs, cattle, sheep, horses and humans. Newborn animals are typically the most susceptible, possibly related to aspects of bacterial colonization, intestinal digestive functions, and to some other, unexplained, factors. Both beta toxin and the bacterial cells are required to initiate pathogenesis at the tips of jejunal villi, and subsequent massive adherence of these cells to necrotic mucosa is a characteristic feature. Although major lesions occur in the intestine, death is due to toxemia. The disease can be effectively controlled by vaccination of the dam. Epizootiology of this disease is a possible area for further studies. PMID:17423103

  18. Phosphotransacetylase from Clostridium acidiurici1

    PubMed Central

    Robinson, James R.; Sagers, Richard D.

    1972-01-01

    The phosphotransacetylase from Clostridium acidiurici has two properties not observed for this enzyme in other bacteria: (i) it requires a divalent metal for activity, and (ii) it is not subject to uncoupling by arsenate. The enzyme has been obtained in highly purified form, with a specific activity 500-fold higher than crude extracts. Ferrous or manganous ions are required for maximal activity, with Mn2+ being 50 to 75% as effective as Fe2+. The acetyl group can be transferred from acetyl phosphate to coenzyme A in 20 mm arsenate without a net decrease in high-energy acyl linkages. Likewise, H32PO42− will exchange with acetyl-PO42− in the presence of arsenate without loss of acetyl phosphate. This suggests that the active site on the enzyme is capable of discriminating between phosphate and arsenate while permitting the reversible transfer of acyl groups between CoA and phosphate. Images PMID:16559158

  19. Clostridium difficile infection in patients with inflammatory bowel disease

    PubMed Central

    Biesiada, Grażyna; Perucki, William; Mach, Tomasz

    2014-01-01

    Clostridium difficile is a bacterium widely distributed in the human environment. In the last decade the incidence and severity of Clostridium difficile infection has grown, particularly in Europe and North America, making it one of the more common nosocomial infections. A group particularly susceptible to Clostridium difficile infection are patients with inflammatory bowel disease, especially those with involvement of the colon. This paper presents relevant data on Clostridium difficile infections in inflammatory bowel disease patients, including epidemiology, pathogenesis, diagnosis and treatment. PMID:25097707

  20. Switchgrass (Panicum virgatum) fermentation by sequential culture of Clostridium thermocellum and Clostridium beijerinckii: effect of particle size on gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fuel alcohols can be produced by fermenting cellulosic biomass. Clostridium beijerinckii produces both ethanol and butanol, but it is non-cellulolytic. Cellulose requires saccharification prior to fermentation by C. beijerinckii. In contrast, the thermophile, Clostridium thermocellum, is highly ce...

  1. Faecal carriage of Clostridium perfringens.

    PubMed Central

    Stringer, M. F.; Watson, G. N.; Gilbert, R. J.; Wallace, J. G.; Hassall, J. E.; Tanner, E. I.; Webber, P. P.

    1985-01-01

    The numbers and serotypes of Clostridium perfringens present in the faeces of three groups of hospital patients and young healthy laboratory workers were examined in studies lasting between 10 and 13 weeks. In one hospital some long-stay geriatric patients carried relatively high numbers of C. perfringens (greater than 10(7)/g) most of the time and it was not unusual in any one week for the majority of these patients to carry the same serotype(s). However, the numbers of C. perfringens in the faeces of young long-stay patients in the same hospital were in the range of 10(3)-10(4)/g and carriage of common serotypes was not observed. These results were similar to the findings with the young laboratory workers. This investigation indicates that two of the laboratory criteria often used in the investigation of C. perfringens food poisoning, i.e. faecal counts of greater than or equal to 10(5) C. perfringens/g and patients carrying the same serological type need to be interpreted with caution with suspected outbreaks involving some groups of geriatric long-stay hospital patients. PMID:2866214

  2. Clostridium difficile infections in China.

    PubMed

    Jin, Ke; Wang, Shixia; Huang, Zuhu; Lu, Shan

    2010-11-01

    Clostridium difficile (C. difficile) infection has become one of the major hospital-associated infections in Western countries in the last two decades. However, there is limited information on the status of C. difficile infection in Chinese healthcare settings. Given the large and increasing elderly population and the well-recognized problem of over-prescribing of broad spectrum antibiotics in China, it is critical to understand the epidemiology and potential risk factors that may contribute to C. difficile infection in China. A literature review of available published studies, including those in Chinese language-based journals, was conducted. A review of the currently available literature suggested the presence of C. difficile infections in China, but also suggested that these infections were not particularly endemic. This finding should lead to better designed and greatly expanded studies to provide a more reliable epidemiologically-based conclusion on the actual status of C. difficile infection in China, including the identification of any associated risk factors. Such information is ultimately valuable to develop appropriate strategies to prevent C. difficile infection and the vast negative impact of such infections in China and other developing countries. PMID:23554657

  3. Toxin plasmids of Clostridium perfringens.

    PubMed

    Li, Jihong; Adams, Vicki; Bannam, Trudi L; Miyamoto, Kazuaki; Garcia, Jorge P; Uzal, Francisco A; Rood, Julian I; McClane, Bruce A

    2013-06-01

    In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  4. Clostridium difficile infection in Thailand.

    PubMed

    Putsathit, Papanin; Kiratisin, Pattarachai; Ngamwongsatit, Puriya; Riley, Thomas V

    2015-01-01

    Clostridium difficile is the aetiological agent in ca. 20% of cases of antimicrobial-associated diarrhoea in hospitalised adults. Diseases caused by this organism range from mild diarrhoea to occasional fatal pseudomembranous colitis. The epidemiology of C. difficile infection (CDI) has changed notably in the past decade, following epidemics in the early 2000s of PCR ribotype (RT) 027 infection in North America and Europe, where there was an increase in disease severity and mortality. Another major event has been the emergence of RT 078, initially as the predominant ribotype in production animals in the USA and Europe, and then in humans in Europe. Although there have been numerous investigations of the epidemiology of CDI in North America and Europe, limited studies have been undertaken elsewhere, particularly in Asia. Antimicrobial exposure remains the major risk factor for CDI. Given the high prevalence of indiscriminate and inappropriate use of antimicrobials in Asia, it is conceivable that CDI is relatively common among humans and animals. This review describes the level of knowledge in Thailand regarding C. difficile detection methods, prevalence and antimicrobial susceptibility profile, as well as the clinical features of, treatment options for and outcomes of the disease. In addition, antimicrobial usage in livestock in Thailand will be reviewed. A literature search yielded 18 studies mentioning C. difficile in Thailand, a greater number than from any other Asian country. It is possible that the situation in Thailand in relation to CDI may mirror the situation in other developing Asians countries. PMID:25537687

  5. Carbon Monoxide Oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum

    PubMed Central

    Diekert, Gabriele B.; Thauer, Rudolf K.

    1978-01-01

    Cultures of Clostridium formicoaceticum and C. thermoaceticum growing on fructose and glucose, respectively, were shown to rapidly oxidize CO to CO2. Rates up to 0.4 μmol min−1 mg of wet cells−1 were observed. Carbon monoxide oxidation by cell suspensions was found (i) to be dependent on pyruvate, (ii) to be inhibited by alkyl halides and arsenate, and (iii) to stimulate CO2 reduction to acetate. Cell extracts catalyzed the oxidation of carbon monoxide with methyl viologen at specific rates up to 10 μmol min−1 mg of protein−1 (35°C, pH 7.2). Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate and ferredoxin from C. pasteurianum were ineffective as electron acceptors. The catalytic mechanism of carbon monoxide oxidation was “ping-pong,” indicating that the enzyme catalyzing carbon monoxide oxidation can be present in an oxidized and a reduced form. The oxidized form was shown to react reversibly with cyanide, and the reduced form was shown to react reversibly with alkyl halides: cyanide inactivated the enzyme only in the absence of carbon monoxide, and alkyl halides inactivated it only in the presence of carbon monoxide. Extracts inactivated by alkyl halides were reactivated by photolysis. The findings are interpreted to indicate that carbon monoxide oxidation in the two bacteria is catalyzed by a corrinoid enzyme and that in vivo the reaction is coupled with the reduction of CO2 to acetate. Cultures of C. acidi-urici and C. cylindrosporum growing on hypoxanthine were found not to oxidize CO, indicating that clostridia mediating a corrinoid-independent total synthesis of acetate from CO2 do not possess a CO-oxidizing system. PMID:711675

  6. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  7. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  8. Clostridium difficile recurrences in Stockholm.

    PubMed

    Sandell, Staffan; Rashid, Mamun-Ur; Jorup-Rönström, Christina; Ellström, Kristina; Nord, Carl Erik; Weintraub, Andrej

    2016-04-01

    Sixty-eight hospital-admitted patients with a first episode of Clostridium difficile infection (CDI) were included and followed up during 1 year. Faeces samples were collected at 1, 2, 6 and 12 months after inclusion and analyzed for the presence of C. difficile toxin B, genes for toxin A, toxin B, binary toxin and TcdC deletion by PCR. All strains were also PCR-ribotyped and the MICs of the isolates were determined against eight antimicrobial agents. In 68 patients initially included, antibiotics, clinical signs and co-morbidities were analyzed and 56 were evaluable for recurrences. The mean number of different antibiotics given during 3 months prior to inclusion was 2.6 (range 0-6). Six patients had not received any antibiotics and three of them had diagnosed inflammatory bowel disease. Thirty-two patients (57%) had either a microbiological or clinical recurrence, 16 of whom had clinical recurrences that were confirmed microbiologically (13, 23%) or unconfirmed by culture (3, 5%). Twenty-nine patients were positive in at least one of the follow-up tests, 16 had the same ribotype in follow-up tests, i.e. relapse, and 13 a different ribotype, i.e., reinfection. Most common ribotypes were 078/126, 020, 023, 026, 014/077, 001 and 005. No strain of ribotype 027 was found. Strains ribotype 078/126 and 023 were positive for binary toxin and were the strains most prone to cause recurrence. All strains were sensitive to vancomycin and metronidazole. Patients with recurrences were significantly older (p = 0.02) and all patients had a high burden of comorbidities, which could explain the high fatality rate, 26 (38%) patients died during the 1-year follow-up. PMID:26802875

  9. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  10. Motility and Flagellar Glycosylation in Clostridium difficile▿ †

    PubMed Central

    Twine, Susan M.; Reid, Christopher W.; Aubry, Annie; McMullin, David R.; Fulton, Kelly M.; Austin, John; Logan, Susan M.

    2009-01-01

    In this study, intact flagellin proteins were purified from strains of Clostridium difficile and analyzed using quadrupole time of flight and linear ion trap mass spectrometers. Top-down studies showed the flagellin proteins to have a mass greater than that predicted from the corresponding gene sequence. These top-down studies revealed marker ions characteristic of glycan modifications. Additionally, diversity in the observed masses of glycan modifications was seen between strains. Electron transfer dissociation mass spectrometry was used to demonstrate that the glycan was attached to the flagellin protein backbone in O linkage via a HexNAc residue in all strains examined. Bioinformatic analysis of C. difficile genomes revealed diversity with respect to glycan biosynthesis gene content within the flagellar biosynthesis locus, likely reflected by the observed flagellar glycan diversity. In C. difficile strain 630, insertional inactivation of a glycosyltransferase gene (CD0240) present in all sequenced genomes resulted in an inability to produce flagellar filaments at the cell surface and only minor amounts of unmodified flagellin protein. PMID:19749038

  11. Clostridium ljungdahlii represents a microbial production platform based on syngas

    PubMed Central

    Köpke, Michael; Held, Claudia; Hujer, Sandra; Liesegang, Heiko; Wiezer, Arnim; Wollherr, Antje; Ehrenreich, Armin; Liebl, Wolfgang; Gottschalk, Gerhard; Dürre, Peter

    2010-01-01

    Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO2/H2 and synthesis gas (CO/H2). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO2, thus combining industrial needs with sustained reduction of CO and CO2 in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. PMID:20616070

  12. Clostridium ljungdahlii represents a microbial production platform based on syngas.

    PubMed

    Köpke, Michael; Held, Claudia; Hujer, Sandra; Liesegang, Heiko; Wiezer, Arnim; Wollherr, Antje; Ehrenreich, Armin; Liebl, Wolfgang; Gottschalk, Gerhard; Dürre, Peter

    2010-07-20

    Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. PMID:20616070

  13. Clostridium septicum Empyema in an Immunocompetent Woman

    PubMed Central

    Granok, Alexander B.; Mahon, Patrick A.; Biesek, Genesio W.

    2010-01-01

    We report a case of a Clostridium septicum empyema in an immunocompetent woman following operation for an incarcerated internal hernia. The patient was successfully treated with pleural decortication and an extended course of postoperative antibiotics. This is the first report of such an infection in the medical literature. PMID:20490275

  14. Comparative Analysis of Clostridium perfringens Bacteriophage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium perfringens are Gram-positive bacteria that are a major bacterial cause of food-borne disease among humans. These anaerobic bacteria are also the presumptive etiologic agent of necrotic enteritis among chickens. Pathogenesis and symptoms of a necrotic enteritis infection among chickens ...

  15. Coculture Production of Butanol by Clostridium Bacteria

    NASA Technical Reports Server (NTRS)

    Bergstrom, S. L.; Foutch, G. L.

    1985-01-01

    Production of butanol by anaerobic fermentation of sugars enhanced by use of two Clostridium species, one of which feeds on metabolic product of other. Renewed interest in fermentation process for making butanol stimulated by potential use of butanol as surfactant in enhanced oil recovery. Butanol also used as fuel or as chemical feedstock and currently produced synthetically from petroleum.

  16. Clostridium difficile in poultry and poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America from the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer t...

  17. Comparative Analysis of Clostridium perfringens Bacteriophage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Clostridium perfringens are Gram-positive bacteria that are a major bacterial cause of food-borne disease and gas gangrene among humans. These anaerobic bacteria are also the presumptive etiologic agent of necrotic enteritis among chickens. Pathogenesis and symptoms of a necrotic enterit...

  18. Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2013-01-01

    Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD+ and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2. PMID:23872566

  19. A case if infant botulism due to neurotoxigenic Clostridium butyricum type E associated with Clostridium difficile colitis.

    PubMed

    Fenicia, L; Da Dalt, L; Anniballi, F; Franciosa, G; Zanconato, S; Aureli, P

    2002-10-01

    Reported here is the sixth case of intestinal toxemia botulism caused by Clostridium butyricum type E in Italy since 1984. In this case, the patient was concomitantly affected with colitis due to Clostridium difficile toxin. A review of previously reported cases revealed that some of these patients may also have had intestinal toxemia botulism associated with Clostridium difficile colitis, based on the reported symptoms. Given that this association has been shown to exist not only in Italy but also in the USA, it is recommended that individuals with intestinal botulism and symptoms of colitis undergo testing for Clostridium difficile and its toxins in fecal samples. PMID:12479171

  20. A novel insecticidal serotype of Clostridium bifermentans.

    PubMed

    Seleena, P; Lee, H L; Lecadet, M M

    1997-12-01

    A novel Clostridium bifermentans strain toxic to mosquito larvae on ingestion was isolated from a soil sample collected from secondary forest floor. This strain was designated as serovar paraiba (C. b. paraiba) according to its specific H antigen. Clostridium bifermentans paraiba is most toxic to Anopheles maculatus Theobald larvae (LC50 = 0.038 mg/liter), whereas toxicity to Aedes aegypti (Linn.) (LC50 = 0.74 mg/liter) and Culex quinquefasciatus Say (LC50 = 0.11 mg/liter) larvae was 20 and 3 times lower, respectively. The toxicity to An. maculatus larvae is as high as that of Bacillus thuringiensis serovar israelensis. C. b. paraiba was also found to exhibit significant per os insecticidal activity toward adult Musca domestica (Linn.). PMID:9474569

  1. Clostridium difficile Infection: A Worldwide Disease

    PubMed Central

    Burke, Kristin E.

    2014-01-01

    Clostridium difficile, an anaerobic toxigenic bacterium, causes a severe infectious colitis that leads to significant morbidity and mortality worldwide. Both enhanced bacterial toxins and diminished host immune response contribute to symptomatic disease. C. difficile has been a well-established pathogen in North America and Europe for decades, but is just emerging in Asia. This article reviews the epidemiology, microbiology, pathophysiology, and clinical management of C. difficile. Prompt recognition of C. difficile is necessary to implement appropriate infection control practices. PMID:24516694

  2. Persistent and Recurrent Clostridium difficile Colitis

    PubMed Central

    Cole, Shola A.; Stahl, Thomas J.

    2015-01-01

    Clostridium difficile infection (CDI) is the most frequent cause of nosocomial diarrhea. It has become a significant dilemma in the treatment of patients, and causes increasing morbidity that, in extreme cases, may result in death. Persistent and recurrent disease hamper attempts at eradication of this infection. Escalating levels of treatment and novel therapeutics are being utilized and developed to treat CDI. Further trials are warranted to definitively determine what protocols can be used to treat persistent and recurrent disease. PMID:26034401

  3. Clostridium butyricum: from beneficial to a new emerging pathogen.

    PubMed

    Cassir, N; Benamar, S; La Scola, B

    2016-01-01

    Clostridium butyricum, a strictly anaerobic spore-forming bacillus, is a common human and animal gut commensal bacterium, and is also frequently found in the environment. Whereas non-toxigenic strains are currently used as probiotics in Asia, other strains have been implicated in pathological conditions, such as botulism in infants or necrotizing enterocolitis in preterm neonates. In terms of the latter, within the same species, different strains have antagonist effects on the intestinal mucosa. In particular, short-chain fatty acids, which are products of carbohydrate fermentation, have a dose-dependent paradoxical effect. Moreover, toxin genes have been identified by genome sequencing in pathological strains. Asymptomatic carriage of these strains has also been reported. Herein, we provide an overview of the implications of C. butyricum for human health, from the beneficial to the pathogenic. We focus on pathogenic strains associated with the occurrence of necrotizing enterocolitis. We also discuss the need to use complementary microbiological methods, including culture, in order to better assess gut bacterial diversity and identify new emergent enteropathogens at the strain level. PMID:26493849

  4. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission.

    PubMed

    Martin, Jessica S H; Monaghan, Tanya M; Wilcox, Mark H

    2016-04-01

    Clostridium difficile infection (CDI) continues to affect patients in hospitals and communities worldwide. The spectrum of clinical disease ranges from mild diarrhoea to toxic megacolon, colonic perforation and death. However, this bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' onward transmission. Modern technologies, such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis, are helping to track C. difficile transmission across health-care facilities, countries and continents, offering the potential to illuminate previously under-recognized sources of infection. These typing strategies have also demonstrated heterogeneity in terms of CDI incidence and strain types reflecting different stages of epidemic spread. However, comparison of CDI epidemiology, particularly between countries, is challenging due to wide-ranging approaches to sampling and testing. Diagnostic strategies for C. difficile are complicated both by the wide range of bacterial targets and tests available and the need to differentiate between toxin-producing and non-toxigenic strains. Multistep diagnostic algorithms have been recommended to improve sensitivity and specificity. In this Review, we describe the latest advances in the understanding of C. difficile epidemiology, transmission and diagnosis, and discuss the effect of these developments on the clinical management of CDI. PMID:26956066

  5. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.

    PubMed

    Makroczyová, Jana; Jamroškovič, Ján; Krascsenitsová, Eva; Labajová, Nad'a; Barák, Imrich

    2016-06-01

    In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host. PMID:26817670

  6. Integration of erm(B)-containing elements through large chromosome fragment exchange in Clostridium difficile

    PubMed Central

    Wasels, François; Spigaglia, Patrizia; Barbanti, Fabrizio; Monot, Marc; Villa, Laura; Dupuy, Bruno; Carattoli, Alessandra; Mastrantonio, Paola

    2015-01-01

    In Clostridium difficile, erm(B) genes are located on mobile elements like Tn5398 and Tn6215. In previous studies, some of these elements were transferred by conjugation-like mechanisms, mobilized in trans by helper conjugative systems. In this study, we analyzed the genomes of several recipient strains that acquired either Tn5398 or Tn6215-like elements. We demonstrated that the integration of the transposons in the genome of the recipient cell was always due to homologous recombination events, involving exchange of large chromosomal segments. We did not observed transposon transfer to a C. difficile strain in presence of DNAse, suggesting that a possible transformation-like mechanism occurred in this recipient.

  7. Structure and regulation of the cellulose degradome in Clostridium cellulolyticum

    PubMed Central

    2013-01-01

    Background Many bacteria efficiently degrade lignocellulose yet the underpinning genome-wide metabolic and regulatory networks remain elusive. Here we revealed the “cellulose degradome” for the model mesophilic cellulolytic bacterium Clostridium cellulolyticum ATCC 35319, via an integrated analysis of its complete genome, its transcriptomes under glucose, xylose, cellobiose, cellulose, xylan or corn stover and its extracellular proteomes under glucose, cellobiose or cellulose. Results Proteins for core metabolic functions, environment sensing, gene regulation and polysaccharide metabolism were enriched in the cellulose degradome. Analysis of differentially expressed genes revealed a “core” set of 48 CAZymes required for degrading cellulose-containing substrates as well as an “accessory” set of 76 CAZymes required for specific non-cellulose substrates. Gene co-expression analysis suggested that Carbon Catabolite Repression (CCR) related regulators sense intracellular glycolytic intermediates and control the core CAZymes that mainly include cellulosomal components, whereas 11 sets of Two-Component Systems (TCSs) respond to availability of extracellular soluble sugars and respectively regulate most of the accessory CAZymes and associated transporters. Surprisingly, under glucose alone, the core cellulases were highly expressed at both transcript and protein levels. Furthermore, glucose enhanced cellulolysis in a dose-dependent manner, via inducing cellulase transcription at low concentrations. Conclusion A molecular model of cellulose degradome in C. cellulolyticum (Ccel) was proposed, which revealed the substrate-specificity of CAZymes and the transcriptional regulation of core cellulases by CCR where the glucose acts as a CCR inhibitor instead of a trigger. These features represent a distinct environment-sensing strategy for competing while collaborating for cellulose utilization, which can be exploited for process and genetic engineering of microbial

  8. Diverse Temperate Bacteriophage Carriage in Clostridium difficile 027 Strains

    PubMed Central

    Nale, Janet Y.; Shan, Jinyu; Hickenbotham, Peter T.; Fawley, Warren N.; Wilcox, Mark H.; Clokie, Martha R. J.

    2012-01-01

    Background The hypervirulent Clostridium difficile ribotype 027 can be classified into subtypes, but it unknown if these differ in terms of severity of C. difficile infection (CDI). Genomic studies of C. difficile 027 strains have established that they are rich in mobile genetic elements including prophages. This study combined physiological studies, electron microscopy analysis and molecular biology to determine the potential role of temperate bacteriophages in disease and diversity of C. difficile 027. Methodology/Principal Findings We induced prophages from 91 clinical C. difficile 027 isolates and used transmission electron microscopy and pulsed-field gel electrophoresis to characterise the bacteriophages present. We established a correlation between phage morphology and subtype. Morphologically distinct tailed bacteriophages belonging to Myoviridae and Siphoviridae were identified in 63 and three isolates, respectively. Dual phage carriage was observed in four isolates. In addition, there were inducible phage tail-like particles (PT-LPs) in all isolates. The capacity of two antibiotics mitomycin C and norfloxacin to induce prophages was compared and it was shown that they induced specific prophages from C. difficile isolates. A PCR assay targeting the capsid gene of the myoviruses was designed to examine molecular diversity of C. difficile myoviruses. Phylogenetic analysis of the capsid gene sequences from eight ribotypes showed that all sequences found in the ribotype 027 isolates were identical and distinct from other C. difficile ribotypes and other bacteria species. Conclusion/Significance A diverse set of temperate bacteriophages are associated with C. difficile 027. The observed correlation between phage carriage and the subtypes suggests that temperate bacteriophages contribute to the diversity of C. difficile 027 and may play a role in severity of disease associated with this ribotype. The capsid gene can be used as a tool to identify C. difficile

  9. Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis

    PubMed Central

    Artzi, Lior; Morag, Ely; Barak, Yoav; Lamed, Raphael

    2015-01-01

    ABSTRACT Clostridium clariflavum is an anaerobic, cellulosome-forming thermophile, containing in its genome genes for a large number of cellulosomal enzyme and a complex scaffoldin system. Previously, we described the major cohesin-dockerin interactions of the cellulosome components, and on this basis a model of diverse cellulosome assemblies was derived. In this work, we cultivated C. clariflavum on cellobiose-, microcrystalline cellulose-, and switchgrass-containing media and isolated cell-free cellulosome complexes from each culture. Gel filtration separation of the cellulosome samples revealed two major fractions, which were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to identify the key players of the cellulosome assemblies therein. From the 13 scaffoldins present in the C. clariflavum genome, 11 were identified, and a variety of enzymes from different glycoside hydrolase and carbohydrate esterase families were identified, including the glycoside hydrolase families GH48, GH9, GH5, GH30, GH11, and GH10. The expression level of the cellulosomal proteins varied as a function of the carbon source used for cultivation of the bacterium. In addition, the catalytic activity of each cellulosome was examined on different cellulosic substrates, xylan and switchgrass. The cellulosome isolated from the microcrystalline cellulose-containing medium was the most active of all the cellulosomes that were tested. The results suggest that the expression of the cellulosome proteins is regulated by the type of substrate in the growth medium. Moreover, both cell-free and cell-bound cellulosome complexes were produced which together may degrade the substrate in a synergistic manner. These observations are compatible with our previously published model of cellulosome assemblies in this bacterium. PMID:25991683

  10. Safety assessment of the Clostridium butyricum MIYAIRI 588® probiotic strain including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo.

    PubMed

    Isa, K; Oka, K; Beauchamp, N; Sato, M; Wada, K; Ohtani, K; Nakanishi, S; McCartney, E; Tanaka, M; Shimizu, T; Kamiya, S; Kruger, C; Takahashi, M

    2016-08-01

    Probiotics are live microorganisms ingested for the purpose of conferring a health benefit on the host. Development of new probiotics includes the need for safety evaluations that should consider factors such as pathogenicity, infectivity, virulence factors, toxicity, and metabolic activity. Clostridium butyricum MIYAIRI 588(®) (CBM 588(®)), an anaerobic spore-forming bacterium, has been developed as a probiotic for use by humans and food animals. Safety studies of this probiotic strain have been conducted and include assessment of antimicrobial sensitivity, documentation of the lack of Clostridium toxin genes, and evaluation of CBM 588(®) on reproductive and developmental toxicity in a rodent model. With the exception of aminoglycosides, to which anaerobes are intrinsically resistant, CBM 588(®) showed sensitivity to all antibiotic classes important in human and animal therapeutics. In addition, analysis of the CBM 588(®) genome established the absence of genes for encoding for α, β, or ε toxins and botulin neurotoxins types A, B, E, or F. There were no deleterious reproductive and developmental effects observed in mice associated with the administration of CBM 588(®) These data provide further support for the safety of CBM 588(®) for use as a probiotic in animals and humans. PMID:26437792

  11. Blastocystis sp. Infection Mimicking Clostridium Difficile Colitis

    PubMed Central

    Gil, Gaby S.; Chaudhari, Shobhana; Shady, Ahmed; Caballes, Ana; Hong, Joe

    2016-01-01

    We report an unusual case of severe diarrhea related to Blastocystis sp. infection in a patient with end stage renal disease on hemodialysis. The patient was admitted due to profuse diarrhea associated with fever and leukocytosis. Pertinent stool work-up such as leukocytes in stool, stool culture, clostridium difficile toxin B PCR, and serology for hepatitis A, hepatitis B, and hepatitis C and cytomegalovirus screening were all negative. Ova and parasite stool examination revealed Blastocystis sp. The patient was given intravenous metronidazole with clinical improvement by day three and total resolution of symptoms by day ten. PMID:27247810

  12. An Update on Clostridium difficile Toxinotyping

    PubMed Central

    Janezic, Sandra

    2015-01-01

    Toxinotyping is a PCR-restriction fragment length polymorphism (RFLP)-based method for differentiation of Clostridium difficile strains according to the changes in the pathogenicity locus (PaLoc), a region coding for toxins A and B. Toxinotypes are a heterogenous group of strains that are important in the development of molecular diagnostic tests and vaccines and are a good basis for C. difficile phylogenetic studies. Here we describe an overview of the 34 currently known toxinotypes (I to XXXIV) and some changes in nomenclature. PMID:26511734

  13. Alternative medium for Clostridium perfringens sporulation.

    PubMed Central

    Tórtora, J C

    1984-01-01

    A medium containing 0.50 g of thiotone peptone, 0.30 g of soluble starch, 0.02 g of MgSO4 X 7H2O, 0.90 g of Na2HPO4 X 2H2O, 100.00 ml of distilled water, and optionally , 166 micrograms of dichloridric thiamine supported sporulation of 138 out of 141 Clostridium perfringens strains. Comparatively this medium gave a greater percentage of sporulation than five other media described previously. PMID:6331307

  14. Clostridium difficile colitis: pathogenesis and host defence.

    PubMed

    Abt, Michael C; McKenney, Peter T; Pamer, Eric G

    2016-10-01

    Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis. PMID:27573580

  15. Inducing and Quantifying Clostridium difficile Spore Formation.

    PubMed

    Shen, Aimee; Fimlaid, Kelly A; Pishdadian, Keyan

    2016-01-01

    The Gram-positive nosocomial pathogen Clostridium difficile induces sporulation during growth in the gastrointestinal tract. Sporulation is necessary for this obligate anaerobe to form metabolically dormant spores that can resist antibiotic treatment, survive exit from the mammalian host, and transmit C. difficile infections. In this chapter, we describe a method for inducing C. difficile sporulation in vitro. This method can be used to study sporulation and maximize spore purification yields for a number of C. difficile strain backgrounds. We also describe procedures for visualizing spore formation using phase-contrast microscopy and for quantifying the efficiency of sporulation using heat resistance as a measure of functional spore formation. PMID:27507338

  16. Clostridium difficile: from obscurity to superbug.

    PubMed

    Brazier, J S

    2008-01-01

    According to the UK media and popular press, Clostridium difficile is now a fully fledged member of that notorious but ill-defined group of microorganisms portrayed to the general public as superbugs. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C. difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous superbug responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This review tracks the rise in scientific knowledge and public awareness of this organism. PMID:18476496

  17. Regulation of Toxin Production in Clostridium perfringens

    PubMed Central

    Ohtani, Kaori; Shimizu, Tohru

    2016-01-01

    The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here. PMID:27399773

  18. Novel Risk Factors for Recurrent Clostridium difficile Infection in Children

    PubMed Central

    Nicholson, Maribeth R.; Thomsen, Isaac P.; Slaughter, James C.; Creech, C. Buddy; Edwards, Kathryn M.

    2014-01-01

    Objectives Clostridium difficile, a common cause of antibiotic-associated diarrhea, has been reported to recur in high rates in adults. The rates and risk factors for recurrent Clostridium difficile infection (rCDI) in children have not been well established. Methods We conducted a retrospective cohort study of 186 pediatric patients seen at a tertiary care referral center over a 5-year period diagnosed with a primary infection with Clostridium difficile. Children with recurrent disease, defined as return of symptoms of Clostridium difficile infection and positive testing ≤60 days after the completion of therapy, were compared to children who did not experience an episode of recurrence. Results Of the 186 pediatric patients included in this study, 41 (22%) experienced recurrent Clostridium difficile infection. On univariable analysis, factors significantly associated with recurrent Clostridium difficile infection included malignancy, recent hospitalization, recent surgery, antibiotic use, number of antibiotic exposures by class, acid blocker use, immunosuppressant use, and hospital acquired disease. On multivariable analysis, malignancy (OR=3.39, 95% CI=1.52–7.85), recent surgery (OR=2.40, 95% CI=1.05–5.52), and the number of antibiotic exposures by class (OR=1.33, 95% CI=1.01–1.75) were significantly associated with recurrent disease in children. Conclusions The rate of recurrent Clostridium difficile infection in children was 22%. Recurrence was significantly associated with the risk factors of malignancy, recent surgery, and the number of antibiotic exposures by class. PMID:25199038

  19. The Gene CBO0515 from Clostridium botulinum Strain Hall A Encodes the Rare Enzyme N5-(Carboxyethyl) Ornithine Synthase, EC 1.5.1.24▿

    PubMed Central

    Thompson, John; Hill, Karen K.; Smith, Theresa J.; Pikis, Andreas

    2010-01-01

    Sequencing of the genome of Clostridium botulinum strain Hall A revealed a gene (CBO0515), whose putative amino acid sequence was suggestive of the rare enzyme N5-(1-carboxyethyl) ornithine synthase. To test this hypothesis, CBO0515 has been cloned, and the encoded polypeptide was purified and characterized. This unusual gene appears to be confined to proteolytic strains assigned to group 1 of C. botulinum. PMID:19933367

  20. Clostridium perfringens infection after transarterial chemoembolization for large hepatocellular carcinoma.

    PubMed

    Li, Jing-Huan; Yao, Rong-Rong; Shen, Hu-Jia; Zhang, Lan; Xie, Xiao-Ying; Chen, Rong-Xin; Wang, Yan-Hong; Ren, Zheng-Gang

    2015-04-14

    We report an unusual case of Clostridium perfringens liver abscess formation after transcatheter arterial chemoembolization (TACE) for large hepatocellular carcinoma. Severe deterioration in liver and renal function accompanied with hemocytolysis was found on the 2(nd) day after TACE. Blood culture found Clostridium perfringens and abdominal computed tomography revealed a gas-containing abscess in the liver. Following antibiotics administration and support care, the infection was controlled and the liver and renal function turned normal. The 2(nd) TACE procedure was performed 1.5 mo later and no recurrent Clostridium perfringens infection was found. PMID:25892893

  1. Clostridium novyi, sordellii, and tetani: mechanisms of disease.

    PubMed

    Aronoff, David M

    2013-12-01

    Clostridia represent a diverse group of spore-forming gram positive anaerobes that include several pathogenic species. In general, diseases caused by clostridia are a result of intoxication of the infected host. Thus, clostridial toxins have been targeted for diagnostic, therapeutic, and preventive strategies against infection. Studying the mechanisms of action of clostridial toxins has not only shed light on the pathogenesis of infection but has provided important new insights into cell biology and immunology. A primary purpose of this manuscript is to provide a succinct review on the mechanisms of disease caused by intoxication by the pathogens Clostridium tetani, Clostridium novyi, and Clostridium sordellii. PMID:24036420

  2. Clostridium perfringens infection after transarterial chemoembolization for large hepatocellular carcinoma

    PubMed Central

    Li, Jing-Huan; Yao, Rong-Rong; Shen, Hu-Jia; Zhang, Lan; Xie, Xiao-Ying; Chen, Rong-Xin; Wang, Yan-Hong; Ren, Zheng-Gang

    2015-01-01

    We report an unusual case of Clostridium perfringens liver abscess formation after transcatheter arterial chemoembolization (TACE) for large hepatocellular carcinoma. Severe deterioration in liver and renal function accompanied with hemocytolysis was found on the 2nd day after TACE. Blood culture found Clostridium perfringens and abdominal computed tomography revealed a gas-containing abscess in the liver. Following antibiotics administration and support care, the infection was controlled and the liver and renal function turned normal. The 2nd TACE procedure was performed 1.5 mo later and no recurrent Clostridium perfringens infection was found. PMID:25892893

  3. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks

    PubMed Central

    Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi

    2015-01-01

    There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins’ gene(s) among the Genus Clostridium. PMID:26584048

  4. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks.

    PubMed

    Irikura, Daisuke; Monma, Chie; Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi

    2015-01-01

    There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins' gene(s) among the Genus Clostridium. PMID:26584048

  5. Metabolic modeling of clostridia: current developments and applications.

    PubMed

    Dash, Satyakam; Ng, Chiam Yu; Maranas, Costas D

    2016-02-01

    Anaerobic Clostridium spp. is an important bioproduction microbial genus that can produce solvents and utilize a broad spectrum of substrates including cellulose and syngas. Genome-scale metabolic (GSM) models are increasingly being put forth for various clostridial strains to explore their respective metabolic capabilities and suitability for various bioconversions. In this study, we have selected representative GSM models for six different clostridia (Clostridium acetobutylicum, C. beijerinckii, C. butyricum, C. cellulolyticum, C. ljungdahlii and C. thermocellum) and performed a detailed model comparison contrasting their metabolic repertoire. We also discuss various applications of these GSM models to guide metabolic engineering interventions as well as assessing cellular physiology. PMID:26755502

  6. Clostridium to treat cancer: dream or reality?

    PubMed Central

    Lambin, Philippe

    2015-01-01

    In their paper “Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses”, Roberts et al. describe the induction of antitumor responses following local spore administration of an attenuated C. novyi strain (C. novyi-NT). Stereotactic intratumoral spore injection led to significant survival advantages in a murine orthotopic brain model and local bacterial treatment produced robust responses in a set of spontaneous canine soft tissue carcinomas. Their preclinical findings in both models, provided the basis for a phase 1 investigational clinical study in patients with solid tumors that were either refractory to standard treatment or without an available standard treatment available (NCT01924689). The results of the first patient enrolled in this trial, a 53-year-old female with a retroperitoneal leiomyosarcoma, are described. Next to the non-armed C. novyi-NT described in this paper, very potent genetically modified Clostridium expressing anti-cancer therapeutic genes are also being developed. Are treatments with these non-pathogenic clostridia a viable alternative cancer treatment? PMID:26046067

  7. Secretion of clostridium cellulase by E. coli

    DOEpatents

    Yu, Ida Kuo

    1998-01-01

    A gene, encoding an endocellulase from a newly isolated mesophilic Clostridium strain IY-2 which can digest bamboo fibers, cellulose, rice straw, and sawdust, was isolated by shotgun cloning in an E. coli expression plasmid pLC2833. E. coli positive clones were selected based on their ability to hydrolyze milled bamboo fibers and cellulose present in agar plates. One clone contained a 2.8 kb DNA fragment that was responsible for cellulase activity. Western blot analyses indicated that the positive clone produced a secreted cellulase with a mass of about 58,000 daltons that was identical in size to the subunit of one of the three major Clostridium cellulases. The products of cellulose digestion by this cloned cellulase were cellotetraose and soluble higher polymers. The cloned DNA contained signal sequences capable of directing the secretion of heterologous proteins from an E. coli host. The invention describes a bioprocess for the treatment of cellulosic plant materials to produce cellular growth substrates and fermentation end products suitable for production of liquid fuels, solvents, and acids.

  8. Evaluation of Multiplex PCR with Enhanced Spore Germination for Detection of Clostridium difficile from Stool Samples of the Hospitalized Patients

    PubMed Central

    Chankhamhaengdecha, Surang; Hadpanus, Piyapong; Aroonnual, Amornrat; Ngamwongsatit, Puriya; Chotiprasitsakul, Darunee; Chongtrakool, Piriyaporn; Janvilisri, Tavan

    2013-01-01

    Clostridium difficile poses as the most common etiologic agent of nosocomial diarrhea. Although there are many diagnostic methods to detect C. difficile directly from stool samples, the nucleic acid-based approach has been largely performed in several laboratories due to its high sensitivity and specificity as well as rapid turnaround time. In this study, a multiplex PCR was newly designed with recent accumulated nucleotide sequences. The PCR testing with various C. difficile ribotypes, other Clostridium spp., and non-Clostridium strains revealed 100% specificity with the ability to detect as low as ~22 genomic copy number per PCR reaction. Different combinations of sample processing were evaluated prior to multiplex PCR for the detection of C. difficile in fecal samples from hospitalized patients. The most optimal condition was the non-selective enrichment at 37°C for 1 h in brain heart infusion broth supplemented with taurocholate, followed by the multiplex PCR. The detection limit after sample processing was shown as being 5 spores per gram of fecal sample. Two hundred and thirty-eight fecal samples collected from the University affiliated hospital were analyzed by the enrichment multiplex PCR procedure. The results suggested that the combination of sample processing with the high-performance detection method would be applicable for routine diagnostic use in clinical setting. PMID:23586062

  9. Clostridium botulinum: a bug with beauty and weapon.

    PubMed

    Shukla, H D; Sharma, S K

    2005-01-01

    Clostridium botulinum, a Gram-positive, anaerobic spore-forming bacteria, is distinguished by its significant clinical applications as well as its potential to be used as bioterror agent. Growing cells secrete botulinum neurotoxin (BoNT), the most poisonous of all known poisons. While BoNT is the causative agent of deadly neuroparalytic botulism, it also serves as a remarkably effective treatment for involuntary muscle disorders such as blepharospasm, strabismus, hemifacial spasm, certain types of spasticity in children, and other ailments. BoNT is also used in cosmetology for the treatment of glabellar lines, and is well-known as the active component of the anti-aging medications Botox and Dysport. In addition, recent reports show that botulinum neurotoxin can be used as a tool for pharmaceutical drug delivery. However, BoNT remains the deadliest of all toxins, and is viewed by biodefense researchers as a possible agent of bioterrorism (BT). Among seven serotypes, C. botulinum type A is responsible for the highest mortality rate in botulism, and thus has the greatest potential to act as biological weapon. Genome sequencing of C. botulinum type A Hall strain (ATCC 3502) is now complete, and has shown the genome size to be 3.89 Mb with a G+C content of approximately 28.2%. The bacterium harbors a 16.3 kb plasmid with a 26.8% G+C content--slightly lower than that of the chromosome. Most of the virulence factors in C. botulinum are chromosomally encoded; bioinformatic analysis of the genome sequence has shown that the plasmid does not harbor toxin genes or genes for related virulence factors. Interestingly, the plasmid does harbor genes essential to replication, including dnaE, which encodes the alpha subunit of DNA polymerase III which has close similarity with its counterpart in C. perfringens strain 13. The plasmid also contains similar genes to those that encode the ABC-type multidrug transport ATPase, and permease. The presence of ABC-type multidrug transport

  10. Development of an in vivo methylation system for the solventogen Clostridium saccharobutylicum NCP 262 and analysis of two endonuclease mutants.

    PubMed

    Lesiak, Justyna Maria; Liebl, Wolfgang; Ehrenreich, Armin

    2014-10-20

    The genome of the biotechnologically important solventogenic Clostridium saccharobutylicum NCP 262 contains two operons coding for genes of presumed type I RM systems belonging to the families A and C. They represent a limiting factor for the development of transformation and conjugation protocols. We established an efficient triparental mating system to transfer DNA to C. saccharobutylicum by conjugation, which includes an in vivo methylation of the donor DNA. Furthermore we describe increased rates of conjugation in knock-out mutants of the restrictase subunits of both RM systems. PMID:25087740

  11. Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB.

    PubMed

    Wasels, François; Monot, Marc; Spigaglia, Patrizia; Barbanti, Fabrizio; Ma, Laurence; Bouchier, Christiane; Dupuy, Bruno; Mastrantonio, Paola

    2014-12-01

    Resistance to the macrolide-lincosamide-streptogramin B group of antibiotics in Clostridium difficile is generally due to erm(B) genes. Tn6194, a conjugative transposon initially detected in PCR-ribotype 027 isolates, is an erm(B)-containing element also detected in other relevant C. difficile PCR-ribotypes. In this study, the genome of a C. difficile PCR-ribotype 001 strain was sequenced, and an element with two nucleotidic changes compared to Tn6194 was detected. This element was transferred by filter mating assays to recipient strains of C. difficile belonging to PCR-ribotype 009 and 027 and to a recipient strain of Enterococcus faecalis. Transconjugants were characterized by Southern blotting and genome sequencing, and integration sites in all transconjugants were identified. The element integrated the genome of C. difficile at different sites and the genome of E. faecalis at a unique site. This study is the first molecular characterization of an erm(B)-containing conjugative transposon in C. difficile and provides additional evidence of the antibiotic resistance transmission risk among pathogenic bacteria occupying the same human intestinal niche. PMID:25055190

  12. First Report of Clostridium lavalense Isolated in Human Blood Cultures

    PubMed Central

    Bourque, Christine; Thibault, Louise; Côté, Jean-Charles; Domingo, Marc-Christian

    2016-01-01

    An 88-year-old man was admitted to the hospital with worsening malaise, fever, and weakness. Anaerobic blood culture bottles revealed the presence of an anaerobic, Gram-positive sporulated bacillus. Empirical antibiotherapy with intravenous piperacillin-tazobactam was initiated. The patient defervesced after four days and was switched to oral amoxicillin on his 6th day of antibiotic therapy and later discharged from the hospital. Four months later, he had recovered. The bacterium was initially identified as Clostridium butyricum using anaerobic manual identification panel. 16S rRNA gene sequence and phylogenetic analysis showed the bacterium to be Clostridium lavalense, a recently described species with no previously published case of isolation in human diagnostic samples so far. This is the first report of Clostridium lavalense isolation from human blood cultures. Further studies are needed in order to elucidate the role of Clostridium lavalense in human disease and its virulence factors. PMID:27478446

  13. Flooding and Clostridium difficile infection: a case-crossover analysis

    EPA Science Inventory

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospttalized and/or receiving antibiotics; however, community­ associated infections affecting otherwise healthy individuals have become more ...

  14. Quantitative Detection of Clostridium perfringens in the Broiler Fowl Gastrointestinal Tract by Real-Time PCR

    PubMed Central

    Wise, Mark G.; Siragusa, Gregory R.

    2005-01-01

    Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract. PMID:16000804

  15. ISCce1 and ISCce2, Two Novel Insertion Sequences in Clostridium cellulolyticum

    PubMed Central

    Maamar, Hédia; de Philip, Pascale; Bélaich, Jean-Pierre; Tardif, Chantal

    2003-01-01

    Two new insertion sequences, ISCce1 and ISCce2, were found to be inserted into the cipC gene of spontaneous mutants of Clostridium cellulolyticum. In these insertional mutants, the cipC gene was disrupted either by ISCce1 alone or by both ISCce1 and ISCce2. ISCce1 is 1,292 bp long and has one open reading frame. The open reading frame encodes a putative 348-amino-acid protein with significant levels of identity with putative proteins having unknown functions and with some transposases belonging to the IS481 and IS3 families. Imperfect 23-bp inverted repeats were found near the extremities of ISCce1. ISCce2 is 1,359 bp long, carries one open reading frame, and has imperfect 35-bp inverted repeats at its termini. The open reading frame encodes a putative 398-amino-acid protein. This protein shows significant levels of identity with transposases belonging to the IS256 family. Upon transposition, both ISCce1 and ISCce2 generate 8-bp direct repeats of the target sequence, but no consensus sequences could be identified at either insertion site. ISCce1 is copied at least 20 times in the genome, as assessed by Southern blot analysis. ISCce2 was found to be mostly inserted into ISCce1. In addition, as neither of the elements was detected in seven other Clostridium species, we concluded that they may be specific to the C. cellulolyticum strain used. PMID:12533447

  16. Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum

    SciTech Connect

    Ljungdahl, L.G.; O'Brien, W.E.; Moore, M.R.; Liu, M.T.

    1980-01-01

    Methylenetetrahydrofolate dehydrogenase is widely distributed and has been found in every cell type investigated. The NAD-specific enzyme has been purified to homogeneity from Clostridium formicoaceticum and the NADP-specific enzyme has been obtained from Clostridium thermoaceticum. Other sources of the NADP-specific enzyme are Streptococcus species, Escherichia coli, Clostridium cylindrosporum, Salmonella typhimurium, yeast, liver from various animals, calf thymus, and plants. The NAD-specific enzyme has been demonstrated in Acetobacterium woodii, some methane bacteria, and in Ehrlich ascites tumor cells. Of considerable interest are the observations that in porcine and ovine livers, as well as in yeast, methylenetetrahydrofolate dehydrogenase purified to homogeneity also contains methylenetetrahydrofolate cyclohydrolase and formyltetrahydrofolate synthetase activities. Now it appears that the purified methylenetetrahydrofolate dehydrogenase from C. thermoaceticum also has cyclohydrolase but not synthetase activity. Methylenetetrahydrofolate dehydrogenase has been discussed previously in this series, as has methenyltetrahydrofolate cyclohydrolase. In C. formicoaceticum and C. thermoaceticum these tetrahydrofolate-dependent enzymes participate in a sequence of metabolic reactions by which carbon dioxide is reduced to the methyl group of 5-methyltetrahydrofolate which in turn is utilized for the synthesis of acetate. This pathway provides the mechanism for disposing of reducing equivalents generated in glycolysis.

  17. Susceptibility of Hamsters to Clostridium difficile Isolates of Differing Toxinotype

    PubMed Central

    Buckley, Anthony M.; Spencer, Janice; Maclellan, Lindsay M.; Candlish, Denise; Irvine, June J.; Douce, Gillian R.

    2013-01-01

    Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ∼21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) & BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial & toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression. PMID:23704976

  18. Improved Medium for Enumeration of Clostridium perfringens

    PubMed Central

    Harmon, Stanley M.; Kautter, Donald A.; Peeler, James T.

    1971-01-01

    An improved selective medium, Tryptose-sulfite-cycloserine (TSC) agar, for the enumeration of Clostridium perfringens is described. It consists of the same basal medium as Shahidi-Ferguson-perfringens (SFP) agar, but with 400 μg of D-cycloserine per ml substituted for the kanamycin and polymyxin. Tolerance of C. perfringens for D-cycloserine, its production of lecithinase, and its ability to reduce sulfite were used as the basis for development of this medium. Comparisons were made between TSC and SFP agars for the recovery of vegetative cells of C. perfringens by using statistical methods. The results showed that TSC allowed virtually complete recovery of most of the C. perfringens strains while inhibiting practically all facultative anaerobes tested. SFP agar allowed a slightly higher rate of recovery of C. perfringens but was found to be much less selective. PMID:4331774

  19. Improved medium for enumeration of Clostridium perfringens.

    PubMed

    Harmon, S M; Kautter, D A; Peeler, J T

    1971-10-01

    An improved selective medium, Tryptose-sulfite-cycloserine (TSC) agar, for the enumeration of Clostridium perfringens is described. It consists of the same basal medium as Shahidi-Ferguson-perfringens (SFP) agar, but with 400 mug of D-cycloserine per ml substituted for the kanamycin and polymyxin. Tolerance of C. perfringens for D-cycloserine, its production of lecithinase, and its ability to reduce sulfite were used as the basis for development of this medium. Comparisons were made between TSC and SFP agars for the recovery of vegetative cells of C. perfringens by using statistical methods. The results showed that TSC allowed virtually complete recovery of most of the C. perfringens strains while inhibiting practically all facultative anaerobes tested. SFP agar allowed a slightly higher rate of recovery of C. perfringens but was found to be much less selective. PMID:4331774

  20. Isolating and Purifying Clostridium difficile Spores.

    PubMed

    Edwards, Adrianne N; McBride, Shonna M

    2016-01-01

    The ability for the obligate anaerobe, Clostridium difficile to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation, and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host, and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile life cycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. Here we provide basic protocols, in vitro growth conditions, and additional considerations for purifying C. difficile spores for a variety of downstream applications. PMID:27507337

  1. Quantitation of Clostridium perfringens in foods.

    PubMed

    ANGELOTTI, R; HALL, H E; FOTER, M J; LEWIS, K H

    1962-05-01

    A procedure is described for identifying and enumerating Clostridium perfringens in foods by means of a simplified agar plating method, followed by confirmation of black colonies in tubes of motility-nitrate medium and sporulation broth. The test is routinely completed within 48 hr. Under experimental conditions, the procedure has been used to quantitatively recover various levels of C. perfringens contamination in a variety of foods and has recovered as few as ten C. perfringens per g without interference from food constituents and associated flora. Under practical conditions of field application, the method has been used to investigate five food-poisoning outbreaks, and C. perfringens was implicated as the etiological agent in two of these outbreaks. PMID:13861594

  2. Carbohydrate-based Clostridium difficile vaccines.

    PubMed

    Monteiro, Mario A; Ma, Zuchao; Bertolo, Lisa; Jiao, Yuening; Arroyo, Luis; Hodgins, Douglas; Mallozzi, Michael; Vedantam, Gayatri; Sagermann, Martin; Sundsmo, John; Chow, Herbert

    2013-04-01

    Clostridium difficile is responsible for thousands of deaths each year and a vaccine would be welcomed, especially one that would disrupt bacterial maintenance, colonization and persistence in carriers and convalescent patients. Structural explorations at the University of Guelph (ON, Canada) discovered that C. difficile may express three phosphorylated polysaccharides, named PSI, PSII and PSIII; this review captures our recent efforts to create vaccines based on these glycans, especially PSII, the common antigen that has precipitated immediate attention. The authors describe the design and immunogenicity of vaccines composed of raw polysaccharides and conjugates thereof. So far, it has been observed that anti-PSII antibodies can be raised in farm animals, mice and hamster models; humans and horses carry anti-PSII IgA and IgG antibodies from natural exposure to C. difficile, respectively; phosphate is an indispensable immunogenic epitope and vaccine-induced PSII antibodies recognize PSII on C. difficile outer surface. PMID:23560922

  3. [New aspects on Clostridium difficile infection].

    PubMed

    von Müller, Lutz

    2016-08-01

    Clostridium difficile infection (CDI) is a frequent and complex disease which is influenced by the repertoire of bacterial virulence factors, by host immunity and by the intestinal microbiome. These complex interaction opens a number of options which may be used for treatment in the future. One example for new treatment options is fecal microbiota transplantation (FMT). Driven by C. difficile related research activities the knowledge of protective microorganism is increasing and it may be assumed that bacteriotherapy by next-generation probiotics may be used very soon also for other diseases. Very often, CDI reflects to the clinician that antibiotic therapy is associated with side effects. Therefore, C. difficile is the guilty conscience which helps to implement targeted and restrictive antibiotic use in the daily practice. PMID:27509341

  4. Current State of Clostridium difficile Treatment Options

    PubMed Central

    Venugopal, Anilrudh A.; Johnson, Stuart

    2012-01-01

    Recent reports of reduced response to standard therapies for Clostridium difficile infection (CDI) and the risk for recurrent CDI that is common with all currently available treatment agents have posed a significant challenge to clinicians. Current recommendations include metronidazole for treatment of mild to moderate CDI and vancomycin for severe CDI. Results from small clinical trials suggest that nitazoxanide and teicoplanin may be alternative options to standard therapies, whereas rifaximin has demonstrated success in uncontrolled trials for the management of multiple recurrences. Anecdotal reports have also suggested that tigecycline might be useful as an adjunctive agent for the treatment of severe complicated CDI. Reports of resistance will likely limit the clinical use of fusidic acid and bacitracin and, possibly, rifaximin if resistance to this agent becomes widespread. Treatment of patients with multiple CDI recurrences and those with severe complicated CDI is based on limited clinical evidence, and new treatments or strategies are needed. PMID:22752868

  5. Clostridium difficile: clinical disease and diagnosis.

    PubMed Central

    Knoop, F C; Owens, M; Crocker, I C

    1993-01-01

    Clostridium difficile is an opportunistic pathogen that causes a spectrum of disease ranging from antibiotic-associated diarrhea to pseudomembranous colitis. Although the disease was first described in 1893, the etiologic agent was not isolated and identified until 1978. Since clinical and pathological features of C. difficile-associated disease are not easily distinguished from those of other gastrointestinal diseases, including ulcerative colitis, chronic inflammatory bowel disease, and Crohn's disease, diagnostic methods have relied on either isolation and identification of the microorganism or direct detection of bacterial antigens or toxins in stool specimens. The current review focuses on the sensitivity, specificity, and practical use of several diagnostic tests, including methods for culture of the etiologic agent, cellular cytotoxicity assays, latex agglutination tests, enzyme immunoassay systems, counterimmunoelectrophoresis, fluorescent-antibody assays, and polymerase chain reactions. PMID:8358706

  6. Purification and characterization of Clostridium difficile toxin.

    PubMed Central

    Rolfe, R D; Finegold, S M

    1979-01-01

    Recent evidence indicates that toxigenic Clostridium difficile strains are a major cause of antimicrobial-associated ileocecitis in laboratory animals and pseudomembranous colitis in humans. C. difficile ATCC 9689 was cultivated in a synthetic medium to which 3% ultrafiltrated proteose peptone was added. Purification of the toxin from broth filtrate was accomplished through ultrafiltration (100,000 nominal-molecular-weight-limit membrane), precipitation with 75% (NH4)2SO4, and chromatographic separation using Bio-Gel A 5m followed by ion-exchange chromatography on a diethylaminoethyl-Sephadex A-25 column. The purified toxin displayed only one band on polyacrylamide gel electrophoresis, and approximately 170 pg was cytopathic for human amnion cells. The isolated toxin was neutralized by Clostridium sordelli antitoxin, heat labile (56 degrees C for 30 min), and inactivated at pH 4 and 9; it had an isoelectric point of 5.0, increased vascular permeability in rabbits, and caused ileocecitis in hamsters when injected intracecally. Treatment of the toxin with trypsin, chymotrypsin, pronase, amylase, or ethylmercurithiosalicylate caused inactivation, whereas lipase had no effect. By gel filtration, its molecular weight was estimated as 530,000. Upon reduction and denaturation, the toxin dissociated into 185,000- and 50,000-molecular-weight components, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extensive dissociation yielded only the 50,000-molecular-weight component. The toxin appears to be protoplasmic and is released into the surrounding environment upon autolysis of the cells. Attempts to correlate specific enzymatic activity with the toxin have been unsuccessful. These studies will help delineate the role of C. difficile toxin in antimicrobial-associated colitis and diarrhea. Images PMID:478634

  7. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  8. Cloning and nucleotide sequence determination of the Clostridium pasteurianum ferredoxin gene.

    PubMed Central

    Graves, M C; Mullenbach, G T; Rabinowitz, J C

    1985-01-01

    We have constructed a library of Clostridium pasteurianum DNA cloned in the plasmid pBR322. Based on the known amino acid sequence for C. pasteurianum ferredoxin, a 64-fold degenerate heptadecanucleotide pool was synthesized. This mixed probe hybridized to two clones which were shown to contain greater than 6 kilobase pairs of the same genomic DNA. Sequence analysis of a common Sau3A1 0.6-kilobase-pair fragment revealed that it contains the information for the apoferredoxin structural gene. According to the DNA sequence, the only post-translational processing of this small apoprotein is the hydrolysis of the initiator methionine. Putative transcription and translation start and stop signals are present within the sequence. Images PMID:3856844

  9. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    SciTech Connect

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Bhandiwad, Ashwini; Rodriguez, Jr., Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  10. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    PubMed Central

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-01-01

    Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks. PMID:19298644

  11. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov.

    PubMed

    Kaur, Sukhpreet; Yawar, Mir; Kumar, P Anil; Suresh, K

    2014-03-01

    A Gram-stain-positive, rod-shaped, spore-forming and strictly anaerobic bacterium, designated UB-B.2(T), was isolated from an industrial effluent anaerobic digester sample. It grew optimally at 30 °C and pH 7.0. Comparative analysis of the 16S rRNA gene sequence confirmed that strain UB-B.2(T) was closely related to Clostridium hathewayi DSM 13479(T) (97.84% similarity), a member of rRNA gene cluster XIVa of the genus Clostridium, and formed a coherent cluster with other related members of the Blautia (Clostridium) coccoides rRNA group in phylogenetic analyses. The end products of glucose fermentation by strain UB-B.2(T) were acetate and propionate. The G+C content of the DNA was 51.4 mol%. Although strain UB-B.2(T) showed 97.8% 16S rRNA gene sequence identity to the type strain of C. hathewayi, it exhibited only 38.4% relatedness at the whole-genome level. It also showed differences from its closest phylogenetic relative, C. hathewayi DSM 13479(T), in phenotypic characteristics such as hydrolysis of aesculin, starch and urea and fermentation end products. Both strains showed phenotypic differences from the members of rRNA gene cluster XIVa of the genus Clostridium. Based on these differences, C. hathewayi DSM 13479(T) and strain UB-B.2(T) were identified as representatives of a new genus of the family Clostridiaceae. Thus, we propose the reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov., the type species of the new genus (type strain DSM 13479(T) = CCUG 43506(T) = MTCC 10951(T)). Strain UB-B.2(T) ( = MTCC 11101(T) = DSM 24995(T)) is assigned to the novel species Hungatella effluvii gen. nov., sp. nov as the type strain. PMID:24186873

  12. Two simultaneous botulism outbreaks in Barcelona: Clostridium baratii and Clostridium botulinum.

    PubMed

    Lafuente, S; Nolla, J; Valdezate, S; Tortajada, C; Vargas-Leguas, H; Parron, I; Sáez-Nieto, J A; Portaña, S; Carrasco, G; Moguel, E; Sabate, S; Argelich, R; Caylà, J A

    2013-09-01

    Botulism is a severe neuroparalytic disorder that can be potentially life-threatening. In Barcelona, Spain, no outbreaks had been reported in the past 25 years. However, in September 2011, two outbreaks occurred involving two different families. A rare case of Clostridium baratii which produced a neurotoxin F outbreak was detected in five family members who had shared lunch, and several days before that another family was affected by C. botulinum toxin A which was probably present in homemade pâté. PMID:23158693

  13. Clostridium kogasensis sp. nov., a novel member of the genus Clostridium, isolated from soil under a corroded gas pipeline.

    PubMed

    Shin, Yeseul; Kang, Seok-Seong; Paek, Jayoung; Jin, Tae Eun; Song, Hong Seok; Kim, Hongik; Park, Hee-Moon; Chang, Young-Hyo

    2016-06-01

    Two bacterial strains, YHK0403(T) and YHK0508, isolated from soil under a corroded gas pipe line, were revealed as Gram-negative, obligately anaerobic, spore-forming and mesophilic bacteria. The cells were rod-shaped and motile by means of peritrichous flagella. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were members of the genus Clostridium and were the most closely related to Clostridium scatologenes KCTC 5588(T) (95.8% sequence similarity), followed by Clostridium magnum KCTC 15177(T) (95.8%), Clostridium drakei KCTC 5440(T) (95.7%) and Clostridium tyrobutyricum KCTC 5387(T) (94.9%). The G + C contents of the isolates were 29.6 mol%. Peptidoglycan in the cell wall was of the A1γ type with meso-diaminopimelic acid. The major polar lipid was diphosphatidylglycerol (DPG), and other minor lipids were revealed as phosphatidylglycerol (PG), phosphatidylethanolamine (PE), two unknown glycolipids (GL1 and GL2), an unknown aminoglycolipid (NGL), two unknown aminophospholipids (PN1 and PN2) and four unknown phospholipids (PL1 to PL4). Predominant fatty acids were C16:0 and C16:1cis9 DMA. The major end products from glucose fermentation were identified as butyrate (12.2 mmol) and acetate (9.8 mmol). Collectively, the results from a wide range of phenotypic tests, chemotaxonomic tests, and phylogenetic analysis indicated that the two isolates represent novel species of the genus Clostridium, for which the name Clostridium kogasensis sp. nov. (type strain, YHK0403(T) = KCTC 15258(T) = JCM 18719(T)) is proposed. PMID:26899448

  14. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov

    NASA Technical Reports Server (NTRS)

    Paster, B. J.; Russell, J. B.; Yang, C. M.; Chow, J. M.; Woese, C. R.; Tanner, R.

    1993-01-01

    In previous studies, gram-positive bacteria which grew rapidly with peptides or an amino acid as the sole energy source were isolated from bovine rumina. Three isolates, strains C, FT (T = type strain), and SR, were considered to be ecologically important since they produced up to 20-fold more ammonia than other ammonia-producing ruminal bacteria. On the basis of phenotypic criteria, the taxonomic position of these new isolates was uncertain. In this study, the 16S rRNA sequences of these isolates and related bacteria were determined to establish the phylogenetic positions of the organisms. The sequences of strains C, FT, and SR and reference strains of Peptostreptococcus anaerobius, Clostridium sticklandii, Clostridium coccoides, Clostridium aminovalericum, Acetomaculum ruminis, Clostridium leptum, Clostridium lituseburense, Clostridium acidiurici, and Clostridium barkeri were determined by using a modified Sanger dideoxy chain termination method. Strain C, a large coccus purported to belong to the genus Peptostreptococcus, was closely related to P. anaerobius, with a level of sequence similarity of 99.6%. Strain SR, a heat-resistant, short, rod-shaped organism, was closely related to C. sticklandii, with a level of sequence similarity of 99.9%. However, strain FT, a heat-resistant, pleomorphic, rod-shaped organism, was only distantly related to some clostridial species and P. anaerobius. On the basis of the sequence data, it was clear that strain FT warranted designation as a separate species. The closest known relative of strain FT was C. coccoides (level of similarity, only 90.6%). Additional strains that are phenotypically similar to strain FT were isolated in this study.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Phenotypic and Genotypic Analysis of Clostridium difficile Isolates: a Single-Center Study

    PubMed Central

    Zhou, Yanjiao; Burnham, Carey-Ann D.; Hink, Tiffany; Chen, Lei; Shaikh, Nurmohammad; Wollam, Aye; Sodergren, Erica; Weinstock, George M.; Tarr, Phillip I.

    2014-01-01

    Clostridium difficile infections (CDI) are a growing concern in North America, because of their increasing incidence and severity. Using integrated approaches, we correlated pathogen genotypes and host clinical characteristics for 46 C. difficile infections in a tertiary care medical center during a 6-month interval from January to June 2010. Multilocus sequence typing (MLST) demonstrated 21 known and 2 novel sequence types (STs), suggesting that the institution's C. difficile strains are genetically diverse. ST-1 (which corresponds to pulsed-field gel electrophoresis strain type NAP1/ribotype 027) was the most prevalent (32.6%); 43.5% of the isolates were binary toxin gene positive, of which 75% were ST-1. All strains were ciprofloxacin resistant and metronidazole susceptible, and 8.3% and 13.0% of the isolates were resistant to clindamycin and tetracycline, respectively. The corresponding resistance loci, including potential novel mutations, were identified from the whole-genome sequencing (WGS) of the resistant strains. Core genome single nucleotide polymorphisms (SNPs) determining the phylogenetic relatedness of the 46 strains recapitulated MLST types and provided greater interstrain differentiation. The disease severity was greatest in patients infected with ST-1 and/or binary gene-positive strains, but genome-wide SNP analysis failed to provide additional associations with CDI severity within the same STs. We conclude that MLST and core genome SNP typing result in the same phylogenetic grouping of the 46 C. difficile strains collected in a single hospital. WGS also has the capacity to differentiate those strains within STs and allows the comparison of strains at the individual gene level and at the whole-genome level. PMID:25275005

  16. Promoters and proteins from Clostridium thermocellum and uses thereof

    DOEpatents

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  17. A prediction model for Clostridium difficile recurrence

    PubMed Central

    LaBarbera, Francis D.; Nikiforov, Ivan; Parvathenani, Arvin; Pramil, Varsha; Gorrepati, Subhash

    2015-01-01

    Background Clostridium difficile infection (CDI) is a growing problem in the community and hospital setting. Its incidence has been on the rise over the past two decades, and it is quickly becoming a major concern for the health care system. High rate of recurrence is one of the major hurdles in the successful treatment of C. difficile infection. There have been few studies that have looked at patterns of recurrence. The studies currently available have shown a number of risk factors associated with C. difficile recurrence (CDR); however, there is little consensus on the impact of most of the identified risk factors. Methods Our study was a retrospective chart review of 198 patients diagnosed with CDI via Polymerase Chain Reaction (PCR) from January 2009 to Jun 2013. In our study, we decided to use a machine learning algorithm called the Random Forest (RF) to analyze all of the factors proposed to be associated with CDR. This model is capable of making predictions based on a large number of variables, and has outperformed numerous other models and statistical methods. Results We came up with a model that was able to accurately predict the CDR with a sensitivity of 83.3%, specificity of 63.1%, and area under curve of 82.6%. Like other similar studies that have used the RF model, we also had very impressive results. Conclusions We hope that in the future, machine learning algorithms, such as the RF, will see a wider application. PMID:25656667

  18. The Changing Epidemiology of Clostridium difficile Infections

    PubMed Central

    Freeman, J.; Bauer, M. P.; Baines, S. D.; Corver, J.; Fawley, W. N.; Goorhuis, B.; Kuijper, E. J.; Wilcox, M. H.

    2010-01-01

    Summary: The epidemiology of Clostridium difficile infection (CDI) has changed dramatically during this millennium. Infection rates have increased markedly in most countries with detailed surveillance data. There have been clear changes in the clinical presentation, response to treatment, and outcome of CDI. These changes have been driven to a major degree by the emergence and epidemic spread of a novel strain, known as PCR ribotype 027 (sometimes referred to as BI/NAP1/027). We review the evidence for the changing epidemiology, clinical virulence and outcome of treatment of CDI, and the similarities and differences between data from various countries and continents. Community-acquired CDI has also emerged, although the evidence for this as a distinct new entity is less clear. There are new data on the etiology of and potential risk factors for CDI; controversial issues include specific antimicrobial agents, gastric acid suppressants, potential animal and food sources of C. difficile, and the effect of the use of alcohol-based hand hygiene agents. PMID:20610822

  19. Clostridium perfringens in Meat and Meat Products

    PubMed Central

    Hall, Herbert E.; Angelotti, Robert

    1965-01-01

    A total of 262 specimens of meat and meat dishes were examined for the presence of Clostridium perfringens. Of this total, 161 were raw, unprocessed beef, veal, lamb, pork, or chicken; 101 were processed meats and meat dishes. C. perfringens was isolated from 113 (43.1%) of these specimens. The highest percentage of contamination (82%) was found in veal cuts, and the lowest (4.7%) in sliced sandwich meats and spreads. Only 2 of the 113 isolates were shown to produce heat-resistant spores, which indicates a very low incidence (0.8%) of contamination. These findings indicate that outbreaks of C. perfringens food-borne disease in the Cincinnati area are caused principally by the contamination of the food with vegetative cells or spores of the organism after cooking. Studies of the effects of various holding temperatures on the growth of C. perfringens indicated that, in the range of 5 to 15 C, no multiplication would occur, but that viable cells would still be present at the end of a 5-day holding period. Extremely rapid growth occurred at temperatures around 45 C, and complete inhibition of growth was accomplished between 49 and 52 C. PMID:14325274

  20. Action of nitroheterocyclic drugs against Clostridium difficile

    PubMed Central

    Kumar, Manish; Adhikari, Sudip; Hurdle, Julian G.

    2014-01-01

    The nitroheterocyclic classes of drugs have a long history of use in treating anaerobic infections, as exemplified by metronidazole as a first-line treatment for mild-to-moderate Clostridium difficile infection (CDI). Since direct comparisons of the three major classes of nitroheterocyclic drugs (i.e. nitroimidazole, nitazoxanide and nitrofurans) and nitrosating agents against C. difficile are under-examined, in this study their actions against C. difficile were compared. Results show that whilst transient resistance occurs to metronidazole and nitazoxanide, stable resistance arises to nitrofurans upon serial passage. All compounds killed C. difficile at high concentrations in addition to the host defence nitrosating agent S-nitrosoglutathione (GSNO). This suggests that GSNO killing of C. difficile contributes to its efficacy in murine CDI. Although nitric oxide production could not be detected for the nitroheterocyclic drugs, the cellular response to metronidazole and nitrofurans has some overlap with the response to GSNO, causing significant upregulation of the hybrid-cluster protein Hcp that responds to nitrosative stress. These findings provide new insights into the action of nitroheterocyclic drugs against C. difficile. PMID:25129314

  1. Secretome analysis of Clostridium difficile strains.

    PubMed

    Boetzkes, Alexander; Felkel, Katharina Wiebke; Zeiser, Johannes; Jochim, Nelli; Just, Ingo; Pich, Andreas

    2012-08-01

    Clostridium difficile causes infections ranging from mild C. difficile-associated diarrhea to severe pseudomembranous colitis. Since 2003 new hypervirulent C. difficile strains (PCR ribotype 027) emerged characterized by a dramatically increased mortality. The secretomes of the three C. difficile strains CDR20291, CD196, and CD630 were analyzed and compared. Proteins were separated and analyzed by means of SDS--PAGE and LC-MS. MS data were analyzed using Mascot and proteins were checked for export signals with SecretomeP and SignalP. LC-MS analysis revealed 158 different proteins in the supernatant of C. difficile. Most of the identified proteins originate from the cytoplasm. Thirty-two proteins in CDR20291, 36 in CD196 and 26 in CD630 were identified to be secreted by C. difficile strains. Those were mainly S-layer proteins, substrate-binding proteins of ABC-transporters, cell wall hydrolases, pilin and unknown hypothetical proteins. Toxin A and toxin B were identified after growth in brain heart infusion medium using immunological techniques. The ADP-ribosyltransferase-binding component protein, which is a part of the binary toxin CDT, was only identified in the hypervirulent ribotype 027 strains. Further proteins that are secreted specifically by hypervirulent strains were identified. PMID:22398929

  2. Clostridium botulinum in cattle and dairy products.

    PubMed

    Lindström, Miia; Myllykoski, Jan; Sivelä, Seppo; Korkeala, Hannu

    2010-04-01

    The use of plastic-wrapped and nonacidified silage as cattle feed has led to an increasing number of botulism outbreaks due to Clostridium botulinum Groups I-III in dairy cattle. The involvement of Groups I and II organisms in cattle botulism has raised concern of human botulism risk associated with the consumption of dairy products. Multiplication of C. botulinum in silage and in the gastrointestinal tract of cattle with botulism has been reported, thus contamination of the farm environment and raw milk, and further transmission through the dairy chain, are possible. The standard milk pasteurization treatment does not eliminate spores, and the intrinsic factors of many dairy products allow botulinal growth and toxin production. Although rare, several large botulism outbreaks due to both commercial and home-prepared dairy products have been reported. Factors explaining these outbreaks include most importantly temperature abuse, but also unsafe formulation, inadequate fermentation, insufficient thermal processing, post-process contamination, and lack of adequate quality control for adjunct ingredients were involved. The small number of outbreaks is probably explained by a low incidence of spores in milk, the presence of competitive bacteria in pasteurized milk and other dairy products, and growth-inhibitory combinations of intrinsic and extrinsic factors in cultured and processed dairy products. PMID:20301016

  3. Elimination of formate production in Clostridium thermocellum

    DOE PAGESBeta

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth ratemore » of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.« less

  4. Laboratory Diagnosis of Clostridium difficile Infection

    PubMed Central

    Tenover, Fred C.; Baron, Ellen Jo; Peterson, Lance R.; Persing, David H.

    2011-01-01

    The laboratory diagnosis of Clostridium difficile infection (CDI) continues to be challenging. Recent guidelines from professional societies in the United States note that enzyme immunoassays for toxins A and B do not have adequate sensitivity to be used alone for detecting CDI, yet the optimal method for diagnosing this infection remains unclear. Nucleic acid amplification tests (NAATs) that target chromosomal toxin genes (usually the toxin B gene, tcdB) show high sensitivity and specificity, provide rapid results, and are amenable to both batch and on-demand testing, but these tests were not universally recommended for routine use in the recent guidelines. Rather, two-step algorithms that use glutamate dehydrogenase (GDH) assays to screen for C. difficile in stool specimens, followed by either direct cytotoxin testing or culture to identify toxin-producing C. difficile isolates, were recommended in one guideline and either GDH algorithms or NAATs were recommended in another guideline. Unfortunately, neither culture nor direct cytotoxin testing is widely available. In addition, this two-step approach requires 48 to 92 hours to complete, which may delay the initiation of therapy and critical infection control measures. Recent studies also show the sensitivity of several GDH assays to be <90%. This review considers the role of NAATs for diagnosing CDI and explores their potential advantages over two-step algorithms, including shorter time to results, while providing comparable, if not superior, accuracy. PMID:21854871

  5. Biosynthesis of amino acids in Clostridium pasteurianum

    PubMed Central

    Dainty, R. H.; Peel, J. L.

    1970-01-01

    1. Clostridium pasteurianum was grown on a synthetic medium with the following carbon sources: (a) 14C-labelled glucose, alone or with unlabelled aspartate or glutamate, or (b) unlabelled glucose plus 14C-labelled aspartate, glutamate, threonine, serine or glycine. The incorporation of 14C into the amino acids of the cell protein was examined. 2. In both series of experiments carbon from exogenous glutamate was incorporated into proline and arginine; carbon from aspartate was incorporated into glutamate, proline, arginine, lysine, methionine, threonine, isoleucine, glycine and serine. Incorporations from the other exogenous amino acids indicated the metabolic sequence: aspartate → threonine → glycine ⇌ serine. 3. The following activities were demonstrated in cell-free extracts of the organism: (a) the formation of aspartate by carboxylation of phosphoenolpyruvate or pyruvate, followed by transamination; (b) the individual reactions of the tricarboxylic acid route to 2-oxoglutarate from oxaloacetate; glutamate dehydrogenase was not detected; (c) the conversion of aspartate into threonine via homoserine; (d) the conversion of threonine into glycine by a constitutive threonine aldolase; (e) serine transaminase, phosphoserine transaminase, glycerate dehydrogenase and phosphoglycerate dehydrogenase. This last activity was abnormally high. 4. The combined evidence indicates that in C. pasteurianum the biosynthetic role of aspartate and glutamate is generally similar to that in aerobic and facultatively aerobic organisms, but that glycine is synthesized from glucose via aspartate and threonine. PMID:5419750

  6. Crystal structure of Clostridium difficile toxin A.

    PubMed

    Chumbler, Nicole M; Rutherford, Stacey A; Zhang, Zhifen; Farrow, Melissa A; Lisher, John P; Farquhar, Erik; Giedroc, David P; Spiller, Benjamin W; Melnyk, Roman A; Lacy, D Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon(1,2). The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host(3,4). The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  7. Clostridium difficile PCR Ribotypes in Calves, Canada

    PubMed Central

    Stämpfli, Henry R.; Duffield, Todd; Peregrine, Andrew S.; Trotz-Williams, Lise A.; Arroyo, Luis G.; Brazier, Jon S.; Weese, J. Scott

    2006-01-01

    We investigated Clostridium difficile in calves and the similarity between bovine and human C. difficile PCR ribotypes by conducting a case-control study of calves from 102 dairy farms in Canada. Fecal samples from 144 calves with diarrhea and 134 control calves were cultured for C. difficile and tested with an ELISA for C. difficile toxins A and B. C. difficile was isolated from 31 of 278 calves: 11 (7.6%) of 144 with diarrhea and 20 (14.9%) of 134 controls (p = 0.009). Toxins were detected in calf feces from 58 (56.8%) of 102 farms, 57 (39.6%) of 144 calves with diarrhea, and 28 (20.9%) of 134 controls (p = 0.0002). PCR ribotyping of 31 isolates showed 8 distinct patterns; 7 have been identified in humans, 2 of which have been associated with outbreaks of severe disease (PCR types 017 and 027). C. difficile may be associated with calf diarrhea, and cattle may be reservoirs of C. difficile for humans. PMID:17283624

  8. Crystal structure of Clostridium difficile toxin A

    PubMed Central

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27512603

  9. Phosphorylation of proteins in Clostridium thermohydrosulfuricum

    SciTech Connect

    Londesborough, J.

    1986-02-01

    Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by (..gamma..-/sup 32/P)ATP of several endogenous proteins with M/sub r/s between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of M/sub r/s 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10..mu..M fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 ..mu..M brain (but not spinach) calmodulin. Polyamines, including the odd polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by /sub 32/P/sub i/. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro.

  10. Regulation of protease production in Clostridium sporogenes.

    PubMed Central

    Allison, C; Macfarlane, G T

    1990-01-01

    The physiological and nutritional factors that regulate protease synthesis in Clostridium sporogenes C25 were studied in batch and continuous cultures. Formation of extracellular proteases occurred at the end of active growth and during the stationary phase in batch cultures. Protease production was inversely related to growth rate in glucose-excess and glucose-limited chemostats over the range D = 0.05 to 0.70 h-1. In pulse experiments, glucose, ammonia, phosphate, and some amino acids (tryptophan, proline, tyrosine, and isoleucine) strongly repressed protease synthesis. This repression was not relieved by addition of 4 mM cyclic AMP, cyclic GMP, or dibutyryl cyclic AMP. Protease formation was markedly inhibited by 4 mM ATP and ADP, but GTP and GDP had little effect on the process. It is concluded that protease production by C. sporogenes is strongly influenced by the amount of energy available to the cells, with the highest levels of protease synthesis occurring under energy-limiting conditions. PMID:2268158

  11. Clostridium difficile Is an Autotrophic Bacterial Pathogen

    PubMed Central

    Köpke, Michael; Straub, Melanie; Dürre, Peter

    2013-01-01

    During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile. PMID:23626782

  12. [Epidemiology of Clostridium difficile infection in Spain].

    PubMed

    Asensio, Angel; Monge, Diana

    2012-06-01

    There has been increasing interest in Clostridium difficile infection (CDI) due its association with healthcare and its impact on morbidity and mortality in the elderly. During the last few years there has been a growing increase in the number of published studies on the incidence, changes on the clinical presentation and on the epidemiology, with the description of new risk factors. The frequency of CDI in Spain is not sufficiently characterised. The available data indicates that incidence is within the range of that of surrounding countries but increasing. Furthermore, the high and growing use of broad spectrum antibiotics, both in our hospitals and in the community setting, are factors that favour the increase of the disease. The hyper-virulent ribotype 027 has not spread in our hospitals. We need to know with enhanced validity and accuracy the incidence of CDI, both community and healthcare-associated, the information on outbreaks, the incidence on certain population groups, the characterisation of circulating ribotypes and the impact of the disease in terms of mortality and health costs. We need to implement programs for the improvement of antibiotic therapy in the hospital, as well as in the community. Furthermore, the knowledge and the performance of standard precautions need to be improved, particularly hand hygiene, and the specific measures to limit the transmission of C. difficile among the healthcare institutions. PMID:22136747

  13. Parameters Affecting Solvent Production by Clostridium pasteurianum

    PubMed Central

    Dabrock, Birgit; Bahl, Hubert; Gottschalk, Gerhard

    1992-01-01

    The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol. PMID:16348691

  14. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    PubMed Central

    Verherstraeten, Stefanie; Goossens, Evy; Valgaeren, Bonnie; Pardon, Bart; Timbermont, Leen; Haesebrouck, Freddy; Ducatelle, Richard; Deprez, Piet; Wade, Kristin R.; Tweten, Rodney; Van Immerseel, Filip

    2015-01-01

    The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis. PMID:26008232

  15. Clostridium infection (jisizheng) in yaks in Qinghai, China.

    PubMed

    Changqing, Q; Xueli, Y

    2001-10-01

    Since the mid-1980s, outbreaks of a disease characterized by a sudden onset, acute deaths and extensive haemorrhages in the viscera and digestive tract of yaks have been prevalent in Qilian, Qinghai, China. The disease is known as jisiheng by local people. Virulent Clostridium perfringens type A and Clostridium haemolytica were isolated from yaks that had died of jisizheng. In 1996 and 1997, yaks were immunized with a polyvalent inactivated vaccine against C. perfringens and with an inactivated vaccine against C. haemolyticum, and this prevented the occurrence of jisizheng. PMID:11583378

  16. Neurotoxin gene profiling of clostridium botulinum types C and D native to different countries within Europe.

    PubMed

    Woudstra, Cedric; Skarin, Hanna; Anniballi, Fabrizio; Fenicia, Lucia; Bano, Luca; Drigo, Ilenia; Koene, Miriam; Bäyon-Auboyer, Marie-Hélène; Buffereau, Jean-Philippe; De Medici, Dario; Fach, Patrick

    2012-05-01

    Clostridium botulinum types C and D, as well as their mosaic variants C-D and D-C, are associated with avian and mammalian botulism. This study reports on the development of low-density macroarrays based on the GeneDisc cycler platform (Pall-GeneDisc Technologies) applied to the simultaneous detection of the C. botulinum subtypes C, C-D, D, and D-C. The limit of detection of the PCR assays was 38 fg of total DNA, corresponding to 15 genome copies. Artificially contaminated samples of cecum showed a limit of detection below 50 spores/g. The tests were performed with a large variety of bacterial strains, including C. botulinum types C (n = 12), C-D (n = 29), D (n = 5), and D-C (n = 10), other botulinum neurotoxin (BoNT)-producing Clostridium strains (n = 20), non-BoNT-producing clostridia (n = 20), and other bacterial species (n = 23), and showed a high specificity. These PCR assays were compared to previously published real-time PCRs for the detection of C. botulinum in 292 samples collected from cases of botulism events in four European regions. The majority of the samples originated from wild birds (n = 108), poultry (n = 60), and bovines (n = 56). Among the 292 samples, 144 were positive for either the bont/C-D or the bont/D-C gene by using the GeneDisc arrays. The reliability of the results tallied to 97.94%. Interestingly, only BoNT mosaics, types C-D and D-C, were found in naturally contaminated samples whatever their animal origin and their geographical location. Further investigations should now be performed in order to check that mosaic types dominate in Europe and that acquisition of mosaic types helps in survival or adaptation to particular niche. PMID:22344654

  17. Neurotoxin Gene Profiling of Clostridium botulinum Types C and D Native to Different Countries within Europe

    PubMed Central

    Woudstra, Cedric; Skarin, Hanna; Anniballi, Fabrizio; Fenicia, Lucia; Bano, Luca; Drigo, Ilenia; Koene, Miriam; Bäyon-Auboyer, Marie-Hélène; Buffereau, Jean-Philippe; De Medici, Dario

    2012-01-01

    Clostridium botulinum types C and D, as well as their mosaic variants C-D and D-C, are associated with avian and mammalian botulism. This study reports on the development of low-density macroarrays based on the GeneDisc cycler platform (Pall-GeneDisc Technologies) applied to the simultaneous detection of the C. botulinum subtypes C, C-D, D, and D-C. The limit of detection of the PCR assays was 38 fg of total DNA, corresponding to 15 genome copies. Artificially contaminated samples of cecum showed a limit of detection below 50 spores/g. The tests were performed with a large variety of bacterial strains, including C. botulinum types C (n = 12), C-D (n = 29), D (n = 5), and D-C (n = 10), other botulinum neurotoxin (BoNT)-producing Clostridium strains (n = 20), non-BoNT-producing clostridia (n = 20), and other bacterial species (n = 23), and showed a high specificity. These PCR assays were compared to previously published real-time PCRs for the detection of C. botulinum in 292 samples collected from cases of botulism events in four European regions. The majority of the samples originated from wild birds (n = 108), poultry (n = 60), and bovines (n = 56). Among the 292 samples, 144 were positive for either the bont/C-D or the bont/D-C gene by using the GeneDisc arrays. The reliability of the results tallied to 97.94%. Interestingly, only BoNT mosaics, types C-D and D-C, were found in naturally contaminated samples whatever their animal origin and their geographical location. Further investigations should now be performed in order to check that mosaic types dominate in Europe and that acquisition of mosaic types helps in survival or adaptation to particular niche. PMID:22344654

  18. Co-regulation of the nitrogen-assimilatory gene cluster in Clostridium saccharobutylicum.

    PubMed

    Stutz, Helen E; Quixley, Keith W M; McMaster, Lynn D; Reid, Sharon J

    2007-09-01

    Nitrogen assimilation is important during solvent production by Clostridium saccharobutylicum NCP262, as acetone and butanol yields are significantly affected by the nitrogen source supplied. Growth of this bacterium was dependent on the concentration of organic nitrogen supplied and the expression of the assimilatory enzymes, glutamine synthetase (GS) and glutamate synthase (GOGAT), was shown to be induced in nitrogen-limiting conditions. The regions flanking the gene encoding GS, glnA, were isolated from C. saccharobutylicum genomic DNA, and DNA sequencing revealed that the structural genes encoding the GS (glnA) and GOGAT (gltA and gltB) enzymes were clustered together with the nitR gene in the order glnA-nitR-gltAB. RNA analysis showed that the glnA-nitR and the gltAB genes were co-transcribed on 2.3 and 6.2 kb RNA transcripts respectively, and that all four genes were induced under the same nitrogen-limiting conditions. Complementation of an Escherichia coli gltD mutant, lacking a GOGAT small subunit, was achieved only when both the C. saccharobutylicum gltA and gltB genes were expressed together under anaerobic conditions. This is believed to be the first functional analysis of a gene cluster encoding the key enzymes of nitrogen assimilation, GS and GOGAT. A similar gene arrangement is seen in Clostridium beijerinckii NCIMB 8052, and based on the common regulatory features of the promoter regions upstream of the glnA operons in both species, we suggest a model for their co-ordinated regulation by an antitermination mechanism as well as antisense RNA. PMID:17768251

  19. Adherence of Clostridium thermocellum to cellulose.

    PubMed Central

    Bayer, E A; Kenig, R; Lamed, R

    1983-01-01

    The adherence of Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, to its insoluble substrate (cellulose) was studied. The adherence phenomenon was determined to be selective for cellulose. The observed adherence was not significantly affected by various parameters, including salts, pH, temperature, detergents, or soluble sugars. A spontaneous adherence-defective mutant strain (AD2) was isolated from the wild-type strain YS. Antibodies were prepared against the bacterial cell surface and rendered specific to the cellulose-binding factor (CBF) by adsorption to mutant AD2 cells. By using these CBF-specific antibodies, crossed immunoelectrophoresis of cell extracts revealed a single discrete precipitation peak in the parent strain which was absent in the mutant. This difference was accompanied by an alteration in the polypeptide profile whereby sonicates of strain YS contained a 210,000-molecular-weight band which was missing in strain AD2. The CBF antigen could be removed from cell extracts by adsorption to cellulose. A combined gel-overlay--immunoelectrophoretic technique demonstrated that the cellulose-binding properties of the CBF were accompanied by carboxymethylcellulase activity. During the exponential phase of growth, a large part of the CBF antigen and related carboxymethylcellulase activity was associated with the cells of wild-type strain YS. However, the amounts decreased in stationary-phase cells. Cellobiose-grown mutant AD2 cells lacked the cell-associated CBF, but the latter was detected in the extracellular fluid. Increased levels of CBF were observed when cells were grown on cellulose. In addition, mutant AD2 regained cell-associated CBF together with the property of cellulose adherence. The presence of the CBF antigen and related adherence characteristics appeared to be a phenomenon common to other naturally occurring strains of this species. Images PMID:6630152

  20. The emergence of 'hypervirulence' in Clostridium difficile.

    PubMed

    Cartman, Stephen T; Heap, John T; Kuehne, Sarah A; Cockayne, Alan; Minton, Nigel P

    2010-08-01

    The impact of Clostridium difficile-associated disease (CDAD) in healthcare settings throughout the developed world is considerable in terms of mortality, morbidity, and disease management. The incidence of CDAD has risen dramatically since the turn of this century, concomitant with the emergence of so-called hypervirulent strains which are thought to cause a more severe disease, higher relapse rates, and increased mortality. Pre-eminent amongst hypervirulent strains are those belonging to ribotype 027, which were first reported in Canada in 2003 and shortly thereafter in the UK. Since its arrival in Europe, it has spread rapidly and has now been reported in 16 member states and Switzerland. The physiological factors responsible for the rapid emergence of hypervirulent C. difficile strains remain unclear. It is known that they produce a binary toxin (CDT) in addition to toxins A and B, that they are resistant to fluoroquinolones due to mutations in gyrA, and that they are resistant to erythromycin. Representative strains have been suggested to produce more toxin A and B in the 'laboratory flask' (most likely due to a frameshift mutation in the repressor gene tcdC), to be more prolific in terms of spore formation, and also exhibit increased adherence to human intestinal epithelial cells due to altered surface proteins. However, the contribution of these and other as yet unidentified factors to the rapid spread of certain C. difficile variants (e.g., ribotypes 027 and 078) remains unclear at present. The advent of ClosTron technology means that it is now possible to construct genetically stable isogenic mutants of C. difficile and carry out reverse genetic studies to elucidate the role of specific gene loci in causing disease. The identification of virulence factors using this approach should help lead to the rational development of therapeutic countermeasures against CDAD. PMID:20547099

  1. Form and Function of Clostridium thermocellum Biofilms

    PubMed Central

    Dumitrache, Alexandru; Allen, Grant; Liss, Steven N.; Lynd, Lee R.

    2013-01-01

    The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h−1) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion. PMID:23087042

  2. Colonic Immunopathogenesis of Clostridium difficile Infections

    PubMed Central

    Turnwald, Bradley P.; Koo, Hoonmo L.; Garey, Kevin W.; Jiang, Zhi-Dong; Aitken, Samuel L.; DuPont, Herbert L.

    2014-01-01

    There are major gaps in our understanding of the immunopathogenesis of Clostridium difficile infections (CDIs). In this study, 36 different biomarkers were examined in the stools of CDI and non-CDI patients using the Proteome Profiler human cytokine array assay and quantitative enzyme-linked immunosorbent assay. Diarrheal stools from patients with CDI (CDI-positive diarrheal stools) showed higher relative amounts of the following inflammatory markers than the diarrheal stools from CDI-negative patients (CDI-negative diarrheal stools): C5a, CD40L, granulocyte colony-stimulating factor, I-309, interleukin-13 (IL-13), IL-16, IL-27, monocyte chemoattractant protein 1, tumor necrosis factor alpha, and IL-8. IL-8 and IL-23 were present in a larger number of CDI-positive diarrheal stools than CDI-negative diarrheal stools. Th1 and Th2 cytokines were not significantly different between the CDI-positive and CDI-negative diarrheal stools. Lactoferrin and calprotectin concentrations were also higher in the CDI-positive diarrheal stools. Our results demonstrate that CDI elicits a proinflammatory host response, and we report for the first time that IL-23 is a major marker in CDI-positive diarrheal stools. IL-23 may explain the lack of a robust immunological response exhibited by a proportion of CDI patients and may relate to recurrence; the IL-23 levels induced during CDI in these patients may be inadequate to sustain the cellular immunity conferred by this cytokine in promoting the induction and proliferation of effector memory T cells. PMID:24477852

  3. Prospects for a vaccine for Clostridium difficile.

    PubMed

    Kyne, L; Kelly, C P

    1998-09-01

    Clostridium difficile diarrhoea and colitis is a new disease that is attributable to broad spectrum antibiotic therapy. During the past 2 decades C. difficile has become one of the most common nosocomial pathogens in the developed world. As changing demographics create an increasingly elderly population and the use of broad spectrum antimicrobials continues to expand, C. difficile is likely to become increasingly problematic. Disease caused by this organism is caused by the inflammatory actions of its 2 toxins, A and B, on the intestinal mucosa. Human antibody responses to these toxins are common in the general population and in patients with C. difficile-associated disease. There is substantial, albeit inconclusive, evidence to indicate that antitoxin antibodies provide protection against severe, prolonged or recurrent C. difficile diarrhoea. Immunity induced by oral or parenteral passive administration of antibody is protective in animal models of C. difficile infection. In humans, intravenous passive immunisation with pooled human immunoglobulin has been successful in the treatment of recurrent and severe C. difficile colitis. Human trials of oral passive immunotherapy with bovine immunoglobulin therapy are in progress. Formalin-inactivated culture filtrate from toxigenic C. difficile, as well as purified and inactivated toxins, have been used to successfully immunise animals. Similar preparations are under investigation as possible human vaccines. Antibiotic therapy is effective in treating most individual patients with C. difficile diarrhoea, but has proven ineffective in reducing the overall incidence of nosocomial infection. Active immunisation is probably the most promising approach to long term control of this difficult iatrogenic disease. PMID:18020593

  4. Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization

    PubMed Central

    Xu, Chenggang; Huang, Ranran; Teng, Lin; Jing, Xiaoyan; Hu, Jianqiang; Cui, Guzhen; Wang, Yilin; Cui, Qiu; Xu, Jian

    2015-01-01

    The mechanism, physiological relevance and evolutionary implication of selective RNA processing and stabilization (SRPS) remain elusive. Here we report the genome-wide maps of transcriptional start sites (TSs) and post-transcriptional processed sites (PSs) for Clostridium cellulolyticum. The PS-associated genes are preferably associated with subunits of heteromultimeric protein complexes, and the intergenic PSs (iPSs) are enriched in operons exhibiting highly skewed transcript-abundance landscape. Stem-loop structures associated with those iPSs located at 3′ termini of highly transcribed genes exhibit folding free energy negatively correlated with transcript-abundance ratio of flanking genes. In the cellulosome-encoding cip-cel operon, iPSs and stem-loops precisely regulate structure and abundance of the subunit-encoding transcripts processed from a primary polycistronic RNA, quantitatively specifying cellulosome stoichiometry. Moreover, cellulosome evolution is shaped by the number, position and biophysical nature of TSs, iPSs and stem-loops. Our findings unveil a genome-wide RNA-encoded strategy controlling in vivo stoichiometry of protein complexes. PMID:25908225

  5. Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus.

    PubMed

    Monot, Marc; Eckert, Catherine; Lemire, Astrid; Hamiot, Audrey; Dubois, Thomas; Tessier, Carine; Dumoulard, Bruno; Hamel, Benjamin; Petit, Amandine; Lalande, Valérie; Ma, Laurence; Bouchier, Christiane; Barbut, Frédéric; Dupuy, Bruno

    2015-01-01

    The major virulence factors of Clostridium difficile are toxins A and B. These toxins are encoded by tcdA and tcdB genes, which form a pathogenicity locus (PaLoc) together with three additional genes that have been implicated in regulation (tcdR and tcdC) and secretion (tcdE). To date, the PaLoc has always been found in the same location and is replaced in non-toxigenic strains by a highly conserved 75/115 bp non-coding region. Here, we show new types of C. difficile pathogenicity loci through the genome analysis of three atypical clinical strains and describe for the first time a variant strain producing only toxin A (A(+)B(-)). Importantly, we found that the PaLoc integration sites of these three strains are located in the genome far from the usual single known PaLoc integration site. These findings allowed us to propose a new model of PaLoc evolution in which two "Mono-Toxin PaLoc" sites are merged to generate a single "Bi-Toxin PaLoc". PMID:26446480

  6. Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus

    PubMed Central

    Monot, Marc; Eckert, Catherine; Lemire, Astrid; Hamiot, Audrey; Dubois, Thomas; Tessier, Carine; Dumoulard, Bruno; Hamel, Benjamin; Petit, Amandine; Lalande, Valérie; Ma, Laurence; Bouchier, Christiane; Barbut, Frédéric; Dupuy, Bruno

    2015-01-01

    The major virulence factors of Clostridium difficile are toxins A and B. These toxins are encoded by tcdA and tcdB genes, which form a pathogenicity locus (PaLoc) together with three additional genes that have been implicated in regulation (tcdR and tcdC) and secretion (tcdE). To date, the PaLoc has always been found in the same location and is replaced in non-toxigenic strains by a highly conserved 75/115 bp non-coding region. Here, we show new types of C. difficile pathogenicity loci through the genome analysis of three atypical clinical strains and describe for the first time a variant strain producing only toxin A (A+B−). Importantly, we found that the PaLoc integration sites of these three strains are located in the genome far from the usual single known PaLoc integration site. These findings allowed us to propose a new model of PaLoc evolution in which two “Mono-Toxin PaLoc” sites are merged to generate a single “Bi-Toxin PaLoc”. PMID:26446480

  7. Identification, Immunogenicity and Crossreactivity of Type IV Pilin and Pilin-like Proteins from Clostridium difficile

    PubMed Central

    Maldarelli, Grace A.; De Masi, Leon; von Rosenvinge, Erik C.; Carter, Mihaela; Donnenberg, Michael S.

    2014-01-01

    The Gram-positive anaerobe Clostridium difficile is the major cause of nosocomial diarrhea; manifestations of infection include diarrhea, pseudomembranous colitis, and death. Genes for type IV pili, a bacterial nanofiber often involved in colonization and until relatively recently described only in Gram-negatives, are present in all members of the Clostridiales. We hypothesized that any pilins encoded in the C. difficile genome would be immunogenic, as has been shown with pilins from Gram-negative organisms. We describe nine pilin or pilin-like protein genes, for which we introduce a coherent nomenclature, in the C. difficile R20291 genome. The nine predicted pilin or pilin-like proteins have relatively conserved N-terminal hydrophobic regions, but diverge at their C-termini. Analysis of synonymous and nonsynonymous substitutions revealed evidence of diversifying selective pressure in two pilin genes. Six of the nine identified proteins were purified and used to immunize mice. Immunization of mice with each individual protein generated antibody responses that varied in titer and crossreactivity, a notable result given the low amino acid sequence identity among the pilins. Further studies in other small mammals mirrored our results in mice. Our results illuminate components of the C. difficile type IV pilus, and help identify targets for an anti-C. difficile vaccine. PMID:24550179

  8. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    PubMed Central

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA)—is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+) in mammalian target cells. PMID:27089365

  9. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B.

    PubMed

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the "Large clostridial glycosylating toxins." These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB-together with Toxin A (TcdA)-is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn(2+) > Co(2+) > Mg(2+) > Ca(2+), Cu(2+), Zn(2+). TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn(2+) and 180 µM for Mg(2+). TcsL and TcdB further require co-stimulation by monovalent K⁺ (not by Na⁺). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K⁺ and Mg(2+) (rather than Mn(2+)) in mammalian target cells. PMID:27089365

  10. Antimicrobial susceptibilities of canine Clostridium difficile and Clostridium perfringens isolates to commonly utilized antimicrobial drugs.

    PubMed

    Marks, Stanley L; Kather, Elizabeth J

    2003-06-24

    Clostridium difficile and Clostridium perfringens are anaerobic, Gram-positive bacilli that are common causes of enteritis and enterotoxemias in both domestic animals and humans. Both organisms have been associated with acute and chronic large and small bowel diarrhea, and acute hemorrhagic diarrheal syndrome in the dog. The objective of this study was to determine the in vitro antimicrobial susceptibilities of canine C. difficile and C. perfringens isolates in an effort to optimize antimicrobial therapy for dogs with clostridial-associated diarrhea. The minimum inhibitory concentrations (MIC) of antibiotics recommended for treating C. difficile (metronidazole, vancomycin) and C. perfringens-associated diarrhea in the dog (ampicillin, erythromycin, metronidazole, tetracycline, tylosin) were determined for 70 canine fecal C. difficile isolates and 131 C. perfringens isolates. All C. difficile isolates tested had an MIC of or=256 microg/ml for both erythromycin and tylosin. A third C. perfringens isolate had an MIC of 32 microg/ml for metronidazole. Based on the results of this study, ampicillin, erythromycin, metronidazole, and tylosin appear to be effective antibiotics for the treatment of C. perfringens-associated diarrhea, although resistant strains do exist. However, because there is limited information regarding breakpoints for veterinary anaerobes, and because intestinal concentrations are not known, in vitro results should be interpreted with caution. PMID:12742714

  11. Ammonia assimilation pathways in nitrogen-fixing Clostridium kluyverii and Clostridium butyricum.

    PubMed Central

    Kanamori, K; Weiss, R L; Roberts, J D

    1989-01-01

    Pathways of ammonia assimilation into glutamic acid were investigated in ammonia-grown and N2-fixing Clostridium kluyverii and Clostridium butyricum by measuring the specific activities of glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. C. kluyverii had NADPH-glutamate dehydrogenase with a Km of 12.0 mM for NH4+. The glutamate dehydrogenase pathway played an important role in ammonia assimilation in ammonia-grown cells but was found to play a minor role relative to that of the glutamine synthetase/NADPH-glutamate synthase pathway in nitrogen-fixing cells when the intracellular NH4+ concentration and the low affinity of the enzyme for NH4+ were taken into account. In C. butyricum grown on glucose-salt medium with ammonia or N2 as the nitrogen source, glutamate dehydrogenase activity was undetectable, and the glutamine synthetase/NADH-glutamate synthase pathway was the predominant pathway of ammonia assimilation. Under these growth conditions, C. butyricum also lacked the activity of glucose-6-phosphate dehydrogenase, which catalyzes the regeneration of NADPH from NADP+. However, high activities of glucose-6-phosphate dehydrogenase as well as of NADPH-glutamate dehydrogenase with a Km of 2.8 mM for NH4+ were present in C. butyricum after growth on complex nitrogen and carbon sources. The ammonia-assimilating pathway of N2-fixing C. butyricum, which differs from that of the previously studied Bacillus polymyxa and Bacillus macerans, is discussed in relation to possible effects of the availability of ATP and of NADPH on ammonia-assimilating pathways. PMID:2564848

  12. Clostridium difficile in mixed populations of animals and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: Since 2003, there has been an emergence of BI/NAP1 strain of Clostridium difficile (Cd) in North American hospitals. The origins of this epidemic strain have yet to be determined. However, PFGE analysis has shown ~80% similarity between this strain and some swine isolates. The objecti...

  13. Clostridium difficile Ribotype 027, Toxinotype III, the Netherlands

    PubMed Central

    van den Berg, Renate J.; Debast, Sylvia; Visser, Caroline E.; Veenendaal, Dick; Troelstra, Annet; van der Kooi, Tjallie; van den Hof, Susan; Notermans, Daan W.

    2006-01-01

    Outbreaks due to Clostridium difficile polymerase chain reaction (PCR) ribotype 027, toxinotype III, were detected in 7 hospitals in the Netherlands from April 2005 to February 2006. One hospital experienced at the same time a second outbreak due to a toxin A–negative C. difficile PCR ribotype 017 toxinotype VIII strain. The outbreaks are difficult to control. PMID:16704846

  14. Clostridium novyi causing necrotising fasciitis in an injecting drug user

    PubMed Central

    Noone, M; Tabaqchali, M; Spillane, J B

    2002-01-01

    Necrotising fasciitis with pronounced local oedema is described in an injecting drug user. Clostridium novyi was an unexpected single pathogen isolated from infected tissue. The patient was among a cluster of cases, all injecting drug users, presenting with toxaemia and soft tissue infection. The causal role and pathogenicity of C novyi is discussed. PMID:11865011

  15. Clostridium glycolicum Isolated from a Patient with Otogenic Brain Abscesses▿

    PubMed Central

    Van Leer, C.; Wensing, A. M. J.; van Leeuwen, J. P.; Zandbergen, E. G. J.; Swanink, C. M. A.

    2009-01-01

    We describe a case of brain abscesses with gas formation following otitis media, for which the patient treated himself by placing clay in his ear. Several microorganisms, including Clostridium glycolicum, were cultured from material obtained from the patient. This is the first report of an infection in an immunocompetent patient associated with this microorganism. PMID:19109475

  16. Clostridium difficile strains from community-associated infections.

    PubMed

    Limbago, Brandi M; Long, Cherie M; Thompson, Angela D; Killgore, George E; Hannett, George E; Havill, Nancy L; Mickelson, Stephanie; Lathrop, Sarah; Jones, Timothy F; Park, Mahin M; Harriman, Kathleen H; Gould, L Hannah; McDonald, L Clifford; Angulo, Frederick J

    2009-09-01

    Clostridium difficile isolates from presumed community-associated infections (n = 92) were characterized by toxinotyping, pulsed-field gel electrophoresis, tcdC and cdtB PCR, and antimicrobial susceptibility. Nine toxinotypes (TOX) and 31 PFGE patterns were identified. TOX 0 (48, 52%), TOX III (18, 20%), and TOX V (9, 10%) were the most common; three isolates were nontoxigenic. PMID:19571021

  17. Clostridium difficile in retail meat and processing plants in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile (Cd) have increased in hospitals in North America from the emergence of newer, more virulent strains of Cd. Toxigenic Cd has been isolated from food animals and retail meat with potential implications of transfer ...

  18. Severe Clostridium difficile-associated disease in children.

    PubMed

    Pokorn, Marko; Radsel, Anja; Cizman, Milan; Jereb, Matjaz; Karner, Primoz; Kalan, Gorazd; Grosek, Stefan; Andlovic, Alenka; Rupnik, Maja

    2008-10-01

    Three cases of Clostridium difficile-associated disease in children were detected within a short time interval. Intensive therapy was required in 2 cases with colectomy in one of them. One of the severe cases was community-acquired. Two patients had underlying diseases (Hirschprung disease, Down syndrome) and also tested positive for enteric viruses (rotavirus, calicivirus). PMID:18756189

  19. PREVALENCE OF CLOSTRIDIUM DIFFICILE IN AN INTEGRATED SWINE OPERATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006 and to compare our isolates to other animal and human isolates. Isolation of C. difficile was performed u...

  20. Small Molecules Take A Big Step Against Clostridium difficile.

    PubMed

    Beilhartz, Greg L; Tam, John; Melnyk, Roman A

    2015-12-01

    Effective treatment of Clostridium difficile infections demands a shift away from antibiotics towards toxin-neutralizing agents. Work by Bender et al., using a drug that attenuates toxin action in vivo without affecting bacterial survival, demonstrates the exciting potential of small molecules as a new modality in the fight against C. difficile. PMID:26547239

  1. Clostridium difficile from healthy food animals: Optimized isolation and prevalence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two isolation methods were compared for isolation of Clostridium difficile from food animal feces. The single alcohol shock method (SS) used selective enrichment in cycloserine-cefoxitin fructose broth supplemented with 0.1% sodium taurocholate (TCCFB) followed by alcohol shock and isolation on tryp...

  2. Clostridium difficile prevalence in an integrated swine operation in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently there has been an epidemic of human disease in North America caused by the bacterium Clostridium difficile (Cd). It appears to be a new strain that is more virulent than previous strains, produces more toxins, and causes more severe disease (McDonald et al., 2005). The origin of the new s...

  3. 3-Methylindole production is regulated in Clostridium scatologenes ATCC 25775

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: 3-Methylindole (3-MI) is a degradation product of L-tryptophan and is both an animal waste malodorant and threat to ruminant health. Culture conditions which influence 3-MI production in Clostridium scatologenes ATCC 25775 were investigated. Methods and Results: Cells cultured in anaerobic ...

  4. Detection of Clostridium perfringens epsilon toxin by ELISA.

    PubMed

    Naylor, R D; Martin, P K; Sharpe, R T

    1987-03-01

    An enzyme-linked immunosorbent assay (ELISA) has been developed as an alternative to neutralisation tests in mice to detect Clostridium perfringens type D epsilon toxin in the intestinal contents of animals which have died from suspected enterotoxaemia. The test was sensitive and quantitative and gave excellent agreement with the mouse protection test. PMID:2884704

  5. Isolation of Clostridium difficile from healthy food animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Clostridium difficile-associated disease is increasingly reported and studies indicate that food animals may be sources of human infections. Methods: The presence of C. difficile in 345 swine fecal, 1,325 dairy cattle fecal, and 371 dairy environmental samples were examined. Two isolati...

  6. BUTANOL PRODUCTION FROM WHEAT STRAW HYDROLYSATE USING CLOSTRIDIUM BEIJERINCKII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation, 48.9 gL**-1 glucose was used to produce 20.1 gL**-1 ABE with a productivity and yield of 0.28 gL**-1h**-1 and 0....

  7. ID Learning Unit: Understanding and Interpreting Testing for Clostridium difficile

    PubMed Central

    Solomon, Daniel A.; Milner, Danny A.

    2014-01-01

    Understanding and interpreting the molecular tests for Clostridium difficile is challenging because there are several different types of assays and most laboratories combine multiple tests in order to assess for presence of disease. This learning unit demonstrates the basic principles of each test along with its strengths and weaknesses, and illustrates how the tests are used in clinical practice. PMID:25734081

  8. Clostridium septicum brain abscesses in a premature neonate.

    PubMed

    Sadarangani, Sapna P; Batdorf, Rachel; Buchhalter, Lillian C; Mrelashvili, Anna; Banerjee, Ritu; Henry, Nancy K; Huskins, W Charles; Boyce, Thomas G

    2014-05-01

    Brain abscesses in neonates are typically caused by Gram-negative organisms. There are no previously described cases caused by Clostridium septicum. We present a case of a premature male infant who developed recurrent episodes of suspected necrotizing enterocolitis followed by brain abscesses, cerebritis and ventriculitis caused by C. septicum. PMID:24220230

  9. Varied prevalence of Clostridium difficile in an integrated swine operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006 and to compare our isolates to other animal and human isolates. Preliminary results are based on 131 C. d...

  10. Development of a triplex real-time PCR assay for the simultaneous detection of Clostridium beijerinckii, Clostridium sporogenes and Clostridium tyrobutyricum in milk.

    PubMed

    Morandi, Stefano; Cremonesi, Paola; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2015-08-01

    Clostridium beijerinckii, Clostridium sporogenes and Clostridium tyrobutyricum are considered the leading bacteria implicated in late blowing defects affecting semi-hard and hard cheese production. The aim of this study was to develop a multiplex Real-Time PCR (qPCR) analysis for a rapid and simultaneous detection of C. beijerinckii, C. sporogenes and C. tyrobutyricum, using specific primers respectively targeting the nifH, gerAA and enr genes. The limits of detection in raw milk were 300 CFU/50 mL in the case of C. beijerinckii, 2 CFU/50 mL for C. sporogenes and 5 CFU/50 mL for C. tyrobutyricum spores. The qPCR method was applied to artificially contaminated raw milk samples, and molecular quantification showed good correlation (R(2) = 0.978) with microbiological counting. Our results demonstrate that this method, combined with a DNA extraction protocol optimized for spore lysis, could be a useful tool for the direct quantification of the considered clostridia species. PMID:25870135

  11. Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium saccharoperbutylacetonicum sequential culture in a continuous flow reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study was conducted to evaluate fermentation by Clostridium thermocellum and C. saccharoperbutylacetonicum in a continuous-flow, high-solids reactor. Liquid medium was continuously flowed through switchgrass (2 mm particle size) at one of three flow rates: 83.33 mL h-1 (2 L d-1), 41.66 mL h-1(1 ...

  12. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing

    PubMed Central

    Wang, Yun; Butler, Robert R.; Reddy, N. Rukma; Skinner, Guy E.; Larkin, John W.

    2015-01-01

    Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. PMID:26519392

  13. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing.

    PubMed

    Schill, Kristin M; Wang, Yun; Butler, Robert R; Pombert, Jean-François; Reddy, N Rukma; Skinner, Guy E; Larkin, John W

    2016-01-01

    Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. PMID:26519392

  14. Clostridium difficile associated infection, diarrhea and colitis

    PubMed Central

    Hookman, Perry; Barkin, Jamie S

    2009-01-01

    A new, hypervirulent strain of Clostridium difficile, called NAP1/BI/027, has been implicated in C. difficile outbreaks associated with increased morbidity and mortality since the early 2000s. The epidemic strain is resistant to fluoroquinolones in vitro, which was infrequent prior to 2001. The name of this strain reflects its characteristics, demonstrated by different typing methods: pulsed-field gel electrophoresis (NAP1), restriction endonuclease analysis (BI) and polymerase chain reaction (027). In 2004 and 2005, the US Centers for Disease Control and Prevention (CDC) emphasized that the risk of C. difficile-associated diarrhea (CDAD) is increased, not only by the usual factors, including antibiotic exposure, but also gastrointestinal surgery/manipulation, prolonged length of stay in a healthcare setting, serious underlying illness, immune-compromising conditions, and aging. Patients on proton pump inhibitors (PPIs) have an elevated risk, as do peripartum women and heart transplant recipients. Before 2002, toxic megacolon in C. difficile-associated colitis (CDAC), was rare, but its incidence has increased dramatically. Up to two-thirds of hospitalized patients may be infected with C. difficile. Asymptomatic carriers admitted to healthcare facilities can transmit the organism to other susceptible patients, thereby becoming vectors. Fulminant colitis is reported more frequently during outbreaks of C. difficile infection in patients with inflammatory bowel disease (IBD). C. difficile infection with IBD carries a higher mortality than without underlying IBD. This article reviews the latest information on C. difficile infection, including presentation, vulnerable hosts and choice of antibiotics, alternative therapies, and probiotics and immunotherapy. We review contact precautions for patients with known or suspected C. difficile-associated disease. Healthcare institutions require accurate and rapid diagnosis for early detection of possible outbreaks, to initiate

  15. Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach.

    PubMed

    Muhammad, Syed Aun; Ahmed, Safia; Ali, Amjad; Huang, Hui; Wu, Xiaogang; Yang, X Frank; Naz, Anam; Chen, Jake

    2014-07-01

    A computational and in silico system level framework was developed to identify and prioritize the antibacterial drug targets in Clostridium botulinum (Clb), the causative agent of flaccid paralysis in humans that can be fatal in 5 to 10% of cases. This disease is difficult to control due to the emergence of drug-resistant pathogenic strains and the only available treatment antitoxin which can target the neurotoxin at the extracellular level and cannot reverse the paralysis. This study framework is based on comprehensive systems-scale analysis of genomic sequence homology and phylogenetic relationships among Clostridium, other infectious bacteria, host and human gut flora. First, the entire 2628-annotated genes of this bacterial genome were categorized into essential, non-essential and virulence genes. The results obtained showed that 39% of essential proteins that functionally interact with virulence proteins were identified, which could be a key to new interventions that may kill the bacteria and minimize the host damage caused by the virulence factors. Second, a comprehensive comparative COGs and blast sequence analysis of these proteins and host proteins to minimize the risks of side effects was carried out. This revealed that 47% of a set of C. botulinum proteins were evolutionary related with Homo sapiens proteins to sort out the non-human homologs. Third, orthology analysis with other infectious bacteria to assess broad-spectrum effects was executed and COGs were mostly found in Clostridia, Bacilli (Firmicutes), and in alpha and beta Proteobacteria. Fourth, a comparative phylogenetic analysis was performed with human microbiota to filter out drug targets that may also affect human gut flora. This reduced the list of candidate proteins down to 131. Finally, the role of these putative drug targets in clostridial biological pathways was studied while subcellular localization of these candidate proteins in bacterial cellular system exhibited that 68% of the

  16. Discrimination of clostridium species using a magnetic bead based hybridization assay

    NASA Astrophysics Data System (ADS)

    Pahlow, Susanne; Seise, Barbara; Pollok, Sibyll; Seyboldt, Christian; Weber, Karina; Popp, Jürgen

    2014-05-01

    Clostridium chauvoei is the causative agent of blackleg, which is an endogenous bacterial infection. Mainly cattle and other ruminants are affected. The symptoms of blackleg are very similar to those of malignant edema, an infection caused by Clostridium septicum. [1, 2] Therefore a reliable differentiation of Clostridium chauvoei from other Clostridium species is required. Traditional microbiological detection methods are time consuming and laborious. Additionally, the unique identification is hindered by the overgrowing tendency of swarming Clostridium septicum colonies when both species are present. [1, 3, 4] Thus, there is a crucial need to improve and simplify the specific detection of Clostridium chauvoei and Clostridium septicum. Here we present an easy and fast Clostridium species discrimination method combining magnetic beads and fluorescence spectroscopy. Functionalized magnetic particles exhibit plentiful advantages, like their simple manipulation in combination with a large binding capacity of biomolecules. A specific region of the pathogenic DNA is amplified and labelled with biotin by polymerase chain reaction (PCR). These PCR products were then immobilized on magnetic beads exploiting the strong biotin-streptavidin interaction. The specific detection of different Clostridium species is achieved by using fluorescence dye labeled probe DNA for the hybridization with the immobilized PCR products. Finally, the samples were investigated by fluorescence spectroscopy. [5

  17. Typing and Subtyping of Clostridium difficile Isolates by Using Multiple-Locus Variable-Number Tandem-Repeat Analysis▿

    PubMed Central

    van den Berg, Renate J.; Schaap, Inge; Templeton, Kate E.; Klaassen, Corné H. W.; Kuijper, Ed J.

    2007-01-01

    Using the genomic sequence of Clostridium difficile strain 630, we developed multiple-locus variable-number tandem-repeat analysis (MLVA) with automated fragment analysis and multicolored capillary electrophoresis as a typing method for C. difficile. All reference strains, representing 31 serogroups, 25 toxinotypes, and 7 known subtypes of PCR ribotype 001, could be discriminated from each other. Application of MLVA to 28 isolates from 7 outbreaks due to the emerging hypervirulent PCR ribotype 027-pulsed-field gel electrophoresis type NAP1 resulted in recognition of 13 clusters. Additionally, 29 toxin A-negative, toxin B-positive isolates belonging to PCR ribotype 017 from eight different countries revealed eight country-specific clusters. MLVA is a highly discriminatory genotyping method and a new tool for subtyping of newly emerging variants of C. difficile. PMID:17166961

  18. Generation of Single-Copy Transposon Insertions in Clostridium perfringens by Electroporation of Phage Mu DNA Transposition Complexes▿

    PubMed Central

    Lanckriet, A.; Timbermont, L.; Happonen, L. J.; Pajunen, M. I.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R.; Savilahti, H.; Van Immerseel, F.

    2009-01-01

    Transposon mutagenesis is a tool that is widely used for the identification of genes involved in the virulence of bacteria. Until now, transposon mutagenesis in Clostridium perfringens has been restricted to the use of Tn916-based methods with laboratory reference strains. This system yields primarily multiple transposon insertions in a single genome, thus compromising its use for the identification of virulence genes. The current study describes a new protocol for transposon mutagenesis in C. perfringens, which is based on the bacteriophage Mu transposition system. The protocol was successfully used to generate a single-insertion mutant library both for a laboratory strain and for a field isolate. Thus, it can be used as a tool in large-scale screening to identify virulence genes of C. perfringens. PMID:19270116

  19. PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium difficile.

    PubMed Central

    Cartwright, C P; Stock, F; Beekmann, S E; Williams, E C; Gill, V J

    1995-01-01

    From January to March 1993, a suspected outbreak of antibiotic-associated diarrhea occurred on a pediatric oncology ward of the Clinical Center Hospital at the National Institutes of Health. Isolates of Clostridium difficile obtained from six patients implicated in this outbreak were typed by both PCR amplification of rRNA intergenic spacer regions (PCR ribotyping) and restriction endonuclease analysis of genomic DNA. Comparable results were obtained with both methods; five of the six patients were infected with the same strain of C. difficile. Subsequent analysis of 102 C. difficile isolates obtained from symptomatic patients throughout the Clinical Center revealed the existence of 41 distinct and reproducible PCR ribotypes. These data suggest that PCR ribotyping provides a discriminatory, reproducible, and simple alternative to conventional molecular approaches for typing strains of C. difficile. PMID:7699038

  20. Models for the study of Clostridium difficile infection

    PubMed Central

    Best, Emma L.; Freeman, Jane; Wilcox, Mark H.

    2012-01-01

    Models of Clostridium difficile infection (C. difficile) have been used extensively for Clostridium difficile (C. difficile) research. The hamster model of C. difficile infection has been most extensively employed for the study of C. difficile and this has been used in many different areas of research, including the induction of C. difficile, the testing of new treatments, population dynamics and characterization of virulence. Investigations using in vitro models for C. difficile introduced the concept of colonization resistance, evaluated the role of antibiotics in C. difficile development, explored population dynamics and have been useful in the evaluation of C. difficile treatments. Experiments using models have major advantages over clinical studies and have been indispensible in furthering C. difficile research. It is important for future study programs to carefully consider the approach to use and therefore be better placed to inform the design and interpretation of clinical studies. PMID:22555466

  1. Beneficial and harmful roles of bacteria from the Clostridium genus.

    PubMed

    Samul, Dorota; Worsztynowicz, Paulina; Leja, Katarzyna; Grajek, Włodzimierz

    2013-01-01

    Bacteria of the Clostridium genus are often described only as a biological threat and a foe of mankind. However, many of them have positive properties and thanks to them they may be used in many industry branches (e.g., in solvents and alcohol production, in medicine, and also in esthetic cosmetology). During the last 10 years interest in application of C. botulinum and C. tetani in medicine significantly increased. Currently, the structure and biochemical properties of neurotoxins produced by these bacterial species, as well as possibilities of application of such toxins as botulinum as a therapeutic factor in humans, are being intensely researched. The main aim of this article is to demonstrate that bacteria from Clostridium spp. are not only pathogens and the enemy of humanity but they also have many important beneficial properties which make them usable among many chemical, medical, and cosmetic applications. PMID:24432307

  2. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  3. Clostridium perfringens in animal disease: a review of current knowledge.

    PubMed

    Niilo, L

    1980-05-01

    The diseases caused by various types of Clostridium perfringens are critically reviewed in the light of current knowledge. Particular emphasis is placed on information concerning these diseases in Canadian livestock. There are two etiologically clearly-defined acute C. perfringens diseases recognized in Canada: hemorrhagic enteritis of the new born calf, caused by C. perfringens type C, and enterotoxemia of sheep, caused by type D. Clostridium perfringens type A may play a role as a secondary pathological agent in various disease conditions, such as necrotic enteritis of chickens. It may also cause wound infections and may provide a source for human food poisoning outbreaks. There appears to be a considerable lack of knowledge regarding the distribution of C. perfringens types, their pathogenesis, diagnosis and the incidence of diseases caused by this organism. PMID:6253040

  4. Nosocomial outbreak of Clostridium difficile diarrhea in a pediatric service.

    PubMed

    Ferroni, A; Merckx, J; Ancelle, T; Pron, B; Abachin, E; Barbut, F; Larzul, J; Rigault, P; Berche, P; Gaillard, J L

    1997-12-01

    An outbreak of nosocomial diarrhea that occurred in a pediatric orthopedic service between 1 December 1993 and 15 April 1994 is reported. A total of 37 patients (mean age, 9.6 years; range, 2 months-19.3 years) were involved in the outbreak, including six patients with bacteriologically documented Clostridium difficile infection. A multivariate analysis identified lincomycin treatment for at least three days as the only significant risk factor. Stool samples from four asymptomatic patients were also positive for Clostridium difficile and its cytotoxins. Isolates from all patients belonged to serogroup C, were highly resistant to lincomycin, and exhibited the same restriction pattern by pulsed-field gel electrophoresis. The outbreak ended after treatment with lincomycin was discontinued and hygiene control measures were implemented. PMID:9495676

  5. The utilization of a commercial soil nucleic acid extraction kit and PCR for the detection of Clostridium tetanus and Clostridium chauvoei on farms after flooding in Taiwan.

    PubMed

    Huang, Shr-Wei; Chan, Jacky Peng-Wen; Shia, Wei-Yau; Shyu, Chin-Lin; Tung, Kwon-Chung; Wang, Chi-Young

    2013-05-01

    Clostridial diseases are zoonoses and are classified as soil-borne diseases. Clostridium chauvoei and Clostridium tetani cause blackleg disease and tetanus, respectively. Since bacteria and spores are re-distributed by floods and then, subsequently, contaminate soils, pastures and water; the case numbers associated with clostridial diseases usually increase after floods. Because Taiwan is often affected by flood damage during the typhoon season, possible threats from these diseases are present. Thus, this study's aim is to apply a combination of a commercial nucleic acid extraction kit and PCR to assess the prevalence of Clostridia spp. in soil and to compare the positivity rates for farms before and after floods. The minimum amounts of Clostridium tetanus and Clostridium chauvoei that could be extracted from soils and detected by PCR were 10 and 50 colony forming units (cfu), respectively. In total, 76 samples were collected from the central and southern regions of Taiwan, which are the areas that are most frequently damaged by typhoons. Noteworthy, the positive rates for Clostridium tetanus and Clostridium chauvoei in Pingtung county after the severe floods caused by a typhoon increased significantly from 13.73 and 7.84% to 53.85 and 50.00%, respectively. This study for the first time provides the evidence from surveillance data that there are changes in the environmental distribution of Clostridium spp. after floods. This study indicates that screening for soil-related zoonotic pathogens is a potential strategy that may help to control these diseases. PMID:23208321

  6. Clostridium difficile in Children: To Treat or Not to Treat?

    PubMed Central

    2014-01-01

    Clostridium difficile infection has been increasing since 2000 in children and in adults. Frequent antibiotics use, comorbidity, and the development of hypervirulent strains have increased the risk of infection. Despite the high carriage rates of C. difficile, infants rarely develop clinical infection. Discontinuing antibiotics and supportive management usually leads to resolution of disease. Antibiotics use should be stratified depending on the patient's age and severity of the disease. PMID:25061582

  7. Clostridium chauvoei-associated meningoencephalitis in a calf.

    PubMed

    2016-01-16

    ·Meningoencephalitis in a calf associated with Clostridium chauvoei infection. ·Bovine papular stomatitis in calves. ·Otitis media due to Mycoplasma bovis in calves. ·Sporadic porcine abortion due to Nocardia species. ·Spotty liver disease in hens. These are among matters discussed in the disease surveillance report for September 2015 from SAC Consulting: Veterinary Services (SAC C VS). PMID:26769810

  8. Clostridium difficile Cell Attachment Is Modified by Environmental Factors

    PubMed Central

    Waligora, Anne-Judith; Barc, Marie-Claude; Bourlioux, Pierre; Collignon, Anne; Karjalainen, Tuomo

    1999-01-01

    Adherence of Clostridium difficile to Vero cells under anaerobic conditions was increased by a high sodium concentration, calcium-rich medium, an acidic pH, and iron starvation. The level of adhesion of nontoxigenic strains was comparable to that of toxigenic strains. Depending on the bacterial culture conditions, Vero cells could bind to one, two, or three bacterial surface proteins with molecular masses of 70, 50, and 40 kDa. PMID:10473442

  9. Historical and current perspectives on Clostridium botulinum diversity.

    PubMed

    Smith, Theresa J; Hill, Karen K; Raphael, Brian H

    2015-05-01

    For nearly one hundred years, researchers have attempted to categorize botulinum neurotoxin-producing clostridia and the toxins that they produce according to biochemical characterizations, serological comparisons, and genetic analyses. Throughout this period the bacteria and their toxins have defied such attempts at categorization. Below is a description of both historic and current Clostridium botulinum strain and neurotoxin information that illustrates how each new finding has significantly added to the knowledge of the botulinum neurotoxin-containing clostridia and their diversity. PMID:25312020

  10. [Massive intravascular hemolysis secondary to sepsis due to Clostridium perfringens].

    PubMed

    Pita Zapata, E; Sarmiento Penide, A; Bautista Guillén, A; González Cabano, M; Agulla Budiño, J A; Camba Rodríguez, M A

    2010-05-01

    Massive hemolysis secondary to sepsis caused by Clostridium perfringens is a rare entity but appears fairly often in the literature. In nearly all published reports, the clinical course is rapid and fatal. We describe the case of a 75-year-old woman with diabetes who was admitted with symptoms consistent with acute cholecystitis. Deteriorating hemodynamics and laboratory findings were consistent with intravascular hemolysis, coagulation disorder, and renal failure. Gram-positive bacilli of the Clostridium species were detected in blood along with worsening indicators of hemolysis. In spite of antibiotic and surgical treatment, hemodynamic support and infusion of blood products, the patient continued to decline and died in the postoperative recovery unit 14 hours after admission. Mortality ranges from 70% to 100% in sepsis due to Clostridium perfringens, and risk of death is greater if massive hemolysis is present, as in the case we report. Only a high degree of clinical suspicion leading to early diagnosis and treatment can improve the prognosis. This bacterium should therefore be considered whenever severe sepsis and hemolysis coincide. PMID:20527348

  11. [Toxins of Clostridium perfringens as a natural and bioterroristic threats].

    PubMed

    Omernik, Andrzej; Płusa, Tadeusz

    2015-09-01

    Clostridium perfringens is absolutely anaerobic rod-shaped, sporeforming bacterium. The morbidity is connected with producing toxins. Depending on the type of toxin produced Clostridium perfringens can be divided into five serotypes:A-E. Under natural conditions, this bacterium is responsible for local outbreaks of food poisoning associated with eating contaminated food which which was improperly heat treated. Some countries with lower economic level are endemic foci of necrotizing enteritis caused by Clostridium perfringens. The bacterium is also a major cause of gas gangrene. It is a disease, associated with wound infection, with potentially fatal prognosis in the case of treatment's delays. In the absence of early radical surgery, antibiotic therapy and (if available) hyperbaric treatment leads to the spread of toxins in the body causing shock, coma and death. Due to the force of produced toxins is a pathogen that poses a substrate for the production of biological weapons. It could potentially be used to induce outbreaks of food poisoning and by missiles contamination by spore lead to increased morbidity of gas gangrene in injured soldiers. C. perfringens types B and D produce epsilon toxin considered to be the third most powerful bacterial toxin. Because of the ability to disperse the toxin as an aerosol and a lack of methods of treatment and prevention of poisoning possible factors it is a potential tool for bioterrorism It is advisable to continue research into vaccines and treatments for poisoning toxins of C. perfringens. PMID:26449576

  12. Clostridium tertium Bacteremia in a Patient with Glyphosate Ingestion

    PubMed Central

    You, Myung-Jo; Shin, Gee-Wook; Lee, Chang-Seop

    2015-01-01

    Patient: Female, 44 Final Diagnosis: Clostridium tertium bacteremia Symptoms: Fever Medication: Ertapenem • Metronidazole Clinical Procedure: — Specialty: Infectious Disease Objective: Unknown etiology Background: Clostridium tertium is distributed in the soil and in animal and human gastrointestinal tracts. C. tertium has been isolated from patients with blood diseases, immune disorders, and abdominal surgeries. Glyphosate is toxic, causing cause eye and skin irritation, gastrointestinal pain, and vomiting. Ingestion of herbicides modifies the gastrointestinal environment, which stresses the living organisms. However, there has been little attention to cases of bacteremia in patients recovering from suicide attempt by ingesting herbicide. Case Report: Clostridium tertium was identified in a 44-year-old female who attempted suicide by glyphosate (a herbicide) ingestion. The 16S rRNA sequences from all colonies were 99% identical with that of C. tertium (AB618789) found on a BLAST search of the NCBI database. The bacterium was cultured on TSA under aerobic and anaerobic conditions. Antimicrobial susceptibility tests performed under both aerobic and anaerobic conditions showed that the bacterium was susceptible to penicillin, a combination of β-lactamase inhibitor and piperacillin or amoxicillin, and first- and second- generation cephalosporins. However, it was resistant to third- and fourth-generation cephalosporins. Conclusions: Glyphosate herbicide might be a predisposing factor responsible for the pathogenesis of C. tertium. The results highlight the need for careful diagnosis and selection of antibiotics in the treatment of this organism. PMID:25577783

  13. Effect of Potassium Sorbate on Salmonellae, Staphylococcus aureus, Clostridium perfringens, and Clostridium botulinum in Cooked, Uncured Sausage

    PubMed Central

    Tompkin, R. B.; Christiansen, L. N.; Shaparis, A. B.; Bolin, H.

    1974-01-01

    Skinless precooked, uncured sausage links with and without potassium sorbate (0.1% wt/wt) were inoculated with salmonellae, Staphylococcus aureus, Clostridium perfringens, and Clostridium botulinum and held at 27 C to represent temperature abuse of the product. Total counts of uninoculated product showed that the normal spoilage flora was delayed 1 day when sorbate was present. Growth of salmonellae was markedly retarded by sorbate. Growth of S. aureus was delayed 1 day in the presence of sorbate, after which growth occurred to the same level as in product without sorbate. C. perfringens declined to below detectable levels within the first day in product with and without sorbate. Sorbate retarded the growth of C. botulinum. Botulinal toxin was detected in 4 days in product without sorbate but not until after 10 days in product with sorbate. PMID:4368631

  14. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group.

    PubMed

    Nakajima, N; Matsuura, Y

    1997-10-01

    Konjac glucomannan degrading enzyme was purified to homogeneity from the culture broth of an anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group. The enzyme was composed of a single polypeptide chain with a molecular weight of 50,000-53,000. The enzyme was an endo-beta-mannanase that acted specifically on the polysaccharides such as konjac glucomannan and coffee mannan, producing exclusively their smaller oligosaccharides and the monosaccharides. The optimal pH of the enzyme for the hydrolysis of konjac glucomannan was around 7-8 and the enzyme was stable in rather alkaline pH range of 8-10. The enzyme reaction was activated by the addition of CaCl2 and dithiothreitol. It was suggested that the enzyme might contribute to the decomposition of konjac glucomannan in human digestive tract. PMID:9362121

  15. A penicillin- and metronidazole-resistant Clostridium botulinum strain responsible for an infant botulism case.

    PubMed

    Mazuet, C; Yoon, E-J; Boyer, S; Pignier, S; Blanc, T; Doehring, I; Meziane-Cherif, D; Dumant-Forest, C; Sautereau, J; Legeay, C; Bouvet, P; Bouchier, C; Quijano-Roy, S; Pestel-Caron, M; Courvalin, P; Popoff, M R

    2016-07-01

    The clinical course of a case of infant botulism was characterized by several relapses despite therapy with amoxicillin and metronidazole. Botulism was confirmed by identification of botulinum toxin and Clostridium botulinum in stools. A C. botulinum A2 strain resistant to penicillins and with heterogeneous resistance to metronidazole was isolated from stool samples up to 110 days after onset. Antibiotic susceptibility was tested by disc agar diffusion and MICs were determined by Etest. Whole genome sequencing allowed detection of a gene cluster composed of blaCBP for a novel penicillinase, blaI for a regulator, and blaR1 for a membrane-bound penicillin receptor in the chromosome of the C. botulinum isolate. The purified recombinant penicillinase was assayed. Resistance to β-lactams was in agreement with the kinetic parameters of the enzyme. In addition, the β-lactamase gene cluster was found in three C. botulinum genomes in databanks and in two of 62 genomes of our collection, all the strains belonging to group I C. botulinum. This is the first report of a C. botulinum isolate resistant to penicillins. This stresses the importance of antibiotic susceptibility testing for adequate therapy of botulism. PMID:27108966

  16. Excretion of Host DNA in Feces Is Associated with Risk of Clostridium difficile Infection

    PubMed Central

    Loo, Vivian G.; Dewar, Ken; Manges, Amee R.

    2015-01-01

    Clostridium difficile infection (CDI) is intricately linked to the health of the gastrointestinal tract and its indigenous microbiota. In this study, we assessed whether fecal excretion of host DNA is associated with CDI development. Assuming that shedding of epithelial cell increases in the inflamed intestine, we used human DNA excretion as a marker of intestinal insult. Whole-genome shotgun sequencing was employed to quantify host DNA excretion and evaluate bacterial content in fecal samples collected from patients with incipient CDI, hospitalized controls, and healthy subjects. Human DNA excretion was significantly increased in patients admitted to the hospital for a gastrointestinal ailment, as well as prior to an episode of CDI. In multivariable analyses, human read abundance was independently associated with CDI development. Host DNA proportions were negatively correlated with intestinal microbiota diversity. Enterococcus and Escherichia were enriched in patients excreting high quantities of human DNA, while Ruminococcus and Odoribacter were depleted. These findings suggest that intestinal inflammation can occur prior to CDI development and may influence patient susceptibility to CDI. The quantification of human DNA in feces could serve as a simple and noninvasive approach to assess bowel inflammation and identify patients at risk of CDI. PMID:26090486

  17. Community-acquired Clostridium difficile infection: an increasing public health threat

    PubMed Central

    Gupta, Arjun; Khanna, Sahil

    2014-01-01

    There has been a startling shift in the epidemiology of Clostridium difficile infection over the last decade worldwide, and it is now increasingly recognized as a cause of diarrhea in the community. Classically considered a hospital-acquired infection, it has now emerged in populations previously considered to be low-risk and lacking the traditional risk factors for C. difficile infection, such as increased age, hospitalization, and antibiotic exposure. Recent studies have demonstrated great genetic diversity for C. difficile, pointing toward diverse sources and a fluid genome. Environmental sources like food, water, and animals may play an important role in these infections, apart from the role symptomatic patients and asymptomatic carriers play in spore dispersal. Prospective strain typing using highly discriminatory techniques is a possible way to explore the suspected diverse sources of C. difficile infection in the community. Patients with community-acquired C. difficile infection do not necessarily have a good outcome and clinicians should be aware of factors that predict worse outcomes in order to prevent them. This article summarizes the emerging epidemiology, risk factors, and outcomes for community-acquired C. difficile infection. PMID:24669194

  18. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile

    PubMed Central

    Antunes, Ana; Camiade, Emilie; Monot, Marc; Courtois, Emmanuelle; Barbut, Frédéric; Sernova, Natalia V.; Rodionov, Dmitry A.; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2012-01-01

    The catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50% depend on CcpA for regulation. The CcpA regulon comprises genes involved in sugar uptake, fermentation and amino acids metabolism, confirming the role of CcpA as a link between carbon and nitrogen pathways. Using combination of chromatin immunoprecipitation and genome sequence analysis, we detected 55 CcpA binding sites corresponding to ∼140 genes directly controlled by CcpA. We defined the C. difficile CcpA consensus binding site (creCD motif), that is, ‘RRGAAAANGTTTTCWW’. Binding of purified CcpA protein to 19 target creCD sites was demonstrated by electrophoretic mobility shift assay. CcpA also directly represses key factors in early steps of sporulation (Spo0A and SigF). Furthermore, the C. difficile toxin genes (tcdA and tcdB) and their regulators (tcdR and tcdC) are direct CcpA targets. Finally, CcpA controls a complex and extended regulatory network through the modulation of a large set of regulators. PMID:22989714

  19. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile.

    PubMed

    Antunes, Ana; Camiade, Emilie; Monot, Marc; Courtois, Emmanuelle; Barbut, Frédéric; Sernova, Natalia V; Rodionov, Dmitry A; Martin-Verstraete, Isabelle; Dupuy, Bruno

    2012-11-01

    The catabolite control protein CcpA is a pleiotropic regulator that mediates the global transcriptional response to rapidly catabolizable carbohydrates, like glucose in Gram-positive bacteria. By whole transcriptome analyses, we characterized glucose-dependent and CcpA-dependent gene regulation in Clostridium difficile. About 18% of all C. difficile genes are regulated by glucose, for which 50% depend on CcpA for regulation. The CcpA regulon comprises genes involved in sugar uptake, fermentation and amino acids metabolism, confirming the role of CcpA as a link between carbon and nitrogen pathways. Using combination of chromatin immunoprecipitation and genome sequence analysis, we detected 55 CcpA binding sites corresponding to ∼140 genes directly controlled by CcpA. We defined the C. difficile CcpA consensus binding site (cre(CD) motif), that is, 'RRGAAAANGTTTTCWW'. Binding of purified CcpA protein to 19 target cre(CD) sites was demonstrated by electrophoretic mobility shift assay. CcpA also directly represses key factors in early steps of sporulation (Spo0A and SigF). Furthermore, the C. difficile toxin genes (tcdA and tcdB) and their regulators (tcdR and tcdC) are direct CcpA targets. Finally, CcpA controls a complex and extended regulatory network through the modulation of a large set of regulators. PMID:22989714

  20. Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124.

    PubMed

    Nakajima, Masahiro; Nihira, Takanori; Nishimoto, Mamoru; Kitaoka, Motomitsu

    2008-03-01

    Lacto-N-biose phosphorylase (LNBP) from bifidobacteria is involved in the metabolism of lacto-N-biose I (Galbeta1-->3GlcNAc, LNB) and galacto-N-biose (Galbeta1-->3GalNAc, GNB). A homologous gene of LNBP (CPF0553 protein) was identified in the genome of Clostridium perfringens ATCC13124, which is a gram-positive anaerobic intestinal bacterium. In the present study, we cloned the gene and compared the substrate specificity of the CPF0553 protein with LNBP from Bifidobacterium longum JCM1217 (LNBPBl). In the presence of alpha-galactose 1-phosphate (Gal 1-P) as a donor, the CPF0553 protein acted only on GlcNAc and GalNAc, and GalNAc was a more effective acceptor than GlcNAc. The reaction product from GlcNAc/GalNAc and Gal 1-P was identified as LNB or GNB. The CPF0553 protein also phosphorolyzed GNB much faster than LNB, which suggests that the protein should be named galacto-N-biose phosphorylase (GNBP). GNBP showed a kcat/Km value for GNB that was approximately 50 times higher than that for LNB, whereas LNBPBl showed similar kcat/Km values for both GNB and LNB. Because C. perfringens possesses a gene coding endo-alpha-N-acetylgalactosaminidase, GNBP may play a role in the intestinal residence by metabolizing GNB that is available as a mucin core sugar. PMID:18183385

  1. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  2. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  3. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Shen, Xiaoning; Xu, Jiahui; Wang, Junzhi; Wang, Yanyan; Liu, Dong; Niu, Huanqing; Liang, Lei; Ying, Hanjie

    2016-07-10

    A mutant strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii M11, which exhibited ferulic acid tolerance up to 0.9g/L, was generated using atmospheric pressure glow discharge and high-throughput screening. Comparative genomic analysis revealed that this strain harbored a mutation of the Cbei_4693 gene, which encodes a hypothetical protein suspected to be an NADPH-dependent FMN reductase. After disrupting the Cbei_4693 gene in C. beijerinckii NCIMB 8052 using the ClosTron group II intron-based gene inactivation system, we obtained the Cbei_4693 gene inactivated mutant strain, C. beijerinckii 4693::int. Compared with C. beijerinckii NCIMB 8052, 6.23g/L of butanol was produced in P2 medium containing 0.5g/L of ferulic acid by 4693::int, and the ferulic acid tolerance was also significantly increased up to 0.8g/L. These data showed, for the first time, that the Cbei_4693 gene plays an important role in regulating ferulic acid tolerance in ABE fermentation by C. beijerinckii. PMID:27164255

  4. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications

    SciTech Connect

    Akinsho, Hannah; Yee, Kelsey L; Close, Daniel M; Ragauskas, Arthur

    2014-01-01

    First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing (CBP) applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes toward the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum's role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum's amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community.

  5. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications

    NASA Astrophysics Data System (ADS)

    Ragauskas, Arthur; Akinosho, Hannah; Yee, Kelsey; Close, Dan

    2014-08-01

    First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes towards the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum’s role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum’s amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community.

  6. Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies

    PubMed Central

    Utturkar, Sagar M; Klingeman, Dawn M; Bruno-Barcena, José M; Chinn, Mari S; Grunden, Amy M; Köpke, Michael; Brown, Steven D

    2015-01-01

    During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequence datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data. PMID:25977818

  7. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani.

    PubMed

    Enany, Shymaa

    2014-01-01

    The progress in biological technologies has led to rapid accumulation of microbial genomic sequences with a vast number of uncharacterized genes. Proteins encoded by these genes are usually uncharacterized, hypothetical, and/or conserved. In Clostridium tetani (C. tetani), these proteins constitute up to 50% of the expressed proteins. In this regard, understanding the functions and the structures of these proteins is crucially important, particularly in C. tetani, which is a medically important pathogen. Here, we used a variety of bioinformatics tools and databases to analyze 10 hypothetical and conserved proteins in C. tetani. We were able to provide a detailed overview of the functional contributions of some of these proteins in several cellular functions, including (1) evolving antibiotic resistance, (2) interaction with enzymes pathways, and (3) involvement in drug transportation. Among these candidates, we postulated the involvement of one of these hypothetical proteins in the pathogenic activity of tetanus. The structural and functional prediction of these proteins should serve in uncovering and better understanding the function of C. tetani cells to ultimately discover new possible drug targets. PMID:24802661

  8. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  9. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  10. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.

    PubMed

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-11-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed. PMID:21874277

  11. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  12. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp.

    PubMed

    He, Qiang; Hemme, Christopher L; Jiang, Helong; He, Zhili; Zhou, Jizhong

    2011-10-01

    Engineering microbial consortia capable of efficient ethanolic fermentation of cellulose is a strategy for the development of consolidated bioprocessing for bioethanol production. Co-cultures of cellulolytic Clostridium thermocellum with non-cellulolytic Thermoanaerobacter strains (X514 and 39E) significantly improved ethanol production by 194-440%. Strain X514 enhanced ethanolic fermentation much more effectively than strain 39E in co-cultivation, with ethanol production in X514 co-cultures at least 62% higher than that of 39E co-cultures. Comparative genome sequence analysis revealed that the higher ethanolic fermentation efficiency in strain X514 was associated with the presence of a complete vitamin B(12) biosynthesis pathway, which is incomplete in strain 39E. The significance of the vitamin B(12)de novo biosynthesis capacity was further supported by the observation of improved ethanol production in strain 39E by 203% following the addition of exogenous vitamin B(12). The vitamin B(12) biosynthesis pathway provides a valuable biomarker for selecting metabolically robust strains for bioethanol production. PMID:21868218

  13. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    PubMed Central

    Odo, Chioma; DuPont, Herbert L.

    2016-01-01

    ABSTRACT Clostridium difficile infection (CDI) is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr) quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease. PMID:27531912

  14. Sequence Data for Clostridium autoethanogenum using Three Generations of Sequencing Technologies

    DOE PAGESBeta

    Utturkar, Sagar M.; Klingeman, Dawn Marie; Bruno-Barcena, José M.; Chinn, Mari S.; Grunden, Amy; Köpke, Michael; Brown, Steven D.

    2015-04-14

    During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequencemore » datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data.« less

  15. The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile

    PubMed Central

    Bakker, Dennis; Buckley, Anthony M.; de Jong, Anne; van Winden, Vincent J. C.; Verhoeks, Joost P. A.; Kuipers, Oscar P.; Douce, Gillian R.; Kuijper, Ed J.

    2014-01-01

    In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the pathogenesis of the disease. In other Gram-positive and Gram-negative pathogenic bacteria, conserved high-temperature requirement A (HtrA)-like proteases have been shown to have a role in protein homeostasis and quality control. This affects the functionality of virulence factors and the resistance of bacteria to (host-induced) environmental stresses. We found that the C. difficile 630 genome encodes a single HtrA-like protease (CD3284; HtrA) and have analyzed its role in vivo and in vitro through the creation of an isogenic ClosTron-based htrA mutant of C. difficile strain 630Δerm (wild type). In contrast to the attenuated phenotype seen with htrA deletion in other pathogens, this mutant showed enhanced virulence in the Golden Syrian hamster model of acute C. difficile infection. Microarray data analysis showed a pleiotropic effect of htrA on the transcriptome of C. difficile, including upregulation of the toxin A gene. In addition, the htrA mutant showed reduced spore formation and adherence to colonic cells. Together, our data show that htrA can modulate virulence in C. difficile. PMID:25047848

  16. Sequence Data for Clostridium autoethanogenum using Three Generations of Sequencing Technologies

    SciTech Connect

    Utturkar, Sagar M.; Klingeman, Dawn Marie; Bruno-Barcena, José M.; Chinn, Mari S.; Grunden, Amy; Köpke, Michael; Brown, Steven D.

    2015-04-14

    During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequence datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data.

  17. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications

    PubMed Central

    Akinosho, Hannah; Yee, Kelsey; Close, Dan; Ragauskas, Arthur

    2014-01-01

    First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing (CBP) applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes toward the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum's role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum's amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community. PMID:25207268

  18. Two Serious Cases of Infection with Clostridium celatum after 40 Years in Hiding?

    PubMed Central

    Hoegh, Silje Vermedal; Holt, Hanne Marie; Justesen, Ulrik Stenz

    2015-01-01

    Clostridium celatum [ce.la'tum. L. adj. celatum hidden] has been known since 1974, when it was isolated from human feces. In 40 years, no association with human infection has been reported. In this work, we present two serious cases of infection with the anaerobic Gram-positive rod Clostridium celatum. PMID:26560535

  19. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium difficile is commonly associated with a spectrum of disease in humans referred to as C. difficile-associated disease (CDAD) and use of antimicrobials is considered a risk factor for development of disease in humans. Clostridium difficile can also inhabit healthy food animals and transmi...

  20. Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium sporogenes PA 3679 is a common surrogate for proteolytic Clostridium botulinum for thermal process development and validation. However, little information is available concerning the growth kinetics of C. sporogenes in food. Therefore, the objective of this study was to investigate the...