Science.gov

Sample records for cloud motion vector

  1. MISR Level 3 Cloud Motion Vector

    Atmospheric Science Data Center

    2013-07-10

    MISR Level 3 Cloud Motion Vector Level 3 Wednesday, November 7, 2012 ... A new version, F02_0002, of the MISR L3 CMV (Cloud Motion Vector) data product is now available. This new release provides finer ... coverage. These enhancements are the result of reorganizing motion vector information present in the recent Level 2 Cloud product as ...

  2. Cloud Motion Vectors from MISR using Sub-pixel Enhancements

    NASA Technical Reports Server (NTRS)

    Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu

    2007-01-01

    The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.

  3. MISR 17.6 KM Gridded Cloud Motion Vectors: Overview and Assessment

    NASA Technical Reports Server (NTRS)

    Mueller, Kevin; Garay, Michael; Moroney, Catherine; Jovanovic, Veljko

    2012-01-01

    The MISR (Multi-angle Imaging SpectroRadiometer) instrument on the Terra satellite has been retrieving cloud motion vectors (CMVs) globally and almost continuously since early in 2000. In February 2012 the new MISR Level 2 Cloud product was publicly released, providing cloud motion vectors at 17.6 km resolution with improved accuracy and roughly threefold increased coverage relative to the 70.4 km resolution vectors of the current MISR Level 2 Stereo product (which remains available). MISR retrieves both horizontal cloud motion and height from the apparent displacement due to parallax and movement of cloud features across three visible channel (670nm) camera views over a span of 200 seconds. The retrieval has comparable accuracy to operational atmospheric motion vectors from other current sensors, but holds the additional advantage of global coverage and finer precision height retrieval that is insensitive to radiometric calibration. The MISR mission is expected to continue operation for many more years, possibly until 2019, and Level 2 Cloud has the possibility of being produced with a sensing-to-availability lag of 5 hours. This report compares MISR CMV with collocated motion vectors from arctic rawinsonde sites, and from the GOES and MODISTerra instruments. CMV at heights below 3 km exhibit the smallest differences, as small as 3.3 m/s for MISR and GOES. Clouds above 3 km exhibit larger differences, as large as 8.9 m/s for MISR and MODIS. Typical differences are on the order of 6 m/s.

  4. Upgrades to the NOAA/NESDIS automated Cloud-Motion Vector system

    NASA Technical Reports Server (NTRS)

    Nieman, Steve; Menzel, W. Paul; Hayden, Christopher M.; Wanzong, Steve; Velden, Christopher S.

    1993-01-01

    The latest version of the automated cloud motion vector software has yielded significant improvements in the quality of the GOES cloud-drift winds produced operationally by NESDIS. Cloud motion vectors resulting from the automated system are now equal or superior in quality to those which had the benefit of manual quality control a few years ago. The single most important factor in this improvement has been the upgraded auto-editor. Improved tracer selection procedures eliminate targets in difficult regions and allow a higher target density and therefore enhanced coverage in areas of interest. The incorporation of the H2O-intercept height assignment method allows an adequate representation of the heights of semi-transparent clouds in the absence of a CO2-absorption channel. Finally, GOES-8 water-vapor motion winds resulting from the automated system are superior to any done previously by NESDIS and should now be considered as an operational product.

  5. A novel approach for the extraction of cloud motion vectors using airglow imager measurements

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S.; Narayana Rao, T.; Taori, A.

    2015-09-01

    The paper explores the possibility of implementing an advanced photogrammetric technique, generally employed for satellite measurements, on airglow imager, a ground-based remote sensing instrument primarily used for upper atmospheric studies, measurements of clouds for the extraction of cloud motion vectors (CMVs). The major steps involved in the algorithm remain the same, including image processing for better visualization of target elements and noise removal, identification of target cloud, setting a proper search window for target cloud tracking, estimation of cloud height, and employing 2-D cross-correlation to estimate the CMVs. Nevertheless, the implementation strategy at each step differs from that of satellite, mainly to suit airglow imager measurements. For instance, climatology of horizontal winds at the measured site has been used to fix the search window for target cloud tracking. The cloud height is estimated very accurately, as required by the algorithm, using simultaneous collocated lidar measurements. High-resolution, both in space and time (4 min), cloud imageries are employed to minimize the errors in retrieved CMVs. The derived winds are evaluated against MST radar-derived winds by considering it as a reference. A very good correspondence is seen between these two wind measurements, both showing similar wind variation. The agreement is also found to be good in both the zonal and meridional wind velocities with RMSEs < 2.4 m s-1. Finally, the strengths and limitations of the algorithm are discussed, with possible solutions, wherever required.

  6. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of

  7. The effect of the arbitrary level assignment of satellite cloud motion wind vectors on wind analyses in the pre-thunderstorm environment

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1985-01-01

    The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.

  8. Noctilucent Clouds in Motion

    NASA Video Gallery

    Swedish photographer Peter Rosén took this close-up, time-lapse movieof Noctilucent Clouds (NLCs) over Stockholm, Sweden on the evening ofJuly 16, 2012. "What looked like a serene view from a di...

  9. Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W.

    1974-01-01

    An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.

  10. Study to determine cloud motion from meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Clark, B. B.

    1972-01-01

    Processing techniques were tested for deducing cloud motion vectors from overlapped portions of pairs of pictures made from meteorological satellites. This was accomplished by programming and testing techniques for estimating pattern motion by means of cross correlation analysis with emphasis placed upon identifying and reducing errors resulting from various factors. Techniques were then selected and incorporated into a cloud motion determination program which included a routine which would select and prepare sample array pairs from the preprocessed test data. The program was then subjected to limited testing with data samples selected from the Nimbus 4 THIR data provided by the 11.5 micron channel.

  11. A Fourier approach to cloud motion estimation

    NASA Technical Reports Server (NTRS)

    Arking, A.; Lo, R. C.; Rosenfield, A.

    1977-01-01

    A Fourier technique is described for estimating cloud motion from pairs of pictures using the phase of the cross spectral density. The method allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. Results obtained are presented and compared with the results of a Fourier domain cross correlation scheme. Using both artificial and real cloud data show that the technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects.

  12. Motion Estimation System Utilizing Point Cloud Registration

    NASA Technical Reports Server (NTRS)

    Chen, Qi (Inventor)

    2016-01-01

    A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.

  13. A Fourier approach to cloud motion estimation

    NASA Technical Reports Server (NTRS)

    Arking, A.; Lo, R. C.; Rosenfeld, A.

    1978-01-01

    A Fourier phase-difference technique for cloud motion estimation from pairs of pictures is described, and results obtained using this technique are compared with the results of a Fourier-domain cross-correlation scheme. The phase-difference technique makes use of the phase of the cross-spectral density and allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. When objects being tracked do not change their shape, size, and orientation to more than a limited degree, both techniques are effective. The phase difference technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects; in these circumstances, the cross-correlation scheme is preferable. It is suggested that the Fourier transform phase difference estimation methods can be applied in problems such as landmark matching.

  14. Operational cloud-motion winds from Meteosat infrared images

    SciTech Connect

    Schmetz, J.; Holmlund, K.; Mason, B.; Gaertner, V.; Koch, A.; Van De Berg, L. ); Hoffman, J. ); Strauss, B. )

    1993-07-01

    The displacements of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR images (10.5-12.5 [mu]m) of the European geostationary Meteosat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7-7.1 [mu]m) channel. Cloud-motion winds are subject to various quality checks that include manual quality controls as the last step. Typically about 3000 wind vectors are produced per day over four production cycles. This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteosat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds has been reduced from about 4 to 1.3 m s[sup [minus]1] for a mean wind speed of 24 m s[sup [minus]1]. Correspondingly, the rms vector error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s[sup [minus]1]. Medium-and low-level CMWs were also significantly improved. 56 refs., 12 figs., 2 tabs.

  15. Cloud motion estimation using a sky imager

    NASA Astrophysics Data System (ADS)

    Chauvin, R.; Nou, J.; Thil, S.; Grieu, S.

    2016-05-01

    The present paper deals with an image processing methodology based on a sky-imaging system developed at the PROMES-CNRS laboratory (France). It is part of a project which aims at improving solar plant control procedures using Direct Normal Irradiance (DNI) forecasts under various sky conditions at short term horizon (5-30 minutes) and high spatial resolution (~1 km2). This work focuses on estimating cloud motion, based on a block-wise cross correlation algorithm. The choice of the algorithm is explained in the first section of this paper. The second section aims at optimizing the algorithm parameters in order to reduce as much as possible the computational time while keeping the best possible accuracy. The paper ends with the spatial and temporal filtering processes that allow estimating the mean cloud motion. The stability of the estimation over time tends to validate the proposed approach.

  16. Relative motion in a debris cloud

    NASA Astrophysics Data System (ADS)

    Kebe, Fatoumata

    2016-07-01

    After an explosion or collision in space, a hundred or thousands of debris are generated. To be able to study a debris cloud it's necessary to develop new analysis tools. In that sense, we have studied several representations of the relative motion with the parent body's orbit as the reference. Thus, in the case of an explosion the original spacecraft has a circular orbit which will be the reference one in the relative motion's equations while, in the case of a collision, we will take one of the spacecraft's orbit as the reference. We mainly focus on the relative motion method that used the differential elements instead of the Cartesian coordinates as it allows to take into account the main perturbation.

  17. Thunderstorm-associated cloud motions as computed from 5-minute SMS pictures. [Synchronous Meteorological Satellite

    NASA Technical Reports Server (NTRS)

    Tecson, J. J.; Umenhofer, T. A.; Fujita, T. T.

    1977-01-01

    The five-minute rapid-scan imagery from the Synchronous Meteorological Satellite is employed to study cloud motions associated with the Omaha tornado of May 6, 1975. Cloud-motion vectors derived from automated and man-machine interactive systems provide an account of the mesoscale phenomena. In addition to the geostationary satellite data, aerial photography obtained during a cloud-truth mission is used in the severe storm investigation. For tracking overland cumuli with short half-lives, a three-minute scan interval appears necessary for the satellite imagery.

  18. Comparison of two schemes for derivation of atmospheric motion vectors

    NASA Astrophysics Data System (ADS)

    Xu, J.; Holmlund, K.; Zhang, Q.; Schmetz, J.

    2002-07-01

    This paper presents the operational scheme of the National Satellite Meteorological Center (NSMC) of the China Meteorological Administration (CMA) to derive atmospheric motion vectors. The NSMC scheme is compared with a method developed at the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) in preparation for Meteosat Second Generation. Both schemes employ similar basic principles in terms of feature tracking and height assignment, however there are also some important differences. Furthermore, the EUMETSAT scheme assigns quality indicators to each wind vector at the end of the processing chain, whereas the NMSC scheme has inbuilt quality checking at different processing steps allowing for reinstatement of winds rejected by a first quality check. The evaluation of the performance is gained from two periods: a week in January and a week in July 1999. European Centre for Medium-Range Weather Forecast analyses and radiosonde data are used as independent data for evaluation of the two schemes. It is shown that correlating infrared image data with water vapor data before height adjustment, as performed in the NSMC scheme, has a great potential to better distinguish high and low cloud and to provide high-density wind fields. The utilization of radiative transfer calculations for the estimation of the height of thin clouds in the EUMETSAT scheme is shown to be imperative for good quality wind fields. Finally, the feature of the EUMETSAT scheme to assign quality indicators improves the utility of the wind vectors for use in numerical weather prediction models. It is suggested that a combination of the different features of both schemes potentially provide highly increased spatial density in the wind field with improved quality.

  19. Motion/imagery secure cloud enterprise architecture analysis

    NASA Astrophysics Data System (ADS)

    DeLay, John L.

    2012-06-01

    Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.

  20. Wind estimates from cloud motions: Preliminary results from phases 1, 2, and 3 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1975-01-01

    Low level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. The aerial photographs were also used to make a positive identification in a satellite picture of the cloud observed by the low level aircraft. The experiment was conducted over the tropical oceans in the vicinity of Florida, Puerto Rico, Panama and in the Western Gulf of Mexico. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at the cloud base. The magnitude of the vector difference between the cloud motion and the cloud base wind is less than 1.3 m/sec for 67% of the cases with track lengths of 1 hour or longer. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/sec.

  1. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    NASA Technical Reports Server (NTRS)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  2. Traffic congestion classification using motion vector statistical features

    NASA Astrophysics Data System (ADS)

    Riaz, Amina; Khan, Shoab A.

    2013-12-01

    Due to the rapid increase in population, one of the major problems faced by the urban areas is traffic congestion. In this paper we propose a method for classifying highway traffic congestion using motion vector statistical properties. Motion vectors are estimated using pyramidal Kanada-Lucas-Tomasi (KLT) tracker algorithm. Then motion vector features are extracted and are used to classify the traffic patterns into three categories: light, medium and heavy. Classification using neural network, on publicly available dataset, shows an accuracy of 95.28%, with robustness to environmental conditions such as variable luminance. Our system provides a more accurate solution to the problem as compared to the systems previously proposed.

  3. Vector Analysis of Human Limb Motion.

    ERIC Educational Resources Information Center

    Laferriere, Joseph E.

    1994-01-01

    Uses vectors to illustrate movement of the human appendicular structures to help students visualize the interaction of the various muscles and understand how a small number of muscles can affect movement in a potentially infinite number of directions. (ZWH)

  4. Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Self, S.

    1980-01-01

    Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.

  5. Clouds on Neptune: Motions, Evolution, and Structure

    NASA Technical Reports Server (NTRS)

    Sromovsky, Larry A.; Morgan, Thomas (Technical Monitor)

    2001-01-01

    The aims of our original proposal were these: (1) improving measurements of Neptune's circulation, (2) understanding the spatial distribution of cloud features, (3) discovery of new cloud features and understanding their evolutionary process, (4) understanding the vertical structure of zonal cloud patterns, (5) defining the structure of discrete cloud features, and (6) defining the near IR albedo and light curve of Triton. Towards these aims we proposed analysis of existing 1996 groundbased NSFCAM/IRTF observations and nearly simultaneous WFPC2 observations from the Hubble Space Telescope. We also proposed to acquire new observations from both HST and the IRTF.

  6. Vector quantization of 3-D point clouds

    NASA Astrophysics Data System (ADS)

    Sim, Jae-Young; Kim, Chang-Su; Lee, Sang-Uk

    2005-10-01

    A geometry compression algorithm for 3-D QSplat data using vector quantization (VQ) is proposed in this work. The positions of child spheres are transformed to the local coordinate system, which is determined by the parent children relationship. The coordinate transform makes child positions more compactly distributed in 3-D space, facilitating effective quantization. Moreover, we develop a constrained encoding method for sphere radii, which guarantees hole-free surface rendering at the decoder side. Simulation results show that the proposed algorithm provides a faithful rendering quality even at low bitrates.

  7. Rapid ray motions in barium plasma clouds and auroras

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Hallinan, T. J.; Stenbaek-Nielsen, H. C.; Swift, D. W.; Wallis, D. D.

    1993-01-01

    On two evenings in 1968, anomalous field-aligned brightenings or emission enhancements of up to 3X were observed to move rapidly through three different Ba(+) clouds over Andoya, Norway. Similar effects were observed in Ba(+) clouds released from rockets launched from Poker Flat, Alaska, on March 21, 1973 and on March 22, 1980. On these occasions, auroras on or near the Ba(+) L shell also exhibited active rapid ray motions, which prompts the assumption that the two phenomena are related and the expectation that an explanation of the rapid ray motions in the Ba(+) clouds would lead to a better understanding of the physics of auroral ray motions and the auroral atmosphere. Seven possible mechanisms to produce the observed moving emission enhancements are discussed. The observations provide strong evidence for the existence of transient electric fields of order 100 mV/m at altitudes as low as 200 km during active aurora with rapid ray motions.

  8. Boat detection using vector accumulation of particle motion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuguang; Li, Na; Li, Youyi; Li, Xiaoli

    2014-11-01

    Recently, target detection in sea environment such as boat detection has become a popular research topic which is significant for marine vessels monitoring system. Many target detection methods have been widely applied to practical applications such as frame difference, traditional optical flow and background subtraction method. However, the existing target detection methods are not suitable to deal with the complex conditions of sea surface, such as irregular movement of the waves and illumination changes. In this paper, we developed an approach based on vector accumulation of particle motion mainly aiming at eliminating the effects of irregular movement of waves. Our proposed method applies vector accumulation of particle motion to optical flow field to obtain more accurate detection results under complex conditions. Firstly, the traditional optical flow method is used to acquire motion vector of every particle. Furthermore, the vectors of each flow point are abstracted to represent the recording of a fluid element in the flow over a certain period, succeeding is the accumulation of particle vectors. Finally, we calculate the mean of the vector accumulation to eliminate the effects of irregular movement of waves based on the video. Experimental results show the proposed method can gain better performance than traditional optical flow method.

  9. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  10. The role of the harmonic vector average in motion integration

    PubMed Central

    Johnston, Alan; Scarfe, Peter

    2013-01-01

    The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition to the geometrically correct global velocity as indicated by the intersection of constraints (IOC) solution. Here a new combination rule, the harmonic vector average (HVA), is introduced, as well as a new algorithm for computing the IOC solution. The vector sum can be discounted as an integration strategy as it increases with the number of elements. The vector average over local vectors that vary in direction always provides an underestimate of the true global speed. The HVA, however, provides the correct global speed and direction for an unbiased sample of local velocities with respect to the global motion direction, as is the case for a simple closed contour. The HVA over biased samples provides an aggregate velocity estimate that can still be combined through an IOC computation to give an accurate estimate of the global velocity, which is not true of the vector average. Psychophysical results for type II Gabor arrays show perceived direction and speed falls close to the IOC direction for Gabor arrays having a wide range of orientations but the IOC prediction fails as the mean orientation shifts away from the global motion direction and the orientation range narrows. In this case perceived velocity generally defaults to the HVA. PMID:24155716

  11. The role of the harmonic vector average in motion integration.

    PubMed

    Johnston, Alan; Scarfe, Peter

    2013-01-01

    The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition to the geometrically correct global velocity as indicated by the intersection of constraints (IOC) solution. Here a new combination rule, the harmonic vector average (HVA), is introduced, as well as a new algorithm for computing the IOC solution. The vector sum can be discounted as an integration strategy as it increases with the number of elements. The vector average over local vectors that vary in direction always provides an underestimate of the true global speed. The HVA, however, provides the correct global speed and direction for an unbiased sample of local velocities with respect to the global motion direction, as is the case for a simple closed contour. The HVA over biased samples provides an aggregate velocity estimate that can still be combined through an IOC computation to give an accurate estimate of the global velocity, which is not true of the vector average. Psychophysical results for type II Gabor arrays show perceived direction and speed falls close to the IOC direction for Gabor arrays having a wide range of orientations but the IOC prediction fails as the mean orientation shifts away from the global motion direction and the orientation range narrows. In this case perceived velocity generally defaults to the HVA. PMID:24155716

  12. Microturbulence, systematic motions, and line formation in molecular clouds

    NASA Technical Reports Server (NTRS)

    White, R. E.

    1977-01-01

    Microturbulence and systematic motions are viewed as simplifying assumptions made to facilitate treatment of line formation in molecular clouds, and line intensities calculated in the two approximations are compared to estimate how uncertainties about the actual line-broadening mechanism affect the interpretation of molecular emission lines. For lines formed by two-level molecules in an isothermal homogeneous cloud, the alternative assumptions lead to peak and integrated line intensities which agree within the differences (up to a factor of 3) associated with the ignorance of cloud geometry. New multilevel calculations for CO in the same cloud model bear out the generality of this result. It follows that, within the geometrical uncertainties, the Sobolev (1960) approximation may be used confidently in the numerous applications for which this simple cloud model suffices.

  13. Proper Motion of the Magellanic Clouds using SPM

    NASA Astrophysics Data System (ADS)

    Vieira, K.; Girard, T.; van Altena, W.; Zacharias, N.; Casetti, D.; Korchagin, V.; Platais, I.; Monet, D.; López, C.

    2014-06-01

    Absolute proper motions are determined for stars and galaxies to V = 17.5 over a 450 square-degree area that includes the Magellanic Clouds, using photographic and CCD observations of the Yale/San Juan Southern Proper Motion program. Multiple, local relative proper motion measures were combined in an overlap solution using photometrically selected galactic disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog is used to derive the mean absolute proper motions of the Magellanic Clouds: (μ_{α}^{} cos δ, μ_{δ}^{})_LMC=(+1.88, +0.37)±(0.27, 0.27) mas yr^-1 and (μ_{α}^{} cos δ, μ_{δ}^{})_SMC=(+1.05, -1.03)±(0.30, 0.29) mas yr^-1, based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion of the formal errors is due to the estimated uncertainty in the inertial system of the Hipparcos Catalog. A more precise determination was made for the proper motion of the SMC relative to the LMC; (μ_{{α cos δ }}^{}, μ_{δ}^{})_{SMC-LMC}=(-0.91, -1.49)±(0.16, 0.15) mas yr^-1. This differential value is used to estimate of the total velocity difference of the two clouds to within ±54 km s^-1. The absolute proper motion results are consistent with the Clouds' orbits being marginally bound to the Milky Way, albeit on an elongated orbit.

  14. Vertical Motions in Convective Clouds Over Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Mallinson, H.; Schumacher, C.; Ahmed, F.

    2015-12-01

    Vertical motions are essential in parameterizing convection in large-scale models. Yet in tropical systems vertical motions are difficult to obtain, especially in areas of active convection. This study uses three months of profiler data from Darwin, Australia to directly compare vertical velocity and spectrum width with reflectivity at a height of 1 km (a near-surface rain proxy) for shallow, mid-level, and deep convective clouds. Vertical velocities for all convective clouds were also compared to echo-top heights of varying reflectivities to better understand convective cloud dynamics in relation to their vertical structure. In shallow convective clouds (tops <4 km) three distinct regimes appear: a weak up-and downdraft couplet at low reflectivities (0-15 dBz), a robust updraft at moderate reflectivities (20-35 dBz), and strong downdrafts at large reflectivities (>40 dBz). These regimes could represent different stages in the convective cloud life cycle with strong updrafts and moderate reflectivity occurring in the growing phase and strong downdrafts and large reflectivity occurring in the mature phase. The weak up-and downdraft couplet and low reflectivities suggest a dissipating phase. Mid-level convective clouds (tops 4-8 km) also show three distinct regimes: moderate updrafts at low reflectivities (possible growing phase), a weak up-and downdraft couplet at moderate reflectivities (possible dissipating phase), and strong up-and downdrafts at large reflectivities (mature phase). Deep convective clouds (tops >8 km) show strong updrafts above 4 km for all reflectivities with the strongest downdrafts occurring at large reflectivities. While maximum updrafts vary in height and occur at different reflectivities among cloud types, mean downdraft depth never exceeds 3 km and is always strongest at large reflectivities, which may allow better characterization of cold pool properties. Throughout all convective cloud types, spectrum width has the highest values at lower

  15. GOCI Level-2 Processing Improvements and Cloud Motion Analysis

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne

    2015-01-01

    The Ocean Biology Processing Group has been working with the Korean Institute of Ocean Science and Technology (KIOST) to process geosynchronous ocean color data from the GOCI (Geostationary Ocean Color Instrument) aboard the COMS (Communications, Ocean and Meteorological Satellite). The level-2 processing program, l2gen has GOCI processing as an option. Improvements made to that processing are discussed here as well as a discussion about cloud motion effects.

  16. Rapid ray motions in barium plasma clouds and auroras

    SciTech Connect

    Wescott, E.M.; Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Swift, D.W.; Wallis, D.D. )

    1993-03-01

    Barium plasma clouds released at high latitudes characteristically become striated with many field-aligned rays. The rays which often resemble auroral features usually drift as a whole with the E [times] B/B[sup 2] drift of the cloud and alter position only slowly (order or tens of seconds). On two evenings in 1968, in releases from Andoya, Norway, anomalous field-aligned brightenings or emission enhancements of up to 3X were observed to move rapidly (10-20 km/s) through three different Ba[sup +] clouds. Similar effects were observed in Ba[sup +] clouds released from rockets launched from Poker Flat, Alaska: On March 21, 1973, in two Ba thermite releases and on March 22, 1980, in the Ba-shaped charge experiment Miss Peggy.' On these occasions, auroras on or near the Ba[sup +] L shell, also exhibited active rapid ray motions. This leads to the assumption that the two phenomena are related and the expectation that an explanation of the rapid ray motions in the Ba[sup +] clouds would lead to a better understanding of the physics of auroral ray motions and the auroral ionosphere. Seven possible mechanisms to produce the observed moving emission enhancements are discussed. Direct motion of an isolated Ba[sup +] ray past the other rays by E [times] B/B[sup 2] motion seems very unlikely due to the observed variations in the enhancements and the large E field required (> 500 mV/m). Compressional waves do not seem to be of sufficient amplitude or velocity. Absorption or radiation of Doppler shifted Ba[sup +] emissions by ions gyrating or moving at a few kilometers per second seems to be the most promising mechanism for producing the enhancements. The observations provide compelling evidence for the existence of transient electric fields of order 100 mV/m at altitudes as low as 200 km during active aurora with rapid ray motions. The affected regions have dimensions of order a few kilometers across B and move eastward at 10-20 km/s. 36 refs., 10 figs., 1 tab.

  17. Digital video steganalysis using motion vector recovery-based features.

    PubMed

    Deng, Yu; Wu, Yunjie; Zhou, Linna

    2012-07-10

    As a novel digital video steganography, the motion vector (MV)-based steganographic algorithm leverages the MVs as the information carriers to hide the secret messages. The existing steganalyzers based on the statistical characteristics of the spatial/frequency coefficients of the video frames cannot attack the MV-based steganography. In order to detect the presence of information hidden in the MVs of video streams, we design a novel MV recovery algorithm and propose the calibration distance histogram-based statistical features for steganalysis. The support vector machine (SVM) is trained with the proposed features and used as the steganalyzer. Experimental results demonstrate that the proposed steganalyzer can effectively detect the presence of hidden messages and outperform others by the significant improvements in detection accuracy even with low embedding rates. PMID:22781241

  18. Verification of sectoral cloud motion based direct normal irradiance nowcasting from satellite imagery

    NASA Astrophysics Data System (ADS)

    Schroedter-Homscheidt, Marion; Gesell, Gerhard

    2016-05-01

    The successful integration of solar electricity from photovoltaics or concentrating solar power plants into the existing electricity supply requires an electricity production forecast for 48 hours, while any improved surface irradiance forecast over the next upcoming hours is relevant for an optimized operation of the power plant. While numerical weather prediction has been widely assessed and is in commercial use, the short-term nowcasting is still a major field of development. European Commission's FP7 DNICast project is especially focusing on this task and this paper reports about parts of DNICast results. A nowcasting scheme based on Meteosat Second Generation cloud imagery and cloud movement tracking has been developed for Southern Spain as part of a solar production forecasting tool (CSP-FoSyS). It avoids the well-known, but not really satisfying standard cloud motion vector approach by using a sectoral approach and asking the question at which time any cloud structure will affect the power plant. It distinguishes between thin cirrus clouds and other clouds, which typically occur in different heights in the atmosphere and move in different directions. Also, their optical properties are very different - especially for the calculation of direct normal irradiances as required by concentrating solar power plants. Results for Southern Spain show a positive impact of up to 8 hours depending of the time of the day and a RMSD reduction of up to 10% in hourly DNI irradiation compared to day ahead forecasts. This paper presents the verification of this scheme at other locations in Europe and Northern Africa (BSRN and EnerMENA stations) with different cloud conditions. Especially for Jordan and Tunisia as the most relevant countries for CSP in this station list, we also find a positive impact of up to 8 hours.

  19. Characteristics of vertical air motion in isolated convective clouds

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; French, Jeffrey R.

    2016-08-01

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (< 500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFs are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (> 20 m s-1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 104 kg m-1 s-1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.

  20. Quantifying Changes in Intrinsic Molecular Motion Using Support Vector Machines.

    PubMed

    Leighty, Ralph E; Varma, Sameer

    2013-02-12

    The ensemble of three-dimensional (3-D) configurations exhibited by a molecule, that is, its intrinsic motion, can be altered by several environmental factors, and also by the binding of other molecules. Quantification of such induced changes in intrinsic motion is important because it provides a basis for relating thermodynamic changes to changes in molecular motion. This task is, however, challenging because it requires comparing two high-dimensional data sets. Traditionally, when analyzing molecular simulations, this problem is circumvented by first reducing the dimensions of the two ensembles separately, and then comparing summary statistics from the two ensembles against each other. However, since dimensionality reduction is carried out prior to ensemble comparison, such strategies are susceptible to artifactual biases from information loss. Here, we introduce a method based on support vector machines that yields a normalized quantitative estimate for the difference between two ensembles after comparing them directly against one another. While this method can be applied to any molecular system, including nonbiological molecules and crystals, here, we show how it can be applied to identify the specific regions of a paramyxovirus G protein that are affected by the binding of its preferred human receptor, Ephrin B2. This protein-protein interaction initiates the fusion of the virus with the host cell. Specifically, for every residue in the G protein, we obtain separately a quantitative difference between the ensemble of configurations they sample in the presence and in the absence of Ephrin B2. These ensembles were generated using molecular dynamics simulations. Rank-ordering and then mapping the residues that undergo the greatest change in motion onto the 3-D structure of the G protein reveals that they are clustered primarily on a single contiguous facet of the protein and include the set that is known experimentally to play a vital role in regulating viral

  1. 10 Years of Height Resolved, Cloud-Track, Vector Winds from MISR

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Mueller, K. J.; Moroney, C. M.; Jovanovic, V.; Wu, D. L.; Diner, D. J.

    2009-12-01

    By utilizing multiple camera views and fast image matching algorithms to identify common features and determine feature motion, the MISR instrument on NASA’s Terra satellite has now collected nearly 10 years of height-resolved, cloud-track, vector winds using a single, globally consistent algorithm. The MISR cloud-track winds are reported globally on mesoscale domains of 70.4 km × 70.4 km and referenced to stereoscopically derived heights above the earth ellipsoid, which have a nominal vertical resolution of approximately 500 m. Importantly, from the standpoint of climate research, the stereo height assignment and wind retrieval are largely insensitive to instrument calibration changes because the pattern matcher relies only on relative brightness values, rather than the absolute magnitude of the brightness. We will describe comparisons with other wind datasets, including geostationary cloud drift winds, scatterometer surface winds, and reanalysis model winds, that demonstrate the quality of the MISR winds. We will also show the coverage and resolution advantages that MISR provides relative to these other datasets. Additionally, because the global winds are driven primarily by the global (im)balance of heating, monitoring variations in the winds over 10 years promises to yield important insights into the processes related to the hydrologic cycle and transport of heat and water vapor, such as the Madden-Julian Oscillation (MJO) and the El Niño Southern Oscillation (ENSO).

  2. Cloud motions on Venus - Global structure and organization

    NASA Technical Reports Server (NTRS)

    Limaye, S. S.; Suomi, V. E.

    1981-01-01

    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.

  3. Generation and utilisation of quality indicators for satellite-derived atmospheric motion vectors

    NASA Astrophysics Data System (ADS)

    Holmlund, Kenneth

    The extraction of Atmospheric Motion Vectors (AMVs) from cloud and moisture features from successive geostationary satellite images is an established and important part of the global observing system. One of the main problems in the utilisation of this data is the variable quality of the derived displacement vectors. Furthermore the AMVs are still currently used as single point measurements, even though they are generally based on targets that represent large areas and the height that is assigned to the vectors often represents a layer mean. In the early AMV derivation schemes the derived vector fields were quality controlled by experienced meteorologists and poor vectors were removed. Furthermore any suspect vector showing any kind of deviations in time and space was rejected and hence only about 17% of all possible vectors were disseminated. Today the high production frequency and the increased resolution make manual quality control unfeasible. Furthermore the new assimilation schemes utilised in Numerical Weather Prediction (NWP) require qualitative information on the errors of the individual AMVs. This Thesis describes an Automatic Quality Control (AQC) scheme that is based on the statistical properties of the derived AMVs. The properties of the AMVs, i.e. their consistency in time and space, are interpreted with a number of tests. The outcome of each test is normalised such that they can be combined to a Quality Indicator (QI) that gives an estimation of the expected quality of every individual vector as is shown by statistics against radiosondes and verified by the positive impact in data assimilation schemes. The QIs are currently derived and disseminated together with the derived AMVs by several operational AMV derivation centres. Only a small number of vectors are now removed before dissemination. The QIs are used operationally for data selection at various NWT centres and have alleviated some of the problems related to the assimilation of this data in NWT

  4. Improvement of image deblurring for opto-electronic joint transform correlator under projective motion vector estimation

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Zhao, Hui; Zhang, Yang

    2014-06-01

    In this paper we propose an efficient algorithm to improve the performance of image deblurring based on opto-electronic joint transform correlator (JTC) that is capable of detecting the motion vector of a space camera. Firstly, the motion vector obtained from JTC is divided into many sub-motion vectors according to the projective motion path, which represents the degraded image as an integration of the clear scene under a sequence of planar projective transforms. Secondly, these sub-motion vectors are incorporated into the projective motion Richardson-Lucy (RL) algorithm to improve deblurred results. The simulation results demonstrate the effectiveness of the algorithm and the influence of noise on the algorithm performance is also statically analyzed.

  5. Comparison of Kalpana-1 atmospheric motion vectors with other observations

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kaur, Inderpreet; Kishtawal, C. M.; Pal, P. K.

    2014-02-01

    The operational derivation of atmospheric motion vectors (AMVs) using infrared (10.5-12.5 μm) and water vapor (6.3-7.1 μm) channels of successive geostationary satellite images started in the 1980s. Subsequently, AMVs have become an important component for operational numerical weather prediction throughout the globe for the last decade or so. In India, at the Space Applications Centre, Indian Space Research Organisation, the operational derivation of AMVs (infrared winds and water vapor winds) from the Indian geostationary satellite Kalpana-1 has been initiated a few years back. Recently, an L-band radar lower atmosphere wind profiler (LAWP) has been installed at the National Atmospheric Research Laboratory, Gadanki located at (13.58°N, 79.28°E) for continuous high-resolution wind measurements in the lower atmosphere. In this study, a comparison of Kalpana-1 AMVs with wind measurements from LAWP and radiosonde has been carried out for a period of one and a half years. The performances of Kalpana-1 AMVs are also assessed by a separate comparison of Meteosat-7 AMVs, derived at the European Organisation for the Exploitation of Meteorological Satellites, with wind measurements from LAWP and radiosonde. Both sets of comparison show that AMVs from Kalpana-1 and Meteosat-7 are comparable over the Indian Ocean region.

  6. Self-powered thin-film motion vector sensor

    PubMed Central

    Jing, Qingshen; Xie, Yannan; Zhu, Guang; Han, Ray P. S.; Wang, Zhong Lin

    2015-01-01

    Harnessing random micromeso-scale ambient energy is not only clean and sustainable, but it also enables self-powered sensors and devices to be realized. Here we report a robust and self-powered kinematic vector sensor fabricated using highly pliable organic films that can be bent to spread over curved and uneven surfaces. The device derives its operational energy from a close-proximity triboelectrification of two surfaces: a polytetrafluoroethylene film coated with a two-column array of copper electrodes that constitutes the mover and a polyimide film with the top and bottom surfaces coated with a two-column aligned array of copper electrodes that comprises the stator. During relative reciprocations, the electrodes in the mover generate electric signals of ±5 V to attain a peak power density of ≥65 mW m−2 at a speed of 0.3 ms−1. From our 86,000 sliding motion tests of kinematic measurements, the sensor exhibits excellent stability, repeatability and strong signal durability. PMID:26271603

  7. Semi-fixed-length motion vector coding for H.263-based low bit rate video compression.

    PubMed

    Côté, G; Gallant, M; Kossentini, F

    1999-01-01

    We present a semi-fixed-length motion vector coding method for H.263-based low bit rate video compression. The method exploits structural constraints within the motion field. The motion vectors are encoded using semi-fixed-length codes, yielding essentially the same levels of rate-distortion performance and subjective quality achieved by H.263's Huffman-based variable length codes in a noiseless environment. However, such codes provide substantially higher error resilience in a noisy environment. PMID:18267417

  8. Landsat 7 Reveals Large-scale Fractal Motion of Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Landsat 7 image of clouds off the Chilean coast near the Juan Fernandez Islands (also known as the Robinson Crusoe Islands) on September 15, 1999, shows a unique pattern called a 'von Karman vortex street.' This pattern has long been studied in the laboratory, where the vortices are created by oil flowing past a cylindrical obstacle, making a string of vortices only several tens of centimeters long. Study of this classic 'flow past a circular cylinder' has been very important in the understanding of laminar and turbulent fluid flow that controls a wide variety of phenomena, from the lift under an aircraft wing to Earth's weather. Here, the cylinder is replaced by Alejandro Selkirk Island (named after the true 'Robinson Crusoe,' who was stranded here for many months in the early 1700s). The island is about 1.5 km in diameter, and rises 1.6 km into a layer of marine stratocumulus clouds. This type of cloud is important for its strong cooling of the Earth's surface, partially counteracting the Greenhouse warming. An extended, steady equatorward wind creates vortices with clockwise flow off the eastern edge and counterclockwise flow off the western edge of the island. The vortices grow as they advect hundreds of kilometers downwind, making a street 10,000 times longer than those made in the laboratory. Observing the same phenomenon extended over such a wide range of sizes dramatizes the 'fractal' nature of atmospheric convection and clouds. Fractals are characteristic of fluid flow and other dynamic systems that exhibit 'chaotic' motions. Both clockwise and counter-clockwise vortices are generated by flow around the island. As the flow separates from the island's leeward (away from the source of the wind) side, the vortices 'swallow' some of the clear air over the island. (Much of the island air is cloudless due to a local 'land breeze' circulation set up by the larger heat capacity of the waters surrounding the island.) The 'swallowed' gulps of clear island air

  9. Vector Constants of Motion for Time-Dependent Kepler and Isotropic Harmonic Oscillator Potentials

    NASA Astrophysics Data System (ADS)

    Ritter, O. M.; Santos, F. C.; Tort, A. C.

    2001-06-01

    A method of obtaining vector constants of motion for time-independent as well as time-dependent central fields is discussed. Some well-established results are rederived in this alternative way and new ones obtained.

  10. Frame rate upconversion using pyramid structure and dense motion vector fields

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Geon; Lee, Daeho

    2016-05-01

    We propose a frame rate upconversion (FRUC) method using pyramid structures (PS) and dense motion vector fields (MVFs). In FRUC processes, performance is dominantly dependent on motion compensation, thus motion vectors (MVs) must be precisely estimated. Variable sizes of blocks and large search ranges are needed to estimate the MVs of large objects and large movements; however, we use PS and dense MVFs to estimate MVs for various conditions. In the PS, we first estimate MVs on level 0, which is the most reduced image in the PS (L-1 times downsampling), and MVs on the high levels are estimated except for pixels having large corresponding MVs on the lower levels. Integration of MVFs for all levels is followed by a vector median filter to remove noises. Finally, a motion compensated frame is interpolated by weight-overlapped block motion compensation.

  11. Effect of GOES-R Image Navigation and Registration Errors on Atmospheric Motion Vectors

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2008-01-01

    High temporal frequency imagery from geostationary satellites allows for the continuous monitoring of rapidly changing atmospheric constituents such as smoke, dust, water vapor and clouds. The image sequences are often used to quantify the displacement of image features such as water vapor and clouds to produce atmospheric motion vectors (AMVs) which are used as diagnostic tools and also assimilated into numerical weather forecast models. The basic principle behind the determination of AMVs is the calculation of the physical displacement of features from one image (time) to the next. This process assumes that the features being tracked do not change as a function of time, usually requiring the use of short time interval imagery to minimize substantial change in size and shape of the features being tracked. High spatial resolution imagery also is required for reliable feature identification. While these image resolution and temporal sampling requirements often provide major drivers for space-based instrument design requirements, accurate image navigation and registration, INn (between a sequence of images), is also critical to the derivation of useful AMVs. In this paper and poster to be presented at the conference, the image navigation and registration (INR) accuracy expected for the Advanced Baseline Imager (ABI) on the GOES-R series of satellites will be discussed in light of its impact on AMV accuracy. Significant satellite platform and modeling enhancements are planned which should significantly improve INn performance of the GOES-R instruments. Some of these improvements have been demonstrated for the GOES-13 satellite which was launched in summer of 2006. An analysis of GOES-13 INR data, from the special satellite check out period, will be used in the assessment.

  12. Validation of INSAT-3D atmospheric motion vectors for monsoon 2015

    NASA Astrophysics Data System (ADS)

    Sharma, Priti; Rani, S. Indira; Das Gupta, M.

    2016-05-01

    Atmospheric Motion Vector (AMV) over Indian Ocean and surrounding region is one of the most important sources of tropospheric wind information assimilated in numerical weather prediction (NWP) system. Earlier studies showed that the quality of Indian geo-stationary satellite Kalpana-1 AMVs was not comparable to that of other geostationary satellites over this region and hence not used in NWP system. Indian satellite INSAT-3D was successfully launched on July 26, 2013 with upgraded imaging system as compared to that of previous Indian satellite Kalpana-1. INSAT-3D has middle infrared band (3.80 - 4.00 μm) which is capable of night time pictures of low clouds and fog. Three consecutive images of 30-minutes interval are used to derive the AMVs. New height assignment scheme (using NWP first guess and replacing old empirical GA method) along with modified quality control scheme were implemented for deriving INSAT-3D AMVs. In this paper an attempt has been made to validate these AMVs against in-situ observations as well as against NCMRWF's NWP first guess for monsoon 2015. AMVs are subdivided into three different pressure levels in the vertical viz. low (1000 - 700 hPa), middle (700 - 400 hPa) and high (400 - 100 hPa) for validation purpose. Several statistics viz. normalized root mean square vector difference; biases etc. have been computed over different latitudinal belt. Result shows that the general mean monsoon circulations along with all the transient monsoon systems are well captured by INSAT-3D AMVs, as well as the error statistics viz., RMSE etc of INSAT-3D AMVs is now comparable to other geostationary satellites.

  13. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  14. Cloud morphology and motions from Pioneer Venus images

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Del Genio, A. D.; Limaye, S. S.; Travis, L. D.; Stone, P. H.

    1980-01-01

    The horizontal and vertical cloud structures, atmospheric waves, and wind velocities at the cloud top level were determined by the Pioneer Venus photopolarimeter images in the UV from January through March 1979. The images indicate long-term evolution of cloud characteristics, the atmospheric dynamics, and rapid small changes in cloud morphology. The clouds show a globally coordinated oscillation relative to latitude circles; retrograde zonal winds of 100 m/s near the equator are determined from the tracking of small-scale cloud properties, but two hemispheres show important variations. The zonal wind velocity in the southern hemisphere is reduced toward the poles at a rate similar to solid body rotation; the midlatitude jet stream noted by Mariner 10 is not observed.

  15. Motions of the cloud medium behind large scale galactic shocks

    NASA Technical Reports Server (NTRS)

    Yuan, C.; Wang, C. Y.

    1982-01-01

    Mechanisms of decelerating the cloud medium in the large-scale galactic shock are studied. It is shown that the process of cloud-cloud collisions, which results in diffusive momentum transport and hence gives rise to the turbulent viscosity, is very effective in slowing down the cloud medium so that the postshock velocity of the intercloud medium can be matched within a short distance behind the shock front. The drag force exerted by the slow-moving intercloud medium alone is simply not enough to effectively decelerate the cloud medium in the shock. By the use of the results of Shu et al (1972), the internal structure of the shock of the cloud medium is analyzed by including turbulent viscous effects. The thickness of the shock is found to be on the order of 100 pc if the turbulent viscosity is taken proportional to the mean free path of the cloud-cloud collisions. The phase transition takes place in an even thinner layer on the order of 10 pc immediately after the viscous shock front of the intercloud medium.

  16. Low bit rate video coding using robust motion vector regeneration in the decoder.

    PubMed

    Banham, M R; Brailean, J C; Chan, C L; Katsaggelos, A K

    1994-01-01

    In this paper, we present a novel coding technique that makes use of the nonstationary characteristics of an image sequence displacement field to estimate and encode motion information. We utilize an MPEG style codec in which the anchor frames in a sequence are encoded with a hybrid approach using quadtree, DCT, and wavelet-based coding techniques. A quadtree structured approach is also utilized for the interframe information. The main objective of the overall design is to demonstrate the coding potential of a newly developed motion estimator called the coupled linearized MAP (CLMAP) estimator. This estimator can be used as a means for producing motion vectors that may be regenerated at the decoder with a coarsely quantized error term created in the encoder. The motion estimator generates highly accurate motion estimates from this coarsely quantized data. This permits the elimination of a separately coded displaced frame difference (DFD) and coded motion vectors. For low bit rate applications, this is especially important because the overhead associated with the transmission of motion vectors may become prohibitive. We exploit both the advantages of the nonstationary motion estimator and the effective compression of the anchor frame coder to improve the visual quality of reconstructed QCIF format color image sequences at low bit rates. Comparisons are made with other video coding methods, including the H.261 and MPEG standards and a pel-recursive-based codec. PMID:18291958

  17. Description of the barium cloud vectoring systems developed for the PLACES test series

    SciTech Connect

    Finnell, R.T.

    1981-05-01

    The PLACES experiments were conducted to investigate the effects of ionospheric plasmas (created by barium vapor released from rockets) on satellite communications and navigation systems. Launcher setting angles for the rockets were provided by a minicomputer system made up of four subsystems. This report describes the subsystems which determined the barium cloud vectors from TV data alone and from combined radar/TV data.

  18. Turbulent fluid motion 2: Scalars, vectors, and tensors

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    The author shows that the sum or difference of two vectors is a vector. Similarly the sum of any two tensors of the same order is a tensor of that order. No meaning is attached to the sum of tensors of different orders, say u(sub i) + u(sub ij); that is not a tensor. In general, an equation containing tensors has meaning only if all the terms in the equation are tensors of the same order, and if the same unrepeated subscripts appear in all the terms. These facts will be used in obtaining appropriate equations for fluid turbulence. With the foregoing background, the derivation of appropriate continuum equations for turbulence should be straightforward.

  19. ACARS wind measurements - An intercomparison with radiosonde, cloud motion and VAS thermally derived winds. [Communications, Addressing and Reporting System VISSR Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Lord, R. J.; Menzel, W. P.; Pecht, L. E.

    1984-01-01

    Statistical comparisons between winds measured by ACARS and winds obtained from radiosondes, geostationary satellite image cloud motions, and VAS are presented. Observations from three separate comparisons reveal over 60 percent of wind vector magnitude differences are within 9 m/s, and 70 percent of the directional differences are within 15 deg. The comparisons indicate that the ACARS system provides an independent source of wind data that complements other sources of wind data for constructing composite wind field analyses.

  20. Steady-State Pursuit Is Driven by Object Motion Rather Than the Vector Average of Local Motions

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, B. R.; Lorenceau, J. D.; Ahumada, Al (Technical Monitor)

    1997-01-01

    We have previously shown that humans can pursue the motion of objects whose trajectories can be recovered only by spatio-temporal integration of local motion signals. We now explore the integration rule used to derive the target-motion signal driving pursuit. We measured the pursuit response of 4 observers (2 naive) to the motion of a line-figure diamond viewed through two vertical bar apertures (0.2 cd/square m). The comers were always occluded so that only four line segments (93 cd/square m) were visible behind the occluding foreground (38 cd/square m). The diamond was flattened (40 & 140 degree vertex angles) such that vector averaging of the local normal motions and vertical integration (e.g. IOC) yield very I or different predictions, analogous to using a Type II plaid. The diamond moved along Lissajous-figure trajectories (Ax = Ay = 2 degrees; TFx = 0.8 Hz; TFy = 0.4 Hz). We presented only 1.25 cycles and used 6 different randomly interleaved initial relative phases to minimize the role of predictive strategies. Observers were instructed to track the diamond and reported that its motion was always coherent (unlike type II plaids). Saccade-free portions of the horizontal and vertical eye-position traces sampled at 240 Hz were fit by separate sinusoids. Pursuit gain with respect to the diamond averaged 0.7 across subjects and directions. The ratio of the mean vertical to horizontal amplitude of the pursuit response was 1.7 +/- 0.7 averaged across subjects (1SD). This is close to the prediction of 1.0 from vertical motion-integration rules, but far from 7.7 predicted by vector averaging and infinity predicted by segment- or terminator-tracking strategies. Because there is no retinal motion which directly corresponds to the diamond's motion, steady-state pursuit of our "virtual" diamond is not closed-loop in the traditional sense. Thus, accurate pursuit is unlikely to result simply from local retinal negative feedback. We conclude that the signal driving steady

  1. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  2. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  3. Object detection and tracking with active camera on motion vectors of feature points and particle filter.

    PubMed

    Chen, Yong; Zhang, Rong-Hua; Shang, Lei; Hu, Eric

    2013-06-01

    A method based on motion vectors of feature points and particle filter has been proposed and developed for an active∕moving camera for object detection and tracking purposes. The object is detected by histogram of motion vectors first, and then, on the basis of particle filter algorithm, the weighing factors are obtained via color information. In addition, re-sampling strategy and surf feature points are used to remedy the drawback of particle degeneration. Experimental results demonstrate the practicability and accuracy of the new method and are presented in the paper. PMID:23822380

  4. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation

    NASA Astrophysics Data System (ADS)

    Gao, Shouting; Li, Xiaofan; Tao, Wei-Kuo; Shie, Chung-Lin; Lang, Steve

    2007-01-01

    The relationships between cloud hydrometeors and convective/moist vorticity vectors are investigated using hourly data from a three-dimensional, 5-day cloud-resolving model (CRM) simulation during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX). Vertical components of convective and moist vorticity vectors are highly correlated with cloud hydrometeors. The vertical components represent the interaction between horizontal vorticity and horizontal moist potential temperature/specific humidity gradient. The vertical components of convective and moist vorticity vectors can be used to study tropical oceanic convection in both two-dimensional and three-dimensional frameworks.

  5. Secondary School Mathematics, Chapter 21, Rigid Motions and Vectors, Chapter 22, Computers and Programs. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    Transformation geometry topics are covered in one chapter of Unit 11 of this SMSG series. Work with translations, reflections, rotations, and composition of motions is included; vectors are briefly discussed. The chapter on computers and programming deals with recent history and uses of of the computer, organization of a digital computer, an…

  6. Secondary School Mathematics, Chapter 21, Rigid Motions and Vectors, Chapter 22, Computer and Programs. Teacher's Commentary.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    The teacher's guide for the eleventh unit in this SMSG series covers the chapter on rigid motions and vectors and the chapter on computers and programs. The overall purpose for each of the chapters is described, the prerequisite knowledge needed by students is specified, the mathematical development of each chapter is detailed, behavioral…

  7. Suggested Courseware for the Non-Calculus Physics Student: Measurement, Vectors, and One-Dimensional Motion.

    ERIC Educational Resources Information Center

    Mahoney, Joyce; And Others

    1988-01-01

    Evaluates 16 commercially available courseware packages covering topics for introductory physics. Discusses the price, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each program. Recommends two packages in measurement and vectors, and one-dimensional motion respectively. (YP)

  8. Motion data classification on the basis of dynamic time warping with a cloud point distance measure

    NASA Astrophysics Data System (ADS)

    Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.

  9. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  10. Water vapor motion signal extraction from FY-2E longwave infrared window images for cloud-free regions: The temporal difference technique

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Wang, Zhenhui; Chu, Yanli; Zhao, Hang; Tang, Min

    2014-11-01

    The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery, where the traditional cloud motion wind technique fails. A new tracer selection procedure, which we call the temporal difference technique, is demonstrated in this paper. This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature ( T B) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions. The T B difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model. The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions: tropical, midlatitude summer, U.S. standard, and midlatitude winter. The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the T B "wind". This technique is valid over cloud-free ocean areas. The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD), speed bias (BIAS), mean vector difference (MVD), standard deviation (SD), and root-mean-square error (RMSE), when compared with the wind field of NCEP reanalysis data and rawinsonde observations.

  11. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  12. Multiangle Remote Sensing of Optically Thin Cirrus Clouds From MISR Using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Mazzoni, D.; Davies, R.; Wagstaff, K.

    2004-05-01

    Thin cirrus clouds, those with optical depths less than 1, can potentially have large radiative effects on the atmospheric and surface energy budgets in regions where they are prevalent. They also present an impediment to the retrieval of clear sky properties such as aerosol optical depth, temperature profiles, etc. Such clouds, however, are notoriously difficult to detect using standard satellite remote sensing techniques. The unique multiangle sensing capability of the Multiangle Imaging SpectroRadiometer (MISR) on NASA's Terra satellite, in particular the availability of cameras with view angles as large as 70.5 degrees, gives MISR the ability to detect thin cirrus clouds that are invisible to nadir-looking instruments. While MISR has been operational for over four years and many scenes containing thin cirrus have been examined on a per case basis, there remains a need to objectively and automatically identify just the cirrus clouds within any given scene. Based on our previous work applying machine learning technology to develop a more robust MISR cloud mask, we have developed a thin cirrus cloud detector for MISR, using Support Vector Machines (SVMs), and taking advantage of spectral, spatial and angular signature information from MISR's 45.6, 60 and 70.5-degree cameras. For a few representative cases, we will demonstrate the accuracy of the SVM cirrus retrieval, especially in comparison to a traditional nadir-looking retrieval, emphasizing the usefulness of the multiangle approach. We then show how this trained SVM can be used to generate a climatology of thin cirrus clouds.

  13. Proper motion of the Large Magellanic Cloud and the mass of the galaxy. 1: Observational results

    NASA Astrophysics Data System (ADS)

    Jones, B. F.; Klemola, A. R.; Lin, D. N. C.

    1994-04-01

    We have measured the proper motion of the Large Magellanic Cloud (LMC) using 21 plates taken with the Cerro-Tololo Inter-American Observatory (CTIO) 4 m telescope and covering an epoch span of 14 yr. The plates were centered on the globular cluster NGC 2257, lying on the northeast periphery of the Cloud. Proper motions were determined for 251 LMC members, chosen on the basis of the photometry of Stryker (1984), using 92 galaxies as a reference frame. The measured mean absolute proper motion of the LMC stars in our region is mualpha = 0.120 sec +/- 0.028 sec century-1, mudelta=0.026 sec +/- 0.027 sec century-1. After correcting for the rotation of the LMC and the effects of solar motion, this proper motion combined with the radial velocity of the LMC implies a galactocentric coordinate radial velocity for the Cloud of 48 +/- 41 km s-1 and a total galactocentric transverse velocity of 215 +/- 48 km s-1.

  14. Effect of the Drag Force on the Orbital Motion of the Broad-line Region Clouds

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh

    2016-09-01

    We investigate the orbital motion of cold clouds in the broad-line region of active galactic nuclei subject to the gravity of a black hole, a force due to a non-isotropic central source, and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. The orbit of a cloud decays because of the drag force, but the typical timescale of clouds falling onto the central black hole is shorter compared to the linear drag case. This timescale is calculated when a cloud moves through a static or rotating intercloud. We show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system, and since cold clouds present in most of the broad-line regions, we suggest that mechanisms for the continuous creation of the clouds must operate in these systems.

  15. Motion Vector Field Estimation Using Brightness Constancy Assumption and Epipolar Geometry Constraint

    NASA Astrophysics Data System (ADS)

    Hosseinyalamdary, S.; Yilmaz, A.

    2014-11-01

    In most Photogrammetry and computer vision tasks, finding the corresponding points among images is required. Among many, the Lucas-Kanade optical flow estimation has been employed for tracking interest points as well as motion vector field estimation. This paper uses the IMU measurements to reconstruct the epipolar geometry and it integrates the epipolar geometry constraint with the brightness constancy assumption in the Lucas-Kanade method. The proposed method has been tested using the KITTI dataset. The results show the improvement in motion vector field estimation in comparison to the Lucas-Kanade optical flow estimation. The same approach has been used in the KLT tracker and it has been shown that using epipolar geometry constraint can improve the KLT tracker. It is recommended that the epipolar geometry constraint is used in advanced variational optical flow estimation methods.

  16. Cloud field classification based upon high spatial resolution textural features. II - Simplified vector approaches

    NASA Technical Reports Server (NTRS)

    Chen, D. W.; Sengupta, S. K.; Welch, R. M.

    1989-01-01

    This paper compares the results of cloud-field classification derived from two simplified vector approaches, the Sum and Difference Histogram (SADH) and the Gray Level Difference Vector (GLDV), with the results produced by the Gray Level Cooccurrence Matrix (GLCM) approach described by Welch et al. (1988). It is shown that the SADH method produces accuracies equivalent to those obtained using the GLCM method, while the GLDV method fails to resolve error clusters. Compared to the GLCM method, the SADH method leads to a 31 percent saving in run time and a 50 percent saving in storage requirements, while the GLVD approach leads to a 40 percent saving in run time and an 87 percent saving in storage requirements.

  17. Intraseasonal behavior of clouds, temperature, and motion in the tropics

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Hendon, Harry H.

    1994-01-01

    The spectral character of tropical convection is investigated in an 11-yr record of outgoing longwave radiation from the Advanced Very High Resolution Radiometer (AVHRR) to identify interaction with the tropical circulation. Along the equator in the eastern hemisphere, the space-time spectrum of convection possesses a broad peak at wavenumbers 1-3 and eastward periods of 35-95 days. Significantly broader than the dynamical signal of the Madden-Julian oscillation (MJO), this quasi-discrete convective signal is associatd with a large-scale anomaly that propagates across and modulates time mean or 'climatological convection' over the equatorial Indian Ocean and western Pacific. Outside that region the convective signal is small, even though, under amplified conditions, coherence can be found east of the date line and in the subtropics. Having a zonal scale of approximately wavenumber 2, anomalous convection propagates eastward at some 5 m/s and suppresses as well as reinforces climatological in the eastern hemisphere. The convective signal amplifies to a seasonal maximum near vernal equinox and, to a weaker degree, again near autumnal equinox, when climatological convection and warm sea surface temperature (SST) cross the equator. Contemporaneous records of motion from European Center for medium-Range Weather Forecasts (ECMWF) analyses and tropospheric-mean temperature from Microwave Sounding Unit reveal an anomalous component of the tropical circulation that coexists with the convective signal and embodies many of the established properties of the MJO. In the eastern hemisphere, subtropical Rossby gyres and zonal Kelvin structure along the equator flank the convective anomaly as it tracks eastward, giving the anomalous circulation to form of a 'forced response.' In the western hemisphere, the dynamical signal is composed chiefly of wavenumber-1 Kelvin structure, which as the form of a 'propagating response' that is excited in and radiates away from anomalous

  18. Transverse motion of high-speed barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, H. G., Jr.; Fedder, J. A.; Huba, J. D.; Zalesak, S. T.

    1985-01-01

    Simulation results, based on a field-line-integrated, two-dimensional, electrostatic model, are presented for the motion of a barium cloud injected transverse to the geomagnetic field in the ionosphere at high speeds. It is found that the gross evaluation of injected plasma clouds depends on the initial conditions, as well as the nature of the background coupling. For a massive (mass of about 10 kg), orbital (velocity of about 5 km/s) release in the F region (350-450 km), it is found that plasma clouds can drift tens of kilometers across the magnetic field in tens of seconds after ionization. This type of release is similar to those which are planned for the Combined Release and Radiation Effects Satellite mission.

  19. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds

    NASA Astrophysics Data System (ADS)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.

    2013-12-01

    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic analysis, resulting in real time predictions of ash cloud motion that account for varying wind conditions and a range of model variables. We show how coupling a real-time model for ash dispersal, PUFF, with a volcanic eruption model, BENT, allows for the definition of the variability in the dispersal model inputs and hence classify the uncertainty that can then propagate for the ash cloud location and downwind concentrations. We additionally analyze the uncertainty in the numerical weather prediction forecast data used by the dispersal model by using ensemble forecasts and assess how this affects the downwind concentrations. These are all coupled together and by combining polynomical chaos quadrature with stochastic integration techniques, we provide a quantitative measure of the reliability (i.e. error) of those predictions. We show comparisons of the downwind height calculations and mass loadings with observations of ash clouds available from satellite remote sensing data. The aim is to provide a probabilistic forecast of location and ash concentration that can be generated in real-time and used by those end users in the operational ash cloud hazard assessment environment.

  20. Measuring the proper motions of the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ellingsen, Simon; Macquart, Jean-Pierre; Bignall, Hayley; Breen, Shari; Reynolds, Cormac; Imai, Hiroshi; Keller, Stefan; Bekki, Kenji; Krishnan, Vasaant; Cioni, Maria-Rosa

    2013-10-01

    Interactions between galaxies are known to play a key role in their evolution throughout cosmic history. Studies of past and current interactions between Local Group galaxies provide us with a unique opportunity to investigate the key factors and effects of such interactions at high resolution and sensitivity. Our understanding of the interaction of the Large and Small Magellanic Clouds (LMC & SMC) with each other and with the Milky Way (MW) have changed dramatically in the last decade due to the determination of the proper motions of the LMC and SMC from optical studies. The derived proper motions predict a history of interaction for the Clouds that is at odds with the leading and trailing arms of Magellanic Stream gas. This proposal is a companion to an LBA project to measure the proper motions of both the Large and Small Magellanic Clouds. Observations to measure the flux density of the potential maser targets a few weeks prior to an LBA observation will enable us to tailor the observing strategy to maximise the observational sensitivity and hence the astrometric accuracy.

  1. Measuring the proper motions of the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ellingsen, Simon; Macquart, Jean-Pierre; Bignall, Hayley; Breen, Shari; Reynolds, Cormac; Imai, Hiroshi; Keller, Stefan; Bekki, Kenji; Krishnan, Vasaant; Cioni, Maria-Rosa

    2013-04-01

    Interactions between galaxies are known to play a key role in their evolution throughout cosmic history. Studies of past and current interactions between Local Group galaxies provide us with a unique opportunity to investigate the key factors and effects of such interactions at high resolution and sensitivity. Our understanding of the interaction of the Large and Small Magellanic Clouds (LMC & SMC) with each other and with the Milky Way (MW) have changed dramatically in the last decade due to the determination of the proper motions of the LMC and SMC from optical studies. The derived proper motions predict a history of interaction for the Clouds that is at odds with the leading and trailing arms of Magellanic Stream gas. This proposal is a companion to an LBA project to measure the proper motions of both the Large and Small Magellanic Clouds. Observations to measure the flux density of the potential maser targets a few weeks prior to an LBA observation will enable us to tailor the observing strategy to maximise the observational sensitivity and hence the astrometric accuracy.

  2. Measuring the proper motions of the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ellingsen, Simon; Macquart, Jean-Pierre; Bignall, Hayley; Beasley, Tony; Breen, Shari; Reynolds, Cormac; Imai, Hiroshi; Keller, Stefan; Bekki, Kenji; Krishnan, Vasaant; Cioni, Maria-Rosa

    2014-04-01

    Interactions between galaxies are known to play a key role in their evolution throughout cosmic history. Studies of past and current interactions between Local Group galaxies provide us with a unique opportunity to investigate the key factors and effects of such interactions at high resolution and sensitivity. Our understanding of the interaction of the Large and Small Magellanic Clouds (LMC & SMC) with each other and with the Milky Way (MW) have changed dramatically in the last decade due to the determination of the proper motions of the LMC and SMC from optical studies. The derived proper motions predict a history of interaction for the Clouds that is at odds with the leading and trailing arms of Magellanic Stream gas. This proposal is a companion to an LBA project to measure the proper motions of both the Large and Small Magellanic Clouds. Observations to measure the flux density of the potential maser targets a few weeks prior to an LBA observation will enable us to tailor the observing strategy to maximise the observational sensitivity and hence the astrometric accuracy.

  3. Statistical motion vector analysis for object tracking in compressed video streams

    NASA Astrophysics Data System (ADS)

    Leny, Marc; Prêteux, Françoise; Nicholson, Didier

    2008-02-01

    Compressed video is the digital raw material provided by video-surveillance systems and used for archiving and indexing purposes. Multimedia standards have therefore a direct impact on such systems. If MPEG-2 used to be the coding standard, MPEG-4 (part 2) has now replaced it in most installations, and MPEG-4 AVC/H.264 solutions are now being released. Finely analysing the complex and rich MPEG-4 streams is a challenging issue addressed in that paper. The system we designed is based on five modules: low-resolution decoder, motion estimation generator, object motion filtering, low-resolution object segmentation, and cooperative decision. Our contributions refer to as the statistical analysis of the spatial distribution of the motion vectors, the computation of DCT-based confidence maps, the automatic motion activity detection in the compressed file and a rough indexation by dedicated descriptors. The robustness and accuracy of the system are evaluated on a large corpus (hundreds of hours of in-and outdoor videos with pedestrians and vehicles). The objective benchmarking of the performances is achieved with respect to five metrics allowing to estimate the error part due to each module and for different implementations. This evaluation establishes that our system analyses up to 200 frames (720x288) per second (2.66 GHz CPU).

  4. Motion-vector-based adaptive quantization in MPEG-4 fine granular scalable coding

    NASA Astrophysics Data System (ADS)

    Yang, Shuping; Lin, Xinggang; Wang, Guijin

    2003-05-01

    Selective enhancement mechanism of Fine-Granular-Scalability (FGS) In MPEG-4 is able to enhance specific objects under bandwidth variation. A novel technique for self-adaptive enhancement of interested regions based on Motion Vectors (MVs) of the base layer is proposed, which is suitable for those video sequences having still background and what we are interested in is only the moving objects in the scene, such as news broadcasting, video surveillance, Internet education, etc. Motion vectors generated during base layer encoding are obtained and analyzed. A Gaussian model is introduced to describe non-moving macroblocks which may have non-zero MVs caused by random noise or luminance variation. MVs of these macroblocks are set to zero to prevent them from being enhanced. A segmentation algorithm, region growth, based on MV values is exploited to separate foreground from background. Post-process is needed to reduce the influence of burst noise so that only the interested moving regions are left. Applying the result in selective enhancement during enhancement layer encoding can significantly improves the visual quality of interested regions within an aforementioned video transmitted at different bit-rate in our experiments.

  5. Pacific-North American plate motion from very long baseline interferometry compared with motion inferred from magnetic anomalies, transform faults, and earthquake slip vectors

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.

    1990-01-01

    Geodetic VLBI measurements were used to test whether the Pacific-North American plate velocity averaged over several years of direct observation (1984-1987) equals that averaged over millions of years. It was also tested whether this velocity parallels the San Andreas fault, transform faults and earthquake slip vectors in the Gulf of California, and earthquake slip vectors along the Queen Charlotte fault, along the Alaskan peninsula, and along the Kamchatkan peninsula. The VLBI data provide an estimate of the direction of plate motion that is independent of estimates from fault azimuths and earthquake slip vectors. The Euler vector determined from VLBI was found to be nearly identical to the Euler vector of plate motion model NUVEL-1, which is based on the trends of transform faults, earthquake slip vectors, and spreading rates from marine magnetic anomalies that average motion since 3 Ma. The velocity between the Pacific and North American plates averaged over the past several years equals or nearly equals its velocity averaged over the past several million years, the difference along their boundary nowhere exceeding 4 + or - 7 mm/yr.

  6. The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.

  7. A comparison of cloud motion winds from ATS 6 images with coinciding SMS 1 winds

    NASA Technical Reports Server (NTRS)

    Kuhlow, W. W.; Chatters, G. C.

    1978-01-01

    A methodology is developed for accurate measurement of cloud motion winds from the geosynchronous ATS 6 image data. Attitude changes between consecutive images (as a function of scan-line number) are accounted for in wind computations through measurement of the earth-edge displacements between the successive infrared images. Also, an image matching procedure is used to remove obvious and distracting image distortions. The availability of SMS imagery coinciding with ATS 6 imagery makes SMS an excellent reference against which the quality of ATS 6 winds can be tested. The resulting winds inferred from cloud displacement measurements taken from a sequence of the corrected images are found to agree better than 2 m/sec rms with winds measured from coincident SMS 1 imagery.

  8. A comparison of cloud motion and ship wind observations over the Indian Ocean for the year of FGGE

    NASA Astrophysics Data System (ADS)

    Wylie, Donald P.; Hinton, Barry B.

    1982-06-01

    Cloud motions over the Indian Ocean were compared to ship observations for the FGGE year. The statistics of this comparison show seasonal changes in the cloud-ship relationship as well as geographical and wind-pattern-dependent fetch history changes. Most of these changes follow simple boundary-layer relationships governed by friction and temperature advection. The most significant result is the improvement of the cloud-ship directional shear with wind speed. The mean veering angle between cloud and ship measurements decreased at higher wind speeds along with scatter of the shearing angle. This implies that the ability of cloud motion measurements to indicate the wind stress on the ocean improves for the important situations when the winds are strong.

  9. Automated cloud tracking using precisely aligned digital ATS pictures.

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Phillips, D. R.

    1972-01-01

    Discussion of the interactive man-computer system (WIMDCO) for measuring cloud motion from ATS pictures. The multipicture model of ATS navigation is used for consecutive ATS digital picture alignment to provide the required precision in cloud motion measurements by automated tracking techniques. Cloud motion is measured by tracking clouds between two digital pictures with the aid of two-dimensional cross correlation analysis. The fast Fourier transform method and other programming techniques are used for time and cost minimization. Cloud motion vectors were computed over three time intervals in July, 1969. The EW and NS components were reproducible within roughly 2 knots.

  10. Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hong, Kyeongsoo; Lee, Jae Woo; Kim, Seung-Lee; Koo, Jae-Rim; Lee, Chung-UK

    2016-07-01

    We examined light curves of 1138 stars brighter than 18.0 mag in the I band and less than a mean magnitude error of 0.1 mag in the V band from the Optical Gravitational Lensing Experiment (OGLE)-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the Small Magellanic Cloud (SMC) were increased by a factor of about 3.0 than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both the light curves and eclipse timings using the MACHO (MAssive Compact Halo Objects) and OGLE photometric data base. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one year from the survey data. The new 90 binaries have apsidal motion periods in the range of 12-897 yr. An additional short-term oscillation was detected in four systems (OGLE-SMC-ECL-1634, 1947, 3035, and 4946), which most likely arises from the existence of a third body orbiting each eclipsing binary. Since the systems presented here are based on homogeneous data and have been analysed in the same way, they are suitable for further statistical analysis.

  11. Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds

    NASA Astrophysics Data System (ADS)

    Khoshelham, Kourosh

    2016-04-01

    Registration is often a prerequisite step in processing point clouds. While planar surfaces are suitable features for registration, most of the existing plane-based registration methods rely on iterative solutions for the estimation of transformation parameters from plane correspondences. This paper presents a new closed-form solution for the estimation of a rigid motion from a set of point-plane correspondences. The role of normalization is investigated and its importance for accurate plane fitting and plane-based registration is shown. The paper also presents a thorough evaluation of the closed-form solutions and compares their performance with the iterative solution in terms of accuracy, robustness, stability and efficiency. The results suggest that the closed-form solution based on point-plane correspondences should be the method of choice in point cloud registration as it is significantly faster than the iterative solution, and performs as well as or better than the iterative solution in most situations. The normalization of the point coordinates is also recommended as an essential preprocessing step for point cloud registration. An implementation of the closed-form solutions in MATLAB is available at: http://people.eng.unimelb.edu.au/kkhoshelham/research.html#directmotion

  12. A vector-dyadic development of the equations of motion for N-coupled rigid bodies and point masses

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1974-01-01

    The equations of motion are derived, in vector-dyadic format, for a topological tree of coupled rigid bodies, point masses, and symmetrical momentum wheels. These equations were programmed, and form the basis for the general-purpose digital computer program N-BOD. A complete derivation of the equations of motion is included along with a description of the methods used for kinematics, constraint elimination, and for the inclusion of nongyroscope forces and torques acting external or internal to the system.

  13. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  14. Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1981-01-01

    The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates.

  15. Cloud shadow speed sensor

    NASA Astrophysics Data System (ADS)

    Fung, V.; Bosch, J. L.; Roberts, S. W.; Kleissl, J.

    2014-06-01

    Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system is presented that measures cloud shadow motion vectors to estimate power plant ramp rates and provide short-term solar irradiance forecasts. The cloud shadow speed sensor (CSS) is constructed using an array of luminance sensors and a high-speed data acquisition system to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud shadow motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground-measured irradiance (linear cloud edge, LCE), and a UC San Diego sky imager (USI). The CSS detected artificial shadow directions and speeds to within 15° and 6% accuracy, respectively. The CSS detected (real) cloud shadow directions and speeds with average weighted root-mean-square difference of 22° and 1.9 m s-1 when compared to USI and 33° and 1.5 m s-1 when compared to LCE results.

  16. Cloud speed sensor

    NASA Astrophysics Data System (ADS)

    Fung, V.; Bosch, J. L.; Roberts, S. W.; Kleissl, J.

    2013-10-01

    Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system that measures cloud motion vectors to estimate power plant ramp rates and provide short term solar irradiance forecasts is presented. The Cloud Speed Sensor (CSS) is constructed using an array of luminance sensors and high-speed data acquisition to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground measured irradiance (Linear Cloud Edge, LCE), and a UC San Diego Sky Imager (USI). The CSS detected artificial shadow directions and speeds to within 15 and 6% accuracy, respectively. The CSS detected (real) cloud directions and speeds without average bias and with average weighted root mean square difference of 22° and 1.9 m s-1 when compared to USI and 33° and 1.5 m s-1 when compared to LCE results.

  17. Maxwell perturbations on Kerr-anti-de Sitter black holes: Quasinormal modes, superradiant instabilities, and vector clouds

    NASA Astrophysics Data System (ADS)

    Wang, Mengjie; Herdeiro, Carlos

    2016-03-01

    Scalar and gravitational perturbations on Kerr-anti-de Sitter (Kerr-AdS) black holes have been addressed in the literature and have been shown to exhibit a rich phenomenology. In this paper, we complete the analysis of bosonic fields on this background by studying Maxwell perturbations, focusing on superradiant instabilities and vector clouds. For this purpose, we solve the Teukolsky equations numerically, imposing the boundary conditions we have proposed in [1] for the radial Teukolsky equation. As found therein, two Robin boundary conditions can be imposed for Maxwell fields on Kerr-AdS black holes, one of which produces a new set of quasinormal modes even for Schwarzschild-AdS black holes. Here, we show these different boundary conditions produce two different sets of superradiant modes. Interestingly, the "new modes" may be unstable in a larger parameter space. We then study stationary Maxwell clouds that exist at the threshold of the superradiant instability, with the two Robin boundary conditions. These clouds, obtained at the linear level, indicate the existence of a new family of black hole solutions at the nonlinear level, within the Einstein-Maxwell-AdS system, branching off from the Kerr-Newman-AdS family. As a comparison with the Maxwell clouds, scalar clouds on Kerr-AdS black holes are also studied, and it is shown there are Kerr-AdS black holes that are stable against scalar, but not vector, modes with the same "quantum numbers".

  18. GPS determined eastward Sundaland motion with respect to Eurasia confirmed by earthquakes slip vectors at Sunda and Philippine trenches

    NASA Astrophysics Data System (ADS)

    Chamot-Rooke, N.; Le Pichon, X.

    1999-12-01

    GPS measurements acquired over Southeast Asia in 1994 and 1996 in the framework of the GEODYSSEA program revealed that a large piece of continental lithosphere comprising the Indochina Peninsula, Sunda shelf and part of Indonesia behaves as a rigid `Sundaland' platelet. A direct adjustment of velocity vectors obtained in a Eurasian frame of reference shows that Sundaland block is rotating clockwise with respect to Eurasia around a pole of rotation located south of Australia. We present here an additional check of Sundaland motion that uses earthquakes slip vectors at Sunda and Philippine trenches. Seven sites of the GEODYSSEA network are close to the trenches and not separated from them by large active faults (two at Sumatra Trench, three at Java Trench and two at the Philippine Trench). The difference between the vector at the station and the adjacent subducting plate vector defines the relative subduction motion and should thus be aligned with the subduction earthquake slip vectors. We first derive a frame-free solution that minimizes the upper plate (or Sundaland) motion. When corrected for Australia-Eurasia and Philippines-Eurasia NUVEL1-A motion, the misfit between GPS and slip vectors azimuths is significant at 95% confidence, indicating that the upper plate does not belong to Eurasia. We then examine the range of solutions compatible with the slip vectors azimuths and conclude that the minimum velocity of Sundaland is a uniform 7-10 mm/a eastward velocity. However, introducing the additional constraint of the fit of the GEODYSSEA sites with the Australian IGS reference ones, or tie with the NTUS Singapore station, leads to a much narrower range of solutions. We conclude that Sundaland has an eastward velocity of about 10 mm/a on its southern boundary increasing to 16-18 mm/a on its northern boundary.

  19. Shocks, Superbubbles, and Filaments: Investigations into Large Scale Gas Motions in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Pon, Andrew Richard

    2013-12-01

    Giant molecular clouds (GMCs), out of which stars form, are complex, dynamic systems, which both influence and are shaped by the process of star formation. In this dissertation, I examine three different facets of the dynamical motions within GMCs. Collapse modes in different dimensional objects. Molecular clouds contain lower dimensional substructures, such as filaments and sheets. The collapse properties of finite filaments and sheets differ from those of spherical objects as well as infinite sheets and filaments. I examine the importance of local collapse modes of small central perturbations, relative to global collapse modes, in different dimensional objects to elucidate whether strong perturbations are required for molecular clouds to fragment to form stars. I also calculate the dependence of the global collapse timescale upon the aspect ratio of sheets and filaments. I find that lower dimensional objects are more readily fragmented, and that for a constant density, lower dimensional objects and clouds with larger aspect ratios collapse more slowly. An edge-driven collapse mode also exists in sheets and filaments and is most important in elongated filaments. The failure to consider the geometry of a gas cloud is shown to lead to an overestimation of the star formation rate by up to an order of magnitude. Molecular tracers of turbulent energy dissipation. Molecular clouds contain supersonic turbulence that simulations predict will decay rapidly via shocks. I use shock models to predict which species emit the majority of the turbulent energy dissipated in shocks and find that carbon monoxide, CO, is primarily responsible for radiating away this energy. By combining these shock models with estimates for the turbulent energy dissipation rate of molecular clouds, I predict the expected shock spectra of CO from molecular clouds. I compare the results of these shock models to predictions for the emission from the unshocked gas in GMCs and show that mid

  20. Brownian motion of a matter-wave bright soliton moving through a thermal cloud of distinct atoms

    NASA Astrophysics Data System (ADS)

    McDonald, R. G.; Bradley, A. S.

    2016-06-01

    Taking an open quantum system approach, we derive a collective equation of motion for the dynamics of a matter-wave bright soliton moving through a thermal cloud of a distinct atomic species. The reservoir interaction involves energy transfer without particle transfer between the soliton and thermal cloud, thus damping the soliton motion without altering its stability against collapse. We derive a Langevin equation for the soliton center-of-mass velocity in the form of an Ornstein-Uhlenbeck process with analytical drift and diffusion coefficients. This collective motion is confirmed by simulations of the full stochastic projected Gross-Pitaevskii equation for the matter-wave field. The system offers a pathway for experimentally observing the elusive energy-damping reservoir interaction and a clear realization of collective Brownian motion for a mesoscopic superfluid droplet.

  1. ON THE INTERPRETATION OF RECENT PROPER MOTION DATA FOR THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Bekki, Kenji

    2011-03-20

    Recent observational studies using the Hubble Space Telescope have derived the center-of-mass proper motion (CMPM) of the Large Magellanic Cloud (LMC). Although these studies carefully treated both rotation and perspective effects in deriving the proper motion (PM) for each of the sampled fields, they did not consider the effects of local random motion in the derivation. This means that the average PM of the fields (i.e., the observed CMPM) could significantly deviate from the true CMPM, because the effect of local random motion cannot be close to zero in making the average PM for the small number of fields ({approx}10). We discuss how significantly the observationally derived CMPM can deviate from the true CMPM by applying the same method as used in the observations for a dynamical model of the LMC with a known true CMPM. We find that the deviation can be as large as {approx}50 km s{sup -1} ({approx}0.21 mas yr{sup -1}), if the LMC has a thick disk and a maximum circular velocity of {approx}120 km s{sup -1}. We also find that the deviation depends both on the total number of sampled fields and on the structure and kinematics of the LMC. We therefore suggest that there is a possibility that the observed CMPM of the LMC deviates from the true one to some extent. We also show that a simple mean of PM for a large number of LMC fields ({approx}1000) can be much closer to the true CMPM.

  2. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    SciTech Connect

    Jaskowiak, J; Ahmad, S; Ali, I; Alsbou, N

    2015-06-15

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were used to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased

  3. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed. PMID:23609636

  4. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    NASA Technical Reports Server (NTRS)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  5. The Impact of Satellite Atmospheric Motion Vectors in the GMAO GEOS-5 Global Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Gelaro, R. D.; Merkova, D.; Tai, King-Sheng; McCarty, W.

    2012-01-01

    The impact of satellite-derived atmospheric motion vectors (AMVs) on numerical weather forecasts is examined using the GEOS-5 global atmospheric data assimilation system. Cycling data assimilation experiments, including twice-daily 5-day forecasts, are conducted for two 6-week periods during the 2010 Atlantic hurricane season and 2010-2011Northern Hemisphere winter season. Results from a control experiment that includes all AMVs and other data types assimilated operationally in GEOS-5 are compared with those from an experiment in which the GEOS-5 AMVs (only) are replaced by ones produced by the U. S. Navy?s NAVDAS-AR atmospheric data assimilation system. The Navy AMVs are assimilated in their entirety as well as in various subset combinations. The primary objective of these experiments is to determine whether aspects of the NAVDAS-AR data selection and quality control procedure, especially the use of carefully averaged ("super-ob?) wind vectors and large volume of AMVs, explain the typically larger beneficial impact of these data in the Navy system as compared with most other forecast systems. Adjoint-based observation impact calculations are assessed and compared with traditional metrics such as forecast geopotential height anomaly correlations and observation-minus-forecast departures. Results so far indicate that that the greater number of NRL AMVs is primarily responsible for their larger impact, although superobing also appears to be beneficial. Map views show that the impact obtained from assimilation of the NRL AMVs is more uniformly beneficial, perhaps due to the averaging of individual observations in creating the super-obs. While the NRL AMVs have a much larger impact in GEOS-5 than do the control AMVs, their impact is still smaller than in the Navy forecast system, suggesting that the mix of observations may play an important role in modulating the impact of any one data type. At the same time, reducing the number of satellite radiances assimilated in

  6. A new classification algorithm based on multi-kernel Support Vector Machine on infrared cloud background image

    NASA Astrophysics Data System (ADS)

    Wang, Tiebing; Zhou, Yiyu; Xu, Shenda; Cheng, Chuxiong

    2015-11-01

    A new classification algorithm based on multi-kernel support vector machine (SVM) was proposed for classification problems on infrared cloud background image. The experimental results show that the method integrates the advantages of polynomial kernel functions, Gaussian radial kernel functions and multilayer perception kernel functions. Compared with the traditional single-kernel SVM classification method, the proposed method has better performance both in local interpolation and global extrapolation, and is more suitable for SVM classification problems when the training sample size is small. Experimental results show the superiority of the proposed algorithm..

  7. Cloud shadow Speed Sensor (CSS)

    NASA Astrophysics Data System (ADS)

    Fung, Victor

    Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system that measures cloud shadow motion vectors to estimate power plant ramp rates and provide short-term forecasting is presented. The Cloud shadow Speed Sensor (CSS) is constructed using an array of luminance sensors and a high-speed data acquisition system to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud shadow motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground-measured irradiance (linear cloud edge, LCE), and a UC San Diego sky imager (USI). The CSS detected artificial shadow directions and speeds to within 15° and 6 % accuracy, respectively. The CSS detected (real) cloud shadow directions and speeds with average weighted root-mean-square difference of 22° and 1.9 m s-1 when compared to USI and 33° and 1.5 m s -1 when compared to LCE results.

  8. Roll tracking effects of G-vector tilt and various types of motion washout

    NASA Technical Reports Server (NTRS)

    Jex, H. R.; Magdaleno, R. E.; Junker, A. M.

    1978-01-01

    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues.

  9. Hurricane Debby - An illustration of the complementary nature of VAS soundings and cloud and water vapor motion winds. [Visible Infrared Spin Scan Radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Le Marshall, J. F.; Smith, W. L.; Callan, G. M.

    1985-01-01

    The utility of VISSR Atmospheric Sounder (VAS) temperature and moisture soundings and cloud and water vapor motion winds in defining a storm and its surroundings at subsynoptic scales has been examined using a numerical analysis and prognosis system. It is shown that the VAS temperature and moisture data, which specify temperature and moisture well in cloud-free areas, are complemented by cloud and water vapor motion data generated in the cloudy areas. The cloud and water vapor 'winds' provide thermal gradient information for interpolating the soundings across cloudy regions. The loss of analysis integrity due to the reduction of VAS sounding density in the cloudy regions associated with synoptic activity is ameliorated by using cloud and water vapor motion winds. The improvement in numerical forecasts resulting from the addition of these data to the numerical analysis is recorded.

  10. Primer vector theory applied to the linear relative-motion equations. [for N-impulse space trajectory optimization

    NASA Technical Reports Server (NTRS)

    Jezewski, D.

    1980-01-01

    Prime vector theory is used in analyzing a set of linear relative-motion equations - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and necessary conditions for an optimal N-impulse trajectory. The analysis develops the analytical criteria for improving a solution by: (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of: (1) fixed-end conditions, two impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized renezvous problem.

  11. The kinematical analysis of proper motions and radial velocities of stars by means of the vector spherical harmonics

    NASA Astrophysics Data System (ADS)

    Tsvetkov, A.; Vityazev, . V.; , Kumkova I. I.

    2009-09-01

    The paper describes the application of the 3-D vector spherical harmonics (henceforth VSH) to the investigation of stellar kinematics. The VSH technique is suitable for present and future catalogues which contain all three components of velocity vector: proper motions and radial velocities. In general, the VSH allows to detect all the systematic components in the stellar velocity field and does not depend on any model. If some physical model is used, the VSH not only determines the parameters of the model, but detects the systematic components which are beyond the model. The application of the VSH to the Hipparcos data complimented with radial velocities discovers the systematic components which are beyond the linear Ogorodnikov-milne model.

  12. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  13. Thin cloud removal from remote sensing images using multidirectional dual tree complex wavelet transform and transfer least square support vector regression

    NASA Astrophysics Data System (ADS)

    Hu, Gensheng; Li, Xiaoyi; Liang, Dong

    2015-01-01

    The existence of clouds affects the interpretation and utilization of remote sensing images. A thin cloud removal algorithm for cloud-contaminated remote sensing images is proposed by combining a multidirectional dual tree complex wavelet transform (M-DTCWT) with domain adaptation transfer least square support vector regression (T-LSSVR). First, M-DTCWT is constructed by using the hourglass filter bank in combination with DTCWT, which is used to decompose remote sensing images into multiscale and multidirectional subbands. Then the low-frequency subband coefficients of the cloud-free regions on target images and source domain images are used as samples for a T-LSSVR model, which can be used to predict those of the cloud regions on cloud-contaminated images. Finally, by enhancing the high-frequency coefficients and replacing the low-frequency coefficients, the thin clouds on cloud-contaminated images are removed. Experimental results show that M-DTCWT contributes to keeping the details of the ground objects of cloud-contaminated images, and the T-LSSVR model can effectively learn the contour information from multisource and multitemporal images, therefore, the proposed method achieves a good effect of thin cloud removal.

  14. The relationship between large-scale vertical motion, highly reflective cloud, and sea surface temperature in the tropical Pacific region

    NASA Technical Reports Server (NTRS)

    Zimmermann, Peter H.; Newell, Reginald E.; Selkirk, Henry B.

    1988-01-01

    Vertical motion fields at 850 mbar over the tropical Pacific region are calculated from the 1963-1973 mean wind fields for 4 months of the year and for October 1972, the peak month in the 1972-1973 El Nino event. These vertical motion fields are derived using the projective separation technique, which has the unique property of separating vertical motion into components due to meridional wind convergence and zonal wind convergence. This separation permits investigation of the response of the Hadley and Walker circulations to annual and interannual variation of the sea surface temperature in the tropical Pacific. The large-scale features of the computed vertical motion fields are in agreement with those of highly reflective clouds, which indicate the locations of deep convection. Examination of the annual cycle of the vertical motion and its components shows no strong variation of the Walker circulation with the east-west gradient of sea surface temperature. On the other hand, a strong correlation is found between meridional overturning in the eastern Pacific and the local equatorial sea surface temperature: during El Nino events, the eastern and central Pacific contribution to the Hadley circulation tends to increase.

  15. Influence of the cosmic repulsion on the MOND model of the Magellanic Cloud motion in the field of Milky Way

    SciTech Connect

    Schee, J.; Stuchlík, Z.; Petrásek, M. E-mail: zdenek.stuchlik@fpf.slu.cz

    2013-12-01

    It has been recently shown that the cosmic repulsion can have a highly significant influence on the motion of Magellanic Clouds (MC) in the gravitational field of Milky Way, treated in the framework of the Cold Dark Matter (CDM) halo model. However, there is an alternative to the CDM halo explanation of the rotation curves in the periphery of spiral galaxies, based on MOdified Newtonian Dynamics (MOND). Therefore, we study the role of the cosmic repulsion in the framework of the MOND theory applied to determine the MC motion. Our results demonstrate that in the MOND framework the influence of the cosmic repulsion on the motion of both Small and Large MC is also highly significant, but it is of a different character than in the framework of the CDM halo model. Moreover, we demonstrate that the MC motion in the framework of the CDM halo and MOND models is subtantially different and can serve as a test of these fundamentally different approaches to the explanation of the phenomena related to galaxies and the motion of satellite galaxies.

  16. THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. I. HUBBLE SPACE TELESCOPE/WFC3 DATA AND ORBIT IMPLICATIONS

    SciTech Connect

    Kallivayalil, Nitya; Van der Marel, Roeland P.; Anderson, Jay; Besla, Gurtina; Alcock, Charles

    2013-02-20

    We present proper motions for the Large and Small Magellanic Clouds (LMC and SMC) based on three epochs of Hubble Space Telescope data, spanning a {approx}7 yr baseline, and centered on fields with background QSOs. The first two epochs, the subject of past analyses, were obtained with ACS/HRC, and have been reanalyzed here. The new third epoch with WFC3/UVIS increases the time baseline and provides better control of systematics. The three-epoch data yield proper-motion random errors of only 1%-2% per field. For the LMC this is sufficient to constrain the internal proper-motion dynamics, as will be discussed in a separate paper. Here we focus on the implied center-of-mass proper motions: {mu} {sub W,LMC} = -1.910 {+-} 0.020 mas yr{sup -1}, {mu} {sub N,LMC} = 0.229 {+-} 0.047 mas yr{sup -1}, and {mu} {sub W,SMC} = -0.772 {+-} 0.063 mas yr{sup -1}, {mu} {sub N,SMC} = -1.117 {+-} 0.061 mas yr{sup -1}. We combine the results with a revised understanding of the solar motion in the Milky Way to derive Galactocentric velocities: v {sub tot,LMC} = 321 {+-} 24 km s{sup -1} and v {sub tot,SMC} = 217 {+-} 26 km s{sup -1}. Our proper-motion uncertainties are now dominated by limitations in our understanding of the internal kinematics and geometry of the Clouds, and our velocity uncertainties are dominated by distance errors. Orbit calculations for the Clouds around the Milky Way allow a range of orbital periods, depending on the uncertain masses of the Milky Way and LMC. Periods {approx}< 4 Gyr are ruled out, which poses a challenge for traditional Magellanic Stream models. First-infall orbits are preferred (as supported by other arguments as well) if one imposes the requirement that the LMC and SMC must have been a bound pair for at least several Gyr.

  17. System identification modeling of ship manoeuvring motion in 4 degrees of freedom based on support vector machines

    NASA Astrophysics Data System (ADS)

    Wang, Xue-gang; Zou, Zao-jian; Yu, Long; Cai, Wei

    2015-06-01

    Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20?/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.

  18. VizieR Online Data Catalog: OGLE-III. Magellanic Clouds stellar proper motions (Poleski+, 2012)

    NASA Astrophysics Data System (ADS)

    Poleski, R.; Soszynski, I.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Ulaczyk, K.

    2015-07-01

    The OGLE-III project observed the Large Magellanic Cloud, the Small Magellanic Cloud, and the globular cluster 47 Tuc between 2001 and 2009 with the 1.3-m Warsaw telescope, which is situated at the Las Campanas Observatory, Chile. The telescope was equipped with an eight-chip mosaic CCD camera. The field of view was 36'x36' and the pixel scale was 0.26"/pix. I-band filter was used. (5 data files).

  19. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  20. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  1. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    SciTech Connect

    Williams, Christopher R.

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  2. On the orbital motion of cold clouds in broad-line regions

    NASA Astrophysics Data System (ADS)

    Shadmehri, Mohsen

    2015-08-01

    We study the orbit of a pressure-confined cloud in the broad-line region (BLR) of active galactic nuclei when the combined effects of the central gravity and anisotropic radiation pressure and the drag force are considered. The physical properties of the intercloud gas, such as its pressure and dynamic viscosity, are defined as power-law functions of the radial distance. For a drag force proportional to the relative velocity of a cloud and the background gas, a detailed analysis of the orbits is performed for different values of the input parameters. We also present analytical solutions for when the intercloud pressure is uniform and the viscosity is proportional to the inverse square of the radial distance. Our analytical and numerical solutions demonstrate decay of the orbits due to the drag force, so that a cloud will eventually fall on to the central region after the so-called time-of-flight. We found that the time-of-flight of a BLR cloud is proportional to the inverse of the dimensionless drag coefficient. If the time-of-flight becomes shorter than the lifetime of the whole system, then mechanisms for continually forming BLR clouds are needed.

  3. The VMC survey. XVII. Proper motions of the Small Magellanic Cloud and the Milky Way globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Cioni, Maria-Rosa L.; Bekki, Kenji; Girardi, Léo; de Grijs, Richard; Irwin, Mike J.; Ivanov, Valentin D.; Marconi, Marcella; Oliveira, Joana M.; Piatti, Andrés E.; Ripepi, Vincenzo; van Loon, Jacco Th.

    2016-02-01

    Aims: In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motions of different stellar populations in a tile of 1.5 deg2 in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Methods: Stars of the three main stellar components are selected according to their spatial distributions and their distributions in colour-magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks = 19 mag. Proper motions are derived from the slope of the best-fitting line among ten VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. Results: The resulting absolute proper motion of 47 Tuc is (μαcos(δ), μδ) = (+7.26 ± 0.03, -1.25 ± 0.03) mas yr-1. This measurement refers to about 35 000 sources distributed between 10' and 60' from the cluster centre. For the SMC we obtain (μαcos(δ), μδ) = (+1.16 ± 0.07, -0.81 ± 0.07) mas yr-1 from about 5250 red clump and red giant branch stars. The absolute proper motion of the Milky Way population in the line of sight (l = 305.9, b = -44.9) of this VISTA tile is (μαcos(δ), μδ) = (+10.22 ± 0.14, -1.27 ± 0.12) mas yr-1 and has been calculated from about 4000 sources. Systematic uncertainties associated with the astrometric reference system are 0.18 mas yr-1. Thanks to the proper motion we detect 47 Tuc stars beyond its tidal radius. Based on observations made with VISTA at the Paranal Observatory under program ID 179.B-2003.

  4. Analytic evaluation of the nonadiabatic coupling vector between excited states using equation-of-motion coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Tajti, Attila; Szalay, Péter G.

    2009-09-01

    Theory and implementation for evaluation of the nonadiabatic coupling vector between excited electronic states described by equation-of-motion excitation energy coupled-cluster singles and doubles (EOMEE-CCSD) method is presented. Problems arising from the non-Hermitian nature of the theory are discussed in detail. The performance of the new approach is demonstrated by the nice agreement of the nonadiabatic coupling curves for LiH obtained at the EOMEE-CCSD and MR-CISD levels. Using the tools developed we also present a computational procedure to evaluate the interstate coupling constants used in vibronic coupling theories. As an application of this part of the implementation we present simulation of the electronic absorption spectrum of the pyrazine molecule within the linear vibronic coupling model.

  5. Vector constraints on western U.S. deformation from space geodesy, neotectonics, and plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. Bernard; Jordan, Thomas H.

    1987-01-01

    The rate-of-slip vector on the San Andreas fault in central California estimated from geodetic and Holocene geological data is inconsistent with the prediction of rigid plate models such as RM2. This well-known 'San Andreas discrepancy' is diagnostic of plate deformation distributed both east of the fault in the Basin and Range and west of the fault along the California continental margin. Constraints on the integrated deformation rates across these two regions consistent with: (1) the kinematical boundary conditions imposed by the rigid plate model; (2) neotectonic and paleoseismic estimates of deformation rates; (3) ground-based geodetic measurements; and (4) rates of change observed by very long baseline interferometry along seven baselines to western U.S. sites are constructed. The space-geodetic data on Basin and Range extension taken over a 4-year interval are compatible with geological observations averaged over the Holocene; the best estimate of its integrated deformation rate, provided by the joint inversion of both data types, is 9.7 + or - 2.1 mm/yr, N 56 deg W + or - 10 deg, too small and in the wrong direction to account entirely for the San Andreas discrepancy. The integral of this deformation, estimated by subtracting the Basin and Range contribution from the discrepancy vector, requires significant right-lateral shear parallel to the San Andreas (13 + or - 5 mm/yr) and some compression perpendicular to it (9 + or - 3 mm/yr).

  6. Third-epoch Magellanic Cloud proper motions. II. The large Magellanic Cloud rotation field in three dimensions

    SciTech Connect

    Van der Marel, Roeland P.; Kallivayalil, Nitya

    2014-02-01

    We present the first detailed assessment of the large-scale rotation of any galaxy based on full three-dimensional velocity measurements. We do this for the LMC by combining our Hubble Space Telescope average proper motion (PM) measurements for stars in 22 fields, with existing line-of-sight (LOS) velocity measurements for 6790 individual stars. We interpret these data with a model of circular rotation in a flat disk. The PM and LOS data paint a consistent picture of the LMC rotation, and their combination yields several new insights. The PM data imply a stellar dynamical center that coincides with the H I dynamical center, and a rotation curve amplitude consistent with that inferred from LOS velocity studies. The implied disk viewing angles agree with the range of values found in the literature, but continue to indicate variations with stellar population and/or radius. Young (red supergiant) stars rotate faster than old (red and asymptotic giant branch) stars due to asymmetric drift. Outside the central region, the circular velocity is approximately flat at V {sub circ} = 91.7 ± 18.8 km s{sup –1}. This is consistent with the baryonic Tully-Fisher relation and implies an enclosed mass M(8.7 kpc) = (1.7 ± 0.7) × 10{sup 10} M {sub ☉}. The virial mass is larger, depending on the full extent of the LMC's dark halo. The tidal radius is 22.3 ± 5.2 kpc (24.°0 ± 5.°6). Combination of the PM and LOS data yields kinematic distance estimates for the LMC, but these are not yet competitive with other methods.

  7. THE M31 VELOCITY VECTOR. I. HUBBLE SPACE TELESCOPE PROPER-MOTION MEASUREMENTS

    SciTech Connect

    Sohn, Sangmo Tony; Anderson, Jay; Van der Marel, Roeland P.

    2012-07-01

    We present the first proper-motion (PM) measurements for the galaxy M31. We obtained new V-band imaging data with the Hubble Space Telescope ACS/WFC and the WFC3/UVIS instruments of three fields: a spheroid field near the minor axis, an outer disk field along the major axis, and a field on the Giant Southern Stream. The data provide five to seven year time baselines with respect to pre-existing deep first-epoch observations of the same fields. We measure the positions of thousands of M31 stars and hundreds of compact background galaxies in each field. High accuracy and robustness is achieved by building and fitting a unique template for each individual object. The average PM for each field is obtained from the average motion of the M31 stars between the epochs with respect to the background galaxies. For the three fields, the observed PMs ({mu}{sub W}, {mu}{sub N}) are, in units of mas yr{sup -1}, (- 0.0458, -0.0376) {+-} (0.0165, 0.0154), (- 0.0533, -0.0104) {+-} (0.0246, 0.0244), and (- 0.0179, -0.0357) {+-} (0.0278, 0.0272), respectively. The ability to average over large numbers of objects and over the three fields yields a final displacement accuracy of a few thousandths of a pixel, corresponding to only 12 {mu}as yr{sup -1}. This is comparable to what has been achieved for other Local Group galaxies using Very Long Baseline Array observations of water masers. Potential systematic errors are controlled by an analysis strategy that corrects for detector charge transfer inefficiency, spatially and time-dependent geometric distortion, and point-spread function variations. The robustness of the PM measurements and uncertainties are supported by the fact that data from different instruments, taken at different times and with different telescope orientations, as well as measurements of different fields, all yield statistically consistent results. Papers II and III of this series explore the implications of the new measurements for our understanding of the history

  8. Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hong, Kyeongsoo; Lee, Jae Woo; Kim, Seung-Lee; Koo, Jae-Rim; Lee, Chung-UK

    2016-04-01

    We examined light curves of 1138 stars brighter than 18.0 mag in the I band and less than a mean magnitude error of 0.1 mag in the V band from the OGLE-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the SMC were increased by a factor of about 3.0 than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both the light curves and eclipse timings using the MACHO and OGLE photometric database. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one year from the survey data. The new 90 binaries have apsidal motion periods in the range of 12-897 years. An additional short-term oscillation was detected in four systems (OGLE-SMC-ECL-1634, 1947, 3035, and 4946), which most likely arises from the existence of a third body orbiting each eclipsing binary. Since the systems presented here are based on homogeneous data and have been analysed in the same way, they are suitable for further statistical analysis.

  9. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  10. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  11. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    SciTech Connect

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  12. Investigation of cloud/water vapor motion winds from geostationary satellite

    NASA Technical Reports Server (NTRS)

    Nieman, Steve; Velden, Chris; Hayden, Kit; Menzel, Paul

    1993-01-01

    Work has been primarily focussed on three tasks: (1) comparison of wind fields produced at MSFC with the CO2 autowind/autoeditor system newly installed in NESDIS operations; (2) evaluation of techniques for improved tracer selection through use of cloud classification predictors; and (3) development of height assignment algorithm with water vapor channel radiances. The contract goal is to improve the CIMSS wind system by developing new techniques and assimilating better existing techniques. The work reported here was done in collaboration with the NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms.

  13. 34/45-Mbps 3D HDTV digital coding scheme using modified motion compensation with disparity vectors

    NASA Astrophysics Data System (ADS)

    Naito, Sei; Matsumoto, Shuichi

    1998-12-01

    This paper describes a digital compression coding scheme for transmitting three dimensional stereo HDTV signals with full resolution at bit-rates around 30 to 40 Mbps to be adapted for PDH networks of the CCITT 3rd digital hierarchy, 34 Mbps and 45 Mbps, SDH networks of 52 Mbps and ATM networks. In order to achieve a satisfactory quality for stereo HDTV pictures, three advanced key technologies are introduced into the MPEG-2 Multi-View Profile, i.e., a modified motion compensation using disparity vectors estimated between the left and right pictures, an adaptive rate control using a common buffer memory for left and right pictures encoding, and a discriminatory bit allocation which results in the improvement of left pictures quality without any degradation of right pictures. From the results of coding experiment conducted to evaluate the coding picture achieved by this coding scheme, it is confirmed that our coding scheme gives satisfactory picture quality even at 34 Mbps including audio and FEC data.

  14. Belt-Zone Contrasts in Vertical Motion and Cloud Structure in Jupiter's Troposphere

    NASA Astrophysics Data System (ADS)

    Liu, J.; Schneider, T.

    2015-12-01

    It is known that the eddy fluxes of angular momentum in Jupiter's upper troposphere converge in prograde jets and diverge in retrograde jets. Away from the equator, this implies convergence of the Eulerian mean meridional flow in zones (anticyclonic shear) and divergence in belts (cyclonic shear). It suggests lower-tropospheric downwelling in zones and upwelling in belts because the mean meridional circulation almost certainly closes at depth. Yet the banded structure of Jupiter's clouds and hazes suggests that there is upwelling in the brighter zones and downwelling in the darker belts. Here we show that this apparent contradiction can be resolved by considering not the Eulerian but the transformed Eulerian mean circulation, which includes a Stokes drift owing to eddies and is a better approximation of the Lagrangian mean transport of tracers such as ammonia. The structure of the potential vorticity inferred from observations paired with mixing length arguments suggests that there is transformed Eulerian mean upwelling in zones and downwelling in belts, and that this transformed Eulerian mean flow is about an order of magnitude stronger than the Eulerian mean flow. Simulations with a general circulation model of Jupiter's upper atmosphere demonstrate the plausibility of these inferences.

  15. A Benchmark for Cloud Tracking Wind Measurements

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Mitchell, J.; Ingersoll, A. P.; Ewald, S. P.; Marcus, P. S.; de Pater, I.; Wong, M. H.; Choi, D. S.; Sussman, M.; Ogohara, K.; Imamura, T.; Kouyama, T.; Takagi, M.; Satoh, N.; Del Genio, A. D.; Barbara, J.; Sanchez-Lavega, A.; Hueso, R.; García-Melendo, E.; Simon-Miller, A. A.

    2010-12-01

    Cloud tracking has been the primary method of measuring wind speeds in planetary atmospheres through Earth- and space- based remote sensing. Latest developments of automated feature tracking software are able to harvest thousands of wind vectors out of a sequence of high-resolution images acquired with an appropriate temporal separation. However, unlike satellite-based cloud-tracking measurements of Earth, these planetary measurements cannot easily be validated against in-situ data, which makes the interpretation difficult when different cloud-tracking schemes do not agree on their results. To address the issue of data validation, we run multiple automated cloud-tracking software independently developed at multiple institutions on synthetic wind data generated using a General Circulation Model. Our simulations calculate the advection of tracer distributions to represent cloud motions as done by Sayanagi and Showman (2007, Icarus 187, p520-539). The motions of tracers are measured using cloud-tracking software to derive wind vector fields, which will be compared against the model "truth." We test the performance of cloud-tracking software for different wind scenarios. Our first test wind field contains a simple zonal jet. The second test scenario is a large vortex like Jupiter’s Great Red Spot. The third test case has waves propagating alongside a zonal jet. We compare the results returned from different cloud-tracking schemes and discuss what approaches work better at measuring winds. In addition to verifying the wind vector field measurements, we also address the accuracy and validity of eddy momentum flux measurements by tracking clouds. The difficulties of such measurements are discussed by Salyk et al. (2006, Icarus 185, p430-442), and we re-examine the issue using our synthetic wind data. From our experiments, we aim to establish a standard benchmark of cloud tracking measurements for planetary mission applications.

  16. Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Christensen, Matthew W.; Diner, David J.; Garay, Michael J.

    2015-04-01

    Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds for different cloud types and environmental conditions. By taking advantage of the high spatial resolution multiangle observations available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of the cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were utilized. Under open cell cloud structure the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+38%), cloud top height (+13%), and cloud albedo (+49%) for open cell clouds, whereas for closed cell clouds, little change in cloud properties was observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed was used to derive cloud top divergence. Statistically averaging the results from the identified plume segments to reduce random noise, we found evidence of cloud top divergence in the ship-polluted clouds, whereas the nearby unpolluted clouds showed cloud top convergence, providing observational evidence of a change in local mesoscale circulation associated with enhanced aerosols. Furthermore, open cell polluted clouds revealed stronger cloud top divergence as compared to closed cell clouds, consistent with different dynamical mechanisms driving their responses. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling

  17. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  18. Influence of the cosmological constant on the motion of Magellanic Clouds in the gravitational field of Milky Way

    SciTech Connect

    Stuchlík, Zdeněk; Schee, Jan E-mail: jan.schee@fpf.slu.cz

    2011-09-01

    Using the pseudo-Newtonian (PN) potential reflecting properties of the Schwarz-schild-de Sitter spacetime, we estimate the influence of the repulsive cosmological constant Λ ∼ 1.3 × 10{sup −56}cm{sup −2} implied by recent cosmological tests onto the motion of both Small and Large Magellanic Clouds (SMC and LMC) in the gravitational field of the Milky Way. Considering detailed modelling of the gravitational field of the Galaxy disc, bulge and cold dark matter halo, the trajectories of SMC and LMC constructed for the PN potential with the cosmological constant are confronted to those given for Λ = 0. In the realistic model of the extended cold dark matter halo its edge and related total mass are taken at typical values reflecting recent diversity in the total Galaxy mass estimates. In all cases, strong influence of the cosmological constant, on 10% level or higher, has been found for motion of both SMC and LMC. Inside the halo, the Newtonian part of the PN potential is exact enough, while outside the halo the PN potential can give relevant relativistic corrections. The role of the cosmological constant is most conspicuous when binding mass is estimated for the satellite galaxies. We have found a strong influence of cosmic repulsion on the total binding mass for both galaxies. For SMC there is the binding mass M{sub SMC}{sup Λ=0} = 7.07 × 10{sup 11}M{sub ⨀} and M{sub SMC}{sup Λ>0} = 8.61 × 10{sup 11}M{sub ⨀}, while even much higher increase is found for LMC, where M{sub LMC}{sup Λ=0} = 1.50 × 10{sup 12}M{sub ⨀} and M{sub LMC}{sup Λ} {sup >0} = 2.21 × 10{sup 12}M{sub ⨀}, putting serious doubts on the possibility that the LMC is bounded by the Milky Way. However, the estimates of binding masses are strongly influenced by initial velocity of SMC and LMC; we took the values inferred for the IAU MW rotation velocity ∼ 220 km/s. Our results indicate very important role of the cosmic repulsion in the motion of interacting galaxies, clearly

  19. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-09-07

    ... 2:  CLOUD - Wind Vectors, Height Histogram Stage 1:  ALBEDO - Expansive, Restrictive and Local Albedo (except over snow and ... Stage 2 CLOUD - Height Histogram Stage 1 CLOUD - Wind Vectors Stage 1 ALBEDO - Expansive and Restrictive ...

  20. Aerosol-Cloud Interactions in Ship Tracks Using Terra MODIS/MISR

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Christensen, M.; Diner, D. J.; Garay, M. J.; Nelson, D. L.

    2014-12-01

    Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds under different cloud types and environmental conditions. Taking advantage of the high spatial resolution multiangle observations uniquely available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine the cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were applied. Under open cell cloud structure, the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+27%), cloud top height (+11%), and cloud albedo (+40%) for open cell clouds, whereas under closed cell clouds, little changes in cloud properties were observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed has been used to derive cloud top divergence. Statistically averaging the results from many plume segments to reduce random noise, we have found that in ship-polluted clouds there is stronger cloud top divergence, and in nearby unpolluted clouds, convergence occurs and leads to downdrafts, providing observational evidence for cloud top entrainment feedback. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling studies to reduce uncertainties of aerosol indirect forcing. Reference: Chen, Y.-C. et al. Occurrence of lower cloud albedo in ship tracks, Atmos. Chem. Phys., 12, 8223-8235, doi:10.5194/acp-12

  1. Investigating Plasma Motion of Magnetic Clouds at 1 AU through a Velocity-modified Cylindrical Force-free Flux Rope Model

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, C.; Liu, R.; Zhou, Z.

    2014-12-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs). Due to the very low value of Can't connect to bucket.int.confex.com:4201 (Connection refused) LWP::Protocol::http::Socket: connect: Connection refused at /usr/local/lib/perl5/site_perl/5.8.8/LWP/Protocol/http.pm line 51. in MCs, they are believed to be in a nearly force-free state and therefore are able to be modeled by a cylindrical force-free flux rope. However, the force-free state only describes the magnetic field topology but not the plasma motion of a MC. For a MC propagating in interplanetary space, the global plasma motion has three possible components: linear propagating motion of a MC away from the Sun, expanding motion and circular motion with respect to the axis of the MC. By assuming the quasi-steady evolution and self-similar expansion, we introduced the three-component motion into the cylindrical force-free flux rope model, and developed a velocity-modified model. Then we applied the model to 73 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. It is found that (1) some MCs did not propagate along the Sun-Earth line, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space, (2) the expansion speed is correlated with the radial propagation speed and 62%/17% of MCs underwent a under/over-expansion at 1 AU, and (3) the circular motion does exists though it is only on the order of 10 km s-1. These findings advance our understanding of the MC's properties at 1 AU as well as the dynamic evolution of CMEs from the Sun to interplanetary space.

  2. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1995-01-01

    The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.

  3. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.

    1994-01-01

    The thrust of the proposed effort under this contract is aimed at improving techniques to track water vapor data in sequences of imagery from geostationary satellites. In regards to this task, significant testing, evaluation, and progress was accomplished during this period. Sets of winds derived from Meteosat data were routinely produced during Atlantic hurricane events in the 1993 season. These wind sets were delivered via Internet in real time to the Hurricane Research Division in Miami for their evaluation in a track forecast model. For eighteen cases in which 72-hour forecasts were produced, thirteen resulted in track forecast improvements (some quite significant). In addition, quality-controlled Meteosat water vapor winds produced by NESDIS were validated against rawinsondes, yielding an 8 m/s RMS. This figure is comparable to upper-level cloud drift wind accuracies. Given the complementary horizontal coverage in cloud-free areas, we believe that water vapor vectors can supplement cloud-drift wind information to provide good full-disk coverage of the upper tropospheric flow. The impact of these winds on numerical analysis and forecasts will be tested in the next reporting period.

  4. Predicting and validating the motion of an ash cloud during the 2006 eruption of Mount Augustine volcano

    USGS Publications Warehouse

    Collins, Richard L.; Fochesatto, Javier; Sassen, Kenneth; Webley, Peter W.; Atkinson, David E.; Dean, Kenneson G.; Cahill, Catherine F.; Mizutani, Kohei

    2007-01-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20- year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash (or aerosol) cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. Aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano consistent with the Puff predictions. Two lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the ash cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are

  5. HST Astrometry in the 30 Doradus Region: Measuring Proper Motions of Individual Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Platais, Imants; van der Marel, Roeland P.; Lennon, Daniel J.; Anderson, Jay; Bellini, Andrea; Sabbi, Elena; Sana, Hugues; Bedin, Luigi R.

    2015-09-01

    We present measurements of positions and relative proper motions in the 30 Doradus region of the LMC. We detail the construction of a single-epoch astrometric reference frame, based on specially designed observations obtained with the two main imaging instruments Advanced Camera for Surveys/Wide Field Channel and Wide Field Camera 3/UVIS on board the Hubble Space Telescope (HST). Internal comparisons indicate a sub milliarcsecond (mas) precision in the positions and the presence of semi-periodic systematics with a mean amplitude of ˜0.8 mas. We combined these observations with numerous archival images taken with Wide Field Planetary Camera 2 and spanning 17 years. The precision of the resulting proper motions for well-measured stars around the massive cluster Radcliffe 136 (R136) can be as good as ˜20 μas yr-1, although the true accuracy of proper motions is generally lower due to the residual systematic errors. The observed proper-motion dispersion for our highest-quality measurements is ˜0.1 mas yr-1. Our catalog of positions and proper motions contains 86,590 stars down to V ˜ 25 and over a total area of ˜70 square arcmin. We examined the proper motions of 105 relatively bright stars and identified a total of six candidate runaway stars. We are able to tentatively confirm the runaway status of star VFTS 285, consistent with the findings from line of sight velocities, and to show that this star has likely been ejected from R136. This study demonstrates that with HST it is now possible to reliably measure proper motions of individual stars in the nearest dwarf galaxies such as the LMC.

  6. MISR Level 2 TOA/Cloud Stereo parameters (MIL2TCST_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The MISR Top-of-Atmosphere (TOA)/Cloud Stereo geophysical parameters include stereoscopically-derived cloud motion vectors (winds), cloud-top heights, and an accompanying cloud mask. The Stereo product geophysical parameters include a stereoscopically-derived cloud mask and cloud height on a 1.1 km grid. It also includes cloud motion vectors on a 70.4 km grid. The three types of stereo heights are: the BestWind heights are only calculated for those regions where the associated wind vectors passed the quality tests. Therefore, they have sparse coverage but since the wind correction is included, these contain our 'best guess' as to what the true heights are. The WithoutWind heights are calculated assuming a constant wind vector of zero. They have almost complete coverage and therefore form a nice 'pretty picture' of the relative cloud heights over small areas. The RawWind heights are a diagnostic product as they are calculated using all available wind vectors (even the bad ones). It is therefore recommended that one only use the Best and Without wind products. It is important to remember that the stereo matchers pick up the layer of maximum contrast, which is not necessarily the same as the highest cloud so all the stereo heights are keyed to this level of maximum contrast. Therefore, higher and thinner cirrus layers may not be detected by any of the height fields. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].

  7. Vibration analysis of vector piezoresponse force microscopy with coupled flexural-longitudinal and lateral-torsional motions

    NASA Astrophysics Data System (ADS)

    Salehi-Khojin, Amin; Jalili, Nader; Nima Mahmoodi, S.

    2009-05-01

    Piezoresponse force microscopy (PFM) has evolved into a useful tool for measurement of local properties of piezoelectric materials with great potential in applications such as data storage, ferroelectric lithography and nonvolatile memories. In order to utilize PFM for low dimensional materials characterization, a comprehensive analytical modeling based on the coupled motion of PFM in all three directions is proposed. In this respect, the mechanical properties of sample are divided into viscoelastic and piezoelectric parts. The viscoelastic part is modeled as a spring and damper in the longitudinal, transversal and lateral directions, while the piezoelectric part is replaced with resistive forces acting at the end of microcantilever. It is shown that there is a geometrical coupling between flexural-longitudinal and lateral-torsional vibrations of microcantilever used in PFM. Moreover, assuming a general friction between tip and sample, additional coupling effect is also taken into account. Through an energy-based approach, it is seen that the PFM system can be governed by a set of coupled partial differential equations along with nonhomogeneous and coupled boundary conditions. A general formulation is then derived for the mode shape, frequency response, and state-space representation of system. Numerical simulations indicate that mode shapes, natural frequencies and time responses of microcantilever beam are heavily dependent on the viscoelastic and piezoelectric properties of the samples. Moreover, the results demonstrate that utilizing only transversal vibration is not a valid strategy for quantifying mechanical properties of materials with arbitrary crystallographic orientation. Hence, the proposed model with the built-in coupling effects can be a key development for acquiring precise measurements.

  8. Impact of assimilation of INSAT-3D retrieved atmospheric motion vectors on short-range forecast of summer monsoon 2014 over the South Asian region

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Deb, Sanjib K.; Kishtawal, C. M.; Pal, P. K.

    2016-01-01

    The Weather Research and Forecasting (WRF) model and its three-dimensional variational data assimilation system are used in this study to assimilate the INSAT-3D, a recently launched Indian geostationary meteorological satellite derived from atmospheric motion vectors (AMVs) over the South Asian region during peak Indian summer monsoon month (i.e., July 2014). A total of four experiments were performed daily with and without assimilation of INSAT-3D-derived AMVs and the other AMVs available through Global Telecommunication System (GTS) for the entire month of July 2014. Before assimilating these newly derived INSAT-3D AMVs in the numerical model, a preliminary evaluation of these AMVs is performed with National Centers for Environmental Prediction (NCEP) final model analyses. The preliminary validation results show that root-mean-square vector difference (RMSVD) for INSAT-3D AMVs is ˜3.95, 6.66, and 5.65 ms-1 at low, mid, and high levels, respectively, and slightly more RMSVDs are noticed in GTS AMVs (˜4.0, 8.01, and 6.43 ms-1 at low, mid, and high levels, respectively). The assimilation of AMVs has improved the WRF model of produced wind speed, temperature, and moisture analyses as well as subsequent model forecasts over the Indian Ocean, Arabian Sea, Australia, and South Africa. Slightly more improvements are noticed in the experiment where only the INSAT-3D AMVs are assimilated compared to the experiment where only GTS AMVs are assimilated. The results also show improvement in rainfall predictions over the Indian region after AMV assimilation. Overall, the assimilation of INSAT-3D AMVs improved the WRF model short-range predictions over the South Asian region as compared to control experiments.

  9. On the accuracy of approximation of motion of a small celestial body by intermediate perturbed orbits calculated on the basis of three position vectors and three observations

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.; Shefer, O. V.

    2016-05-01

    Intermediate perturbed orbits, which were proposed earlier by the first author and are calculated based on three position vectors and three measurements of angular coordinates of a small celestial body, are examined. Provided that the reference time interval encompassing the measurements is short, these orbits are close in the accuracy of approximation of actual motion to an orbit with fourth-order tangency. The shorter the reference time interval is, the better is the approximation. The laws of variation of the errors of methods for constructing such intermediate orbits with the length of the reference time interval are formulated. According to these laws, the rate of convergence of the methods to an exact solution in the process of shortening of the reference time interval is, in general, three orders of magnitude higher than that of conventional methods relying on an unperturbed Keplerian orbit. The considered orbits are among the most accurate of their class that is defined by the order of tangency. The obtained theoretical results are verified by numerical experiments on determining the orbit of 99942 Apophis.

  10. Climatology of Vertical Air Motion During Rainfall in Niamey, Niger and Black Forest, Germany using an Innovative Cloud Radar Retrieval Technique

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Giangrande, S. E.; Kollias, P.

    2008-12-01

    In recent years, the DOE Atmospheric Radiation Measurement (ARM) program has deployed its ARM Mobile Facility (AMF) to collect continuous measurements in several climatologically distinct locations, including a year-long stay in Niamey, Niger and eight months in Germany's Black Forest. The AMF includes a vertically pointing 95 GHz cloud radar, a tool of choice for profiling non-precipitating clouds at high spatial and temporal resolutions, but commonly considered poorly suited to the quantitative study of precipitation, due in large part to attenuation. However, an innovative technique first explored by Lhermitte in the late 1980s, and subsequently by others, sidesteps much of the quantitative uncertainty imposed by attenuation by exploiting non-Rayleigh resonance effects of scattering from raindrops at 95 GHz. Given a modest range of suitable drop sizes, non-Rayleigh resonances appear as distinct peaks and valleys in Doppler spectra, which once identified, can be directly mapped to known drop sizes by Mie theory. Although attenuation in rain at 95 GHz is substantial, key to the technique is that all non-Rayleigh peaks and valleys in a given Doppler spectrum are affected equally, preserving their relative positions and magnitudes (barring feature extinction). Vertical air motion is retrieved very accurately by taking the difference between the measured Doppler velocity of a resonance feature (usually the first valley) and the known terminal velocity of its associated drop size. We have achieved promising retrieval accuracies at spatial and temporal resolutions of 30 meters and 2 seconds. Here we present lessons learned when the retrieval technique is automated and applied to measurements taken in rain over the full durations of the Niamey and Black Forest AMF deployments, comparing vertical air velocity patterns of monsoonal precipitation over the African desert with those of the orographically influenced precipitation in Germany's mountains.

  11. Discovering hierarchical motion structure.

    PubMed

    Gershman, Samuel J; Tenenbaum, Joshua B; Jäkel, Frank

    2016-09-01

    Scenes filled with moving objects are often hierarchically organized: the motion of a migrating goose is nested within the flight pattern of its flock, the motion of a car is nested within the traffic pattern of other cars on the road, the motion of body parts are nested in the motion of the body. Humans perceive hierarchical structure even in stimuli with two or three moving dots. An influential theory of hierarchical motion perception holds that the visual system performs a "vector analysis" of moving objects, decomposing them into common and relative motions. However, this theory does not specify how to resolve ambiguity when a scene admits more than one vector analysis. We describe a Bayesian theory of vector analysis and show that it can account for classic results from dot motion experiments, as well as new experimental data. Our theory takes a step towards understanding how moving scenes are parsed into objects. PMID:25818905

  12. Short-interval SMS wind vector determinations for a severe local storms area

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.

    1980-01-01

    Short-interval SMS-2 visible digital image data are used to derive wind vectors from cloud tracking on time-lapsed sequences of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on May 6, 1975 hail-producing thunderstorms occurred ahead of a well defined dry line. Cloud tracking is performed on the Goddard Space Flight Center Atmospheric and Oceanographic Information Processing System. Lower tropospheric cumulus tracers are selected with the assistance of a cloud-top height algorithm. Divergence is derived from the cloud motions using a modified Cressman (1959) objective analysis technique which is designed to organize irregularly spaced wind vectors into uniformly gridded wind fields. The results demonstrate the feasibility of using satellite-derived wind vectors and their associated divergence fields in describing the conditions preceding severe local storm development. For this case, an area of convergence appeared ahead of the dry line and coincided with the developing area of severe weather. The magnitude of the maximum convergence varied between -10 to the -5th and -10 to the -14th per sec. The number of satellite-derived wind vectors which were required to describe conditions of the low-level atmosphere was adequate before numerous cumulonimbus cells formed. This technique is limited in areas of advanced convection.

  13. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  14. Automatic cloud tracking applied to GOES and Meteosat observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1981-01-01

    An improved automatic processing method for the tracking of cloud motions as revealed by satellite imagery is presented and applications of the method to GOES observations of Hurricane Eloise and Meteosat water vapor and infrared data are presented. The method is shown to involve steps of picture smoothing, target selection and the calculation of cloud motion vectors by the matching of a group at a given time with its best likeness at a later time, or by a cross-correlation computation. Cloud motion computations can be made in as many as four separate layers simultaneously. For data of 4 and 8 km resolution in the eye of Hurricane Eloise, the automatic system is found to provide results comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System, with results obtained by the pattern recognition and cross correlation computations differing by only fractions of a pixel. For Meteosat water vapor data from the tropics and midlatitudes, the automatic motion computations are found to be reliable only in areas where the water vapor fields contained small-scale structure, although excellent results are obtained using Meteosat IR data in the same regions. The automatic method thus appears to be competitive in accuracy and coverage with motion determination by human analysts.

  15. The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. III: Air Motions and Precipitation Growth in a Warm-Frontal Rainband.

    NASA Astrophysics Data System (ADS)

    Houze, Robert A., Jr.; Rutledge, Steven A.; Matejka, Thomas J.; Hobbs, Peter V.

    1981-03-01

    Doppler radar data and airborne cloud microphysical measurements obtained in the CYCLES PROJECT indicate that a warm-frontal rainband in an extratropical cyclone was characterized by a precipitation process in which clouds at low levels were enhanced by a mesoscale updraft. Ice particles, apparently formed in shallow convective cells aloft and then drifted downward, undergoing aggregation just above the melting layer. This study demonstrates the crucial role of the low-level mesoscale updraft in condensing a sufficient amount of cloud water for particles to accrete as they fell through the lower portion of the frontal cloud.

  16. Vertical Velocity Measurements in Warm Stratiform Clouds

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Kollias, P.

    2013-12-01

    Measurements of vertical air motion in warm boundary layer clouds are key for quantitatively describing cloud-scale turbulence and for improving our understanding of cloud and drizzle microphysical processes. Recently, a new technique that produces seamless measurements of vertical air velocity in the cloud and sub-cloud layers for both drizzling and non-drizzling stratocumulus clouds has been developed. The technique combines radar Doppler spectra-based retrievals of vertical air motion in cloud and light drizzle conditions with a novel neural network analysis during heavily drizzling periods. Observations from Doppler lidars are used to characterize sub-cloud velocities and to evaluate the performance of the technique near the cloud base. The technique is applied to several cases of stratiform clouds observed by the ARM Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign in Cape Cod. The observations clearly illustrate coupling of the sub-cloud and cloud layer turbulent structures.

  17. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  19. Mesoscale cloud phenomena observed by LANDSAT

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1977-01-01

    Examples of certain mesoscale cloud features - jet cirrus, eddies/vortices, cloud banding, and wave clouds - were collected from LANDSAT imagery and placed into Mason's four groups of causes of cloud formation based on the mechanism of vertical motion which produces condensation. These groups are as follows: (1) layer clouds formed by widespread regular ascent; (2) layer clouds caused by irregular stirring motions; (3) convective clouds; and (4) clouds formed by orographic disturbances. These mechanisms explain general cloud formation. Once formed, other forces may play a role in the deformation of a cloud or cloud mass into unusual and unique meso- and microscale patterns. Each example presented is followed by a brief discussion describing the synoptic situation, and some inference into the formation and occurrence of the more salient features. No major attempt was made to discuss in detail the meteorological and topographic interplay producing these mesoscale features.

  20. A Sharper View of Venus:Strategies For Precise Cloud Tracking of Venus' Lower Cloud Deck

    NASA Astrophysics Data System (ADS)

    Tavenner, Tanya; Young, E. F.; Murphy, J.; Coyote, S.; Bullock, M.; Rafkin, S.

    2006-09-01

    We have observed the nightside of Venus at 2.3 microns using both IRTF on Mauna Kea and APO in New Mexico during the past two inferior conjuctions. Using IRTF we observed over a ten day span for 3-hours each day, which is sufficient to determine the major cloud motions. More recently by using both APO and IRTF we achieved a 5-hour temporal baseline each day over six days of observation. We see the lower cloud deck of Venus (48-52 km) backlit by 2.3 micron thermal radiation emanating from the surface and the lower atmosphere. These observations have allowed us to derive cloud-level wind speeds, and identify transient features in the observed Venusian wind field. We have adapted feature-tracking algorithms from several terrestrial remote sensing applications (e.g., Wu Inter. J. Remote Sensing, 1997, 2003; Bhat IEEE Trans. on PAMI, 20, 1998; Evans, IEEE Proc. of IGRSS, 1999) in order to track cloud movement. While this is still a work in progress, we show wind vector fields based on these algorithms and discuss their potential advantages and shortfalls. Our observations typically consist of many (a few thousand) short exposures of Venus during each twilight opportunity. These sequences lend themselves to image restoration processing by iterative blind deconvolution. We present restorations implemented using "IDAC" (Jefferies and Christou, ApJ, 415, 1993), a code that is distributed through the Center for Adaptive Optics at UC Santa Cruz. The use of IDAC has significantly increased the resolution of our ground based observations of Venus. This increases the accuracy of our wind speed measurements to the point were we can look for meridional motion. We will be presenting our most recent results and vector fields. This work supported by NASA's Infrared Telescope Facility and by the NASA Planetary Astronomy Program.

  1. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Search Cloud

    MedlinePlus

    ... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  3. Search Cloud

    MedlinePlus

    ... www.nlm.nih.gov/medlineplus/cloud.html Search Cloud To use the sharing features on this page, please enable JavaScript. Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  4. Static imaging of motion: motion texture

    NASA Astrophysics Data System (ADS)

    Arimura, Koichi

    1992-05-01

    This paper describes how motion segmentation can be achieved by analyzing of a single static image that is created from a series of picture frames. The key idea is motion imaging; in other words, motion is expressed in static images by integrating, frame after frame, the spatiotemporal fluctuations of the gradient gray level at each local area. This tends to create blurred or attached line images (images with lines that show the path of movement of an object through space) on moving objects. We call this 'motion texture'. We computed motion texture images based on the animation of a natural scene and on a number of computer synthesized animations containing groups of moving objects (random dots). Moreover, we applied two different texture analyses to the motion textured images for segmentation: a texture analysis based on the local homogeneity of gray level gradation in similarly textured regions and another based on the structural feature of gray level gradation in motion texture. Experiments showed that subjective visual impressions of segmentation were quite different for these animations. The texture segmentation described here successfully grouped moving objects coincident to subjective impressions. In our random dot animations, the density of the basic motion vectors extracted from each pair of successive frames was set at a constant to compensate for the dot grouping effect based on the vector density. The dot appearance period (lifetime) is varied across the animations. In a long lifetime random dot animation, region boundaries can be more clearly perceived than in a short one. The different impressions may be explained by analyzing the motion texture elements, but can not always be represented successfully using the motion vectors between two successive frames whose density is set at a constant between the animations with the different lifetime.

  5. A new perspective on the interstellar cloud surrounding the Sun from UV absorption line results

    NASA Astrophysics Data System (ADS)

    Gry, Cecile; Jenkins, Edward B.

    2015-01-01

    We offer a new, more inclusive, picture of the local interstellar medium, where it is composed of a single, monolithic cloud that surrounds the Sun in all directions. Our study of velocities based on Mg II and Fe II ultraviolet absorption lines indicates that the cloud has an average motion consistent with the velocity vector of gas impacting the heliosphere and does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like the squashing of a balloon. The outer boundary of the cloud is in average 10 pc away from us but is highly irregular, being only a few parsecs away in some directions, with possibly a few extensions up to 20 pc. Average H I volume densities vary between 0.03 and 0.1 cm3 over different sight lines. Metals appear to be significantly depleted onto grains, and there is a steady increase in this effect from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Additional, secondary velocity components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume holding the gas that we identify with the main cloud. Half of the sight lines exhibit a secondary component moving at about - 7.2 km/s with respect to the main component, which may be the signature of an implosive shock propagating toward the cloud's interior.

  6. On the accuracy of approximation of a small celestial body motion using intermediate perturbed orbits calculated from two position vectors and three observations

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.; Shefer, O. V.

    2015-01-01

    We examine intermediate perturbed orbits proposed by the first author previously, defined from the two position vectors and three angular coordinates of a small celestial body. It is shown theoretically, that at a small reference time interval covering the measurements the approximation accuracy of real movements by these orbits corresponds approximately to the third order of osculation. The smaller reference interval of time, the better this correspondence. Laws of variation of the methodical errors in constructing intermediate orbits subject to the length of reference time interval are deduced. According to these laws, the convergence rate of the methods to the exact solution (upon reducing the reference interval of time) is higher by two orders of magnitude than in the case of conventional methods using the Keplerian unperturbed orbit. The considered orbits are among the most accurate in set of orbits of their class determined by the order of osculation. The theoretical results are validated by numerical examples.

  7. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    SciTech Connect

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A.

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  8. Cloud Interactions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration

  9. Shape of fair weather clouds.

    PubMed

    Wang, Yong; Zocchi, Giovanni

    2010-03-19

    We introduce a model which accounts for the shape of cumulus clouds exclusively in terms of thermal plumes or thermals. The plumes are explicitly represented by a simple potential flow generated by singularities (sources and sinks) and are thus laminar, but with their motion create a field which supports the cloud. We compare this model with actual clouds by means of various shape descriptors including the fractal dimension, and find agreement. PMID:20366506

  10. A vector-dyadic development of the equations of motion for N-coupled flexible bodies and point masses. [spacecraft trajectories

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1975-01-01

    The equations of motion for a system of coupled flexible bodies, rigid bodies, point masses, and symmetric wheels were derived. The equations were cast into a partitioned matrix form in which certain partitions became nontrivial when the effects of flexibility were treated. The equations are shown to contract to the coupled rigid body equations or expand to the coupled flexible body equations all within the same basic framework. Furthermore, the coefficient matrix always has the computationally desirable property of symmetry. Making use of the derived equations, a comparison was made between the equations which described a flexible body model and those which described a rigid body model of the same elastic appendage attached to an arbitrary coupled body system. From the comparison, equivalence relations were developed which defined how the two modeling approaches described identical dynamic effects.

  11. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Project Physics Reader 1, Concepts of Motion.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    As a supplement to Project Physics Unit 1, 21 articles are presented in this reader. Concepts of motion are discussed under headings: motion, motion in words, representation of movement, introducing vectors, Galileo's discussion of projectile motion, Newton's laws of dynamics, the dynamics of a golf club, report on Tait's lecture on force, and bad…

  13. Martian Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure.

    Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  14. Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds

    NASA Astrophysics Data System (ADS)

    Sirch, Tobias; Bugliaro, Luca

    2015-04-01

    Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds An algorithm was developed to forecast the development of water and ice clouds for the successive 5-120 minutes separately using satellite data from SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard Meteosat Second Generation (MSG). In order to derive cloud cover, optical thickness and cloud top height of high ice clouds "The Cirrus Optical properties derived from CALIOP and SEVIRI during day and night" (COCS, Kox et al. [2014]) algorithm is applied. For the determination of the liquid water clouds the APICS ("Algorithm for the Physical Investigation of Clouds with SEVIRI", Bugliaro e al. [2011]) cloud algorithm is used, which provides cloud cover, optical thickness and effective radius. The forecast rests upon an optical flow method determining a motion vector field from two satellite images [Zinner et al., 2008.] With the aim of determining the ideal time separation of the satellite images that are used for the determination of the cloud motion vector field for every forecast horizon time the potential of the better temporal resolution of the Meteosat Rapid Scan Service (5 instead of 15 minutes repetition rate) has been investigated. Therefore for the period from March to June 2013 forecasts up to 4 hours in time steps of 5 min based on images separated by a time interval of 5 min, 10 min, 15 min, 30 min have been created. The results show that Rapid Scan data produces a small reduction of errors for a forecast horizon up to 30 minutes. For the following time steps forecasts generated with a time interval of 15 min should be used and for forecasts up to several hours computations with a time interval of 30 min provide the best results. For a better spatial resolution the HRV channel (High Resolution Visible, 1km instead of 3km maximum spatial resolution at the subsatellite point) has been integrated into the forecast. To detect clouds the difference of

  15. Cloud Spirals and Outflow in Tropical Storm Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes.

    Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the

  16. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  17. Enhanced motion coding in MC-EZBC

    NASA Astrophysics Data System (ADS)

    Chen, Junhua; Zhang, Wenjun; Wang, Yingkun

    2005-07-01

    Since hierarchical variable size block matching and bidirectional motion compensation are used in the motioncompensated embedded zero block coding (MC-EZBC), the motion information consists of motion vector quadtree map and motion vectors. In the conventional motion coding scheme, the quadtree structure is coded directly, the motion vector modes are coded with Huffman codes, and the motion vector differences are coded by an m-ary arithmetic coder with 0-order models. In this paper we propose a new motion coding scheme which uses an extension of the CABAC algorithm and new context modeling for quadtree structure coding and mode coding. In addition, we use a new scalable motion coding method which scales the motion vector quadtrees according to the rate-distortion slope of the tree nodes. Experimental results show that the new coding scheme increases the efficiency of the motion coding by more than 25%. The performance of the system is improved accordingly, especially in low bit rates. Moreover, with the scalable motion coding, the subjective and objective coding performance is further enhanced in low bit rate scenarios.

  18. Cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    Strange, M. G.

    1988-01-01

    The Cloud Absorption Radiometer (CAR) was developed to measure spectrally how light is scattered by clouds and to determine the single scattering albedo, important to meteorology and climate studies, with unprecedented accuracy. This measurement is based on ratios of downwelling to upwelling radiation within clouds, and so is not strongly dependent upon absolute radiometric calibration of the instrument. The CAR has a 5-inch aperture and 1 degree IFOV, and spatially scans in a plane orthogonal to the flight vector from the zenith to nadir at 1.7 revolutions per second. Incoming light is measured in 13 spectral bands, using silicon, germanium, and indium-antimonide detectors. Data from each channel is digitally recorded in flight with 10-bit (0.1 percent) resolution. The instrument incorporates several novel features. These features are briefly detailed.

  19. Scanning Backscatter Lidar Observations for Characterizing 4-D Cloud and Aerosol Fields to Improve Radiative Transfer Parameterizations

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.

    2005-01-01

    dimensions. HARLIE was used in a ground-based configuration in several recent field campaigns. Principal data products include aerosol backscatter profiles, boundary layer heights, entrainment zone thickness, cloud fraction as a function of altitude and horizontal wind vector profiles based on correlating the motions of clouds and aerosol structures across portions of the scan. Comparisons will be made between various cloud detecting instruments to develop a baseline performance metric.

  20. Vector Video

    NASA Astrophysics Data System (ADS)

    Taylor, David P.

    2001-01-01

    Vector addition is an important skill for introductory physics students to master. For years, I have used a fun example to introduce vector addition in my introductory physics classes based on one with which my high school physics teacher piqued my interest many years ago.

  1. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...     View Larger Image Stratus clouds are common in the Arctic during the summer months, and are ... formats available at JPL August 23, 2000 - Stratus clouds help modulate the arctic climate. project:  ...

  2. Cloud Computing

    SciTech Connect

    Pete Beckman and Ian Foster

    2009-12-04

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  3. Improved automatic estimation of winds at the cloud top of Venus using superposition of cross-correlation surfaces

    NASA Astrophysics Data System (ADS)

    Ikegawa, Shinichi; Horinouchi, Takeshi

    2016-06-01

    Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.

  4. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    NASA Technical Reports Server (NTRS)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  5. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; Wanzong, S. T.

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  6. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  7. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  8. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  9. An Inexpensive Mechanical Model for Projectile Motion

    ERIC Educational Resources Information Center

    Kagan, David

    2011-01-01

    As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…

  10. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  11. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  12. Mesoscale wake clouds in Skylab pictures.

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Tecson, J. J.

    1974-01-01

    The recognition of cloud patterns formed in the wake of orographic obstacles was investigated using pictures from Skylab, for the purpose of estimating atmospheric motions. The existence of ship-wake-type wave clouds in contrast to vortex sheets were revealed during examination of the pictures, and an attempt was made to characterize the pattern of waves as well as the transition between waves and vortices. Examples of mesoscale cloud patterns which were analyzed photogrammetrically and meteorologically are presented.

  13. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  14. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect

    Piel, A.; Pilch, I.; Trottenberg, T.; Koepke, M. E.

    2008-09-07

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  15. ARM Data for Cloud Parameterization

    SciTech Connect

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  16. The influence of transverse motion within an atomic gravimeter

    NASA Astrophysics Data System (ADS)

    Louchet-Chauvet, Anne; Farah, Tristan; Bodart, Quentin; Clairon, André; Landragin, Arnaud; Merlet, Sébastien; Pereira Dos Santos, Franck

    2011-06-01

    Limits on the long-term stability and accuracy of a second generation cold atom gravimeter are investigated. We demonstrate a measurement protocol based on four interleaved measurement configurations, which allows rejection of most of the systematic effects, but not those related to Coriolis acceleration and wave-front distortions. Both are related to the transverse motion of the atomic cloud. Carrying out measurements with opposite orientations with respect to the Earth's rotation vector direction allows us to separate the effects and correct for the Coriolis shift. Finally, measurements at different atomic temperatures are presented and analyzed. In particular, we show the difficulty of extrapolating these measurements to zero temperature, which is required in order to correct for the bias due to wave-front distortions.

  17. Cloud Control

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2012-01-01

    Your learning curriculum needs a new technological platform, but you don't have the expertise or IT equipment to pull it off in-house. The answer is a learning system that exists online, "in the cloud," where learners can access it anywhere, anytime. For trainers, cloud-based coursework often means greater ease of instruction resulting in greater…

  18. Cloud Control

    ERIC Educational Resources Information Center

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  19. Cloud Cover

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  20. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  1. Operational implications of a cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.

  2. Lower mass limit of an evolving interstellar cloud and chemistry in an evolving oscillatory cloud

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.

    1986-01-01

    Simultaneous solution of the equation of motion, equation of state and energy equation including heating and cooling processes for interstellar medium gives for a collapsing cloud a lower mass limit which is significantly smaller than the Jeans mass for the same initial density. The clouds with higher mass than this limiting mass collapse whereas clouds with smaller than critical mass pass through a maximum central density giving apparently similar clouds (i.e., same Av, size and central density) at two different phases of its evolution (i.e., with different life time). Preliminary results of chemistry in such an evolving oscillatory cloud show significant difference in abundances of some of the molecules in two physically similar clouds with different life times. The problems of depletion and short life time of evolving clouds appear to be less severe in such an oscillatory cloud.

  3. Shapes of Bubbles and Drops in Motion.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)

  4. A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Chen, C.; Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.

  5. A surface-towed vector magnetometer

    NASA Astrophysics Data System (ADS)

    Gee, J. S.; Cande, S. C.

    2002-07-01

    We have tested the feasibility of using a commercial motion sensor as a vector magnetometer that can be towed at normal survey speeds behind a research vessel. In contrast to previous studies using a shipboard mounted vector magnetometer, the towed system is essentially unaffected by the magnetization of the towing vessel. Results from a test deployment compare favorably with an earlier vector aeromagnetic survey, indicating that the towed instrument can resolve horizontal and vertical anomalies with amplitudes >30-50 nT. This instrument should be particularly useful in equatorial regions, where the vector anomalies are substantially greater than the corresponding total field anomalies.

  6. Zero-gravity cloud physics.

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.

    1972-01-01

    The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.

  7. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  8. Ionization and expansion of barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Ma, T.-Z.; Schunk, R. W.

    1993-01-01

    A recently envelope 3D model is used here to study the motion of the barium clouds released in the ionosphere, including the ionization stage. The ionization and the expansion of the barium clouds and the interaction between the clouds and the background ions are investigated using three simulations: a cloud without a directional velocity, a cloud with an initial velocity of 5 km/s across the B field, and a cloud with initial velocity components of 2 km/s both along and across the B field.

  9. Magnetohydrodynamic stability of broad line region clouds

    NASA Astrophysics Data System (ADS)

    Krause, Martin; Schartmann, Marc; Burkert, Andreas

    2012-10-01

    Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilization by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields are present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few gauss for a sample of active galactic nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axisymmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and column density instabilities lead to a filamentary fragmentation of the cloud. This radiative dispersion continues until the cloud is shredded down to the resolution level. For a helical magnetic field configuration, a much more stable cloud core survives with a stationary density histogram which takes the form of a power law. Our simulated clouds develop sub-Alfvénic internal motions on the level of a few hundred km s-1.

  10. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  11. Project Physics Tests 1, Concepts of Motion.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…

  12. CLOUD CONDENSATION NUCLEI MEASUREMENTS WITHIN CLOUDS

    EPA Science Inventory

    Measurements of the spectra of cloud condensation nuclei (CCN) within and near the boundaries of clouds are presented. Some of the in-cloud measurements excluded the nuclei within cloud droplets (interstitial CCN) while others included all nuclei inside the cloud (total CCN). The...

  13. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Loehnert, U.; Maahn, M.

    2015-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  14. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.

    2014-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  15. A comparative assessment of Kalpana-1 and MISR cloud tracked winds over the Indian Ocean region

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kaur, Inderpreet; Kishtawal, C. M.; Pal, P. K.

    2015-08-01

    In this study, an attempt has been made to advance the error characteristic of atmospheric motion vectors (AMVs) derived from the infrared and water vapour channels of Kalpana-1 very high resolution radiometer by comparing against stereo motion vectors (SMVs) retrieved by tracking clouds from the multi-angle imaging spectro-radiometer (MISR) for a period of 9 months. Two different versions of the MISR SMVs with horizontal resolutions 70.4 and 17.6 km, respectively, are used for the inter-comparison. It is found that the Kalpana-1 AMV has stronger westerlies and southerlies than the MISR SMV at all latitudes and levels in majority of times. The performances of Kalpana-1 AMVs against MISR SMVs are assessed by doing a similar analysis where Meteosat-7 AMVs (infrared and water vapour AMVs) are also evaluated against the MISR SMVs for the same region. It is found that results of both AMVs (Kalpana-1 and Meteosat-7) with both sets of MISR SMVs are comparable with few exceptions. The zonal wind components of the MISR SMVs showed smaller mean wind difference and root mean square difference (RMSD) compared to the meridional wind components. The SMVs are typically assigned to higher altitudes than AMVs. Analysis related to the height discrepancies between MISR SMVs and AMVs shows that in the multi-layer cloud AMVs are tracked in upper level cloud targets, while SMVs are skewed more towards lower level. The accuracy is better for the low level where collocations are highly dense and gradually decreases towards the higher levels. Because of improvement in the MISR SMV retrieval algorithm, the errors in the meridional component of SMVs have improved in the recently released version with horizontal resolution of 17.6 km.

  16. Plasma cloud behavior

    NASA Astrophysics Data System (ADS)

    Linson, Lewis M.

    1991-08-01

    Participation in PLACES (Position Location And Communications Effects Simulations) and Midnight Sky field operations is described. In the former, four barium releases were made during the period 4 to 12 December 1980. The range of velocities experienced was greater than before at this location. The principal challenge was to perform real-time tracking of the ion cloud so as to predict a future aim point for use in targeting beacon and probe rockets. Recommendations for obtaining smoother tracking data involve determining the motion of a field line through the ion cloud rather than an indeterminate point in the cloud, making measurements at set intervals, and coordinating measurements by more than one observer. During Midnight Sky, 2 barium releases were made on 29 March 81 and 2 April 81. The first went westerly at 450 m/s while the second was nearly motionless. A small aircraft was positioned so as to take photographs up the magnetic field line during the second release. It is strongly urged that a complete dry run including all participants, communications links, and necessary operations be carried out before a test event.

  17. CLOUD CHEMISTRY.

    SciTech Connect

    SCHWARTZ,S.E.

    2001-03-01

    Clouds present substantial concentrations of liquid-phase water, which can potentially serve as a medium for dissolution and reaction of atmospheric gases. The important precursors of acid deposition, SO{sub 2} and nitrogen oxides NO and NO{sub 2} are only sparingly soluble in clouds without further oxidation to sulfuric and nitric acids. In the case of SO{sub 2} aqueous-phase reaction with hydrogen peroxide, and to lesser extent ozone, are identified as important processes leading to this oxidation, and methods have been described by which to evaluate the rates of these reactions. The limited solubility of the nitrogen oxides precludes significant aqueous-phase reaction of these species, but gas-phase reactions in clouds can be important especially at night.

  18. Neptune's clouds

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The bright cirrus-like clouds of Neptune change rapidly, often forming and dissipating over periods of several to tens of hours. In this sequence Voyager 2 observed cloud evolution in the region around the Great Dark Spot (GDS). The surprisingly rapid changes which occur separating each panel shows that in this region Neptune's weather is perhaps as dynamic and variable as that of the Earth. However, the scale is immense by our standards -- the Earth and the GDS are of similar size -- and in Neptune's frigid atmosphere, where temperatures are as low as 55 degrees Kelvin (-360 F), the cirrus clouds are composed of frozen methane rather than Earth's crystals of water ice. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications

  19. Entrainment instability and vertical motion as causes of stratocumulus breakup

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  20. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  1. Interaction of a neutral cloud moving through a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Lu, G.

    1990-01-01

    Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.

  2. Our World: Cool Clouds

    NASA Video Gallery

    Learn how clouds are formed and watch an experiment to make a cloud using liquid nitrogen. Find out how scientists classify clouds according to their altitude and how clouds reflect and absorb ligh...

  3. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  4. The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express

    NASA Astrophysics Data System (ADS)

    Patsaeva, M. V.; Khatuntsev, I. V.; Patsaev, D. V.; Titov, D. V.; Ignatiev, N. I.; Markiewicz, W. J.; Rodin, A. V.

    2015-08-01

    The Venus Monitoring Camera (VMC) acquired a set of ultraviolet (UV) images during the Venus Express mission unprecedented in its duration from May 2006 to September 2013. Here we present the results of digital tracking of the cloud features in the upper cloud layer at latitudes 25-75°S using images from 257 orbits with the best spatial coverage. The method relies on analysis of correlations between pairs of UV images separated in time. The bulk of data processed allows us to clarify the reasons why the mid-latitude jet is not always present in latitudinal wind profiles. Comparing VMC images with wind velocity fields we found a relationship between cloud morphology at middle latitudes and the circulation. The vector field in middle latitudes depends on the presence of a contrast global streak in the cloud morphology tilted with respect to latitude circles. The angle of the flow deflection (the angle between the wind velocity and latitudinal circles) and the difference of the zonal velocity on the opposite sides of the streak are in direct relationship to the angle between the streak and latitude circles. During such orbits the jet bulge does not appear in the latitudinal profile of the zonal wind component. Otherwise a zonal flow with small changes of the meridional velocity dominates in middle latitudes and manifests itself as a jet bulge. The relationship between the cloud cover morphology and circulation peculiarities can be attributed to the motion of global cloud features, like the Y-feature. We prepared plots of zonal and meridional velocities averaged with respect to the entire observation period. The average zonal velocity has a diurnal maximum at 15:00 local solar time and at 40°S. The meridional velocity reaches its maximum between 13:00 and 16:00 and at 50°S. The velocities obtained by the digital method are in good agreement with results of the visual method in the middle latitudes published earlier by Khatuntsev et al. (2013).

  5. Cloud classification using whole-sky imager data

    SciTech Connect

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R.

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  6. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe ...

  7. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... of this montage is a natural-color view of the Caribbean Sea east of the Yucatan Peninsula as seen by MISR's most steeply ... - Thin, feathery clouds of ice crystals over the Caribbean Sea. project:  MISR category:  gallery ...

  8. Circular motion

    NASA Astrophysics Data System (ADS)

    Newton, Isaac; Henry, Richard Conn

    2000-07-01

    An extraordinarily simple and transparent derivation of the formula for the acceleration that occurs in uniform circular motion is presented, and is advocated for use in high school and college freshman physics textbooks.

  9. Polar motion

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.

    1973-01-01

    Tracking of the Beacon Explorer-C satellite by a precision laser system was used to measure the polar motion and solid earth tide. The tidal perturbation of satellite latitude is plotted as variation in maximum latitude in seconds of arc on earth's surface as a function of the date, and polar motion is shown by plotting the variation in latitude of the laser in seconds of arc along the earth's surface as a function of date

  10. The mean-square error optimal linear discriminant function and its application to incomplete data vectors

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1979-01-01

    In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.

  11. Cloud Thickness from Diffusion of Lidar Pulses in Clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Davis, A.; McGill, Matthew

    1999-01-01

    Measurements of the distribution of reflected light from a laser beam incident on an aqueous suspension of particles or "cloud" with known thickness and particle size distribution are reported. The distribution is referred to as the "cloud radiative Green's function", G. In the diffusion domain, G is sensitive to cloud thickness, allowing that important quantity to be retrieved. The goal of the laboratory simulation is to provide preliminary estimates of sensitivity of G to cloud thickness,for use in the optimal design of an offbeam Lidar instrument for remote sensing of cloud thickness (THOR, Thickness from Offbeam Returns). These clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The microsphere size distribution is roughly lognormal, from 0.5 microns to 25 microns, similar to real clouds. Density of suspended spheres is adjusted so mean-free-path of visible photons is about 10 cm, approximately 1000 times smaller than in real clouds. The light source is a ND:YAG laser at 530 nm. Detectors are flux and photon-counting Photomultiplier Tube (PMTS), with a glass probe for precise positioning. A Labview 5 VI controls positioning, and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider, and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns, and step size is selectable from the VI software. Far from the incident beam, the rate of exponential increase as the direction of the incident beam is approached scales as expected from diffusion theory, linearly with the cloud thickness, and inversely as the square root of the reduced optical thickness, and is independent of particle size. Near the beam the signal begins to increase faster than exponential, due to single and low-order scattering near the backward direction, and here the distribution depends on particle size. Results are being used to verify 3D Monte Carlo

  12. Development of a radiative cloud parameterization scheme of stratocumulus and stratus clouds which includes the impact of CCN on cloud albedo

    SciTech Connect

    Cotton, W.R.

    1994-01-18

    The objective of this research is to develop a parameterization scheme that is able to dispose or predict changes in stratocumulus cloud cover, atmospheric boundary layer (ABL) stability, liquid water paths (LWPs), and cloud albedo due to changes in sea-surface temperatures, large scale vertical motion and wind shear, and cloud condensation nuclei (CCN). The motivation for developing such a parameterization scheme is that it is hypothesized that anthropogenic sources of CCN can result in increased concentrations of cloud droplets. The higher concentrations of CCN result in higher concentrations of cloud droplets, thereby enhancing cloud albedo which in the absence of other effects will induce a climate forcing opposed to that associated with ``Greenhouse`` warming. As a result of the complicated interactions between cloud microstructure, cloud macrostructure, and cloud radiative transfer, only a limited range of clouds are susceptible to changes in CCN concentrations causing changes in cloud albedo. It is the intent of this research to determine the range of cloud types that are susceptible to albedo changes by anthropogenic CCN and incorporate that information into a cloud parameterization scheme.

  13. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  14. A Flexible Turbulent Vector Field Generator

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Davis, A.

    2004-12-01

    Analysis and generation of turbulent vector fields is a necessity in many areas, such as Atmospheric Science. A candidate model of vector field must be flexible enough to tune some features, such as the spacial distribution of vortices, sinks and sources, according to physical measures. To achieve that goal, we propose a model that depends upon a given matricial function called "topolet" and a law of random vectors family. This model has a hierarchical structure. Its spinal column is a tree: the encoding tree of the domain where the vector field lives. The sets of vortices, sinks and sources are driven by some Bernouilli subtrees, directly giving their fractal dimension. At each node of the tree is attached a rate of energy loose giving the spectral slope. All those quantities are independantly identifiable on the base of mathematical proofs. A primitive version of this model have been proposed for generating clouds.

  15. Interstellar Gas Flow Vector and Temperature Determination over 5 Years of IBEX Observations

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Schwadron, N.; Sokół, J. M.; Wurz, P.

    2015-01-01

    The Interstellar Boundary Explorer (IBEX) observes the interstellar neutral gas flow trajectories at their perihelion in Earth's orbit every year from December through early April, when the Earth's orbital motion is into the oncoming flow. These observations have defined a narrow region of possible, but very tightly coupled interstellar neutral flow parameters, with inflow speed, latitude, and temperature as well-defined functions of inflow longitude. The best- fit flow vector is different by ≈ 3° and lower by ≈ 3 km/s than obtained previously with Ulysses GAS, but the temperature is comparable. The possible coupled parameter space reaches to the previous flow vector, but only for a substantially higher temperature (by ≈ 2000 K). Along with recent pickup ion observations and including historical observations of the interstellar gas, these findings have led to a discussion, whether the interstellar gas flow into the solar system has been stable or variable over time. These intriguing possibilities call for more detailed analysis and a longer database. IBEX has accumulated observations over six interstellar flow seasons. We review key observations and refinements in the analysis, in particular, towards narrowing the uncertainties in the temperature determination. We also address ongoing attempts to optimize the flow vector determination through varying the IBEX spacecraft pointing and discuss related implications for the local interstellar cloud and its interaction with the heliosphere.

  16. Image transfer through cirrus clouds. II. Wave-front segmentation and imaging.

    PubMed

    Landesman, Barbara T; Matson, Charles L

    2002-12-20

    A hybrid technique to simulate the imaging of space-based objects through cirrus clouds is presented. The method makes use of standard Huygens-Fresnel propagation beyond the cloud boundary and a novel vector trace approach within the cloud. At the top of the cloud, the wave front is divided into an array of input gradient vectors, which are in turn transmitted through the cloud model by use of the Coherent Illumination Ray Trace and Imaging Software for Cirrus. At the bottom of the cloud, the output vector distribution is used to reconstruct a wave front that continues propagating to the ground receiver. Images of the object as seen through cirrus clouds with different optical depths are compared with a diffraction-limited image. Turbulence effects from the atmospheric propagation are not included. PMID:12510928

  17. Stellar Encounters with the Oort Cloud Based on Hipparcos Data

    NASA Technical Reports Server (NTRS)

    Garcia-Sanchez, J.; Preston, R. A.; Jones, D. L.; Weissman, P. R.; Lestrade, J. F.; Latham, D. W.; Stefanik, R. P.

    1998-01-01

    We have combined Hipparcos proper motion and parallax data for nearby stars with ground-based radial velocity measurements to find stars which may have passed (or will pass) close enough to the Sun to perturb the Oort cloud.

  18. A global survey of cloud overlap based on CALIPSO and CloudSat measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H.

    2015-01-01

    actual cloud fractions for multilayered cloud types (e.g., As + St/Sc and Ac + St/Sc) over the Southern Ocean. The establishment of a statistical relationship between multilayered cloud types and the environmental conditions (e.g., atmospheric vertical motion, convective stability and wind shear) would be useful for parameterization design of cloud overlap in numerical models.

  19. Topographic Structure from Motion

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.

    2011-12-01

    The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with

  20. Hidden symmetry of hyperbolic monopole motion

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Warnick, C. M.

    2007-10-01

    Hyperbolic monopole motion is studied for well separated monopoles. It is shown that the motion of a hyperbolic monopole in the presence of one or more fixed monopoles is equivalent to geodesic motion on a particular submanifold of the full moduli space. The metric on this submanifold is found to be a generalisation of the multi-centre Taub-NUT metric introduced by LeBrun. The one centre case is analysed in detail as a special case of a class of systems admitting a conserved Runge-Lenz vector. The two centre problem is also considered. An integrable classical string motion is exhibited.

  1. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  2. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  3. Asteroid Motions

    NASA Astrophysics Data System (ADS)

    Sykes, Mary V.; Moynihan, P. Daniel

    1996-12-01

    Equations are derived which describe the apparent motion of an asteroid traveling on an elliptical orbit in geocentric ecliptic coordinates. At opposition, the equations are identical to those derived by Bowellet al. (Bowell, E., B. Skiff, and L. Wasserman 1990. InAsteroids, Comets, Meteors III(C.-I. Lagerkvist, M. Rickman, B. A. Lindblad, and M. Lindgren, Eds.), pp. 19-24. Uppsala Universitet, Uppsala, Sweden). These equations can be an important component in the optimization of search strategies for specific asteroid populations based on their apparent motions relative to other populations when observed away from opposition.

  4. Present-day plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1977-01-01

    A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

  5. Torus-Shaped Dust Clouds in Magnetized Anodic Plasmas

    SciTech Connect

    Pilch, I.; Reichstein, T.; Greiner, F.; Piel, A.

    2008-09-07

    The generation of a torus-shaped dust cloud in an anodic plasma is decribed. The confined dust particles perfom a rotational motion around the torus major axis. The structure of the cloud in dependence of the external parameters are observed and the rotation velocity of the particles was measured and compared with a simple estimate.

  6. Vectors in Use in a 3D Juggling Game Simulation

    ERIC Educational Resources Information Center

    Kynigos, Chronis; Latsi, Maria

    2006-01-01

    The new representations enabled by the educational computer game the "Juggler" can place vectors in a central role both for controlling and measuring the behaviours of objects in a virtual environment simulating motion in three-dimensional spaces. The mathematical meanings constructed by 13 year-old students in relation to vectors as objects, as a…

  7. Integrals of motion for the classical two-body problem with drag

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.; Mittleman, D.

    1983-01-01

    Integrals of motion for the two-body problem with drag are obtained by operating on the second-order vector differential equation describing the motion. The force field consists of an inverse-square gravitational attraction and a drag force proportional to the velocity vector and inversely proportional to the square of the distance to the attracting center. The developed integrals are the analogs of the Keplerian scalar energy, the vector angular momentum, and the Laplace vector.

  8. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  9. Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products

    NASA Astrophysics Data System (ADS)

    Guo, Zhun; Zhou, Tianjun

    2015-05-01

    Based on the National Centers for Environmental Prediction (NCEP) and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data and CloudSat products, the seasonal variations of the cloud properties, vertical occurrence frequency, and ice water content of clouds over southeastern China were investigated in this study. In the CloudSat data, a significant alternation in high or low cloud patterns was observed from winter to summer over southeastern China. It was found that the East Asian Summer Monsoon (EASM) circulation and its transport of moisture leads to a conditional instability, which benefits the local upward motion in summer, and thereby results in an increased amount of high cloud. The deep convective cloud centers were found to coincide well with the northward march of the EASM, while cirrus lagged slightly behind the convection center and coincided well with the outflow and meridional wind divergence of the EASM. Analysis of the radiative heating rates revealed that both the plentiful summer moisture and higher clouds are effective in destabilizing the atmosphere. Moreover, clouds heat the mid-troposphere and the cloud radiative heating is balanced by adiabatic cooling through upward motion, which causes meridional wind by the Sverdrup balance. The cloud heating-forced circulation was observed to coincide well with the EASM circulation, serving as a positive effect on EASM circulation.

  10. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)