Science.gov

Sample records for cloud radar lidar

  1. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  2. The Retrieval of Ice-Cloud Properties from Cloud Radar and Lidar Synergy.

    NASA Astrophysics Data System (ADS)

    Tinel, Claire; Testud, Jacques; Pelon, Jacques; Hogan, Robin J.; Protat, Alain; Delanoë, Julien; Bouniol, Dominique

    2005-06-01

    Clouds are an important component of the earth's climate system. A better description of their microphysical properties is needed to improve radiative transfer calculations. In the framework of the Earth, Clouds, Aerosols, and Radiation Explorer (EarthCARE) mission preparation, the radar-lidar (RALI) airborne system, developed at L'Institut Pierre Simon Laplace (France), can be used as an airborne demonstrator. This paper presents an original method that combines cloud radar (94-95 GHz) and lidar data to derive the radiative and microphysical properties of clouds. It combines the apparent backscatter reflectivity from the radar and the apparent backscatter coefficient from the lidar. The principle of this algorithm relies on the use of a relationship between the extinction coefficient and the radar specific attenuation, derived from airborne microphysical data and Mie scattering calculations. To solve radar and lidar equations in the cloud region where signals can be obtained from both instruments, the extinction coefficients at some reference range z0 must be known. Because the algorithms are stable for inversion performed from range z0 toward the emitter, z0 is chosen at the farther cloud boundary as observed by the lidar. Then, making an assumption of a relationship between extinction coefficient and backscattering coefficient, the whole extinction coefficient, the apparent reflectivity, cloud physical parameters, the effective radius, and ice water content profiles are derived. This algorithm is applied to a blind test for downward-looking instruments where the original profiles are derived from in situ measurements. It is also applied to real lidar and radar data, obtained during the 1998 Cloud Lidar and Radar Experiment (CLARE'98) field project when a prototype airborne RALI system was flown pointing at nadir. The results from the synergetic algorithm agree reasonably well with the in situ measurements.

  3. Ground-Based Lidar and Radar Remote Sensing of Tropical Cirrus Clouds at Nauru Island: Cloud Statistics and Radiative Impacts

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Mace, Gerald G.

    2002-12-12

    Ground based active and passive remote sensing instrumentation are combined to derive radiative and macrophysical properties of tropical cirrus clouds. Eight months of cirrus observations at the Department of Energy Atmospheric Radiation Measurement site located on Nauru Island provide independent retrieval of cloud height and visible optical depth using lidar and radar techniques. Comparisons reveal the millimeter cloud radar does not detect 13% of cirrus clouds with a cloud base higher than 15 km that are detected by the lidar. Lidar and radar cloud heights demonstrate good agreement when the cloud lies below 15 km. Radar and lidar retrievals of visible optical depth also compare well for all but the optically thinnest clouds. Cloud occurrence at Nauru as measured by lidar, reveal clear sky conditions occur on average 40%, low clouds 16%, and high clouds 44% of the time. Analysis of observed cirrus macrophysical and radiative properties suggests that two different types of cirrus exist in the tropical western Pacific: high, thin, laminar cirrus with cloud base higher than 15 km, and lower, physically thicker, more structured cirrus clouds. Differences in cirrus types are likely linked to their formation mechanisms. Radiosonde profiles of temperature and equivalent potential temperature near the tropical tropopause show a clear transition between neutrally stable and stable air at ~15 km, which may also explain the presence of two distinct cirrus types. Radiative heating rate and cloud forcing calculations for specific cirrus cases reveal the impact of tropical cirrus clouds on the earth?s radiation budget.

  4. On the use of IR lidar and K(sub a)-band radar for observing cirrus clouds

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Hardesty, R. Michael; Kropfli, Robert A.

    1990-01-01

    Advances in lidar and radar technology have potential for providing new and better information on climate significant parameters of cirrus. Consequently, the NOAA Wave Propagation Lab. is commencing CLARET (Cloud Lidar And Radar Exploratory Test) to evaluate the promise of these new capabilities. Parameters under study include cloud particle size distribution, height of cloud bases, tops, and multiple layers, and cloud dynamics revealed through measurement of vertical motions. The first phase of CLARET is planned for Sept. 1989. The CO2 coherent Doppler lidar and the sensitive K sub a band radar hold promise for providing valuable information on cirrus that is beyond the grasp of current visible lidars.

  5. Estimation of Droplet Size and Liquid Water Content Using Radar and Lidar: Marine Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J. Vivek; Jensen, Jorgen; Ellis, Scott; Morley, Bruce; Tsai, Peisang; Spuler, Scott; Ghate, Virendra; Schwartz, Christian

    2016-04-01

    During the Cloud Systems Evolution in the Trades (CSET) field campaign airborne measurements from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the High Spectral Resolution Lidar (HSRL) were made in the North Pacific. In addition, in situ observations of cloud and aerosols size distributions and radiation were also collected. The HCR operated at a frequency of 94 GHz (3 mm wavelength) and collected observations at high temporal (0.5 sec) and range (30 m) resolution. The capability of HCR is enhanced by the coordination with the HSRL that made high temporal and range resolution observations of calibrated backscatter and extinction. The lidar, designed and built by the University of Wisconsin. The radar and lidar are designed to fly on the NCAR Gulfstream V HIAPER aircraft. The remote and in situ measurements collected during CSET offer opportunities for evaluating the engineering performance of the instruments and developing cloud microphysical scientific products. The coincident HCR and HSRL measurements are analyzed for assess their utility to characterize cloud boundaries, estimate liquid water content (LWC) and mean particle size. Retrievals of LWC and mean particle sizes from remote radar and lidar measurements will be compared with those from the in situ instruments.

  6. Validation of SCIAMACHY O2 A band cloud heights using Cloudnet radar/lidar measurements

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.

    2013-10-01

    For the first time two SCIAMACHY O2 A band cloud height products are validated using ground-based radar/lidar measurements between January 2003 and December 2011. The products are the ESA Level 2 (L2) version 5.02 cloud top height and the FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) version 6 cloud height. The radar/lidar profiles are obtained at the Cloudnet sites of Cabauw and Lindenberg, and are averaged for one hour centered at the SCIAMACHY overpass time to achieve an optimal temporal and spatial match. In total we have about 220 cases of single layer clouds and 200 cases of multi-layer clouds. The FRESCO cloud height and ESA L2 cloud top height are compared with the Cloudnet cloud top height and Cloudnet cloud middle height. We find that the ESA L2 cloud top height has a better agreement with the Cloudnet cloud top height than the Cloudnet cloud middle height. The ESA L2 cloud top height is on average 0.44 km higher than the Cloudnet cloud top height, with a standard deviation of 3.07 km. The FRESCO cloud height is closer to the Cloudnet cloud middle height than the Cloudnet cloud top height. The mean difference between the FRESCO cloud height and the Cloudnet cloud middle height is -0.14 km with a standard deviation of 1.88 km. The SCIAMACHY cloud height products are further compared to the Cloudnet cloud top height and the Cloudnet cloud middle height in 1 km bins. For single layer clouds, the difference between the ESA L2 cloud top height and the Cloudnet cloud top height is less than 1 km for each cloud bin at 3-7 km, which is 24 % percent of the data. The difference between the FRESCO cloud height and the Cloudnet cloud middle height is less than 1 km for each cloud bin at 0-6 km, which is 85 % percent of the data. The results are similar for multi-layer clouds, but the percentage of cases having a bias within 1 km is smaller than for single layer clouds. Since globally about 60 % of all clouds are low clouds and 42 % are single

  7. Characterizing Decades of Cloud Measurements from Combined ARM Profiling Radar and Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Jensen, M. P.; Baxter, S.; Toto, T.; Wang, M.; Kollias, P.; Clothiaux, E. E.

    2014-12-01

    The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has continuously operated profiling cloud radars and micropulse lidars at five fixed sites, for periods ranging from eight to nineteen years. The sites include the U.S. southern Great Plains, the Alaska North Slope and three Tropical Western Pacific locations. The radar and lidar observations, along with ceilometer and precipitation measurements, have been synthesized using ARM's Active Remote Sensing of Clouds (ARSCL) value-added product, which provides cloud boundaries and best-estimate radar reflectivities, mean Doppler velocities and spectral widths. The product's time resolution ranges from 10 seconds down to 4 seconds, with height resolution of 45 meters or better. Through its use in retrievals of cloud microphysics and dynamics, this high-resolution, long-term data set has the potential to make major contributions toward improved cloud representations in climate models and the understanding of cloud processes. However, it is essential that data set quality and accuracy be assessed and made available to data users in order to maximize utility and reliability. In this study, we apply a variety of approaches to characterize observation quality throughout the ARSCL data record at each site. We describe instrument availability and radar operating status and possible issues. We track radar sensitivity as a function of time through cirrus detection statistics as well as changes in radar signal saturation level over time. We also examine noise and insect clutter reflectivity levels as possible surrogates for radar calibration changes. Through these and other techniques, we assess the most and least reliable time periods for each instrumented site and provide valuable guidance to potential data users, for both case-study research and long-term climatological applications.

  8. Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE'98

    NASA Astrophysics Data System (ADS)

    Hogan, R. J.; Francis, P. N.; Flentje, H.; Illingworth, A. J.; Quante, M.; Pelon, J.

    2003-07-01

    Results are presented from two case-studies during the 1998 Cloud Lidar And Radar Experiment (CLARE'98) in which mixed-phase clouds were observed by a multitude of ground-based and airborne instruments. In both cases supercooled liquid water was present in the form of highly reflective layers in lidar imagery, while the radar echo was dominated by the contribution from the much larger ice particles. In the first case-study, four individual liquid-water layers were observed by an airborne nadir-pointing polarimetric lidar at temperatures between -7 °C and -15 °C, embedded within a warm-frontal ice cloud. Their phase was confirmed by the in situ measurements and by their very low depolarization of the lidar signal. The effective droplet radius ranged from 2 to 5 m. Simultaneous temperature and vertical-wind measurements by the aircraft demonstrated that they were generated by a gravity wave with a wavelength of around 15 km. Thin sector plates grew rapidly in the high-supersaturation conditions and were responsible for the high values of differential reflectivity measured by the ground-based radar in the vicinity of the layers. In the second case-study a liquid-water altocumulus layer was observed at -23 °C, which was slowly glaciating. Profiles of liquid and ice extinction coefficient, water content and effective radius were derived from the remote measurements taken in both cases, using radar-lidar and dual-wavelength radar techniques to size the ice particles; where in situ validation was available, agreement was good. Radiative-transfer calculations were then performed on these profiles to ascertain the radiative effect of the supercooled water. It was found that, despite their low liquid-water path (generally less than 10-20 g m-2), these clouds caused a significant increase in the reflection of solar radiation to space, even when cirrus was present, above which the long-wave signal dominated. In the cases considered, their capacity to decrease the net

  9. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  10. Cloud effective particle size and water content profile retrievals using combined lidar and radar observations, 2, Comparison with IR radiometer and in situ measurements of ice clouds

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; van Lammeren, A. C. A. P.; Hogan, R. J.; Russchenberg, H. W. J.; Apituley, A.; Francis, P.; Testud, J.; Pelon, J.; Quante, M.; Goddard, J.

    2001-11-01

    A new combined iidar/radar inversion procedure has been developed for cloud effective radius and water content retrievals. The algorithm treats the lidar extinction, derived effective particle size, and multiple-scattering effects together in a consistent fashion. This procedure has been applied to data taken during the Netherlands Cloud and Radiation (CLARA) campaign and the Cloud Lidar and Radar Experiment (CLARE'98) multisensor cloud measurement campaign. The results of the algorithm compare well with simultaneous IR radiometer cloud measurements as well as with measurements made by using aircraft-mounted two-dimensional probe particle-sizing instruments.

  11. Arctic Cloud Fraction and Microphysical Characteristics from 8-year Space-based Lidar and Radar Measurements

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Yeo, H.; Jeong, J. H.; Kim, M. H.; Son, S. W.; Kim, B. M.; Kim, S. J.

    2015-12-01

    Arctic clouds are a key factor in determining the energy budget both at the top of the atmosphere and at the suface by modulating the long-wave and short-wave radiative fluxes, which affect the surface temperature and may effect on the growth or retreat of sea ice extent and thickness. In this work, we exmine three-dimensional geometric and microphysical properties of Arctic clouds mainly from 8-year space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). Cloud Frations (CFs) from CALIOP-CPR and MODIS show similar seasonal and inter-annual variations, but shows significant different in CF over the opened sea area (i.e., Barents and Kara Sea) and over the sea ice. High occurrences of cloud top height are found below 2 km. But comparably high presences of mid- and high-level clouds are also found, especially in winter-time. This suggests that both low- and high-level clouds over the Arctic may influence on the long-wave radiation budget both at the surface and top of the atmosphere. On the other hand, the top height of winter-time clouds looks consistent with tropopause height. Cloud Optical Depth (COD) over the Arctic shows high in summer and low in winter, which would be contrary to the seasonal/monthly variations of CF. High COD during summer can be explained by enhanced level of liquid cloud droplet number concentrations. The number concentration and effective radius (in parenthesis) of liquid cloud droplet during summner was in the range of about 30 to 80 cm-3 (about 6 ~ 16 mm).

  12. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  13. Comparison of cloud boundaries measured with 8.6 mm radar and 10.6 micrometer lidar

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Intrieri, Janet M.

    1993-01-01

    One of the most basic cloud properties is location; the height of cloud base and the height of cloud top. The glossary of meteorology defines cloud base (top) as follows: 'For a given cloud or cloud layer, that lowest (highest) level in the atmosphere at which the air contains a perceptible quantity of cloud particles.' Our studies show that for a 8.66 mm radar, and a 10.6 micrometer lidar, the level at which cloud hydrometers become 'perceptible' can vary significantly as a function of the different wavelengths, powers, beamwidths and sampling rates of the two remote sensors.

  14. Cloud radiative forcing on surface shortwave fluxes: A case study based on Cloud Lidar and Radar Exploratory Test

    SciTech Connect

    Shi, L.

    1994-12-20

    Shortwave downward fluxes for selected stratus, cirrus, and mixed phase cloud cases are analyzed based on cloud and surface radiation measurements from the Cloud Lidar and Radar Exploratory Test conducted in the Denver-Boulder area of Colorado during September-October, 1989. A medium resolution, discrete-ordinate shortwave radiative transfer model is used to provide clear-sky conditions and to examine the cloud shortwave radiative forcing. The model simulation indicates that for stratus clouds the effective radius increases with increasing liquid water path. For cirrus cloud simulation, the model results are within 10% agreement with the surface flux measurements. However, using the one-dimensional plane-parallel model, the model results are in poor agreement for the inhomogeneous mixed phase cloud case. Over the elevated observation site, the reduction in shortwave downward flux by clouds can be as large as 40% for a small cloud water path value of 20 g m{sup {minus}2}. The variation in observed cloud shortwave forcing is highly correlated with the integrated cloud water path. The normalized (by the clear-sky value) cloud shortwave forcing increases rapidly when the cloud water path is small. The rate of increase decreases, and the normalized cloud forcing approaches saturation when cloud water path becomes large. The magnitude of the saturation value depends on cloud optical properties. The variation in observed cloud forcing is consistent with the theoretical curve for cloudy atmospheric albedo variation. At a constant value of cloud water path, the normalized cloud forcing increases with solar zenith angle. The solar zenith angle effect is less significant for larger value of cloud water path. 44 refs., 11 figs.

  15. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGESBeta

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  16. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGESBeta

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  17. Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    NASA Astrophysics Data System (ADS)

    Bühl, J.; Leinweber, R.; Görsdorf, U.; Radenz, M.; Ansmann, A.; Lehmann, V.

    2015-08-01

    Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory, Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: a comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that this combination of instruments can up-value the measurement values of each single instrument and may allow the simultaneous sensing of atmospheric targets and the motion of clear air.

  18. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect

    Wang, Zhien

    2006-01-04

    The project is concerned with the characterization of cloud macrophysical and microphysical properties by combining radar, lidar, and radiometer measurements available from the U.S. Department of Energy's ARM Climate Research Facility (ACRF). To facilitate the production of integrated cloud product by applying different algorithms to the ARM data streams, an advanced cloud classification algorithm was developed to classified clouds into eight types at the SGP site based on ground-based active and passive measurements. Cloud type then can be used as a guidance to select an optimal retrieval algorithm for cloud microphysical property retrieval. The ultimate goal of the effort is to develop an operational cloud classification algorithm for ARM data streams. The vision 1 IDL code of the cloud classification algorithm based on the SGP ACRF site observations was delivered to the ARM cloud translator during 2004 ARM science team meeting. Another goal of the project is to study midlevel clouds, especially mixed-phase clouds, by developing new retrieval algorithms using integrated observations at the ACRF sites. Mixed-phase clouds play a particular role in the Arctic climate system. A multiple remote sensor based algorithm, which can provide ice water content and effective size profiles, liquid water path, and layer-mean effective radius of water droplet, was developed to study arctic mixed-phase clouds. The algorithm is applied to long-term ARM observations at the NSA ACRF site. Based on these retrieval results, we are studying seasonal and interannual variations of arctic mixed-phase cloud macro- and micro-physical properties.

  19. Cirrus Clouds Optical, Microphysical and Radiative Properties Observed During Crystal-Face Experiment: I. A Radar-Lidar Retrieval System

    NASA Technical Reports Server (NTRS)

    Mitrescu, C.; Haynes, J. M.; Stephens, G. L.; Heymsfield, G. M.; McGill, M. J.

    2004-01-01

    A method of retrieving cloud microphysical properties using combined observations from both cloud radar and lidar is introduced. This retrieval makes use of an improvement to the traditional optimal estimation retrieval method, whereby a series of corrections are applied to the state vector during the search for an iterative solution. This allows faster convergence to a solution and is less processor intensive. The method is first applied to a synthetic cloud t o demonstrate its validity, and it is shown that the retrieval reliably reproduces vertical profiles of ice water content. The retrieval method is then applied to radar and lidar observations from the CRYSTAL-FACE experiment, and vertical profiles of ice crystal diameter, number concentration, and ice water content are retrieved for a cirrus cloud layers observed one day of that experiment. The validity of the relationship between visible extinction coefficient and radar reflectivity was examined. While synthetic tests showed such a functional relationship, the measured data only partially supported such a conclusion. This is due to errors in the forward model (as explained above) as well as errors in the data sets, including possible mismatch between lidar and radar profiles or errors in the optical depth. Empirical relationships between number concentrations and mean particle diameter were also examined. The results indicate that a distinct and robust relationship exists between these retrieved quantities and it is argued that such a relationship is more than an artifact of the retrieval process offering insight into the nature of the microphysical processes taking place in cirrus.

  20. Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Nishizawa, Tomoaki; Takemura, Toshihiko; Kumagai, Hiroshi; Kuroiwa, Hiroshi; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Emori, Seita; Kamei, Akihide; Nakajima, Teruyuki

    2007-04-01

    We observed the vertical distribution of clouds over the Pacific Ocean near Japan in May 2001 using lidar and a 95-GHz radar on the Research Vessel Mirai. Cloud analyses derived from synergy use of radar and lidar observations showed that there were two local maxima of cirrus cloud frequency of occurrence at 7 and 10.5 km and the drizzle frequency of occurrence was about the half compared with that of clouds below 4 km. The number of layers could be also measured using these schemes. Single, double, triple, and quadruple (or more) cloud layers had a 48, 23, 7, and 2% probability of occurrence, respectively. The average number of cloud layers when clouds existed was 1.54. The vertical structure of clouds observed with the radar/lidar system was compared to clouds in the aerosol transport model SPRINTARS, which is based on the CCSR-NIES Atmospheric General Circulation Model. The cloud fraction, radar reflectivity factor, and lidar backscattering coefficient were simulated by the model and compared to those by the observations using height-time cross-sections where the radar sensitivity was taken into account. The overall pattern of cloud fraction was well reproduced, although the model underestimated (overestimated) mean cloud fraction below 8 km (above 8 km). Cloud microphysics in the model could also be validated through comparison of derived model radar and lidar signals in grid mean with observations. The model overestimated ice particle size above 10 km, and simulated particle sizes in water clouds of 10 μm were larger than observed.

  1. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  2. Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; White, L. J. T.; Abernethy, K. A.; Jeffery, K. J.; Lewis, S. L.; Collins, M.; Lefsky, M. A.; Leal, M. E.; Woodhouse, I. H.; Meir, P.

    2011-08-01

    Spatially-explicit maps of aboveground biomass are essential for calculating the losses and gains in forest carbon at a regional to national level. The production of such maps across wide areas will become increasingly necessary as international efforts to protect primary forests, such as the REDD+ (Reducing Emissions from Deforestation and forest Degradation) mechanism, come into effect, alongside their use for management and research more generally. However, mapping biomass over high-biomass tropical forest is challenging as (1) direct regressions with optical and radar data saturate, (2) much of the tropics is persistently cloud-covered, reducing the availability of optical data, (3) many regions include steep topography, making the use of radar data complex, (4) while LiDAR data does not suffer from saturation, expensive aircraft-derived data are necessary for complete coverage. We present a solution to the problems, using a combination of terrain-corrected L-band radar data (ALOS PALSAR), spaceborne LiDAR data (ICESat GLAS) and ground-based data. We map Gabon's Lopé National Park (5000 km2) because it includes a range of vegetation types from savanna to closed-canopy tropical forest, is topographically complex, has no recent cloud-free high-resolution optical data, and the dense forest is above the saturation point for radar. Our 100 m resolution biomass map is derived from fusing spaceborne LiDAR (7142 ICESat GLAS footprints), 96 ground-based plots (average size 0.8 ha) and an unsupervised classification of terrain-corrected ALOS PALSAR radar data, from which we derive the aboveground biomass stocks of the park to be 78 Tg C (173 Mg C ha-1). This value is consistent with our field data average of 181 Mg C ha-1, from the field plots measured in 2009 covering a total of 78 ha, and which are independent as they were not used for the GLAS-biomass estimation. We estimate an uncertainty of ± 25 % on our carbon stock value for the park. This error term includes

  3. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  4. Exploring microphysical, radiative, dynamic and thermodynamic processes driving fog and low stratus clouds using ground-based Lidar and Radar measurements

    NASA Astrophysics Data System (ADS)

    Haeffelin, Martial

    2016-04-01

    Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.

  5. An Assessment of MultiAngle Imaging SpectroRadiometer (MISR) Stereo-Derived Cloud Top Heights and cloud top winds using ground-based radar, lidar, and microwave radiometers

    SciTech Connect

    Marchand, Roger T.; Ackerman, Thomas P.; Moroney, C.

    2007-03-17

    Clouds are of tremendous importance to climate because of their direct radiative effects and because of their role in atmospheric dynamics and the hydrological cycle. The value of satellite imagery in monitoring cloud properties on a global basis can hardly be understated. One cloud property that satellites are in an advantageous position to monitor is cloud top height. Cloud top height retrievals are especially important for MISR because the derived height field is used to co-register the measured radiances. In this presentation we show the results of an ongoing comparison between ground-based millimeter-wave cloud radar and lidar measurements of cloud top and MISR stereo-derived cloud top height. This comparison is based on data from three radar systems located in the U.S Southern Great Plains (Lamont, Oklahoma), the Tropical Western Pacific (Nauru Island) and the North Slope of Alaska (Barrow, Alaska). These radars are operated as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. The MISR stereo height algorithm is performing largely as expected for most optically thick clouds. As with many satellite retrievals, the stereo-height retrieval has difficulty with optically thin clouds or ice clouds with little optical contrast near cloud top.

  6. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  7. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory

    SciTech Connect

    Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

    2005-03-18

    Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

  8. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two

  9. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud

    NASA Astrophysics Data System (ADS)

    Mitchard, E. T. A.; Saatchi, S. S.; White, L. J. T.; Abernethy, K. A.; Jeffery, K. J.; Lewis, S. L.; Collins, M.; Lefsky, M. A.; Leal, M. E.; Woodhouse, I. H.; Meir, P.

    2012-01-01

    Spatially-explicit maps of aboveground biomass are essential for calculating the losses and gains in forest carbon at a regional to national level. The production of such maps across wide areas will become increasingly necessary as international efforts to protect primary forests, such as the REDD+ (Reducing Emissions from Deforestation and forest Degradation) mechanism, come into effect, alongside their use for management and research more generally. However, mapping biomass over high-biomass tropical forest is challenging as (1) direct regressions with optical and radar data saturate, (2) much of the tropics is persistently cloud-covered, reducing the availability of optical data, (3) many regions include steep topography, making the use of radar data complex, (5) while LiDAR data does not suffer from saturation, expensive aircraft-derived data are necessary for complete coverage. We present a solution to the problems, using a combination of terrain-corrected L-band radar data (ALOS PALSAR), spaceborne LiDAR data (ICESat GLAS) and ground-based data. We map Gabon's Lopé National Park (5000 km2) because it includes a range of vegetation types from savanna to closed-canopy tropical forest, is topographically complex, has no recent contiguous cloud-free high-resolution optical data, and the dense forest is above the saturation point for radar. Our 100 m resolution biomass map is derived from fusing spaceborne LiDAR (7142 ICESat GLAS footprints), 96 ground-based plots (average size 0.8 ha) and an unsupervised classification of terrain-corrected ALOS PALSAR radar data, from which we derive the aboveground biomass stocks of the park to be 78 Tg C (173 Mg C ha-1). This value is consistent with our field data average of 181 Mg C ha-1, from the field plots measured in 2009 covering a total of 78 ha, and which are independent as they were not used for the GLAS-biomass estimation. We estimate an uncertainty of ±25% on our carbon stock value for the park. This error term

  10. Physical Characteristics of Arctic Clouds from Ground-based Remote-sensing with a Polarized Micro-Pulse Lidar and a 95-GHz Cloud Radar in Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.

    2015-12-01

    Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.

  11. The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Protat, A.; Delanoë, J.; May, P. T.; Haynes, J.; Jakob, C.; O'Connor, E.; Pope, M.; Wheeler, M. C.

    2010-08-01

    The statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness, cloud fraction as derived considering a typical large-scale model grid box), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The rationale for characterizing this variability is to provide an observational basis to which model outputs can be compared for the different regimes or large-scale characteristics and from which new parameterizations accounting for the large-scale context can be derived. The mean vertical variability of ice cloud occurrence and microphysical properties is large (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98% of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). Our results also indicate that, at least in the northern Australian region, the upper part of the troposphere can be split into three distinct layers characterized by different statistically-dominant microphysical processes. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is found to be large

  12. Combined High Spectral Resolution Lidar and Radar Measurement of Drizzle

    NASA Astrophysics Data System (ADS)

    Eloranta, Edwin

    2015-04-01

    Marine stratus clouds are an important feature of the global climate system. Cloud lifetime is sensitive to drizzle rates. Drizzle not only removes water from the cloud but it's evaporation cools the sub-cloud layer acting to suppress convection. Accurate measurements of drizzle rates will improve our understanding of cloud maintenance. Simultaneous lidar measurements of extinction and radar backscatter allow determination of drizzle droplet particle size, liquid water content, fall velocity and water flux. However, drizzle measurements with conventional lidar are hampered by: 1)changes in the transmission of the output window caused by water accumulation on the lidar output window, 2)the difficulty of correcting the backscatter signal for atmospheric extinction and, 3)the effects of multiple scattering. High spectral resolution lidar avoids problems with window transmission and atmospheric attenuation because the backscatter is referenced to the known molecular scattering cross section at each point in the profile. Although multiple scattering degrades the direct measurement of extinction with the HSRL, it has little effect the HSRL measurement of backscatter cross section. We have developed an iterative solution that begins by estimating the extinction cross in drizzle using an assumed lidar ratio and the backscatter measurement. This is combined with the radar backscatter to make a first estimate of the particle size distribution. Mie scattering theory is then used to compute an improved lidar ratio for this particle size distribution and the new lidar ratio provides an improved extinction cross section. The calculation assumes a modified gamma distribution of sizes. The mode diameter of the distribution is fixed by the lidar-radar cross section ratio, while the width of the distribution is determined by matching the computed fall velocity of the drizzle with the observed radar Doppler velocity. The strengths and limitations of the this approach are examined

  13. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  14. The lidar dark band: An oddity of the radar bright band analogy

    SciTech Connect

    Sassen, K.

    1996-04-01

    Although much has sbeen learned from independent radar and lidar studies of atmospheric precipitations, occasionally supported by aircraft profiling, what has been lacking is combined optical, microwave, and insitu observations of the melting layer. Fortunately, the rainshowers on April 21, 1994, during the Remote Cloud Sensing intensive obervations Period (RCSIOP) at the Southern Great Plains Cloud and radiation Testbed (CART) site provided an opportunity for coordinated dual-wavelength University of Utah Polarization Diversity Lidar, University of Massachusetts Cloud Profiling Radar System Doppler Radar, and the University of North Dakota Citation aircraft measurements.

  15. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  16. Cloud detection by lidar extinction calculations

    NASA Technical Reports Server (NTRS)

    Lentz, W. J.

    1986-01-01

    A new lidar method of measuring cloud ceiling height using the Klett solution to the lidar equation was developed. This simple technique will find cloud ceiling height for clouds that rangefinder-like lidars cannot theoretically detect. In addition, the noise signals that do not correspond to clouds removed by using the convergence of the Klett solution to discriminate between signal changes and broader signal changes due to clouds. Clouds above rain or light fog can be detected without error, and it is possible to discriminate against haze layers by the magnitude of their maximum extinction.

  17. Raman LIDAR Detection of Cloud Base

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  18. THOR: Cloud Thickness from Off beam Lidar Returns

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken

    2004-01-01

    Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.

  19. Combined Lidar-Radar Remote Sensing: Initial Results from CRYSTAL-FACE and Implications for Future Spaceflight Missions

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.

    2003-01-01

    In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.

  20. Cloud Thickness from Offbeam Returns - Thor Lidar

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Physical thickness of a cloud layer, and sometimes multiple cloud layers, can be estimated from the time delay of off-beam returns from a pulsed laser source illuminating one side of the cloud layer. In particular, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. The halo method works best for thick cloud layers, typically optical thickness exceeding 2, and thus compliments conventional lidar which cannot penetrate thick clouds. Cloud layer top and base have been measured independently over the ARM/SGP site using conventional laser ranging (lidar) and the top minus base thickness are compared with a cloud top halo estimate obtained from the NASA/Goddard THOR System (THOR = THickness from Offbeam Returns). THOR flies on the NASA P3, and measures the halo timings from several km above cloud top, at the same time providing conventional lidar cloud top height. The ARM/SGP micropulse lidar provides cloud base height for validation.

  1. Raman lidar observations of cloud liquid water.

    PubMed

    Rizi, Vincenzo; Iarlori, Marco; Rocci, Giuseppe; Visconti, Guido

    2004-12-10

    We report the design and the performances of a Raman lidar for long-term monitoring of tropospheric aerosol backscattering and extinction coefficients, water vapor mixing ratio, and cloud liquid water. We focus on the system's capabilities of detecting Raman backscattering from cloud liquid water. After describing the system components, along with the current limitations and options for improvement, we report examples of observations in the case of low-level cumulus clouds. The measurements of the cloud liquid water content, as well as the estimations of the cloud droplet effective radii and number densities, obtained by combining the extinction coefficient and cloud water content within the clouds, are critically discussed. PMID:15617280

  2. Scanning ARM Cloud Radar Handbook

    SciTech Connect

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  3. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when τ approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  4. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    NASA Technical Reports Server (NTRS)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  5. Cloud top remote sensing by airborne lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Caudill, L. O.

    1982-01-01

    Observations of cloud top height, backscattering, and signal depolarization have been obtained by a lidar system operating onboard a high-altitude research aircraft. The transmitter for the cloud lidar system is a doubled Nd:YAG laser operating at 5 Hz. The system functions as a fully automated sensor under microprocessor control and operates from a nominal 19-km altitude. Measurements have been acquired over a wide variety of cloud cover in conjunction with passive visible and infrared measurements. Initial observation results are reported

  6. Cloud top remote sensing by airborne lidar.

    PubMed

    Spinhirne, J D; Hansen, M Z; Caudill, L O

    1982-05-01

    Observations of cloud top height, backscattering, and signal depolarization have been obtained by a lidar system operating onboard a high-altitude research aircraft. The transmitter for the cloud lidar system is a doubled Nd:YAG laser operating at 5 Hz. The system functions as a fully automated sensor under microprocessor control and operates from a nominal 19-km altitude. Measurements have been acquired over a wide variety of cloud cover in conjunction with passive visible and infrared measurements. Initial observation results are reported. PMID:20389897

  7. Lidar and Radar Measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Bhawar, Rohini; Di Iorio, Tatiana; Vaughan, Geraint; Norton, Emily; Peters, Gerhard

    2009-03-01

    During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark bands were observed by the Univ. of BASILicata Raman lidar system (BASIL) on several IOPs and SOPs (among others, 23 July, 15 August, 17 August). Dark band signatures appear in the lidar measurements of particle backscattering at 355, 532 and 1064 nm and particle extinction at 355 and 532 nm, as well as in particle depolarization measurements. Lidar data are supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester Radio UHF clear air wind profiler (1.29 GHz). Results from BASIL and the radars are illustrated and discussed to support in the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar dark band and radar bright band.

  8. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  9. Potential New Lidar Observations for Cloud Studies

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia

    2015-01-01

    The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.

  10. Multiple scattering lidar returns from stratus clouds

    NASA Technical Reports Server (NTRS)

    Hutt, D. L.; Bissonnette, L. R.

    1992-01-01

    Multiple scattering lidar returns from stratus clouds were measured using a multi-field-of-view (MFOV) lidar operating at 1.054 microns. The detector consists of four concentric silicon photodiodes which define half-angle fields of view (FOV) of 3.8, 12.5, 25 and 38.5 mrad. The central FOV receives the conventional lidar signal, while the outer FOV's receive only multiply scattered contributions. The ratios of the signals in the outer FOV's to the signal in the central FOV is an indication of the lateral spreading of the scattered component of the laser pulse as it propagates through the cloud. MFOV lidar returns from stratus clouds measured between October 1991 and March 1992 can be divided into two distinct types, those with large multiple scattering ratios and those with small ratios. An example of each type of return is shown. Both measurements were made at an elevation angle of 45 degrees. Clouds with small multiple scattering signals probably have a high concentration of much larger particles on the order of hundreds of micrometers in size. This is a typical size range for suspended ice crystals or precipitations. Stratus clouds often have a high concentration of ice crystals even when there is no precipitation. Large ice crystals would give smaller signals in the outer FOV's because much of the scattered intensity is contained in a narrow diffraction peak with an angular width on the order of milliradians. The result is that for a given extinction, many more orders of scattering are required for the laser pulse to spread out. So far we have not been able to do simulations of MFOV lidar returns from ice crystal clouds because of uncertainties about the phase function of the crystals, particularly the magnitude of the backscatter peak at 180 degrees. On two occasions, MFOV lidar returns measured just prior to snowfall, showed a striking vertical profile. An example is shown. From 900 to 1300m, the multiply scattered signals are negligible compared to the

  11. Lidar and radar measurements of the melting layer: observations of dark and bright band phenomena

    NASA Astrophysics Data System (ADS)

    Di Girolamo, P.; Summa, D.; Cacciani, M.; Norton, E. G.; Peters, G.; Dufournet, Y.

    2012-05-01

    Multi-wavelength lidar measurements in the melting layer revealing the presence of dark and bright bands have been performed by the University of BASILicata Raman lidar system (BASIL) during a stratiform rain event. Simultaneously radar measurements have been also performed from the same site by the University of Hamburg cloud radar MIRA 36 (35.5 GHz), the University of Hamburg dual-polarization micro rain radar (24.15 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Measurements from BASIL and the radars are illustrated and discussed in this paper for a specific case study on 23 July 2007 during the Convective and Orographically-induced Precipitation Study (COPS). Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE. Measurements and model results are found to confirm and support the conceptual microphysical/scattering model elaborated by Sassen et al. (2005).

  12. Micropulse Lidar Cloud Mask Value-Added Product Technical Report

    SciTech Connect

    Sivaraman, C; Comstock, J

    2011-07-25

    Lidar backscattered signal is a useful tool for identifying vertical cloud structure in the atmosphere in optically thin clouds. Cloud boundaries derived from lidar signals are a necessary input for popular ARM data products, such as the Active Remote Sensing of Clouds (ARSCL) product. An operational cloud boundary algorithm (Wang and Sassen 2001) has been implemented for use with the ARM Micropulse Lidar (MPL) systems. In addition to retrieving cloud boundaries above 500 m, the value-added product (VAP) named Micropulse Lidar Cloud Mask (MPLCMASK) applies lidar-specific corrections (i.e., range-square, background, deadtime, and overlap) as described in Campbell et al. (2002) to the measured backscattered lidar. Depolarization ratio is computed using the methodology developed by Flynn et al. (2007) for polarization-capable MPL systems. The cloud boundaries output from MPLCMASK will be the primary lidar cloud mask for input to the ARSCL product and will be applied to all MPL systems, including historical data sets.

  13. Exploiting Cloud Radar Doppler Spectra of Mixed-Phase Clouds during ACCEPT Field Experiment to Identify Microphysical Processes

    NASA Astrophysics Data System (ADS)

    Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.

    2015-12-01

    Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of

  14. Beyond Radar Backscatter: Estimating Forest Structure and Biomass with Radar Interferometry and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Ahmed, R.

    2014-12-01

    Mapping forest structure and aboveground biomass globally is a major challenge that the remote sensing community has been facing for decades. Radar backscatter is sensitive to biomass only up to a certain amount (about 150 tons/ha at L-band and 300 tons/ha at P-band), whereas lidar remote sensing is strongly limited by poor spatial coverage. In recent years radar interferometry, including its extension to polarimetric radar interferometry (PolInSAR), has emerged as a new technique to overcome the limitations of radar backscatter. The idea of PolInSAR is to use jointly interferometric and polarimetric radar techniques to separate different scattering mechanisms and retrieve the vertical structure of forests. The advantage is to map ecosystem structure continuously over large areas and independently of cloud coverage. Experiments have shown that forest height - an important proxy for biomass - can be estimated using PolInSAR with accuracy between 15% and 20% at plot level. At AGU we will review the state-of-art of repeat-pass PolInSAR for biomass mapping, including its potential and limitations, and discuss how merging lidar data with PolInSAR data can be beneficial not only for product cross-validation but also for achieving better estimation of ecosystem properties over large areas. In particular, lidar data are expected to aid the inversion of PolInSAR models by providing (1) better identification of ground under the canopy, (2) approximate information of canopy structure in limited areas, and (3) maximum tree height useful for mapping PolInSAR temporal decorrelation. We will show our tree height and biomass maps using PolInSAR L-band JPL/UAVSAR data collected in tropical and temperate forests, and P-band ONERA/TROPISAR data acquired in French Guiana. LVIS lidar data will be used, as well as SRTM data, field measurements and inventory data to support our study. The use of two different radar frequencies and repeat-pass JPL UAVSAR data will offer also the

  15. LIDAR, Point Clouds, and their Archaeological Applications

    SciTech Connect

    White, Devin A

    2013-01-01

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

  16. CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region

    NASA Astrophysics Data System (ADS)

    Deng, Min; Mace, Gerald. G.; Wang, Zhien; Berry, Elizabeth

    2015-12-01

    The CloudSat 2C-ICE data product is derived from a synergetic ice cloud retrieval algorithm that takes as input a combination of CloudSat radar reflectivity (Ze) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation lidar attenuated backscatter profiles. The algorithm uses a variational method for retrieving profiles of visible extinction coefficient, ice water content, and ice particle effective radius in ice or mixed-phase clouds. Because of the nature of the measurements and to maintain consistency in the algorithm numerics, we choose to parameterize (with appropriately large specification of uncertainty) Ze and lidar attenuated backscatter in the regions of a cirrus layer where only the lidar provides data and where only the radar provides data, respectively. To improve the Ze parameterization in the lidar-only region, the relations among Ze, extinction, and temperature have been more thoroughly investigated using Atmospheric Radiation Measurement long-term millimeter cloud radar and Raman lidar measurements. This Ze parameterization provides a first-order estimation of Ze as a function extinction and temperature in the lidar-only regions of cirrus layers. The effects of this new parameterization have been evaluated for consistency using radiation closure methods where the radiative fluxes derived from retrieved cirrus profiles compare favorably with Clouds and the Earth's Radiant Energy System measurements. Results will be made publicly available for the entire CloudSat record (since 2006) in the most recent product release known as R05.

  17. Cloud properties derived from two lidars over the ARM SGP site

    NASA Astrophysics Data System (ADS)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Yohann; Comstock, Jennifer M.; Flynn, Connor; Long, Charles N.; Sivaraman, Chitra; Newson, Rob K.

    2011-04-01

    Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale. Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a cloud optical thickness larger than 3. The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site and (2) to estimate the discrepancies between the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPL, which are the primary ARM lidars, have a distinctly limited range within which all of these cloud properties are detectable, especially cloud top and cloud thickness, but this can include cloud base particularly during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPL-derived annual cycle of cirrus cloud base (top) altitude is biased low, especially for daylight periods, compared with those derived from the RL data, which detects cloud base ranging from 7.5 km in winter to 9.5 km in summer (and tops ranging from 8.6 to 10.5 km). The optically thickest cirrus clouds (COT > 0.3) reach 50% of the total population for the Raman lidar and only 20% for the Micropulse lidar due to the difference of pulse energy and the effect of solar irradiance contamination. A complementary study using the cloud fraction derived from the Micropulse lidar for clouds

  18. Spaceborne Radar Would Measure Rain And Clouds

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Kellogg, Kent H.

    1992-01-01

    Report describes conceptual design of spaceborne radar system mapping precipitation and clouds at mid-latitudes to provide data for research on global weather and climate. Radar operates at two frequencies. Lower (35 GHz) provides vertical profiles of rainfall at rates up to 20 mm/h and enables probing of cirrus clouds. Higher (94 GHz) enables detection and quantitative measurements of clouds of all types and provides rain profiles at rates up to 10 mm/h.

  19. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  20. Drizzle Measurements Using High Spectral Resolution Lidar and Radar Data

    NASA Astrophysics Data System (ADS)

    Eloranta, Edwin W.

    2016-06-01

    The ratio of millimeter radar and High Spectral Resolution Lidar (HSRL) backscatter are used to determine drizzle rates which are compared to conventional ground based measurements. The robustly calibrated HSRL backscatter cross section provides advantages over measurements made with traditional lidars.

  1. Reconstruction of cloud geometry using a scanning cloud radar

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Winkler, C.; Zinner, T.

    2015-06-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three-dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground-based remote sensing of cloud properties at high spatial resolution could be crucially improved with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of model clouds based on a large eddy simulation (LES), the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality, a trade-off between scan resolution and scan duration has to be found as clouds change quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  2. Stratocumulus Drizzle Measurements Using High Spectral Resolution Lidar and Radar Data During the MAGIC Campaign

    NASA Astrophysics Data System (ADS)

    Eloranta, E. W.

    2015-12-01

    Marine stratus clouds are an important feature of the global climate system. Drizzle plays an important role in the determining cloud lifetime. Drizzle not only removes water from the cloud but evaporation of the falling droplets cools the sub-cloud layer acting to suppress convection. Drizzle rates are often very small and difficult to measure.The ratio of millimeter radar and High Spectral Resolution Lidar (HSRL) backscatter is used to determine drizzle rates and these are compared to conventional ground based measurements. The robustly calibrated HSRL backscatter cross section provides advantages over measurements made with traditional lidars.Several investigators have used simultaneous lidar and radar observations to determine particle size. However, measurements made with conventional lidar are hampered by: 1) changes in the transmission of the output window caused by water accumulation, 2) the difficulty of correcting the backscatter signal for atmospheric extinction, 3) the effects of multiple scattering, and 4) the need to convert backscatter measurements to extinction. The use of High Spectral Resolution Lidar(HSRL) data avoids many of these problems. HSRL backscatter measurements are referenced to the known molecular scattering cross-section at each point in the profile and are thus independent of changes in window and atmospheric transmission. This study uses data collected during the US Department of Energy Atmospheric Sciences program MAGIC campaign. Instruments including a suite of conventional precipitation gages, a High Spectral Resolution Lidar, along with 3.2 mm wavelength WACR and a 8.6 mm wavelength KAZR radars, were installed on the container ship Horizon Spirit as it made repeated trips between Long Beach, CA and Honolulu, HI.

  3. The Earth Clouds and Radiation Explorer (EarthCARE) Mission: Cloud and Aerosol Lidar and Imager algorithms.

    NASA Astrophysics Data System (ADS)

    Donovan, David; van Zadelhoff, Gerd-Jan; Wandinger, Ulla; Hünerbein, Anjah; Fischer, Jurgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The value of multi-sensor remote sensing applied to clouds and aerosol has become clear in recent years. For example, combinations of instruments including passive radiometers, lidars and cloud radars have proved invaluable for their ability to retrieve profiles of cloud macrophysical and microphysical properties. This is amply illustrated by various results from the US-DoE ARM (and similar) surface sites as well as results from data collected by sensors aboard the A-train satellites CloudSat, CALIPSO, and Terra. The Earth Clouds Aerosol and Radiation Explorer (EarthCARE) mission is a combined ESA/JAXA mission to be launched in 2018 which has been designed with sensor-synergy playing a key role. The mission consists of a cloud-profiling radar (CPR), a high-spectral resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). The mission will deliver cloud, aerosol and radiation products focusing on horizontal scales ranging from 1 km to 10 km. EarthCARE data will be used in multiple ways ranging from model evaluation studies, to GCM-orientated cloud microphysical property parameterization development, to data assimilation activities. Recently a number of activities, funded by ESA, have kicked-off which will ultimately deliver operational algorithms for EarthCARE. One of these activities is the "Atmospheric Products from Imager and Lidar" (APRIL) project which focuses on the development of lidar, imager and combined lidar-imager cloud and aerosol algorithms. In this presentation an overview of the APRIL algorithms within the wider context of the planned EarthCARE processing chain will be given.

  4. First radar echoes from cumulus clouds

    NASA Technical Reports Server (NTRS)

    Knight, Charles A.; Miller, L. J.

    1993-01-01

    In attempting to use centimeter-wavelength radars to investigate the early stage of precipitation formation in clouds, 'mantle echoes' are rediscovered and shown to come mostly from scattering by small-scale variations in refractive index, a Bragg kind of scattering mechanism. This limits the usefulness of single-wavelength radar for studies of hydrometeor growth, according to data on summer cumulus clouds in North Dakota, Hawaii, and Florida, to values of reflectivity factor above about 10 dBZe with 10-cm radar, 0 dBZe with 5-cm radar, and -10 dBZe with 3-cm radar. These are limits at or above which the backscattered radar signal from the kinds of clouds observed can be assumed to be almost entirely from hydrometeors or (rarely) other particulate material such as insects. Dual-wavelength radar data can provide the desired information about hydrometeors at very low reflectivity levels if assumptions can be made about the inhomogeneities responsible for the Bragg scattering. The Bragg scattering signal itself probably will be a useful way to probe inhomogeneities one-half the radar wavelength in scale for studying cloud entrainment and mixing processes. However, this use is possible only before scattering from hydrometeors dominates the radar return.

  5. Cloud Turbulence Correlation Functions and Power Spectra Measured using a Gyroklystron-Powered 94 GHz Radar

    NASA Astrophysics Data System (ADS)

    Fliflet, Arne; Manheimer, Wallace; Linde, George; Cheung, Winjoy; Ngo, Mai; Gregershansen, Vilhelm; Danly, Bruce; St. Germain, Karen

    2003-10-01

    The Naval Research Laboratory (NRL) has recently developed a high power 94 GHz radar called WARLOC. This radar has unique advantages for cloud research stemming from the fact that the return from clouds scales inversely as the fourth power of the wavelength. Clouds are largely invisible to conventional radars and opaque to lidars, whereas millimeter-wave radars produce strong signals from cloud water droplets. Thus W-Band radars can be used to sense the internal structure of clouds. The WARLOC transmitter has about three orders-of-magnitude more average power than the W-Band radars used in previous cloud studies and greatly improved resolution and scanning capability. Here we report initial results on cloud studies. The new capabilities of WARLOC have allowed us to produce high-resolution images of the internal structure of clouds. Regions many square kilometers in area can be scanned with 15 m resolution in about a minute even through intervening cloud layers. The scanned cloud reflectivity yields two-dimensional cloud turbulence correlation functions and power spectra directly from spatial measurements for the first time, and with higher resolution than previously possible. We find that in the inertial range, the Kolmogorov spectral index (-5/3) agrees reasonably well with the data, but the assumption of isotropy does not. Interestingly, in two clouds studied, at longer scale lengths, the fluctuations appear to be wavelike in the vertical direction, but not in the horizontal direction.

  6. Spaceborne lidar measurement accuracy - Simulation of aerosol, cloud, molecular density, and temperature retrievals

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Browell, E. V.

    1982-01-01

    In connection with studies concerning the use of an orbiting optical radar (lidar) to conduct aerosol and cloud measurements, attention has been given to the accuracy with which lidar return signals could be measured. However, signal-measurement error is not the only source of error which can affect the accuracy of the derived information. Other error sources are the assumed molecular-density and atmospheric-transmission profiles, and the lidar calibration factor (which relates signal to backscatter coefficient). The present investigation has the objective to account for the effects of all these errors sources for several realistic combinations of lidar parameters, model atmospheres, and background lighting conditions. In addition, a procedure is tested and developed for measuring density and temperature profiles with the lidar, and for using the lidar-derived density profiles to improve aerosol retrievals.

  7. Lidar cirrus cloud retrieval - methodology and applications

    NASA Astrophysics Data System (ADS)

    Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume

    2016-04-01

    In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to

  8. First observations of tracking clouds using scanning ARM cloud radars

    DOE PAGESBeta

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  9. Cloud Imaging Using the NRL WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Manheimer, W. M.; Germain, K. St.; Linde, G.; Cheung, W. J.; Gregers-Hansen, V.; Danly, B. G.; Ngo, M. T.

    2003-12-01

    The Naval Research Laboratory has recently developed a 3-10 kW average, 80 kW peak power 94 GHz radar with scanning capability, WARLOC. This radar is powered by a gyroklystron developed by a team led by NRL. One application has been to image clouds. New capabilities of WARLOC include imaging with greatly improved sensitivity and detail as well as the ability to detect much lower strength cloud returns. Here we show how pulse averaging enhances the sensitivity of WARLOC. Since the available power is so high, it can be used in moderate rain to both measure the rainfall rate and to image the cloud above the rain.

  10. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  11. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  12. Building a 15-Year Cloud Climatology using Lidar in Space Observations: CALIOP and CloudSat now, EarthCARE next.

    NASA Astrophysics Data System (ADS)

    Reverdy, M.; Chepfer, H.; Donovan, D. P.; Noel, V.; Marchand, R.; Cesana, G.; Hoareau, C.; Chiriaco, M.; Bastin, S.

    2014-12-01

    Today, the CALIOP lidar and CloudSat radar have collected more than seven years of observations, and willhopefully still operate in 2016, after the EarthCARE-ATLID/CPR launch. Lidars and Radars in space providecutting edge information on the detailed vertical structure of clouds: a key element for both the evaluation ofthe description of clouds in climate models, and the survey of the clouds inter-annual evolution in variousclimatic conditions (El Nino, variation of North Atlantic Oscillations, polar regions, etc). For this purpose,the observations collected by CALIOP and by ATLID as well as CloudSat and EarthCARE CPR need to bemerged into a long-term (15 years) cloud climatology. Here, we examine the possibility of building such a climatology, with the aim of defining its accuracy andrelevance for cloud inter-annual studies. We examine the differences between the instruments (wavelengths,satellite's altitudes, telescope fields of view, multiple scattering processes, spatial resolutions) and theirability to detect the same clouds consistently. Then, we define a set of cloud detection thresholds for ATLID,CALIOP, CloudSat and EarthCARE-CPR and test against synthetic cloud scenes (cirrus and shallowcumulus) over small areas (about 200km) produced by a lidar and radar instrument simulator (ECSIM)running on Large Eddy Simulations. Doing so, we verify that the fourth instruments will be able to detect thesame clouds despite their differences (e.g. their sensitivities to noise). Finally, we use the COSP lidar andradar simulator to predict the global scale cloud cover that ATLID, CALIOP, CloudSat and EarthCARE CPRwould observe if they were overflying the same atmosphere predicted by a GCM. Our results suggest that amerged CALIOP/ATLID and CloudSat/CPR cloud climatology could be to be useful for clouds inter-annualstudies, if the post-launch sensitivity of EarthCARE instruments is in line with what is predicted today.

  13. Orbital and cloud cover sampling analyses for space lidar missions

    NASA Technical Reports Server (NTRS)

    Lawrence, G. F.; Robbins, J. L.; Gibson, G. G.

    1985-01-01

    The sampling capabilities of an orbital lidar mission are evaluated. Spatial and temporal sampling data from a lidar spacecraft orbit simulation are combined with global, statistical cloud cover data to yield a quantification of lidar measurement opportunities for both partly cloudy and mostly overcast viewing conditions. The optimum launch time (month and local hour) is determined to maximize lidar measurement opportunities for specified cloud cover conditions. Results indicate that the time of year selected for the lidar mission is very important in maximizing acceptable data return, whereas the effect of launch time of day on mission optimization is generally not as strong as the seasonal effect.

  14. Forest Biomass Mapping From Lidar and Radar Synergies

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  15. Observations of multi-layered clouds using K-band radar

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Kropfli, Robert A.

    1993-01-01

    Rudimentary ground-based K-band radars were once used by the U.S. Air Force to monitor clouds over air bases. The NOAA wave Propagation Laboratory has developed a significantly advanced dual-polarization Doppler K-band system that provides remarkably detailed visualizations of the structure and kinematics of nonprecipitating and weakly precipitating clouds. Unlike lidar and infrared radiometer systems, K-band radar can penetrate liquid water cloud layers and obtain measurements through moderate rainfall and heavy snowfall to reveal intricate cloud features including multiple layers of cloud. This is accomplished at less cost than would be possible with traditional longer wavelength weather radars. The radar's capabilities have been demonstrated in several recent cloud research field projects. In combination with measurements by other remote sensors, the radar can help detect aircraft icing hazards and infer microphysical properties of clouds. An automated, unattended version of the radar could provide a continuous, detailed depiction of the cloud environment in the vicinity of airports.

  16. Ice Crystal Size Retrivals using High Spectral Resolution Lidar and Millimeter Wave Radar Data.

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2006-12-01

    The University of Wisconsin Arctic High Spectral Resolution Lidar(AHSRL) and the NOAA 8.6 mm radar(MMCR) are collecting data in the high Arctic at Eureka, Canada (79.94N, 85.56W). They have been deployed as part of the NOAA SEARCH program since August of 2005. AHSRL and MMCR data are distributed at http://lidar.ssec.wisc.edu. This web site allows visual scans of available data, composition of custom images and downloading of data in netCDF format. NetCDF files are prepared on demand with user specified time and altitude limits along with user specified altitude and time averaging. The ratio of the lidar and radar cross sections data can be used to measure the size of cloud and precipitation particles. Unfortunately, attenuation and multiple scattering make it difficult to measure the lidar scattering cross section. Standard lidar data does not contain sufficient information to correct for attenuation without the use of poorly supported assumptions. The multiply scattered signal is dependent on particle size and is often comparable in magnitude to the singly scattered signal. As a result, past lidar-radar particle size measurements have required use of complicated iterative solutions (Donovan and Lammeren, JGR, 106, Nov 16, 2001, pp 27425). These problems are avoided when using AHSRL data. It provides robustly calibrated measurements of the backscatter cross section. Furthermore, the lidar receiver accepts light from a very small angular field-of- view greatly limiting multiply scattered signals. Lidar-radar size retrievals provide the effective diameter prime. This quantity is proportional to the mass of the average particle squared divided by the projected area of the average particle. Conversion of effective diameter prime to commonly derived size measures such as effective diameter, mean diameter, median mass diameter, or mean mass of the ice particles requires knowledge of the ice crystal shape. Mitchell(J. Atmos. Sci V29 p153-163) and others have presented

  17. Antarctic Wave Dynamics Mystery Discovered by Lidar, Radar and Imager

    NASA Astrophysics Data System (ADS)

    Chen, Cao; Chu, Xinzhao; Fong, Weichun; Lu, Xian; McDonald, Adrian J.; Pautet, Dominique; Taylor, Mike

    2016-06-01

    Since the start of the McMurdo Fe lidar campaign, largeamplitude (~±30 K), long-period (4 to 9 h) waves with upward energy propagating signatures are frequently observed in the MLT temperatures. Despite its frequent appearance, such type of wave was neither widely observed nor well understood in the past. At McMurdo (77.8°S, 166.7°E), the simultaneous observations of such waves using lidar, radar and airglow imager can provide 3-D intrinsic wave-propagation properties, which are greatly needed for understanding their sources and potential impacts. This study presents the first coincident observation of these 4-9 h waves by lidar, radar and airglow imager in the Antarctic mesopause region.

  18. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  19. Lidar ratio and depolarization ratio for cirrus clouds.

    PubMed

    Chen, Wei-Nai; Chiang, Chih-Wei; Nee, Jan-Bai

    2002-10-20

    We report on studies of the lidar and the depolarization ratios for cirrus clouds. The optical depth and effective lidar ratio are derived from the transmission of clouds, which is determined by comparing the backscattering signals at the cloud base and cloud top. The lidar signals were fitted to a background atmospheric density profile outside the cloud region to warrant the linear response of the return signals with the scattering media. An average lidar ratio, 29 +/- 12 sr, has been found for all clouds measured in 1999 and 2000. The height and temperature dependences ofthe lidar ratio, the optical depth, and the depolarization ratio were investigated and compared with results of LITE and PROBE. Cirrus clouds detected near the tropopause are usually optically thin and mostly subvisual. Clouds with the largest optical depths were found near 12 km with a temperature of approximately -55 degrees C. The multiple-scattering effect is considered for clouds with high optical depths, and this effect lowers the lidar ratios compared with a single-scattering condition. Lidar ratios are in the 20-40 range for clouds at heights of 12.5-15 km and are smaller than approximately 30 in height above 15 km. Clouds are usually optically thin for temperatures below approximately -65 degrees C, and in this region the optical depth tends to decrease with height. The depolarization ratio is found to increase with a height at 11-15 km and smaller than 0.3 above 16 km. The variation in the depolarization ratio with the lidar ratio was also reported. The lidar and depolarization ratios were discussed in terms of the types of hexagonal ice crystals. PMID:12396200

  20. CloudSat as a Global Radar Calibrator

    SciTech Connect

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  1. Lidar point cloud representation of canopy structure for biomass estimation

    NASA Astrophysics Data System (ADS)

    Neuenschwander, A. L.; Krofcheck, D. J.; Litvak, M. E.

    2014-12-01

    Laser mapping systems (lidar) have become an essential remote sensing tool for determining local and regional estimates of biomass. Lidar data (possibly in conjunction with optical imagery) can be used to segment the landscape into either individual trees or clusters of trees. Canopy characteristics (i.e. max, mean height) for a segmented tree are typically derived from a rasterized canopy height model (CHM) and subsequently used in a regression model to estimate biomass. The process of rasterizing the lidar point cloud into a CHM, however, reduces the amount information about the tree structure. Here, we compute statistics for each segmented tree from the raw lidar point cloud rather than a rasterized CHM. Working directly from the lidar point cloud enables a more accurate representation of the canopy structure. Biomass estimates from the point cloud method are compared against biomass estimates derived from a CHM for a Juniper savanna in New Mexico.

  2. Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Sato, Kaori; Hagihara, Yuichiro

    2010-11-01

    We developed a new radar-lidar algorithm that can be applied to CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data to retrieve ice microphysics. The algorithm analyzes the specular reflection of lidar signals often observed by CALIPSO with large backscattering coefficients and small depolarization ratios. Analyses of CloudSat and CALIPSO data by our former radar-lidar algorithm showed problems retrieving ice cloud microphysics when specular reflection was present. We implemented additional look-up tables for horizontally oriented plates. A specular reflection mode in the radar-lidar algorithm could drastically improve retrieval results. The new radar-lidar algorithm requires depolarization ratios measured by CALIPSO, in addition to the radar reflectivity factor and backscattering coefficient at 532 nm. We performed several sensitivity studies to retrieval results. Nonsphericity turned out to be the largest source of uncertainties. Global analyses of ice microphysics for CloudSat-CALIPSO overlap regions were performed. The effective radius decreased as the altitude increased. The effective radius in the specular reflection ranged from 100 to 300 μm. The ice water content (IWC) ranged from 10-4 to several tenths of a gram per cubic meter. Both effective radius and IWC increased as the altitude (temperature) decreased (increased). The largest mixing ratio of oriented particles occurred between -20 and -5°C. The IWC had two maxima in the tropics above 15 km and around 5 km. We also examined the differences in ice microphysics over land and ocean. The effective radius was similar over land and ocean, but the IWC tended to be larger over land.

  3. Cloud Thickness from Diffusion of Lidar Pulses in Clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Davis, A.; McGill, Matthew

    1999-01-01

    Measurements of the distribution of reflected light from a laser beam incident on an aqueous suspension of particles or "cloud" with known thickness and particle size distribution are reported. The distribution is referred to as the "cloud radiative Green's function", G. In the diffusion domain, G is sensitive to cloud thickness, allowing that important quantity to be retrieved. The goal of the laboratory simulation is to provide preliminary estimates of sensitivity of G to cloud thickness,for use in the optimal design of an offbeam Lidar instrument for remote sensing of cloud thickness (THOR, Thickness from Offbeam Returns). These clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The microsphere size distribution is roughly lognormal, from 0.5 microns to 25 microns, similar to real clouds. Density of suspended spheres is adjusted so mean-free-path of visible photons is about 10 cm, approximately 1000 times smaller than in real clouds. The light source is a ND:YAG laser at 530 nm. Detectors are flux and photon-counting Photomultiplier Tube (PMTS), with a glass probe for precise positioning. A Labview 5 VI controls positioning, and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider, and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns, and step size is selectable from the VI software. Far from the incident beam, the rate of exponential increase as the direction of the incident beam is approached scales as expected from diffusion theory, linearly with the cloud thickness, and inversely as the square root of the reduced optical thickness, and is independent of particle size. Near the beam the signal begins to increase faster than exponential, due to single and low-order scattering near the backward direction, and here the distribution depends on particle size. Results are being used to verify 3D Monte Carlo

  4. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    , occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR

  5. Comparison of millimeter-wave cloud radar measurements for the Fall 1997 Cloud IOP

    SciTech Connect

    Sekelsky, S.M.; Li, L.; Galloway, J.; McIntosh, R.E.; Miller, M.A.; Clothiaux, E.E.; Haimov, S.; Mace, G.; Sassen, K.

    1998-05-01

    One of the primary objectives of the Fall 1997 IOP was to intercompare Ka-band (350Hz) and W-band (95GHz) cloud radar observations and verify system calibrations. During September 1997, several cloud radars were deployed at the Southern Great Plains (SOP) Cloud and Radiation Testbed (CART) site, including the full time operation 35 GHz CART Millimeter-wave Cloud Radar (MMCR), the University of Massachusetts (UMass) single antenna 33GHz/95 GHz Cloud Profiling Radar System (CPRS), the 95 GHz Wyoming Cloud Radar (WCR) flown on the University of Wyoming King Air, the University of Utah 95 GHz radar and the dual-antenna Pennsylvania State University 94 GHz radar. In this paper the authors discuss several issues relevant to comparison of ground-based radars, including the detection and filtering of insect returns. Preliminary comparisons of ground-based Ka-band radar reflectivity data and comparisons with airborne radar reflectivity measurements are also presented.

  6. Snowfall measurements using a combination of high spectral resolution lidar and radar observations

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2009-04-01

    Aerodynamic flow around gauges and the horizontal transport of windblown snow along the surface produce errors in snowfall measurements. Comparisons between various snow gauges with and without wind shields show as much as as a factor of two difference between measurements(Yang et al., 1999). These problems are particularly significant in the high Arctic where snowfall amount are very low and blowing snow is frequent. This paper describes a lidar-radar based technique to measure the downward flux of snow at an altitude of ~100m. When particles are small compared to the wavelength, radar reflectivity is proportional to the number of snowflakes times the square of the mass of the average snowflake. For particles large compared to the wavelength, the lidar extinction cross section is equal to two times the number of snowflakes times the projected average area of the snowflakes. Donovan and Lammeren(2001) show that the ratio of radar to lidar cross sections can be used to define an effective-diameter-prime, which is proportional to the fourth root of the average mass-squared over the average projected area of the snowflakes. If one assumes a crystal shape this can be converted into an effective-diameter which is the average mass over the average area of the flakes. Multiplying the lidar measured projected area times the effective-diameter yields the mass of the particles. The product of this mass and the radar measured vertical velocity then provides the vertical flux of water. In past work we have tested this measurement approach with data acquired in the high Arctic at Eureka, Canada(80 N,90W). Measurements from the University of Wisconsin High Spectral Resolution Lidar and the NOAA 35 GHz cloud radar were used to compute the time-integrated flux of water at 100 m above the surface. This result was compared with Nipper gauge measurements of snowfall acquired as part of the Eureka weather station record. Best agreement was achieved when the crystals where assumed to

  7. Lidar simulation. [measurement of atmospheric water vapor via optical radar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of measuring atmospheric water vapor via orbital lidar is estimated. The calculation starts with laser radar equations representing backscatter with and without molecular line absorption; the magnitudes of off-line backscatter are demonstrated. Extensive prior data on water line strengths are summarized to indicate the available sensitivity to water vapor concentration. Several lidar situations are considered starting with uniform and perturbed atmospheres at 0, 3, 10 and 20 kM (stratosphere) altitudes. These simulations are indicative of results to be obtained in ground truth measurements (ground-based and airborne). An approximate treatment of polar observations is also given. Vertical atmospheric soundings from orbit and from ground stations are calculated. Errors are discussed as regards their propagation through the lidar equation to render the measured water vapor concentration imprecise; conclusions are given as to required laser energy and feasible altitude resolution.

  8. Initial assessment of space-based lidar CALIOP aerosol and cloud layer structures through inter-comparison with a ground-based back-scattering lidar and CloudSat

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Yoon, S.-C.; Chung, E.-S.; Sohn, B.-J.; Berthier, S.; Raut, J.-C.; Chazette, P.; Dulac, F.

    2009-03-01

    This study presents results of the intercomparison of aerosol/cloud top and bottom heights obtained from a space-borne active sensor Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO, and the Cloud Profiling Radar (CPR) onboard CloudSat, and the space-borne passive sensor Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua, and ground-based 2-wavelenght polarization lidar system (532 and 1064 nm) at Seoul National University (SNU), Seoul, South Korea. This result confirms that the CALIPSO science team algorithms for the discrimination of cloud and aerosol as well as for the detection of layer top and base altitude provide reliable information both under cloud-free conditions and in cases of multiple aerosol layers underlying semi-transparent cirrus clouds. Simultaneous space-borne CALIOP, CPR and ground-based SNU lidar (SNU-L) measurements complement each other and can be combined to provide full information on the vertical distribution of aerosols and clouds, especially for thick opaque clouds. The aerosol extinction profiles from both lidars show good agreement for aerosols within the planetary boundary layer under cloud-free conditions and for the night-time CALIOP flight.

  9. Lidar and radar measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study: observations of dark and bright band phenomena

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Bhawar, R.; di Iorio, T.; Norton, E. G.; Peters, G.; Dufournet, Y.

    2011-11-01

    During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark and bright bands were observed by the University of BASILicata Raman lidar system (BASIL) during several intensive (IOPs) and special (SOPs) observation periods (among others, 23 July, 15 August, and 17 August 2007). Lidar data were supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Results from BASIL and the radars for 23 July 2007 are illustrated and discussed to support the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar and radar dark and bright bands. Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE.

  10. Ground-based microwave radar and optical lidar signatures of volcanic ash plumes: models, observations and retrievals

    NASA Astrophysics Data System (ADS)

    Mereu, Luigi; Marzano, Frank; Mori, Saverio; Montopoli, Mario; Cimini, Domenico; Martucci, Giovanni

    2013-04-01

    The detection and quantitative retrieval of volcanic ash clouds is of significant interest due to its environmental, climatic and socio-economic effects. Real-time monitoring of such phenomena is crucial, also for the initialization of dispersion models. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low level eruptions. Their imagery is available every 15-30 minutes and suffers from a relatively poor spatial resolution. Moreover, the field-of-view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and their overall utility is reduced at night. Ground-based microwave radars may represent an important tool to detect and, to a certain extent, mitigate the hazard from the ash clouds. Ground-based weather radar systems can provide data for determining the ash volume, total mass and height of eruption clouds. Methodological studies have recently investigated the possibility of using ground-based single-polarization and dual-polarization radar system for the remote sensing of volcanic ash cloud. A microphysical characterization of volcanic ash was carried out in terms of dielectric properties, size distribution and terminal fall speed, assuming spherically-shaped particles. A prototype of volcanic ash radar retrieval (VARR) algorithm for single-polarization systems was proposed and applied to S-band and C-band weather radar data. The sensitivity of the ground-based radar measurements decreases as the ash cloud is farther so that for distances greater than about 50 kilometers fine ash might be not detected anymore by microwave radars. In this respect, radar observations can be complementary to satellite, lidar and aircraft observations. Active remote sensing retrieval from ground, in terms of detection, estimation and sensitivity, of volcanic ash plumes is not only dependent on the sensor specifications, but also on

  11. Cirrus cloud properties measurement using lidar in Beijing

    NASA Astrophysics Data System (ADS)

    Ji, Chengli; Tao, Zongming; Hu, Shunxing; Che, Huizheng; Yu, Jie; Feng, Caiyun; Xie, Chenbo; Liu, Dong; Zhong, Zhiqing; Yuan, Ke'e.; Cao, Kaifa; Huang, Jian; Zhou, Jun; Wang, Yingjian; Chen, Zhenyi

    2016-01-01

    Cirrus cloud has an important effect on the radiation balance between the earth's surface and the atmosphere. The vertical structures, optical depth and effective lidar ratio of cirrus cloud detected by Mie scattering-polarization-Raman lidar system in Beijing from April 11 to December 31, 2012 are analyzed. The results show that the cloud height in Beijing is lower in spring and higher in autumn, with a mean value of about 8km. The mean of cloud thickness is 0.74km. The mean of optical depth is 0.092, and most observed cirrus cloud is thin while optical depth is less than 0.3. The effective lidar ratio of cirrus is lower in summer and higher in winter, inversely related to local temperature, with a mean value of 32.29Sr.

  12. Retrieval of water cloud properties from carbon dioxide lidar soundings.

    PubMed

    Piatt, C M; Takashima, T

    1987-04-01

    Lidar backscatter signatures from model water clouds are calculated for CO(2) lidar wavelengths (9.2-10.8 microm) using Mie theory. The lidar isotropic mass backscatter coefficient is found to be quite variable both with cloud model and with wavelength, with values ranging from ~90 to 15 g(-1) cm(2) at 9.2-microm wavelength and from 25 to 5 g(-1) cm(2) at 11 microm, there being a general decrease in values with increasing wavelength. The cloud isotropic backscatter-to-extinction ratio similarly varies with both wavelength and cloud model between extreme values of 0.14 and 0.008. It is found that the cloud mass extinction coefficient has a value at any wavelength which is independent of cloud model droplet size distribution to within ~10% accuracy, in agreement with other studies. The value of this quantity varies from 1929 g(-1) cm(2) at 9.2 microm to 1258 g(-1) cm(2) at 11.0 microm. If the isotropic volume backscatter coefficient and the isotropic backscatter-to-extinction ratio are measured by lidar, then using the above characteristics of mass extinction coefficient the cloud liquid water content can be measured at any wavelength to an accuracy of ~20% when the cloud optical depth is between 0 and 0.5, with an increasing error with increasing cloud optical depth. Using the relationship between cloud droplet mode radius and backscatter-to-extinction ratio, the mode radius can be determined to ~10% accuracy. Multiple scattering in the backscattered beam for the case of absorbing water clouds at CO(2) wavelengths is also considered. The cloud depth to which accurate information can be retrieved in typical water clouds varies from ~80 to 250 m depending on the wavelength and the cloud model, although some information is available to depths of 500 m in some clouds. PMID:20454313

  13. NASA DC-8 Airborne Scanning Lidar Cloud and Contrail Observations

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Oseberg, Terje E.; Nielsen, Norman B.

    1997-01-01

    An angular scanning backscatter lidar has been developed and operated from the NASA DC-8 aircraft; the lidar viewing direction could be scanned from vertically upward to forward in the direction of aircraft travel to vertically downward. The scanning lidar was used to generate real-time video displays of clouds and contrails above, below, and ahead of the aircraft to aid in positioning the aircraft for achieving optimum cloud/contrail sampling by onboard in situ samplers. Data examples show that the lidar provides unique information for the interpretation of the other data records and that combined data analyses provides enhanced evaluations of contrail/cloud structure, dynamics, composition, and optical/radiative properties.

  14. Polarization Lidar Liquid Cloud Detection Algorithm for Winter Mountain Storms

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie

    1992-01-01

    We have collected an extensive polarization lidar dataset from elevated sites in the Tushar Mountains of Utah in support of winter storm cloud seeding research and experiments. Our truck-mounted ruby lidar collected zenith, dual-polarization lidar data through a roof window equipped with a wiper system to prevent snowfall accumulation. Lidar returns were collected at a rate of one shot every 1 to 5 min during declared storm periods over the 1985 and 1987 mid-Jan. to mid-Mar. Field seasons. The mid-barrier remote sensor field site was located at 2.57 km MSL. Of chief interest to weather modification efforts are the heights of supercooled liquid water (SLW) clouds, which must be known to assess their 'seedability' (i.e., temperature and height suitability for artificially increasing snowfall). We are currently re-examining out entire dataset to determine the climatological properties of SLW clouds in winter storms using an autonomous computer algorithm.

  15. The DROPPS Program: A Rocket/Lidar/Radar Study of the Polar Summer Mesosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Holzworth, R. H.; Schmidlin, F. J.; Voss, H. D.; Tuzzolino, A. J.; Croskey, C. L.; Mitchell, J. D.; vonZhan, U.; Singer, W.

    1999-01-01

    During July of 1999, two sequences of rockets were launched from the Norwegian rocket range in Andoya, Norway. The purpose of these studies was to investigate the properties of the polar summer mesosphere, particularly relating to polar mesospheric summer echoes (PMSE) and their possible relationship to noctilucent clouds (NLC). Each of two sequences was anchored with a DROPPS Black Brant payload, consisting of 20 instruments to measure the electrodynamic and optical structure of the mesosphere and lower thermosphere. These were provided by participants from five American and two European scientific laboratories. The DROPPS (Distribution and Role of Particles in the Polar Summer) payloads were each accompanied by a sequence of meteorological rockets, and by several European payloads designed to study electrodynamics structure of the same region. ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) Lidars, and MF (Medium Frequency) and MST (Mesosphere, Stratosphere, and Troposphere) Radars were used to continuously monitor the mesosphere for NLCs and PMSEs respectively. EISCAT VHF (European Incoherent Scatter Radar Very High Frequency) radar provided similar information about PMSEs downstream from the launch site. Sequence 1 was launched on the night of 5-6 July into a strong PMSE display coupled with a weak NLC at the low end of the PMSE. Sequence 2 was launched on the early morning of 14 July into a strong NLC with no PMSE evident. Here we describe the details of the program along with preliminary results.

  16. Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs

    NASA Technical Reports Server (NTRS)

    Tetsu, Sakai; Whiteman, David N.; Russo, Felicita; Turner, David D.; Veselovskii, Igor; Melfi, S. Harvey; Nagai, Tomohiro; Mano, Yuzo

    2013-01-01

    This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman backscattering spectra measured in and below low clouds agree well with theoretical spectra for vapor and liquid water. The calibration coefficients of the liquid water measurement for the Raman lidar at the Atmospheric Radiation Measurement Program Southern Great Plains site of the U.S. Department of Energy were determined by comparison with the liquid water path (LWP) obtained with Atmospheric Emitted Radiance Interferometer (AERI) and the liquid water content (LWC) obtained with the millimeter wavelength cloud radar and water vapor radiometer (MMCR-WVR) together. These comparisons were used to estimate the Raman liquid water cross-sectional value. The results indicate a bias consistent with an effective liquid water Raman cross-sectional value that is 28%-46% lower than published, which may be explained by the fact that the difference in the detectors' sensitivity has not been accounted for. The LWP of a thin altostratus cloud showed good qualitative agreement between lidar retrievals and AERI. However, the overall ensemble of comparisons of LWP showed considerable scatter, possibly because of the different fields of view of the instruments, the 350-m distance between the instruments, and the horizontal inhomogeneity of the clouds. The LWC profiles for a thick stratus cloud showed agreement between lidar retrievals andMMCR-WVR between the cloud base and 150m above that where the optical depth was less than 3. Areas requiring further research in this technique are discussed.

  17. Cirrus Cloud Optical and Microphysical Property Measurements with Raman Lidar

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Wang, Z.; Whiteman, D.

    2006-12-01

    To improve our understanding of the impact of cirrus clouds on the current and future climate, improved knowledge of cirrus cloud optical and microphysical properties is needed. However, long-term studies of the problem indicate that accurate cirrus cloud measurements are challenging, especially in the low ice water content regime most frequent in the tropical cirrus layers. Recent advances in Raman lidar techniques have demonstrated that Raman lidar is an excellent tool to provide reliable cirrus cloud optical and microphysical properties, which are important to study cirrus clouds as well as to validate satellite cirrus cloud measurements. Based on elastic and nitrogen Raman signals, cirrus cloud optical depth and extinction to backscatter ratio can be quantified. By utilizing the Raman scattered intensities from ice crystals, a new method to remotely sense cirrus ice water content and general effective radius profiles has been demonstrated with NASA/GSFC Scanning Raman Lidar (SRL) measurements. Since the intensity of Raman scattering is fundamentally proportional to the number of molecules involved, this method provides a more direct way of measuring the ice water content compared with other schemes. Based on the SRL measurements, these Raman lidar capabilities will be illustrated.

  18. Report on the Radar/PIREP Cloud Top Discrepancy Study

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    1997-01-01

    This report documents the results of the Applied Meteorology Unit's (AMU) investigation of inconsistencies between pilot reported cloud top heights and weather radar indicated echo top heights (assumed to be cloud tops) as identified by the 45 Weather Squadron (45WS). The objective for this study is to document and understand the differences in echo top characteristics as displayed on both the WSR-88D and WSR-74C radars and cloud top heights reported by the contract weather aircraft in support of space launch operations at Cape Canaveral Air Station (CCAS), Florida. These inconsistencies are of operational concern since various Launch Commit Criteria (LCC) and Flight Rules (FR) in part describe safe and unsafe conditions as a function of cloud thickness. Some background radar information was presented. Scan strategies for the WSR-74C and WSR-88D were reviewed along with a description of normal radar beam propagation influenced by the Effective Earth Radius Model. Atmospheric conditions prior to and leading up to both launch operations were detailed. Through the analysis of rawinsonde and radar data, atmospheric refraction or bending of the radar beam was identified as the cause of the discrepancies between reported cloud top heights by the contract weather aircraft and those as identified by both radars. The atmospheric refraction caused the radar beam to be further bent toward the Earth than normal. This radar beam bending causes the radar target to be displayed erroneously, with higher cloud top heights and a very blocky or skewed appearance.

  19. Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol

    NASA Astrophysics Data System (ADS)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

    2011-12-01

    The atmospheric aerosol has a relevant effect on our life influencing climate, aviation safety, air quality and natural hazards. The identification of aerosol layers through inspection of continuous measurements is strongly recommended for quantifying their contribution to natural hazards and air quality and to establish suitable alerting systems. In particular, the study of ultragiant aerosols may improve the knowledge of physical-chemical processes underlying the aerosol-cloud interactions and the effect of giant nuclei as a potential element to expedite the warm-rain process. Moreover, the identification and the characterization of ultragiant aerosols may strongly contribute to quantify their impact on human health and their role in airplane engine damages or in visibility problems, especially in case of extreme events as explosive volcanic eruptions. During spring 2010, volcanic aerosol layers coming from Eyjafjallajökull volcano were observed over most of the European countries, using lidar technique. From 19 April to 19 May 2010, they were also observed at CNR-IMAA Atmospheric Observatory (CIAO) with the multi-wavelength Raman lidar systems of the Potenza EARLINET station (40.60N, 15.72E, 760 m a.s.l), Southern Italy. During this period, ultragiant aerosol were also observed at CIAO using a co-located Ka-band MIRA-36 Doppler microwave radar operating at 8.45 mm (35.5 GHz). The Ka-band radar observed in four separate days (19 April, 7, 10, 13 May) signatures consistent with the observations of non-spherical ultragiant aerosol characterized by anomalous values of linear depolarization ratio higher than -4 dB, probably related to the occurrence of multiple effects as particle alignment and presence of an ice coating. 7-days backward trajectory analysis shows that the air masses corresponding to the ultragiant aerosol observed by the radar were coming from the Eyjafjallajökull volcano area. Only in one case the trajectories do not come directly from Iceland

  20. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  1. Airborne Lidar Point Cloud Density Indices

    NASA Astrophysics Data System (ADS)

    Shih, P. T.; Huang, C.-M.

    2006-12-01

    Airborne lidar is useful for collecting a large volume and high density of points with three dimensional coordinates. Among these points are terrain points, as well as those points located aboveground. For DEM production, the density of the terrain points is an important quality index. While the penetration rate of laser points is dependent on the surface type characteristics, there are also different ways to present the point density. Namely, the point density could be measured by subdividing the surveyed area into cells, then computing the ratio of the number of points in each respective cell to its area. In this case, there will be one density value for each cell. The other method is to construct the TIN, and count the number of triangles in the cell, divided by the area of the cell. Aside from counting the number of triangles, the area of the largest, or the 95% ranking, triangle, could be used as an index as well. The TIN could also be replaced by Voronoi diagrams (Thiessen Polygon), and a polygon with even density could be derived from human interpretation. The nature of these indices is discussed later in this research paper. Examples of different land cover types: bare earth, built-up, low vegetation, low density forest, and high density forest; are extracted from point clouds collected in 2005 by ITRI under a contract from the Ministry of the Interior. It is found that all these indices are capable of reflecting the differences of the land cover type. However, further investigation is necessary to determine which the most descriptive one is.

  2. Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.

    2007-01-01

    Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.

  3. Mie Lidar for Aerosols and Clouds Monitoring at Otlica Observatory

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Filipčič, A.; Veberič, D.; Forte, B.

    2009-04-01

    Aerosol and cloud densities are the most important atmospheric parameters, which significantly influence the atmospheric conditions. The study of their spatial and temporal properties can provide detailed information about the transport processes of the air masses. In recent years, lidar techniques for remote sensing of the atmospheric parameters have been greatly improved. Like the lidar systems of the Pierre Auger Observatory in Argentina (35.2S, 69.1W, 1400 m a.s.l.), the Mie lidar built at Otlica Observatory (45.93N, 13.91E, 945 m a.s.l.) in Slovenia employs the same hardware, including the transmitter, the receiver, and the DAQ system. Due to its high-power laser, large-diameter telescope, and photon-counting data-acquisition technique, the Mie lidar has the potential ability to measure the tropospheric and stratospheric atmospheric conditions, and is suitable for monitoring the changes of the cirrus clouds and atmospheric boundary layer. We have been performing routine atmospheric monitoring experiments with the Otlica Mie lidar since September 2008. Using the techniques of event-averaging, noise-elimination, and data-gluing, the far end of lidar probing range is extended from 30 km up to 40 km. The extinction profiles are calculated using the Klett method and the time-height-intensity plots were made. They clearly show the evolution of atmospheric conditions, especially the motion of the cirrus clouds above Otlica.

  4. Nanosecond gated PMT for LIDAR-RADAR applications

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.; Concannon, Brian M.; Asmolova, Olha V.; Podobna, Yulia Y.

    2006-08-01

    Wide dynamic range gating photosensor modules has been design for LIDAR-RADAR applications on base R7400U (active area 8 mm. diameter) R7600U (active area 18x18 mm.) Hamamatsu photomultiplier tubes. The photomultiplier tubes R7400U, series have two kinds of photocathode: low resistance semitransparent multialkali photocathodes and semitransparent bialkali photocathodes with large resistance. Different kinds of photocathodes require different approach to gating circuits design. High-speed pulse gating (gating rise time 10 nsec, setting time 40 nsec for 99%) has been used for enhancing of target contrast at ocean optic application for both kinds: semitransparent bialkali and semitransparent multialkali photocathodes. Wide dynamic range (50 dB of optical power) has been achieved by optimizing of applied to dynodes voltages. Compression up to 30 dB has been used for following output signal digital processing. Hamamatsu photosensitive modules were used in the two system receivers in pulsed LIDAR system. The system was mounted on the bow of the R/V New Horizon and collected data from August 25 thru September 8, 2005 as part of the LOCO field test in Monterey Bay. Approximately 4 million LIDAR profiles were collected during this period. During the field test the profiles were processed to show relative changes in water optical properties and to reveal water column structure in real time.

  5. Application of the Rayleigh lidar to observations of noctilucent clouds

    NASA Astrophysics Data System (ADS)

    Meriwether, J. W.; Farley, R.; McNutt, R.; Dao, P. D.; Moskowitz, W.; Davidson, G.; Burka, M.

    1993-08-01

    The feasibility of lidar detection of noctilucent cloud (NLC) returns with the Rayleigh lidar technique was determined by calculations of lidar photocount profiles for the Nd:YAG lidar wavelength of 532 nm (Rayleigh temperature lidar). These results affirm the feasibility of the application of this instrument to study the high-latitude summer phenomenon of NLCs. Rayleigh 532-nm lidar observations were carried out in Greenland for late July and August, 1990. Extended cloudiness hampered these measurements, and a display of NLCs was seen only on August 14-15, 1990, out of a total of 11 nights. No visual detection of NLCs in tile region of the zenith when the solar depression angle was 8.6 deg was noted. At this time the sky was sufficiently dark, and if there had been any NLCs overhead, visual NLC sightings should have been possible. The lidar observations provided measurements of the middle atmosphere temperature from 25 km to about 70 km for times near local midnight. Examination of the results for an indication of lidar Mie returns from NLCs was negative, which was consistent with the lack of visual detection.

  6. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent

  7. Distinguishing cirrus cloud presence in autonomous lidar measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. R.; Vaughan, M. A.; Oo, M.; Holz, R. E.; Lewis, J. R.; Welton, E. J.

    2014-07-01

    Level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite-based cloud datasets from 2012 are investigated for metrics that help distinguish the cirrus cloud presence of in autonomous lidar measurements, using temperatures, heights, optical depth and phase. A thermal threshold, proposed by Sassen and Campbell (2001; SC2001) for cloud top temperature Ttop ≤ -37 °C, is evaluated vs. CALIOP algorithms that identify ice-phase cloud layers alone using depolarized backscatter. Global mean cloud top heights (11.15 vs. 10.07 km a.m.s.l.), base heights (8.76 vs. 7.95 km a.m.s.l.), temperatures (-58.48 °C vs. -52.18 °C and -42.40 °C vs. -38.13 °C, respectively for tops and bases) and optical depths (1.18 vs. 1.23) reflect the sensitivity to these competing constraints. Over 99% of all Ttop ≤ -37 °C clouds are classified as ice by CALIOP Level 2 algorithms. Over 81% of all ice clouds correspond with Ttop ≤ -37 °C. For instruments lacking polarized measurements, and thus practical phase estimates, Ttop ≤ -37 °C proves stable for distinguishing cirrus, as opposed to the risks of glaciated liquid water cloud contamination occurring in a given sample from clouds identified at warmer temperatures. Uncertainties in temperature profiles use to collocate with lidar data (i.e., model reanalyses/sondes) may justifiably relax the Ttop ≤ -37 °C threshold to include warmer cases. The ambiguity of "warm" (Ttop > -37 °C) ice cloud genus cannot be reconciled completely with available measurements, however, conspicuously including phase. Cloud top heights and optical depths are evaluated as potential constraints, as functions of CALIOP-retrieved phase. However, these data provide, at best, additional constraint in regional samples, compared with temperature alone, and may exacerbate classification uncertainties overall globally.

  8. Distinguishing cirrus cloud presence in autonomous lidar measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. R.; Vaughan, M. A.; Oo, M.; Holz, R. E.; Lewis, J. R.; Welton, E. J.

    2015-01-01

    2012 Level-2 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite-based cloud data sets are investigated for thresholds that distinguish the presence of cirrus clouds in autonomous lidar measurements, based on temperatures, heights, optical depth and phase. A thermal threshold, proposed by Sassen and Campbell (2001) for cloud top temperature Ttop ≤ -37 °C, is evaluated versus CALIOP algorithms that identify ice-phase cloud layers using polarized backscatter measurements. Derived global mean cloud top heights (11.15 vs. 10.07 km above mean sea level; a.m.s.l.), base heights (8.76 km a.m.s.l. vs. 7.95 km a.m.s.l.), temperatures (-58.48 °C vs. -52.18 °C and -42.40 °C vs. -38.13 °C, respectively, for tops and bases) and optical depths (1.18 vs. 1.23) reflect the sensitivity to this constraint. Over 99 % of all Ttop ≤ -37 °C clouds are classified as ice by CALIOP Level-2 algorithms. Over 81 % of all ice clouds correspond with Ttop ≤ -37 °C. For instruments lacking polarized measurements, and thus practical estimates of phase, Ttop ≤ -37 °C provides sufficient justification for distinguishing cirrus, as opposed to the risks of glaciated liquid-water cloud contamination occurring in a given sample from clouds identified at relatively "warm" (Ttop > -37 °C) temperatures. Although accounting for uncertainties in temperatures collocated with lidar data (i.e., model reanalyses/sondes) may justifiably relax the threshold to include warmer cases, the ambiguity of "warm" ice clouds cannot be fully reconciled with available measurements, conspicuously including phase. Cloud top heights and optical depths are investigated, and global distributions and frequencies derived, as functions of CALIOP-retrieved phase. These data provide little additional information, compared with temperature alone, and may exacerbate classification uncertainties overall.

  9. Study of Droplet Activation in Thin Clouds Using Ground-Based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2016-06-01

    A methodology for the study of cloud droplet activation based on the measurements performed with ground-based multi-wavelength Raman lidars and ancillary remote sensors collected at CNR-IMAA observatory, Potenza, South Italy, is presented. The study is focused on the observation of thin warm clouds. Thin clouds are often also optically thin: this allows the cloud top detection and the full profiling of cloud layers using ground-based Raman lidar. Moreover, broken clouds are inspected to take advantage of their discontinuous structure in order to study the variability of optical properties and water vapor content in the transition from cloudy regions to cloudless regions close to the cloud boundaries. A statistical study of this variability leads to identify threshold values for the optical properties, enabling the discrimination between clouds and cloudless regions. These values can be used to evaluate and improve parameterizations of droplet activation within numerical models. A statistical study of the co-located Doppler radar moments allows to retrieve droplet size and vertical velocities close to the cloud base. First evidences of a correlation between droplet vertical velocities measured at the cloud base and the aerosol effective radius observed in the cloud-free regions of the broken clouds are found.

  10. Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations Using Doppler Cloud Radar Observations

    NASA Astrophysics Data System (ADS)

    Albrecht, B. A.; Fang, M.

    2012-12-01

    Observations from an upward-pointing Doppler cloud radar are used to examine the vertical velocity variance and energy dissipation rate at the top of continental stratocumulus clouds. These observations are used to examine terms in the turbulence kinetic energy (TKE) budget in the entrainment zone that are related to the entrainment rate. When this budget (without wind shear) is applied to the entrainment zone, the entrainment rate is proportional to a vertical transport and pressure perturbation term minus a dissipation term and inversely proportional to the strength of the inversion. The transport-pressure term is usually assumed to be proportional to the vertical velocity variance to the 3/2 power and inversely proportional to the boundary layer depth (called the variance term in this study). In this study the observations are made in a continental stratocumulus cloud observed over the Southern Great Plains (SGP) at the DOE ARM site for a 14-hour period. Clouds were solid during this entire period and had thicknesses of 300-400 meters and tops increasing from 800-1200 m. The turbulence forcing due to surface buoyancy fluxes and radiative cooling at cloud top is obtained from surface flux measurements and radiative transfer calculations based on the cloud characteristics derived from cloud radar and lidar observations. During the day surface forcing dominates as the radiative warming at cloud top by solar absorption compensates the cloud-top longwave cooling. At night the surface buoyancy fluxes are close to zero and the longwave cooling at cloud top dominates the turbulence forcing. Vertical velocity and spectrum width observations from the upward pointing millimeter cloud radar (MMCR) at the SGP site are used to examine the turbulence in the top 20% (60-80 m) of the cloud, which is define as the entrainment zone. The spectrum width is used to define energy dissipation rates directly in the entrainment zone and the vertical velocity observations are used to

  11. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  12. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect

    Kollias, P.; Luke, E.; Rémillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  13. Rapid Inspection of Pavement Markings Using Mobile LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Li, Jonathan; Cheng, Ming; Wang, Cheng

    2016-06-01

    This study aims at building a robust semi-automated pavement marking extraction workflow based on the use of mobile LiDAR point clouds. The proposed workflow consists of three components: preprocessing, extraction, and classification. In preprocessing, the mobile LiDAR point clouds are converted into the radiometrically corrected intensity imagery of the road surface. Then the pavement markings are automatically extracted with the intensity using a set of algorithms, including Otsu's thresholding, neighbor-counting filtering, and region growing. Finally, the extracted pavement markings are classified with the geometric parameters using a manually defined decision tree. Case studies are conducted using the mobile LiDAR dataset acquired in Xiamen (Fujian, China) with different road environments by the RIEGL VMX-450 system. The results demonstrated that the proposed workflow and our software tool can achieve 93% in completeness, 95% in correctness, and 94% in F-score when using Xiamen dataset.

  14. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  15. Cloud Physics Lidar Measurements During the SAFARI-2000 Field Campaign

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, Stan; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new remote sensing instrument, the Cloud Physics Lidar (CPL) has been built for use on the ER-2 aircraft. The first deployment for CPL was the SAFARI-2000 field campaign during August-September 2000. The CPL is a three-wavelength lidar designed for studies of cirrus, subvisual cirrus, and boundary layer aerosols. The CPL utilizes a high repetition rate, low pulse energy laser with photon counting detectors. A brief description of the CPL instrument will be given, followed by examples of CPL data products. In particular, examples of aerosol backscatter, including boundary layer smoke and cirrus clouds will be shown. Resulting optical depth estimates derived from the aerosol measurements will be shown. Comparisons of the CPL optical depth and optical depth derived from microPulse Lidar and the AATS-14 sunphotomer will be shown.

  16. Multiple scattering depolarization in marine stratus clouds: Lidar experiments

    NASA Technical Reports Server (NTRS)

    Sassen, K.; Petrilla, R. L.

    1986-01-01

    The depolarization of ruby lidar backscattering caused by multiple scattering in marine stratus clouds was examined systematically from a field site on the southern California coast. Investigated were the effects on the linear depolarization (delta) of lidar receiver field of view (FOV), elevation angle and laser beam pointing errors. An approximately linear increase in maximum delta values was observed with increasing receiver FOV, and the importance of accurate transmitter/receiver beam alignment was demonstrated during experiments in which the laser axis was deliberately misaligned. An elevation angle dependence to the delta values was observed as a consequence of the natural vertical inhomogeneity of water cloud content above the cloud base. Time histories of the depolarization characteristics of dissipating stratus clouds revealed significant spatial and temporal variability in delta values attributed to cloud composition variations. Employing a 1 mrad transmitter FOV, maximum delta values of 0.21 nd 0.33 were observed with 1 and 3 mrad receiver FOVs, respectively, from the low stratus clouds. The fundamental causes and effects on the lidar equation of multiple scattering are also discussed.

  17. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  18. Airborne lidar and radiometric observations of PBL- and low clouds

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Valentin, R.; Pelon, J.

    1992-01-01

    Boundary layer- and low altitude clouds over open ocean and continent areas have been studied during several field campaigns since mid-1990 using the French airborne backscatter lidar LEANDRE in conjunction with on-board IR and visible radiometers. LEANDRE is an automatic system, and a modification of the instrumental parameters, when airborne, is computer controlled through an operator keyboard. The vertical range squared lidar signals and instrument status are displayed in real time on two dedicated monitors. The lidar is used either down- or up-looking while the aircraft is flying above or below clouds. A switching of the viewing configuration takes about a minute. The lidar measurements provide a high resolution description of cloud morphology and holes in cloud layers. The flights were conducted during various meteorological conditions on single or multilayer stratocumulus and cumulus decks. Analysis on a single shot basis of cloud top (or bottom) altitude and a plot of the corresponding histogram allows one to determine a probability density function (PDF). The preliminary results show the PDFs for cloud top are not Gaussian and symmetric about the mean value. The skewness varies with atmospheric conditions. An example of results recorded over the Atlantic ocean near Biarritz is displayed, showing: (1) the range squared lidar signals as a function of time (here 100 s corresponds to about 8 km, 60 shots are averaged on horizontal); the Planetary Boundary Layer (PBL) - up to 600 m - is observed at the beginning of the leg as well as on surface returns, giving an indication of the porosity; (2) the cloud top altitude variation between 2.4 to 2.8 km during the 150 to 320 s section; and (3) the corresponding PDF. Similar results are obtained on stratocumulus over land. Single shot measurements can be used also to determine an optical porosity at a small scale as well as a fractional cloudiness at a larger scale. A comparison of cloud top altitude retrieved from

  19. Scanning ARM Cloud Radars Part I. Operational Sampling Strategies

    SciTech Connect

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2013-12-03

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  20. An investigation of cirrus cloud properties using airborne lidar

    NASA Astrophysics Data System (ADS)

    Yorks, John Edward

    The impact of cirrus clouds on the Earth's radiation budget remains a key uncertainty in assessing global radiative balance and climate change. Composed of ice, and located in the cold upper troposphere, cirrus clouds can cause large warming effects because they are relatively transmissive to short-wave solar radiation, but absorptive of long wave radiation. Our ability to model radiative effects of cirrus clouds is inhibited by uncertainties in cloud optical properties. Studies of mid-latitude cirrus properties have revealed notable differences compared to tropical anvil cirrus, likely a consequence of varying dynamic formation mechanisms. Cloud-aerosol lidars provide critical information about the vertical structure of cirrus for climate studies. For this dissertation, I helped develop the Airborne Cloud-Aerosol Transport System (ACATS), a Doppler wind lidar system at NASA Goddard Space Flight Center (GSFC). ACATS is also a high spectral resolution lidar (HSRL), uniquely capable of directly resolving backscatter and extinction properties of a particle from high-altitude aircraft. The first ACATS science flights were conducted out of Wallops Island, VA in September of 2012 and included coincident measurements with the Cloud Physics Lidar (CPL) instrument. In this dissertation, I provide an overview of the ACATS method and instrument design, describe the ACATS retrieval algorithms for cloud and aerosol properties, explain the ACATS HSRL retrieval errors due to the instrument calibration, and use the coincident CPL data to validate and evaluate ACATS cloud and aerosol retrievals. Both the ACATS HSRL and standard backscatter retrievals agree well with coincident CPL retrievals. Mean ACATS and CPL extinction profiles for three case studies demonstrate similar structure and agree to within 25 percent for cirrus clouds. The new HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions. Furthermore, extinction and particle wind

  1. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures.

    PubMed

    Vercesi, Valeria; Onori, Daniel; Laghezza, Francesco; Scotti, Filippo; Bogoni, Antonella; Scaffardi, Mirco

    2015-04-01

    We propose a novel architecture for implementing a dual-frequency lidar (DFL) exploiting differential Doppler shift measurement. The two frequency tones, needed for target velocity measurements, are selected from the spectrum of a mode-locked laser operating in the C-band. The tones' separation is easily controlled by using a programmable wavelength selective switch, thus allowing for a dynamic trade-off among robustness to atmospheric turbulence and sensitivity. Speed measurements for different tone separations equal to 10, 40, 80, and 160 GHz are demonstrated, proving the system's capability of working in different configurations. Thanks to the acquisition system based on an analog-to-digital converter and digital-signal processing, real-time velocity measurements are demonstrated. The MLL-based proposed architecture enables the integration of the DFL with a photonic-based radar that exploits the same laser for generating and receiving radio-frequency signal with high performance, thus allowing for simultaneous or complementary target observations by exploiting the advantages of both radar and lidar. PMID:25831332

  2. Radar Wind Profiler Radial Velocity: A Comparison with Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Cohn, Stephen A.; Goodrich, R. Kent

    2002-12-01

    The accuracy of the radial wind velocity measured with a radar wind profiler will depend on turbulent variability and instrumental noise. Radial velocity estimates of a boundary layer wind profiler are compared with those estimated by a Doppler lidar over 2.3 h. The lidar resolution volume was much narrower than the profiler volume, but the samples were well matched in range and time. The wind profiler radial velocity was computed using two common algorithms [profiler online program (POP) and National Center for Atmospheric Research improved moments algorithm (NIMA)]. The squared correlation between radial velocities measured with the two instruments was R2 = 0.99, and the standard deviation of the difference was about r = 0.20-0.23 m s1 for radial velocities of greater than 1 m s1 and r = 0.16-0.35 m s1 for radial velocities of less than 1 m s1. Small radial velocities may be treated differently in radar wind profiler processing because of ground-clutter mitigation strategies. A standard deviation of r = 0.23 m s1 implies an error in horizontal winds from turbulence and noise of less than 1 m s1 for a single cycle through the profiler beam directions and of less than 0.11-0.27 m s1 for a 30-min average measurement, depending on the beam pointing sequence. The accuracy of a wind profiler horizontal wind measurement will also depend on assumptions of spatial and temporal inhomogeneity of the atmosphere, which are not considered in this comparison. The wind profiler radial velocities from the POP and NIMA are in good agreement. However, the analysis does show the need for improvements in wind profiler processing when radial velocity is close to zero.

  3. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect

    Jayeshlal, G. S. Satyanarayana, Malladi Dhaman, Reji K. Motty, G. S.

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  4. Cloud Coverage and Height Distribution from the GLAS Polar Orbiting Lidar: Comparison to Passive Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).

  5. Radar Evaluation of Optical Cloud Constraints to Space Launch Operations

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Short, David A.; Ward, Jennifer G.

    2005-01-01

    Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.

  6. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    , occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR

  7. Lidar Measurements of Snow Falling from Martian Clouds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Canadian-built lidar aboard NASA's Phoenix Mars Lander produced this graphic of a profile of a Martian cloud on the 99th sol, or Martian day, of the mission (Sept. 3, 2008). The vertical streaks at the base of the cloud on the right of the image show ice crystals falling from the cloud, similar to snow. The streaks are curved as the winds are faster around 3 kilometers (almost 2 miles) than at higher altitudes. Scientists are able to determine that the snow is water-based and not carbon-dioxide snow, since temperatures on Mars are currently too warm to support the latter.

  8. COMPARISON OF MILLIMETER-WAVE CLOUD RADAR MEASUREMENTS FOR THE FALL 1997 CLOUD IOP

    SciTech Connect

    SEKELSKY,S.M.; LI,L.; GALLOWAY,J.; MCINTOSH,R.E.; MILLER,M.A.; CLOTHIAUX,E.E.; HAIMOV,S.; MACE,G.; SASSEN,K.

    1998-03-23

    One of the primary objectives of the Fall 1997 IOP was to intercompare Ka-band (35GHz) and W-band (95GHz) cloud radar observations and verify system calibrations. During September 1997, several cloud radars were deployed at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, including the full time operation 35 GHz CART Millimeter-wave Cloud Radar (MMCR), (Moran, 1997), the University of Massachusetts (UMass) single antenna 33GHz/95 GHz Cloud Profiling Radar System (CPRS), (Sekelsky, 1996), the 95 GHz Wyoming Cloud Radar (WCR) flown on the University of Wyoming King Air (Galloway, 1996), the University of Utah 95 GHz radar and the dual-antenna Pennsylvania State University 94 GHz radar (Clothiaux, 1995). In this paper the authors discuss several issues relevant to comparison of ground-based radars, including the detection and filtering of insect returns. Preliminary comparisons of ground-based Ka-band radar reflectivity data and comparisons with airborne radar reflectivity measurements are also presented.

  9. Study of Droplet Activation in Thin Clouds Using Ground-based Raman Lidar and Ancillary Remote Sensors

    NASA Astrophysics Data System (ADS)

    Rosoldi, Marco; Madonna, Fabio; Gumà Claramunt, Pilar; Pappalardo, Gelsomina

    2015-04-01

    Studies on global climate change show that the effects of aerosol-cloud interactions (ACI) on the Earth's radiation balance and climate, also known as indirect aerosol effects, are the most uncertain among all the effects involving the atmospheric constituents and processes (Stocker et al., IPCC, 2013). Droplet activation is the most important and challenging process in the understanding of ACI. It represents the direct microphysical link between aerosols and clouds and it is probably the largest source of uncertainty in estimating indirect aerosol effects. An accurate estimation of aerosol-clouds microphysical and optical properties in proximity and within the cloud boundaries represents a good frame for the study of droplet activation. This can be obtained by using ground-based profiling remote sensing techniques. In this work, a methodology for the experimental investigation of droplet activation, based on ground-based multi-wavelength Raman lidar and Doppler radar technique, is presented. The study is focused on the observation of thin liquid water clouds, which are low or midlevel super-cooled clouds characterized by a liquid water path (LWP) lower than about 100 gm-2(Turner et al., 2007). These clouds are often optically thin, which means that ground-based Raman lidar allows the detection of the cloud top and of the cloud structure above. Broken clouds are primarily inspected to take advantage of their discontinuous structure using ground based remote sensing. Observations are performed simultaneously with multi-wavelength Raman lidars, a cloud Doppler radar and a microwave radiometer at CIAO (CNR-IMAA Atmospheric Observatory: www.ciao.imaa.cnr.it), in Potenza, Southern Italy (40.60N, 15.72E, 760 m a.s.l.). A statistical study of the variability of optical properties and humidity in the transition from cloudy regions to cloud-free regions surrounding the clouds leads to the identification of threshold values for the optical properties, enabling the

  10. High resolution retrieval of liquid water vertical distributions using collocated Ka-band and W-band cloud radars

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Johnson, Karen; Liu, Yangang; Wiscombe, Warren

    2009-12-01

    The retrieval of cloud water content using dual-frequency radar attenuation is very sensitive to error in radar reflectivity. Either a long radar dwell time or an average over many range gates is needed to reduce random noise in radar data and thus to obtain accurate retrievals - but at the cost of poorer temporal and spatial resolution. In this letter we have shown that, by using advanced mathematical inversion techniques like total variation regularization, vertically resolved liquid water content can be retrieved at an accuracy of about 0.15 gm-3 at 40 m resolution. This is demonstrated using the co-located Ka-band and W-band cloud radars operated by the Atmospheric Radiation Measurement program. The liquid water path calculated from the radars agrees closely with that from a microwave radiometer, with a mean difference of 70 gm-2. Comparison with lidar observations reveals that the dual-frequency retrieval also reasonably captures the cloud base height of drizzling clouds - something that is very difficult to determine from radar reflectivity alone.

  11. Lidar studies on climate sensitivity characteristics of tropical cirrus clouds

    NASA Astrophysics Data System (ADS)

    Motty, G. S.; Jayeshlal, G. S.; Satyanarayana, Malladi; Mahadevan Pillai, V. P.

    2016-05-01

    The cirrus clouds play an important role in the Earth's radiation budget due to their high frequency of occurrence, non-spherical ice crystal formations, and variability in the scattering/absorption characteristics. Mostly, the tropical cirrus clouds are considered as greenhouse modulators. Thus the parameterization of tropical cirrus clouds in terms of the micro- physical properties and the corresponding radiative effects are highly important for the climate studies. For characterizing the radiative properties of cirrus clouds, which depend on the size, shape and number of the ice crystals, the knowledge of extinction coefficient (σ) and optical depth (τ) are necessary. The σ provides information needed for understanding the influence of the scatterers on the radiative budget whereas the τ gives an indication on the composition and thickness of the cloud. Extensive research on the tropical cirrus clouds has been carried out by using a ground based and satellite based lidar systems. In this work, the characteristics of tropical cirrus cloud derived by using the data from the ground based lidar system over the tropical site Gadanki [13.5°N, 79.2°E], India during 2010 are presented. Some of the results are compared with those obtained by us from satellite based CALIOP lidar observations of the CALIPSO mission. It is observed that there is a strong dependence of the some of the physical properties such as occurrence height, cloud temperature and the geometrical thickness on the microphysical parameters in terms of extinction coefficient and optical depth. The correlation of both the σ and τ with temperature is also observed.

  12. Estimation of cloud content by W-band radar

    SciTech Connect

    Sassen, K.; Liao, L.

    1996-06-01

    The purpose of this article is to provide the best currently available means for relating W-band radar measurements to the contents of water and ice clouds. Since at the 3-mm wavelength many atmospheric targets violate the assumptions of the standard radar equation, we consider non-Rayleigh hydrometeor scattering and total atmospheric attenuation effects in order to properly treat the radar signals from clouds. Working relations between W-band radar reflectivity factors Z{sub e} and extinction coefficient {sigma}, and the liquid and ice mass contents of clouds are offered. In addition, for the first time we examine the relation between Z{sub e} and optical extinction coefficients in ice clouds based on exponential particle size distributions. As in the case of radar reflectivity-versus-rainfall rate relations, however, we recognize that further study and validation are needed to optimize the utility of radar-derived cloud quantities from these cloud types. 29 refs., 5 figs., 3 tabs.

  13. GLITTER: new lidar technique for cloud-base altimetry. Description and initial aircraft measurements.

    PubMed

    Gelbwachs, Jerry A; Farley, Robert W

    2004-05-10

    Knowledge of cloud-base heights is important for climate studies, weather, and military operations. Conventional lidar methods monitor cloud depths by direct transmission of the beam through the cloud and sensing the backscattered returns. These techniques are limited by severe optical scattering by cloud particles to thickness <0.5 km. We have conceived of a novel lidar method measurement for thick-cloud-base altimetry from above that is not restricted by cloud scattering. The new method, known as GLITTER (an acronym for glimpses of the lidar images through the empty regions), relies on cloud porosity and diffuse reflection from land features to sense cloud bottoms. An aircraft GLITTER lidar measured cloud bases at 3.7- and 4.5-km altitudes. These initial results represent a proof-of-principle demonstration of the new lidar method. PMID:15143824

  14. ESTIMATION OF TROPICAL FOREST STRUCTURE AND BIOMASS FROM FUSION OF RADAR AND LIDAR MEASUREMENTS (Invited)

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Dubayah, R.; Clark, D. B.; Chazdon, R.

    2009-12-01

    Radar and Lidar instruments are active remote sensing sensors with the potential of measuring forest vertical and horizontal structure and the aboveground biomass (AGB). In this paper, we present the analysis of radar and lidar data acquired over the La Selva Biological Station in Costa Rica. Radar polarimetry at L-band (25 cm wavelength), P-band (70 cm wavelength) and interferometry at C-band (6 cm wavelength) and VV polarization were acquired by the NASA/JPL airborne synthetic aperture radar (AIRSAR) system. Lidar images were provided by a large footprint airborne scanning Lidar known as the Laser Vegetation Imaging Sensor (LVIS). By including field measurements of structure and biomass over a variety of forest types, we examined: 1) sensitivity of radar and lidar measurements to forest structure and biomass, 2) accuracy of individual sensors for AGB estimation, and 3) synergism of radar imaging measurements with lidar imaging and sampling measurements for improving the estimation of 3-dimensional forest structure and AGB. The results showed that P-band radar combined with any interformteric measurement of forest height can capture approximately 85% of the variation of biomass in La Selva at spatial scales larger than 1 hectare. Similar analysis at L-band frequency captured only 70% of the variation. However, combination of lidar and radar measurements improved estimates of forest three-dimensional structure and biomass to above 90% for all forest types. We present a novel data fusion approach based on a Baysian estimation model with the capability of incorporating lidar samples and radar imagery. The model was used to simulate the potential of data fusion in future satellite mission scenarios as in BIOMASS (planned by ESA) at P-band and DESDynl (planned by NASA) at L-band. The estimation model was also able to quantify errors and uncertainties associated with the scale of measurements, spatial variability of forest structure, and differences in radar and lidar

  15. Dust-cloud density estimation using a single wavelength lidar

    NASA Astrophysics Data System (ADS)

    Youmans, Douglas G.; Garner, Richard C.; Petersen, Kent R.

    1994-09-01

    The passage of commercial and military aircraft through invisible fresh volcanic ash clouds has caused damage to many airplanes. On December 15, 1989 all four engines of a KLM Boeing 747 were temporarily extinguished in a flight over Alaska resulting in $DOL80 million for repair. Similar aircraft damage to control systems, FLIR/EO windows, wind screens, radomes, aircraft leading edges, and aircraft data systems were reported in Operation Desert Storm during combat flights through high-explosive and naturally occurring desert dusts. The Defense Nuclear Agency is currently developing a compact and rugged lidar under the Aircraft Sensors Program to detect and estimate the mass density of nuclear-explosion produced dust clouds, high-explosive produced dust clouds, and fresh volcanic dust clouds at horizontal distances of up to 40 km from an aircraft. Given this mass density information, the pilot has an option of avoiding or flying through the upcoming cloud.

  16. Doppler capable FMCW cloud detection radar

    NASA Astrophysics Data System (ADS)

    Coşkun, Salih; Ćelik, Mert; Yilmaz, Ali Özgur; Koç, Sencer

    2015-10-01

    This study which was conducted as a Master's thesis, is a radar system working at X band. In this system, a 0.8 Watts continuous electromagnetic wave which is modulated with a frequency ramp of 30 MHz bandwidth is generated and radiated through transmit antenna. The scattered signal from the hydrometeors is multiplied with the transmitted one and the beat signal is obtained. By this deramping process the range information of the target is converted into frequency domain. Data is processed in Matlab after passing through analog to digital converters. The range and velocity information is obtained with signal processing algorithms in fast and slow time. Some special techniques such as clipping, windowing, coherent data integration, and slow time signal processing are performed to the captured beat signal. Verification of the system is performed by buildings and cars whose range and velocities are known. The range of cloud and the speed of wind are estimated by processing the return signal in fast and slow time.

  17. Study for external calibration method for cloud profiling radar on EarthCARE

    NASA Astrophysics Data System (ADS)

    Horie, Hiroaki; Kimura, Toshiyoshi; Okada, Kazuyuki; Ohno, Yuichi; Sato, Kenji; Kumagai, Hiroshi

    2008-10-01

    EarthCARE mission has objectives to reveal aerosol and cloud interaction and to reveal relationships with radiation budget. For this purpose, the EarthCARE satellite has four instruments, which are Atmospheric LIDAR (ATLID), Multi Spectral Imager (MSI) and Broad Band Radiometer (BBR) in addition to Cloud Profiling Radar (CPR). CPR is developed under cooperation of Japanese Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT) in Japan. The requirement of sensitivity is -35dBZ, therefore CPR uses W-band frequency and needs a large (2.5m) antenna reflector. The large antenna has small footprint and is to give up antenna scanning. From this, some difficulty of external calibration using active radar calibrator (ARC) is recognized. One solution of external calibration is using scattering from natural distributed target, such as sea surface. Then the measurement of sea surface scattering using airborne cloud radar was performed. The sea surface scattering property is being prepared. Second solution is that ARC puts on exact location of sub-satellite track. Precise sub-satellite track prediction is necessary. We focus second solution in this paper. The test experiment was demonstrated using CloudSat of NASA/JPL, which is provided CPR using W-band frequency. The feasibility of this calibration method is discussed.

  18. Processing Uav and LIDAR Point Clouds in Grass GIS

    NASA Astrophysics Data System (ADS)

    Petras, V.; Petrasova, A.; Jeziorska, J.; Mitasova, H.

    2016-06-01

    Today's methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

  19. Modeling Lidar Multiple Scattering

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi

    2016-06-01

    A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.

  20. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  1. Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.

    1996-01-01

    The scientific research conducted under this grant have been reported in a series of journal articles, dissertations, and conference proceedings. This report consists of a compilation of these publications in the following areas: development and operation of a High Spectral Resolution Lidar, cloud physics and cloud formation, mesoscale observations of cloud phenomena, ground-based and satellite cloud cover observations, impact of volcanic aerosols on cloud formation, visible and infrared radiative relationships as measured by satellites and lidar, and scattering cross sections.

  2. Balloonborne lidar for cloud physics studies

    NASA Astrophysics Data System (ADS)

    di Donfrancesco, Guido; Cairo, Francesco; Buontempo, Carlo; Adriani, Alberto; Viterbini, Maurizio; Snels, Marcel; Morbidini, Roberto; Piccolo, Francesco; Cardillo, Francesco; Pommereau, Jean-Pierre; Garnier, Anne

    2006-08-01

    An innovative balloonborne microjoule lidar (MULID) has been developed within the framework of the HIBISCUS project to provide nighttime measurements of visible and subvisible cirrus and aerosols. MULID has been designed to be a low-cost and an ultralow consumption instrument, due to the remote possibilities of payload recovery and the necessity of a low-weight battery power supply. Ground tests have been performed at the Observatory of Haute Provence (France), and the first technical flight has been made from Trapani, Italy, on a stratospheric balloon; finally, the instrument has been scientifically deployed during the pre-HIBISCUS and HIBISCUS tropical campaigns in Bauru, Brazil, in February 2003 and February 2004, respectively. A description of the instrument is provided together with the results of the ground-based and flight tests as well as an overview and discussion of the first results.

  3. Scanning Cloud Radar Observations at the ARM sites

    NASA Astrophysics Data System (ADS)

    Kollias, P.; Clothiaux, E. E.; Shupe, M.; Widener, K.; Bharadwaj, N.; Miller, M. A.; Verlinde, H.; Luke, E. P.; Johnson, K. L.; Jo, I.; Tatarevic, A.; Lamer, K.

    2012-12-01

    Recently, the DOE Atmospheric Radiation Measurement (ARM) program upgraded its fixed and mobile facilities with the acquisition of state-of-the-art scanning, dual-wavelength, polarimetric, Doppler cloud radars. The scanning ARM cloud radars (SACR's) are the most expensive and significant radar systems at all ARM sites and eight SACR systems will be operational at ARM sites by the end of 2013. The SACR's are the primary instruments for the detection of 3D cloud properties (boundaries, volume cloud fractional coverage, liquid water content, dynamics, etc.) beyond the soda-straw (profiling) limited view. Having scanning capabilities with two frequencies and polarization allows more accurate probing of a variety of cloud systems (e.g., drizzle and shallow, warm rain), better correction for attenuation, use of attenuation for liquid water content retrievals, and polarimetric and dual-wavelength ratio characterization of non-spherical particles for improved ice crystal habit identification. Examples of SACR observations from four ARM sites are presented here: the fixed sites at Southern Great Plains (SGP) and North Slope of Alaska (NSA), and the mobile facility deployments at Graciosa Island, Azores and Cape Cod, Massachusetts. The 3D cloud structure is investigated both at the macro-scale (20-50 km) and cloud-scale (100-500 m). Doppler velocity measurements are corrected for velocity folding and are used either to describe the in-cloud horizontal wind profile or the 3D vertical air motions.

  4. The polarization lidar technique for cloud research - A review and current assessment

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1991-01-01

    The development of the polarization lidar technique is reviewed, and the current capabilities and limitations of the technique for the cloud research are discussed. At present, polarization lidar is a key component of climate-research programs designed to characterize the properties of cirrus clouds and is an integral part of multiple remote-sensor studies of mixed-phase cloud systems such as winter mountain storms, making it possible to discriminate between cloud phases and to identify some particle types and orientations. Recent theoretical approaches involving ice crystal ray-tracing and cloud microphysical-model simulations are expected to increase the utility of the polarization lidar technique.

  5. Use of a cloud-sensing radar and a microwave radiometer as a stratus cloud profiler

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.

    1994-12-31

    Remote sensors such as radar offer an alternate approach to the study of could and drizzle properties. Combining stratus cloud measurements from a K{sub {alpha}}-band radar and microwave radiometer can give profiles of liquid water and droplet distribution. In addition, in drizzle, the radar measurements can be used to estimate drizzle parameters such as number concentration, liquid water, and droplet distribution.

  6. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  7. Water Vapor, Cloud and Aerosol Properties on the Tibetan Plateau Using Multi-Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Dai, Guangyao; Wang, Dongxiang; Zhai, Xiaochun; Song, Xiaoquan

    2016-06-01

    The 3rd Tibetan Plateau atmospheric expedition experiment campaign were operated in the Tibetan Plateau during July and August 2014 by utilizing the Water vapor, Cloud and Aerosol Lidar (WVCAL), Coherent Doppler Wind Lidar and ceilometer VAISALA CL31. The observation was carried out in Nagqu area (31.5°N, 92.05°E), which is 4508 meters above the mean sea level. Water vapor mixing ratio, cloud height, vertical wind speed and vertical water vapor flux was measured by these lidars. The inversion methods of data products of lidars are described in details in this paper. Furthermore, the clouds heights measured by lidar and ceilometer were compared to verify the performance of the lidar. Finally, the case studies of water vapor mixing ratio, water vapor flux and cloud height and statistics were provided.

  8. Mie lidar observations of lower tropospheric aerosols and clouds.

    PubMed

    Veerabuthiran, S; Razdan, A K; Jindal, M K; Dubey, D K; Sharma, R C

    2011-12-15

    Mie lidar system is developed at Laser Science and Technology Centre, Delhi (28.38°N, 77.12°E) by using minimal number of commercially available off-the-shelf components. Neodymium Yttrium Aluminum Garnet (Nd:YAG) laser operating at 1064nm with variable pulse energies between 25 and 400 mJ with 10 Hz repetition rate and 7ns pulse duration is used as a transmitter and off-axis CASSEGRAIN telescope with 100mm diameter as a receiver. Silicon avalanche photodiode (Si-APD) module with built-in preamplifier and front-end optics is used as detector. This system has been developed for the studies of lower tropospheric aerosols and clouds. Some experiments have been conducted using this set up and preliminary results are discussed. The characteristics of backscattered signals for various transmitter pulse energies are also studied. Atmospheric aerosol extinction coefficient values are calculated using Klett lidar inversion algorithm. The extinction coefficient, in general, falls with range in the lower troposphere and the values lie typically in the range 7.5×10(-5) m(-1) to 1.12×10(-4) m(-1) in the absence of any cloud whereas this value shoots maximum up to 1.267×10(-3) m(-1) (peak extinction) in the presence of clouds. PMID:21975046

  9. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  10. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  11. Determining in-Cloud Ice Particle Canting Distributions Using Radar

    NASA Astrophysics Data System (ADS)

    Honeyager, R. E.; Liu, G.

    2014-12-01

    With the advent of satellite-borne and ground-based radar and radiometers, it is now possible to observe ice cloud processes with unprecedented global coverage, simultaneously and at multiple frequencies. Unlike with liquid water, ice is nonspherical. Because of this asymmetry, in-cloud ice can sometimes have a preferred orientation. Instead of the particles orienting randomly, these particles may align roughly parallel to the horizon due to dynamical forcings. As such, this means that radar and radiometer observation angle relative to vertical / nadir must also be considered when recovering information from these instruments. To gain a preliminary understanding of these effects, angle-dependent single scattering properties (i.e. scattering and backscatter cross-section) are first determined using the discrete dipole approximation (DDA). Several particle morphologies are considered, including bullet rosette aggregates [Nowell, Liu and Honeyager 2013], dendritic snowflakes, sector snowflakes and bullet rosettes [Liu 2008]. Early profiles are constructed, showing the change in backscatter and scattering cross-sections as a function of radar observation angle and degree of alignment in the ensemble. To make a more physical model, it is not assumed that all hydrometeors are either fully randomly oriented or fully aligned. It is expected that transition regions occur in clouds, with partial alignment. We use an ensemble von Mises-Fisher distribution to examine these alignment effects. Finally, the model is to be validated against dual-frequency radar retrievals (Ka and W-Band) using ARM scanning-mode radars. By examining clouds at multiple angles and multiple frequencies as they move over the radar site, it is possible to determine the hydrometeor canting distribution. Observations will be used to develop a model for where hydrometeor alignment effects are expected to occur, and to determine the impact hydrometeor alignment has on existing zenith and nadir

  12. On the effect of cloud microstructure on the polarization characteristics of double scattering lidar return

    NASA Astrophysics Data System (ADS)

    Doroshkevich, Anton A.; Bryukhanova, Valentina V.

    2015-11-01

    The work is devoted to remote sensing droplet clouds by coaxial lidar. The results of numerical modeling of the distribution of polarization ellipse parameters of lidar returns in the double-scattering approximation are discussed. It is shown that the polarization state of sounding radiation transforms from a linear (or circular) to the elliptical at the study droplet clouds.

  13. The Cloud Physics Lidar: Instrument Description and Initial Measurement Results

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, V. Stanley; Starr, David OC. (Technical Monitor)

    2001-01-01

    The new Cloud Physics Lidar (CPL) has been built for use on the NASA ER-2 high altitude aircraft. The purpose of the CPL is to provide multi-wavelength measurements of cirrus, subvisual cirrus, and aerosols with high temporal and spatial resolution. The CPL utilizes state-of-the-art technology with a high repetition rate, a low pulse energy laser, and photon-counting detection. The first deployment for the CPL was the SAFARI-2000 field campaign during August-September 2000. We provide here an overview of the instrument and initial data results to illustrate the measurement capability of the CPL.

  14. Cloud radar deployment for Indian Monsoon observations: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Chakravarty, K.; Kalapureddy, M.; Pa, M.; Deshpandy, S.; Das, S.; Pandithurai, G.; Prabhakaran, T.; Chandrasekar, C. V.; Goswami, B.

    2013-12-01

    Indian Institute of Tropical Meteorology (IITM)'s acquired Ka-band radar for the Study of the interaction between Cloud and Environment for formation of Precipitation. Main objective of it is to make simultaneous high resolution measurements on dynamical, cloud microphysical and precipitation parameters pertain to monsoon system probably at diverse locations. The goal is to understand the interplay between cloud processes and environment that not only allow understanding the fundamental cloud-environment interactions but also precipitation formation mechanisms and further to estimate cloud contribution to the re-distribution of energy and water in climate system. For this, Polarimetric weather Doppler Radar at higher frequencies (9.5 and 35 GHz) can be a potential tool to gain knowledge on this scientific as well as societal application oriented programme. IITM's Polarimetric scanning Ka-band (cloud) radar operations started recently during May 2013. Mobile Ka-band Scanning Polarimetric Doppler Radar (KaSPR) is a cloud radar operating at wavelength of 8.5 mm with average powers of 110 W. KaSPR incorporates a conduction cooled Extended Interaction Klystron Amplifier. It is having four foot diameter Ka-band cassegrain antenna. Liquid cooled air-sealed RF unit provides excellent temperature stability. Antenna on the top of RF unit is mounted on the Elevation over azimuth pedestal which is designed to rotate continuously in the azimuth axis and a full 180 degrees in the elevation axis (horizon to horizon) with a maximum velocity of 200/sec and maximum acceleration of 120/s2. KaSPR uses dual channel 16-bit digital receiver having dynamic range of more than 80 dB with bandwidths 10 MHz. Arbitrary waveform generator capable of generating any user-defined waveform of up to 16K samples in length. It is having sensitivity of the order -45 dBZ at 5 km. KaSPR has been providing high sensitivity versatile measurements of cloud and precipitation at tropical site (Manderdev, 18

  15. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    NASA Technical Reports Server (NTRS)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  16. Cirrus cloud characteristics derived from volume imaging lidar, high spectral resolution lidar, HIS radiometer, and satellite

    NASA Technical Reports Server (NTRS)

    Grund, Christian J.; Ackerman, Steven A.; Eloranta, Edwin W.; Knutsen, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Preliminary measurement results are presented from the Cirrus Remote Sensing Pilot Experiment which used a unique suite of instruments to simultaneously retrieve cirrus cloud visible and IR optical properties, while addressing the disparities between satellite volume averages and local point measurements. The experiment employed a ground-based high resolution interferometer sounder (HIS) and a second Fourier transform spectrometer to measure the spectral radiance in the 4-20 micron band, a correlated high spectral resolution lidar, a volume imaging lidar, a CLASS radiosonde system, the Scripps Whole Sky Imager, and multispectral VAS, HIRS, and AVHRR satellite data from polar orbiting and geostationary satellites. Data acquired during the month long experiment included continuous daytime monitoring with the Whole Sky Imager.

  17. Experimental simulation of the atmospheric ablation of cosmic dust particles: implications for HPLA radar and lidar observations

    NASA Astrophysics Data System (ADS)

    Gomez Martin, Juan Carlos; Bones, David; Diego Carrillo Sanchez, Juan; James, Alexander; Janches, Diego; Plane, John

    2016-04-01

    The inner solar system is full of interplanetary dust particles (IDPs) originating from cometary trails and collisions between asteroids. The entry and evaporation of IDPs in planetary atmospheres is related to a variety of phenomena including formation of mesospheric metal layers and clouds and stratospheric aerosol chemistry. The estimated mass flux into the Earth's Atmosphere from modelling of Zodiacal Cloud observations combined with results from our chemical ablation model (CABMOD) is consistent with the deposition rate of cosmic spherules on the ice caps. However, the fluxes derived from modelling HPLA radar observations, which also uses CABMOD, are significantly lower. In addition, all models underestimate the observed Na/Fe ratio in metal layers observed by LIDAR, and the radar-based model in particular does not predict differential ablation. In order to address these inconsistencies, we have built a laboratory meteor ablation simulator, which enables us to observe and characterise the ablation of metal atoms from meteoritic IDP analogues. CABMOD can be then benchmarked against the laboratory data. In this presentation, the implications of our experimental results for the interpretation of radar field observations, mass flux estimates and modelling of metal layers will be discussed.

  18. Refinement of the basic radar equation for clouds and precipitation

    NASA Technical Reports Server (NTRS)

    Salman, Y. M.

    1975-01-01

    A derivation of the basic radar equation for clouds and precipitation is given that takes into account the antenna radiation pattern. The reasons for the differences in the equations used by various authors are demonstrated. More rigorous forms for writing down the basic equation are given.

  19. Studies of ice clouds using 95 GHz airborne radar

    NASA Astrophysics Data System (ADS)

    Wolde, Mengistu Yirdaw

    2000-12-01

    This study presents results from analyses of 95 GHz airborne polarimetric radar measurements and other in situ data in a variety of ice clouds. Measurements were made in winter clouds over Wyoming and Colorado. Radar parameters analyzed were the differential reflectivity factor (ZDR) and the linear depolarization ratio (LDR). Examination of the specific signatures for different crystal forms, and the dependence of the signatures on beam angle, led to a diagnostic matrix in terms ZDR and LDR values. Planar crystals, columnar crystals, and melting particles can be differentiated based on combined ZDR and LDR measurements at various radar elevation angles. Unique LDR signatures were also observed in Cu con. clouds containing large graupel particles and high concentrations of small particles. It is also shown that among planar crystals P1a and P1d types can be differentiated from P1e types. Overall, the frequencies of occurrence of significant polarimetric signatures were only few percent in the cloud volumes examined, but can approach near 100% in certain clouds. Polarimetric signatures were found to be most frequent in the temperature interval -10 to -18°C due to plate-like crystals growing there. The presence of significant polarimetric signatures is associated with the absence of riming and provides a means of identifying cloud regions where diffusional crystal growth dominates. In the second part of the dissertation, cloud structure and crystal growth in Ns clouds sampled in Wyoming and Oregon are presented. In spite of differences in location and time, the two Ns data sets have shown similar features. In both cases, generating cells were present near cloud top and the melting layer was well defined in the radar images. Thin dry layers just above the melting layer were also observed in both cases. In accordance with earlier studies, particle spectra in these clouds are adequately described by exponential relationships. The slope and intercept parameters of the

  20. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect

    Kollias, P.; Luke, E.; Szyrmer, W.; Rémillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  1. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  2. NASA Spaceborne Radar Missions: CloudSat and QuickScat: To Observe Clouds and Sea Surface Winds

    NASA Technical Reports Server (NTRS)

    Wu, Chialin

    2006-01-01

    CloudSat is a joint US/Canadian spaceborne science mission for global measurements of atmospheric cloud structures. Cloud Profiling Radar (CPR) has already captured many stunning profiles of cloud/precipitation structures, some have not been seen before. Observation of storms' cloud formation, in conjunction with data from other remote sensors, will hopefully improve quality of natural hazards' forecasts.

  3. Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W. (Principal Investigator)

    1995-01-01

    A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.

  4. Improved retrievals of the optical properties of cirrus clouds by a combination of lidar methods.

    PubMed

    Cadet, Bertrand; Giraud, Vincent; Haeffelin, Martial; Keckhut, Philippe; Rechou, Anne; Baldy, Serge

    2005-03-20

    We focus on improvement of the retrieval of optical properties of cirrus clouds by combining two lidar methods. We retrieve the cloud's optical depth by using independently the molecular backscattering profile below and above the cloud [molecular integration (MI) method] and the backscattering profile inside the cloud with an a priori effective lidar ratio [particle integration (PI) method]. When the MI method is reliable, the combined MI-PI method allows us to retrieve the optimal effective lidar ratio. We compare these results with Raman lidar retrievals. We then use the derived optimal effective lidar ratio for retrieval with the PI method for situations in which the MI method cannot be applied. PMID:15818860

  5. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    NASA Technical Reports Server (NTRS)

    Platt, C. M.; Young, S. A.; Carswell, A. I.; Pal, S. R.; Mccormick, M. P.; Winker, D. M.; Delguasta, M.; Stefanutti, L.; Eberhard, W. L.; Hardesty, M.

    1994-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods being selected within the two time intervals. Data are being archived at NASA Langley Research Center and, once there, are readily available to the international scientific community. This article describes the scale of the study in terms of its international involvement and in the range of data being recorded. Lidar observations of cloud height and backscatter coefficient have been taken from a number of ground-based stations spread around the globe. Solar shortwave and infrared longwave fluxes and infrared beam radiance have been measured at the surface wherever possible. The observations have been tailored to occur around the overpass times of the NOAA weather satellites. This article describes in some detail the various retrieval methods used to obtain results on cloud-base height, extinction coefficient, and infrared emittance, paying particular attention to the uncertainties involved.

  6. Space-borne clear air lidar measurements in the presence of broken cloud

    NASA Astrophysics Data System (ADS)

    Astin, I.; Kiemle, C.

    2003-03-01

    A number of proposed lidar systems, such as ESA’s AEOLUS (formerly ADM) and DIAL missions (e.g. WALES) are to make use of lidar returns in clear air. However, on average, two-thirds of the globe is covered in cloud. Hence, there is a strong likelihood that data from these instruments may be contaminated by cloud. Similarly, optically thick cloud may not be penetrated by a lidar pulse, resulting in unobservable regions that are overshadowed by the cloud. To address this, it is suggested, for example, in AEOLUS, that a number of consecutive short sections of lidar data (between 1 and 3.5 km in length) be tested for cloud contamination or for overshadowing and only those that are unaffected by cloud be used to derive atmospheric profiles. The prob-ability of obtaining profiles to near ground level using this technique is investigated both analytically and using UV air-borne lidar data recorded during the CLARE’98 campaign. These data were measured in the presence of broken cloud on a number of flights over southern England over a four-day period and were chosen because the lidar used has the same wavelength, footprint and could match the along-track spacing of the proposed AEOLUS lidar.

  7. A 3D Cloud-Construction Algorithm for the EarthCARE Satellite Mission

    NASA Technical Reports Server (NTRS)

    Barker, H. W.; Jerg, M. P.; Wehr, T.; Kato, S.; Donovan, D. P.; Hogan, R. J.

    2011-01-01

    This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data.

  8. Cloud Distribution Statistics from LITE

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1998-01-01

    The Lidar In-Space Technology Experiment (LITE) mission has demonstrated the utility of spaceborne lidar in observing multilayer clouds and has provided a dataset showing the distribution of tropospheric clouds and aerosols. These unambiguous observations of the vertical distribution of clouds will allow improved verification of current cloud climatologies and GCM cloud parameterizations. Although there is now great interest in cloud profiling radar, operating in the mm-wave region, for the spacebased observation of cloud heights the results of the LITE mission have shown that satellite lidars can also make significant contributions in this area.

  9. Time Shifted PN Codes for CW Lidar, Radar, and Sonar

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Prasad, Narasimha S. (Inventor); Harrison, Fenton W. (Inventor); Flood, Michael A. (Inventor)

    2013-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  10. Polar Cirrus Cloud Properties Through Long-Term Lidar and Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Campbell, James; Mahesh, Ashwin; Welton, Judd; Starr, David OC. (Technical Monitor)

    2001-01-01

    In comparison to mid latitude cloud cover, knowledge of polar cirrus and other cloud cover is limited. The interpretations of satellite-based cloud imaging and retrievals in polar regions have major problems due to factors such as darkness and extreme low temperatures. Beginning in 2002 a NASA orbiting lidar instrument, GLAS, (Geoscience Laser Altimeter System) will unambiguously define cloud type and fraction with good coverage of polar regions. Active laser sensing gives the spatial and temporal distribution of clouds and diamond dust. In preparation for, and supplementing the GLAS measurements are ground based MP (micro pulse) lidar experiments providing continuous profiling. MP lidar installations have been operating at the South Pole since December 1999 and at the Atmospheric Radiation Measurement (ARM) program arctic site since 1996. Both at the ARM Barrow, Alaska site and at the South Pole station, Fourier-transform interferometers also observe clouds in the wavelength intervals between approximately 5 and 18 microns. Spectral instruments can yield cloud microphysical properties with additional information from lidar about the vertical extent of clouds being modeled. We examine the simultaneous lidar and spectral data from both Barrow and South Pole, to obtain cloud properties (optical depth, particle size) by the use of both instruments. The results have applications to interpretation of current satellite data, and GLAS measurements when available.

  11. Coherent Doppler Lidar for Wind and Cloud Measurements on Venus from an Orbiting or Floating/Flying Platform

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Limaye, Sanjay; Emmitt, George; Kavaya, Michael; Yu, Jirong; Petros, Mulugeta

    an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus. References [1] M.J. Kavaya, U.N. Singh, G.J. Koch, B.C. Trieu, M. Petros, and P.J. Petzar, "Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver and Plans for Flights on NASA's DC-8 and WB-57 Aircraft," Coherent Laser Radar Conference, Toulouse, France, June 2009. [2] G.J. Koch, J.Y. Beyon, B.W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M.J. Kavaya, and U.N. Singh, "High-Energy 2-micron Doppler Lidar for Wind Measurements," Optical Engineering 46(11), 116201-14 (2007). [3] J.Y. Beyon and G.J. Koch, "Novel Nonlinear Adaptive Doppler Shift Estimation Technique for the Coherent Doppler Validation Lidar," Optical Engineering 46(1), 0160021-9 (2007).

  12. Verification and correction of cloud base and top height retrievals from Ka-band cloud radar in Boseong, Korea

    NASA Astrophysics Data System (ADS)

    Oh, Su-Bin; Kim, Yeon-Hee; Kim, Ki-Hoon; Cho, Chun-Ho; Lim, Eunha

    2016-01-01

    In this study, cloud base height (CBH) and cloud top height (CTH) observed by the Ka-band (33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013 (September-November) were verified and corrected. For comparative verification, CBH and CTH were obtained using a ceilometer (CL51) and the Communication, Ocean and Meteorological Satellite (COMS). During rainfall, the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops, and this difference increased with rainfall intensity. During dry periods, however, the CBH and CTH observed by the cloud radar, ceilometer, and COMS were similar. Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS. In cases of rainfall or missing cloud radar data, the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data. These corrected cloud data were used to classify cloud types, which revealed that low clouds occurred most frequently.

  13. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

  14. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds.

    PubMed

    Sassen, K; Zhao, H; Dodd, G C

    1992-05-20

    The dependence of polarization lidar returns on basic microphysical and thermodynamic variables is assessed by using a cloud model to simulate the growth of water and mixed (water and ice) phase clouds. Cloud contents that evolve with height in updrafts are converted, by using Mie theory, into cloud droplet single and double backscattering and attenuation coefficients. The lidar equation includes forward multiple scattering attenuation corrections based on diffraction theory for droplets and ice crystals, whose relative scattering contributions are treated empirically. Lidar depolarization is computed from droplet and crystal single scattering and an analytical treatment of droplet double scattering. Water cloud results reveal the expected increases in linear depolarization ratios (delta) with increasing lidar field of view and distance to cloud but also show that depolarization is a function of cloud liquid water content, which depends primarily on temperature. Ice crystals modulate mixed phase cloud liquid water contents through water vapor competition effects, thereby affecting multiple scattering delta values as functions of updraft velocity, temperature, and crystal size and concentration. Although the minimum delta at cloud base increases with increasing ice content, the peak measurable delta in the cloud decreases. Comparison with field data demonstrate that this modeling approach is a valuable supplement to cloud measurements. PMID:20725225

  15. Tropical and Midlatitude Cirrus Cloud Extinction and Backscatter From Multiyear Raman Lidar Measurements.

    NASA Astrophysics Data System (ADS)

    Thorsen, T. J.; Fu, Q.

    2014-12-01

    Lidars have the capability to provide unparalleled range-resolved observations of particulate extinction. However, lidars fundamentally measure backscattered energy, not extinction, and for widely prevalent single-channel elastic backscatter lidars extinction must be obtained by assuming a backscatter-extinction relationship. Our knowledge of this relationship, known as the lidar ratio, mainly consists values determined via the transmission-loss method: which can only provide layer-averaged values and is only applicable to a subset of all cloud layers. Directly-retrieved, vertically resolved extinction coefficients and lidar ratios are obtainable through the use of more advance high spectral resolution lidars (HSRL) or Raman lidars (RL). However, the complexity of operating a HSRL or RL has limited their use for cloud observations to very limited time periods: typical only a few months or less. In this work, we present a newly developed retrieval for the Atmospheric Radiation Measurement (ARM) program's Raman lidars for Feature detection and EXtinction retrieval (FEX). FEX improves upon existing ARM products by using multiple, complimentary quantities to identify both clouds and aerosols and retrieve their extinction and backscatter profiles. Multiple years of data are examined at both the Lamont, Oklahoma and Darwin, Australia ARM sites; providing the most comprehensive climatology to date of cirrus extinction and lidar ratios. Variations in these optical properties with classification of the synoptic state and their relationship with microphysical parameters (temperature, relative humidity and depolarization) are examined.

  16. Estimation of canopy height using lidar and radar interferometry: an assessment of combination methods and sensitivity to instrument, terrain and canopy height profile

    NASA Astrophysics Data System (ADS)

    Simard, M.; Neumann, M.; Pinto, N.; Brolly, M.; Brigot, G.

    2014-12-01

    The combined use of Lidar and radar interferometry to estimate canopy height can be classified into 3 categories: cross-validation, simple combination and fusion methods. In this presentation, we investigate the potential of each category for local and regional scale applications, and assess their sensitivity to instrument configuration, terrain topography and variations in the vertical forest canopy profiles. In addition to field data, we use data from TanDEM-X, UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), LVIS (Laser Vegetation Imaging Sensor) and a commercial discrete lidar. TanDEM-X is a pair of X-band spaceborne radars flying in formation to provide a global digital surface model and can also be used to perform polarimetric synthetic aperture radar (polinSAR) inversion of canopy height. The UAVSAR is an airborne fully polarimetric radar enabling repeat-pass interferometry and has been used for polinsar. While LVIS records the full waveform within a 20m footprint, the discrete lidar collects a cloud of points. The lidar data can be used to validate the polinSAR results (validation), to obtain ground elevation (simple combination with radar surface models) or within the polinSAR inversion model through a common model framework. The data was collected over the Laurentides Wildlife Reserve, a managed territory covering 7861km2 which is located between Québec city and Saguenay. The variety of management practices offers the possibility for long term and comparative studies of natural forest dynamics as well as the impact of human, fires and insect disturbances. The large elevational gradient of the region (~1000m) allows study of variations in structure and type of forests. Depending on the method used, several factors may degrade the accuracy of canopy height estimates from the combined use of lidar and radar interferometry. Here we will consider misregistration of datasets, differences in spatial resolution and viewing geometry, geometric

  17. Dual Wavelength Lidar Observation of Tropical High-Altitude Cirrus Clouds During the ALBATROSS 1996 Campaign

    NASA Technical Reports Server (NTRS)

    Beyerle, G.; Schafer, J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    1998-01-01

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel POLARSTERN on the Atlantic ocean in October-November 1996.

  18. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  19. Comparison of lidar calibration at 1064-nm channel using the water-phase and cirrus clouds

    NASA Astrophysics Data System (ADS)

    Wu, Yonghua; Chaw, Shuki; Gross, Barry; Moshary, Fred; Ahmed, Sam

    2009-09-01

    Lidar calibration at the 1064-nm channel is explored by using the low-level water-phase cloud and high cirrus cloud. Based on a known constant of lidar ratio in the optically thick water cloud, the lidar calibration constant is estimated by integrating lidar returns in the cloud. By using wavelength independence of cirrus cloud backscatter, the lidar constant is analyzed with the two-wavelength signals ratio at 532-nm and 1064-nm after correcting aerosol transmittance from sunphotometer measurement. Calibration constants by these two separate methods are compared on the same day and show consistency with the relative difference of less than 30% in general. We further verify the calibration constant by regressing lidar signals with calibrated ceilometer data in the low planetary boundary layer (PBL). Moreover, the calibration result is tested by applying it to estimate aerosol backscatter at 1064-nm and Angstrom exponent. In the end, normalized daily averages of lidar constants over two-month period are presented.

  20. Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2004-01-01

    The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.

  1. Reducing Surface Clutter in Cloud Profiling Radar Data

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p << r). Once the high-resolution surface response has thus become available, the profile of surface clutter can be accurately estimated by use of a conventional maximum-correlation scheme: A translated and scaled version of the high-resolution surface response is fitted to the observed

  2. Research on the Relationship Between Cloud Temperature and Optical Depth Using Rotational and Vibrational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Su, Jia; McCormick, M. Patrick; Lei, Liqiao

    2016-06-01

    Clouds play a key role in the climate system, for they can result in a warming or a cooling effect according to their characteristics and altitudes. Raman Lidars have been proven to be a very useful remote sensing tool to characterize cloud properties and locations. In this paper, cloud temperature and optical depth are obtained using rotational Raman (RR) and vibrational Raman techniques. Results of cloud temperature and optical depth (OD) observed by the Hampton University (HU) Rotational-Vibrational Raman Lidar are presented. The paper discusses the influence of cloud OD on temperature of the cloud base and top. From these measurements, the relation of low-altitude cloud OD and temperature is summarized. These analyses are unique in that they combine simultaneous measurements of these quantities that can lead to an improvement in the understanding of cloud radiation transfer and effects.

  3. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science

  4. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  5. The structure of the convective atmospheric boundary layer as revealed by lidar and Doppler radars

    NASA Astrophysics Data System (ADS)

    Eilts, M. D.; Sundara-Rajan, A.; Doviak, R. J.

    1985-02-01

    Results on the structure of the convective atmospheric boundary layer based on the analyses of data from the instrumented NSSL-KTVY tower, airborne Doppler lidar, and ground-based Doppler radars are presented. The vertically averaged wind over the boundary layer was found to be insensitive to baroclinicity, supporting the hypothesis of Arya and Wyngaard (1975). The computed momentum flux profiles were affected by baroclinicity. Horizontal wind spectra from lidar, radar, and tower data compared well with each other both in shape and magnitude. A consistent peak found near 4 km in all the computed spectra might have been caused by horizontally symmetric cells with horizontal wavelength 4 times the boundary-layer height as shown in Kuettner (1971) for the case of weak wind shear.

  6. The structure of the convective atmospheric boundary layer as revealed by lidar and Doppler radars

    NASA Technical Reports Server (NTRS)

    Eilts, M. D.; Sundara-Rajan, A.; Doviak, R. J.

    1985-01-01

    Results on the structure of the convective atmospheric boundary layer based on the analyses of data from the instrumented NSSL-KTVY tower, airborne Doppler lidar, and ground-based Doppler radars are presented. The vertically averaged wind over the boundary layer was found to be insensitive to baroclinicity, supporting the hypothesis of Arya and Wyngaard (1975). The computed momentum flux profiles were affected by baroclinicity. Horizontal wind spectra from lidar, radar, and tower data compared well with each other both in shape and magnitude. A consistent peak found near 4 km in all the computed spectra might have been caused by horizontally symmetric cells with horizontal wavelength 4 times the boundary-layer height as shown in Kuettner (1971) for the case of weak wind shear.

  7. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement. PMID:25321266

  8. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties.

    PubMed

    Schmidt, Jörg; Wandinger, Ulla; Malinka, Aleksey

    2013-04-10

    Dual-field-of-view Raman lidar measurements, detecting Raman-scattered light with two fields of view simultaneously, are used for the first time to retrieve cloud microphysical properties. The measurements are performed with the Multiwavelength Atmospheric Raman Lidar for Temperature, Humidity, and Aerosol Profiling (MARTHA) at the Leibniz Institute for Tropospheric Research in Leipzig, Germany. Light that is scattered in forward direction by cloud droplets and inelastically backscattered by N2 molecules is detected. A forward iterative algorithm uses the measured signals to derive profiles of the effective cloud droplet radius, extinction coefficient, and liquid-water content of the investigated clouds. The setup, algorithm, error analysis, and a measurement example are presented. The obtained liquid-water path is validated by observations with a microwave radiometer. With the capability to retrieve aerosol properties as well as cloud microphysical properties, the Raman lidar MARTHA is an ideal tool for studies of the aerosol indirect effect. PMID:23670751

  9. The structure and phase of cloud tops as observed by polarization lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.

    1983-01-01

    High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.

  10. Retrieval of cloud microphysical parameters using the NOAA/PSD W-band cloud radar from R/V Ronald H. Brown during the VOCALS-REx field program

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Deszoeke, S. P.; Moran, K.; Pezoa, S.; Wolfe, D. E.; Zuidema, P.

    2009-12-01

    The NOAA Physical Science Division deployed a new pitch-roll stabilized, vertically pointing W-band (94 GHz) Doppler cloud radar on the NOAA research vessel Ronald H. Brown during the VOCALS-Rex field program in fall 2008 in the stratocumulus region off the coast of Chile. The radar operated at full sensitivity on Leg-2 (November 8-30, 2008). The radar produced profiles of full Doppler spectra and the first three moments of the spectral peak at 0.3 s time intervals; the vertical resolution is 25 m. Pitch-roll stabilization allows Doppler measurement of vertical motion without tilt-contamination by horizontal winds; ship heave is measured independently and subtracted from the radar vertical velocity to yield very accurate particle vertical motions. In this paper we describe the results of processing the radar moments in one-hour blocks to retrieve cloud and drizzle microphysical parameters using the method of Frisch, Fairall, and Snider, JAS1995. Additional inputs from a lidar ceilometer and a microwave radiometer are used. For cloud, profiles of liquid water and mean cloud drop radius are obtained; for drizzle profiles of liquid water, mean drizzle drop radius, and rainrate are obtained. Cloud microphysics processing is only possible in non-drizzling cases. The results are compared to analyses from the EPIC2001 field program in the same location.

  11. The Retrieval of Stratocumulus Cloud Properties by Ground-Based Cloud Radar.

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Illingworth, Anthony J.

    1997-05-01

    The radiative characteristics of stratocumulus clouds are dependent upon their microphysical properties, primarily the liquid water content and effective radius of the drop population. Aircraft observations of droplet spectra in warm stratocumulus over the North Atlantic and around the British Isles by the Hercules C-130 aircraft of the U.K. Meteorological Office Meteorological Research Flight have been used to calculate the radar reflectivity, liquid water content, and effective radius. Empirically derived relationships, found from more than 4000 km of flight data on 11 separate days, that link reflectivity with either liquid water content or effective radius have been derived. These empirical relationships are significantly different from those predicted if the cloud droplet spectrum is modeled as a gamma function. Occasional drizzle-sized drops are frequently present within the cloud, and even though their concentration is very low, they dominate the reflectivity and these empirical relationships fail. However, although the drizzle drops increase the reflectivity, they have a negligible effect on the liquid water content and effective radius of the cloud. As these drops have a significant fall velocity in comparison to the cloud droplets, it is suggested that a ground-based Doppler radar could separate the components of the reflectivity due to bimodal drop spectra and the vertical structure of the cloud properties that determine radiative transfer could be retrieved.

  12. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  13. Lidar depolarization measurements of ice-precipitating liquid cloud layers during the 2012 Canadian Arctic ACE Validation Campaign

    NASA Astrophysics Data System (ADS)

    McCullough, E. M.; Perro, C. W.; Nott, G. J.; Hopper, J.; Duck, T. J.; Sica, R. J.; Drummond, J. R.

    2012-12-01

    There is still great uncertainty in the relative abundance of liquid and solid particles in polar clouds, particularly in winter. Measurements of these quantities are important for the correct estimate of the local radiation budget. Depolarization measurements by the CANDAC Rayleigh-Mie-Raman Lidar (CRL) at Eureka, Nunavut, Canada (80°N, 86°W) are improving our understanding in this area. The 2012 Canadian Arctic ACE Validation Campaign provided an opportunity to run the CRL depolarization channel nearly continuously (both day and night) throughout the polar sunrise season, measuring cloud particle phase with 7.5 m resolution in altitude and 1-minute time resolution in the troposphere. More than 10 co-located instruments, and additional detection channels of the CRL itself, make for a data set which is well-supported for intercomparison analyses. The CRL is a versatile instrument with eight detection channels, capable of measuring 532 nm (visible) and 355 nm (ultraviolet) elastic and nitrogen Raman backscatter, aerosol extinction, water vapour mixing ratio, tropospheric temperature profiles, as well as particulate properties including density and colour ratio. The 532 nm depolarization channel measures the extent to which the polarization state of the lidar beam is changed by scattering interactions with cloud particles in the sky, providing the ability to discern between ice crystals and liquid water droplets in polar clouds. This paper will focus on such measurements of early springtime clouds over Eureka. A nearly-continuous time series of depolarization was collected from late February through early April 2012 and provides a detailed case study of several distinct cloud features. Particular attention is paid to thin ice clouds of several varieties (both precipitating and non-precipitating, as well as some possible examples of mixed-phase clouds) and to ice-precipitating liquid cloud layers, examined in the context of local meteorological measurements. The

  14. Strong aerosol-cloud interaction in altocumulus during updraft periods: lidar observations over central Europe

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Ansmann, A.; Bühl, J.; Wandinger, U.

    2015-09-01

    For the first time, a liquid-water cloud study of the aerosol-cloud-dynamics relationship, solely based on lidar, was conducted. Twenty-nine cases of pure liquid-water altocumulus layers were observed with a novel dual-field-of-view Raman lidar over the polluted central European site of Leipzig, Germany, between September 2010 and September 2012. By means of the novel Raman lidar technique, cloud properties such as the droplet effective radius and cloud droplet number concentration (CDNC) in the lower part of altocumulus layers are obtained. The conventional aerosol Raman lidar technique provides the aerosol extinction coefficient (used as aerosol proxy) below cloud base. A collocated Doppler lidar measures the vertical velocity at cloud base and thus updraft and downdraft occurrence. Here, we present the key results of our statistical analysis of the 2010-2012 observations. Besides a clear aerosol effect on cloud droplet number concentration in the lower part of the altocumulus layers during updraft periods, turbulent mixing and entrainment of dry air is assumed to be the main reason for the found weak correlation between aerosol proxy and CDNC higher up in the cloud. The corresponding aerosol-cloud interaction parameter based on changes in cloud droplet number concentration with aerosol loading was found to be close to 0.8 at 30-70 m above cloud base during updraft periods and below 0.4 when ignoring vertical-wind information in the analysis. Our findings are extensively compared with literature values and agree well with airborne observations.

  15. A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations

    NASA Astrophysics Data System (ADS)

    Marchand, Roger; Haynes, John; Mace, Gerald G.; Ackerman, Thomas; Stephens, Graeme

    2009-04-01

    Over the last few years a new type of global climate model (GCM) has emerged in which a cloud-resolving model is embedded into each grid cell of a GCM. This new approach is frequently called a multiscale modeling framework (MMF) or superparameterization. In this article we present a comparison of MMF output with radar observations from the NASA CloudSat mission, which uses a near-nadir-pointing millimeter-wavelength radar to probe the vertical structure of clouds and precipitation. We account for radar detection limits by simulating the 94 GHz radar reflectivity that CloudSat would observe from the high-resolution cloud-resolving model output produced by the MMF. Overall, the MMF does a good job of reproducing the broad pattern of tropical convergence zones, subtropical belts, and midlatitude storm tracks, as well as their changes in position with the annual solar cycle. Nonetheless, the comparison also reveals a number of model shortfalls including (1) excessive hydrometeor coverage at all altitudes over many convectively active regions, (2) a lack of low-level hydrometeors over all subtropical oceanic basins, (3) excessive low-level hydrometeor coverage (principally precipitating hydrometeors) in the midlatitude storm tracks of both hemispheres during the summer season (in each hemisphere), and (4) a thin band of low-level hydrometeors in the Southern Hemisphere of the central (and at times eastern and western) Pacific in the MMF, which is not observed by CloudSat. This band resembles a second much weaker ITCZ but is restricted to low levels.

  16. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect

    S, Motty G Satyanarayana, M. Krishnakumar, V. Dhaman, Reji k.

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  17. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-07-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  18. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-11-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results

  19. Validation of a radar doppler spectra simulator using measurements from the ARM cloud radars

    SciTech Connect

    Remillard, J.; Luke, E.; Kollias, P.

    2010-03-15

    The use of forward models as an alternative approach to compare models with observations contains advantages and challenges. Radar Doppler spectra simulators are not new; their application in high- resolution models with bin microphysics schemes could help to compare model output with the Doppler spectra recorded from the vertically pointing cloud radars at the ARM Climate Research Facility sites. The input parameters to a Doppler spectra simulator are both microphysical (e.g., particle size, shape, phase, and number concentration) and dynamical (e.g., resolved wind components and sub-grid turbulent kinetic energy). Libraries for spherical and non-spherical particles are then used to compute the backscattering cross-section and fall velocities, while the turbulence is parameterized as a Gaussian function with a prescribed width. The Signal-to-Noise Ratio (SNR) is used to determine the amount of noise added throughout the spectrum, and the spectral smoothing due to spectral averages is included to reproduce the averaging realized by cloud radars on successive returns. Thus, realistic Doppler spectra are obtained, and several parameters that relate to the morphological characteristics of the synthetically generated spectra are computed. Here, the results are compared to the new ARM microARSCL data products in an attempt to validate the simulator. Drizzling data obtained at the SGP site by the MMCR and the AMF site at Azores using the WACR are used to ensure the liquid part and the turbulence representation part of the simulator are properly accounted in the forward model.

  20. Retrieving optical properties of dusty clouds from MFRSR and Lidar measurements

    NASA Astrophysics Data System (ADS)

    Wang, T.; Huang, J.

    2009-12-01

    Based on the scattering properties of nonspherical dust aerosol, a new method is developed for retrieving dust aerosol optical depths of dusty clouds. The dusty clouds are defined as the hybrid system of dust plume and cloud. The new method is based on transmittance measurements from surface-based instruments Multi-filter Rotating Shadowband Radiometer (MFRSR) and cloud parameters from Lidar measurements. It uses the difference of absorption between dust aerosols and water droplets for distinguishing and estimating the optical properties of dusts and clouds, respectively. This new retrieval method is not sensitive to the retrieval error of cloud properties and the maximum absolute deviations of dust aerosol and total optical depths for thin dusty cloud retrieval algorithm are only 0.056 and 0.1, respectively, for given possible uncertainties. The retrieval error for thick dusty cloud mainly depends on Lidar-based total dusty cloud properties. This algorithm was applied to retrieve the dusty cloud properties by using MFRSR and Lidar Measurements, during 2008 China-US joined dust field campaign (March-June 2008). This presentation will provide the preliminary results.

  1. Second annual progress report of the Millimeter Wave Cloud Profiling Radar System (CPRS)

    SciTech Connect

    Pazmany, A.L.; Sekelsky, S.M.; McIntosh, R.E.

    1992-06-07

    The Cloud Profiling Radar System (CPRS) is a single antenna, two frequency (33 GHz and 95 GHz) polarimetric radar which is currently under the development at the University of Massachusetts (UMASS). This system will be capable of making four dimensional Doppler and polarimetric measurements of clouds. This report gives details about the status of the various subsystems under development and discusses current research activities.

  2. The problem of regime summaries of the data from radar observations. [for cloud system identification

    NASA Technical Reports Server (NTRS)

    Divinskaya, B. S.; Salman, Y. M.

    1975-01-01

    Peculiarities of the radar information about clouds are examined in comparison with visual data. An objective radar classification is presented and the relation of it to the meteorological classification is shown. The advisability of storage and summarization of the primary radar data for regime purposes is substantiated.

  3. Active probing of cloud thickness and optical depth using wide-angle imaging LIDAR.

    SciTech Connect

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60{sup o} full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Section 2 covers the up-to-date evolution of the nighttime WAIL instrument at LANL. Section 3 reports our progress towards daytime capability for WAIL, an important extension to full diurnal cycle monitoring by means of an ultra-narrow magneto-optic atomic line filter. Section 4 describes briefly how the important cloud properties can be inferred from WAIL signals.

  4. Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  5. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  6. Macrophysical and optical properties of midlatitude high-altitude clouds from 4 ground-based lidars and collocated CALIOP observations

    NASA Astrophysics Data System (ADS)

    Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03clouds (0.3Lidar measurements however show that subvisible and semi-transparent clouds represent 50% or more of cirrus cloud population. The radiative effects of cirrus clouds are found to be significant by many studies both at the top of the atmosphere and surface. The contribution of the subvisible and semi-transparent classes is strongly affected by levels of other scatterers in the atmosphere (gases, aerosols). This makes them quite an important topic of study at the global scale. In the present work, we applied the cloud structure analysis algorithm STRAT to long time series of lidar backscatter profiles from multiple locations around the world. Our goal was to establish a Mid-Latitude climatology of cirrus clouds macrophysical properties based on active remote sensing: ground-based lidars at four mid-latitude observatories and the spaceborne instrument CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). Lidar sampling, macrophysical (cloud base height, cloud top height, cloud thickness) and optical (cloud optical thickness) properties statistics are then evaluated and compared between the four observatories ground-based lidar measurements and quasi-simultaneously CALIOP overpasses. We note an overall good

  7. Mobile Multiwavelength Polarization Raman Lidar for Water Vapor, Cloud and Aerosol Measurement

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Zhang, Kailin; Qin, Shengguang; Gao, Fei; Hua, Dengxin

    2016-06-01

    Aiming at the detection of water vapor mixing ratio, particle linear depolarization ratio, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WVCAL) was developed by the lidar group at Ocean University of China. The Lidar consists of transmitting subsystem, receiving subsystem, data acquisition and controlling subsystem and auxiliary subsystem. These parts were presented and described in this paper. For the measurement of various physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in this Lidar system. In this paper, the integration and working principle of these channels is introduced in details. Finally, a measurement example which was operated in coastal area-Qingdao, Shandong province, during 2014 is provided.

  8. Autonomous, Full-Time Cloud Profiling at Arm Sites with Micro Pulse Lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Campbell, James R.; Hlavka, Dennis L.; Scott, V. Stanley; Flynn, Connor J.

    2000-01-01

    Since the early 1990's technology advances permit ground based lidar to operate full time and profile all significant aerosol and cloud structure of the atmosphere up to the limit of signal attenuation. These systems are known as Micro Pulse Lidars (MPL), as referenced by Spinhirne (1993), and were first in operation at DOE Atmospheric Radiation Measurement (ARM) sites. The objective of the ARM program is to improve the predictability of climate change, particularly as it relates to cloud-climate feedback. The fundamental application of the MPL systems is towards the detection of all significant hydrometeor layers, to the limit of signal attenuation. The heating and cooling of the atmosphere are effected by the distribution and characteristics of clouds and aerosol concentration. Aerosol and cloud retrievals in several important areas can only be adequately obtained with active remote sensing by lidar. For cloud cover, the height and related emissivity of thin clouds and the distribution of base height for all clouds are basic parameters for the surface radiation budget, and lidar is essetial for accurate measurements. The ARM MPL observing network represents the first long-term, global lidar study known within the community. MPL systems are now operational at four ARM sites. A six year data set has been obtained at the original Oklahoma site, and there are several years of observations at tropical and artic sites. Observational results include cloud base height distributions and aerosol profiles. These expanding data sets offer a significant new resource for cloud, aerosol and atmospheric radiation analysis. The nature of the data sets, data processing algorithms, derived parameters and application results are presented.

  9. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  10. Three-dimensional lidar point-cloud visualization and analysis of coseismic deformation using LidarViewer

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Kreylos, O.; Banesh, D.; Hamann, B.; Gold, P. O.; Elliott, A. J.; Hinojosa, A.; Kellogg, L. H.

    2012-12-01

    We summarize new point-cloud analysis techniques, and results obtained from lidar data collected from the 2010 El Mayor-Cucapah earthquake surface rupture, using LidarViewer, an open-source software platform developed at the UC Davis KeckCAVES. Imaging of earthquake deformation with multi-resolution and multi-temporal lidar presents several challenges for visualization and analysis. Instruments, data resolution, and even the geodetic reference frame may change significantly between surveys. Grid-based techniques fail to adequately represent fully 3-D features, such as scarps and vegetation, and introduce aliasing artifacts that are especially troublesome when the deformation signal sought is less than the point spacing. Once obtained, the resulting dense field of 3-D vectors derived from differential lidar are difficult to visualize together with the terrain, limiting interpretation of these results. Points are the native, resolution-independent format of lidar, but working with massive point data sets can overwhelm system memory. LidarViewer overcomes these challenges using hierarchal data storage, view-dependent rendering, and an efficient, recursive data analysis framework. Pre-earthquake airborne lidar, collected as part of a regional survey, are very sparse (0.013 pts/m2) compared to the post-earthquake survey (9 pts/m2). A simple, \\chi2 minimization approach to matching these data sets takes advantage of this dramatic resolution difference to extract 3-D ground motion. We visualize the resulting displacement field in a 3-D environment using streamline-based approaches, colored by elevation change, and superimposed on the post-earthquake topography. This fused data product encourages exploration and assessment of the deformation signal and its relationship to landscape features, such as fault scarps, vegetation, and topographic relief. Terrestrial lidar scans collected within two weeks of the earthquake reveal the surface rupture at centimeter resolution

  11. Monostatic lidar/radar invisibility using coated spheres.

    PubMed

    Zhai, Peng-Wang; You, Yu; Kattawar, George W; Yang, Ping

    2008-02-01

    The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large. PMID:18542217

  12. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  13. Lidar Monitoring of Clouds and Aerosols at the Facility for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    2000-01-01

    We report on findings from ongoing polarization lidar research at the University of Utah Facility for Atmospheric Remote Sensing (FARS). This facility was established in 1987, and the current total of lidar and radiometric measurements is approx. 2,900-h. Research at FARS has been applied to the climatological investigation of cirrus cloud properties for basic research and satellite measurement validation (currently in its 13th year), and studies of contrails, mixed phase clouds, and volcanic and Asian dust aerosols. Among the techniques utilized for monitoring cloud and aerosol properties are triple-wave length linear depolarization measurements, and high (1.5-m by 10-Hz) resolution scanning observations. The usefulness of extended time lidar studies for atmospheric and climate research is illustrated.

  14. Single Doppler radar and lidar studies of the dynamics of mixed layers and overlying stable regions

    NASA Technical Reports Server (NTRS)

    Xu, Mei; Gal-Chen, Tzvi

    1991-01-01

    Some examples of profiles of PBL quantities retrieved from Doppler radar and lidar observations are shown, and the extent to which the deduced quantities agree with the traditional eddy viscosity concept is examined. It is found in one case that the concept of 'top down bottom up' diffusion introduced by Wyngaard (1983) is more pertinent than that of the eddy viscosity. In another case it is found that, in stable layers with sufficiently large Richardson number, the momentum fluxes could be counter-gradient. In this latter case the use of a negative turbulence diffusion coefficient would result in an ill-posed differential equation, thus confusing the 'diffusion problem'.

  15. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  16. Characterizing Vegetation 3D structure Globally using Spaceborne Lidar and Radar.

    NASA Astrophysics Data System (ADS)

    Simard, M.; Pinto, N.; Riddick, S.

    2008-12-01

    We characterized global vegetation 3D structure using ICEsat-I/Geoscience Laser Altimeter (GLAS) and improved spatial resolution using ALOS/Phased Array L-band Synthetic Aperture radar (PALSAR) data over 3 sites in the United States. GLAS is a 70m footprint lidar altimeter sampling the ground along-track every 170m with a track separation near the equator around 30km. Forest type classes were initially defined according to the Global Land Cover 2000 map (GLC2000), and 5-degree latitude intervals. This strategy enabled analysis of canopy structure as a function of land cover type and latitude. This produced an irregular grid geographically consistant with GLC2000. To estimate canopy height we removed the ground component from the lidar waveform and computed the centroid of the component due to the forest canopy. Canopy height within a grid cell was produced by computing the weighted mean of the GLAS estimates contained within that cell. The weights were used to reduce the impact of slope on Lidar height estimation errors. Slope is the single most significant source of error when estimating height with a large footprint lidar. It stretches the waveform and causes false estimates of canopy height. The Shuttle Radar Topography Mission (SRTM) elevation data was used to derive slope and weights. Thus, data points located in flat areas were assigned a higher weight than points located in slopes. For each forest type, we modeled the relationship between Lidar-estimated canopy height and five environmental variables: temperature, precipitation, slope, elevation, and anthropogenic disturbance. This ecological model was constructed using the machine learning method Random Forest, due to its flexibility and non-parametric nature. Model accuracy was calculated by subsampling the Lidar data set: using 75% of the data set to produce the map previously described and the remaining 25% for validation. This approach was chosen to characterize individual forest canopy types and their

  17. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  18. Detecting thermally driven cyclic deformation of an exfoliation sheet with lidar and radar

    USGS Publications Warehouse

    Collins, Brian D.; Stock, Greg M.

    2014-01-01

    Rock falls from steep, exfoliating cliffs are common in many landscapes. Of the many mechanisms known to trigger rock falls, thermally driven deformation is among the least quantified, despite potentially being a prevalent trigger due to its occurrence at all times of year. Here we present the results of a field-based monitoring program using instrumentation, ground-based lidar, and ground-based radar to investigate the process of thermally driven deformation of an exfoliation sheet, and the ability of remote sensing tools to capture cyclic expansion and contraction patterns. Our results indicate that thermally driven exfoliation occurs on diurnal cycles and can be measured at the submillimeter to centimeter scale using high-resolution strain gauges, short-range (2 km) radar interfer-ometry.

  19. Optical and morphological properties of Cirrus clouds determined by the high spectral resolution lidar during FIRE

    NASA Technical Reports Server (NTRS)

    Grund, Christian John; Eloranta, Edwin W.

    1990-01-01

    Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.

  20. Cloud and Aerosol Retrieval for the 2001 GLAS Satellite Lidar Mission

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Palm, Stephen P.; Spinhirne, James D.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch in July of 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESAT). In addition to being a precision altimeter for mapping the height of the Earth's icesheets, GLAS will be an atmospheric lidar, sensitive enough to detect gaseous, aerosol, and cloud backscatter signals, at horizontal and vertical resolutions of 175 and 75m, respectively. GLAS will be the first lidar to produce temporally continuous atmospheric backscatter profiles with nearly global coverage (94-degree orbital inclination). With a projected operational lifetime of five years, GLAS will collect approximately six billion lidar return profiles. The large volume of data dictates that operational analysis algorithms, which need to keep pace with the data yield of the instrument, must be efficient. So, we need to evaluate the ability of operational algorithms to detect atmospheric constituents that affect global climate. We have to quantify, in a statistical manner, the accuracy and precision of GLAS cloud and aerosol observations. Our poster presentation will show the results of modeling studies that are designed to reveal the effectiveness and sensitivity of GLAS in detecting various atmospheric cloud and aerosol features. The studies consist of analyzing simulated lidar returns. Simulation cases are constructed either from idealized renditions of atmospheric cloud and aerosol layers or from data obtained by the NASA ER-2 Cloud Lidar System (CLS). The fabricated renditions permit quantitative evaluations of operational algorithms to retrieve cloud and aerosol parameters. The use of observational data permits the evaluations of performance for actual atmospheric conditions. The intended outcome of the presentation is that climatology community will be able to use the results of these studies to evaluate and quantify the impact of GLAS data upon atmospheric modeling efforts.

  1. Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.

  2. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio.

    PubMed

    Noel, Vincent; Chepfer, Helene; Ledanois, Guy; Delaval, Arnaud; Flamant, Pierre H

    2002-07-20

    A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds. PMID:12148751

  3. Testing the Parameterizations of Cloud Base Mass-Flux for Shallow Cumulus Clouds using Cloud Radar Observations

    NASA Astrophysics Data System (ADS)

    Chandra, A.; Kollias, P.; Albrecht, B. A.; Zhu, P.; Klein, S. A.; Zhang, Y.

    2010-12-01

    Shallow cumulus clouds have significant impact on the vertical distributions of heat and moisture and on surface energy fluxes over land through their effect on incoming shortwave radiation. The present resolutions of General Circulation Model (GCM) and Numerical weather prediction (NWP) models are not fine enough to simulate shallow clouds directly, leaving not much choice other than parameterizations evaluated using either Large Eddy Simulation (LES) and observations. The representation of these clouds in numerical models is an important and challenging issue in model development, because of its potential impacts on near-surface weather and long-term climate simulations. Recent studies through LES have shown that the mass flux is the important parameter for determining the characteristics of cumulus transports within cloud layer. Based on LES results and scaling arguments, substantial efforts have been made to parameterize the cloud base mass flux to improve the interactions between the subcloud and cloud layer. Despite these efforts, what factors control the mass flux and how the interaction between subcloud and cloud layers should be parameterized is not fully understood. From the observational perspective, studies have been done using aircraft and remote sensing platform to address the above issue; there have been insufficient observations to develop detailed composite studies under different conditions. The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) in Southern Great Plains (SGP) offers unique long-term measurements from cloud radars (35 and 94 GHz) along with synergetic measurements to address the above problem of non-precipitating shallow cumulus clouds over the SGP region. Doppler velocities from the cloud radar are processed to remove the insect contamination using a fuzzy-logic approach before they are used for the mass-flux calculation. The present observations are used to validate the existing mass-flux relations used in

  4. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  5. Airborne Lidar Measurements of Atmospheric Column CO2 Concentration to Cloud Tops

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2015-12-01

    Globally distributed atmospheric CO2 measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space, e.g., OCO-2 and GOSAT, are limited to cloud-free scenes. They are unable to provide useful retrievals in cloudy areas where the photon path-length can't be well characterized. Thus, passive approaches have limited global coverage and poor sampling in cloudy regions, even though some cloudy regions have active carbon surface fluxes. NASA Goddard is developing a pulsed integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate column CO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. This allows retrievals of column CO2 concentrations to cloud tops, providing much higher spatial coverage and some information about vertical structure of CO2. This is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation. We show some preliminary results of the all-sky retrieval capability using airborne lidar measurements from the 2011, 2013 and 2014 ASCENDS airborne campaigns on the NASA DC-8. These show retrievals of atmospheric CO2 over low-level marine stratus clouds, cumulus clouds at the top of planetary boundary layer, some mid-level clouds and visually thin high-level cirrus clouds. The CO2 retrievals from the lidar are validated against in-situ measurements and compared to Goddard PCTM model simulations. Lidar cloud slicing to derive CO2 abundance in the planetary boundary layer and free troposphere also has been demonstrated. The

  6. Multiple-scattering lidar from both sides of the clouds: Addressing internal structure

    NASA Astrophysics Data System (ADS)

    Davis, A. B.

    2008-07-01

    Multiple-scattering (a.k.a. "off-beam") lidar is an emerging technology in cloud remote sensing. It delivers, as in classic lidar ceilometry, cloud base altitude but also the cloud's physical thickness H as well as its optical depth τ (averaged over horizontal scales on the order of H). The value of τ in fact must lie beyond the range accessible by standard (i.e., single-scattering/on-beam) lidar profiling, namely, up to 3-4. A refined diffusion-theoretical model is presented here for signals from multiple-scattering lidar and applied, on the one hand, to retrieval algorithm development and, on the other hand, signal-to-noise ratio (SNR) estimation. SNRs are computed for LANL's ground-based Wide-Angle Imaging Lidar (WAIL) system and NASA's space-based Lidar-In-space Technology Experiment (LITE). The refinements are threefold and all about internal structure. First, the laser source is modeled as a collimated anisotropic exponentially distributed internal source rather than an isotropic point source at the cloud boundary; this opens the possibility of using δ-Eddington rescaling to capture the forward peaked phase function more effectively within the diffusion framework. Second, stratification of the scattering coefficient is modeled as an increasing function of distance to cloud base; this strongly differentiates the signals when observed from above or from below. Finally, Cairns' rescaling is applied to this conservative scattering problem to account for the systematic effects of random (turbulence-driven) internal variability at scales up to a few mean free paths.

  7. Estimation of Microphysical and Radiative Parameters of Precipitating Cloud Systems Using mm-Wavelength Radars

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.

    2009-03-01

    A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.

  8. TRACIR: A radar technique for observing the exchange of air between clouds and their environment

    NASA Astrophysics Data System (ADS)

    Martner, Brooks E.; Kropfli, Robert A.

    Dual-polarization radar measurements can be used to track parcels of air filled with aluminized chaff as they move into and through clouds, as well as in clear air. The circular depolarization ratio (CDR) signal of backscatter from chaff fibers is much stronger than that of most hydrometeors. The difference can be used to detect the location of chaff within clouds when conventional single-polarization radar methods fail. The new technique is called TRACIR (TRacking Air with Circular-polarization Radar). Field tests and analytic studies indicate the technique can be useful in studying how effectively clouds entrain dry air and vent pollutants out of the planetary boundary layer.

  9. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  10. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  11. Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007-2010

    NASA Astrophysics Data System (ADS)

    Collins, M. B.; Mitchard, E. T. A.

    2015-11-01

    Forests with high above-ground biomass (AGB), including those growing on peat swamps, have historically not been thought suitable for biomass mapping and change detection using synthetic aperture radar (SAR). However, by integrating L-band (λ = 0.23 m) SAR from the ALOS and lidar from the ICESat Earth-Observing satellites with 56 field plots, we were able to create a forest biomass and change map for a 10.7 Mha section of eastern Sumatra that still contains high AGB peat swamp forest. Using a time series of SAR data we estimated changes in both forest area and AGB. We estimate that there was 274 ± 68 Tg AGB remaining in natural forest (≥ 20 m height) in the study area in 2007, with this stock reducing by approximately 11.4 % over the subsequent 3 years. A total of 137.4 kha of the study area was deforested between 2007 and 2010, an average rate of 3.8 % yr-1. The ability to attribute forest loss to different initial biomass values allows for far more effective monitoring and baseline modelling for avoided deforestation projects than traditional, optical-based remote sensing. Furthermore, given SAR's ability to penetrate the smoke and cloud which normally obscure land cover change in this region, SAR-based forest monitoring can be relied on to provide frequent imagery. This study demonstrates that, even at L-band, which typically saturates at medium biomass levels (ca. 150 Mg ha-1), in conjunction with lidar data, it is possible to make reliable estimates of not just the area but also the carbon emissions resulting from land use change.

  12. Influence of characteristics of micro-bubble clouds on backscatter lidar signal.

    PubMed

    Li, Wei; Yang, Kecheng; Xia, Min; Rao, Jionghui; Zhang, Wei

    2009-09-28

    Marine micro-bubbles are one of those important constituents that influence scattering characteristics of water column. Monte Carlo Based simulations show that a water entrained bubble cloud generate a characteristic backscatter of incident laser light [M. Xia, J. Opt. A: Pure Appl. Opt. 8, 350 (2006)]. This characteristic can be used to detect and localize bubble clouds, leading to wide ranging applications, especially in optical remote sensing. This paper describes tests of an underwater lidar system applied to detecting cloud of micro-bubbles. Laboratory experiments demonstrate that the system is capable of detecting bubbles ranging from diameter 10 microm approximately 200 microm, over a distance of 7-12 m from the detector. The dependence of the lidar return signal on size distribution of bubbles, concentration, thickness and location of bubble clouds is studied and compared with simulation results. PMID:19907564

  13. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  14. Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar

    NASA Astrophysics Data System (ADS)

    Love, Steven P.; Davis, Anthony B.; Ho, Cheng; Rohde, Charles A.

    We describe a new type of lidar instrument, Wide-Angle Imaging Lidar (WAIL), designed to study and directly make use of multiple scattering in clouds. Providing time-resolved imagery over a 60° field of view, the new instrument captures returns at virtually all orders of scattering in a ground-based measurement. We report the first retrievals of cloud properties using this system, from measurements of a moderately opaque altostratus. Following insights from photon diffusion theory, we are able to infer the physical thickness and optical depth of the cloud layer, and, from there, obtain an estimate of the volume-averaged liquid water content. Performance of the new instrument is discussed and it is compared with other active techniques in cloud remote sensing.

  15. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar

    SciTech Connect

    Whiteman, David N.; Melfi, S. Harvey

    1999-12-27

    A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested. (c) 1999 American Geophysical Union.

  16. Construction of a low-cost LIDAR for cirrus cloud observations

    NASA Astrophysics Data System (ADS)

    Ferrian, Brittney; Boyd, Kevin J.; Boyd, Sylke

    Our physical understanding of the Earth's climate is critically linked to our quantitative understanding of cloud coverage and behavior. In particular, cirrus clouds are pivotal players in the radiation balance of the Earth. We have taken a route to capture the characteristics of cirrus clouds using an all-sky camera, and analyzing halo phenomena. That gives us a 2d distribution of the cloud. Neither altitude nor optical thickness can be determined from photographs alone. We are interested in combining altitude and thickness information with the brightness information gathered in images. That requires that the Lidar measures are taken at the time at which a halo photograph is taken. A simple LIDAR instrument with cheap and readily available components is being constructed for this purpose. We will present the layout of the instrument design, challenges in construction and weather-proofing and preliminary measurement results. Supported by HHMI and UROP.

  17. Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-06-05

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  18. ARM Raman Lidar Measurements of High Ice Supersaturation in Cirrus Clouds

    SciTech Connect

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-09-01

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth's climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  19. Micropulse Lidar (MPL) Handbook

    SciTech Connect

    Mendoza, A; Flynn, C

    2006-05-01

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  20. Detection of fault structures with airborne LiDAR point-cloud data

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Du, Lei

    2015-08-01

    The airborne LiDAR (Light Detection And Ranging) technology is a new type of aerial earth observation method which can be used to produce high-precision DEM (Digital Elevation Model) quickly and reflect ground surface information directly. Fault structure is one of the key forms of crustal movement, and its quantitative description is the key to the research of crustal movement. The airborne LiDAR point-cloud data is used to detect and extract fault structures automatically based on linear extension, elevation mutation and slope abnormal characteristics. Firstly, the LiDAR point-cloud data is processed to filter out buildings, vegetation and other non-surface information with the TIN (Triangulated Irregular Network) filtering method and Burman model calibration method. TIN and DEM are made from the processed data sequentially. Secondly, linear fault structures are extracted based on dual-threshold method. Finally, high-precision DOM (Digital Orthophoto Map) and other geological knowledge are used to check the accuracy of fault structure extraction. An experiment is carried out in Beiya Village of Yunnan Province, China. With LiDAR technology, results reveal that: the airborne LiDAR point-cloud data can be utilized to extract linear fault structures accurately and automatically, measure information such as height, width and slope of fault structures with high precision, and detect faults in areas with vegetation coverage effectively.

  1. Depolarization Ratio of Clouds Measured by Multiple-Field of view Multiple Scattering Polarization Lidar

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Sato, Kaori; Makino, Toshiyuki; Nishizawa, Tomoaki; Sugimoto, Nobuo; Jin, Yoshitaka; Shimizu, Atsushi

    2016-06-01

    We have developed the Multiple Field of view Multiple Scattering Polarization Lidar (MFMSPL) system for the study of optically thick low-level clouds. It has 8 telescopes; 4 telescopes for parallel channels and another 4 for perpendicular channels. The MFMSPL is the first lidar system that can measure depolarization ratio for optically thick clouds where multiple scattering is dominant. Field of view of each channel was 10mrad and was mounted with different angles ranging from 0 mrad (vertical) to 30mrad. And footprint size from the total FOV was achieved to be close to that of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar at the altitude of 1km in order to reproduce similar degree of multiple scattering effects as observed from space. The MFMSPL has started observations since June 2014 and has been continuously operated at National Institute for Environmental Studies (NIES) in Tsukuba, Japan. Observations proved expected performance such that measured depolarization ratio was comparable to the one observed by CALIPSO lidar.

  2. DC-8 scanning lidar characterization of aircraft contrails and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E. (Principal Investigator)

    1996-01-01

    A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.

  3. ER-2 lidar measurements of stratocumulus cloud top structure on July 14, 1987

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Spinhirne, James D.

    1990-01-01

    On July 14, 1987 NASA's ER-2 high altitude aircraft flew a mission to measure the structure of stratocumulus clouds off the coast of California. A flight pattern was executed so that the two-dimensional variability of the clouds could be detected. The technique of analysis of the lidar data to measure cloud tops follows. First each signal is searched for its maximum in return strength. This maximum is caused by scattering of the laser light off cloud particles or from the ocean surface. Next the variance of the signal return above the level of maximum backscatter is determined. Cloud top is assigned to a level (above the level of maximum backscatter) where the backscatter exceeds the average variance. This two-step process is necessary because the level of maximum backscatter does not correspond to the cloud top. Ocean surface returns are easily separated from cloud returns in this process, described in detail by Boers, Spinhirne, and Hart (1988). Analysis of the data so far has shown that there were very few breaks in the clouds. Furthermore the layer top was very flat with local oscillations not exceeding 30 m. Such small cloud top variations are still well within the range of detectability, because the precision of this technique of cloud top detection has previously been established to be 13 to 15 m. Data are presently being analyzed to compute cloud top distributions and fractional cloudiness. The aim of this research is to relate the fractional cloudiness to the mean thermodynamic structure of the boundary layer. Researchers plan to compute spectral scales of the cloud top variability in two dimensions to determine the orientation of the clouds with respect to the mean wind. Furthermore the lidar derived cloud top distribution will be used in the computation of the thermodynamic and radiation budget of the boundary layer.

  4. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability.

    PubMed

    McGill, M J; Hart, W D; McKay, J A; Spinhirne, J D

    1999-10-20

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10-20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design. PMID:18324169

  5. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  6. Diode-pumped Nd:YAG lidar for airborne cloud measurements

    NASA Astrophysics Data System (ADS)

    Mehnert, A.; Halldorsson, Th.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, Ch.

    1992-07-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  7. Backscattered signal modulation and emitting module design for a cloud lidar

    NASA Astrophysics Data System (ADS)

    Shu, Xiaowen; Chen, Zhenyi; Lian, Xu; Jin, Hui; Zhang, Xiaofu

    2014-02-01

    The cloud lidar, with the character of high precision and good stability, is an effective way to detect the cloud height. Pulse diode laser (PLD), as an essential part of the lidar system, needs the triggering pulse. In this paper, the emitting part of the lidar is studied - including the simulation of the backscatter SNR, the choose of the PLD and the design of trigging circuit to drive the 905nm PLD with the consideration of the optical system. A circuit for trigging the laser pulse with adjustable power and pulse width is contrived. Then the software Systemview is used to emulate the design and finally the making of PCB is finished. The results show whatever the parameters of the pulse, namely trigging pulse width, the rising edge, dithering , all these can be qualified to be in use in the practice and enjoys the merits of the low cost and convenience. The emitting module operates well.

  8. DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.

    1998-01-01

    An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.

  9. Calibration of the 1064 nm lidar channel using water phase and cirrus clouds.

    PubMed

    Wu, Yonghua; Gan, Chuen Meei; Cordero, Lina; Gross, Barry; Moshary, Fred; Ahmed, Sam

    2011-07-20

    Calibration is essential to derive aerosol backscatter coefficients from elastic scattering lidar. Unlike the visible UV wavelengths where calibration is based on a molecular reference, calibration of the 1064 nm lidar channel requires other approaches, which depend on various assumptions. In this paper, we analyze two independent calibration methods which use (i) low-altitude water phase clouds and (ii) high cirrus clouds. In particular, we show that to achieve optimal performance, aerosol attenuation below the cloud base and cloud multiple scattering must be accounted for. When all important processes are considered, we find that these two independent methods can provide a consistent calibration constant with relative differences less than 15%. We apply these calibration techniques to demonstrate the stability of our lidar on a monthly scale, along with a natural reduction of the lidar efficiency on an annual scale. Furthermore, our calibration procedure allows us to derive consistent aerosol backscatter coefficients and angstrom coefficient profiles (532-1064 nm) along with column extinction-to-backscatter ratios which are in good agreement with sky radiometer inversions. PMID:21772382

  10. Integrating Terrestrial LIDAR with Point Clouds Created from Unmanned Aerial Vehicle Imagery

    NASA Astrophysics Data System (ADS)

    Leslar, M.

    2015-08-01

    Using unmanned aerial vehicles (UAV) for the purposes of conducting high-accuracy aerial surveying has become a hot topic over the last year. One of the most promising means of conducting such a survey involves integrating a high-resolution non-metric digital camera with the UAV and using the principals of digital photogrammetry to produce high-density colorized point clouds. Through the use of stereo imagery, precise and accurate horizontal positioning information can be produced without the need for integration with any type of inertial navigation system (INS). Of course, some form of ground control is needed to achieve this result. Terrestrial LiDAR, either static or mobile, provides the solution. Points extracted from Terrestrial LiDAR can be used as control in the digital photogrammetry solution required by the UAV. In return, the UAV is an affordable solution for filling in the shadows and occlusions typically experienced by Terrestrial LiDAR. In this paper, the accuracies of points derived from a commercially available UAV solution will be examined and compared to the accuracies achievable by a commercially available LIDAR solution. It was found that the LiDAR system produced a point cloud that was twice as accurate as the point cloud produced by the UAV's photogrammetric solution. Both solutions gave results within a few centimetres of the control field. In addition the about of planar dispersion on the vertical wall surfaces in the UAV point cloud was found to be multiple times greater than that from the horizontal ground based UAV points or the LiDAR data.