Sample records for cloud rr lyrae

  1. The VMC survey - XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Muraveva, T.; Subramanian, S.; Clementini, G.; Cioni, M.-R. L.; Palmer, M.; van Loon, J. Th.; Moretti, M. I.; de Grijs, R.; Molinaro, R.; Ripepi, V.; Marconi, M.; Emerson, J.; Ivanov, V. D.

    2018-01-01

    We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects, near-infrared time series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visual light curves from the OGLE IV (Optical Gravitational Lensing Experiment IV) survey are available. In this study, the multi-epoch Ks-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period-absolute magnitude-metallicity (PM_{K_s}Z) relation, which has some advantages in comparison with the visual absolute magnitude-metallicity (MV-[Fe/H]) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range 1-10 kpc, with an average depth of 4.3 ± 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality observed for red clump stars, in the distribution of RR Lyrae stars.

  2. Anomalous double-mode RR Lyrae stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Smolec, R.; Dziembowski, W. A.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D.; Skowron, J.; Mróz, P.; Pawlak, M.

    2016-12-01

    We report the discovery of a new subclass of double-mode RR Lyrae stars in the Large and Small Magellanic Clouds. The sample of 22 pulsating stars has been extracted from the latest edition of the Optical Gravitational Lensing Experiment collection of RR Lyrae variables in the Magellanic System. The stars pulsating simultaneously in the fundamental (F) and first-overtone (1O) modes have distinctly different properties than regular double-mode RR Lyrae variables (RRd stars). The P1O/PF period ratios of our anomalous RRd stars are within a range of 0.725-0.738, while `classical' double-mode RR Lyrae variables have period ratios in the range of 0.742-0.748. In contrast to the typical RRd stars, in the majority of the anomalous pulsators, the F-mode amplitudes are higher than the 1O-mode amplitudes. The light curves associated with the F-mode in the anomalous RRd stars show different morphology than the light curves of, both, regular RRd stars and single-mode RRab stars. Most of the anomalous double-mode stars show long-term modulations of the amplitudes (Blazhko-like effect). Translating the period ratios into the abundance parameter, Z, we find for our stars Z ∈ (0.002, 0.005) - an order of magnitude higher values than typical for RR Lyrae stars. The mass range of the RRd stars inferred from the WI versus PF diagram is (0.55-0.75) M⊙. These parameters cannot be accounted for with single star evolution assuming a Reimers-like mass-loss. Much greater mass-loss caused by interaction with other stars is postulated. We blame the peculiar pulsation properties of our stars to the parametric resonance instability of the 1O-mode to excitation of the F- and 2O-modes as with the inferred parameters of the stars 2ω1O ≈ ωF + ω2O.

  3. Chemical Abundances of Metal-poor RR Lyrae Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Haschke, Raoul; Grebel, Eva K.; Frebel, Anna; Duffau, Sonia; Hansen, Camilla J.; Koch, Andreas

    2012-09-01

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R ~ 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]spec = -2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]phot < -2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [α/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible. This paper includes data gathered with the 6.5 meter Magellan

  4. RR Lyrae Variables in Stellar Systems

    NASA Astrophysics Data System (ADS)

    Smith, Horace A.; Catelan, Márcio; Clementini, Gisella

    2009-09-01

    The pioneering studies of RR Lyrae stars in globular clusters by Oosterhoff and by Sawyer Hogg in the 1930s and 1940s called attention to interesting systematic differences among RR Lyrae populations in different systems. When such studies were extended to the dwarf spheroidal companions of the Milky Way in the 1960s, it was found that the average properties of their RR Lyrae stars were often different from those that had previously been observed in globular clusters. Observations of RR Lyrae stars have now extended to the Andromeda Galaxy and other Local Group systems, with still greater variety being apparent. Our understanding of the reasons for these differences among the RR Lyrae populations in different systems is by no means complete, but properties of RR Lyrae stars within these different systems are tied to differing horizontal branch morphologies and also shed light upon scenarios for the formation of the Galaxy.

  5. RR Lyrae type stars

    NASA Astrophysics Data System (ADS)

    Samus, N. N.

    Basic observational data on RR Lyrae type stars are reviewed. It is noted that these stars are used widely to investigate the structure and kinematics of the spherical and intermediate components of the Galaxy, with correct data on the absolute magnitude of these variables being decisive. Attention is given to the relationship between the orbit eccentricity and inclination of osculating RR Lyrae type stars in the Galaxy and their metallicity index.

  6. RR Lyrae Stars in M4

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Moskalik, Pawel; Drury, Jason A.

    2017-10-01

    Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomna, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During campaign 2, K2 observed the globular cluster M4, providiing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. In this poster we present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in both observed RRc stars. In 3 RRab stars we have found the Blazhko effect with periods of 16.6d, 22.4d, and 44.5d.

  7. RR Lyrae in the UMi dSph Galaxy

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles; Kinemuchi, Karen; Jeffery, Elizabeth; Grabowski, Kathleen; Nemec, James; Herrera, Daniel

    2018-01-01

    Over the past two years we have obtained observations of the Ursa Minor dwarf spheroidal galaxy with the goal of completing an updated catalog of the variable stars in the dwarf galaxy. In addition to finding new variable stars, this updated catalog will allow us to look at period changes in the variables and to determine stellar characteristic for the RR Lyrae stars in the dSph. We will compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies; these comparisons can give us insights to the near-field cosmology of the Local Group. In this poster we present our updated catalog of RR Lyrae stars in the UMi dSph; the updated catalog includes Fourier decomposition parameters, metallicities, and other physical properties for the RR Lyrae stars.

  8. Preliminary results for RR Lyrae stars and Classical Cepheids from the Vista Magellanic Cloud (VMC) survey

    NASA Astrophysics Data System (ADS)

    Ripepi, V.; Moretti, M. I.; Clementini, G.; Marconi, M.; Cioni, M. R.; Marquette, J. B.; Tisserand, P.

    2012-09-01

    The Vista Magellanic Cloud (VMC, PI M.R. Cioni) survey is collecting K S -band time series photometry of the system formed by the two Magellanic Clouds (MC) and the "bridge" that connects them. These data are used to build K S -band light curves of the MC RR Lyrae stars and Classical Cepheids and determine absolute distances and the 3D geometry of the whole system using the K-band period luminosity ( PLK S ), the period-luminosity-color ( PLC) and the Wesenhiet relations applicable to these types of variables. As an example of the survey potential we present results from the VMC observations of two fields centered respectively on the South Ecliptic Pole and the 30 Doradus star forming region of the Large Magellanic Cloud. The VMC K S -band light curves of the RR Lyrae stars in these two regions have very good photometric quality with typical errors for the individual data points in the range of ˜0.02 to 0.05 mag. The Cepheids have excellent light curves (typical errors of ˜0.01 mag). The average K S magnitudes derived for both types of variables were used to derive PLK S relations that are in general good agreement within the errors with the literature data, and show a smaller scatter than previous studies.

  9. Seven new carbon-enhanced metal-poor RR Lyrae stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Catherine R.; Stancliffe, Richard J.; Kuehn, Charles

    2014-05-20

    We report estimated carbon-abundance ratios, [C/Fe], for seven newly discovered carbon-enhanced metal-poor (CEMP) RR Lyrae stars. These are well-studied RRab stars that had previously been selected as CEMP candidates based on low-resolution spectra. For this pilot study, we observed eight of these CEMP RR Lyrae candidates with the Wide Field Spectrograph on the ANU 2.3 m telescope. Prior to this study, only two CEMP RR Lyrae stars had been discovered: TY Gru and SDSS J1707+58. We compare our abundances to new theoretical models of the evolution of low-mass stars in binary systems. These simulations evolve the secondary stars, post accretionmore » from an asymptotic giant-branch (AGB) donor, all the way to the RR Lyrae stage. The abundances of CEMP RR Lyrae stars can be used as direct probes of the nature of the donor star, such as its mass, and the amount of material accreted onto the secondary. We find that the majority of the sample of CEMP RR Lyrae stars is consistent with AGB donor masses of around 1.5-2.0 M {sub ☉} and accretion masses of a few hundredths of a solar mass. Future high-resolution studies of these newly discovered CEMP RR Lyrae stars will help disentangle the effects of the proposed mixing processes that occur in such objects.« less

  10. The Palomar Transient Factory and RR Lyrae: The Metallicity–Light Curve Relation Based on ab-type RR Lyrae in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow-Choong; Yu, Po-Chieh; Bellm, Eric; Yang, Ting-Chang; Chang, Chan-Kao; Miller, Adam; Laher, Russ; Surace, Jason; Ip, Wing-Huen

    2016-12-01

    The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructure of the Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity–light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity–light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab-type RR Lyrae located in the Kepler field, and it is found to be {[{Fe}/{{H}}]}PTF}=-4.089{--}7.346P+1.280{φ }31 (where P is pulsational period and {φ }31 is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118 dex. We tested our metallicity–light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that the derived metallicity–light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values.

  11. RR Lyrae period luminosity relations with Spitzer

    NASA Astrophysics Data System (ADS)

    Neeley, Jillian R.; Marengo, Massimo; CRRP Team

    2017-01-01

    RR Lyrae variable stars have long been known to be valuable distance indicators, but only recently has a well defined period luminosity relationship been utilized at infrared wavelengths. In my thesis, I am combining Spitzer Space Telescope data of RR Lyrae stars obtained as part of the Carnegie RR Lyrae Program with ground based NIR data to characterize the period-luminosity-metallicity (PLZ) relation and provide an independent Population II calibration of the cosmic distance scale. I will discuss the ongoing efforts to calibrate this relation using objects such as M4 and NGC 6441 and how the first data release from the Gaia mission impacts our findings. I will also compare my preliminary empirical relations to theoretical PLZ relations derived from stellar pulsation models.

  12. MACHO RR Lyrae in the Inner Halo and Bulge

    NASA Astrophysics Data System (ADS)

    Minniti, Dante; Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Drake, Andrew J.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.

    The RR Lyrae in the bulge have been proposed to be the oldest populations in the Milky Way, tracers of how the galaxy formed. We study here the distribution of ~1600 bulge RR Lyrae stars found by the MACHO Project. The RR Lyrae with Galactocentric radius 0.4

  13. The additional-mode garden of RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Molnár, László; Plachy, Emese; Klagyivik, Péter; Juhász, Áron L.; Szabó, Róbert; D'Alessandro, Zachary; Kratz, Benjamin; Ortega, Justin; Kanbur, Shashi

    2017-10-01

    Space-based photometric missions revealed a surprising abundance of millimagnitude-level additional modes in RR Lyrae stars. The modes that appear in the modulated fundamental-mode (RRab) stars can be ordered into four major categories. Here we present the distribution of these groups in the Petersen diagram, and discuss their characteristics and connections to additional modes observed in other RR Lyrae stars.

  14. RR Lyrae stars in eclipsing systems -- historical candidates

    NASA Astrophysics Data System (ADS)

    Liška, J.; Skarka, M.; Hájková, P.; Auer, R. F.

    2016-03-01

    Discovery of binary systems among RR Lyrae stars belongs to challenges of present astronomy. So far, none of classical RR Lyrae stars was clearly confirmed, that it is a part of an eclipsing system. From this reason we studied two RR Lyrae stars, VX Her and RW Ari, in which changes assigned to eclipses were detected in sixties and seventies of the 20th century. In this paper our preliminary results based on analysis of new photometric measurements are presented as well as the results from the detailed analysis of original measurements. A new possible eclipsing system, RZ Cet was identified in the archive data. Our analysis rather indicates errors in measurements and reductions of the old data than real changes for all three stars.

  15. Studying RR Lyrae Stars in M4 with K2

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Drury, Jason; Moskalik, Pawel

    2017-01-01

    Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomena, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During its campaign 2, K2 observed the globular cluster M4, providing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. We present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in the two observed RRc stars. In three RRab stars we have found the Blazhko effect with periods of 16.6 days, 22.4 days, and 44.5 days.

  16. The Search for RR Lyrae Variables in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nielsen, Chandler; Marshall, Jennifer L.; Long, James

    2017-01-01

    RR Lyrae variables are stars with a characteristic relationship between magnitude and phase and whose distances can be easily determined, making them extremely valuable in mapping and analyzing galactic substructure. We present our method of searching for RR Lyrae variable stars using data extracted from the Dark Energy Survey (DES). The DES probes for stars as faint as i = 24.3. Finding such distant RR Lyrae allows for the discovery of objects such as dwarf spheroidal tidal streams and dwarf galaxies; in fact, at least one RR Lyrae has been discovered in each of the probed dwarf spheroidal galaxies orbiting the Milky Way (Baker & Willman 2015). In turn, these discoveries may ultimately resolve the well-known missing satellite problem, in which theoretical simulations predict many more dwarf satellites than are observed in the local Universe. Using the Lomb-Scargle periodogram to determine the period of the star being analyzed, we could display the relationship between magnitude and phase and visually determine if the star being analyzed was an RR Lyrae. We began the search in frequently observed regions of the DES footprint, known as the supernova fields. We then moved our search to known dwarf galaxies found during the second year of the DES. Unfortunately, we did not discover RR Lyrae in the probed dwarf galaxies; this method should be tried again once more observations are taken in the DES.

  17. Imbalanced Learning for RR Lyrae Stars Based on SDSS and GALEX Databases

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Zhang, Yanxia; Zhao, Yongheng

    2018-03-01

    We apply machine learning and Convex-Hull algorithms to separate RR Lyrae stars from other stars like main-sequence stars, white dwarf stars, carbon stars, CVs, and carbon-lines stars, based on the Sloan Digital Sky Survey and Galaxy Evolution Explorer (GALEX). In low-dimensional spaces, the Convex-Hull algorithm is applied to select RR Lyrae stars. Given different input patterns of (u ‑ g, g ‑ r), (g ‑ r, r ‑ i), (r ‑ i, i ‑ z), (u ‑ g, g ‑ r, r ‑ i), (g ‑ r, r ‑ i, i ‑ z), (u ‑ g, g ‑ r, i ‑ z), and (u ‑ g, r ‑ i, i ‑ z), different convex hulls can be built for RR Lyrae stars. Comparing the performance of different input patterns, u ‑ g, g ‑ r, i ‑ z is the best input pattern. For this input pattern, the efficiency (the fraction of true RR Lyrae stars in the predicted RR Lyrae sample) is 4.2% with a completeness (the fraction of recovered RR Lyrae stars in the whole RR Lyrae sample) of 100%, increases to 9.9% with 97% completeness and to 16.1% with 53% completeness by removing some outliers. In high-dimensional spaces, machine learning algorithms are used with input patterns (u ‑ g, g ‑ r, r ‑ i, i ‑ z), (u ‑ g, g ‑ r, r ‑ i, i ‑ z, r), (NUV ‑ u, u ‑ g, g ‑ r, r ‑ i, i ‑ z), and (NUV ‑ u, u ‑ g, g ‑ r, r ‑ i, i ‑ z, r). RR Lyrae stars, which belong to the class of interest in our paper, are rare compared to other stars. For the highly imbalanced data, cost-sensitive Support Vector Machine, cost-sensitive Random Forest, and Fast Boxes is used. The results show that information from GALEX is helpful for identifying RR Lyrae stars, and Fast Boxes is the best performer on the skewed data in our case.

  18. Gauging the Helium Abundance of the Galactic Bulge RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Marconi, Marcella; Minniti, Dante

    2018-02-01

    We report the first estimate of the He abundance of the population of RR Lyrae stars in the Galactic bulge. This is done by comparing the recent observational data with the latest models. We use the large samples of ab-type RR Lyrae stars found by OGLE IV in the inner bulge and by the VVV survey in the outer bulge. We present the result from the new models computed by Marconi et al., showing that the minimum period for fundamental RR Lyrae pulsators depends on the He content. By comparing these models with the observations in a period versus effective temperature plane, we find that the bulk of the bulge ab-type RR Lyrae are consistent with primordial He abundance Y = 0.245, ruling out a significant He-enriched population. This work demonstrates that the He content of the bulge RR Lyrae is different from that of the bulk of the bulge population as traced by the red clump giants that appear to be significantly more He-rich. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 179.B-2002 and 298.D-5048.

  19. Bulge RR Lyrae stars in the VVV tile b201

    NASA Astrophysics Data System (ADS)

    Gran, F.; Minniti, D.; Saito, R. K.; Navarrete, C.; Dékány, I.; McDonald, I.; Contreras Ramos, R.; Catelan, M.

    2015-03-01

    Context. The VISTA Variables in the Vía Láctea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR (ZYJHKs) filters that at present provide photometry to a depth of Ks ~ 17.0 mag in up to 36 epochs spanning over four years, and aim at discovering more than 106 variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. Aims: A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile b201, which is centered at (ℓ,b) ~ (-9°, -9°), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. Methods: For each star in the tile with more than 25 epochs (~90% of the objects down to Ks ~ 17.0 mag), the standard deviation and χ2 test were calculated to identify variable candidates. Periods were determined using the analysis of variance. Objects with periods in the RR Lyrae range of 0.2 ≤ P ≤ 1.2 days were selected as candidate RR Lyrae. They were individually examined to exclude false positives. Results: A total of 1.5 sq deg were analyzed, and we found 39 RR Lyr stars, 27 of which belong to the ab-type and 12 to the c-type. Our analysis recovers all the previously identified RR Lyrae variables in the field and discovers 29 new RR Lyr stars. The reddening and extinction toward all the RRab stars in this tile were derived, and distance estimations were obtained through the period-luminosity relation. Despite the limited amount of RR Lyrae stars studied, our results are consistent with a spheroidal or central distribution around ~8.1 and ~8.5 kpc. for either the Cardelli or Nishiyama extinction law. Our analysis does not reveal a stream

  20. The Selection of RR Lyrae Stars Using POSS and SDSS

    NASA Astrophysics Data System (ADS)

    Fraser, Oliver J.; Barton, J. R.; Oldfield, B. J.; Biesiadzinski, T. P.; Horning, D. A.; Baerny, J. K.; Kiuchi, F.; Krogsrud, D.; Longhurst, D. S.; McCommas, L. P.; Scheidt, J. A.; Covarrubias, R.; Covey, K.; Laws, C.; Sesar, B.; Ivezic, Z.

    2006-12-01

    We test a method for identifying candidate RR Lyrae stars based on a comparison of POSS and SDSS photometry (Sesar et. al. 2005). Our candidate stars range in SDSS g magnitude from 14.4--16, or a distance of 6--12 kpc. Follow-up photometry obtained at Manastash Ridge Observatory typically includes 30-40 points per light curve. We find that at least two thirds of our sample of 23 objects are clearly variable, with light curves consistent with RR Lyrae. Candidate RR Lyrae were selected using stars that had brightened at least 0.3 magnitudes between POSS and SDSS, and which had SDSS magnitudes and colors consistent with the cuts in Ivezic et al. 2004.

  1. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  2. Unmixing the Galactic halo with RR Lyrae tagging

    NASA Astrophysics Data System (ADS)

    Belokurov, V.; Deason, A. J.; Koposov, S. E.; Catelan, M.; Erkal, D.; Drake, A. J.; Evans, N. W.

    2018-06-01

    We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggested by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halo's radial density profile at ˜25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behaviour. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.

  3. Recent progress in the theoretical modelling of Cepheids and RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Marconi, Marcella

    2017-09-01

    Cepheids and RR Lyrae are among the most important primary distance indicators to calibrate the extragalactic distance ladder and excellent stellar population tracers, for Population I and Population II, respectively. In this paper I first mention some recent theoretical studies of Cepheids and RR Lyrae obtained with different theoretical tools. Then I focus the attention on new results based on nonlinear convective pulsation models in the context of some international projects, including VMC@VISTA and the Gaia collaboration. The open problems for both Cepheids and RR Lyrae are briefly discussed together with some challenging future application.

  4. Gaia Data Release 1. Testing parallaxes with local Cepheids and RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Gaia Collaboration; Clementini, G.; Eyer, L.; Ripepi, V.; Marconi, M.; Muraveva, T.; Garofalo, A.; Sarro, L. M.; Palmer, M.; Luri, X.; Molinaro, R.; Rimoldini, L.; Szabados, L.; Musella, I.; Anderson, R. I.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2017-09-01

    Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims: In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (MV-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. Methods: Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σϖ/ϖ< 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σϖ/ϖ< 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σϖ/ϖ< 0.5). The new relations were computed using multi-band (V,I,J,Ks) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (I) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (II) adopting astrometry-based luminosities; and (III) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and MV- [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by

  5. Discovery of Distant RR Lyrae Stars in the Milky Way Using DECam

    NASA Astrophysics Data System (ADS)

    Medina, Gustavo E.; Muñoz, Ricardo R.; Vivas, A. Katherina; Carlin, Jeffrey L.; Förster, Francisco; Martínez, Jorge; Galbany, Lluís; González-Gaitán, Santiago; Hamuy, Mario; de Jaeger, Thomas; Maureira, Juan Carlos; San Martín, Jaime

    2018-03-01

    We report the discovery of distant RR Lyrae stars, including the most distant known in the Milky Way, using data taken in the g-band with the Dark Energy Camera as part of the High cadence Transient Survey (HiTS; 2014 campaign). We detect a total of 173 RR Lyrae stars over a ∼120 deg2 area, including both known RR Lyrae and new detections. The heliocentric distances d H of the full sample range from 9 to >200 kpc, with 18 of them beyond 90 kpc. We identify three sub-groups of RR Lyrae as members of known systems: the Sextans dwarf spheroidal galaxy, for which we report 46 new discoveries, and the ultra-faint dwarf galaxies Leo IV and Leo V. Following an MCMC methodology, we fit spherical and ellipsoidal profiles of the form ρ(R) ∼ R n to the radial density distribution of RR Lyrae in the Galactic halo. The best fit corresponds to the spherical case, for which we obtain a simple power-law index of n=-{4.17}-0.20+0.18, consistent with recent studies made with samples covering shorter distances. The pulsational properties of the outermost RR Lyrae in the sample (d H > 90 kpc) differ from the ones in the halo population at closer distances. The distribution of the stars in a period-amplitude diagram suggest they belong to Oosterhoff-intermediate or Oosterhoff II groups, similar to what is found in the ultra-faint dwarf satellites around the Milky Way. The new distant stars discovered represent an important addition to the few existing tracers of the Milky Way potential in the outer halo.

  6. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    NASA Technical Reports Server (NTRS)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  7. Abundance of Chemical Elements in RR Lyrae Variables and their Kinematic Parameters

    NASA Astrophysics Data System (ADS)

    Gozha, M. L.; Marsakov, V. A.; Koval', V. V.

    2018-03-01

    A catalog of the chemical and spatial-kinematic parameters of 415 RR Lyrae variables (Lyrids) in the galactic field is compiled. Spectroscopic determinations of the relative abundances of 13 chemical elements in 101 of the RR Lyrae variables are collected from 25 papers published between 1995 and 2017. The data from different sources are reduced to a single solar abundance scale. The mean weighted chemical abundances are calculated with coefficients inversely proportional to the reported errors. An analysis of the deviations in the published relative abundances in each star from the mean square values calculated from them reveals an absence of systematic biases among the results from the various articles. The rectangular coordinates of 407 of the RR Lyrae variables and the components of the three-dimensional (3D) velocities of 401 of the stars are calculated using data from several sources. The collected data on the abundances of chemical elements produced by various nuclear fusion processes for the RR Lyrae variables of the field, as well as the calculated 3D velocities, can be used for studying the evolution of the Galaxy.

  8. The soundtrack of RR Lyrae in omega Cen at high-frequency.

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Randall, S. K.; Monelli, M.; Bono, G.; Buonanno, R.; Strampelli, G.; Catelan, M.; Van Grootel, V.; Alonso, M. L.; Stetson, P. B.; Stellingwerf, R. F.

    We present preliminary Sloan u',g'-band light curves for a sample of known RR Lyrae variables in the Galactic globular cluster omega Cen. Results are based on the partial reduction of multi-band time series photometric data collected during six consecutive nights with the visitor instrument ULTRACAM mounted on the New Technology Telescope (La Silla, ESO). This facility allowed us to simultaneously observe in three different bands (Sloan u',g',r') a field of view of ˜ 6×6 arcminutes. The telescope and the good seeing conditions allowed us to sample the light curves every 15 seconds. We ended up with a data set of ˜ 6,000 images per night per filter, for a total of more than 200,000 images of the selected field. This data set allowed us to detect different kind of variables, such as RR-Lyraes, SX Phoenicis, eclipsing binaries, semi-regulars. More importantly, we were able for the first time to sample at high-frequency cluster RR Lyraes in the u',g'-band and to show in detail the pulsation phases across the dip located along the rising branch of RR-Lyraes. Based on data collected with ULTRACAM@NTT (La Silla, ESO, PID: 087.D-0216)

  9. AL Pictoris and FR Piscium: Two Regular Blazhko RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    de Ponthière, P.; Hambsch, F.-J.; Menzies, K.; Sabo, R.

    2014-12-01

    The results presented are a continuation of observing campaigns conducted by a small group of amateur astronomers interested in the Blazhko effect of RR Lyrae stars. The goal of these observations is to confirm the RR Lyrae Blazhko effect and to detect any additional Blazhko modulation which cannot be identified from all sky survey data-mining. The Blazhko effect of the two observed stars is confirmed, but no additional Blazhko modulations have been detected. The observation of the RR Lyrae star AL Pictoris during 169 nights was conducted from San Pedro de Atacama (Chile). From the observed light curve, 49 pulsation maxima have been measured. Fourier analyses of (O-C), magnitude at maximum light (Mmax), and the complete light curve have provided a confirmation of published pulsation and Blazhko periods, 0.548622 and 34.07 days, respectively. The second multi-longitude observation campaign focused on the RR Lyrae star FR Piscium and was performed from Europe, the United States, and Chile. Fourier analyses of the light curve and of 59 measured brightness maxima have improved the accuracy of pulsation and Blazhko periods to 0.45568 and 51.31 days, respectively. For both stars, no additional Blazhko modulations have been detected.

  10. Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud. III. Near-infrared study

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Rejkuba, M.; Minniti, D.; Catelan, M.; Ivanov, V. D.

    2009-08-01

    Context: RR Lyrae variable stars are the primary Population II distance indicator. Likewise, the Large Magellanic Cloud (LMC) constitutes a key step in the extragalactic distance scale. Aims: By combining near-IR photometry and spectroscopically measured metallicities for a homogeneous sample of 50 RR Lyr stars in the LMC, we investigate the metallicity dependence of the period-luminosity relation in the near-infrared (IR), use the newly derived relations to re-derive the distance to the LMC, and compare the distance moduli obtained from RR Lyr and red clump stars. Methods: This paper presents new (single-epoch) J-band and (multi-epoch) K_s-band photometry of RR Lyr stars in 7 different LMC fields, observed with the near-IR camera SOFI at ESO's New Technology Telescope. Additional K_s-band data for another two LMC fields were taken with the ISPI infrared array at CTIO's Blanco 4m telescope. The near-IR photometry was cross-correlated with the MACHO and OGLE databases, resulting in a catalog of 62 RR Lyr stars with BVRIJKs photometry. A subsample of 50 stars also has spectroscopically measured metallicities. Results: In the deep JK color-magnitude diagrams of 7 fields, red giant branch, red clump and RR Lyr stars are detected. The majority of RR Lyr stars are located within the instability strip with near-IR colors between 0.14 ≤ (J-K_s)_0<0.32. The period-luminosity relation only has a very mild dependence on metallicity in the K band, consistent with no dependence: MKs =2.11(± 0.17) log{P} + 0.05(± 0.07) [Fe/H] - 1.05. In the J band the currently available data do not allow firm conclusions regarding the metallicity dependence of the period-luminosity relation. Conclusions: The distance modulus of the LMC, derived using our near-IR period-luminosity-metallicity relation for RR Lyr stars, is (m-M)_0=18.53 ± 0.13, in very good agreement with the distance modulus from the red clump stars, 18.46 ± 0.07. However, LMC modulus derived from the RR Lyrae stars

  11. Modelling of RR Lyrae instability strips

    NASA Astrophysics Data System (ADS)

    Szabo, Robert; Csubry, Zoltan

    2001-02-01

    Recent studies indicates that the slope of the empirical blue edge of the RR Lyrae fundamental mode instability strip is irreconcilable with the theoretical blue edges. Nonlinear hydrodynamical pulsational code involving turbulent convection was used to follow fundamental/first overtone mode selection mechanism. This method combined with the results of horizontal branch evolutionary computations was applied to rethink the problem.

  12. RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.

    2016-12-01

    (Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.

  13. The effect of Livermore OPAL opacities on the evolutionary masses of RR Lyrae stars

    NASA Technical Reports Server (NTRS)

    Yi, Sukyoung; Lee, Young-Wook; Demarque, Pierre

    1993-01-01

    We have investigated the effect of the new Livermore OPAL opacities on the evolution of horizontal-branch (HB) stars. This work was motivated by the recent stellar pulsation calculations using the new Livermore opacities, which suggest that the masses of double-mode RR Lyrae stars are 0.1-0.2 solar mass larger than those based on earlier opacities. Unlike the pulsation calculations, we find that the effect of opacity change on the evolution of HB stars is not significant. In particular, the effect of the mean masses of RR Lyrae stars is very small, showing a decrease of only 0.01-0.02 solar mass compared to the models based on old Cox-Stewart opacities. Consequently, with the new Livermore OPAL opacities, both the stellar pulsation and evolution models now predict approximately the same masses for the RR Lyrae stars. Our evolutionary models suggest that the mean masses of the RR Lyrae stars are about 0.76 and about 0.71 solar mass for M15 (Oosterhoff group II) and M3 (group I), respectively. If (alpha/Fe) = 0.4, these values are decreased by about 0.03 solar mass. Variations of the mean masses of RR Lyrae stars with HB morphology and metallicity are also presented.

  14. VizieR Online Data Catalog: RR Lyraes in SDSS stripe 82 (Watkins+, 2009)

    NASA Astrophysics Data System (ADS)

    Watkins, L. L.; Evans, N. W.; Belokurov, V.; Smith, M. C.; Hewett, P. C.; Bramich, D. M.; Gilmore, G. F.; Irwin, M. J.; Vidrih, S.; Wyrzykowski, L.; Zucker, D. B.

    2015-10-01

    In this paper, we select first the variable objects in Stripe 82 and then the subset of RR Lyraes, using the Bramich et al. (2008MNRAS.386..887B, Cat. V/141) light-motion curve catalogue (LMCC) and HLC. We make a selection of the variable objects and an identification of RR Lyrae stars. (2 data files).

  15. Nonlinear Convective Models of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Feuchtinger, M.; Dorfi, E. A.

    The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.

  16. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, Andrea; Storm, J.; Rich, R. M.

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal,more » at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.« less

  17. RR Lyrae variables in M33: two new fields and an analysis of the galaxy's population

    NASA Astrophysics Data System (ADS)

    Tanakul, Nahathai; Yang, Soung-Chul; Sarajedini, Ata

    2017-06-01

    We present a re-analysis of M33 RR Lyrae variables in four different fields: two inner disc fields and two outer disc fields. These are located at 8.5, 8.7, 36 and 46 arcmin from the centre of M33, respectively. We identify 48 new RR Lyrae variable stars and refine the light-curve properties of 51 previously identified variables. From the light curves, we calculate reddenings and metallicities for each star. Using data in this paper and previously published material, we are able to construct a radial density profile for the RR Lyrae stars in M33. This profile, when plotted in log space, has a slope of ˜-2.0 ± 0.15 which agrees with the radial distribution of halo stars in the Milky Way and M31. This suggests that the majority of M33 RR Lyrae variables observed so far belong to the halo. We also examine the RR Lyrae specific frequency and absolute magnitude relation in M33 and find good agreement with previous studies.

  18. On the origin of period changes in RR Lyrae stars

    NASA Technical Reports Server (NTRS)

    Renzini, A.; Sweigart, A. V.

    1980-01-01

    The observed period changes are explained with respect to the behavior of the semiconductive zone (SCZ) within the core of an RR Lyrae star. General consideration are given which suggest that the composition changes occuring within the SCZ during the horizontal-branch evolution result from many small mixing events, each of which slightly perturbs the pulsation period. Results indicate that small mixing events within the core of an RR Lyrae star can produce changes in the pulsation period comparable with those typically observed. It is further indicated that these mixing events together with the nuclear burning between them can produce period changes of both signs.

  19. The Extinction Toward the Galactic Bulge from RR Lyrae Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, A; Popowski, P; Cook, K

    2007-11-07

    The authors present mean reddenings toward 3525 RR0 Lyrae stars from the Galactic bulge fields of the MACHO Survey. These reddenings are determined using the color at minimum V-band light of the RR0 Lyrae stars themselves and are found to be in general agreement with extinction estimates at the same location obtained from other methods. Using 3256 stars located in the Galactic Bulge, they derive the selective extinction coefficient R{sub V,VR} = A{sub V}/E(V-R) = 4.2 {+-} 0.2. this value is what is expected for a standard extinction law with R{sub V,BV} = 3.1 {+-} 0.3

  20. Field 1: A First Look at the KELT RR Lyrae Project

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph E.; Paegert, Martin

    2015-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. We will focus on initial results from our testbed region, Field 1. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-8 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 9,000 epochs per light curve with completeness out to 3 kpc from the Sun.Recent results from both Kepler and ground based surveys results suggest that as many as 50% of RR Lyrae stars show long-term modulation of their light curve shapes (Blazhko effect). These stars combined with RRL stars that pulsate in more than one mode give a sample of objects that the KELT survey is uniquely suited to explore. This poster uses the RR Lyrae stars in Field 1 of the KELT survey to compare detection methods to previous variable star surveys of the same region. We also discuss the individual RR Lyrae found in Field 1. In particular, we focus on initial characterization of RRL light curves including those with amplitude-modulated or period-modulated light curves. We uses these initial results to discuss future plans for this survey.

  1. Relationship between the Elemental Abundances and the Kinematics of Galactic-Field RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Marsakov, V. A.; Gozha, M. L.; Koval, V. V.

    2018-01-01

    Data of our compiled catalog containing the positions, velocities, and metallicities of 415 RR Lyrae variable stars and the relative abundances [el/Fe] of 12 elements for 101 RR Lyrae stars, including four α elements (Mg, Ca, Si, and Ti), are used to study the relationships between the chemical and spatial-kinematic properties of these stars. In general, the dependences of the relative abundances of α elements on metallicity and velocity for the RR Lyrae stars are approximately the same as those for field dwarfs. Despite the usual claim that these stars are old, among them are representatives of the thin disk, which is the youngest subsystem of the Galaxy. Attention is called to the problem of lowmetallicity RR Lyrae stars. Most RR Lyrae stars that have the kinematic properties of thick disk stars have metallicities [Fe/H] < -1.0 and high ratios [α/Fe] ≈ 0.4, whereas only about 10% of field dwarfs belonging to the so-called "low-metallicity tail" have this chemical composition. At the same time, there is a sharp change in [α/Fe] in RR Lyrae stars belonging just to the thick disk, providing evidence for a long period of formation of this subsystem. The chemical compositions of SDSS J1707+58, V455 Oph, MACHO176.18833.411, V456 Ser, and BPSCS 30339-046 do not correspond to their kinematics.While the first three of these stars belong to the halo, according to their kinematics, the last two belong to the thick disk. It is proposed that they are all most likely extragalactic, but the possible appearance of some of them in the solar neighborhood as a result of the gravitational action of the bar on field stars cannot be ruled out.

  2. RR LYRAE ATMOSPHERICS: WRINKLES OLD AND NEW. A PREVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, George W., E-mail: gwp@obs.carnegiescience.ed

    I report some results of an echelle spectroscopic survey of RR Lyrae stars begun in 2006 that I presented in my Henry Norris Lecture of 2010 January 4. Topics include (1) atmospheric velocity gradients, (2) phase-dependent envelope turbulence as it relates to Peterson's discoveries of axial rotation on the horizontal branch and to Stothers' explanation of the Blazhko effect, (3) the three apparitions of hydrogen emission during a pulsation cycle, (4) the occurrence of He I lines in emission and absorption, (5) detection of He II emission and metallic line doubling in Blazhko stars, and finally (6) speculation about whatmore » helium observations of RR Lyrae stars in omega Centauri might tell us about the putative helium populations and the horizontal branch of that strange globular cluster.« less

  3. VizieR Online Data Catalog: SWASP catalogue of RR Lyrae stars (Greer+, 2017)

    NASA Astrophysics Data System (ADS)

    Greer, P. A.; Payne, S. G.; Norton, A. J.; Maxted, P. F. L.; Smalley, B.; West, P. J.; Wheatley, R. G.; Kolb, U. C.

    2017-07-01

    The SuperWASP RR Lyrae catalogue contains 4963 RRab type RR Lyrae objects from the SuperWASP archive. Each entry includes the unique SWASP identifier, pulsation period in days, pulsation amplitude in mags, median light curve amplitude in mags, the corresponding GCVS name, and corresponding SSS/CRTS names, where known. The SWASP blazhko candidate catalogue contains 1324 rows of Blazhko periods for 983 unique objects from the SWASP RRab catalogue. (2 data files).

  4. Fourier Analysis of First-Overtone RR Lyrae Variables in the LMC

    NASA Astrophysics Data System (ADS)

    Clement, C. M.; Muzzin, A. V.; Rowe, J. F.; MACHO Collaboration

    2002-05-01

    Simon's (1989, ApJ, 343, L17) Fourier decomposition technique has been applied to the V magnitudes of the first-overtone RR Lyrae (RR1) variables in 16 LMC fields observed by the MACHO collaboration. The Fourier coefficients R21 and φ 31 derived for these stars have been compared with the coefficients of RR1 variables in the galactic globular clusters Omega Centauri, M2, M3, M5, M68, M107 (NGC 6171) and NGC 6441. Our analysis indicates that the majority of the LMC RR1 variables have coefficients similar to those in the Oosterhoff type I (OoI) clusters M3 and M5 and to the OoI variables in Omega Centauri. In a study of hydrodynamic pulsation models of first overtone RR Lyrae variables, Simon & Clement (1993, ApJ, 410, 526) found that the Fourier phase parameter φ 31 depends essentially on mass and luminosity. From this, we conclude that the masses and luminosities of most of the RR1 variables in the LMC are comparable to those of the OoI RR1 variables in Omega Centauri, M3 and M5, a fact that should be considered when RR Lyrae variables are used for determining the distance to the LMC. The MACHO collaboration includes C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P. Bennet, K. H. Cook, A. J. Drake, K. C. Freeman, M. Geha, K. Griest, M. J. Lehner, S. L. Marshall, D. Minniti, C. A. Nelson, B. A. Peterson, P. Popowski, M. R. Pratt, P. J. Quinn, C. W. Stubbs, W. Sutherland, T. Vandehel and D. L. Welch. This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada.

  5. The Relationship of Sodium and Oxygen in Galactic Field RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Andrievsky, S.; Wallerstein, G.; Korotin, S.; Lyashko, D.; Kovtyukh, V.; Tsymbal, V.; Davis, C. E.; Gomez, T.; Huang, W.; Farrell, E. M.

    2018-02-01

    We analyzed 62 high-resolution spectra of 30 Galactic Field RR Lyrae-type stars with the aim of deriving their atmospheric parameters (T eff , {log}g, V t ), metallicity ([Fe/H]), radial velocities, and NLTE abundances of oxygen and sodium. We found that there is no clear anti-correlation between [O/Fe] and [Na/Fe] as is seen in globular clusters. On this basis, we conclude that the majority of field RR Lyrae-type stars should hardly be considered to be remnants of the dissolution of globular clusters.

  6. Period Change Similarities Among the RR Lyrae Variables in Oosterhoff I and Oosterhoff II Globular Systems

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Walker, Alistair; Stetson, Peter B.; Bono, Giuseppe; Nemec, James M.; de Propris, Roberto; Monelli, Matteo; Cassisi, Santi; Andreuzzi, Gloria; Dall'Ora, Massimo; Di Cecco, Alessandra; Zoccali, Manuela

    2011-01-01

    We present period change rates (dP/dt) for 42 RR Lyrae variables in the globular cluster IC 4499. Despite clear evidence of these period increases or decreases, the observed period change rates are an order of magnitude larger than predicted from theoretical models of this cluster. We find that there is a preference for increasing periods, a phenomenon observed in most RR Lyrae stars in Milky Way globular clusters. The period change rates as a function of position in the period-amplitude plane are used to examine possible evolutionary effects in OoI clusters, OoII clusters, field RR Lyrae stars, and the mixed-population cluster ω Centauri. It is found that there is no correlation between the period change rate and the typical definition of Oosterhoff groups. If the RR Lyrae period changes correspond with evolutionary effects, this would be in contrast to the hypothesis that RR Lyrae variables in OoII systems are evolved horizontal-branch stars that spent their zero-age horizontal-branch phase on the blue side of the instability strip. This may suggest that age may not be the primary explanation for the Oosterhoff types. Based in part on observations made with the European Southern Observatory telescopes obtained from the ESO/ST-ECF Science Archive Facility.

  7. VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)

    NASA Astrophysics Data System (ADS)

    Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.

    2013-05-01

    We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).

  8. Characterization of the VVV Survey RR Lyrae Population across the Southern Galactic Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Palma, Tali; Pullen, Joyce

    Deep near-IR images from the VISTA Variables in the Vía Láctea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the fourth Galactic quadrant (295° < ℓ < 350°, −2.°24 < b < −1.°05). The sample’s distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyraemore » population does not extend beyond ℓ  ∼ 340°, and the sample’s spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations.« less

  9. VizieR Online Data Catalog: Mid-infrared study of RR Lyrae stars (Gavrilchenko+, 2014)

    NASA Astrophysics Data System (ADS)

    Gavrilchenko, T.; Klein, C. R.; Bloom, J. S.; Richards, J. W.

    2015-02-01

    The first goal was to find a large sample of WISE-observed RR Lyrae stars. A data base of previously identified RR Lyrae stars was created, combining information from General Catalogue of Variable Stars (GCVS), All Sky Automated Survey (ASAS), SIMBAD, VizieR, and individual papers. For many of the sources in this data base the only available data were the coordinates and RR Lyrae classification. When provided, information about the period, distance, subclass, and magnitude for several different wavebands was also stored. If a single source appeared in multiple surveys or papers, information from all relevant surveys was included, with markers indicating contradicting measurements between surveys. The resulting data base contains about 17000 sources, of which about 5000 sources have documented V-band periods. (3 data files).

  10. The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions

    NASA Astrophysics Data System (ADS)

    Fernley, J.; Barnes, T. G.; Skillen, I.; Hawley, S. L.; Hanley, C. J.; Evans, D. W.; Solano, E.; Garrido, R.

    1998-02-01

    We have used HIPPARCOS proper motions and the method of Statistical Parallax to estimate the absolute magnitude of RR Lyrae stars. In addition we used the HIPPARCOS parallax of RR Lyrae itself to determine it's absolute magnitude. These two results are in excellent agreement with each other and give a zero-point for the RR Lyrae M_v,[Fe/H] relation of 0.77+/-0.15 at [Fe/H]=-1.53. This zero-point is in good agreement with that obtained recently by several groups using Baade-Wesselink methods which, averaged over the results from the different groups, gives M_v = 0.73+/-0.14 at [Fe/H]=-1.53. Taking the HIPPARCOS based zero-point and a value of 0.18+/-0.03 for the slope of the M_v,[Fe/H] relation from the literature we find firstly, the distance modulus of the LMC is 18.26+/-0.15 and secondly, the mean age of the Globular Clusters is 17.4+/-3.0 GYrs. These values are compared with recent estimates based on other "standard candles" that have also been calibrated with HIPPARCOS data. It is clear that, in addition to astrophysical problems, there are also problems in the application of HIPPARCOS data that are not yet fully understood. Table 1, which contains the basic data for the RR Lyraes, is available only at CDS. It may be retrieved via anonymous FTP at cdsarc.u-strasbg.fr (130.79.128.5) or via the Web at http://cdsweb.u-strasbg.fr/Abstract.html

  11. An Update on the Status of RR Lyrae Research - Report of the RRL2015 Meeting (October, Hungary) (Abstract)

    NASA Astrophysics Data System (ADS)

    Kolenberg, K.

    2016-06-01

    (Abstract only) In October 2015 we organized the first international meeting focused on RR Lyrae research, with the goal to discuss recent developments and future RR Lyrae plans. The Scientific rationale is the following:

  12. CA II K-line metallicity indicator for field RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Clementini, Gisella; Tosi, Monica; Merighi, Roberto

    In order to check and, possibly, improve the Preston's Delta S calibration scale, CCD spectra have been obtained for 25 field RR Lyrae variables. Eleven of the program stars have values of (Fe/H) derived by Butler and Deming (1979) from the Fe II lines' strength. For them we find that the equivalent width of the Ca II K line is extremely well correlated to the (Fe/H) values, the best fit relation being: (Fe/H) = 0.43W(K) - 2.75 where W(K) is the equivalent width of the K line. We conclude that the use of the K line equivalent width is at present the best method to derive the (Fe/H) abundance of the RR Lyrae stars.

  13. The Galactic thick disc density profile traced with RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Mateu, Cecilia; Vivas, A. Katherina

    2018-05-01

    We used a combination of public RR Lyrae star catalogs and a Bayesian methodology to derive robust structural parameters of the inner halo (<25 kpc) and thick disc of the Milky Way. RR Lyrae stars are an unequivocal tracer of old metal-poor populations, for which accurate distances and extinctions can be individually estimated and so, are a reliable independent means of tracing the population of the old high-[α/Fe] disc usually associated to the thick disc. In particular, the chosen RR Lyrae sample spans regions at low galactic latitude toward the anti-center direction, allowing to probe the outermost parts of the disc. Our results favour a thick disc with short scale height and short scale length, h_z=0.65_{-0.05}^{+0.09} kpc, h_R=2.1_{-0.25}^{+0.82} kpc, for a model in which the inner halo has a constant flattening of q=0.90_{-0.03}^{+0.05} and a power law index of n=-2.78_{-0.05}^{+0.05}. Similar short scales for the thick disc are also found when considering an inner halo with flattening dependent on radius. We also explored a model in which the thick disc has a flare and, although this is only mildly constrained with our data, a flare onset in the inner ˜11 kpc is highly disfavoured.

  14. A machine learned classifier for RR Lyrae in the VVV survey

    NASA Astrophysics Data System (ADS)

    Elorrieta, Felipe; Eyheramendy, Susana; Jordán, Andrés; Dékány, István; Catelan, Márcio; Angeloni, Rodolfo; Alonso-García, Javier; Contreras-Ramos, Rodrigo; Gran, Felipe; Hajdu, Gergely; Espinoza, Néstor; Saito, Roberto K.; Minniti, Dante

    2016-11-01

    Variable stars of RR Lyrae type are a prime tool with which to obtain distances to old stellar populations in the Milky Way. One of the main aims of the Vista Variables in the Via Lactea (VVV) near-infrared survey is to use them to map the structure of the Galactic Bulge. Owing to the large number of expected sources, this requires an automated mechanism for selecting RR Lyrae, and particularly those of the more easily recognized type ab (I.e., fundamental-mode pulsators), from the 106-107 variables expected in the VVV survey area. In this work we describe a supervised machine-learned classifier constructed for assigning a score to a Ks-band VVV light curve that indicates its likelihood of being ab-type RR Lyrae. We describe the key steps in the construction of the classifier, which were the choice of features, training set, selection of aperture, and family of classifiers. We find that the AdaBoost family of classifiers give consistently the best performance for our problem, and obtain a classifier based on the AdaBoost algorithm that achieves a harmonic mean between false positives and false negatives of ≈7% for typical VVV light-curve sets. This performance is estimated using cross-validation and through the comparison to two independent datasets that were classified by human experts.

  15. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  16. SMHASH: Anatomy of the Orphan Stream using RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Hendel, David; Scowcroft, Victoria; Johnston, Kathryn V.; Fardal, Mark A.; van der Marel, Roeland P.; Sohn, Sangmo Tony; Price-Whelan, Adrian M.; Beaton, Rachael L.; Besla, Gurtina; Bono, Giuseppe; Cioni, Maria-Rosa L.; Clementini, Gisella; Cohen, Judith G.; Fabrizio, Michele; Freedman, Wendy L.; Garofalo, Alessia; Grillmair, Carl J.; Kallivayalil, Nitya; Kollmeier, Juna A.; Law, David R.; Madore, Barry F.; Majewski, Steven R.; Marengo, Massimo; Monson, Andrew J.; Neeley, Jillian R.; Nidever, David L.; Pietrzyński, Grzegorz; Seibert, Mark; Sesar, Branimir; Smith, Horace A.; Soszyński, Igor; Udalski, Andrzej

    2018-06-01

    Stellar tidal streams provide an opportunity to study the motion and structure of the disrupting galaxy as well as the gravitational potential of its host. Streams around the Milky Way are especially promising as phase space positions of individual stars will be measured by ongoing or upcoming surveys. Nevertheless, it remains a challenge to accurately assess distances to stars farther than 10 kpc from the Sun, where we have the poorest knowledge of the Galaxy's mass distribution. To address this we present observations of 32 candidate RR Lyrae stars in the Orphan tidal stream taken as part of the Spitzer Merger History and Shape of the Galactic Halo (SMHASH) program. The extremely tight correlation between the periods, luminosities, and metallicities of RR Lyrae variable stars in the Spitzer IRAC 3.6μm band allows the determination of precise distances to individual stars; the median statistical relative distance uncertainty to each RR Lyrae star is 2.5%. By fitting orbits in an example potential we obtain an upper limit on the mass of the Milky Way interior to 60 kpc of 5.6_{-1.1^{+1.2}× 10^{11} M_⊙ }, bringing estimates based on the Orphan Stream in line with those using other tracers. The SMHASH data also resolve the stream in line-of-sight depth, allowing a new perspective on the internal structure of the disrupted dwarf galaxy. Comparing with N-body models we find that the progenitor had an initial dark halo mass of approximately 3.2 × 109 M⊙, placing the Orphan Stream's progenitor amongst the classical dwarf spheroidals.

  17. VizieR Online Data Catalog: Type II Cepheid and RR Lyrae variables (Feast+, 2008)

    NASA Astrophysics Data System (ADS)

    Feast, M. W.; Laney, C. D.; Kinman, T. D.; van Leeuwen, F.; Whitelock, P. A.

    2008-10-01

    Infrared and optical absolute magnitudes are derived for the type II Cepheids kappa Pav and VY Pyx using revised Hipparcos parallaxes and for kappa Pav, V553 Cen and SW Tau from pulsational parallaxes. Revised Hipparcos and HST parallaxes for RR Lyrae agree satisfactorily and are combined in deriving absolute magnitudes. Phase-corrected J, H and Ks mags are given for 142 Hipparcos RR Lyraes based on Two-Micron All-Sky Survey observations. Pulsation and trigonometrical parallaxes for classical Cepheids are compared to establish the best value for the projection factor (p) used in pulsational analyses. (3 data files).

  18. PERIOD–COLOR AND AMPLITUDE–COLOR RELATIONS AT MAXIMUM AND MINIMUM LIGHT FOR RR LYRAE STARS IN THE SDSS STRIPE 82 REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngeow, Chow-Choong; Kanbur, Shashi M.; Schrecengost, Zachariah

    Investigation of period–color (PC) and amplitude–color (AC) relations at the maximum and minimum light can be used to probe the interaction of the hydrogen ionization front (HIF) with the photosphere and the radiation hydrodynamics of the outer envelopes of Cepheids and RR Lyraes. For example, theoretical calculations indicated that such interactions would occur at minimum light for RR Lyrae and result in a flatter PC relation. In the past, the PC and AC relations have been investigated by using either the ( V − R ){sub MACHO} or ( V − I ) colors. In this work, we extend previousmore » work to other bands by analyzing the RR Lyraes in the Sloan Digital Sky Survey Stripe 82 Region. Multi-epoch data are available for RR Lyraes located within the footprint of the Stripe 82 Region in five ( ugriz ) bands. We present the PC and AC relations at maximum and minimum light in four colors: ( u − g ){sub 0}, ( g − r ){sub 0}, ( r − i ){sub 0}, and ( i − z ){sub 0}, after they are corrected for extinction. We found that the PC and AC relations for this sample of RR Lyraes show a complex nature in the form of flat, linear or quadratic relations. Furthermore, the PC relations at minimum light for fundamental mode RR Lyrae stars are separated according to the Oosterhoff type, especially in the ( g − r ){sub 0} and ( r − i ){sub 0} colors. If only considering the results from linear regressions, our results are quantitatively consistent with the theory of HIF-photosphere interaction for both fundamental and first overtone RR Lyraes.« less

  19. Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Hernitschek, Nina; Mitrović, Sandra; Ivezić, Željko; Rix, Hans-Walter; Cohen, Judith G.; Bernard, Edouard J.; Grebel, Eva K.; Martin, Nicolas F.; Schlafly, Edward F.; Burgett, William S.; Draper, Peter W.; Flewelling, Heather; Kaiser, Nick; Kudritzki, Rolf P.; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Waters, Christopher

    2017-05-01

    RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) 3π survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves (≲ 12 epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in > 80 % of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ˜45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period-luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.

  20. KELT RR Lyrae Variable Stars Observed by the NKU Schneider Observatory

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph E.; Paegert, Martin

    2016-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-10 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 10,000+ epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up data taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  1. Ground-based photometry for 42 Kepler-field RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Jeon, Young-Beom; Ngeow, Chow-Choong; Nemec, James M.

    2014-02-01

    Follow-up (U)BVRI photometric observations have been carried out for 42 RR Lyrae stars in the Kepler field. The new magnitude and color information will complement the available extensive high-precision Kepler photometry and recent spectroscopic results. The photometric observations were made with the following telescopes: 1-m and 41-cm telescopes of Lulin Observatory (Taiwan), 81-cm telescope of Tenagra Observatory (Arizona, USA), 1-m telescope at the Mt. Lemmon Optical Astronomy Observatory (LOAO, Arizona, USA), 1.8-m and 15-cm telescopes at the Bohyunsan Optical Astronomy Observatory (BOAO, Korea) and 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO, Korea). The observations span from 2010 to 2013, with ~200 to ~600 data points per light curve. Preliminary results of the Korean observations were presented at the 5th KASC workshop in Hungary. In this work, we analyze all observations. These observations permit the construction of full light curves for these RR Lyrae stars and can be used to derive multi-filter Fourier parameters.

  2. Peculiar double-periodic pulsation in RR Lyrae stars of the OGLE collection - II. Short-period stars with a dominant radial fundamental mode

    NASA Astrophysics Data System (ADS)

    Prudil, Z.; Smolec, R.; Skarka, M.; Netzel, H.

    2017-03-01

    We report the discovery of a new group of double-periodic stars in the OGLE Galactic bulge photometry. In 38 stars identified as fundamental-mode RR Lyrae and four classified as first-overtone RR Lyrae, we detected an additional shorter periodicity. The periods of the dominant variability in the newly discovered group are 0.28 < PD < 0.41 d. Period ratios (0.68-0.72) are smaller than the period ratios of the Galactic bulge RRd stars. The typical amplitude ratio (of the additional to the dominant periodicity) is 20 per cent for the stars identified as fundamental-mode RR Lyrae and 50 per cent for stars classified as first-overtone RR Lyrae. 10 stars from our sample exhibit equidistant peaks in the frequency spectrum, which suggests the Blazhko-type modulation of the main pulsation frequency and/or additional periodicity. The Fourier coefficients R21 and R31 are some of the lowest among fundamental-mode RR Lyrae stars, but among the highest for the first-overtone pulsators. For the phase Fourier coefficients φ21 and φ31, our stars lie between RRab and RRc stars. The stars discussed were compared with radial linear pulsation models. Their position in the Petersen diagram cannot be reproduced by assuming that two radial modes are excited and their physical parameters are like those characteristic of RR Lyrae stars. The non-radial-mode scenario also faces difficulties. We conclude that the dominant variability is most likely due to pulsation in the radial fundamental mode, which applies to stars classified as first-overtone mode pulsators. At this point, we cannot explain the nature of the additional periodicity. Even more, the classification of the stars as RR Lyrae should be treated as tentative.

  3. Photographic photometry of RR Lyrae variables in the globular cluster M15

    NASA Astrophysics Data System (ADS)

    Bingham, E. A.; Cacciari, C.; Dickens, R. J.; Pecci, F. F.

    1984-08-01

    Light curves in B and V bands are presented for 56 RR Lyrae variables in the Oosterhoff Group II globular cluster M15. Correlations between light curves parameters are obtained and their significance is discussed. An accurate assessment of the sources of error in the period-color relation has permitted the prediction of the range of masses among the variables with a dispersion of about 0.025 solar mass. The period color relation was used to derive a mass-to-light ratio of -1.92 (+ or - 0.03). The luminosity observed in M15 implies an age a few billion years less than current estimates. The morphology of the SG tracks indicates that many of the RR Lyraes in M15 begin their horizontal evolution within the instability strip, spending much longer in the center of the strip than M3-like clusters which evolve more rapidly bluewards across the strip.

  4. RR Lyrae Variables in M31 and its satellites: an analysis of the galaxy's population

    NASA Astrophysics Data System (ADS)

    Tanakul, Nahathai; Sarajedini, Ata

    2018-05-01

    We present an analysis of M31 RR Lyrae stars in 6 different fields using archival imaging from the Hubble Space Telescope. Published data for M31, M33, and several M31 dwarf spheroidal galaxies are also used to study the global properties of RR Lyrae in these systems. From the properties of RR Lyrae stars, we found that the majority of M31 and M33 RRLs are of OoI while those in M31 dSphs are of Oosterhoff intermediate. The main parameter affecting these Oosterhoff types is likely to be metallicity. Metallicity also play a role in the lack of RRLs in the High Amplitude Short Period (HASP ,defined as those with P ≲ 0.48 and AV ≥ 0.75mag) variables in M31 dSphs. This difference in the properties of RRLs between their parent galaxy and satellites, as well as the lack of RRLs in the HASP region in dSphs can also be observed in the Milky Way. Therefore, systems like these dSphs are unlikely to be the main building blocks of the M31 and Milky Way halo.

  5. Observing globular cluster RR Lyraes with the BYU West Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Joner, M. D.; Walton, R. S.

    2016-05-01

    We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemi- sphere globular clusters. Here we present observations of RR Lyrae stars located in these clusters. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC.

  6. Anatomy of the Orphan Stream using RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Hendel, David; Johnston, Kathryn; Scowcroft, Victoria; SMHASH

    2018-01-01

    Stellar tidal streams provide an opportunity to study the motion and structure of the disrupting galaxy as well as the gravitational potential of its host. Streams around the Milky Way are especially promising as new datasets make additional phase space dimensions available as constraints. We present observations of 32 stars thought to be RR Lyrae in the Orphan tidal stream as part of the {\\it Spitzer} Merger History and Shape of the Galactic Halo (SMHASH) program. The extremely tight correlation between the periods, luminosities, and metallicities of RR Lyrae variable stars in the {\\it Spitzer} IRAC $3.6\\mu$m band allows the determination of precise distances to individual stars; the median statistical distance uncertainty in this sample is $2.5\\%$. By fitting orbits in an example potential we obtain an upper limit on the mass of the Milky Way interior to 60 kpc of $\\mathrm{3.9_{-0.8}^{+1.2}\\times 10^{11} M_\\odot}$, bringing estimates based on the Orphan stream in line with those using other tracers. The SMHASH data also resolves the stream in line-of-sight depth, allowing unprecedented access its internal structure. Comparing this structure with n-body models we find that Orphan had an initial dark halo mass $\\sim \\mathrm{3 \\times 10^{9} M_\\odot}$, placing the progenitor amongst the classical dwarf spheriodals.

  7. Pushing the boundaries: probing the halo of the Milky Way beyond 100 kpc with RR Lyrae

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Medina, Gustavo; Munoz, Ricardo R.; Vivas, Anna Katherina; Willman, Beth

    2018-01-01

    Stars in the outermost halo of the Milky Way are vital tracers of the mass of our Galaxy. Furthermore, beyond ~100 kpc from the Galactic center, most (or perhaps all) of the stars are likely to be in faint dwarf galaxies or tidal debris from recently accreted dwarfs, making the outer reaches of the Galaxy important for understanding the Milky Way’s accretion history. However, confirmed stars are scarce at these distances because they are difficult to securely identify among the more numerous foreground stars. Pulsating variables such as RR Lyrae are ideal probes of the distant halo because they are readily identified in time-series data, are intrinsically bright and thus can be seen at large distances, and follow well-known period-luminosity relations that enable precise distance measurements. We present results from our program to find RR Lyrae using deep DECam time series data (from the HiTS supernova survey as well as our own observing program) covering ~300 square degrees. Our sample of distant RR Lyrae more than doubles the number of known Milky Way stars beyond distances of ~150 kpc. Among these, we find two distinct groups of two and three stars that are members of the Leo IV and Leo V ultra-faint dwarf galaxies, located at distances of ~145 kpc and ~175 kpc, respectively. We derive the stellar density as a function of Galactocentric radius, extending to more than 250 kpc from the Galactic center. This sample of RR Lyrae provides a set of important probes of the mass of the Milky Way and the accretion origin of the outer Galactic halo.

  8. Serendipitous Discovery of RR Lyrae Stars in the Leo V Ultra-faint Galaxy

    NASA Astrophysics Data System (ADS)

    Medina, Gustavo E.; Muñoz, Ricardo R.; Vivas, A. Katherina; Förster, Francisco; Carlin, Jeffrey L.; Martinez, Jorge; Galbany, Lluis; González-Gaitán, Santiago; Hamuy, Mario; de Jaeger, Thomas; Maureira, Juan Carlos; San Martín, Jaime

    2017-08-01

    During the analysis of RR Lyrae stars (RRLs) discovered in the High Cadence Transient Survey (HiTS) taken with the Dark Energy Camera at the 4 m telescope at Cerro Tololo Inter-American Observatory, we found a group of three very distant, fundamental mode pulsator RR Lyrae (type ab). The location of these stars agrees with them belonging to the Leo V ultra-faint satellite galaxy, for which no variable stars have been reported to date. The heliocentric distance derived for Leo V based on these stars is 173 ± 5 kpc. The pulsational properties (amplitudes and periods) of these stars locate them within the locus of the Oosterhoff II group, similar to most other ultra-faint galaxies with known RRLs. This serendipitous discovery shows that distant RRLs may be used to search for unknown faint stellar systems in the outskirts of the Milky Way.

  9. A Data-driven Study of RR Lyrae Near-IR Light Curves: Principal Component Analysis, Robust Fits, and Metallicity Estimates

    NASA Astrophysics Data System (ADS)

    Hajdu, Gergely; Dékány, István; Catelan, Márcio; Grebel, Eva K.; Jurcsik, Johanna

    2018-04-01

    RR Lyrae variables are widely used tracers of Galactic halo structure and kinematics, but they can also serve to constrain the distribution of the old stellar population in the Galactic bulge. With the aim of improving their near-infrared photometric characterization, we investigate their near-infrared light curves, as well as the empirical relationships between their light curve and metallicities using machine learning methods. We introduce a new, robust method for the estimation of the light-curve shapes, hence the average magnitudes of RR Lyrae variables in the K S band, by utilizing the first few principal components (PCs) as basis vectors, obtained from the PC analysis of a training set of light curves. Furthermore, we use the amplitudes of these PCs to predict the light-curve shape of each star in the J-band, allowing us to precisely determine their average magnitudes (hence colors), even in cases where only one J measurement is available. Finally, we demonstrate that the K S-band light-curve parameters of RR Lyrae variables, together with the period, allow the estimation of the metallicity of individual stars with an accuracy of ∼0.2–0.25 dex, providing valuable chemical information about old stellar populations bearing RR Lyrae variables. The methods presented here can be straightforwardly adopted for other classes of variable stars, bands, or for the estimation of other physical quantities.

  10. Changing Amplitudes: Detecting RR Lyrae Light Curve Shape Variations in the Galactic Disk and Inner Halo

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Kinemuchi, K.; Pepper, J.; Rodriguez, J. E.

    2014-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-8 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 9,000 epochs per light curve with completeness out to 3 kpc from the Sun. Recent results from both Kepler and ground based surveys results suggest that as many as 50% of RR Lyrae stars show long-term modulation of their light curve shapes (Blazhko effect). These stars combined with RRL stars that pulsate in more than one mode give a sample of objects that the KELT survey is uniquely suited to explore. This poster concentrates on a pilot project to examine RRL stars in a limited number of KELT fields. In particular, we focus on, detecting RR Lyrae, developing a light curve shape-metallicity relationship in the KELT band-pass, and some initial characterization of RRL with either amplitude-modulated or period-modulated light curves.

  11. Extended Aperture Photometry of K2 RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert

    2017-10-01

    We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.

  12. Period changes of 7 bright RR Lyrae variables included in the BAV standard program.

    NASA Astrophysics Data System (ADS)

    Wunder, E.

    1995-11-01

    On the basis of 1578 times of maxima historical and present period changes of the RR Lyrae stars SW And, SW Aqr, AA Aql, X Ari, RS Boo, RR Cet and XZ Cyg are analysed. In tables the period jumps and the quadratic terms of the elements are quantified and timed; elements are given to describe the historical O-C-curves; instant elements are listed to support nowadays observations.

  13. The first all-sky view of the Milky Way stellar halo with Gaia+2MASS RR Lyrae

    NASA Astrophysics Data System (ADS)

    Iorio, G.; Belokurov, V.; Erkal, D.; Koposov, S. E.; Nipoti, C.; Fraternali, F.

    2018-02-01

    We exploit the first Gaia data release to study the properties of the Galactic stellar halo as traced by RR Lyrae. We demonstrate that it is possible to select a pure sample of RR Lyrae using only photometric information available in the Gaia+2MASS catalogue. The final sample contains about 21 600 RR Lyrae covering an unprecedented fraction ( ˜ 60 per cent) of the volume of the Galactic inner halo (R < 28 kpc). We study the morphology of the stellar halo by analysing the RR Lyrae distribution with parametric and non-parametric techniques. Taking advantage of the uniform all-sky coverage, we test halo models more sophisticated than usually considered in the literature, such as those with varying flattening, tilts and/or offset of the halo with respect to the Galactic disc. A consistent picture emerges: the inner halo is well reproduced by a smooth distribution of stars settled on triaxial density ellipsoids. The shortest axis is perpendicular to the Milky Way's disc, while the longest axis forms an angle of ˜70° with the axis connecting the Sun and the Galactic Centre. The elongation along the major axis is mild (p = 1.27), and the vertical flattening is shown to evolve from a squashed state with q ≈ 0.57 in the centre to a more spherical q ≈ 0.75 at the outer edge of our data set. Within the radial range probed, the density profile of the stellar halo is well approximated by a single power law with exponent α = -2.96. We do not find evidence of tilt or offset of the halo with respect to the Galaxy's disc.

  14. KELT RR Lyrae Variable Stars Observed by NKU Schneider and Michigan State Observatories

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Brueneman, Stacy; Hicks, Logan; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph; Paegert, Martin; Smith, Horace A.

    2017-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 70% of the entire sky, and has a long-time-baseline of up to 11 years with a very high cadence rate of less than 20 minutes. This translates to upwards of 11,000 epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up multi-color photometry taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We also have archival photometry of these stars from the Michigan State Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  15. The MACHO Project Large Magellanic Cloud Variable-Star Inventory. IX. Frequency Analysis of the First-Overtone RR Lyrae Stars and the Indication for Nonradial Pulsations

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R.; Alves, D. R.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kovács, G.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.

    2000-10-01

    More than 1300 variables classified provisionally as first-overtone RR Lyrae pulsators in the MACHO variable-star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of nine types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental and first-overtone) variables, this study increased the number of known double-mode stars in the LMC to 181. During the total 6.5 yr time span of the data, 10% of the stars showed strong period changes. The size, and in general also the patterns of the period changes, exclude a simple evolutionary explanation. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type, there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type, the number of remnant components is two; they are also closely spaced, and are symmetric in their frequency spacing relative to the central component. This latter type of variables are associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (~20%) among the fundamental-mode variables versus the low occurrence rate of their first-overtone counterparts makes it more difficult to explain the Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. None of the current theoretical models are able to explain the observed close frequency components without invoking nonradial pulsation components in these stars.

  16. Testing iSpec for the determination of atmospheric parameters and abundances of δ Cephei and RR Lyrae

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Anderson, R. I.; Eyer, L.; Mowlavi, N.

    2017-03-01

    Classical Cepheids and RR Lyrae stars are radially pulsating stars where the spectral type varies according to pulsation phase. Several studies used synthesis and the equivalent width method to determine the variations of effective temperature, surface gravity and metallicity for classical Cepheids and RR Lyrae stars (Luck and Andrievsky 2004; Kovtyukh et al. 2005; Andrievsky et al 2005; Luck et al 2008; Takeda et al. 2013; Fossati et al. 2014). We evaluated the applicability of iSpec (Blanco-Cuaresma et al. 2014 - http://www.blancocuaresma.com/s/), which has been extensively used with non-pulsating FGK stars, and derived atmospheric parameters as a function of phase for δ Cephei and RR Lyrae (the two prototypes stars for each class). The results showed that when we apply a non-adapted traditional spectroscopic method to pulsating stars, derived gravities do not seem to follow a physically logical evolution. Nevertheless, metallicity is globally stable and effective temperature variations globally agree with expectations from the radius variations indicated by the radial velocity variability. Max/min values and average results agree with the literature. In terms of broadening parameters, macroturbulent and projected rotation velocities are very difficult to disentangle even if their profiles are not exactly the same. Individual chemical abundances as function of phase are stable as it was expected (the chemical composition of the star should not vary). We plan to use this information to identify absorption lines that are reliable and stable (less affected by blending) during the whole pulsating cycle. This new line selection may help to improve the determination of atmospheric parameters and it could allow us to be more confident in the study of other less known Cepheids and RR Lyrae stars.

  17. An RR Lyrae family portrait: 33 stars observed in Pisces with K2-E2

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Szabó, R.; Moskalik, P. A.; Nemec, J. M.; Guggenberger, E.; Smolec, R.; Poleski, R.; Plachy, E.; Kolenberg, K.; Kolláth, Z.

    2015-10-01

    A detailed analysis is presented of 33 RR Lyrae stars in Pisces observed with the Kepler space telescope over the 8.9-d long K2 Two-Wheel Concept Engineering Test. The sample includes not only fundamental-mode and first-overtone (RRab and RRc) stars but the first two double-mode (RRd) stars that Kepler detected and the only modulated first-overtone star ever observed from space so far. The precision of the extracted K2 light curves made it possible to detect low-amplitude additional modes in all subtypes. All RRd and non-modulated RRc stars show the additional mode at PX/P1 ˜ 0.61 that was detected in previous space-based photometric measurements. A periodicity longer than the fundamental mode was tentatively identified in one RRab star that might belong to a gravity mode. We determined the photometric [Fe/H] values for all fundamental-mode stars and provide the preliminary results of our efforts to fit the double-mode stars with non-linear hydrodynamic pulsation models. The results from this short test run indicate that the K2 mission will be, and has started to be, an ideal tool to expand our knowledge about RR Lyrae stars. As a by-product of the target search and analysis, we identified 165 bona fide double-mode RR Lyrae stars from the Catalina Sky Survey observations throughout the sky, 130 of which are new discoveries.

  18. VizieR Online Data Catalog: Field RR Lyrae stars (Liska+, 2016)

    NASA Astrophysics Data System (ADS)

    Liska, J.; Skarka, M.; Zejda, M.; Mikulasek, Z.; de Villiers, S. N.

    2016-05-01

    Differential photometry for VX Her in 'table1.dat' file. New photometric measurements for VX Her were performed at Masaryk University Observatory, Brno, Czech Republic during 13 nights (April-August 2014) with 0.6-m (24-inch) Newtonian telescope, CCD G2-0402, in BVRI bands. CCD images were calibrated in a standard way (dark frame and flat field corrections). The C-Munipack software (Motl 2009) was used for this processing as well as for differential photometry. TYC 1510-269-1 and TYC 1510-149-1 were used as comparison and check stars, respectively. Differential photometry for AT Ser and SS Leo is in 'table2.dat' file. New photometric measurements for these two stars were obtained using 1-inch refractor (a photographic lens Sonnar 4/135mm, lens focal ratio/focal length) and ATIK 16IC CCD camera with green photometric filter with similar throughput as the Johnson V filter. Exposures were 30s and each five frames were combined to a single image to achieve a better signal-to-noise ratio. The time resolution of a such combined frame is about 170s. The comparison stars were HD 142799 for AT Ser and HD 100763 for SS Leo. List with candidates for binaries with RR Lyrae component - RRLyrBinCan database (version 2016 May 5) is in 'table3.dat' file. 'table4.dat' file contains false-positives binary candidates among RR Lyrae stars. 'table5.dat' and 'table6.dat' files contain used maxima timings given in GEOS RR Lyr database, or newly determined in this study. (7 data files).

  19. Exploring the Milky Way halo with SDSS-II SN survey RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan

    This thesis details the creation of a large catalog of RR Lyrae stars, their lightcurves, and their associated photometric and kinematic parameters. This catalog contains 421 RR Lyrae stars with 305 RRab and 116 RRc. Of these, 241 stars have stellar spectra taken with either the Blanco 4m RC spectrograph or the SDSS/SEGUE survey, and in some cases taken by both. From these spectra and photometric methods derived from them, an analysis is conducted of the RR lyrae's distribution, metallicity, kinematics, and photometric properties within the halo. All of these RR Lyrae originate from the SDSS-II Supernova Survey. The SDSS-II SN Survey covers a 2.5 degree equatorial stripe ranging from -60 to +60 degrees in RA. This corresponds to relatively high southern galactic latitudes in the anti-center direction. The full catalog ranges from g 0 magnitude 13 to 20 which covers a distance of 3 to 95 kpc from the sun. Using this sample, we explore the Oosterhoff dichotomy through the D log P method as a function of | Z | distance from the plane. This results in a clear division of the RRab stars into OoI and OoII groups at lower | Z |, but the population becomes dominated by OoI stars at higher | Z |. The idea of a dual halo is explored primarily in the context of radial velocity distributions as a function of | Z |. In particular, V gsr , the radial velocity in the galactic standard of rest, is used as a proxy for V [straight phi] , the cylindrical rotational velocity. This is then compared against a single halo model galaxy, which results in very similar V gsr histograms for both at low to medium | Z |. However, at high | Z | there is a clear separation into two distinct velocity groups for the data without a corresponding separation in the model, suggesting that at least a two-component model for the halo is necessary. The final part of the analysis involves [Fe/H] measurements from both spectra and photometric relations cut in both | Z | and radial velocity. In this case

  20. A helium P-Cygni profile in RR Lyrae stars?

    NASA Astrophysics Data System (ADS)

    Gillet, D.; Sefyani, F. L.; Benhida, A.; Fabas, N.; Mathias, P.; Benkhaldoun, Z.; Daassou, A.

    2016-03-01

    Context. Until 2006, helium emission lines had never been observed in RR Lyrae stars. For the first time, a pre-maximum helium emission in 11 RRab stars was observed during rising light (around the pulsation phase 0.92) and the reappearance of helium emission near maximum light (phase 0.0) in one RRab star: RV Oct. This post-maximum emission has been only observed in the He I λ5875.66 (D3) line. Its intensity is very weak, and its profile mimics a P-Cygni profile with the emission peak centered at the laboratory wavelength. The physical explanation for this unexpected line profile has not been proposed yet. Aims: Using new observations of RR Lyr, we investigate the physical origin of the presence of a P-Cygni profile in the He I λ5875.66 (D3) line. Methods: High-resolution spectra of RR Lyr, collected with a spectrograph eShel/C14 at the Oukaïmeden Observatory (Morocco) in 2013, were analyzed to understand the origin of the observed P-Cygni profile at D3. Results: When the shock intensity is moderate, helium emission cannot be produced in the shock wake, and consequently, the two consecutive helium emissions (pre- and post-maximum light emissions) are not observed. This is the most frequent case. When the shock intensity becomes high enough, a pre-maximum He I emission first occurs, which can be followed by the appearance of a P-Cygni profile if the shock intensity is still strong in the high atmosphere. The observation of a P-Cygni profile means that the shock wave is already detached from the photosphere. It is shown that the shock strongly first decelerates between the pulsation phases 0.90 and 1.04 from 130 km s-1 to 60 km s-1, probably before accelerating again to 80 km s-1 near phase 1.30. Conclusions: The presence of the P-Cygni profile seems to be a natural consequence of the large extension of the expanding atmosphere, which is induced by strong (radiative) shock waves propagating toward the high atmosphere. This kind of P-Cygni profile has already been

  1. The absolute magnitudes of RR Lyrae stars. II - DX Delphini

    NASA Astrophysics Data System (ADS)

    Skillen, I.; Fernley, J. A.; Jameson, R. F.; Lynas-Gray, A. E.; Longmore, A. J.

    1989-11-01

    UV, IR and visual photometry of the short-period RR Lyrae star DX Del is presented and treated by means of the Blackwell and Shallis (1977) IR Flux Method-based formulation of the Baade-Wesselink method. Upon correcting to common reddening, extinction, and radial-velocity conversion factors, as well as applying the Baade-Wesselink analysis of Burki and Meylan (1986), it proved impossible to reproduce their results. It is suggested that the present methods are inherently more stable than those of Burki and Meylan, given their reliance on optical colors and magnitudes to derive effective temperatures and radii.

  2. A Spectroscopisc's View of Nearby RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Preston, George W.

    2016-06-01

    I am greatly honored to be the second Bohdan Paczyński Medal lecturer. Bohdan was a dear friend who left an indelible imprint on my life. He was, as well, an invaluable participant in my early explorations of RR Lyrae spectra, the subject of this lecture. I share the hope of Polskie Towarzystwo Astronomiczne that the Paczyński lecture series will serve to remind present and future astronomers, particularly those who will never have the opportunity to see or hear Bohdan Paczyński in person, of the boisterous enthusiasm, sharp wit, and penetrating insight that he brought to every scientific question, to every conversation, to every social occasion that attracted his attention. To this end I begin with a few memories of Bohdan from the mid 20th century.

  3. CCD time-series photometry of the globular cluster NGC 5053: RR Lyrae, Blue Stragglers and SX Phoenicis stars revisited

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Giridhar, Sunetra; Bramich, D. M.

    2010-02-01

    We report the results of CCD V, r and I time-series photometry of the globular cluster NGC 5053. New times of maximum light are given for the eight known RR Lyrae stars in the field of our images, and their periods are revised. Their V light curves were Fourier decomposed to estimate their physical parameters. A discussion on the accuracy of the Fourier-based iron abundances, temperatures, masses and radii is given. New periods are found for the five known SX Phe stars, and a critical discussion of their secular period changes is offered. The mean iron abundance for the RR Lyrae stars is found to be [Fe/H] ~ -1.97 +/- 0.16 and lower values are not supported by the present analysis. The absolute magnitude calibrations of the RR Lyrae stars yield an average true distance modulus of 16.12 +/- 0.04 or a distance of 16.7 +/- 0.3 kpc. Comparison of the observational colour magnitude diagram (CMD) with theoretical isochrones indicates an age of 12.5 +/- 2.0 Gyr for the cluster. A careful identification of all reported blue stragglers (BS) and their V, I magnitudes leads to the conclusion that BS12, BS22, BS23 and BS24 are not BS. On the other hand, three new BS are reported. Variability was found in seven BS, very likely of the SX Phe type in five of them, and in one red giant star. The new SX Phe stars follow established Period-Luminosity relationships and indicate a distance in agreement with the distance from the RR Lyrae stars. Based on observations collected at the Indian Astrophysical Observatory, Hanle, India. E-mail: armando@astroscu.unam.mx (AAF); giridhar@iiap.res.in (SG); dan.bramich@hotmail.co.uk (DMB)

  4. Metal-rich or misclassified? The case of four RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Molnar, L.; Juhasz, A. L.; Plachy, E.; Szabo, R.

    2016-06-01

    We analysed the light curve of four, apparently extremely metal-rich fundamenta-mode RR Lyrae stars. We identified two stars, MT Tel and ASAS J091803-3022.6 as RRc (first-overtone) pulsators that were misclassified as RRab ones in the ASAS survey. In the case of the other two stars, V397 Gem and ASAS J075127-4136.3, we could not decide conclusively, as they are outliers in the period-Fourier-coefficient space from the loci of both classes, but their photometric metallicities also favour the RRc classification.

  5. VizieR Online Data Catalog: Abundances of 8 RR Lyrae subclass C variable stars (Govea+, 2014)

    NASA Astrophysics Data System (ADS)

    Govea, J.; Gomez, T.; Preston, G. W.; Sneden, C.

    2016-02-01

    We chose 10 candidate RR Lyrae variable stars of subclass c (RRc) stars for spectroscopic observation. Many of these stars were first identified as RRc variables by the All Sky Automated Survey (ASAS) of Pojmanski 2003 (cat. II/264). The target star list included ASAS 144154-0324.7 and ASAS 204440-2402.7. But our spectroscopic study suggest that these two stars are probably W UMa binaries instead of RR Lyrae stars Our spectra were obtained with the echelle spectrograph of the du Pont 2.5m telescope at the Las Campanas Observatory. Four observing runs during 2009-2010 were partly devoted to this project. The spectrograph was used with the 1.5*4'' entrance slit, which translates to a resolving power of R=λ/Δλ~27000 at the MgI b lines near 5180Å. The total continuous wavelength coverage of the spectra was 3500-9000Å. (6 data files).

  6. Observing Globular Cluster RR Lyrae Variables with the BYU West Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Joner, M. D.

    2016-06-01

    We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemisphere globular clusters. Here we present representative observations of RR Lyrae stars located in these clusters, including light curves. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC. We find that for well-separated stars, DAOPHOT and ISIS provide comparable results. However, for stars within the cluster core, ISIS provides superior results. These improved techniques will allow us to better measure the properties of cluster variable stars.

  7. Discovering Cepheid and RR Lyrae Stars: Pan-STARRS Science Archive @ STScI and Robotically Controlled Telescopes

    NASA Astrophysics Data System (ADS)

    Johnson, Elizabeth; Strolger, Louis-Gregory; Engle, Scott G.; Anderson, Richard I.; Rest, Armin; Calamida, Annalisa; Dosovitz Fox, Ori; Laney, David

    2017-01-01

    Cepheid and RR Lyrae stars are an integral part of the cosmic distance ladder and are also useful for studying galactic structure and stellar ages. This project aims to greatly expand the number of known periodic variables in our galaxy by identifying candidates in the PanSTARRS-1 3pi catalog, and carrying out systematically targeted characterization with robotically controlled telescopes. Candidate targets are selected from available detection tables based on color and variability indices and are then fully vetted using robotic telescopes: the RCT 1.3 meter (Kitt Peak National Observatory) and RATIR 1.5 meter (Mexico). Here we present work to develop a full, semi-automated prescription for candidate selection, targeted follow-up photometry, cataloging, and classification, which allows the review of approximately 25 variable candidates every two weeks. We make comparisons of our sample selection and purity from a similar study based on Pan-STARRS data (Hernitschek et al. 2016), as well as candidates identified in Gaia DR1. The goal, through continued observation and analysis, is to identify at least 10,000 new variables, hundreds of which will be new Cepheid and RR Lyrae stars.

  8. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RRmore » Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.« less

  9. Clouds, Streams and Bridges. Redrawing the blueprint of the Magellanic System with Gaia DR1

    NASA Astrophysics Data System (ADS)

    Belokurov, Vasily; Erkal, Denis; Deason, Alis J.; Koposov, Sergey E.; De Angeli, Francesca; Evans, Dafydd Wyn; Fraternali, Filippo; Mackey, Dougal

    2017-04-01

    We present the discovery of stellar tidal tails around the Large and the Small Magellanic Clouds (LMC and SMC, respectively) in the Gaia DR1 data. In between the Clouds, their tidal arms are stretched towards each other to form an almost continuous stellar bridge. Our analysis relies on the exquisite quality of the Gaia's photometric catalogue to build detailed star-count maps of the Clouds. We demonstrate that the Gaia DR1 data can be used to detect variable stars across the whole sky, and, in particular, RR Lyrae stars in and around the LMC and the SMC. Additionally, we use a combination of Gaia and GALEX to follow the distribution of Young Main Sequence stars in the Magellanic System. Viewed by Gaia, the Clouds show unmistakable signs of interaction. Around the LMC, clumps of RR Lyrae are observable as far as ˜20°, in agreement with the most recent map of Mira-like stars reported in Deason et al. The SMC's outer stellar density contours show a characteristic S-shape, symptomatic of the onset of tidal stripping. Beyond several degrees from the centre of the dwarf, the Gaia RR Lyrae stars trace the Cloud's trailing arm, extending towards the LMC. This stellar tidal tail mapped with RR Lyrae is not aligned with the gaseous Magellanic Bridge, and is shifted by some ˜5° from the Young Main Sequence bridge. We use the offset between the bridges to put constraints on the density of the hot gaseous corona of the Milky Way.

  10. Fourier Decomposition of RR Lyrae light curves and the SX Phe population in the central region of NGC 3201

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Ahumada, J. A.; Calderón, J. H.; Kains, N.

    2014-10-01

    CCD time-series observations of the central region of the globular cluster NGC 3201 were obtained with the aim of performing the Fourier decomposition of the light curves of the RR Lyrae stars present in that field. This procedure gave the mean values, for the metallicity, of [Fe/H] [ZW] = - 1.483±0.006 (statistical) ±0.090 (systematic), and for the distance, 5.000±0.001 kpc (statistical) ±0.220 (systematic). The values found from two RRc stars are consistent with those derived previously. The differential reddening of the cluster was investigated and individual reddenings for the RR Lyrae stars were estimated from their V - I curves. We found an average value of E(B - V) = 0.23±0.02. An investigation of the light curves of stars in the blue straggler region led to the discovery of three new SX Phe stars. The period-luminosity relation of the SX Phe stars was used for an independent determination of the distance to the cluster and of the individual reddenings. We found a distance of 5.0 kpc.

  11. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less

  12. Pulsations and period changes of the non-Blazhko RR lyrae variable Y oct observed from Dome A, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhihua, Huang; Jianning, Fu; Weikai, Zong

    During the operation of the Chinese Small Telescope Array (CSTAR) in Dome A of Antarctica in the years 2008, 2009, and 2010, large amounts of photometric data have been obtained for variable stars in the CSTAR field. We present here the study of one of six RR Lyrae variables, Y Oct, observed with CSTAR in Dome A, Antarctica. Photometric data in the i band were obtained in 2008 and 2010, with a duty cycle (defined as the fraction of time representing scientifically available data to CSTAR observation time) of about 44% and 52%, respectively. In 2009, photometric data in themore » g and r bands were gathered for this star, with a duty cycle of 65% and 60%, respectively. Fourier analysis of the data in the three bands only shows the fundamental frequency and its harmonics, which is characteristic of the non-Blazhko RR Lyrae variables. Values of the fundamental frequency and the amplitudes, as well as the total pulsation amplitude, are obtained from the data in the three bands separately. The amplitude of the fundamental frequency and the total pulsation amplitude in the g band are the largest, and those in the i band the smallest. Two-hundred fifty-one times of maximum are obtained from the three seasons of data, which are analyzed together with 38 maximum times provided in the GEOS RR Lyrae database. A period change rate of −0.96 ± 0.07 days Myr{sup −1} is then obtained, which is a surprisingly large negative value. Based on relations available in the literature, the following physical parameters are derived: [Fe/H] = −1.41 ± 0.14, M{sub V} = 0.696 ± 0.014 mag, V−K = 1.182 ± 0.028 mag, logT{sub eff} = 3.802 ± 0.003 K, logg = 2.705 ± 0.004, logL/L{sub ⊙} = 1.625 ± 0.013, and logM/M{sub ⊙} = −0.240 ± 0.019.« less

  13. RR Lyrae, Delta Scuti, SX Phoenicis stars and Baade-Wesselink method. I - Photometric and radial velocity measurements of four field stars - RR Cet, DX Del, BS AQR and DY Peg

    NASA Astrophysics Data System (ADS)

    Meylan, G.; Burki, G.; Rufener, F.; Mayor, M.; Burnet, M.; Ischi, E.

    1986-04-01

    Simultaneous measurements in the Geneva seven-color photometry and in radial velocities with the spectrophotometer CORAVEL for two RR Lyrae, one Delta Scuti and one SX Phoenicis field star were obtained in order to apply the Baade-Wesselink method to these kinds of variable stars. As a first step, the data regarding the RR Cet, DX Del, BS Aqr, and DY Peg are presented. The target of this study will consist in determining the physical parameters (temperature, gravity, metal content, mass, luminosity) and distances of these stars.

  14. Exploring the Variable Sky with LINEAR. II. Halo Structure and Substructure Traced by RR Lyrae Stars to 30 kpc

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Ivezić, Željko; Stuart, J. Scott; Morgan, Dylan M.; Becker, Andrew C.; Sharma, Sanjib; Palaversa, Lovro; Jurić, Mario; Wozniak, Przemyslaw; Oluseyi, Hakeem

    2013-08-01

    We present a sample of ~5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over ~8000 deg2 of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of ~4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.

  15. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    NASA Astrophysics Data System (ADS)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  16. Metal Abundances, Radial Velocities, and Other Physical Characteristics for the RR Lyrae Stars in The Kepler Field

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Cohen, Judith G.; Ripepi, Vincenzo; Derekas, Aliz; Moskalik, Pawel; Sesar, Branimir; Chadid, Merieme; Bruntt, Hans

    2013-08-01

    Spectroscopic iron-to-hydrogen ratios, radial velocities, atmospheric parameters, and new photometric analyses are presented for 41 RR Lyrae stars (and one probable high-amplitude δ Sct star) located in the field-of-view of the Kepler space telescope. Thirty-seven of the RR Lyrae stars are fundamental-mode pulsators (i.e., RRab stars) of which sixteen exhibit the Blazhko effect. Four of the stars are multiperiodic RRc pulsators oscillating primarily in the first-overtone mode. Spectroscopic [Fe/H] values for the 34 stars for which we were able to derive estimates range from -2.54 ± 0.13 (NR Lyr) to -0.05 ± 0.13 dex (V784 Cyg), and for the 19 Kepler-field non-Blazhko stars studied by Nemec et al. the abundances agree will with their photometric [Fe/H] values. Four non-Blazhko RR Lyrae stars that they identified as metal-rich (KIC 6100702, V2470 Cyg, V782 Cyg and V784 Cyg) are confirmed as such, and four additional stars (V839 Cyg, KIC 5520878, KIC 8832417, KIC 3868420) are also shown here to be metal-rich. Five of the non-Blazhko RRab stars are found to be more metal-rich than [Fe/H] ~-0.9 dex while all of the 16 Blazhko stars are more metal-poor than this value. New P-\\phi _31^s-[Fe/H] relationships are derived based on ~970 days of quasi-continuous high-precision Q0-Q11 long- and short-cadence Kepler photometry. With the exception of some Blazhko stars, the spectroscopic and photometric [Fe/H] values are in good agreement. Several stars with unique photometric characteristics are identified, including a Blazhko variable with the smallest known amplitude and frequency modulations (V838 Cyg). Based in part on observations made at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Also, based in part on

  17. Observing RR Lyrae Variables in the M3 Globular Cluster with the BYU West Mountain Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Joner, M. D.

    2016-06-01

    (Abstract only) We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on the northern hemisphere globular cluster NGC 5272 (M3). We made 216 observations in the V filter spaced between March and August 2012. We present light curves of the M3 RR Lyrae stars using different techniques. We compare light curves produced using DAOPHOT and ISIS software packages for stars in both the halo and core regions of this globular cluster. The light curve fitting is done using FITLC.

  18. The Optical Gravitational Lensing Experiment: Analysis of the Bulge RR Lyrae Population from the OGLE-III Data

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Udalski, A.; Soszyński, I.; Nataf, D. M.; Wyrzykowski, Ł.; Poleski, R.; Kozłowski, S.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.

    2012-05-01

    We have analyzed the data on 16,836 RR Lyrae (RR Lyr) variables observed toward the Galactic bulge during the third phase of the Optical Gravitational Lensing Experiment (OGLE-III), which took place in 2001-2009. Using these standard candles, we show that the ratio of total-to-selective extinction toward the bulge is given by RI = AI /E(V - I) = 1.080 ± 0.007 and is independent of color. We demonstrate that the bulge RR Lyr stars form a metal-uniform population, slightly elongated in its inner part. The photometrically derived metallicity distribution is sharply peaked at [Fe/H] = -1.02 ± 0.18, with a dispersion of 0.25 dex. In the inner regions (|l| < 3°, |b| < 4°) the RR Lyr tend to follow the barred distribution of the bulge red clump giants. The distance to the Milky Way center inferred from the bulge RR Lyr is R 0 = 8.54 ± 0.42 kpc. We report a break in the mean density distribution at a distance of ~0.5 kpc from the center indicating its likely flattening. Using the OGLE-III data, we assess that (4-7) × 104 type ab RR Lyr variables should be detected toward the bulge area of the ongoing near-IR VISTA Variables in the Via Lactea (VVV) survey, where the uncertainty partially results from the unknown RR Lyr spatial density distribution within 0.2 kpc from the Galactic center.

  19. VizieR Online Data Catalog: Standard Galactic field RR Lyrae. I. Photometry (Monson+, 2017)

    NASA Astrophysics Data System (ADS)

    Monson, A. J.; Beaton, R. L.; Scowcroft, V.; Freedman, W. L.; Madore, B. F.; Rich, J. A.; Seibert, M.; Kollmeier, J. A.; Clementini, G.

    2017-06-01

    The Three-hundred MilliMeter Telescope (TMMT) is a fully robotic, 300mm telescope at Las Campanas Observatory (LCO), for which the nightly operation and data processing have been completely automated. Over the course of two years data were collected on 179 individual nights for our sample of the 55 RR Lyrae in the B, V, and IC broadband filters. Of these nights, 76 were under photometric conditions and calibrated directly. The 103 nonphotometric nights were roughly calibrated by using the default transformation equations, but only provide differential photometry relative to the calibrated frames. This resulted in 59698 final individual observations. Individual data points have a typical photometric precision of 0.02mag. The statistical error falls rapidly with hundreds of observations, with the zero-point uncertainties being the largest source of uncertainty in the final reported mean magnitude. To compare the results of our TMMT campaign to previous studies of these RR Lyrae (RRL) and to fill gaps in our TMMT phase coverage, we have compiled available broadband data from literature published over the past 30 years and spanning our full wavelength coverage (0.4 to 4.5μm) from the optical to mid-infrared. We have homogenized these diverse data sets to the following filter systems: Johnson UBV, Kron-Cousins RI, 2MASS J,H,Ks, and Spitzer [3.6], [4.5]. The All Sky Automated Survey (ASAS; http://www.astrouw.edu.pl/asas/) is a long-term project monitoring all stars brighter than V~14mag. The program covers both hemispheres, with telescopes at Las Campanas Observatory in Chile and Haleakala on Maui, both of which provide simultaneous I and V photometry. The GEOS RR Lyr Survey (http://www.ast.obs-mip.fr/users/leborgne/dbRR/grrs.html) is a long-term program utilizing TAROT (http://tarot.obs-hp.fr/) at Calern Observatory (Nice University, France). Annual data releases from this project add times for maximum light for program stars over the last year of observations. In

  20. Mass loss during the RR Lyrae phase of the horizontal branch: Mass dispersion on the horizontal branch and RR Lyrae period changes

    NASA Technical Reports Server (NTRS)

    Koopmann, Rebecca A.; Lee, Young-Wook; Demarque, Pierre; Howard, Jamie M.

    1994-01-01

    Mass loss on the horizontal branch has been invoked in the literature to explain such phenomena as the color (mass) dispersion of the horizontal branch and the observed distribution of period changes in RR Lyrae stars. To test these claims, the Yale stellar evolution code was used to evolve horizontal branch models of masses 0.64, 0.66, 0.68, 0.70, and 0.72 solar mass with Z of 0.001, core mass of 0.4893, main-sequence helium abundance of 0.23, and constant mass loss rates of 0, 10(exp -10), 5 x 10(exp -10), and 10(exp -9) solar mass/yr. Mass loss was assumed to occur only in the instability strip, where a mechanism is most likely to exist. Synthetic horizontal branches, constructed from the models, show that mass loss on the horizontal branch cannot produce the observed color dispersion even for the highest mass-loss rate of 10(exp -9) solar mass/yr. Mass loss is unlikely to occur at a higher rate without significant effects on the horizontal branch morphology, which would destroy the good agreement between standard synthetic models without mass loss and observed horizontal branches. Periods and period changes were calculated for all models. The period changes are not significantly larger for models with mass loss. The effect of mass loss in clusters of other metallicities is discussed.

  1. VizieR Online Data Catalog: Equivalent width of 21 RR Lyrae stars (Pancino+, 2015)

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Britavskiy, N.; Romano, D.; Cacciari, C.; Mucciarelli, A.; Clementini, G.

    2015-02-01

    Equivalent widths and atomic data of the absorption lines used in the abundance analysis, for each separate exposure at different phases. Observations of 15 RR Lyrae stars (DR And, X Ari, TW Boo, RZ Cam, RX Cet, U Com, RV CrB, SW CVn, UZ CVn, AE Dra, SZ Gem, VX Her, DH Hya, TU UMa, and RV UMa) and one BL Her star (UY Eri) were carried out with SARG@TNG, operated on the island of La Palma, Spain, during two separate runs in 2009 March and between September and November. Eight stars (SW Aqr, TW Cap, DH Hya, V Ind, SS Leo, V716 Oph, BK Tuc, and UV Vir) were observed with UVES@VLT, between 2009 April and August in service mode. (3 data files).

  2. RR Lyrae Stars as High-Precision Standard Candles in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Neeley, Jillian Rose

    In this work, we provide the theoretical and empirical framework to establish RR Lyrae stars (RRL) as the anchor of a Population II distance scale. We present new theoretical period-luminosity-metallicity (PLZ) relations for RRL at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range in metal abundances (Z = 0.0001 to 0.0198). We also compare our theoretical relations to empirical relations derived from RRL in the field. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus and extinction of each individual Galactic RRL in our sample. The results are consistent with trigonometric parallax measurements from the Gaia mission's first data release. This analysis has shown that when considering a sample covering a typical range of iron abundances for RRL, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to 0.02 mag at MIR wavelengths. On the empirical side, we present the analysis of five clusters from the Carnegie RR Lyrae Program (CRRP) sample (M4, NGC 3201, M5, M15, and M14). M4, the nearest one of the most well studied clusters, was used as a test case to develop a new data analysis pipeline for CRRP. Following the analysis of the five clusters, the resulting calibration PL relations are M[3.6] = -2.424 +/- 0.079 log P -1.205 +/- 0.057 and M [4.5] = -2.245 +/- 0.076 - 1.225 +/- 0.057. The slope of the PL relations was determined from the weighted average of the cluster results, and the zero point was fixed using five Galactic RRL with geometric parallaxes measured by Hubble Space Telescope. The dispersion of the RRL around the PL relations ranges from 0.05 mag in M4 to 0.3 mag in M14. The resulting band-averaged distance moduli for the five clusters agree well with

  3. Disentangling the Virgo Overdensity with RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Zinn, Robert; Farmer, John; Duffau, Sonia; Ping, Yiding

    2016-11-01

    We use a combination of spatial distribution and radial velocity to search for halo substructures in a sample of 412 RR Lyrae stars (RRLSs) that covers a region of ∼525 square degrees of the Virgo overdensity (VOD) and spans distances from the Sun from 4 to 75 kpc. With a friends-of-friends algorithm we identified six high-significance groups of RRLSs in phase space, which we associate mainly with the VOD and with the Sagittarius stream. Four other groups were also flagged as less significant overdensities. Three high-significance and three lower-significance groups have distances between ∼10 and 20 kpc, which places them in the distance range attributed by others to the VOD. The largest of these is the Virgo stellar stream at 19 kpc, which has 18 RRLSs, a factor of two increase over the number known previously. While these VOD groups are distinct according to our selection criteria, their overlap in position and distance and, in a few cases, similarity in radial velocity are suggestive that they may not all stem from separate accretion events. Even so, the VOD appears to be caused by more than one overdensity. The Sagittarius (Sgr) stream is a very obvious feature in the background of the VOD at a mean distance of 44 kpc. Two additional high-significance groups were detected at distances \\gt 40 {kpc}. Their radial velocities and locations differ from the expected path of the Sgr debris in this part of the sky, and they are likely to be remnants of other accretion events.

  4. VizieR Online Data Catalog: OGLE RR Lyrae in LMC (Soszynski+, 2003)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-11-01

    We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/lmc/rrlyr (6 data files).

  5. Standard Galactic Field RR Lyrae. I. Optical to Mid-infrared Phased Photometry

    NASA Astrophysics Data System (ADS)

    Monson, Andrew J.; Beaton, Rachael L.; Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Rich, Jeffrey A.; Seibert, Mark; Kollmeier, Juna A.; Clementini, Gisella

    2017-03-01

    We present a multi-wavelength compilation of new and previously published photometry for 55 Galactic field RR Lyrae variables. Individual studies, spanning a time baseline of up to 30 years, are self-consistently phased to produce light curves in 10 photometric bands covering the wavelength range from 0.4 to 4.5 microns. Data smoothing via the GLOESS technique is described and applied to generate high-fidelity light curves, from which mean magnitudes, amplitudes, rise times, and times of minimum and maximum light are derived. 60,000 observations were acquired using the new robotic Three-hundred MilliMeter Telescope (TMMT), which was first deployed at the Carnegie Observatories in Pasadena, CA, and is now permanently installed and operating at Las Campanas Observatory in Chile. We provide a full description of the TMMT hardware, software, and data reduction pipeline. Archival photometry contributed approximately 31,000 observations. Photometric data are given in the standard Johnson UBV, Kron-Cousins {R}C{I}C, 2MASS JHK, and Spitzer [3.6] and [4.5] bandpasses.

  6. VizieR Online Data Catalog: Theoretical framework for RR Lyrae. II. MIR data (Neeley+, 2017)

    NASA Astrophysics Data System (ADS)

    Neeley, J. R.; Marengo, M.; Bono, G.; Braga, V. F.; Dall'Ora, M.; Magurno, D.; Marconi, M.; Trueba, N.; Tognelli, E.; Moroni, P. G. P.; Beaton, R. L.; Freedman, W. L.; Madore, B. F.; Monson, A. J.; Scowcroft, V.; Seibert, M.; Stetson, P. B.

    2018-01-01

    We compiled multi-wavelength observations for a sample of 55 nearby Galactic RRLs. Most of the observations were collected as part of the Carnegie RR Lyrae Program (CRRP, PID 90002), and were published in Monson+ (2017, J/AJ/153/96). See section 3 for further details. For this work, we have also performed new photometry of single-epoch archival observations of M4 from Spitzer's cryogenic mission 5.8 and 8.0um bands. We elected to use the single epoch observation as the estimated mean magnitude with an uncertainty equal to half the amplitude in the 3.6 or 4.5um bands. These results as well as the updated mean magnitudes from Neeley+ (2015, J/ApJ/808/11) are available in Table 7. (6 data files).

  7. VizieR Online Data Catalog: RR Lyrae population in the Phoenix dwarf galaxy (Ordonez+, 2014)

    NASA Astrophysics Data System (ADS)

    Ordonez, A. J.; Yang, S.-C.; Sarajedini, A.

    2017-06-01

    The HST/WFPC2 images of the two target fields around Phoenix used in this study were retrieved from the Mikulski Archive for Space Telescopes. The original observing campaign (PI: A. Aparicio; GO-8706) was intended to study the spatial structure and the stellar age and metallicity distribution of this dwarf galaxy. Therefore, it provides deep time-series photometry with fairly good quality for detecting legitimate RR Lyrae variable candidates. Images were taken in both the F555W and F814W filters. A total of two fields were observed: one centered on Phoenix itself, and the other on the outskirts of the galaxy 2.7' from the centered field. The total observed field of view with these observations is equal to 11.4 arcmin2 on the sky. (3 data files).

  8. Exact solutions of bulk viscous with string cloud attached to strange quark matter for higher dimensional FRW universe in Lyra geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Çağlar, Halife, E-mail: hlfcglr@gmail.com; Aygün, Sezgin, E-mail: saygun@comu.edu.tr

    In this study, we have investigated bulk viscous with strange quark matter attached to the string cloud for higher dimensional Friedman-Robertson-Walker (FRW) universe in Lyra geometry. By using varying deceleration parameter and conservation equations we have solved Einstein Field Equations (EFE’s) and obtained generalized exact solutions for our model. Also we have found that string is not survived for bulk viscous with strange quark matter attached to the string cloud in framework higher dimensional FRW universe in Lyra geometry. This result agrees with Kiran and Reddy, Krori et al, Sahoo and Mishra and Mohanty et al. in four and fivemore » dimensions.« less

  9. The Baade-Wesselink method applied to field RR Lyrae stars. III - YZ Capricorni, RV Phoenicis, and V440 Sagittarii

    NASA Technical Reports Server (NTRS)

    Cacciari, C.; Clementini, G.; Buser, R.

    1989-01-01

    Application of the Baade-Wesselink method to three field RR Lyrae variables reveals evidence of shock waves in the atmospheres of RV Phe and V440 Sgr (but not YZ Cap) during maximum light. The results yield distance moduli of 24.21 + or - 0.20 for M31, 18.26 + or - 0.20 for the LMC, and 18.85 + or - 0.20 for the SMC. Using the Sandage (1982) age/turn-off luminosity relationship of VandenBerg and Bell (1985), estimated ages of 18.8 Gyr for M92 and of 15.7 Gyr for 47 Tuc are derived.

  10. Galactic archaeology for amateur astronomers: RR Lyrae stars as tracers of the Milky Way formation

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Fliri, Jürgen

    2011-06-01

    Cosmological models predict that large galaxies like the Milky Way formed from the accretion of smaller stellar systems. The most spectacular of these merger events are stellar tidal streams, rivers of stars and dark matter that envelop the discs of spiral galaxies. We present a research project for a collaboration with amateur astronomers in the study of the formation process of our Galaxy. The main objective is the search for RR Lyrae variable stars in the known stellar streams (Sagitarius, Monoceros, Orphan, etc) a project that can be carried out using small telescopes. The catalogue of candidate variable stars were selected from SDSS data based in colour criteria and it will be sent to interested amateur astronomers who wish to participate in scientific research in one of the most active and competitive topics in Galactic astronomy.

  11. VizieR Online Data Catalog: 33 RR Lyrae observed in Pisces with K2-E2 (Molnar+, 2015)

    NASA Astrophysics Data System (ADS)

    Molnar, L.; Szabo, R.; Moskalik, P. A.; Nemec, J. M.; Guggenberger, E.; Smolec, R.; Poleski, R.; Plachy, E.; Kolenberg, K.; Kollath, Z.

    2016-03-01

    Kepler observed a stellar field around the vernal equinox point in Pisces (centre coordinates: RA=359°, DE=-2°) between 2014 February 04 and 13. The primary goal of this K2 Two-Wheel Concept Engineering Test (hereafter K2-E2) was to test the performance of the telescope in fine guidance mode. As well, the observations of nearly 2000 targets were made available for the scientific community. We identified 33 potential RR Lyrae stars in the K2-E2 sample and extracted their photometric data with the pyke software, developed for the Kepler mission by the Kepler Guest Observer Office (Still & Barclay, 2012, Astrophysics Source Code Library record ascl:1208.004). (6 data files).

  12. Reddening, distance modulus and age of the globular cluster NGC 6121 (M4) from the properties of RR Lyrae variables

    NASA Astrophysics Data System (ADS)

    Caputo, F.; Castellani, V.; Quarta, M. L.

    1985-02-01

    It is shown that pulsational properties of RR Lyrae variables in globular clusters can be used to put theoretical constraints on the values of cluster reddening and distance modulus. By requiring that the HR diagram location of pulsators agrees with the period distribution observed and with the theoretical boundaries of the instability strip, reddening and distance modulus of the globular cluster M4 are derived as a (slow) function of the pulsator masses. Thus, a best guess is presented for the cluster age (t = 12.2 billion years), some evidence for a non-canonical evolutionary having been taken into account.

  13. VizieR Online Data Catalog: RR Lyrae in 15 Galactic globular clusters (Dambis+, 2014)

    NASA Astrophysics Data System (ADS)

    Dambis, A. K.; Rastorguev, A. S.; Zabolotskikh, M. V.

    2014-11-01

    Last year, the WISE All-Sky Data Release (Cutri et al., 2012, Cat. II/328) was made public, mapping the entire sky in four mid-infrared bands W1, W2, W3 and W4 with the effective wavelengths of 3.368, 4.618, 12.082 and 22.194um, respectively. We cross-correlated the WISE single-exposure data base with the Catalogue of Galactic globular-cluster variables by Clement et al. (2001AJ....122.2587C), the Catalogue of Accurate Equatorial Coordinates for Variable Stars in Globular Clusters by Samus et al. (2009PASP..121.1378S, Cat. J/PASP/121/1378) and the catalogue of Sawyer Hogg (1973PDDO....3....6S, Cat. V/97) (for ω Cen, NGC 6723 and NGC 6934) to compute (via Fourier fits) the intensity-mean average W1- and W2-band magnitudes, and , for a total of 357 and 272 RR Lyrae type variables in 15 and 9 Galactic globular clusters, respectively. (1 data file).

  14. V1327 Aquilae: A New RR Lyrae variable with an extremely high radial velocity

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Bikmaev, I. F.; Borisov, N. V.; Zhuchkov, R. Ya.; Shimanskii, V. V.; Khabibullina, M. L.; Sakhibullin, N. A.

    2008-07-01

    We have carried out photometry and spectroscopy of the star V1327 Aql ( R = 16 m ) as part of our program of observations of poorly studied cataclysmic variables using the 1.5-m optical Russian—Turkish telescope (RTT-150, Turkey) and the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. After analyzing our photometry, we have re-classified the variable as an RR Lyrae star. Our BV R photometry during 10 nights reveals brightness variations with the period 12h49m, with the B, V, and R amplitudes being 1.36 m , 1.13 m , and 1.11 m , respectively. We derived the first estimates of the star’s atmospheric parameters from our moderate-resolution spectra: T eff = 6280 K, log g = 3.3, [M/H] = -1.05. The extremely high radial velocity of the star’s motion ( V R = -470 km/s) and the star’s large distances to the Galactic center (13.1 kpc) and disk (4.2 kpc) testify to a probable extragalactic origin of this object.

  15. Metal-rich RRc Stars in the Carnegie RR Lyrae Survey

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Preston, George W.; Kollmeier, Juna A.; Crane, Jeffrey D.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen A.; Skowron, Dorota M.; Thompson, Ian B.

    2018-01-01

    We describe and employ a stacking procedure to investigate abundances derived from the low signal-to-noise ratio spectra obtained in the Carnegie RR Lyrae Survey (CARRS). We find iron metallicities that extend from [Fe/H] ∼ ‑2.5 to values at least as large as [Fe/H] ∼ ‑0.5 in the 274-spectrum CARRS RRc data set. We consider RRc sample contamination by high amplitude solar metallicity δ Scuti stars (HADS) at periods less than 0.3 days, where photometric discrimination between RRc and δ Scuti stars has proven to be problematic. We offer a spectroscopic discriminant, the well-marked overabundance of heavy elements, principally [Ba/H], that is a common, if not universal, characteristic of HADS of all periods and axial rotations. No bona fide RRc stars known to us have verified heavy-element overabundances. Three out of 34 stars in our sample with [Fe/H] > ‑0.7 exhibit anomalously strong features of Sr, Y, Zr, Ba, and many rare earths. However, carbon is not enhanced in these three stars, and we conclude that their elevated n-capture abundances have not been generated in interior neutron-capture nucleosynthesis. Contamination by HADS appears to be unimportant, and metal-rich RRc stars occur in approximately the same proportion in the Galactic field as do metal-rich RRab stars. An apparent dearth of metal-rich RRc is probably a statistical fluke. Finally, we show that RRc stars have a similar inverse period–metallicity relationship as has been found for RRab stars.

  16. EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Ivezic, Zeljko; Morgan, Dylan M.

    We present a sample of {approx}5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over {approx}8000 deg{sup 2} of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of {approx}4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyraemore » stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.« less

  17. The Evolutionary Status of M3 RR Lyrae Variable Stars: Breakdown of the Canonical Framework?

    NASA Astrophysics Data System (ADS)

    Catelan, M.

    2004-01-01

    In order to test the prevailing paradigm of horizontal-branch (HB) stellar evolution, we use the large databases of measured RR Lyrae parameters for the globular cluster M3 (NGC 5272) recently provided by Bakos et al. and Corwin & Carney. We compare the observed distribution of fundamentalized periods against the predictions of synthetic HBs. The observed distribution shows a sharp peak at Pf~0.55 days, which is primarily due to the RRab variables, whereas the model predictions instead indicate that the distribution should be more uniform in Pf, with a buildup of variables with shorter periods (Pf<0.5 days). Detailed statistical tests show, for the first time, that the observed and predicted distributions are incompatible with one another at a high significance level. This indicates either that canonical HB models are inappropriate, or that M3 is a pathological case that cannot be considered representative of the Oosterhoff type I (OoI) class. In this sense, we show that the OoI cluster with the next largest number of RR Lyrae variables, M5 (NGC 5904), presents a similar, although less dramatic, challenge to the models. We show that the sharp peak in the M3 period distribution receives a significant contribution from the Blazhko variables in the cluster. We also show that M15 (NGC 7078) and M68 (NGC 4590) show similar peaks in their Pf distributions, which in spite of being located at a Pf value similar to that of M3, can, however, be primarily ascribed to the RRc variables. Again similar to M3, a demise of RRc variables toward the blue edge of the instability strip is also identified in these two globulars. This is again in sharp contrast to the evolutionary scenario, which also foresees a strong buildup of RRc variables with short periods in OoII globulars. We speculate that in OoI systems RRab variables may somehow get ``trapped'' close to the transition line between RRab and RRc pulsators as they evolve to the blue in the H-R diagram, whereas in OoII systems it

  18. VizieR Online Data Catalog: CTIO/DECam photometry of RR Lyrae stars in M5 (Vivas+, 2017)

    NASA Astrophysics Data System (ADS)

    Vivas, A. K.; Saha, A.; Olsen, K.; Blum, R.; Olszewski, E. W.; Claver, J.; Valdes, F.; Axelrod, T.; Kaleida, C.; Kunder, A.; Narayan, G.; Matheson, T.; Walker, A.

    2017-11-01

    Observations were obtained during 2013 (2013 Jun 7-9, and 2013 Jun 21) and 2014 (2014 Mar 7-9) with the Dark Energy Camera (DECam) imager on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory (CTIO), Chile. Repeated DECam images of a field centered on M5 (R.A.=15:18:33.2, decl.=+02:04:51.7, J2000.0) were obtained using the u,g,r,i, and z filters. The large field of view (FOV) of DECam (2.2°) easily covers the whole globular cluster with only the central CCDs of the camera. A total of 66 RR Lyrae stars and 1 SX Phe were recognized in the field of M5. The individual measurements for the periodic variable stars are provided in Table2. In Table3, we present the list of periodic variable stars. (3 data files).

  19. Radial Velocities of RR Lyrae Stars in and around NGC 6441

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Mills, Arthur; Edgecomb, Joseph; Thomas, Mathew; Schilter, Levi; Boyle, Craig; Parker, Stephen; Bellevue, Gordon; Rich, R. Michael; Koch, Andreas; Johnson, Christian I.; Nataf, David M.

    2018-04-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H] ∼ ‑1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of GCs. Here, an attempt is made to identify such presumptive stripped stars originating from the massive, inner Galaxy GC NGC 6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of 40 RRLs centered on the GC NGC 6441. All 13 of the RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 ± 5 km s‑1 and a star-to-star scatter of 11 km s‑1. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC 6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster’s orbit. Therefore, either the tidal radius of NGC 6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC 6441 that are building up the old spheroidal bulge.

  20. On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared (JHK s ) Census of ω Centauri RR Lyrae Variables

    NASA Astrophysics Data System (ADS)

    Braga, V. F.; Stetson, P. B.; Bono, G.; Dall’Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Marconi, M.; Marengo, M.; Monson, A. J.; Neeley, J.; Persson, S. E.; Beaton, R. L.; Buonanno, R.; Calamida, A.; Castellani, M.; Di Carlo, E.; Fabrizio, M.; Freedman, W. L.; Inno, L.; Madore, B. F.; Magurno, D.; Marchetti, E.; Marinoni, S.; Marrese, P.; Matsunaga, N.; Minniti, D.; Monelli, M.; Nonino, M.; Piersimoni, A. M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A. R.; Valenti, E.; Zoccali, M.

    2018-03-01

    We present a new complete near-infrared (NIR, JHK s ) census of RR Lyrae stars (RRLs) in the globular ω Cen (NGC 5139). We collected 15,472 JHK s images with 4–8 m class telescopes over 15 years (2000–2015) covering a sky area around the cluster center of 60 × 34 arcmin2. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with 10 to 60 measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 (J), 176 (H) and 174 (K s ) RRLs. These data were supplemented with single-epoch JK s magnitudes from VHS and with single-epoch H magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide JHK s magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed-mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P > 0.7 days) fundamental RRLs. Using predicted period–luminosity–metallicity relations, we derive a true distance modulus of 13.674 ± 0.008 ± 0.038 mag (statistical error and standard deviation of the median) based on spectroscopic iron abundances, and of 13.698 ± 0.004 ± 0.048 mag based on photometric iron abundances. We also found evidence of possible systematics at the 5%–10% level in the zero-point of the period–luminosity relations based on the five calibrating RRLs whose parallaxes had been determined with the HST. This publication makes use of data gathered with the Magellan/Baade Telescope at Las Campanas Observatory, the Blanco Telescope at Cerro Tololo Inter-American Observatory, NTT at La Silla (ESO Program IDs: 64.N-0038(A), 66.D-0557(A), 68.D-0545(A), 073.D-0313(A), ID 073.D-0313(A) and 59.A-9004(D)), VISTA at Paranal (ESO Program ID: 179.A-2010) and VLT at Paranal (ESO Program ID: ID96406).

  1. Spectroscopic follow-up of the Hercules-Aquila Cloud

    NASA Astrophysics Data System (ADS)

    Simion, Iulia T.; Belokurov, Vasily; Koposov, Sergey E.; Sheffield, Allyson; Johnston, Kathryn V.

    2018-05-01

    We designed a follow-up program to find the spectroscopic properties of the Hercules-Aquila Cloud (HAC) and test scenarios for its formation. We measured the radial velocities (RVs) of 45 RR Lyrae in the southern portion of the HAC using the facilities at the MDM observatory, producing the first large sample of velocities in the HAC. We found a double-peaked distribution in RVs, skewed slightly to negative velocities. We compared both the morphology of HAC projected on to the plane of the sky and the distribution of velocities in this structure outlined by RR Lyrae and other tracer populations at different distances to N-body simulations. We found that the behaviour is characteristic of an old, well-mixed accretion event with small apo-galactic radius. We cannot yet rule out other formation mechanisms for the HAC. However, if our interpretation is correct, HAC represents just a small portion of a much larger debris structure spread throughout the inner Galaxy whose distinct kinematic structure should be apparent in RV studies along many lines of sight.

  2. Variable Stars in Large Magellanic Cloud Globular Clusters. II. NGC 1786

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Smith, Horace A.; Catelan, Márcio; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2012-12-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B-V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  3. VizieR Online Data Catalog: RR Lyrae stars from the PS1 3π survey (Sesar+, 2017)

    NASA Astrophysics Data System (ADS)

    Sesar, B.; Hernitschek, N.; Mitrovic, S.; Ivezic, Z.; Rix, H.-W.; Cohen, J. G.; Bernard, E. J.; Grebel, E. K.; Martin, N. F.; Schlafly, E. F.; Burgett, W. S.; Draper, P. W.; Flewelling, H.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Tonry, J. L.; Waters, C.

    2018-04-01

    Building on the work by Hernitschek+ (2016, J/ApJ/817/73), in this paper, we use the final PS1 data release (PV3) to significantly increase the completeness and purity of the PS1 sample of RR Lyrae stars. Pan-STARRS1 (PS1; Kaiser+ 2010, see II/349) is a wide-field optical/near-IR survey telescope system located at the Haleakala Observatory on the island of Maui in Hawai'i. The largest survey undertaken by the telescope, the PS1 3π survey (Chambers K.C. 2011, BAAS, 43, 113.01), has observed the entire sky north of decl. -30° in five filter bands, reaching 5σ single-epoch depths of about 22.0, 22.0, 21.9, 21.0, and 19.8mag in gP1, rP1, iP1, zP1, and yP1 bands, respectively. The uncertainty in photometric calibration of the survey is <~0.01mag, and the astrometric precision of single-epoch detections is 10mas. (4 data files).

  4. The Distance to M54 using Infrared Photometry of RR Lyrae Variable Stars and the Implications of its Relation to the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Gupta, Arvind F.; Beaton, Rachael L.; Majewski, Steven R.; SMHASH Team

    2018-01-01

    CDM cosmological models predict that dark matter halo density profiles will have central cusps. Yet for many dwarf spheroidal galaxies (dSphs), this expectation is in contrast with observations of cored, rather than cusped, halos. This 'cusp-core problem' is apparent in the Sagittarius Dwarf Galaxy (Sgr), one of the largest satellites of the Milky Way. The globular cluster M54, one of several clusters associated with Sgr, coincides in on-sky position with the center of the main body of Sgr. While several studies find that M54 lies within the center of Sgr, other findings show that M54 is offset from the center by several kiloparsecs along our line of sight. The latter requires Sgr to have a cored dark matter distribution. In the presence of a cuspy halo, the orbit of M54 would have decayed via dynamical friction and the cluster would have fallen to the center of Sgr. A clear determination of the relation of the two bodies may help us better understand the distribution of dark matter in Sgr and other dSphs. Here we present a measurement of the distance modulus to M54 using a set of RR Lyrae variable stars in near-infrared Magellan data mid-infrared Spitzer data. The magnitudes of individual stars are measured using multi-epoch PSF photometry and light curve fitting. From precise RR Lyrae period-luminosity relations at these wavelengths, we then find the mean M54 distance modulus to be 17.126 ± 0.023 (ran) ± 0.080 (sys). Our result is consistent with a distance measurement to Sgr derived via nearly identical methods and thus also consistent with the expectation of a central cusp in the dark matter density profile of Sgr.

  5. TRACING THE ORPHAN STREAM TO 55 kpc WITH RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Cohen, Judith G.; Bellm, Eric C.

    2013-10-10

    We report positions, velocities, and metallicities of 50 ab-type RR Lyrae (RRab) stars observed in the vicinity of the Orphan stellar stream. Using about 30 RRab stars classified as being likely members of the Orphan stream, we study the metallicity and the spatial extent of the stream. We find that RRab stars in the Orphan stream have a wide range of metallicities, from –1.5 dex to –2.7 dex. The average metallicity of the stream is –2.1 dex, identical to the value obtained by Newberg et al. using blue horizontal branch stars. We find that the most distant parts of themore » stream (40-50 kpc from the Sun) are about 0.3 dex more metal-poor than the closer parts (within ∼30 kpc), suggesting a possible metallicity gradient along the stream's length. We have extended the previous studies and have mapped the stream up to 55 kpc from the Sun. Even after a careful search, we did not identify any more distant RRab stars that could plausibly be members of the Orphan stream. If confirmed with other tracers, this result would indicate a detection of the end of the leading arm of the stream. We have compared the distances of Orphan stream RRab stars with the best-fit orbits obtained by Newberg et al. We find that model 6 of Newberg et al. cannot explain the distances of the most remote Orphan stream RRab stars, and conclude that the best fit to distances of Orphan stream RRab stars and to the local circular velocity is provided by potentials where the total mass of the Galaxy within 60 kpc is M{sub 60} ∼ 2.7 × 10{sup 11} M{sub ☉}, or about 60% of the mass found by previous studies. More extensive modeling that would consider non-spherical potentials and the possibility of misalignment between the stream and the orbit is highly encouraged.« less

  6. ON A NEW THEORETICAL FRAMEWORK FOR RR LYRAE STARS. I. THE METALLICITY DEPENDENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marconi, M.; Coppola, G.; Musella, I.

    2015-07-20

    We present new nonlinear, time-dependent convective hydrodynamical models of RR Lyrae stars computed assuming a constant helium-to-metal enrichment ratio and a broad range in metal abundances (Z = 0.0001–0.02). The stellar masses and luminosities adopted to construct the pulsation models were fixed according to detailed central He-burning horizontal-branch evolutionary models. The pulsation models cover a broad range in stellar luminosity and effective temperatures and the modal stability is investigated for both fundamental (FU) and first overtone polsators (FOs). We predict the topology of the instability strip (IS) as a function of the metal content and new analytical relations for themore » edges of the IS in the observational plane. Moreover, a new analytical relation to constrain the pulsation mass of double pulsators as a function of the period ratio and the metal content is provided. We derive new Period–Radius–Metallicity relations for FU and FO pulsators. They agree quite well with similar empirical and theoretical relations in the literature. From the predicted bolometric light curves, transformed into optical (UBVRI) and near-infrared (NIR; JHK) bands, we compute the intensity-averaged mean magnitudes along the entire pulsation cycle and in turn new and homogenous metal-dependent (RIJHK) Period–Luminosity relations. Moreover, we compute new dual and triple-band optical, optical–NIR, and NIR Period–Wesenheit–Metallicity relations. Interestingly, we find that the optical Period-W(V, B–V) is independent of the metal content and that the accuracy of individual distances is a balance between the adopted diagnostics and the precision of photometric and spectroscopic data sets.« less

  7. RR Lyrae in XSTPS: The halo density profile in the north galactic cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccioli, L.; Smith, M. C.; Yuan, H.-B.

    We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XSTPS). The area we consider is located in the north Galactic cap, covering ≈376.75 deg{sup 2} at α ≈ 150° and δ ≈ 27° down to a magnitude limit of i ≈ 19. Using the variability information afforded by the multi-epoch nature of our XSTPS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them, and estimate the detection efficiency. The majority of our candidates have more thanmore » 12 observations, and for these we are able to calculate periods. These also allow us to estimate our contamination level, which we predict is between 30% and 40%. Finally, we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the south Galactic cap using the Watkins et al. and Sesar et al. RRL data sets, after accounting for possible contamination in our data set from Sagittarius stream members. We consider non-spherical double power-law models of the halo density profile and again find agreement with literature data sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESA's astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material; as an example the first few entries of each electronic table are shown in the text.« less

  8. RR Lyrae in XSTPS: The Halo Density Profile in the North Galactic Cap

    NASA Astrophysics Data System (ADS)

    Faccioli, L.; Smith, M. C.; Yuan, H.-B.; Zhang, H.-H.; Liu, X.-W.; Zhao, H.-B.; Yao, J.-S.

    2014-06-01

    We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XSTPS). The area we consider is located in the north Galactic cap, covering ≈376.75 deg2 at α ≈ 150° and δ ≈ 27° down to a magnitude limit of i ≈ 19. Using the variability information afforded by the multi-epoch nature of our XSTPS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them, and estimate the detection efficiency. The majority of our candidates have more than 12 observations, and for these we are able to calculate periods. These also allow us to estimate our contamination level, which we predict is between 30% and 40%. Finally, we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the south Galactic cap using the Watkins et al. and Sesar et al. RRL data sets, after accounting for possible contamination in our data set from Sagittarius stream members. We consider non-spherical double power-law models of the halo density profile and again find agreement with literature data sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESA's astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material; as an example the first few entries of each electronic table are shown in the text.

  9. RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea

    2018-06-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.

  10. The Milky Way's Circular Velocity Curve and Its Constraint on the Galactic Mass with RR Lyrae Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablimit, Iminhaji; Zhao, Gang, E-mail: iminhaji@nao.cas.cn, E-mail: gzhao@nao.cas.cn

    We present a sample of 1148 ab-type RR Lyrae (RRLab) variables identified from Catalina Surveys Data Release 1, combined with SDSS DR8 and LAMOST DR4 spectral data. We first use a large sample of 860 Galactic halo RRLab stars and derive the circular velocity distributions for the stellar halo. With the precise distances and carefully determined radial velocities (the center-of-mass radial velocities) and by considering the pulsation of the RRLab stars in our sample, we can obtain a reliable and comparable stellar halo circular velocity curve. We follow two different prescriptions for the velocity anisotropy parameter β in the Jeansmore » equation to study the circular velocity curve and mass profile. Additionally, we test two different solar peculiar motions in our calculation. The best result we obtained with the adopted solar peculiar motion 1 of ( U , V , W ) = (11.1, 12, 7.2) km s{sup −1} is that the enclosed mass of the Milky Way within 50 kpc is (3.75 ± 1.33) × 10{sup 11} M {sub ⊙} based on β = 0 and the circular velocity 180 ± 31.92 (km s{sup −1}) at 50 kpc. This result is consistent with dynamical model results, and it is also comparable to the results of previous similar works.« less

  11. Pulsating star products from the Palomar Transient Factory: Ultra-long period Cepheids in M31 and RR Lyrae in Kepler field

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow-Choong

    2017-09-01

    The Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF), are wide-field synoptic sky surveys aimed to detect transients. Even though the main science goal for PTF/iPTF is to detect various types of transients, the synoptic nature of the surveys can also be used for the study of variable stars. In this proceedings contribution, I will first give a brief introduction to PTF/iPTF, followed by the two pulsating stars studies using the PTF/iPTF data: the Ultra-Long Period Cepheids (ULPC) in M31 and the RR Lyrae in the Kepler field. For the formal study, we searched the M31's ULPC using PTF imaging data, and follow up the candidates with other telescopes. Our finding revealed that there are only two ULPC in M31. I will give a brief implication of our finding in distance scale studies. For the latter study, I will present our work on the derivation of metallicity-light curve relation in native PTF/iPTF R-band using the RRab stars in the Kepler field.

  12. The Profile of the Galactic Halo from Pan-STARRS1 3π RR Lyrae

    NASA Astrophysics Data System (ADS)

    Hernitschek, Nina; Cohen, Judith G.; Rix, Hans-Walter; Sesar, Branimir; Martin, Nicolas F.; Magnier, Eugene; Wainscoat, Richard; Kaiser, Nick; Tonry, John L.; Kudritzki, Rolf-Peter; Hodapp, Klaus; Chambers, Ken; Flewelling, Heather; Burgett, William

    2018-05-01

    We characterize the spatial density of the Pan-STARRS1 (PS1) sample of Rrab stars to study the properties of the old Galactic stellar halo. This sample, containing 44,403 sources, spans galactocentric radii of 0.55 kpc ≤ R gc ≤ 141 kpc with a distance precision of 3% and thus is able to trace the halo out to larger distances than most previous studies. After excising stars that are attributed to dense regions such as stellar streams, the Galactic disk and bulge, and halo globular clusters, the sample contains ∼11,000 sources within 20 kpc ≤ R gc ≤ 131 kpc. We then apply forward modeling using Galactic halo profile models with a sample selection function. Specifically, we use ellipsoidal stellar density models ρ(l, b, R gc) with a constant and a radius-dependent halo flattening q(R gc). Assuming constant flattening q, the distribution of the sources is reasonably well fit by a single power law with n={4.40}-0.04+0.05 and q={0.918}-0.014+0.016 and comparably well fit by an Einasto profile with n={9.53}-0.28+0.27, an effective radius r eff = 1.07 ± 0.10 kpc, and a halo flattening of q = 0.923 ± 0.007. If we allow for a radius-dependent flattening q(R gc), we find evidence for a distinct flattening of q ∼ 0.8 of the inner halo at ∼25 kpc. Additionally, we find that the south Galactic hemisphere is more flattened than the north Galactic hemisphere. The results of our work are largely consistent with many earlier results (e.g., Watkins et al.; Iorio et al.). We find that the stellar halo, as traced in RR Lyrae stars, exhibits a substantial number of further significant over- and underdensities, even after masking all known overdensities.

  13. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  14. Multi-Filter Photometric Analysis of Three β Lyrae-type Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Gardner, T.; Hahs, G.; Gokhale, V.

    2015-12-01

    We present light curve analysis of three variable stars, ASAS J105855+1722.2, NSVS 5066754, and NSVS 9091101. These objects are selected from a list of β- Lyrae candidates published by Hoffman et al. (2008). Light curves are generated using data collected at the the 31-inch NURO telescope at the Lowell Observatory in Flagstaff, Arizona in three filters: Bessell B, V, and R. Additional observations were made using the 14-inch Meade telescope at the Truman State Observatory in Kirksville, Missouri using Baader R, G, and B filters. In this paper, we present the light curves for these three objects and generate a truncated eight-term Fourier fit to these light curves. We use the Fourier coefficients from this fit to confirm ASAS J105855+1722.2 and NSVS 5066754 as β Lyrae type systems, and NSVS 9091101 to possibly be a RR Lyrae-type system. We measure the O'Connell effect observed in two of these systems (ASAS J105855+1722.2 and NSVS 5066754), and quantify this effect by calculating the "Light Curve Asymmetry" (LCA) and the "O'Connell Effect Ratio" (OER).

  15. The QUEST RR Lyrae Survey. II. The Halo Overdensities in the First Catalog

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Zinn, Robert

    2006-08-01

    The first catalog of the RR Lyrae stars (RRLSs) in the Galactic halo by the Quasar Equatorial Survey Team (QUEST) has been searched for significant overdensities that may be debris from disrupted dwarf galaxies or globular clusters. These RRLSs are contained in a band ~2.3d wide in declination that spans ~165° in right ascension and lie ~4 to ~60 kpc from the Sun. Away from the major overdensities, the distribution of these stars is adequately fitted by a smooth halo model, in which the flattening of the halo decreases with increasing galactocentric distance (as reported by Preston et al.). This model was used to estimate the ``background'' of RRLSs on which the halo overdensities are overlaid. A procedure was developed for recognizing groups of stars that constitute significant overdensities with respect to this background. To test this procedure, a Monte Carlo routine was used to make artificial RRLS surveys that follow the smooth halo model but with Poisson-distributed noise in the numbers of RRLSs and, within limits, random variations in the positions and magnitudes of the artificial stars. The 104 artificial surveys created by this routine were examined for significant groups in exactly the same way as the QUEST survey. These calculations provided estimates of the frequencies with which random fluctuations produce significant groups. In the QUEST survey there are six significant overdensities that contain six or more stars and several smaller ones. The small ones and possibly one or two of the larger ones may be artifacts of statistical fluctuations, and they need to be confirmed by measurements of radial velocity and/or proper motion. The most prominent groups are the northern stream from the Sagittarius dwarf spheroidal galaxy and a large group in Virgo, formerly known as the ``12.4 hr clump,'' which Duffau and coworkers have recently shown to contain a stellar stream (the Virgo stellar stream). Two other groups lie in the direction of the Monoceros stream

  16. The Araucaria Project: The Distance to the Fornax Dwarf Galaxy from Near-infrared Photometry of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David

    2017-12-01

    We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).

  17. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  18. Identification and period investigation of pulsation variable star UY Camelopardalis, an RR Lyrae star in binary system

    NASA Astrophysics Data System (ADS)

    Li, Lin-Jia; Qian, Sheng-Bang; Voloshina, Irina; Metlov, Vladimir G.; Zhu, Li-Ying; Liao, Wen-Ping

    2018-06-01

    We present photometric measurements of the short period variable star UY Cam, which has been classified as a δ Scuti or c-type RR Lyrae (RRc) variable in different catalogs. Based on the analyses on Fourier coefficients and (NUV - V)0, we find that UY Cam is probably an RRc star. We obtain 58 new times of light maximum for UY Cam based on several sky surveys and our observations. Combining these with the times of light maximum in literature, a total of 154 times of light maximum are used to analyze the O - C diagram of UY Cam. The results show that the O - C pattern can be described by a downward parabolic component with a rate of -6.86 ± 0.47 × 10-11 d d-1, and a cyclic variation with a period of 65.7 ± 2.4 yr. We suppose these components are caused by the stellar evolution and the light travel time effect (LiTE) of a companion in elliptical orbit, respectively. By calculation, the minimum mass of the potential companion is about 0.17 M⊙, and its mass should be less than or equal to the pulsation primary star when the inclination i > 22.5°D. Therefore, the companion should be a low-mass star, like a late-type main-sequence star or a white dwarf. Due to the unique property of UY Cam, we suggest that more observations and studies on UY Cam and other RRc stars are needed to check the nature of these stars, including the pulsations and binarities.

  19. On the RR Lyrae Stars in Globulars. IV. ω Centauri Optical UBVRI Photometry

    NASA Astrophysics Data System (ADS)

    Braga, V. F.; Stetson, P. B.; Bono, G.; Dall'Ora, M.; Ferraro, I.; Fiorentino, G.; Freyhammer, L. M.; Iannicola, G.; Marengo, M.; Neeley, J.; Valenti, E.; Buonanno, R.; Calamida, A.; Castellani, M.; da Silva, R.; Degl'Innocenti, S.; Di Cecco, A.; Fabrizio, M.; Freedman, W. L.; Giuffrida, G.; Lub, J.; Madore, B. F.; Marconi, M.; Marinoni, S.; Matsunaga, N.; Monelli, M.; Persson, S. E.; Piersimoni, A. M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A. R.

    2016-12-01

    New accurate and homogeneous optical UBVRI photometry has been obtained for variable stars in the Galactic globular cluster ω Cen (NGC 5139). We secured 8202 CCD images covering a time interval of 24 years and a sky area of 84 × 48 arcmin. The current data were complemented with data available in the literature and provided new, homogeneous pulsation parameters (mean magnitudes, luminosity amplitudes, periods) for 187 candidate ω Cen RR Lyrae (RRLs). Among them we have 101 RRc (first overtone) and 85 RRab (fundamental) variables, and a single candidate RRd (double-mode) variable. Candidate Blazhko RRLs show periods and colors that are intermediate between the RRc and RRab variables, suggesting that they are transitional objects. A comparison of the period distribution and the Bailey diagram indicates that RRLs in ω Cen show a long-period tail not present in typical Oosterhoff II (OoII) globulars. The RRLs in dwarf spheroidals and in ultra-faint dwarfs have properties between Oosterhoff intermediate and OoII clusters. Metallicity plays a key role in shaping the above evidence. These findings do not support the hypothesis that ω Cen is the core remnant of a spoiled dwarf galaxy. Using optical period-Wesenheit relations that are reddening-free and minimally dependent on metallicity we find a mean distance to ω Cen of 13.71 ± 0.08 ± 0.01 mag (semi-empirical and theoretical calibrations). Finally, we invert the I-band period-luminosity-metallicity relation to estimate individual RRLs’ metal abundances. The metallicity distribution agrees quite well with spectroscopic and photometric metallicity estimates available in the literature. Based in part on proprietary data and on data obtained from the ESO Science Archive Facility under multiple requests by the authors; and in part upon data distributed by the NOAO Science Archive. NOAO is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National

  20. HST Snapshot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Stetson, Peter B.; Catelan, Marcio; Sweigart, Allen V.; Layden, Andrew C.; Rich, R. Michael

    2003-01-01

    We present the results of a Hubble Space Telescope snapshot program to survey the inner region of the metal-rich globular cluster NGC 6441 for its variable stars. A total of 57 variable stars was found including 38 RR Lyrae stars, 6 Population II Cepheids, and 12 long period variables. Twenty-four of the RR Lyrae stars and all of the Population II Cepheids were previously undiscovered in ground-based surveys. Of the RR Lyrae stars observed in h s survey, 26 are pulsating in the fundamental mode with a mean period of 0.753 d and 12 are first-overtone mode pulsators with a mean period of 0.365 d. These values match up very well with those found in ground-based surveys. Combining all the available data for NGC 6441, we find mean periods of 0.759 d and 0.375 d for the RRab and RRc stars, respectively. We also find that the RR Lyrae in this survey are located in the same regions of a period-amplitude diagram as those found in ground-based surveys. The overall ratio of RRc to total RR Lyrae is 0.33. Although NGC 6441 is a metal-rich globular cluster and would, on that ground, be expected either to have few RR Lyrae stars, or to be an Oosterhoff type I system, its RR Lyrae more closely resemble those in Oosterhoff type II globular clusters. However, even compared to typical Oosterhoff type II systems, the mean period of its RRab stars is unusually long. We also derived I-band period-luminosity relations for the RR Lyrae stars. Of the six Population II Cepheids, five are of W Virginis type and one is a BL Herculis variable star. This makes NGC 6441, along with NGC 6388, the most metal-rich globular cluster known to contain these types of variable stars. Another variable, V118, may also be a Population II Cepheid given its long period and its separation in magnitude from the RR Lyrae stars. We examine the period-luminosity relation for these Population II Cepheids and compare it to those in other globular clusters and in the Large Magellanic Cloud. We argue that there does

  1. The Carnegie-Chicago Hubble Program. II. The Distance to IC 1613: The Tip of the Red Giant Branch and RR Lyrae Period-luminosity Relations

    NASA Astrophysics Data System (ADS)

    Hatt, Dylan; Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Jang, In-Sung; Hoyt, Taylor J.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2017-08-01

    IC 1613 is an isolated dwarf galaxy within the Local Group. Low foreground and internal extinction, low metallicity, and low crowding make it an invaluable testbed for the calibration of the local distance ladder. We present new, high-fidelity distance estimates to IC 1613 via its Tip of the Red Giant Branch (TRGB) and its RR Lyrae (RRL) variables as part of the Carnegie-Chicago Hubble Program, which seeks an alternate local route to H 0 using Population II stars. We have measured a TRGB magnitude {I}{ACS}{TRGB}=20.35+/- {0.01}{stat}+/- {0.01}{sys} mag using wide-field observations obtained from the IMACS camera on the Magellan-Baade telescope. We have further constructed optical and near-infrared RRL light curves using archival BI- and new H-band observations from the ACS/WFC and WFC3/IR instruments on board the Hubble Space Telescope (HST). In advance of future Gaia data releases, we set provisional values for the TRGB luminosity via the Large Magellanic Cloud and Galactic RRL zero-points via HST parallaxes. We find corresponding true distance moduli {μ }0{TRGB}=24.30+/- {0.03}{stat}+/- {0.05}{sys} {mag} and < {μ }0{RRL}> =24.28+/- {0.04}{stat+{sys}} mag. We compare our results to a body of recent publications on IC 1613 and find no statistically significant difference between the distances derived from Population I and II stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691. Additional observations are credited to the Observatories of the Carnegie Institution of Washington for the use of Magellan-Baade IMACS. Presented as part of a dissertation to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

  2. Variaciones seculares de período en las RR Lyrae de ω~Centauri

    NASA Astrophysics Data System (ADS)

    Marraco, H. G.; Milesi, G. E.

    Utilizando 689 observaciones de 35 estrellas RR Lyrae del cúmulo globular ω Centauri hemos obtenido nuevas determinaciones de sus períodos y sus correspondientes variaciones seculares. Las observaciones fueron obtenidas de la literatura con la excepción de un grupo 66 determinaciones que se presentan por vez primera aquí. Utilizando el parámetro testigo σ descripto en Marraco & Muzzio (Publ. Astron. Soc. Pacific 92, 700, 1980), hemos realizado un ajuste bidimensional en P y β (donde β es la variación secular del período). Con este fin la totalidad de las 689 observaciones fueron llevadas a un sistema fotométrico común. Para esto se realizó un cuidadoso análisis de los numerosos errores en la identificación de las estrellas de las series de comparación. Los resultados de los ajustes bidimensionales fueron analizados utilizando técnicas de procesamiento de imágenes. Con este fin el parámetro de ajuste σ fue representado como función de P y β. En las imágenes resultantes se buscaron los mínimos y al menor de ellos se lo aceptó como período instantáneo verdadero y su variación secular β. La determinación precisa de cada parámetro se realizó mediante ajuste de gaussianas y se determinaron sus errores. A modo de ejemplo la variable #8 fue analizada en una matriz de 501 × 501 elementos representando el parámetro σ para valores comprendidos entre 0,521034 < P < 0,521534 dias y -150×10-10 < β < +150×10-10 dias/dia. El mejor período instantáneo (correspondiente a la época DJ=2.426.908) y su variación secular son P = 0,5212859±0,0000001 días y β 14,012±,010×10-10 días/día respectivamente. Con estos valores el parámetro testigo resulta σ= 0,127 . Si no se tiene en cuenta la variación secular del período y se busca aquél de mejor ajuste para β = 0, se obtiene P = 0,5212960 días, pero entonces el parámetro de ajuste resulta tan alto como σ = 0,23 .

  3. A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s Stellar Fossil Brought to Light

    NASA Astrophysics Data System (ADS)

    Dékány, István; Hajdu, Gergely; Grebel, Eva K.; Catelan, Márcio; Elorrieta, Felipe; Eyheramendy, Susana; Majaess, Daniel; Jordán, Andrés

    2018-04-01

    RR Lyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was derived from their K s -band light-curve parameters using machine-learning methods. The MDF shows remarkable structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model the MDF with a multi-component density distribution and find that the number density of stars associated with the different model components systematically changes with both the Galactocentric radius and vertical distance from the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably halo interlopers. We propose that the dominant [Fe/H] component with a mean of ‑1 dex might correspond to the outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The physical origins of the RRLs in this study need to be verified by kinematical information.

  4. Analysis of the IUE spectra of the strongly interacting binary beta Lyrae

    NASA Technical Reports Server (NTRS)

    Mccluskey, George E., Jr.

    1993-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically-thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO-A2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 A and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically-thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  5. Drosophila Lyra mutations are gain-of-function mutations of senseless

    NASA Technical Reports Server (NTRS)

    Nolo, R.; Abbott, L. A.; Bellen, H. J.

    2001-01-01

    The Lyra mutation was first described by Jerry Coyne in 1935. Lyra causes recessive pupal lethality and adult heterozygous Lyra mutants exhibit a dominant loss of the anterior and posterior wing margins. Unlike many mutations that cause loss of wing tissue (e.g., scalloped, Beadex, cut, and apterous-Xasta), Lyra wing discs do not exhibit increased necrotic or apoptotic cell death, nor do they show altered BrdU incorporation. However, during wing disc eversion, loss of the anterior and posterior wing margins is apparent. We have previously shown that senseless, a gene that is necessary and sufficient for peripheral nervous system (PNS) development, is allelic to Lyra. Here we show by several genetic criteria that Lyra alleles are neomorphic alleles of senseless that cause ectopic expression of SENSELESS in the wing pouch. Similarly, overexpression of SENSELESS in the wing disc causes loss of wing margin tissue, thereby mimicking the Lyra phenotype. Lyra mutants display aberrant expression of DELTA, VESTIGIAL, WINGLESS, and CUT. As in Lyra mutants, overexpression of SENSELESS in some areas of the wing pouch also leads to loss of WINGLESS and CUT. In summary, our data indicate that overexpression of SENSELESS causes a severe reduction in NOTCH signaling that in turn may lead to decreased transcription of several key genes required for wing development, leading to a failure in cell proliferation and loss of wing margin tissue.

  6. A cautionary tale of interpreting O-C diagrams: period instability in a classical RR Lyr Star Z CVn mimicking as a distant companion

    NASA Astrophysics Data System (ADS)

    Skarka, M.; Liška, J.; Dřevěný, R.; Guggenberger, E.; Sódor, Á.; Barnes, T. G.; Kolenberg, K.

    2018-02-01

    We present a comprehensive study of Z CVn, an RR Lyrae star that shows long-term cyclic variations of its pulsation period. A possible explanation suggested from the shape of the O-C diagram is the light travel-time effect, which we thoroughly examine. We used original photometric and spectroscopic measurements and investigated the period evolution using available maximum times spanning more than one century. If the binary hypothesis is valid, Z CVn orbits around a black hole with minimal mass of 56.5 M_{⊙} on a very wide (Porbit = 78.3 yr) and eccentric orbit (e = 0.63). We discuss the probability of the formation of a black hole-RR Lyrae pair, and, although we found it possible, there is no observational evidence of the black hole in the direction to Z CVn. However, the main objection against the binary hypothesis is the comparison of the systemic radial velocity curve model and spectroscopic observations that clearly show that Z CVn cannot be bound in such a binary. Therefore, the variations of pulsation period are likely intrinsic to the star. This finding represents a discovery/confirmation of a new type of cyclic period changes in RR Lyrae stars. By the analysis of our photometric data, we found that the Blazhko modulation with period of 22.931 d is strongly dominant in amplitude. The strength of the phase modulation varies and is currently almost undetectable. We also estimated photometric physical parameters of Z CVn and investigated their variations during the Blazhko cycle using the inverse Baade-Wesselink method.

  7. The Magellanic Inter-Cloud Project (MAGIC) III: first spectroscopic evidence of a dwarf stripping a dwarf

    NASA Astrophysics Data System (ADS)

    Carrera, Ricardo; Conn, Blair C.; Noël, Noelia E. D.; Read, Justin I.; López Sánchez, Ángel R.

    2017-11-01

    The Magellanic Bridge (MB) is a gaseous stream that links the Large (LMC) and Small (SMC) Magellanic Clouds. Current simulations suggest that the MB forms from a recent interaction between the Clouds. In this scenario, the MB should also have an associated stellar bridge formed by stars tidally stripped from the SMC by the LMC. There are several observational evidences for these stripped stars, from the presence of intermediate age populations in the MB and carbon stars, to the recent observation of an over-density of RR Lyrae stars offset from the MB. However, spectroscopic confirmation of stripped stars in the MB remains lacking. In this paper, we use medium resolution spectra to derive the radial velocities and metallicities of stars in two fields along the MB. We show from both their chemistry and kinematics that the bulk of these stars must have been tidally stripped from the SMC. This is the first spectroscopic evidence for a dwarf galaxy being tidally stripped by a larger dwarf.

  8. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hippke, Michael; Learned, John G.; Zee, A.

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from themore » Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.« less

  9. The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-06-01

    We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We present density map of RR Lyr stars in the observed fields which shows that the variables are strongly concentrated toward the LMC center. The modal values of the period distribution for RRab, RRc and RRe stars are 0.573, 0.339 and 0.276 days, respectively. The period-luminosity diagrams for BVI magnitudes and for extinction insensitive index W_I are constructed. We provide the log P-I, log P-V and log P-W_I relations for RRab, RRc and RRe stars. The mean observed V-band magnitudes of RR Lyr stars in the LMC are 19.36 mag and 19.31 mag for ab and c types, respectively, while the extinction free values are 18.91 mag and 18.89 mag. We found a large number of RR Lyr stars pulsating in two modes closely spaced in the power spectrum. These stars are believed to exhibit non-radial pulsating modes. We discovered three stars which simultaneously reveal RR Lyr-type and eclipsing-type variability. If any of these objects were an eclipsing binary system containing RR Lyr star, then for the first time the direct determination of the mass of RR Lyr variable would be possible. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the

  10. Lyra

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Lyre; abbrev. Lyr, gen. Lyrae; area 286 sq. deg.) A northern constellation which lies between Hercules and Cygnus, and culminates at midnight in early July. It is an ancient constellation pattern, which was associated with an eagle or vulture in the Indian subcontinent and Arab countries, and with the mythical lyre invented by Hermes and given by Apollo to Orpheus in ancient Greece. Its brig...

  11. Do We Really Have an Age/H_0 Conflict?

    NASA Astrophysics Data System (ADS)

    Baum, W. A.

    1997-12-01

    Two independent methods for estimating the age of the universe can both be linked to the absolute magnitudes of the RR Lyrae stars, one based on stellar evolution in globular clusters and the other based on the Hubble Constant derived from globular clusters as distance indicators. The latter has recently been extracted from HST-WFPC2 data for globular clusters in the Coma Cluster galaxy IC 4051 (Baum et al. 1997, AJ, 113, 1483). If RR Lyrae stars are brighter than we have previously thought, the stellar-evolution age estimate is shortened whereas the Hubble age is increased, so we can ask a very simple question: For what RR Lyrae magnitude zero point would the stellar-evolution age coincide with the Hubble age, and is it a reasonable value? Allowing 1 Gyr for globular clusters to have formed, and assuming a classical Einstein-deSitter universe with Lambda = 0, I find the two ages to coincide if M_V(RR) ~ 0.16[Fe/H] + 0.46, which (among other things) puts the Large Magellanic Cloud at (m-M) = 18.78 +/- 0.17 mag. The implied age of the universe is 11.0 +/- 1.4 Gyr, and the corresponding H_0 = 59 +/- 8 km/s per Mpc.

  12. ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. I. OPTICAL AND NEAR-INFRARED PERIOD-LUMINOSITY AND PERIOD-WESENHEIT RELATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, V. F.; Bono, G.; Buonanno, R.

    2015-02-01

    We present new distance determinations to the nearby globular M4 (NGC 6121) based on accurate optical and near-infrared (NIR) mean magnitudes for fundamental (FU) and first overtone (FO) RR Lyrae variables (RRLs), and new empirical optical and NIR period-luminosity (PL) and period-Wesenheit (PW) relations. We have found that optical-NIR and NIR PL and PW relations are affected by smaller standard deviations than optical relations. The difference is the consequence of a steady decrease in the intrinsic spread of cluster RRL apparent magnitudes at fixed period as longer wavelengths are considered. The weighted mean visual apparent magnitude of 44 cluster RRLs ismore » =13.329 ± 0.001 (standard error of the mean) ±0.177 (weighted standard deviation) mag. Distances were estimated using RR Lyr itself to fix the zero-point of the empirical PL and PW relations. Using the entire sample (FU+FO) we found weighted mean true distance moduli of 11.35 ± 0.03 ± 0.05 mag and 11.32 ± 0.02 ± 0.07 mag. Distances were also evaluated using predicted metallicity dependent PLZ and PWZ relations. We found weighted mean true distance moduli of 11.283 ± 0.010 ± 0.018 mag (NIR PLZ) and 11.272 ± 0.005 ± 0.019 mag (optical-NIR and NIR PWZ). The above weighted mean true distance moduli agree within 1σ. The same result is found from distances based on PWZ relations in which the color index is independent of the adopted magnitude (11.272 ± 0.004 ± 0.013 mag). These distances agree quite well with the geometric distance provided by Kaluzny et al. based on three eclipsing binaries. The available evidence indicates that this approach can provide distances to globulars hosting RRLs with a precision better than 2%-3%.« less

  13. Dwarf spheroidal satellites of M31. I. Variable stars and stellar populations in Andromeda XIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusano, Felice; Clementini, Gisella; Garofalo, Alessia

    We present B, V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.'2) of Andromeda's dwarf spheroidal companions, which we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23' × 23' area centered on And XIX and present the deepest color-magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V ∼ 26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which extends to the blue to significantly populate the classicalmore » instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and three of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ((P {sub ab}) = 0.62 days, σ = 0.03 days) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars ((V(RR)) = 25.34 mag, σ = 0.10 mag), we determine a distance modulus of (m – M){sub 0} = 24.52 ± 0.23 mag in a scale where the distance to the Large Magellanic Cloud (LMC) is 18.5 ± 0.1 mag. The ACs follow a well-defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.« less

  14. Large Magellanic Cloud Near-infrared Synoptic Survey. IV. Leavitt Laws for Type II Cepheid Variables

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anupam; Macri, Lucas M.; Rejkuba, Marina; Kanbur, Shashi M.; Ngeow, Chow-Choong; Singh, Harinder P.

    2017-04-01

    We present time-series observations of Population II Cepheids in the Large Magellanic Cloud at near-infrared (JHK s ) wavelengths. Our sample consists of 81 variables with accurate periods and optical (VI) magnitudes from the OGLE survey, covering various subtypes of pulsators (BL Herculis, W Virginis, and RV Tauri). We generate light-curve templates using high-quality I-band data in the LMC from OGLE and K s -band data in the Galactic bulge from VISTA Variables in Via Láctea survey and use them to obtain robust mean magnitudes. We derive period-luminosity (P-L) relations in the near-infrared and Period-Wesenheit (P-W) relations by combining optical and near-infrared data. Our P-L and P-W relations are consistent with published work when excluding long-period RV Tauris. We find that Pop II Cepheids and RR Lyraes follow the same P-L relations in the LMC. Therefore, we use trigonometric parallax from the Gaia DR1 for VY Pyx and the Hubble Space Telescope parallaxes for k Pav and 5 RR Lyrae variables to obtain an absolute calibration of the Galactic K s -band P-L relation, resulting in a distance modulus to the LMC of {μ }{LMC}=18.54+/- 0.08 mag. We update the mean magnitudes of Pop II Cepheids in Galactic globular clusters using our light-curve templates and obtain distance estimates to those systems, anchored to a precise late-type eclipsing binary distance to the LMC. We find that the distances to these globular clusters based on Pop II Cepheids are consistent (within 2σ ) with estimates based on the {M}V-[{Fe}/{{H}}] relation for horizontal branch stars.

  15. The Catalina Surveys Southern periodic variable star catalogue

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Djorgovski, S. G.; Catelan, M.; Graham, M. J.; Mahabal, A. A.; Larson, S.; Christensen, E.; Torrealba, G.; Beshore, E.; McNaught, R. H.; Garradd, G.; Belokurov, V.; Koposov, S. E.

    2017-08-01

    Here, we present the results from our analysis of 6 yr of optical photometry taken by the Siding Spring Survey (SSS). This completes a search for periodic variable stars within the 30 000 deg2 of the sky covered by the Catalina Surveys. The current analysis covers 81 million sources with declinations between -20° and -75° with median magnitudes in the range 11 < V < 19.5. We find approximately 34 000 new periodic variable stars in addition to the ˜9000 RR Lyrae that we previously discovered in SSS data. This brings the total number of periodic variables identified in Catalina data to ˜110 000. The new SSS periodic variable stars mainly consist of eclipsing binaries, RR Lyrae, LPVs, RS CVn stars, δ Scutis, and Anomalous Cepheids. By cross-matching these variable stars with those from prior surveys, we find that ˜90 per cent of the sources are new discoveries and recover ˜95 per cent of the known periodic variables in the survey region. For the known sources, we find excellent agreement between our catalogue and prior values of luminosity, period, and amplitude. However, we find many variable stars that had previously been misclassified. Examining the distribution of RR Lyrae, we find a population associated with the Large Magellanic Cloud (LMC) that extends more than 20° from its centre confirming recent evidence for the existence of a very extended stellar halo in the LMC. By combining SSS photometry with Dark Energy Survey data, we identify additional LMC halo RR Lyrae, thus confirming the significance of the population.

  16. Preliminary Results on Irradiance Measurements from Lyra and Swap

    NASA Astrophysics Data System (ADS)

    Kumara, S. T.; Kariyappa, R.; Dominique, M.; Berghmans, D.; Damé, L.; Hochedez, J. F.; Doddamani, V. H.; Chitta, Lakshmi Pradeep

    The first and preliminary results of the photometry of Large Yield Radiometer (LYRA) and Sun Watcher using Active Pixel system detector and Image Processing (SWAP) onboard PROBA2 are presented in this paper. To study the day-to-day variations of LYRA irradiance, we have compared the LYRA irradiance values (observed Sun as a star) measured in Aluminum filter channel (171Å-500Å) with spatially resolved full-disk integrated intensity values measured with SWAP (174Å) and Ca II K 1 Å index values (ground-based observations from NSO/Sac Peak) for the period from 01 April 2010 to 15 Mar 2011. We found that there is a good correlation between these parameters. This indicates that the spatial resolution of SWAP complements the high temporal resolution of LYRA. Hence SWAP can be considered as an additional radiometric channel. Also the K emission index is the integrated intensity (or flux) over a 1 Å band centered on the K line and is proportional to the total emission from the chromosphere; this comparison clearly explains that the LYRA irradiance variations are due to the various magnetic features, which are contributing significantly. In addition to this we have made an attempt to segregate coronal features from full-disk SWAP images. This will help to understand and determine the actual contribution of the individual coronal feature to LYRA irradiance variations.

  17. Frequency Analysis of the RRc Variables of the MACHO Database for the LMC

    NASA Astrophysics Data System (ADS)

    Kovács, G.; Alcock, C.; Allsman, R.; Alves, D.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration

    We present the first massive frequency analysis of the 1200 first overtone RR Lyrae stars in the Large Magellanic Cloud observed in the first 4.3 yr of the MACHO project. Besides the many new double-mode variables, we also discovered stars with closely spaced frequencies. These variables are most probably nonradial pulsators.

  18. Ultraviolet light curves of beta Lyrae: Comparison of OAO A-2, IUE, and Voyager Observations

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Mccluskey, George E.; Silvis, Jeffery M. S.; Polidan, Ronald S.; Mccluskey, Carolina P. S.; Eaton, Joel A.

    1994-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory (OAO) A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO A-2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  19. LYRA, a webserver for lymphocyte receptor structural modeling.

    PubMed

    Klausen, Michael Schantz; Anderson, Mads Valdemar; Jespersen, Martin Closter; Nielsen, Morten; Marcatili, Paolo

    2015-07-01

    The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. VizieR Online Data Catalog: BVI photometry of LMC bar variables (Di Fabrizio+, 2005)

    NASA Astrophysics Data System (ADS)

    di Fabrizio, L.; Clementini, G.; Maio, M.; Bragaglia, A.; Carretta, E.; Gratton, R.; Montegriffo, P.; Zoccali, M.

    2005-01-01

    We present the Johnson-Cousins B,V and I time series data obtained for 162 variable stars (135 RR Lyrae, 4 candidate Anomalous Cepheids, 11 Classical Cepheids, 11 eclipsing binaries and 1 delta Scuti star) in two 13x13 square arcmin areas close to the bar of the Large Magellanic Cloud. The photometric observations presented in this paper were carried out at the 1.54m Danish telescope located in La Silla, Chile, on the nights 4-7 January 1999, UT, and 23-24 January 2001, UT, respectively. In the paper we give coordinates, finding charts, periods, epochs, amplitudes, and mean quantities (intensity- and magnitude-averaged luminosities) of the variables with full coverage of the light variations, along with a discussion of the pulsation properties of the RR Lyrae stars in the sample. (8 data files).

  1. LYRA, solar uv radiometer on the technology demonstration platform PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hochedez, J.-F.; Schmutz, W.; BenMoussa, A.; Defise, J.-M.; Denis, F.; D'Olieslaeger, M.; Dominique, M.; Haenen, K.; Halain, J.-P.; Koller, S.; Koizumi, S.; Mortet, V.; Rochus, P.; Schühle, U.; Soltani, A.; Theissen, A.

    2017-11-01

    LYRA is a solar radiometer part of the PROBA 2 micro satellite payload. LYRA will monitor the solar irradiance in four soft X-Ray - VUV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and SpaceWeather: 1/ Lyman Alpha channel, 2/ Herzberg continuum range, 3/ Aluminium filter channel (including He II at 30.4 nm) and 4/ Zirconium filter channel. The radiometric calibration is traceable to synchrotron source standards. The stability will be monitored by on-board calibration sources (LEDs), which allow us to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of revolutionary UV detectors. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to visible light) and therefore, make dispensable visible light blocking filters. To correlate the data of this new detector technology, well known technology, such as Si detectors are also embarked. The SWAP EUV imaging telescope will operate next to LYRA on PROBA-2. Together, they will provide a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.

  2. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  3. The Globular Cluster NGC 6402 (M14). II. Variable Stars

    NASA Astrophysics Data System (ADS)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.

    2018-03-01

    We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ∼137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006–2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive < {P}ab > =0.589 {{d}}{{a}}{{y}}{{s}}. This, together with the position of the RR Lyrae stars of both Bailey types in the period–amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster. Based on observations obtained with the 0.9 m and 1 m telescopes at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.

  4. Fourier Decomposition and Properties of the Variable Stars in the Globular Cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Reed, Hunter M.; Pajkos, Michael A.; Murphy, Brian W.; Darragh, Andrew

    2016-01-01

    Globular clusters provide an ideal setting to study stellar evolution of stars of similar composition and age. RR Lyrae stars found in globular clusters have a variety of uses in probing the physical characteristics of the stellar population itself and its evolution. Building upon our previous study, we focus on the RR Lyrae stars in the globular cluster NGC 4833. From March through June 2014, we used the Southeastern Association for Research in Astronomy 0.6-meter telescope located at CTIO to collect nearly 1,500 images of NGC 4833 in the B, V, R, and I bands. Using difference image analysis we identified 40 variable stars. Of these, 20 were RR Lyrae stars with 10 being of type RR0, 7 of type RR1, and 3 of type RR2. Additionally, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables were identified. The average period of the type RR0, RR1, and RR2 type variables were 0.69597 days, 0.39547 days, and 0.30654 days, respectively. The periods of the RR Lyrae stars and ratio of N1/(N0+N1) of 0.41 is indicative of an Oosterhoff Type II cluster. The observations of the RR Lyrae stars were of very high quality and phase coverage allowing us to perform Fourier decomposition of their light curves. From this Fourier decomposition we were able to determine the physical characteristics of the RR Lyrae stars. We found the mean iron abundance to be [Fe/H]JKZW = -1.87 ± 0.06, the mean apparent V-magnitude RR0 and RR1 type variables to be VRR = 15.51 ± 0.11, a mean absolute V-magnitude of MV = 0.636 ± 0.053; and an effective temperature for RR0's and RR1's of log10Teff = 3.797 and log10Teff = 3.855, respectively. The multi-band photometry allowed us to determine the reddening of the cluster, E(B-V) = 0.342 ± 0.021, which resulted in a distance of D(kpc) = 5.91 ± 0.31 to NGC 4833.

  5. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordoñez, Antonio J.; Sarajedini, Ata; Yang, Soung-Chul, E-mail: a.ordonez@ufl.edu, E-mail: ata@astro.ufl.edu, E-mail: sczoo@kasi.re.kr

    We present the first detailed study of the RR Lyrae variable population in the Local Group dSph/dIrr transition galaxy, Phoenix, using previously obtained HST/WFPC2 observations of the galaxy. We utilize template light curve fitting routines to obtain best fit light curves for RR Lyrae variables in Phoenix. Our technique has identified 78 highly probable RR Lyrae stars (54 ab-type; 24 c-type) with about 40 additional candidates. We find mean periods for the two populations of (P {sub ab}) = 0.60 ± 0.03 days and (P{sub c} ) = 0.353 ± 0.002 days. We use the properties of these light curvesmore » to extract, among other things, a metallicity distribution function for ab-type RR Lyrae. Our analysis yields a mean metallicity of ([Fe/H]) = –1.68 ± 0.06 dex for the RRab stars. From the mean period and metallicity calculated from the ab-type RR Lyrae, we conclude that Phoenix is more likely of intermediate Oosterhoff type; however the morphology of the Bailey diagram for Phoenix RR Lyraes appears similar to that of an Oosterhoff type I system. Using the RRab stars, we also study the chemical enrichment law for Phoenix. We find that our metallicity distribution is reasonably well fitted by a closed-box model. The parameters of this model are compatible with the findings of Hidalgo et al., further supporting the idea that Phoenix appears to have been chemically enriched as a closed-box-like system during the early stage of its formation and evolution.« less

  7. The Carina Project. I. Bright Variable Stars

    NASA Astrophysics Data System (ADS)

    Dall'Ora, M.; Ripepi, V.; Caputo, F.; Castellani, V.; Bono, G.; Smith, H. A.; Brocato, E.; Buonanno, R.; Castellani, M.; Corsi, C. E.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Walker, A. R.

    2003-07-01

    We present new BV time series data of the Carina dwarf spheroidal galaxy (dSph). Current data cover an area of ~0.3 deg2 around the center of the galaxy and allow us to identify 92 variables. Among them 75 are RR Lyrae stars, 15 are bona fide anomalous Cepheids, one might be a Galactic field RR Lyrae star, and one is located along the Carina red giant branch. Expanding upon the seminal photographic investigation by Saha, Monet, & Seitzer we supply, for the first time, accurate estimates of their pulsation parameters (periods, amplitudes, mean magnitudes, and colors) on the basis of CCD photometry. Approximately 50% of both RR Lyrae stars and anomalous Cepheids are new identifications. Among the RR Lyrae sample, six objects are new candidate double-mode (RRd) variables. On the basis of their pulsation properties we estimate that two variables (V158, V182) are about 50% more massive than typical RR Lyrae stars, while the bulk of the anomalous Cepheids are roughly a factor of 2 more massive than fundamental-mode (RRab) RR Lyrae stars. This finding supports the evidence that these objects are intermediate-mass stars during central He-burning phases. We adopted three different approaches to estimate the Carina distance modulus, namely, the first-overtone blue edge method, the period-luminosity-amplitude relation, and the period-luminosity-color relation. We found DM=20.19+/-0.12, a result that agrees quite well with similar estimates based on different distance indicators. The data for Carina, together with data available in the literature, strongly support the conclusion that dSph's can barely be classified into the classical Oosterhoff dichotomy. The mean period of RRab's in Carina resembles that found for Oosterhoff type II clusters, whereas the ratio between first-overtone (RRc) pulsators and the total number of RR Lyrae stars is quite similar to that found in Oosterhoff type I clusters. Based on observations collected at the European Southern Observatory, La Silla

  8. Selections from 2017: Computers Help Us Map Our Home

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Machine-Learned Identification of RR Lyrae Stars from Sparse, Multi-Band Data: The PS1 SamplePublished April2017Main takeaway:A sample of RR Lyrae variable stars was built from thePan-STARRS1 (PS1) survey by a team led byBranimir Sesar (Max Planck Institute for Astronomy, Germany). The sample of45,000 starsrepresentsthe widest (three-fourthsof the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date.Why its interesting:Its challengingto understand the overall shape and behaviorof our galaxy because were stuck on the inside of it. RR Lyrae stars are a useful tool for this purpose: they can be used as tracers to map out the Milky Ways halo. The authors large sample of RR Lyrae stars from PS1 combined withproper-motion measurements from Gaia and radial-velocity measurements from multi-object spectroscopic surveys could become thepremier source for studying the structure, kinematics, and the gravitational potential of our galaxys outskirts.How they were found:The black dots show the distribution of the 45,000 probable RR Lyrae stars in the authors sample. [Sesar et al. 2017]The 45,000 stars in this sample were selected not by humans, but by computer.The authors used machine-learning algorithms to examine the light curvesin the Pan-STARRS1 sample and identify the characteristic brightness variations of RR Lyrae stars lying in the galactic halo. These techniques resulted in a very pure and complete sample, and the authors suggest that this approachmay translate well to othersparse,multi-band data sets such asthat from the upcomingLarge Synoptic Survey Telescope (LSST) galactic plane sub-survey.CitationBranimir Sesar et al 2017 AJ 153 204. doi:10.3847/1538-3881/aa661b

  9. An unusually very bright dust light mass (?) observed in the vicinity (?) of á Lyrae

    NASA Astrophysics Data System (ADS)

    Stefanopoulos, G.

    2009-04-01

    There are not many written worldwide references regarding unusual phenomena such as dust, unusual lights or unexplained objects orbiting the earth or the solar and extra solar systems. Regarding the external space few references exist . Regarding the a Lyrae many scientists were involve in the eighties with the possible existence of a planet next to this star. Structure in the Dusty Debris around Vega, D. J. Wilner et al 2002 ApJ 569.Near-infrared observations of Vega, at 2006 Philip M. Hinz et al. refers to possible companion planet round this star .In constellations Lyrae and Eridani,some authors refer to possible initial formation of planets and they mention the presence of dust formations orbiting around those stars.(A. N. Heinze, Philip M. Hinz, Deep L' and M-band Imaging for Planets Around Vega and epsilon Eridani,The Astrophysical Journal 688 (2008) 583. This paper is concerned with an unexplained or perhaps portion of dust, in the constellation of Lyrae, which appears and have been observed only in conventional photographic plaque.For this observation , simple equipment and amateur instruments are use.In the night of April the 2002, during an amatory observation in variable stars, in the RR Lyrae, pictures were taken in the mentioned deep space area as a normal weekly study procedure. The instruments used are, telescope Meade 10΄΄, illuminate reticle guiding, 12mm, photo camera Nikon F -100, and lenses,70mm, f =1,8.The film used was a Kodak X-pro,BW 400 ASA.The equatorial mount was motorized. A total of six pictures with an exposure 5-10 min were taken. While developing the film, on the fifth photogram, a bright (object?) - dust light appear which seems to be in adhesion with the Vega star . On consecutive months more pictures were taken, with conventional and digital exposures, without any repetition of the event. What is provoke illumination of this dust portion to have been present in a simple photographic film? This simple observation study is

  10. Before the Bar: Kinematic Detection of a Spheroidal Metal-poor Bulge Component

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Rich, R. M.; Koch, A.; Storm, J.; Nataf, D. M.; De Propris, R.; Walker, A. R.; Bono, G.; Johnson, C. I.; Shen, Juntai; Li, Z.-Y.

    2016-04-01

    We present 947 radial velocities of RR Lyrae variable stars in four fields located toward the Galactic bulge, observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR). We show that these RR Lyrae stars (RRLs) exhibit hot kinematics and null or negligible rotation and are therefore members of a separate population from the bar/pseudobulge that currently dominates the mass and luminosity of the inner Galaxy. Our RRLs predate these structures and have metallicities, kinematics, and spatial distribution that are consistent with a “classical” bulge, although we cannot yet completely rule out the possibility that they are the metal-poor tail of a more metal-rich ([{Fe}/{{H}}]˜ -1 dex) halo-bulge population. The complete catalog of radial velocities for the BRAVA-RR stars is also published electronically.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, A

    The SuperMACHO Project is a five-year survey toward the Large Magellanic Cloud (LMC) aimed at understanding the nature of the populations of lenses responsible for the excess microlensing rates observed by the MACHO project. Survey observations were completed in 2006. A rich side-product of this survey is a catalog of variable sources down to a depth of VR 23, including many classes of pulsating variables such as {delta}-Scuti and RR Lyrae. Through their position in the Period-Luminosity diagram and their light curve characteristics we have identified 2323 high amplitude {delta}-Scuti (HADS) having high quality light curves. sing Fourier decomposition ofmore » the HADS light curves, we find that the period-luminosity (PL) relation defined by the firt-overtone (FO) pulsators does not show a clear separation from the PL-relation defined by the fundamental (F) pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax.« less

  12. Variables en la región central del cúmulo globular NGC 3201: descomposición de Fourier de las curvas de luz de las RR Lyrae y análisis de la relación período-luminosidad de las SX Phoenicis

    NASA Astrophysics Data System (ADS)

    Ahumada, J. A.; Arellano Ferro, A.; Calderón, J. H.; Kains, N.

    2015-08-01

    We present CCD time-series observations of the central region of the globular cluster NGC 3201, collected from CASLEO in March 2013, with the aim of performing the Fourier decomposition of the light curves of the RR Lyrae variables. This procedure, applied to the RRab-type stars, gave a mean value [Fe/H], for the cluster metallicity, and 5.00 0.22 kpc, for the cluster distance. The values found from two RRc stars are consistent with those derived previously. Because of differential reddening across the cluster field, individual reddenings for the RRab stars were estimated from their curves, resulting in an average value . An investigation of the light curves of stars in the blue straggler region led to the discovery of three new SX Phoenicis variables. The period-luminosity relation of the SX Phoenicis was used for an independent determination of the distance to the cluster and of the individual reddenings of these variables.

  13. A search for Lyman-alpha emission in beta Lyrae from Copernicus

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Mccluskey, G. E., Jr.

    1974-01-01

    High-resolution (0.2 A) spectrophotometric observations of the complex eclipsing binary beta Lyrae were obtained with the Princeton Telescope Spectrometer on the Copernicus satellite. We discuss the search for L-alpha emission in beta Lyrae and compare the Copernicus results with the OAO-2 observations of the same binary system. The possible L-alpha emission features observed from OAO-2 are identified as blends of the emission lines of other elements in the vicinity of L-alpha.

  14. Pulsating stars in the VMC survey

    NASA Astrophysics Data System (ADS)

    Cioni, Maria-Rosa L.; Ripepi, Vincenzo; Clementini, Gisella; Groenewegen, Martin A. T.; Moretti, Maria I.; Muraveva, Tatiana; Subramanian, Smitha

    2017-09-01

    The VISTA survey of the Magellanic Clouds system (VMC) began observations in 2009 and since then, it has collected multi-epoch data at Ks and in addition multi-band data in Y and J for a wide range of stellar populations across the Magellanic system. Among them are pulsating variable stars: Cepheids, RR Lyrae, and asymptotic giant branch stars that represent useful tracers of the host system geometry. Based on observations made with VISTA at ESO under programme ID 179.B-2003.

  15. Long-term irradiance observation and short-term flare prediction with LYRA on PROBA2

    NASA Astrophysics Data System (ADS)

    Dammasch, Ingolf; Dominique, Marie; West, Matthew; Katsiyannis, Thanassis; Ryan, Daniel; Wauters, Laurence

    The solar radiometer LYRA on board the ESA micro-satellite PROBA2 has observed the Sun continuously since January 2010 in various spectral band passes, and has gained a considerable data base. Two of the LYRA channels cover the irradiance between soft X-ray and extreme ultraviolet. The variation of the sunspot number appears to show a strong similarity with the variation of these channels, when their long-range development is taken into account. The same holds for SXR levels observed by the GOES satellites. Due to LYRA's bandwidth and coverage of various active-region temperatures, its relatively smooth development may yield some information on the structure of the current solar cycle. On its websites, LYRA presents not only EUV and SXR time series in near real-time, but also information on flare parameters and long-term irradiance and sunspot levels. It will be demonstrated whether it is possible to aid space weather forecast with these statistical data, especially for the prediction of expected flare strength on a daily basis.

  16. A Detailed Study of the Variable Stars in Five Galactic Globular Clusters: IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584

    NASA Astrophysics Data System (ADS)

    Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph

    2015-08-01

    We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass

  17. Multiband Fourier Analysis and Interstellar Reddening of the Variable Stars in the Globular Cluster NGC 6402 (M14)

    NASA Astrophysics Data System (ADS)

    Weinschenk, Sedrick; Murphy, Brian; Villiger, Nathan J.

    2018-01-01

    We present a detailed study of the variable stars in the globular cluster NGC 6402 (M14). Approximately 1500 B and V band images were collected from July 2016 to August 2017 using the SARA Consortium Jacobus Kaptyen 1-meter telescope located in the Canary Islands. Using difference image analysis, we were able to identify 145 probable variable stars, confirming the 133 previously known variables and adding 12 new variables. The variables consisted of 117 RR Lyrae stars, 18 long period variables, 2 eclipsing variables, 6 Cepheid variables, and 2 SX Phoenix variables. Of the RR Lyrae variables 55 were of fundamental mode RR0 stars, of which 18 exhibited the Blazhko effect, 57 were of 1st overtone RR1, of which 7 appear to exhibit the Blazhko effect, 1 2nd overtone RR2, and 2 double mode variables. We found an average period of 0.59016 days for RR0 stars and 0.30294 days for RR1 stars. Using the multiband light curves of both the RR0 and RR1 variables we found an average E(B-V) of 0.604 with a scatter of 0.15 magnitudes. Using Fourier decomposition of the RR Lyrae light curves we also determined the metallicity and distance of the NGC 6402.

  18. New Self-lensing Models of the Small Magellanic Cloud: Can Gravitational Microlensing Detect Extragalactic Exoplanets?

    NASA Astrophysics Data System (ADS)

    Mróz, Przemek; Poleski, Radosław

    2018-04-01

    We use three-dimensional distributions of classical Cepheids and RR Lyrae stars in the Small Magellanic Cloud (SMC) to model the stellar density distribution of a young and old stellar population in that galaxy. We use these models to estimate the microlensing self-lensing optical depth to the SMC, which is in excellent agreement with the observations. Our models are consistent with the total stellar mass of the SMC of about 1.0× {10}9 {M}ȯ under the assumption that all microlensing events toward this galaxy are caused by self-lensing. We also calculate the expected event rates and estimate that future large-scale surveys, like the Large Synoptic Survey Telescope (LSST), will be able to detect up to a few dozen microlensing events in the SMC annually. If the planet frequency in the SMC is similar to that in the Milky Way, a few extragalactic planets can be detected over the course of the LSST survey, provided significant changes in the SMC observing strategy are devised. A relatively small investment of LSST resources can give us a unique probe of the population of extragalactic exoplanets.

  19. The VMC Survey - XIII. Type II Cepheids in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ripepi, V.; Moretti, M. I.; Marconi, M.; Clementini, G.; Cioni, M.-R. L.; de Grijs, R.; Emerson, J. P.; Groenewegen, M. A. T.; Ivanov, V. D.; Muraveva, T.; Piatti, A. E.; Subramanian, S.

    2015-01-01

    The VISTA (Visible and Infrared Survey Telescope for Astronomy) survey of the Magellanic Clouds System (VMC) is collecting deep Ks-band time-series photometry of the pulsating variable stars hosted in the system formed by the two Magellanic Clouds and the Bridge connecting them. In this paper, we have analysed a sample of 130 Large Magellanic Cloud (LMC) Type II Cepheids (T2CEPs) found in tiles with complete or near-complete VMC observations for which identification and optical magnitudes were obtained from the OGLE III (Optical Gravitational Lensing Experiment) survey. We present J and Ks light curves for all 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables. We complement our near-infrared photometry with the V magnitudes from the OGLE III survey, allowing us to build a variety of period-luminosity (PL), period-luminosity-colour (PLC) and period-Wesenheit (PW) relationships, including any combination of the V, J, Ks filters and valid for BL Her and W Vir classes. These relationships were calibrated in terms of the LMC distance modulus, while an independent absolute calibration of the PL(Ks) and the PW(Ks, V) was derived on the basis of distances obtained from Hubble Space Telescope parallaxes and Baade-Wesselink technique. When applied to the LMC and to the Galactic globular clusters hosting T2CEPs, these relations seem to show that (1) the two Population II standard candles RR Lyrae and T2CEPs give results in excellent agreement with each other; (2) there is a discrepancy of ˜0.1 mag between Population II standard candles and classical Cepheids when the distances are gauged in a similar way for all the quoted pulsators. However, given the uncertainties, this discrepancy is within the formal 1σ uncertainties.

  20. Distant Galactic Halo Substructures Observed by the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir

    2013-01-01

    Characterization of Galactic halo substructures is important as their kinematic and chemical properties help constrain the properties of the Galactic dark matter halo, the formation history of the Milky Way, and the galaxy formation process in general. The best practical choice for finding distant halo substructures are pulsating RR Lyrae stars, due to their intrinsic brightness (M_V = 0.6 mag) and distinct light curves. I will present kinematic and chemical properties of two distant halo substructures that were traced using RR Lyrae stars observed by the Palomar Transient Factory. One of these substructures, located at 90 kpc from the Sun in the Cancer constellation, consists of two groups of RR Lyrae stars moving away from the Galaxy at ~80 and ~20 km/s, respectively. The second substructure is located at ~65 kpc from the Sun in the Hercules constellation. The kinematics of RR Lyrae stars tracing this substructure suggest a presence of 2 or 3 stellar streams extending in the similar direction on the sky. Due to their spatial extent, both of these substructures are clearly disrupted and would be very difficult to detect using tradiitonal techniques such as the color-magnitude diagram filtering.

  1. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and I bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of I=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ˜ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  2. Variable Stars in the Draco Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Harris, H. C.; Silberman, N. A.; Smith, H. A.

    A new survey of the variable stars in the Draco dwarf spheroidal galaxy updates the pioneering study of this galaxy by Baade and Swope (1961). Our improved data, taken in BVI filters with CCD cameras on three telescopes at more than 80 epochs, allow us to investigate the known variables and to discover new, mostly low-amplitude variables. Approximately 300 variables are found and classified, more than double the number of variables analyzed previously. Most are RR Lyraes, with a small fraction of Anomalous Cepheids. This large sample of variables provides a unique opportunity to study the properties of these stars in a single system. This paper discusses the census of RR Lyraes, including RRc-type, double-mode, and Blazhko-effect RR Lyraes, as well as Anomalous Cepheids, and Type II Cepheids in Draco.

  3. A Disk Origin for the Monoceros Ring and A13 Stellar Overdensities

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Price-Whelan, Adrian M.; Tzanidakis, Anastasios; Johnston, Kathryn V.; Laporte, Chervin F. P.; Sesar, Branimir

    2018-02-01

    The Monoceros Ring (also known as the Galactic Anticenter Stellar Structure) and A13 are stellar overdensities at estimated heliocentric distances of d ∼ 11 kpc and 15 kpc observed at low Galactic latitudes toward the anticenter of our Galaxy. While these overdensities were initially thought to be remnants of a tidally disrupted satellite galaxy, an alternate scenario is that they are composed of stars from the Milky Way (MW) disk kicked out to their current location due to interactions between a satellite galaxy and the disk. To test this scenario, we study the stellar populations of the Monoceros Ring and A13 by measuring the number of RR Lyrae and M giant stars associated with these overdensities. We obtain low-resolution spectroscopy for RR Lyrae stars in the two structures and measure radial velocities to compare with previously measured velocities for M giant stars in the regions of the Monoceros Ring and A13, to assess the fraction of RR Lyrae to M giant stars (f RR:MG) in A13 and Mon/GASS. We perform velocity modeling on 153 RR Lyrae stars (116 in the Monoceros Ring and 37 in A13) and find that both structures have very low f RR:MG. The results support a scenario in which stars in A13 and Mon/GASS formed in the MW disk. We discuss a possible association between Mon/GASS, A13, and the Triangulum-Andromeda overdensity based on their similar velocity distributions and f RR:MG.

  4. Galactic bulge population II Cepheids in the VVV survey: period-luminosity relations and a distance to the Galactic centre

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Rejkuba, M.; Minniti, D.; Surot, F.; Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Romaniello, M.; Kanbur, S. M.; Singh, H. P.

    2017-09-01

    Context. Multiple stellar populations of different ages and metallicities reside in the Galactic bulge that trace its structure and provide clues to its formation and evolution. Aims: We present the near-infrared observations of population II Cepheids in the Galactic bulge from VISTA Variables in the Vía Láctea (VVV) survey. The JHKs photometry together with optical data from Optical Gravitational Lensing Experiment (OGLE) survey provide an independent estimate of the distance to the Galactic centre. The old, metal-poor and low-mass population II Cepheids are also investigated as useful tracers for the structure of the Galactic bulge. Methods: We identify 340 population II Cepheids in the VVV survey Galactic bulge catalogue based on their match with the OGLE-III Catalogue. The single-epoch JH and multi-epoch Ks observations complement the accurate periods and optical (VI) mean-magnitudes from OGLE. The sample consisting of BL Herculis and W Virginis subtypes is used to derive period-luminosity relations after correcting mean-magnitudes for the extinction. Our Ks-band period-luminosity relation, Ks = -2.189(0.056) [log (P)-1] + 11.187(0.032), is consistent with published work for BL Herculis and W Virginis variables in the Large Magellanic Cloud. Results: We present a combined OGLE-III and VVV catalogue with periods, classification, mean magnitudes, and extinction for 264 Galactic bulge population II Cepheids that have good-quality Ks-band light curves. The absolute magnitudes for population II Cepheids and RR Lyraes calibrated using Gaia and Hubble Space Telescope parallaxes, together with calibrated magnitudes for Large Magellanic Cloud population II Cepheids, are used to obtain a distance to the Galactic centre, R0 = 8.34 ± 0.03(stat.) ± 0.41(syst.), which changes by with different extinction laws. While noting the limitation of small number statistics, we find that the present sample of population II Cepheids in the Galactic bulge shows a nearly spheroidal

  5. The EPOCH Project. I. Periodic variable stars in the EROS-2 LMC database

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Won; Protopapas, Pavlos; Bailer-Jones, Coryn A. L.; Byun, Yong-Ik; Chang, Seo-Won; Marquette, Jean-Baptiste; Shin, Min-Su

    2014-06-01

    The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only δ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1906 δ Scuti stars, 6607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. catalog of these EROS-2 LMC periodic variable stars is available at http://stardb.yonsei.ac.kr and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A43

  6. The Carnegie-Chicago Hubble Program. I. An Independent Approach to the Extragalactic Distance Scale Using Only Population II Distance Indicators

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Bono, Giuseppe; Carlson, Erika K.; Clementini, Gisella; Durbin, Meredith J.; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Kollmeier, Juna A.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-12-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3% measurement of the Hubble constant (H 0) using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to H 0 using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble type, of any inclination, and, using old stars in low-density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of H 0 via the distance ladder. Initially, the accuracy of our value of H 0 will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero-point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end “distance ladder” completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to H 0 will allow for the high-precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to H 0. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #13472 and #13691.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, Andrea; Chaboyer, Brian; Layden, Andrew

    New R-band observations of 21 local field RR Lyrae variable stars are used to explore the reliability of minimum light (V - R) colors as a tool for measuring interstellar reddening. For each star, R-band intensity mean magnitudes and light amplitudes are presented. Corresponding V-band light curves from the literature are supplemented with the new photometry, and (V - R) colors at minimum light are determined for a subset of these stars as well as for other stars in the literature. Two different definitions of minimum light color are examined, one which uses a Fourier decomposition to the V andmore » R light curves to find (V - R) at minimum V-band light, (V - R) {sup F} {sub min}, and the other which uses the average color between the phase interval 0.5-0.8, (V - R){sup {phi}}{sup (0.5-0.8)} {sub min}. From 31 stars with a wide range of metallicities and pulsation periods, the mean dereddened RR Lyrae color at minimum light is (V - R) {sup F} {sub min,0} = 0.28 {+-} 0.02 mag and (V - R){sup {phi}}{sup (0.5-0.8)} {sub min,0} = 0.27 {+-} 0.02 mag. As was found by Guldenschuh et al. using (V - I) colors, any dependence of the star's minimum light color on metallicity or pulsation amplitude is too weak to be formally detected. We find that the intrinsic (V - R) of Galactic bulge RR Lyrae stars are similar to those found by their local counterparts and hence that bulge RR0 Lyrae stars do not have anomalous colors as compared to the local RR Lyrae stars.« less

  8. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  9. The Outer Halo of the Milky Way as Probed by RR Lyr Variables from the Palomar Transient Facility

    NASA Astrophysics Data System (ADS)

    Cohen, Judith G.; Sesar, Branimir; Bahnolzer, Sophianna; He, Kevin; Kulkarni, Shrinivas R.; Prince, Thomas A.; Bellm, Eric; Laher, Russ R.

    2017-11-01

    RR Lyrae stars are ideal massless tracers that can be used to study the total mass and dark matter content of the outer halo of the Milky Way (MW). This is because they are easy to find in the light-curve databases of large stellar surveys and their distances can be determined with only knowledge of the light curve. We present here a sample of 112 RR Lyr stars beyond 50 kpc in the outer halo of the MW, excluding the Sgr streams, for which we have obtained moderate-resolution spectra with Deimos on the Keck II Telescope. Four of these have distances exceeding 100 kpc. These were selected from a much larger set of 447 candidate RR Lyr stars that were data-mined using machine-learning techniques applied to the light curves of variable stars in the Palomar Transient Facility database. The observed radial velocities taken at the phase of the variable corresponding to the time of observation were converted to systemic radial velocities in the Galactic standard of rest. From our sample of 112 RR Lyr stars we determine the radial velocity dispersion in the outer halo of the MW to be ˜90 km s-1 at 50 kpc, falling to about 65 km s-1 near 100 kpc once a small number of major outliers are removed. With reasonable estimates of the completeness of our sample of 447 candidates and assuming a spherical halo, we find that the stellar density in the outer halo declines as {r}-4. Based in part on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  10. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella, E-mail: ilaria@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability.more » The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.« less

  11. A Probabilistic Approach to Fitting Period–luminosity Relations and Validating Gaia Parallaxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Fouesneau, Morgan; Bailer-Jones, Coryn A. L.

    Pulsating stars, such as Cepheids, Miras, and RR Lyrae stars, are important distance indicators and calibrators of the “cosmic distance ladder,” and yet their period–luminosity–metallicity (PLZ) relations are still constrained using simple statistical methods that cannot take full advantage of available data. To enable optimal usage of data provided by the Gaia mission, we present a probabilistic approach that simultaneously constrains parameters of PLZ relations and uncertainties in Gaia parallax measurements. We demonstrate this approach by constraining PLZ relations of type ab RR Lyrae stars in near-infrared W 1 and W 2 bands, using Tycho- Gaia Astrometric Solution (TGAS) parallaxmore » measurements for a sample of ≈100 type ab RR Lyrae stars located within 2.5 kpc of the Sun. The fitted PLZ relations are consistent with previous studies, and in combination with other data, deliver distances precise to 6% (once various sources of uncertainty are taken into account). To a precision of 0.05 mas (1 σ ), we do not find a statistically significant offset in TGAS parallaxes for this sample of distant RR Lyrae stars (median parallax of 0.8 mas and distance of 1.4 kpc). With only minor modifications, our probabilistic approach can be used to constrain PLZ relations of other pulsating stars, and we intend to apply it to Cepheid and Mira stars in the near future.« less

  12. The period-luminosity and period-radius relations of Type II and anomalous Cepheids in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Jurkovic, M. I.

    2017-07-01

    Context. Type II Cepheids (T2Cs) and anomalous Cepheids (ACs) are pulsating stars that follow separate period-luminosity relations. Aims: We study the period-luminosity (PL) and period-radius (PR) relations for T2Cs and ACs in the Magellanic Clouds. Methods: In an accompanying paper we determined the luminosities and effective temperatures for the 335 T2Cs and ACs in the LMC and SMC discovered in the OGLE-III survey, by constructing the spectral energy distribution (SED) and fitting this with model atmospheres and a dust radiative transfer model (in the case of dust excess). Building on these results we studied the PL and PR relations of these sources. Using existing pulsation models for RR Lyrae and classical Cepheids we derive the period-luminosity-mass-temperature-metallicity relations and then estimate the pulsation mass. Results: The PL relation for the T2Cs does not appear to depend on metallicity and is Mbol = + 0.12-1.78log P (for P < 50 days), excluding the dusty RV Tau stars. Relations for fundamental and first overtone LMC ACs are also presented. The PR relation for T2C also shows little or no dependence on metallicity or period. Our preferred relation combines SMC and LMC stars and all T2C subclasses and is log R = 0.846 + 0.521log P. Relations for fundamental and first overtone LMC ACs are also presented. The pulsation masses from the RR Lyrae and classical Cepheid pulsation models agree well for the short period T2Cs, the BL Her subtype, and ACs, and are consistent with estimates in the literature, I.e. MBLH 0.49M⊙ and MAC 1.3M⊙, respectively. The masses of the W Vir appear similar to the BL Her. The situation for the pWVir and RV Tau stars is less clear. For many RV Tau the masses are in conflict with the standard picture of (single-star) post-AGB evolution, where the masses are either too large (≳1 M⊙) or too small (≲0.4 M⊙). Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130

  13. Copernicus spectra of beta Lyrae. [in far UV

    NASA Technical Reports Server (NTRS)

    Hack, M.; Hutchings, J. B.; Kondo, Y.; Mccluskey, G. E.; Plavec, M.; Polidan, R. S.

    1974-01-01

    The observations reported were made in August and September 1973. The principal data were scans in the low resolution mode at phases nearly coincident with the two light minima. Shorter scans were obtained at the two quadrature phases. The data show that the secondary component of beta Lyrae is a hotter object than the visible B8 star. The velocity amplitude of the lines suggests that the secondary is the more massive object, by a factor of several times.

  14. Constraints on the Distance Moduli, Helium, and Metal Abundances, and Ages of Globular Clusters from Their RR Lyrae and Non-variable Horizontal Branch Stars. II. Multiple Stellar Populations in 47 Tuc, M3, and M13

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel A.; VandenBerg, Don A.; Kopacki, Grzegorz; Ferguson, Jason W.

    2017-11-01

    We present a new set of horizontal branch (HB) models computed with the MESA stellar evolution code. The models adopt α-enhanced Asplund et al. metal mixtures and include the gravitational settling of He. They are used in our HB population synthesis tool to generate theoretical distributions of HB stars in order to describe the multiple stellar populations in the globular clusters 47 Tuc, M3, and M13. The observed HB in 47 Tuc is reproduced very well by our simulations for [{Fe}/{{H}}]=-0.70 and [α /{Fe}]=+0.4 if the initial helium mass fraction varies by {{Δ }}{Y}0˜ 0.03, and approximately 21%, 37%, and 42% of the stars have {Y}0=0.257, 0.270, and 0.287, respectively. These simulations yield {(m-M)}V=13.27, implying an age near 13.0 Gyr. In the case of M3 and M13, our synthetic HBs for [{Fe}/{{H}}]=-1.55 and [α /{Fe}]=0.4 match the observed ones quite well if M3 has {{Δ }}{Y}0˜ 0.01 and {(m-M)}V=15.02, resulting in an age of 12.6 Gyr, whereas M13 has {{Δ }}{Y}0˜ 0.08 and {(m-M)}V=14.42, implying an age of 12.9 Gyr. Mass loss during giant branch evolution and {{Δ }}{Y}0 appear to be the primary second parameters for M3 and M13. New observations for seven of the nine known RR Lyrae in M13 are also reported. Surprisingly, periods predicted for the c-type variables tend to be too high (by up to ˜0.1 days).

  15. A Detailed Survey of Pulsating Variables in Five Globular Clusters (Abstract)

    NASA Astrophysics Data System (ADS)

    Murphy, B. W.

    2016-12-01

    (Abstract only) Globular clusters are ideal laboratories for conducting a stellar census. Of particular interest are pulsating variables, which provide astronomers with a tool to probe the properties of the stars and the cluster. We observed each of five globular clusters hundreds to thousands of times over a time span ranging from 2 to 4 years in B, V, and I filters using the SARA 0.6-meter telescope located at Cerro Tololo Interamerican Observatory and the 0.9-meter telescope located at Kitt Peak, Arizona. The images were analyzed using difference image analysis to identify and produce light curves of all variables found in each cluster. In total we identified 377 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 319 RR Lyrae variables (193 RR0, 18 RR01, 101 RR1, 7 RR2), 9 SX Phe stars, 5 Cepheid variables, 11 eclipsing variables, and 33 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 3 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 14 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 55 RR0, 57 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 50 RR0, 16 RR1, 4 eclipsing binaries, and 7 long period variables. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the B, V, and I light curves to further analyze the properties of the variable stars and hence the physical properties of each globular cluster.

  16. In-flight performance of the solar UV radiometer LYRA/PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; BenMoussa, A.; Dammasch, I.; Defise, J.-M.; Dominique, M.; Halain, J.-P.; Hochedez, J.-F.; Koller, S.; Schmutz, W.; Schühle, U.

    2017-11-01

    LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload (Fig. 1). The PROBA-2 [1] mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. The mission is tracked by the ESA Redu Mission Operation Center. One of the four scientific instruments is LYRA that monitors the solar irradiance at a high cadence (> 20 Hz) in four soft X-Ray to VUV large passbands: the "Lyman-Alpha" channel, the "Herzberg" continuum range, the "Aluminium" and "Zirconium" filter channels. The radiometric calibration is traceable to synchrotron source standards [3]. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to the strong solar visible light) and, therefore, visible light blocking filters become superfluous. To correlate the data of this new detector technology, silicon detectors with well known characteristics are also embarked. Due to the strict allocated mass and power budget (5 kg, 5W), and poor priority to the payload needs on such platform, an optimization and a robustness of the instrument was necessary. The first switch-on occured on 16 November 2009. Since then the instrument performances have been monitored and analyzed during the commissioning period. This paper presents the first-light and preliminary performance analysis.

  17. Visual Times of Maxima for Short Period Pulsating Stars III

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2018-06-01

    Abstract This compilation contains 524 times of maxima of 9 short period pulsating stars (primarily RR Lyrae stars; RW Cnc, TT Cnc, VZ Cnc, RR Cet, XZ Cyg, DM Cyg, RW Dra, XZ Dra, RR Gem). These were reduced from a portion of the visual observations made from 1966 to 2014 that are included in the AAVSO International Database.

  18. Metal abundance of Tal 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinn, R.; Diaz, A.I.

    1982-08-01

    Low-resolution spectrograms have been obtained of the three RR Lyrae variables in the distant and very sparse globular cluster Pal 13. A comparison of these spectrograms with similar ones of several RR Lyrae variables in the globular clusters M4, M5, and M22 reveals that Pal 13 is intermediate to M5 and M22 in metal abundance. A value of (Fe/H) = -1.67 +- 0.15 is obtained for Pal 13 by adopting Zinn's (1980a (Astrophys. J. Suppl. 42,19)) values of (Fe/H) for these other clusters. Pal 13 is another example of a distant halo object that is not extremely metal poor.

  19. A Look at the Milky Way's Outskirts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    Studying the large-scale structure of the Milky Way is difficult given that were stuck in its interior which means we cant step back for a broad overview of our home. Instead, a recent study uses distant variable stars to map out a picture of whats happening in the outskirts of our galaxy.Mapping with TracersPhase-folded light curve for two of the RR Lyrae stars in the authors sample, each with hundreds of observations over 7 years. [Cohen et al. 2017]Since observing the Milky Way from the outside isnt an option, we have to take creative approaches to mapping its outer regions and measuring its total mass and dark matter content. One tool used by astronomers is tracers: easily identifiable stars that can be treated as massless markers moving only as a result of the galactic potential. Mapping the locations and motions of tracers allows us to measure the larger properties of the galaxy.RR Lyrae stars are low-mass, variable stars that make especially good tracers. They pulsate predictably on timescales of less than a day, creating distinctive light curves that can easily be distinguished and tracked in wide-field optical imaging surveys over long periods of time. Their brightness makes them detectable out to large distances, and their blue color helps to separate them from contaminating stars in the foreground.Best of all, RR Lyrae stars are very nearly standard candles: their distances can be determined precisely with only knowledge of their measured light curves.Locations on the sky of the several hundred outer-halo RR Lyrae stars in the authors original sample. The red curve shows the location of the Sagittarius stream, an ordered structure the authors avoided so as to only have unassociated stars in their sample. [Cohen et al. 2017]Distant VariablesIn a new study led by Judith Cohen (California Institute of Technology), the signals of hundreds of distant RR Lyrae stars were identified in observations of transient objects made with the Palomar Transient Factory

  20. The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-Infrared Observations of Cepheids

    NASA Technical Reports Server (NTRS)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andy; Persson, S. E.; Rich, Jeff; Seibert, Mark; Rigby, Jane R.

    2016-01-01

    Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the Small Magellanic Cloud (SMC) to be18.96 +/- 0.01 stat +/- 0.03sys mag (corresponding to 62+/- 0.3kpc), which is 0.48 +/- 0.01 mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid-infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.

  1. Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.; Bezbatko, D. N.

    2018-04-01

    The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.

  2. Clustering of local group distances: publication bias or correlated measurements? I. The large Magellanic cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Grijs, Richard; Wicker, James E.; Bono, Giuseppe

    2014-05-01

    The distance to the Large Magellanic Cloud (LMC) represents a key local rung of the extragalactic distance ladder yet the galaxy's distance modulus has long been an issue of contention, in particular in view of claims that most newly determined distance moduli cluster tightly—and with a small spread—around the 'canonical' distance modulus, (m – M){sub 0} = 18.50 mag. We compiled 233 separate LMC distance determinations published between 1990 and 2013. Our analysis of the individual distance moduli, as well as of their two-year means and standard deviations resulting from this largest data set of LMC distance moduli available tomore » date, focuses specifically on Cepheid and RR Lyrae variable-star tracer populations, as well as on distance estimates based on features in the observational Hertzsprung-Russell diagram. We conclude that strong publication bias is unlikely to have been the main driver of the majority of published LMC distance moduli. However, for a given distance tracer, the body of publications leading to the tightly clustered distances is based on highly non-independent tracer samples and analysis methods, hence leading to significant correlations among the LMC distances reported in subsequent articles. Based on a careful, weighted combination, in a statistical sense, of the main stellar population tracers, we recommend that a slightly adjusted canonical distance modulus of (m – M){sub 0} = 18.49 ± 0.09 mag be used for all practical purposes that require a general distance scale without the need for accuracies of better than a few percent.« less

  3. On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period–Luminosity–Metallicity Relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeley, Jillian R.; Marengo, Massimo; Trueba, Nicolas

    2017-06-01

    We present new theoretical period–luminosity–metallicity (PLZ) relations for RR Lyræ stars (RRLs) at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range of metal abundances ( Z = 0.0001–0.0198). In deriving the light curves, we tested two sets of atmospheric models and found no significant difference between the resulting mean magnitudes. We also compare our theoretical relations to empirical relations derived from RRLs in both the field and in the globular cluster M4. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus, μ {submore » 0}, and extinction, A {sub V}, of both the individual Galactic RRL and of the cluster M4. The results for the Galactic RRL are consistent with trigonometric parallax measurements from Gaia ’ s first data release. For M4, we find a distance modulus of μ {sub 0} = 11.257 ± 0.035 mag with A {sub V}= 1.45 ± 0.12 mag, which is consistent with measurements from other distance indicators. This analysis has shown that, when considering a sample covering a range of iron abundances, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to ∼0.02 mag at mid-infrared wavelengths.« less

  4. The System of Secondary Periodicities and Resonances Based on β Lyrae Magnetic Field

    NASA Astrophysics Data System (ADS)

    Skulsky, M. Yu.

    Original integral interconsistent and interconnected magnetohydrodynamical system of periodicities and resonances over their long-time variabilities is developed. The study is based upon three different observed secondary periods in β Lyrae system and taking into account geometrical features of the nonstandard magnetic field in a losing star, as well as due to the asynchronizm of the orbital and rotational periods.

  5. Evidence for a temperature rise in the outer layers of alpha Lyrae, from Copernicus observations of Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Praderie, F.; Simonneau, E.; Snow, T. P., Jr.

    1975-01-01

    Copernicus satellite observations of the Ly-alpha profiles in alpha Lyrae (Vega) are used to determine whether classical radiative-equilibrium LTE model atmospheres can fit the thermal structure in the outer layers of that star. Two plane-parallel LTE model photospheres of alpha Lyrae are considered: a line-blanketed radiative-equilibrium model with an effective temperature of 9650 K and log g of 4.05, and the same model with a temperature of 9500 K and log g of 4.0. The profiles of the Ly-alpha wings are computed, and it is found that classical LTE models are unable to predict either the observed violet wing or the red wing longwards of 1239 A, regardless of the line source function. It is concluded that the electron temperature must increase outwards over the surface value reached in radiative equilibrium.

  6. A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Criscienzo, M.; Greco, C.; Ripepi, V.

    We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two {delta} Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistentmore » with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is {mu}{sub 0} (NGC 2419) = 19.71 {+-} 0.08 mag (D = 87.5 {+-} 3.3 kpc), with E(B - V) = 0.08 {+-} 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M{sub V} that sets {mu}{sub 0} (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.« less

  7. The BUSS spectrum of Beta Lyrae. [Balloon-borne Ultraviolet Stellar Spectrograph

    NASA Technical Reports Server (NTRS)

    Hack, M.; Sahade, J.; De Jager, C.; Kondo, Y.

    1983-01-01

    The spectrum of Beta Lyrae from about 1975 to 3010 A taken with the Balloon-borne ultraviolet Stellar Spectrograph experiment in May 1976 at phase 0.61 P is analyzed. Results show the presence of N II semi-forbidden emission and provide evidence for about the same location, in the outer envelope of the system, of the layers responsible for the resonance Mg II doublet emissions and for the "narrow" H-alpha emission. In addition, three sets of absorption lines, P Cygni profiles of Fe III and broad Beals Type III emissions of Mg II, are found to be present.

  8. Pulsating stars in ω Centauri. Near-IR properties and period-luminosity relations

    NASA Astrophysics Data System (ADS)

    Navarrete, Camila; Catelan, Márcio; Contreras Ramos, Rodrigo; Alonso-García, Javier; Gran, Felipe; Dékány, István; Minniti, Dante

    2017-09-01

    ω Centauri (NGC 5139) contains many variable stars of different types, including the pulsating type II Cepheids, RR Lyrae and SX Phoenicis stars. We carried out a deep, wide-field, near-infrared (IR) variability survey of ω Cen, using the VISTA telescope. We assembled an unprecedented homogeneous and complete J and KS near-IR catalog of variable stars in the field of ω Cen. In this paper we compare optical and near-IR light curves of RR Lyrae stars, emphasizing the main differences. Moreover, we discuss the ability of near-IR observations to detect SX Phoenicis stars given the fact that the amplitudes are much smaller in these bands compared to the optical. Finally, we consider the case in which all the pulsating stars in the three different variability types follow a single period-luminosity relation in the near-IR bands.

  9. Visual Times of Maxima for Short Period Pulsating Stars II

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2017-12-01

    This compilation contains 631 times of maxima of 8 short period pulsating stars (primarily RR Lyrae). These were reduced from a portion of the visual observations made from 1966 to 2014 that are included in the AAVSO International Database.

  10. Bianchi type-I universe in Lyra manifold with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Şen, R.; Aygün, S.

    2017-02-01

    In this study, we have solved Einstein field equations for Bianchi type I universe model in Lyra manifold with quadratic equation of state (EoS) p = ap(t)2 - ρ(t). Where α ≠0 is an important constant. Cosmic pressure, density and displacement vector (β2) are related with α constant. In this study β2 is a decreasing function of time and behaves like a cosmological constant. These solutions agree with the studies of Halford, Pradhan and Singh, Aygün et al., Agarwal et al., Yadav and Haque as well as SN Ia observations.

  11. Measurements of Beta Lyrae at the Pine Mountain Observatory Summer Workshop 2011

    NASA Astrophysics Data System (ADS)

    Carro, Joseph; Chamberlain, Rebecca; Schuler, Marisa; Varney, Timothy; Ewing, Robert; Genet, Russell

    2012-04-01

    As part of the Pine Mountain Observatory Summer Workshop 2011, high school and college students joined with an experienced observer to learn the use of a telescope, astrometric techniques, and measure a double star. This workshop was the first time these students operated a telescope, and, thus, constituted an educational experience for them as they used the telescope and took the measurements. The double star Beta Lyrae was measured resulting in a separation of 44.3 arc seconds and a position angle of 151.6 degrees. The Washington Double Star catalog (2009 data) lists a separation of 45.4 arc seconds and a position angle of 148 degrees.

  12. High temperature plasma in beta Lyrae, observed from Copernicus

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Hack, M.; Hutchings, J. B.; Mccluskey, G. E., Jr.; Plavec, M.; Polidan, R. S.

    1975-01-01

    High-resolution UV spectrophotometry of the complex close binary system beta Lyrae was performed with a telescope spectrometer on board Copernicus. Observations were made at phases 0.0, 0.25, 0.5, and 0.75 with resolutions of 0.2 A (far-UV) and 0.4 A (mid-UV). The far-UV spectrum is completely dominated by emission lines indicating the existence of a high-temperature plasma in this binary. The spectrum of this object is unlike that of any other object observed from Copernicus. It is believed that this high-temperature plasma results from dynamic mass transfer taking place in the binary. The current results are compared with OAO-2 observations and other observational results. The possibility that the secondary component is a collapsed object is also discussed; the Copernicus observations are consistent with the hypothesis that the spectroscopically invisible secondary component is a black hole.

  13. VizieR Online Data Catalog: M30 V1-V3 variable light curves (Rosino, 1949)

    NASA Astrophysics Data System (ADS)

    Rosino, L.

    2013-05-01

    Time-series photographic photometry for the variable stars V1-V3 in M30. We add the light curve of V1 from Rosini, 1961, Contr. Asiago-Padova, 117, "Osservazioni di due variabili peculiari e d'una variabile tipo RR Lyrae in ammassi stellari" (4 data files).

  14. Revisiting the variable star population in NGC 6229 and the structure of the horizontal branch

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Mancera Piña, P. E.; Bramich, D. M.; Giridhar, Sunetra; Ahumada, J. A.; Kains, N.; Kuppuswamy, K.

    2015-09-01

    We report an analysis of new V and I CCD time series photometry of the distant globular cluster NGC 6229. The principal aims were to explore the field of the cluster in search of new variables, and to Fourier decompose the RR Lyrae light curves in pursuit of physical parameters. We found 25 new variables: 10 RRab, 5 RRc, 6 SR, 1 CW, 1 SX Phe, and 2 that we were unable to classify. Secular period changes were detected and measured in some favourable cases. The classifications of some of the known variables were rectified. The Fourier decomposition of RRab and RRc light curves was used to independently estimate the mean cluster value of [Fe/H] and distance. From the RRab stars we found [Fe/H]UVES = -1.31 ± 0.01(statistical) ± 0.12(systematic) ([Fe/H]ZW = -1.42) and a distance of 30.0 ± 1.5 kpc, and from the RRc stars we found [Fe/H]UVES = -1.29 ± 0.12 and a distance of 30.7 ± 1.1 kpc, respectively. Absolute magnitudes, radii and masses are also reported for individual RR Lyrae stars. Also discussed are the independent estimates of the cluster distance from the tip of the red giant branch, 34.9 ± 2.4 kpc and from the period-luminosity relation of SX Phe stars, 28.9 ± 2.2 kpc. The distribution of RR Lyrae stars in the horizontal branch shows a clear empirical border between stable fundamental and first overtone pulsators which has been noted in several other clusters; we interpret it as the red edge of the first overtone instability strip.

  15. Random variations in the ultraviolet spectrum of Beta Lyrae

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Eaton, J. A.; Meade, M. R.

    1977-01-01

    Spectrophotometric scans of Beta Lyrae over the wavelength range from 1100 to 3700 A are analyzed which were obtained at different times with different resolutions by the OAO 2 satellite and from the ground. A model atmosphere with normal H and He abundances, an electron temperature of 11,000 K, and log g of 3.0 is found to fit the visual region of the spectrum well but to be a poor representation in the Balmer continuum. It is shown that a large complex emission feature dominates the spectrum from about 1700 to 2200 A, that there is a very pronounced strengthening of the spectrum just shortward of the 1550-A C IV feature at phase 0.69, and that the overall level of the spectrum shortward of 1400 A is quite high in comparison with the broad emission feature. A model is discussed in which the light from a disk-shaped secondary is highly concentrated toward the polar regions.

  16. MONITORING H{alpha} EMISSION AND CONTINUUM OF UXORs: RR Tauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, Megan; Villaume, Alexa; Weiss, Lauren

    2011-11-15

    The Maria Mitchell Observatory, in collaboration with the Astrokolkhoz Observatory, started a program of photometric monitoring of UX Ori-type stars (UXORs) with narrowband interference filters (IFs; augmented with the traditional broadband filters) aimed at separating the H{alpha} emission variations from those of the continuum. We present the method of separation and the first results for RR Tau obtained in two seasons, each roughly 100 days long (2010 Winter-Spring and 2010 Fall-2011 Spring). We confirm the conclusion from previous studies that the H{alpha} emission in this star is less variable than the continuum. Although some correlation between the two is notmore » excluded, the amplitude of H{alpha} variations is much smaller (factors of 3-5) than that of the continuum. These results are compatible with Grinin's model of UXORs, which postulates the presence of small obscuring circumstellar clouds as the cause of the continuum fading, as well as the presence of a circumstellar reflection/emission nebula, larger than the star and the obscuring clouds, which is responsible for H{alpha} emission and the effect of the 'color reversal' in deep minima. However, the results of both our broadband and narrowband photometry indicate that the obscuration model may be insufficient to explain all of the observations. Disk accretion, the presence of stellar or (proto) planetary companion(s), as well as the intrinsic variations of the star, may contribute to the observed light variations. We argue, in particular, that the H{alpha} emission may be more closely correlated with the intrinsic variations of the star than with the much stronger observed variations caused by the cloud obscuration. If this hypothesis is correct, the close monitoring of H{alpha} emission with IFs, accessible to small-size telescopes, may become an important tool in studying the physical nature of the UXORs' central stars.« less

  17. The tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies: II. Computer Simulations

    NASA Technical Reports Server (NTRS)

    Madore, B. F.; Freedman, W. L.

    1994-01-01

    Based on both empirical data for nearby galaxies, and on computer simulations, we show that measuring the position of the tip of the first-ascent red-giant branch (TRGB) provides a means of obtaining the distances to nearby galaxies with a precision and accuracy comparable to using Cepheids and/or RR Lyrae variables.

  18. Substructures and Tidal Distortions in the Magellanic Stellar Periphery

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal; Koposov, Sergey; Da Costa, Gary; Belokurov, Vasily; Erkal, Denis; Kuzma, Pete

    2018-05-01

    We use a new panoramic imaging survey conducted with the Dark Energy Camera to map the stellar fringes of the Large and Small Magellanic Clouds (LMC/SMC) to extremely low surface brightness V ≈ 32 mag arcsec‑2. Our results starkly illustrate the closely interacting nature of the LMC–SMC pair. We show that the outer LMC disk is strongly distorted, exhibiting an irregular shape, evidence for warping, and significant truncation on the side facing the SMC. Large diffuse stellar substructures are present both to the north and south of the LMC, and in the inter-Cloud region. At least one of these features appears as co-spatial with the bridge of RR Lyrae stars that connects the Clouds. The SMC is highly disturbed; we confirm the presence of tidal tails, as well as a large line-of-sight depth on the side closest to the LMC. Young, intermediate-age, and ancient stellar populations in the SMC exhibit strikingly different spatial distributions. In particular, those with ages ∼1.5–4 Gyr exhibit a spheroidal distribution with a centroid offset from that of the oldest stars by several degrees toward the LMC. We speculate that the gravitational influence of the LMC may already have been perturbing the gaseous component of the SMC several Gyr ago. With careful modeling, the variety of substructures and tidal distortions evident in the Magellanic periphery should tightly constrain the interaction history of the Clouds.

  19. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrealba, G.; Belokurov, V.; Koposov, S. E.

    Here, we report the discovery of two ultra-faint satellites in the vicinity of the Large Magellanic Cloud (LMC) in data from the Magellanic Satellites Survey (MagLiteS). Situated 18more » $$^{\\circ}$$ ($$\\sim 20$$ kpc) from the LMC and separated from each other by only $$18^\\prime$$, Carina~II and III form an intriguing pair. By simultaneously modeling the spatial and the color-magnitude stellar distributions, we find that both Carina~II and Carina~III are likely dwarf galaxies, although this is less clear for Carina~III. There are in fact several obvious differences between the two satellites. While both are well described by an old and metal poor population, Carina~II is located at $$\\sim 36$$ kpc from the Sun, with $$M_V\\sim-4.5$$ and $$r_h\\sim 90$$ pc, and it is further confirmed by the discovery of 3 RR Lyrae at the right distance. In contrast, Carina~III is much more elongated, measured to be fainter ($$M_V\\sim-2.4$$), significantly more compact ($$r_h\\sim30$$ pc), and closer to the Sun, at $$\\sim 28$$ kpc, placing it only 8 kpc away from Car~II. Together with several other systems detected by the Dark Energy Camera, Carina~II and III form a strongly anisotropic cloud of satellites in the vicinity of the Magellanic Clouds.« less

  20. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS

    DOE PAGES

    Torrealba, G.; Belokurov, V.; Koposov, S. E.; ...

    2018-01-23

    Here, we report the discovery of two ultra-faint satellites in the vicinity of the Large Magellanic Cloud (LMC) in data from the Magellanic Satellites Survey (MagLiteS). Situated 18more » $$^{\\circ}$$ ($$\\sim 20$$ kpc) from the LMC and separated from each other by only $$18^\\prime$$, Carina~II and III form an intriguing pair. By simultaneously modeling the spatial and the color-magnitude stellar distributions, we find that both Carina~II and Carina~III are likely dwarf galaxies, although this is less clear for Carina~III. There are in fact several obvious differences between the two satellites. While both are well described by an old and metal poor population, Carina~II is located at $$\\sim 36$$ kpc from the Sun, with $$M_V\\sim-4.5$$ and $$r_h\\sim 90$$ pc, and it is further confirmed by the discovery of 3 RR Lyrae at the right distance. In contrast, Carina~III is much more elongated, measured to be fainter ($$M_V\\sim-2.4$$), significantly more compact ($$r_h\\sim30$$ pc), and closer to the Sun, at $$\\sim 28$$ kpc, placing it only 8 kpc away from Car~II. Together with several other systems detected by the Dark Energy Camera, Carina~II and III form a strongly anisotropic cloud of satellites in the vicinity of the Magellanic Clouds.« less

  1. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS

    NASA Astrophysics Data System (ADS)

    Torrealba, G.; Belokurov, V.; Koposov, S. E.; Bechtol, K.; Drlica-Wagner, A.; Olsen, K. A. G.; Vivas, A. K.; Yanny, B.; Jethwa, P.; Walker, A. R.; Li, T. S.; Allam, S.; Conn, B. C.; Gallart, C.; Gruendl, R. A.; James, D. J.; Johnson, M. D.; Kuehn, K.; Kuropatkin, N.; Martin, N. F.; Martinez-Delgado, D.; Nidever, D. L.; Noël, N. E. D.; Simon, J. D.; Stringfellow, G. S.; Tucker, D. L.

    2018-04-01

    We report the discovery of two ultra-faint satellites in the vicinity of the Large Magellanic Cloud (LMC) in data from the Magellanic Satellites Survey (MagLiteS ). Situated 18 deg (˜20 kpc) from the LMC and separated from each other by only 18 arcmin, Carina II and III form an intriguing pair. By simultaneously modelling the spatial and the colour-magnitude stellar distributions, we find that both Carina II and Carina III are likely dwarf galaxies, although this is less clear for Carina III. There are in fact several obvious differences between the two satellites. While both are well described by an old and metal poor population, Carina II is located at ˜36 kpc from the Sun, with MV ˜ -4.5 and rh ˜ 90 pc, and it is further confirmed by the discovery of 3 RR Lyrae at the right distance. In contrast, Carina III is much more elongated, measured to be fainter (MV ˜ -2.4), significantly more compact (rh ˜ 30 pc), and closer to the Sun, at ˜28 kpc, placing it only 8 kpc away from Car II. Together with several other systems detected by the Dark Energy Camera, Carina II and III form a strongly anisotropic cloud of satellites in the vicinity of the Magellanic Clouds.

  2. The RR Lyrae variables in the globular cluster M68

    NASA Technical Reports Server (NTRS)

    Clement, Christine M.; Ferance, Stephen; Simon, Norman R.

    1993-01-01

    New observations, made with the Helen Sawyer Hogg telescope at Las Campanas, have been analyzed in a search for double-mode pulsators (RRd stars) in the metal-poor globular cluster, Messier 68. Of the 30 stars studied, nine have been identified as RRd stars; V33, which exhibited the characteristics of an RRd star in 1950, now appears to be an RRc star. Reliable periods and period ratios have been determined for six of the RRd stars. Masses for these RRd stars, calculated from fitting formulas given by Kovacs et al. (1991), range from 0.75 to 0.90 solar mass, depending on the assumed luminosity and metal abundance. These masses are in the same range as those for the RRd stars in M 15, whose RRd sample resembles that of M68 very closely. Fourier parameters determined for the light curves of the M68 variables show that the RRc stars in the two clusters are also very similar. In particular, on the plot of phase parameter phi sub 31 with period, the M15 and M68 RRc samples are virtually indistinguishable. A comparison of the new M68 observations with observations made 40 yr ago shows that the periods of some of the stars have changed, but the 40 yr interval is too short for detecting period changes caused by evolutionary effects.

  3. The variable star population in the globular cluster NGC 6934

    NASA Astrophysics Data System (ADS)

    Yepez, M. A.; Arellano Ferro, A.; Muneer, S.; Giridhar, Sunetra

    2018-04-01

    We report an analysis of new V and I CCD time-series photometry of the globular cluster NGC 6934. Through the Fourier decomposition of the RR Lyrae light curves the mean values of [Fe/H] and the distance of the cluster were estimated; we found: [Fe/H]UVES = - 1.48 ± 0.14 and d = 16.03 ± 0.42 kpc, and [Fe/H]UVES = - 1.43 ± 0.11 and d = 15.91 ± 0.39 kpc, from the calibrations of RRab and RRc stars respectively. Independent distance estimations from SX Phe and SR stars are also discussed. Individual absolute magnitudes, radii and masses are also reported for RR Lyrae stars. We found 12 new variables: 4 RRab, 3 SX Phe, 2 W Virginis (CW) and 3 semi-regular (SR). The inter-mode or "either-or" region in the instability strip is shared by the RRab and RRc stars. This characteristic, observed only in some OoI clusters and never seen in an OoII, is discussed in terms of mass distribution in the ZAHB.

  4. AH Leo and the Blazhko Effect

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Gay, P. L.

    2004-12-01

    We obtained 563 V-Band observations of AH Leo between January 27 and May 12, 2004. All observations were obtained with a 12-inch Schmidt-Cassegrain located on the island of Saipan, in the Commonwealth of the Northern Mariana Islands. We show that AH Leo is a type RRab RR Lyrae star with a minimum magnitude of V=14.658 magnitudes, a maximum amplitude of 0.989 magnitudes and a minimum amplitude of perhaps just 0.4 magnitudes. Its primary period is 0.4662609 days. Our observations also confirm the presence of the Blazhko effect, which had previously been detected by Smith and Gay (private communication) in 1993 and 1994. We estimate the Blazhko period to be roughly 20-days, however poor phase coverage at maximum light makes exact determination impossible. We also note that the bump during minimum, which is common in many RR Lyraes, varied throughout the Blazhko cycle, demonstrating amplitudes between 0 and 0.15 magnitudes. We would like to thank Sarah Maddison and Swinburne Astronomy Online for supporting this project

  5. The use of WaveLight® Contoura to create a uniform cornea: the LYRA Protocol. Part 1: the effect of higher-order corneal aberrations on refractive astigmatism.

    PubMed

    Motwani, Manoj

    2017-01-01

    To demonstrate how higher-order corneal aberrations can cancel out, modify, or induce lower-order corneal astigmatism. Six representative eyes are presented that show different scenarios in which higher-order aberrations interacting with corneal astigmatism can affect the manifest refraction. WaveLight ® Contoura ablation maps showing the higher-order aberrations are shown, as are results of correction with full measured correction using the LYRA (Layer Yolked Reduction of Astigmatism) Protocol. Higher-order corneal aberrations such as trefoil, quadrafoil, and coma can create ovalization of the central cornea, which can interact with the ovalization caused by lower-order astigmatism to either induce, cancel out, or modify the manifest refraction. Contoura processing successfully determines the linkage of these interactions resulting in full astigmatism removal. Purely lenticular astigmatism appears to be rare, but a case is also demonstrated. The author theorizes that all aberrations require cerebral compensatory processing and can be removed, supported by the facts that full removal of aberrations and its linkage with lower-order astigmatism with the LYRA Protocol has not resulted in worse or unacceptable vision for any patients. Higher-order aberrations interacting with lower-order astigmatism is the main reason for the differences between manifest refraction and Contoura measured astigmatism, and the linkage between these interactions can be successfully treated using Contoura and the LYRA Protocol. Lenticular astigmatism is relatively rare.

  6. RR-Interval variance of electrocardiogram for atrial fibrillation detection

    NASA Astrophysics Data System (ADS)

    Nuryani, N.; Solikhah, M.; Nugoho, A. S.; Afdala, A.; Anzihory, E.

    2016-11-01

    Atrial fibrillation is a serious heart problem originated from the upper chamber of the heart. The common indication of atrial fibrillation is irregularity of R peak-to-R-peak time interval, which is shortly called RR interval. The irregularity could be represented using variance or spread of RR interval. This article presents a system to detect atrial fibrillation using variances. Using clinical data of patients with atrial fibrillation attack, it is shown that the variance of electrocardiographic RR interval are higher during atrial fibrillation, compared to the normal one. Utilizing a simple detection technique and variances of RR intervals, we find a good performance of atrial fibrillation detection.

  7. The use of WaveLight® Contoura to create a uniform cornea: the LYRA Protocol. Part 1: the effect of higher-order corneal aberrations on refractive astigmatism

    PubMed Central

    Motwani, Manoj

    2017-01-01

    Purpose To demonstrate how higher-order corneal aberrations can cancel out, modify, or induce lower-order corneal astigmatism. Patients and methods Six representative eyes are presented that show different scenarios in which higher-order aberrations interacting with corneal astigmatism can affect the manifest refraction. WaveLight® Contoura ablation maps showing the higher-order aberrations are shown, as are results of correction with full measured correction using the LYRA (Layer Yolked Reduction of Astigmatism) Protocol. Results Higher-order corneal aberrations such as trefoil, quadrafoil, and coma can create ovalization of the central cornea, which can interact with the ovalization caused by lower-order astigmatism to either induce, cancel out, or modify the manifest refraction. Contoura processing successfully determines the linkage of these interactions resulting in full astigmatism removal. Purely lenticular astigmatism appears to be rare, but a case is also demonstrated. The author theorizes that all aberrations require cerebral compensatory processing and can be removed, supported by the facts that full removal of aberrations and its linkage with lower-order astigmatism with the LYRA Protocol has not resulted in worse or unacceptable vision for any patients. Conclusion Higher-order aberrations interacting with lower-order astigmatism is the main reason for the differences between manifest refraction and Contoura measured astigmatism, and the linkage between these interactions can be successfully treated using Contoura and the LYRA Protocol. Lenticular astigmatism is relatively rare. PMID:28553069

  8. Ventricular Cycle Length Characteristics Estimative of Prolonged RR Interval during Atrial Fibrillation

    PubMed Central

    CIACCIO, EDWARD J.; BIVIANO, ANGELO B.; GAMBHIR, ALOK; EINSTEIN, ANDREW J.; GARAN, HASAN

    2014-01-01

    Background When atrial fibrillation (AF) is incessant, imaging during a prolonged ventricular RR interval may improve image quality. It was hypothesized that long RR intervals could be predicted from preceding RR values. Methods From the PhysioNet database, electrocardiogram RR intervals were obtained from 74 persistent AF patients. An RR interval lengthened by at least 250 ms beyond the immediately preceding RR interval (termed T0 and T1, respectively) was considered prolonged. A two-parameter scatterplot was used to predict the occurrence of a prolonged interval T0. The scatterplot parameters were: (1) RR variability (RRv) estimated as the average second derivative from 10 previous pairs of RR differences, T13–T2, and (2) Tm–T1, the difference between Tm, the mean from T13 to T2, and T1. For each patient, scatterplots were constructed using preliminary data from the first hour. The ranges of parameters 1 and 2 were adjusted to maximize the proportion of prolonged RR intervals within range. These constraints were used for prediction of prolonged RR in test data collected during the second hour. Results The mean prolonged event was 1.0 seconds in duration. Actual prolonged events were identified with a mean positive predictive value (PPV) of 80% in the test set. PPV was >80% in 36 of 74 patients. An average of 10.8 prolonged RR intervals per 60 minutes was correctly identified. Conclusions A method was developed to predict prolonged RR intervals using two parameters and prior statistical sampling for each patient. This or similar methodology may help improve cardiac imaging in many longstanding persistent AF patients. PMID:23998759

  9. Spectral of electrocardiographic RR intervals to indicate atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Nuryani, Nuryani; Satrio Nugroho, Anto

    2017-11-01

    Atrial fibrillation is a serious heart diseases, which is associated on the risk of death, and thus an early detection of atrial fibrillation is necessary. We have investigated spectral pattern of electrocardiogram in relation to atrial fibrillation. The utilized feature of electrocardiogram is RR interval. RR interval is the time interval between a two-consecutive R peaks. A series of RR intervals in a time segment is converted to a signal with a frequency domain. The frequency components are investigated to find the components which significantly associate to atrial fibrillation. A segment is defined as atrial fibrillation or normal segments by considering a defined number of atrial fibrillation RR in the segment. Using clinical data of 23 patients with atrial fibrillation, we find that the frequency components could be used to indicate atrial fibrillation.

  10. Degradation of microcystin-RR using boron-doped diamond electrode.

    PubMed

    Zhang, Chunyong; Fu, Degang; Gu, Zhongze

    2009-12-30

    Microcystins (MCs), produced by blue-green algae, are one of the most common naturally occurring toxins found in natural environment. The presence of MCs in drinking water sources poses a great threat to people's health. In this study, the degradation behavior of microcystin-RR on boron-doped diamond (BDD) electrode was investigated under galvanostatic conditions. Such parameters as reaction time, supporting electrolyte and applied current density were varied in order to determine their effects on this oxidation process. The experimental results revealed the suitability of electrochemical processes employing BDD electrode for removing MC-RR from the solution. However, the efficient removal of MC-RR only occurred in the presence of sodium chloride that acted as redox mediators and the reaction was mainly affected by the chloride concentration (c(NaCl)) and applied current density (I(appl)). Full and quick removal of 0.50 microg/ml MC-RR in solution was achieved when the operating conditions of c(NaCl) and I(appl) were 20mM and 46.3 mA/cm(2), or 35 mM and 18.2 mA/cm(2) respectively. The kinetics for MC-RR degradation followed a pesudo-first order reaction in most cases, indicating the process was under mass transfer control. As a result of its excellent performance, the BDD technology could be considered as a promising alternative to promote the degradation of MC-RR than chlorination in drinking water supplies.

  11. Spectrophotometry of pulsating stars at Oukaimeden Observatory in Morocco

    NASA Astrophysics Data System (ADS)

    Benhida, Abdelmjid; sefyani, Fouad; de France, Thibault; Elashab, Sana; Zohra Belharcha, fatim; Gillet, Denis; Mathias, phillipe; Daassou, Ahmed; Lazrek, Mohamed; Benkhaldoun, Zouhair

    2015-08-01

    Location of modern observatories requires high sky quality: good weather, isolated site to avoid any pollution, high altitude for a better transparency and to reduce temperature gradients, the main source of atmospheric turbulence. With an altitude of 2750m, the region of Oukaimeden in Morocco (longitude: 7°52'052" West, latitude: 3°112032" North) meets most of these criteriaWith its 10'' and 14'' dedicated telescopes operating in remote control modes that combines high precision photometry and high resolution spectroscopy (spectrograph Eshell of R~12000 resolution over a wide spectral range), the universitary observatory of Oukaimeden (code J43) aims to develop new thematics in addition to present science. In particular, through this instrumentation, we aim to develop the field of pulsating stars, especially the atmospheric dynamics of high amplitude pulsators such as RR Lyrae and RV Tauri star, in order to establish new models of the mechanical and thermal behaviour of their atmospheres (shock waves, relaxation time, energy loss...).In this work we will first describe our measuring instruments, and then analyze spectra and photometric curves of RR Lyrae star obtained during the maximum of the Blazhko effect.

  12. New Variable Stars Discovered by Data Mining Images Taken During Recent Asteroid Photometric Observations. Results from the Year 2015

    NASA Astrophysics Data System (ADS)

    Papini, R.; Franco, L.; Marchini, A.; Salvaggio, F.

    2015-12-01

    During the past year the authors observed several asteroids for the purpose of determining the rotational period. Typically, this task requires a time series images acquisition on a single field for all the night, weather permitting, for a few nights although not consecutive. Routinely checking this "goldmine," allowed us to discover 14 variable stars not yet listed in catalogs or databases. While the most of the new variables are eclipsing binaries (GSC 01394-01889, GSC 00853-00371, CSS_J171124.7-004042, GSC05065-00218, UCAC4-386-142199, UCAC4 398-127457, UCAC4 384-148138, UCAC4 398-127590, UCAC4-383-155837, GSC-05752-01113, GSC 05765-01271), a few belong to RR Lyrae class (UCAC4 388-136835, 2MASS J20060657-1230376, UCAC4 386-142583). Since asteroid work is definitely time-consuming, follow-up is quite a difficult task for a small group. Further observations of these new variables are therefore strongly encouraged in order to better characterize these stars, especially RR Lyrae ones whose data combined with those taken during professional surveys seem to suggest the presence of a Blazhko effect.

  13. Report on the Photometric Observations of the Variable Stars DH Pegasi, DY Pegasi, and RZ Cephei

    NASA Astrophysics Data System (ADS)

    Abu-Sharkh, I.; Fang, S.; Mehta, S.; Pham, D.

    2014-12-01

    We report 872 observations on two RR Lyrae variable stars, DH Pegasi and RZ Cephei, and on one SX Phoenicis variable, DY Pegasi. This paper discusses the methodology of our measurements, the light curves, magnitudes, epochs, and epoch prediction of the above stars. We also derived the period of DY Pegasi. All measurements and analyses are compared with prior publications and known values from multiple databases.

  14. Establishing the Galactic Centre distance using VVV Bulge RR Lyrae variables

    NASA Astrophysics Data System (ADS)

    Majaess, D.; Dékány, I.; Hajdu, G.; Minniti, D.; Turner, D.; Gieren, W.

    2018-06-01

    This study's objective was to exploit infrared VVV (VISTA Variables in the Via Lactea) photometry for high latitude RRab stars to establish an accurate Galactic Centre distance. RRab candidates were discovered and reaffirmed (n=4194) by matching Ks photometry with templates via χ 2 minimization, and contaminants were reduced by ensuring targets adhered to a strict period-amplitude (Δ Ks) trend and passed the Elorietta et al. classifier. The distance to the Galactic Centre was determined from a high latitude Bulge subsample (|b|>4°, R_{GC}=8.30 ± 0.36 kpc, random uncertainty is relatively negligible), and importantly, the comparatively low color-excess and uncrowded location mitigated uncertainties tied to the extinction law, the magnitude-limited nature of the analysis, and photometric contamination. Circumventing those problems resulted in a key uncertainty being the M_{Ks} relation, which was derived using LMC RRab stars (M_{Ks}=-(2.66± 0.06) log {P}-(1.03± 0.06), (J-Ks)0=(0.31± 0.04) log {P} + (0.35± 0.02), assuming μ _{0,LMC}=18.43). The Galactic Centre distance was not corrected for the cone-effect. Lastly, a new distance indicator emerged as brighter overdensities in the period-magnitude-amplitude diagrams analyzed, which arise from blended RRab and red clump stars. Blending may thrust faint extragalactic variables into the range of detectability.

  15. Registration and Release of Syn1RR tall fescue

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service of the United States DepaRRment of Agriculture announces the release of the new tall fescue [Festuca arundinacea (syn., Lolium arundinaceum Darbyshire; Schedonorus phoenix (Scop.) Holub)] cultivar Syn1RR. Syn1RR is a rust tolerant tall fescue cultivar that exhibits...

  16. Mechanisms underlying very-low-frequency RR-interval oscillations in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Carr, D. L.; Myers, C. W.; Eckberg, D. L.

    1998-01-01

    BACKGROUND: Survival of post-myocardial infarction patients is related inversely to their levels of very-low-frequency (0.003 to 0.03 Hz) RR-interval variability. The physiological basis for such oscillations is unclear. In our study, we used blocking drugs to evaluate potential contributions of sympathetic and vagal mechanisms and the renin-angiotensin-aldosterone system to very-low-frequency RR-interval variability in 10 young healthy subjects. METHODS AND RESULTS: We recorded RR intervals and arterial pressures during three separate sessions, with the patient in supine and 40 degree upright tilt positions, during 20-minute frequency (0.25 Hz) and tidal volume-controlled breathing after intravenous injections: saline (control), atenolol (0.2 mg/kg, beta-adrenergic blockade), atropine sulfate (0.04 mg/kg, parasympathetic blockade), atenolol and atropine (complete autonomic blockade), and enalaprilat (0.02 mg/kg, ACE blockade). We integrated fast Fourier transform RR-interval spectral power at very low (0.003 to 0.03 Hz), low (0.05 to 0. 15 Hz), and respiratory (0.2 to 0.3 Hz) frequencies. Beta-adrenergic blockade had no significant effect on very-low- or low-frequency RR-interval power but increased respiratory frequency power 2-fold. ACE blockade had no significant effect on low or respiratory frequency RR-interval power but modestly (approximately 21%) increased very-low-frequency power in the supine (but not upright tilt) position (P<0.05). The most profound effects were exerted by parasympathetic blockade: Atropine, given alone or with atenolol, abolished nearly all RR-interval variability and decreased very-low-frequency variability by 92%. CONCLUSIONS: Although very-low-frequency heart period rhythms are influenced by the renin-angiotensin-aldosterone system, as low and respiratory frequency RR-interval rhythms, they depend primarily on the presence of parasympathetic outflow. Therefore the prognostic value of very-low-frequency heart period oscillations may

  17. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim

    2015-08-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  18. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  19. Mode identification in Beta Cephei stars

    NASA Technical Reports Server (NTRS)

    Aizenmen, M. L.; Lesh, J. R.

    1980-01-01

    The essential observational characteristics related to mode identification are summarized. Major emphasis is placed on the following: both light and velocity amplitudes; typical periods in both light and radial velocity; the light curve for Beta Cephei stars in comparison to the classical Cepheids and RR Lyrae stars; the van Hoof effect with respect to the radial velocity curves in many Beta Cephei stars; and the line profiles of many Beta Cephei stars.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacciari, C.; Clementini, G.

    Attention is given to the folowing topics: population I and II variable stars; LP variables, the sun, and mass determination; and predegenerate and degenerate variables. Particular papers are presented on alternative evolutionary approaches to the absolute magnitude of the RR Lyrae variables; the evolution of the Cepheid stars; nonradial pulsations in rapidly rotating Delta Scuti stars; dynamical models of dust shells around Mira variables; and pulsations of central stars of planetary nebulae.

  1. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  2. Characterizing artifacts in RR stress test time series.

    PubMed

    Astudillo-Salinas, Fabian; Palacio-Baus, Kenneth; Solano-Quinde, Lizandro; Medina, Ruben; Wong, Sara

    2016-08-01

    Electrocardiographic stress test records have a lot of artifacts. In this paper we explore a simple method to characterize the amount of artifacts present in unprocessed RR stress test time series. Four time series classes were defined: Very good lead, Good lead, Low quality lead and Useless lead. 65 ECG, 8 lead, records of stress test series were analyzed. Firstly, RR-time series were annotated by two experts. The automatic methodology is based on dividing the RR-time series in non-overlapping windows. Each window is marked as noisy whenever it exceeds an established standard deviation threshold (SDT). Series are classified according to the percentage of windows that exceeds a given value, based upon the first manual annotation. Different SDT were explored. Results show that SDT close to 20% (as a percentage of the mean) provides the best results. The coincidence between annotators classification is 70.77% whereas, the coincidence between the second annotator and the automatic method providing the best matches is larger than 63%. Leads classified as Very good leads and Good leads could be combined to improve automatic heartbeat labeling.

  3. 18. BLUEPRINT, RR BRIDGE Tombigbee R. MISSISSIPPI, CLAY CO., WAVERLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. BLUEPRINT, RR BRIDGE Tombigbee R. MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS 50 Detail: 'Georgia Pacific Rwy. -- Tombigbee River Bridge Elevation' with river profile, May 16, 1888. Credit: Columbus and Greenville Rr, Columbus, Ms. DWG = S-3-342. Sarcone Photography, Columbus, Ms Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  4. VizieR Online Data Catalog: RR Lyraes in NGC 6101 (Fitzgerald+, 2012)

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M.; Criss, J.; Lukaszewicz, T.; Frew, D. J.; Catelan, M.; Woodward, S.; Danaia, L.; McKinnon, D. H.

    2012-04-01

    V- and I-band observations of cluster NGC 6101 were taken over 31 nights between June 2010 and April 2011 using the Merope CCD camera attached to the robotically controlled 2-metre Faulkes Telescope South at Siding Spring Observatory, NSW, Australia. (2 data files).

  5. RR Lyrae stars and the horizontal branch of NGC 5904 (M5)

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Luna, A.; Bramich, D. M.; Giridhar, Sunetra; Ahumada, J. A.; Muneer, S.

    2016-05-01

    We report the distance and [Fe/H] value for the globular cluster NGC 5904 (M5) derived from the Fourier decomposition of the light curves of selected RRab and RRc stars. The aim in doing this was to bring these parameters into the homogeneous scales established by our previous work on numerous other globular clusters, allowing a direct comparison of the horizontal branch luminosity in clusters with a wide range of metallicities. Our CCD photometry of the large variable star population of this cluster is used to discuss light curve peculiarities, like Blazhko modulations, on an individual basis. New Blazhko variables are reported.

  6. 20. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY L.% MI. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY L.% MI. S of MS. 50 Proposed bridge, by Phoenis Bridge Co., Phoenixville, Pa. 218-foot turn span, with load bearing. 21 May 1914. Act. size: 16X35 in. Credit: Columbus and Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, Ms. Sept 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  7. The Galex Time Domain Survey. I. Selection And Classification of Over a Thousand Ultraviolet Variable Sources

    NASA Technical Reports Server (NTRS)

    Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; hide

    2013-01-01

    We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in approximately 40 deg(exp 2) of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of approximately 3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5 sigma level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to absolute value(?m) = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV less than 23 mag and absolute value(?m) greater than 0.2 mag of approximately 8.0, 7.7, and 1.8 deg(exp -2) for quasars, active galactic nuclei, and RR Lyrae stars

  8. The GALEX Time Domain Survey. I. Selection and Classification of Over a Thousand Ultraviolet Variable Sources

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; Schiminovich, D.; Wyder, T. K.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Price, P. A.; Tonry, J. L.

    2013-03-01

    We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in ~40 deg2 of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of ~3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5σ level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to |Δm| = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV < 23 mag and |Δm| > 0.2 mag of ~8.0, 7.7, and 1.8 deg-2 for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective

  9. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  10. [Heart rate variability study based on a novel RdR RR Intervals Scatter Plot].

    PubMed

    Lu, Hongwei; Lu, Xiuyun; Wang, Chunfang; Hua, Youyuan; Tian, Jiajia; Liu, Shihai

    2014-08-01

    On the basis of Poincare scatter plot and first order difference scatter plot, a novel heart rate variability (HRV) analysis method based on scatter plots of RR intervals and first order difference of RR intervals (namely, RdR) was proposed. The abscissa of the RdR scatter plot, the x-axis, is RR intervals and the ordinate, y-axis, is the difference between successive RR intervals. The RdR scatter plot includes the information of RR intervals and the difference between successive RR intervals, which captures more HRV information. By RdR scatter plot analysis of some records of MIT-BIH arrhythmias database, we found that the scatter plot of uncoupled premature ventricular contraction (PVC), coupled ventricular bigeminy and ventricular trigeminy PVC had specific graphic characteristics. The RdR scatter plot method has higher detecting performance than the Poincare scatter plot method, and simpler and more intuitive than the first order difference method.

  11. 19. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. BLUEPRINT, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of Ms. 50 Map of Tombigbee River at Waverly, 'Proposed Crossing.' 12 May 1888. Credt: Columbus & Greenville, RR, Columbus, Ms. DWG S-3-343. Sarcone Photography, ColumbuS, Ms. Sept 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  12. Blazhko modulation in the infrared

    NASA Astrophysics Data System (ADS)

    Jurcsik, J.; Hajdu, G.; Dékány, I.; Nuspl, J.; Catelan, M.; Grebel, E. K.

    2018-04-01

    We present first direct evidence of modulation in the K band of Blazhko-type RR Lyrae stars that are identified by their secular modulations in the I-band data of Optical Gravitational Lensing Experiment-IV. A method has been developed to decompose the K-band light variation into two parts originating from the temperature and the radius changes using synthetic data of atmosphere-model grids. The amplitudes of the temperature and the radius variations derived from the method for non-Blazhko RRab stars are in very good agreement with the results of the Baade-Wesselink analysis of RRab stars in the M3 globular cluster confirming the applicability and correctness of the method. It has been found that the Blazhko modulation is primarily driven by the change in the temperature variation. The radius variation plays a marginal part, moreover it has an opposite sign as if the Blazhko effect was caused by the radii variations. This result reinforces the previous finding based on the Baade-Wesselink analysis of M3 (NGC 5272) RR Lyrae, that significant modulation of the radius variations can only be detected in radial-velocity measurements, which relies on spectral lines that form in the uppermost atmospheric layers. Our result gives the first insight into the energetics and dynamics of the Blazhko phenomenon, hence it puts strong constraints on its possible physical explanations.

  13. Results from the Rothney Astrophysical Observatory Variable Star Search Program: Background, Procedure, and Results from RAO Field 1

    NASA Astrophysics Data System (ADS)

    Williams, Michael D.; Milone, E. F.

    2013-12-01

    We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.

  14. Identification of atrial fibrillation using electrocardiographic RR-interval difference

    NASA Astrophysics Data System (ADS)

    Eliana, M.; Nuryani, N.

    2017-11-01

    Automated detection of atrial fibrillation (AF) is an interesting topic. It is an account of very dangerous, not only as a trigger of embolic stroke, but it’s also related to some else chronical disease. In this study, we analyse the presence of AF by determining irregularities of RR-interval. We utilize the interval comparison to measure the degree of irregularities of RR-interval in a defined segment. The series of RR-interval is segmented with the length of 10 of them. In this study, we use interval comparison for the method. We were comparing all of the intervals there each other. Then we put the threshold to define the low difference and high difference (δ). A segment is defined as AF or Normal Sinus by the number of high δ, so we put the tolerance (β) of high δ there. We have used this method to test the 23 patients data from MIT-BIH. Using the approach and the clinical data we find accuracy, sensitivity, and specificity of 84.98%, 91.99%, and 77.85% respectively.

  15. Important influence of respiration on human R-R interval power spectra is largely ignored

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Beightol, L. A.; Koh, J.; Eckberg, D. L.

    1993-01-01

    Frequency-domain analyses of R-R intervals are used widely to estimate levels of autonomic neural traffic to the human heart. Because respiration modulates autonomic activity, we determined for nine healthy subjects the influence of breathing frequency and tidal volume on R-R interval power spectra (fast-Fourier transform method). We also surveyed published literature to determine current practices in this burgeoning field of scientific inquiry. Supine subjects breathed at rates of 6, 7.5, 10, 15, 17.1, 20, and 24 breaths/min and with nominal tidal volumes of 1,000 and 1,500 ml. R-R interval power at respiratory and low (0.06-0.14 Hz) frequencies declined significantly as breathing frequency increased. R-R interval power at respiratory frequencies was significantly greater at a tidal volume of 1,500 than 1,000 ml. Neither breathing frequency nor tidal volume influenced average R-R intervals significantly. Our review of studies reporting human R-R interval power spectra showed that 51% of the studies controlled respiratory rate, 11% controlled tidal volume, and 11% controlled both respiratory rate and tidal volume. The major implications of our analyses are that breathing parameters strongly influence low-frequency as well as respiratory frequency R-R interval power spectra and that this influence is largely ignored in published research.

  16. Heart beats in the cloud: distributed analysis of electrophysiological 'Big Data' using cloud computing for epilepsy clinical research.

    PubMed

    Sahoo, Satya S; Jayapandian, Catherine; Garg, Gaurav; Kaffashi, Farhad; Chung, Stephanie; Bozorgi, Alireza; Chen, Chien-Hun; Loparo, Kenneth; Lhatoo, Samden D; Zhang, Guo-Qiang

    2014-01-01

    The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.

  17. 30. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS. 50 Detail: Turn machinery. DWG S-3-325. Contr. #7236. Lower right quarter of sheet: Lateral elevation of turn table. July 1914. Credit: Columbus and Greenville RR, Columbus, MS. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  18. 31. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS. 50 Detail: Turn machinery. DWG S-3-325. Contr. #7236. Upper left quarter of sheet: plan and longitudinal elevation of Wedges. July 1914. Credit: Columbus and Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, Ms. Sep 1978 - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  19. 29. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5. mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5. mi. S of MS. 50 Detail: Turn machinery. DWG S-3-325. Contr. #7236. Lower right quarter of sheet: Lateral elevation of turn table. July 1914. Credit: Columbus and Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  20. 22. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS. 50 Proposed 218-foot turn span, submitted by the Wisconsin Bridge & Iron Co., Milwaukee, Wisconsin 8 May 1914. Act size: approx. 23x34 in. Credit: Columbus & Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, MS. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  1. 21. RAILROAD, RR. BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. RAILROAD, RR. BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of Ms. 50 Proposed 218-foot turn span, design #2339 of Virginia Bridge and Iron Co., Roanoke, Va. 13 May 1914. Act. size: 16x11 in. Credit: Columbus & Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, Ms. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  2. 27. RAILROAD, RR. BRIDGE MISSISSIPPI, CLAY CO. WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. RAILROAD, RR. BRIDGE MISSISSIPPI, CLAY CO. WAVERLY 1.5 mi. S of MS. 50 Stress Sheet of 1888 Bridge: Conroy & Sinks, Consulting Engineers, Chicago. July 21, 1910. DWG #978. Act. size around border: 18x11 in. Credit: Columbus and Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  3. 77 FR 27085 - R.R. Donnelley, Inc., Bloomsburg, PA; Notice of Negative Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,485] R.R. Donnelley, Inc... workers of R.R. Donnelley, Inc., Bloomsburg, Pennsylvania (subject firm). The Department's Notice of... eligibility to apply for worker adjustment assistance for workers and former workers of R.R. Donnelley, Inc...

  4. Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. I - Brightness-temperature properties of a time-dependent cloud-radiation model

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mugnai, Alberto; Cooper, Harry J.; Tripoli, Gregory J.; Xiang, Xuwu

    1992-01-01

    The relationship between emerging microwave brightness temperatures (T(B)s) and vertically distributed mixtures of liquid and frozen hydrometeors was investigated, using a cloud-radiation model, in order to establish the framework for a hybrid statistical-physical rainfall retrieval algorithm. Although strong relationships were found between the T(B) values and various rain parameters, these correlations are misleading in that the T(B)s are largely controlled by fluctuations in the ice-particle mixing ratios, which in turn are highly correlated to fluctuations in liquid-particle mixing ratios. However, the empirically based T(B)-rain-rate (T(B)-RR) algorithms can still be used as tools for estimating precipitation if the hydrometeor profiles used for T(B)-RR algorithms are not specified in an ad hoc fashion.

  5. Complexity of the heart rhythm after heart transplantation by entropy of transition network for RR-increments of RR time intervals between heartbeats.

    PubMed

    Makowiec, Danuta; Struzik, Zbigniew; Graff, Beata; Wdowczyk-Szulc, Joanna; Zarczynska-Buchnowiecka, Marta; Gruchala, Marcin; Rynkiewicz, Andrzej

    2013-01-01

    Network models have been used to capture, represent and analyse characteristics of living organisms and general properties of complex systems. The use of network representations in the characterization of time series complexity is a relatively new but quickly developing branch of time series analysis. In particular, beat-to-beat heart rate variability can be mapped out in a network of RR-increments, which is a directed and weighted graph with vertices representing RR-increments and the edges of which correspond to subsequent increments. We evaluate entropy measures selected from these network representations in records of healthy subjects and heart transplant patients, and provide an interpretation of the results.

  6. Eclipsing and density effects on the spectral behavior of Beta Lyrae binary system in the UV

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2010-01-01

    We analyze both long and short high resolution ultraviolet spectrum of Beta Lyrae eclipsing binary system observed with the International Ultraviolet Explorer (IUE) between 1980 and 1989. The main spectral features are P Cygni profiles originating from different environments of Beta Lyrae. A set of 23 Mg II k&h spectral lines at 2800 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H], have been identified and measured to determine their fluxes and widths. We found that there is spectral variability for these physical parameters with phase, similar to that found for the light curve [Kondo, Y., McCluskey, G.E., Jeffery, M.M.S., Ronald, S.P., Carolina, P.S. McCluskey, Joel, A.E., 1994. ApJ, 421, 787], which we attribute to the eclipse effects [Ak, H., Chadima, P., Harmanec, P., Demircan, O., Yang, S., Koubský, P., Škoda, P., Šlechta, M., Wolf, M., Božić, H., 2007. A&A, 463, 233], in addition to the changes of density and temperature of the region from which these lines are coming, as a result of the variability of mass loss from the primary star to the secondary [Hoffman, J.L., Nordsieck, K.H., Fox, G.K., 1998. AJ, 115, 1576; Linnell, A.P., Hubeny, I., Harmanec, P., 1998. ApJ, 509, 379]. Also we present a study of Fe II spectral line at 2600 Å, originating from the atmosphere of the primary star [Hack, M., 1980. IAUS, 88, 271H]. We found spectral variability of line fluxes and line widths with phase similar to that found for Mg II k&h lines. Finally we present a study of Si IV spectral line at 1394 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H]. A set of 52 Si IV spectral line at 1394 Å have been identified and measured to determine their fluxes and widths. Also we found spectral variability of these physical parameters with phase similar to that found for Mg II k&h and Fe II spectral lines.

  7. Comparison of a combination diode laser and radiofrequency device (Polaris) and a long-pulsed 1064-nm Nd:YAG laser (Lyra) on leg telangiectases. Histologic and immunohistochemical analysis.

    PubMed

    Prieto, Victor; Zhang, Peter; Sadick, Neil S

    2006-12-01

    Several devices have been proposed for the treatment of leg telangiectases. For most of these devices the histologic changes induced in the dermis are not well characterized. Three volunteers with class I-II red and blue 0.1-2.0 mm leg telangiectases were treated with the Lyra (Laserscope, San Jose, CA, USA) and the Polaris (Syneron Medical Ltd, Yokneam, Israel) devices to the left and right legs, respectively. Two 3-mm punches were taken from either site 7 days after treatment. The specimens were routinely processed and also stained for elastic tissue and collagen tissue. After treatment, specimens treated with both the Polaris and the Lyra showed intermediate-sized vessels with complete thrombosis and extensive hemorrhage in both the dermis and subcutis. The overlying epidermis also evidenced damage characterized as focal full-thickness necrosis. Special stains confirmed the damage to the vessels. All other skin structures were morphologically unremarkable. An average of 50-75% clinical clearing occurred using both modalities of a single treatment session. Our study confirms that both devices result in severe damage to small, intermediate-sized vessels, thus explaining the reported clinical improvement of leg telangiectases. The expression of hsp70 in the dermal vessels and overlying epidermis is consistent with a direct thermal effect delivered by either device.

  8. Cloud radiative properties and aerosol - cloud interaction

    NASA Astrophysics Data System (ADS)

    Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw

    2015-04-01

    The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.

  9. An elementary theory of eclipsing depths of the light curve and its application to Beta Lyrae

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.; Brown, D. A.

    1976-01-01

    An elementary theory of the ratio of depths of secondary and primary eclipses of a light curve has been proposed for studying the nature of component stars. It has been applied to light curves of Beta Lyrae in the visual, blue, and far-ultraviolet regions with the purpose of investigating the energy sources for the luminosity of the disk surrounding the secondary component and determining the dominant radiative process in the disk. No trace of the spectrum of primary radiation has been found in the disk. Therefore, it is suggested that LTE is the main radiative process in the disk, which radiates at a temperature of approximately 12,000 K in the portion that undergoes eclipse. A small source corresponding to 14,500 K has also been tentatively detected and may represent a hot spot caused by hydrodynamic flow of matter from the primary component to the disk.

  10. 26. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS. 50 Proposed 218-foot deck, plate-girder turn span, submitted by the Wisconsin Bridge and Iron Co., Milwaukee, Wisc. May 15 1914. Act size: approx. 23x34 in. Credit: columbus and Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  11. 23. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS. 50 Southern R'wy Co. in Ms. Repairs to Tombigbee River Bridge' gears and turn machinery. DWG # S. 30303. Scale: 1-1/2' = l'. July 21, 1913. Credit: Columbus & Greenville RR, Columbus, Ms. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  12. 25. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS. 50 Proposed 218-foot turn span, submitted by the American Bridge Co., Pittsburg, Pa., 15 May 1914. Inquiry # P-19242. Act. size: approx: 23x24 in. Credit: Columbus and Greenville RR, columbus, MS. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  13. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  14. 75 FR 63727 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... models that have not been repaired to RR Field Repair Scheme FRS5367/B, and A mandatory terminating... Repaired Using RR Field Repair Scheme FRS5367/B (h) If the combustion liner head section was previously repaired using RR Field Repair Scheme FRS5367/B, do the following: (1) Borescope-inspect combustion liner...

  15. Heart beats in the cloud: distributed analysis of electrophysiological ‘Big Data’ using cloud computing for epilepsy clinical research

    PubMed Central

    Sahoo, Satya S; Jayapandian, Catherine; Garg, Gaurav; Kaffashi, Farhad; Chung, Stephanie; Bozorgi, Alireza; Chen, Chien-Hun; Loparo, Kenneth; Lhatoo, Samden D; Zhang, Guo-Qiang

    2014-01-01

    Objective The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. Materials and methods We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Results Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Discussion Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. Conclusion The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research. PMID:24326538

  16. Cloud-Top Entrainment in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  17. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    NASA Astrophysics Data System (ADS)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  18. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight.

    PubMed

    Shamansurova, Zulaykho; Tan, Paul; Ahmed, Basma; Pepin, Emilie; Seda, Ondrej; Lavoie, Julie L

    2016-10-01

    We previously demonstrated that the handle-region peptide, a prorenin/renin receptor [(P)RR] blocker, reduces body weight and fat mass and may improve insulin sensitivity in high-fat fed mice. We hypothesized that knocking out the adipose tissue (P)RR gene would prevent weight gain and insulin resistance. An adipose tissue-specific (P)RR knockout (KO) mouse was created by Cre-loxP technology using AP2-Cre recombinase mice. Because the (P)RR gene is located on the X chromosome, hemizygous males were complete KO and had a more pronounced phenotype on a normal diet (ND) diet compared to heterozygous KO females. Therefore, we challenged the female mice with a high-fat diet (HFD) to uncover certain phenotypes. Mice were maintained on either diet for 9 weeks. KO mice had lower body weights compared to wild-types (WT). Only hemizygous male KO mice presented with lower total fat mass, higher total lean mass as well as smaller adipocytes compared to WT mice. Although food intake was similar between genotypes, locomotor activity during the active period was increased in both male and female KO mice. Interestingly, only male KO mice had increased O2 consumption and CO2 production during the entire 24-hour period, suggesting an increased basal metabolic rate. Although glycemia during a glucose tolerance test was similar, KO males as well as HFD-fed females had lower plasma insulin and C-peptide levels compared to WT mice, suggesting improved insulin sensitivity. Remarkably, all KO animals exhibited higher circulating adiponectin levels, suggesting that this phenotype can occur even in the absence of a significant reduction in adipose tissue weight, as observed in females and, thus, may be a specific effect related to the (P)RR. (P)RR may be an important therapeutic target for the treatment of obesity and its associated complications such as type 2 diabetes.

  19. Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.

    2007-05-01

    Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.

  20. VizieR Online Data Catalog: Chemical compositions of 11 RR Lyrae (For+, 2011)

    NASA Astrophysics Data System (ADS)

    For, B.-Q.; Sneden, C.; Preston, G. W.

    2012-01-01

    The spectroscopic data were obtained with the du Pont 2.5m telescope at the Las Campanas Observatory (LCO), using a cross-dispersed echelle spectrograph with a total wavelength coverage of 3500-9000Å. See Section 3 of For et al. 2011, Cat. J/ApJS/194/38, for details of data reduction. (4 data files).

  1. Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Iwasaki, Kenichi; Zuckerman, Julie H.; Behbehani, Khosrow; Crandall, Craig G.; Levine, Benjamin D.; Blomqvist, C. G. (Principal Investigator)

    2002-01-01

    Spontaneous blood pressure (BP) and R-R variability are used frequently as 'windows' into cardiovascular control mechanisms. However, the origin of these rhythmic fluctuations is not completely understood. In this study, with ganglion blockade, we evaluated the role of autonomic neural activity versus other 'non-neural' factors in the origin of BP and R-R variability in humans. Beat-to-beat BP, R-R interval and respiratory excursions were recorded in ten healthy subjects (aged 30 +/- 6 years) before and after ganglion blockade with trimethaphan. The spectral power of these variables was calculated in the very low (0.0078-0.05 Hz), low (0.05-0.15 Hz) and high (0.15-0.35 Hz) frequency ranges. The relationship between systolic BP and R-R variability was examined by cross-spectral analysis. After blockade, R-R variability was virtually abolished at all frequencies; however, respiration and high frequency BP variability remained unchanged. Very low and low frequency BP variability was reduced substantially by 84 and 69 %, respectively, but still persisted. Transfer function gain between systolic BP and R-R interval variability decreased by 92 and 88 % at low and high frequencies, respectively, while the phase changed from negative to positive values at the high frequencies. These data suggest that under supine resting conditions with spontaneous breathing: (1) R-R variability at all measured frequencies is predominantly controlled by autonomic neural activity; (2) BP variability at high frequencies (> 0.15 Hz) is mediated largely, if not exclusively, by mechanical effects of respiration on intrathoracic pressure and/or cardiac filling; (3) BP variability at very low and low frequencies (< 0.15 Hz) is probably mediated by both sympathetic nerve activity and intrinsic vasomotor rhythmicity; and (4) the dynamic relationship between BP and R-R variability as quantified by transfer function analysis is determined predominantly by autonomic neural activity rather than other

  2. A photometric study of the dwarf spheroidal galaxies Leo IV and Bootes II

    NASA Astrophysics Data System (ADS)

    Cheng, Haw

    A photometric study of the ultra-faint dwarf (UFD) galaxies Leo IV and Bootes II in the V and IC filters is here presented. The age of Leo IV relative to M92 were derived by fitting of Dartmouth isochrones, by a "standard" VHBTO method, and by the V HBTO method of VandenBerg et al. 2013. The age of Bootes II relative to M92 was derived by fitting of Dartmouth isochrones. Leo IV is found to be between 2 to 2.5 Gyr younger than M92 by these three methods. It is found to be predominantly old and metal poor and is well fit by isochrones of [Fe/H] = ---2.46 and [alpha/Fe] = 0.2 and 0.4. An age spread with a plausible value of ˜ 2 Gyr cannot be ruled out. A 10 Gyr old synthetic horizontal branch with [Fe/H] = ---1.70 and [alpha/Fe] of 0.2 is fit to Leo IV's red horizontal branch (RHB). The good fit of this model and its matching isochrone to Leo IV's CMD suggests that the RHB is real and not an observational artifact as proposed by Okamoto et al. 2012. Two RRab Lyraes previously observed by Moretti et al. 2009 were observed in Leo IV. One of the stars, V1, is observed to exhibit the Blazhko effect. No further RR Lyraes were uncovered in Leo IV. Comparison of the horizontal branch's observed V magnitude to the absolute magnitudes of the RR Lyraes yields a distance modulus of (m---M)0 = 21.01 +/- 0.07, in good agreement with previous studies. Leo IV's possible population of blue stragglers is found to show no signs of central concentration, though this study's sample and spatial coverage are too small for any detailed spatial distribution study. Bootes II's CMD is found to be consistent with that of a single age, mono-metallicity system. It is well fit by isochrones of [Fe/H] = ---1.79 and [alpha/Fe] = 0.2 and 0.4. Bootes II is found to be between 0.5 to 1.5 Gyr younger than M92. Distance was left as a free parameter in the fits. Bootes II is found to have distance modulus (m---M)0 lying between 18.02 to 18.15, in good agreement with previous studies. A single RRab Lyrae

  3. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  4. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    BACKGROUND: One of the principal explanations for respiratory sinus arrhythmia is that it reflects arterial baroreflex buffering of respiration-induced arterial pressure fluctuations. If this explanation is correct, then elimination of RR interval fluctuations should increase respiratory arterial pressure fluctuations. METHODS AND RESULTS: We measured RR interval and arterial pressure fluctuations during normal sinus rhythm and fixed-rate atrial pacing at 17.2+/-1.8 (SEM) beats per minute greater than the sinus rate in 16 healthy men and 4 healthy women, 20 to 34 years of age. Measurements were made during controlled-frequency breathing (15 breaths per minute or 0.25 Hz) with subjects in the supine and 40 degree head-up tilt positions. We characterized RR interval and arterial pressure variabilities in low-frequency (0.05 to 0.15 Hz) and respiratory-frequency (0.20 to 0.30 Hz) ranges with fast Fourier transform power spectra and used cross-spectral analysis to determine the phase relation between the two signals. As expected, cardiac pacing eliminated beat-to-beat RR interval variability. Against expectations, however, cardiac pacing in the supine position significantly reduced arterial pressure oscillations in the respiratory frequency (systolic, 6.8+/-1.8 to 2.9 +/-0.6 mm Hg2/Hz, P=.017). In contrast, cardiac pacing in the 40 degree tilt position increased arterial pressure variability (systolic, 8.0+/-1.8 to 10.8 +/-2.6, P=.027). Cross-spectral analysis showed that 40 degree tilt shifted the phase relation between systolic pressure and RR interval at the respiratory frequency from positive to negative (9 +/-7 degrees versus -17+/-11 degrees, P=.04); that is, in the supine position, RR interval changes appeared to lead arterial pressure changes, and in the upright position, RR interval changes appeared to follow arterial pressure changes. CONCLUSIONS: These results demonstrate that respiratory sinus arrhythmia can actually contribute to respiratory arterial

  5. ECG R-R peak detection on mobile phones.

    PubMed

    Sufi, F; Fang, Q; Cosic, I

    2007-01-01

    Mobile phones have become an integral part of modern life. Due to the ever increasing processing power, mobile phones are rapidly expanding its arena from a sole device of telecommunication to organizer, calculator, gaming device, web browser, music player, audio/video recording device, navigator etc. The processing power of modern mobile phones has been utilized by many innovative purposes. In this paper, we are proposing the utilization of mobile phones for monitoring and analysis of biosignal. The computation performed inside the mobile phone's processor will now be exploited for healthcare delivery. We performed literature review on RR interval detection from ECG and selected few PC based algorithms. Then, three of those existing RR interval detection algorithms were programmed on Java platform. Performance monitoring and comparison studies were carried out on three different mobile devices to determine their application on a realtime telemonitoring scenario.

  6. [The characteristics of RR-Lorenz plot in persistent atrial fibrillation patients complicating with escape beats and rhythm].

    PubMed

    Pan, Yunping; Zhang, Fangfang; Liu, Ru; Jing, Yan; Shen, Jihong; Li, Zhongjian; Zhu, Huaijie

    2014-06-01

    To explore the characteristics of RR-Lorenz plot in persistent atrial fibrillation (AF) patients complicating with escape beats and rhythm though ambulatory electrocardiogram. The 24-hour ambulatory electrocardiogram of 291 persistent AF patients in second affiliated hospital of Zhengzhou university from July 2005 to April 2013 were retrospectively analyzed and the RR interval and the QRS wave were measured. Patients were divided into two groups according to the distribution of the RR-Lorenz point [AF without escape beats and rhythm group (Group A, n = 259) and AF with escape beats and rhythm group (Group B, n = 32)]. The characteristics of RR-Lorenz plot between the two groups were compared. (1) Fan-shaped RR-Lorenz plots were evidenced in Group A. (2)In Group B, 30 cases showed fan-shaped with L-shaped and a short dense rods along 45° line. The proportion of escape beats and rhythm was 0.28% (275/98 369) -14.06% (11 263/80 112) . The other 2 cases in group B showed no typical RR-Lorenz plots features. RR-Lorenz plot could help to quickly diagnose persistent AF complicating with escape beats and rhythm according to the typical RR-Lorenz plot characteristics in 24-hour ambulatory electrocardiogram.

  7. The Use of Radiation Response (RR) in Selecting the Method of Treatment of Carcinoma Cervicis Uteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesterman, John N.

    1963-03-01

    Attempts were made to determine the choice treatment of cervical squamous carcinoma (surgery, radiation, or surgery with radiation) in Stages I and II. A study of 50 patients showed good results from surgery in patients with poor radiation response (RR) and that the RR, estimated by a precise and uniform technique, will identify those patients who will not respond well to complete radiation therapy. Moreover, it will do this after a first radium application of moderate dosage, at a time when it is still possible to interrupt this therapy. A radiation dose of at least 1000 r at the cervixmore » will be followed by the maximum RR, in a good response, between the 8th and 14th (especially 10th to 12th) days. A poor RR will reach its maximum earlier than a good one, on about the 10th day after radium implantation. When deciding the definition of good RR, it was found that the radiation changes present in a count of 100 cells were seen in more than 70 cells. There is evidence that age, menopause, and hormonal status influence the radiation reaction. If poor RR is more frequently found with high estrogenic activity, young patients treated by radiation should be expected to have a worse survival rate than old. The survival rate is about 1/3) in the young patient as against 1/2 in the postmenopausal. A good sensitization response (SR) was, in most cases, followed by good RR after radiation. Of 39 patients with good SR, 34 had good RR after one application of radium. However, this correlation was absent when the SR was poor. Of 41 patients with poor SR, 18 remained poor after radiation and 23 developed good RR. Finally, this SR should not be taken alone as a guide to treatment, but all patients should be given the first radium application and the RR assessed.« less

  8. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  9. Variable stars in Local Group Galaxies - II. Sculptor dSph

    NASA Astrophysics Data System (ADS)

    Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.

    2016-11-01

    We present the identification of 634 variable stars in the Milky Way dwarf spheroidal (dSph) satellite Sculptor based on archival ground-based optical observations spanning ˜24 yr and covering ˜2.5 deg2. We employed the same methodologies as the `Homogeneous Photometry' series published by Stetson. In particular, we have identified and characterized one of the largest (536) RR Lyrae samples so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally, we identify 37 long period variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5 M⊙) and SX Phoenicis stars (˜1 M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.

  10. 24. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. RAILROAD, RR BRIDGE MISSISSIPPI, CLAY CO., WAVERLY 1.5 mi. S of MS. 50 Southern R'wy; Co., in Ms. Present and proposed draw bridge over Tombigbee River.' Elevations and Plan, with falsework. Wisconsin Bridge and Iron Co., Milwaukee, Wisc., DWG #S. 3-303. Last Revision, Jan. 11 1915. Act. size: 23x34 in. Credit: Columbus and Greenville Rr, Columbus, Ms. Sarcone Photography, Columbus, MS. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  11. 4-D Cloud Water Content Fields Derived from Operational Satellite Data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick

    2010-01-01

    In order to improve operational safety and efficiency, the transportation industry, including aviation, has an urgent need for accurate diagnoses and predictions of clouds and associated weather conditions. Adverse weather accounts for 70% of all air traffic delays within the U.S. National Airspace System. The Federal Aviation Administration has determined that as much as two thirds of weather-related delays are potentially avoidable with better weather information and roughly 20% of all aviation accidents are weather related. Thus, it is recognized that an important factor in meeting the goals of the Next Generation Transportation System (NexGen) vision is the improved integration of weather information. The concept of a 4-D weather cube is being developed to address that need by integrating observed and forecasted weather information into a shared 4-D database, providing an integrated and nationally consistent weather picture for a variety of users and to support operational decision support systems. Weather analyses and forecasts derived using Numerical Weather Prediction (NWP) models are a critical tool that forecasters rely on for guidance and also an important element in current and future decision support systems. For example, the Rapid Update Cycle (RUC) and the recently implemented Rapid Refresh (RR) Weather Research and Forecast (WRF) models provide high frequency forecasts and are key elements of the FAA Aviation Weather Research Program. Because clouds play a crucial role in the dynamics and thermodynamics of the atmosphere, they must be adequately accounted for in NWP models. The RUC, for example, cycles at full resolution five cloud microphysical species (cloud water, cloud ice, rain, snow, and graupel) and has the capability of updating these fields from observations. In order to improve the models initial state and subsequent forecasts, cloud top altitude (or temperature, T(sub c)) derived from operational satellite data, surface observations of

  12. Iterative Structural and Functional Synergistic Resolution Recovery (iSFS-RR) Applied to PET-MR Images in Epilepsy

    NASA Astrophysics Data System (ADS)

    Silva-Rodríguez, J.; Cortés, J.; Rodríguez-Osorio, X.; López-Urdaneta, J.; Pardo-Montero, J.; Aguiar, P.; Tsoumpas, C.

    2016-10-01

    Structural Functional Synergistic Resolution Recovery (SFS-RR) is a technique that uses supplementary structural information from MR or CT to improve the spatial resolution of PET or SPECT images. This wavelet-based method may have a potential impact on the clinical decision-making of brain focal disorders such as refractory epilepsy, since it can produce images with better quantitative accuracy and enhanced detectability. In this work, a method for the iterative application of SFS-RR (iSFS-RR) was firstly developed and optimized in terms of convergence and input voxel size, and the corrected images were used for the diagnosis of 18 patients with refractory epilepsy. To this end, PET/MR images were clinically evaluated through visual inspection, atlas-based asymmetry indices (AIs) and SPM (Statistical Parametric Mapping) analysis, using uncorrected images and images corrected with SFS-RR and iSFS-RR. Our results showed that the sensitivity can be increased from 78% for uncorrected images, to 84% for SFS-RR and 94% for the proposed iSFS-RR. Thus, the proposed methodology has demonstrated the potential to improve the management of refractory epilepsy patients in the clinical routine.

  13. Morphological and ultrastructural changes in tobacco BY-2 cells exposed to microcystin-RR.

    PubMed

    Huang, Wenmin; Xing, Wei; Li, Dunhai; Liu, Yongding

    2009-08-01

    Tobacco BY-2 cells were exposed to microcystin-RR (MC-RR) at two concentrations, 60 microg mL(-1) and 120 microg mL(-1), to study the changes in morphology and ultrastructure of cells as a result of the exposure. Exposure to the lower concentration for 5 d led to typical apoptotic morphological changes including condensation of nuclear chromatin, creation of a characteristic 'half moon' structure, and cytoplasm shrinkage and decreased cell volume, as revealed through light microscopy, fluorescence microscopy, and transmission electron microscopy, respectively. Exposure to the higher concentration, on the other hand, led to morphological and ultrastructural changes typical of necrosis, such as rupture of the plasma membrane and the nuclear membrane and a marked swelling of cells. The presence of many vacuoles containing unusual deposits points to the involvement of vacuoles in detoxifying MC-RR. Results of the present study indicate that exposure of tobacco BY-2 cells to MC-RR at a lower concentration (60 microg mL(-1)) results in apoptosis and that to a higher concentration (120 microg mL(-1)), in necrosis.

  14. IUE short-wavelength high-dispersion line list for the symbiotic nova RR Telescopii

    NASA Technical Reports Server (NTRS)

    Aufdenberg, Jason P.

    1993-01-01

    An 820 minute and other long-exposure archival SWP IUE high-dispersion spectra of symbiotic star RR Tel have been combined to form a composite spectrum. In most of these spectra many lines are saturated, but weaker features appear above the continuum. Their wavelengths were measured from the composite spectrum and compared with the line list from a thorough study of RR Tel by Penston et al. (1983). Among the revised line list are 22 new line identifications from ions C III, O I, N I, Mg VI, Si I, S I, S IV, Fe II, and Ni II. N I exists inside RR Tel's H II region and is pumped by the hot component's continuum. The fluxes for all the lines in each of the spectra are presented. All of the observed ions show a secular flux decrease between 1978 and 1988. A list of SWP high-dispersion camera artifacts is also presented. The list was generated by comparing RR Tel spectra to a long-exposure sky flat.

  15. Molecular Cloud Evolution VI. Measuring cloud ages

    NASA Astrophysics Data System (ADS)

    Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel; Galván-Madrid, Roberto; Forbrich, Jan

    2018-06-01

    In previous contributions, we have presented an analytical model describing the evolution of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The cloud's evolution is characterized by an initial increase in its mass, density, and star formation rate (SFR) and efficiency (SFE) as it contracts, followed by a decrease of these quantities as newly formed massive stars begin to disrupt the cloud. The main parameter of the model is the maximum mass reached by the cloud during its evolution. Thus, specifying the instantaneous mass and some other variable completely determines the cloud's evolutionary stage. We apply the model to interpret the observed scatter in SFEs of the cloud sample compiled by Lada et al. as an evolutionary effect so that, although clouds such as California and Orion A have similar masses, they are in very different evolutionary stages, causing their very different observed SFRs and SFEs. The model predicts that the California cloud will eventually reach a significantly larger total mass than the Orion A cloud. Next, we apply the model to derive estimated ages of the clouds since the time when approximately 25% of their mass had become molecular. We find ages from ˜1.5 to 27 Myr, with the most inactive clouds being the youngest. Further predictions of the model are that clouds with very low SFEs should have massive atomic envelopes constituting the majority of their gravitational mass, and that low-mass clouds (M ˜ 103-104M⊙) end their lives with a mini-burst of star formation, reaching SFRs ˜300-500 M⊙ Myr-1. By this time, they have contracted to become compact (˜1 pc) massive star-forming clumps, in general embedded within larger GMCs.

  16. VizieR Online Data Catalog: Distances to RRab stars from WISE and Gaia (Sesar+, 2017)

    NASA Astrophysics Data System (ADS)

    Sesar, B.; Fouesneau, M.; Price-Whelan, A. M.; Bailer-Jones, C. A. L.; Gould, A.; Rix, H.-W.

    2017-10-01

    To constrain the period-luminosity-metallicity (PLZ) relations for RR Lyrae stars in WISE W1 and W2 bands, we use TGAS trigonometric parallaxes (barω), spectroscopic metallicities ([Fe/H]; Fernley+ 1998, J/A+A/330/515), log-periods (logP, base 10), and apparent magnitudes (m; Klein+ 2014, J/MNRAS/440/L96) for 102 RRab stars within ~2.5kpc from the Sun. The E(B-V) reddening at a star's position is obtained from the Schlegel+ (1998ApJ...500..525S) dust map. (1 data file).

  17. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis.

    PubMed

    Huang, Wenmin; Li, Dunhai; Liu, Yongding

    2014-09-01

    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.

  18. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE PAGES

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.; ...

    2017-10-24

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  19. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  20. QT-RR relationships and suitable QT correction formulas for halothane-anesthetized dogs.

    PubMed

    Tabo, Mitsuyasu; Nakamura, Mikiko; Kimura, Kazuya; Ito, Shigeo

    2006-10-01

    Several QT correction (QTc) formulas have been used for assessing the QT liability of drugs. However, they are known to under- and over-correct the QT interval and tend to be specific to species and experimental conditions. The purpose of this study was to determine a suitable formula for halothane-anesthetized dogs highly sensitive to drug-induced QT interval prolongation. Twenty dogs were anesthetized with 1.5% halothane and the relationship between the QT and RR intervals were obtained by changing the heart rate under atrial pacing conditions. The QT interval was corrected for the RR interval by applying 4 published formulas (Bazett, Fridericia, Van de Water, and Matsunaga); Fridericia's formula (QTcF = QT/RR(0.33)) showed the least slope and lowest R(2) value for the linear regression of QTc intervals against RR intervals, indicating that it dissociated changes in heart rate most effectively. An optimized formula (QTcX = QT/RR(0.3879)) is defined by analysis of covariance and represents a correction algorithm superior to Fridericia's formula. For both Fridericia's and the optimized formula, QT-prolonging drugs (d,l-sotalol, astemizole) showed QTc interval prolongation. A non-QT-prolonging drug (d,l-propranolol) failed to prolong the QTc interval. In addition, drug-induced changes in QTcF and QTcX intervals were highly correlated with those of the QT interval paced at a cycle length of 500 msec. These findings suggest that Fridericia's and the optimized formula, although the optimized is a little bit better, are suitable for correcting the QT interval in halothane-anesthetized dogs and help to evaluate the potential QT prolongation of drugs with high accuracy.

  1. R-R interval variations influence the degree of mitral regurgitation in dogs with myxomatous mitral valve disease.

    PubMed

    Reimann, M J; Møller, J E; Häggström, J; Markussen, B; Holen, A E W; Falk, T; Olsen, L H

    2014-03-01

    Mitral regurgitation (MR) due to myxomatous mitral valve disease (MMVD) is a frequent finding in Cavalier King Charles Spaniels (CKCSs). Sinus arrhythmia and atrial premature complexes leading to R-R interval variations occur in dogs. The aim of the study was to evaluate whether the duration of the R-R interval immediately influences the degree of MR assessed by echocardiography in dogs. Clinical examination including echocardiography was performed in 103 privately-owned dogs: 16 control Beagles, 70 CKCSs with different degree of MR and 17 dogs of different breeds with clinical signs of congestive heart failure due to MMVD. The severity of MR was evaluated in apical four-chamber view using colour Doppler flow mapping (maximum % of the left atrium area) and colour Doppler M-mode (duration in ms). The influence of the ratio between present and preceding R-R interval on MR severity was evaluated in 10 consecutive R-R intervals using a linear mixed model for repeated measurements. MR severity was increased when a short R-R interval was followed by a long R-R interval in CKCSs with different degrees of MR (P<0.005 when adjusted for multiple testing). The relationship was not significant in control dogs with minimal MR and in dogs with severe MR and clinical signs of heart failure. In conclusion, MR severity increases in long R-R intervals when these follow a short R-R interval in CKCSs with different degrees of MR due to asymptomatic MMVD. Thus, R-R interval variations may affect the echocardiographic grading of MR in CKCSs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP < 50 g m-2), cloud base updraft speeds and cloud top cooling are well-correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  3. The Three-dimensional Structure of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Subramanian, Smitha; Subramaniam, Annapurni

    2012-01-01

    The three-dimensional structure of the inner Small Magellanic Cloud (SMC) is investigated using the red clump (RC) stars and the RR Lyrae stars (RRLS), which represent the intermediate-age and the old stellar populations of a galaxy. The V- and I-band photometric data from the OGLE III catalog are used for our study. The mean dereddened I 0 magnitude of the RC stars and the RRLS are used to study the relative positions of the different regions in the SMC with respect to the mean SMC distance. This shows that the northeastern part of the SMC is closer to us. The line-of-sight depth (front to back distance) across the SMC is estimated using the dispersion in the I 0 magnitudes of both the RC stars and the RRLS and found to be large (~14 kpc) for both populations. The similarity in their depth distribution suggests that both of these populations occupy a similar volume of the SMC. The surface density distribution and the radial density profile of the RC stars suggest that they are more likely to be distributed in a nearly spheroidal system. The tidal radius estimated for the SMC system is ~7-12 kpc. An elongation along the NE-SW direction is seen in the surface density map of the RC stars. The surface density distribution of the RRLS in the SMC is nearly circular. Based on all of the above results the observed structure of the SMC, in which both the RC stars and RRLS are distributed, is approximated as a triaxial ellipsoid. The parameters of the ellipsoid are obtained using the inertia tensor analysis. We estimated the axes ratio, inclination of the longest axis with the line of sight (i), and the position angle (phi) of the longest axis of the ellipsoid on the sky from the analysis of the RRLS. The analysis of the RC stars with the assumption that they are extended up to a depth of 3.5 times the sigma (width of dereddened I 0 magnitude distribution, corrected for intrinsic spread and observational errors) was also found to give similar axes ratio and orientation

  4. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  5. Cloud Computing

    DTIC Science & Technology

    2010-04-29

    Cloud Computing   The answer, my friend, is blowing in the wind.   The answer is blowing in the wind. 1Bingue ‐ Cook  Cloud   Computing  STSC 2010... Cloud   Computing  STSC 2010 Objectives • Define the cloud    • Risks of  cloud   computing f l d i• Essence o  c ou  comput ng • Deployed clouds in DoD 3Bingue...Cook  Cloud   Computing  STSC 2010 Definitions of Cloud Computing       Cloud   computing  is a model for enabling  b d d ku

  6. 3. CASTIRON BOLSTER MARKED 'B & O RR CO. 1866' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CAST-IRON BOLSTER MARKED 'B & O RR CO. 1866' PROTECTING DOORWAY TO MACHINE SHOP. - Baltimore & Ohio Railroad, Martinsburg Machine Shop, West Side of Tuscarora Creek Opposite East End of Race Street, Martinsburg, Berkeley County, WV

  7. Cloud Radiative Effect in dependence on Cloud Type

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2015-04-01

    Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be

  8. Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2017-11-01

    The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3 to 5 years. Information on fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud-base height (CBH) data are retrieved from a ceilometer and integrated water vapour (IWV) data from GPS measurements. The longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 oktas has a median value between 59 and 72 Wm-2. For mid- and high-level clouds the LCE is significantly lower. It is shown that the fractional cloud coverage, the CBH and IWV all have an influence on the magnitude of the LCE. These observed dependences have also been modelled with the radiative transfer model MODTRAN5. The relative values of the shortwave cloud radiative effect (SCErel) for low-level clouds and a cloud coverage of 8 oktas are between -90 and -62 %. Also here the higher the cloud is, the less negative the SCErel values are. In cases in which the measured direct radiation value is below the threshold of 120 Wm-2 (occulted sun) the SCErel decreases substantially, while cases in which the measured direct radiation value is larger than 120 Wm-2 (visible sun) lead to a SCErel of around 0 %. In 14 and 10 % of the cases in Davos and Payerne respectively a cloud enhancement has been observed with a maximum in the cloud class cirrocumulus-altocumulus at both stations. The calculated median total cloud radiative effect (TCE) values are negative for almost all cloud classes and cloud coverages.

  9. AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James

    2004-08-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.


  10. Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.

    NASA Astrophysics Data System (ADS)

    Baum, Bryan A.; Wielicki, Bruce A.

    1994-01-01

    In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.

  11. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study.

    PubMed

    Cazenave, Jimena; Wunderlin, Daniel Alberto; de Los Angeles Bistoni, María; Amé, María Valeria; Krause, Eberhard; Pflugmacher, Stephan; Wiegand, Claudia

    2005-10-15

    The uptake and accumulation of microcystin-RR (MC-RR) in fish was investigated under laboratory conditions and in wild fish. Jenynsia multidentata and Corydoras paleatus were exposed for 24h to 50mug/L MC-RR dissolved in water. After exposure, liver, gill, brain, intestine, gall bladder, blood and muscle were analyzed for MC-RR by HPLC and analysis confirmed by LC-ESI-TOF-MS spectrometry. Furthermore, wild individuals of Odontesthes bonariensis were sampled from the eutrophic, cyanobacteria-containing San Roque reservoir, and analyzed for the presence of MC-RR in liver, gill, intestine, and muscle. MC-RR was found in liver, gills, and muscle of all exposed and wild fish, while in C. paleatus MC-RR was also present in the intestine. Moreover, we found presence of MC-RR in brain of J. multidentata. Results indicate that MC-RR uptake might occur at two different organs: intestine and gills, through either feeding (including drinking) or respiratory activities. This suggests that MC-RR is taken into the blood stream after absorption, and distributed to different tissues. The liver showed the major bioaccumulation of MC-RR in both experimentally exposed and wild individuals, with muscle of wild fish showing relative high amounts of this toxin in comparison with those exposed in the laboratory; though MC-RR was present in muscle of fish exposed for 24h. The amount of MC-RR in muscle of O. bonariensis exceeded the value suggested by WHO to be safe, thus causing a health risk to persons consuming fish as a result of chronic exposure to microcystin. Gills also showed bioaccumulation of MC-RR, raising questions on the mechanism involved in the possible uptake of MC-RR through gills as well as on its accumulation in this organ. Although MC-LR has been reported in brain of fish, this is the first report confirming the presence of MC-RR in this organ, which means that both toxins are able to cross the blood-brain barrier. These findings also raise questions on the probable

  12. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  13. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2005-05-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  14. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    NASA Astrophysics Data System (ADS)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (<1 km) cloud occurrences in CCCM are larger over tropical oceans because the CCCM algorithm uses a more relaxed threshold of cloud-aerosol discrimination score for CALIPSO Vertical Feature Mask product. In contrast, midlevel (1-8 km) cloud occurrences in GEOPROF-LIDAR are larger than CCCM at high latitudes (>40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  15. Cloud Computing Fundamentals

    NASA Astrophysics Data System (ADS)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  16. Clouds

    NASA Image and Video Library

    2010-09-14

    Clouds are common near the north polar caps throughout the spring and summer. The clouds typically cause a haze over the extensive dune fields. This image from NASA Mars Odyssey shows the edge of the cloud front.

  17. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  18. A compact ECG R-R interval, respiration and activity recording system.

    PubMed

    Yoshimura, Takahiro; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Thayer, Julian F; Caldwell, W Morton

    2003-01-01

    An ECG R-R interval, respiration and activity recording system has been developed for monitoring variability of heart rate and respiratory frequency during daily life. The recording system employs a variable gain instrumentation amplifier, an accelerometer, a low power 8-bit single-chip microcomputer and a 1024 KB EEPROM. It is constructed on three ECG chest electrodes. The R-R interval and respiration are detected from the ECG. Activity during walking and running is calculated from an accelerator. The detected data are stored in an EEPROM and after recording, are downloaded to a desktop computer for analysis.

  19. Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.

    1992-12-01

    During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards

  20. NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.

    PubMed

    Pardoe, Heath R; Kuzniecky, Ruben

    2018-01-01

    The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.

  1. Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy

    PubMed Central

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-01-01

    Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313

  2. Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.

    PubMed

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-06-01

    Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.

  3. RcRR1, a Rosa canina type-A response regulator gene, is involved in cytokinin-modulated rhizoid organogenesis.

    PubMed

    Gao, Bin; Fan, Lusheng; Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun

    2013-01-01

    In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.

  4. RcRR1, a Rosa canina Type-A Response Regulator Gene, Is Involved in Cytokinin-Modulated Rhizoid Organogenesis

    PubMed Central

    Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun

    2013-01-01

    In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina. PMID:24009713

  5. Cloud Microphysics Parameterization in a Shallow Cumulus Cloud Simulated by a Largrangian Cloud Model

    NASA Astrophysics Data System (ADS)

    Oh, D.; Noh, Y.; Hoffmann, F.; Raasch, S.

    2017-12-01

    Lagrangian cloud model (LCM) is a fundamentally new approach of cloud simulation, in which the flow field is simulated by large eddy simulation and droplets are treated as Lagrangian particles undergoing cloud microphysics. LCM enables us to investigate raindrop formation and examine the parameterization of cloud microphysics directly by tracking the history of individual Lagrangian droplets simulated by LCM. Analysis of the magnitude of raindrop formation and the background physical conditions at the moment at which every Lagrangian droplet grows from cloud droplets to raindrops in a shallow cumulus cloud reveals how and under which condition raindrops are formed. It also provides information how autoconversion and accretion appear and evolve within a cloud, and how they are affected by various factors such as cloud water mixing ratio, rain water mixing ratio, aerosol concentration, drop size distribution, and dissipation rate. Based on these results, the parameterizations of autoconversion and accretion, such as Kessler (1969), Tripoli and Cotton (1980), Beheng (1994), and Kharioutdonov and Kogan (2000), are examined, and the modifications to improve the parameterizations are proposed.

  6. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR.

    PubMed

    Cazenave, Jimena; Bistoni, María de Los Angeles; Pesce, Silvia Fabiana; Wunderlin, Daniel Alberto

    2006-01-05

    We assessed changes in activities of both detoxification and antioxidant enzymes as well as lipid peroxidation levels in liver, gill, intestine and brain of Corydoras paleatus exposed to dissolved microcystin-RR (MC-RR). Fish were captured at an unpolluted area, transported to the laboratory, and acclimated previous to experiments. Exposures were carried out using MC-RR at 0.5, 2, 5 and 10 microg L(-1). After exposures for 24h, fish were sacrificed and dissected separating liver, gills, intestine and brain of each fish. Organs were used for enzyme extractions, evaluating both antioxidant and detoxification systems through the assay of glutathione reductase (GR), guaiacol peroxidase (POD), glutathione peroxidase (GPx), catalase (CAT) as well as glutathione S-transferase (GST). Additionally, thiobarbaturic acid (TBA) method was used to evaluate the peroxidation of lipids (LPO). GST was inhibited in all studied organs at most MC-RR concentrations used. Activities of GR, POD and GPx were enhanced in liver at 2 microg L(-1), but inhibited in gills at all tested concentrations. CAT activity was enhanced in liver at all studied concentrations. Antioxidant response in liver is activated at low toxin concentrations, followed by a drop at the highest MC-RR levels. On the contrary, detoxification activity is inhibited in liver and brain in a dose-dependent way. On the other hand, MC-RR (>or=2 microg L(-1)) induced LPO in brain of exposed fish, but not in other organs. This finding becomes to this organ in one of the most severely affected. Results show that gills are also very affected, since both antioxidant and detoxification systems were inhibited in this tissue. Thus, inhibition of these defense systems could increase the uptake of different toxics through gills of fish exposed to dissolved MC-RR, leading to an increased health risk for fish. The different response observed on diverse organs exposed to MC-RR might be related to the uptake route as well as on

  7. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  8. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  9. The frequency and nature of `cloud-cloud collisions' in galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Pringle, J. E.; Duarte-Cabral, A.

    2015-02-01

    We investigate cloud-cloud collisions and giant molecular cloud evolution in hydrodynamic simulations of isolated galaxies. The simulations include heating and cooling of the interstellar medium (ISM), self-gravity and stellar feedback. Over time-scales <5 Myr most clouds undergo no change, and mergers and splits are found to be typically two-body processes, but evolution over longer time-scales is more complex and involves a greater fraction of intercloud material. We find that mergers or collisions occur every 8-10 Myr (1/15th of an orbit) in a simulation with spiral arms, and once every 28 Myr (1/5th of an orbit) with no imposed spiral arms. Both figures are higher than expected from analytic estimates, as clouds are not uniformly distributed in the galaxy. Thus, clouds can be expected to undergo between zero and a few collisions over their lifetime. We present specific examples of cloud-cloud interactions in our results, including synthetic CO maps. We would expect cloud-cloud interactions to be observable, but find they appear to have little or no impact on the ISM. Due to a combination of the clouds' typical geometries, and moderate velocity dispersions, cloud-cloud interactions often better resemble a smaller cloud nudging a larger cloud. Our findings are consistent with the view that spiral arms make little difference to overall star formation rates in galaxies, and we see no evidence that collisions likely produce massive clusters. However, to confirm the outcome of such massive cloud collisions we ideally need higher resolution simulations.

  10. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    NASA Astrophysics Data System (ADS)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  11. Stratus Cloud Radiative Effects from Cloud Processed Bimodal CCN Distributions

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2016-12-01

    Inability to understand cloud processes is a large component of climate uncertainty. Increases in cloud condensation nuclei (CCN) concentrations are known to increase cloud droplet number concentrations (Nc). This aerosol-cloud interaction (ACI) produces greater Nc at smaller sizes, which brightens clouds. A lesser understood ACI is cloud processing of CCN. This improves CCN that then more easily activate at lower cloud supersaturations (S). Bimodal CCN distributions thus ensue from these evaporated cloud droplets. Hudson et al. (2015) related CCN bimodality to Nc. In stratus clouds, bimodal CCN created greater Nc whereas in cumulus less Nc. Thus, CCN distribution shape influences cloud properties; microphysics and radiative properties. Measured uni- and bimodal CCN distributions were input into an adiabatic droplet growth model using various specified vertical wind speeds (W). Bimodal CCN produced greater Nc (Fig. 1a) and smaller mean diameters (MD; Fig. 1b) at lower W typical of stratus clouds (<70 cm/s). Improved CCN (low critical S) were more easily activated at the lower S of stratus from low W, thus, creating greater Nc. Competition for condensate thus reduced MD and drizzle. At greater W, typical of cumulus clouds (>70 cm/s), bimodal CCN made lower Nc with larger MD thus enhancing drizzle whereas unimodal CCN made greater Nc with smaller MD, thus reducing drizzle. Thus, theoretical predictions of Nc and MD for uni- and bimodal CCN agree with the sense of the observations. Radiative effects were determined using a cloud grown to a 250-meter thickness. Bimodal CCN at low W reduced cloud effective radius (re), made greater cloud optical thickness (COT), and made greater cloud albedo (Fig. 1c). At very low W changes were as much as +9% for albedo, +17% for COT, and -12% for re. Stratus clouds typically have low W and cover large areas. Thus, these changes in cloud radiative properties at low W impact climate. Stratus cloud susceptibility to CCN distribution thus

  12. Hybrid cloud: bridging of private and public cloud computing

    NASA Astrophysics Data System (ADS)

    Aryotejo, Guruh; Kristiyanto, Daniel Y.; Mufadhol

    2018-05-01

    Cloud Computing is quickly emerging as a promising paradigm in the recent years especially for the business sector. In addition, through cloud service providers, cloud computing is widely used by Information Technology (IT) based startup company to grow their business. However, the level of most businesses awareness on data security issues is low, since some Cloud Service Provider (CSP) could decrypt their data. Hybrid Cloud Deployment Model (HCDM) has characteristic as open source, which is one of secure cloud computing model, thus HCDM may solve data security issues. The objective of this study is to design, deploy and evaluate a HCDM as Infrastructure as a Service (IaaS). In the implementation process, Metal as a Service (MAAS) engine was used as a base to build an actual server and node. Followed by installing the vsftpd application, which serves as FTP server. In comparison with HCDM, public cloud was adopted through public cloud interface. As a result, the design and deployment of HCDM was conducted successfully, instead of having good security, HCDM able to transfer data faster than public cloud significantly. To the best of our knowledge, Hybrid Cloud Deployment model is one of secure cloud computing model due to its characteristic as open source. Furthermore, this study will serve as a base for future studies about Hybrid Cloud Deployment model which may relevant for solving big security issues of IT-based startup companies especially in Indonesia.

  13. A COMPREHENSIVE, WIDE-FIELD STUDY OF PULSATING STARS IN THE CARINA DWARF SPHEROIDAL GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivas, A. Katherina; Mateo, Mario, E-mail: akvivas@cida.ve, E-mail: mmateo@umich.edu

    2013-12-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dwarf spheroidal galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids (DCs), which are mostly located ∼2.5 mag below the horizontal branch and have very short periods (<0.1 days), typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations ofmore » the galaxy. Several extra-tidal DCs were found in our survey up to a distance of ∼1° from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids, some of which were found outside the galaxy's tidal radius as well. This supports past works that suggest that Carina is undergoing tidal disruption. We use the period-luminosity relationship for DCs to estimate a distance modulus of μ{sub 0} = 20.17 ± 0.10 mag, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the DCs of Carina and those in Fornax and the LMC, the only extragalactic samples of DCs currently known. These differences may reflect a metallicity spread, depth along the line of sight, and/or different evolutionary paths of the DC stars.« less

  14. Context-aware distributed cloud computing using CloudScheduler

    NASA Astrophysics Data System (ADS)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  15. Response of Haloalkaliphilic Archaeon Natronococcus Jeotgali RR17 to Hypergravity

    NASA Astrophysics Data System (ADS)

    Thombre, Rebecca S.; Bhalerao, Aniruddha R.; Shinde, Vinaya D.; Dhar, Sunil Kumar; Shouche, Yogesh S.

    2017-06-01

    The survival of archaeabacteria in extreme inhabitable environments on earth that challenge organismic survival is ubiquitously known. However, the studies related to the effect of hypergravity on the growth and proliferation of archaea are unprecedented. The survival of organisms in hypergravity and rocks in addition to resistance to cosmic radiations, pressure and other extremities is imperative to study the possibilities of microbial travel between planets and endurance in hyperaccelerative forces faced during ejection of rocks from planets. The current investigation highlights the growth of an extremophilic archaeon isolated from a rocky substrate in hypergravity environment. The haloalkaliphilic archaeon, Natronococcus jeotgali RR17 was isolated from an Indian laterite rock, submerged in the Arabian sea lining Coastal Maharashtra, India. The endolithic haloarchaeon was subjected to hypergravity from 56 - 893 X gusing acceleration generated by centrifugal rotation. The cells of N. jeotgali RR17 proliferated and demonstrated good growth in hypergravity (223 X g). This is the first report on isolation of endolithic haloarchaeon N. jeotgali RR17 from an Indian laterite rock and its ability to proliferate in hypergravity. The present study demonstrates the ability of microbial life to survive and proliferate in hypergravity. Thus the inability of organismic growth in hypergravity may no longer be a limitation for astrobiology studies related to habitability of substellar objects, brown dwarfs and other planetary bodies in the universe besides planet earth.

  16. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  17. VizieR Online Data Catalog: Positions and distances of RR Lyrae stars (Sesar+, 2014)

    NASA Astrophysics Data System (ADS)

    Sesar, B.; Banholzer, S. R.; Cohen, J. G.; Martin, N. F.; Grillmair, C. J.; Levitan, D.; Laher, R. R.; Ofek, E. O.; Surace, J. A.; Kulkarni, S. R.; Prince, T. A.; Rix, H.-W.

    2017-04-01

    RRab stars used in this work were selected by an automated classification algorithm that uses imaging data provided by the Palomar Transient Factory survey (PTF). The PTF (Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) is a synoptic survey designed to explore the transient sky. The project utilizes the 48-inch Samuel Oschin Schmidt Telescope on Mount Palomar. Each PTF image covers 7.26 deg2 with a pixel scale of 1.01''. The typical PTF cadence consists of two 60 s exposures separated by ~1 hr and repeated every one to five days. By 2013 June, PTF observed ~11000 deg2 of sky at least 25 times in the Mould-R filter (hereafter the R-band filter), and about 2200 deg2 in the SDSS g' filter. PTF photometry is calibrated to an accuracy of about 0.02 mag (Ofek et al. 2012PASP..124...62O, 2012PASP..124..854O) and light curves have relative precision of better than 10 mmag at the bright end, and about 0.2 mag at the survey limiting magnitude of R=20.6 mag. The relative photometry algorithm is described in Ofek et al. (2011, J/ApJ/740/65, see their Appendix A). (1 data file).

  18. An RR Lyrae period shift in terms of the Fourier parameter Phi sub 31

    NASA Technical Reports Server (NTRS)

    Clement, Christine M.; Jankulak, Michael; Simon, Norman R.

    1992-01-01

    The Fourier phase parameter Phi sub 31 has been determined for RRc stars in five globular clusters, NGC 6171, M5, M3, M53, and M15. The results indicate that the RRc stars in a given cluster show a sequence of Phi sub 31 increasing with period, and that the higher the cluster metallicity, the higher the sequence lies in a plot of Phi sub 31 with period. The Phi sub 31 values for the stars in NGC 6171 and M5 presented here are based on observations made with the University of Toronto 0.61 m telescope at Las Campanas, Chile, while those for M3, M53, and M15 are based on published data. A bootstrap procedure has been used to establish the uncertainties in the Fourier parameters. The physical significance of the relationship among Phi sub 31, period, and metallicity is not yet understood. It will need to be tested with hydrodynamic pulsation models computed with new opacities.

  19. First observations of tracking clouds using scanning ARM cloud radars

    DOE PAGES

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  20. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  1. First observations of tracking clouds using scanning ARM cloud radars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  2. Light-curve Instabilities of β Lyrae Observed by the BRITE Satellites

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Pigulski, Andrzej; Popowicz, Adam; Kuschnig, Rainer; Kozłowski, Szymon; Moffat, Anthony F. J.; Pavlovski, Krešimir; Handler, Gerald; Pablo, H.; Wade, G. A.; Weiss, Werner W.; Zwintz, Konstanze

    2018-07-01

    Photometric instabilities of β Lyrae (β Lyr) were observed in 2016 by two red-filter BRITE satellites over more than 10 revolutions of the binary, with ∼100 minute sampling. Analysis of the time series shows that flares or fading events take place typically three to five times per binary orbit. The amplitudes of the disturbances (relative to the mean light curve, in units of the maximum out-of-eclipse light flux, f.u.) are characterized by a Gaussian distribution with σ = 0.0130 ± 0.0004 f.u. Most of the disturbances appear to be random, with a tendency to remain for one or a few orbital revolutions, sometimes changing from brightening to fading or the reverse. Phases just preceding the center of the deeper eclipse showed the most scatter while phases around the secondary eclipse were the quietest. This implies that the invisible companion is the most likely source of the instabilities. Wavelet transform analysis showed the domination of the variability scales at phase intervals 0.05–0.3 (0.65–4 days), with the shorter (longer) scales dominating in numbers (variability power) in this range. The series can be well described as a stochastic Gaussian process with the signal at short timescales showing a slightly stronger correlation than red noise. The signal decorrelation timescale, τ = (0.068 ± 0.018) in phase or (0.88 ± 0.23) days, appears to follow the same dependence on the accretor mass as that observed for active galactic nucleus and quasi-stellar object masses five to nine orders of magnitude larger than the β Lyr torus-hidden component.

  3. Creating cloud-free Landsat ETM+ data sets in tropical landscapes: cloud and cloud-shadow removal

    Treesearch

    Sebastián Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez

    2007-01-01

    Clouds and cloud shadows are common features of visible and infrared remotelysensed images collected from many parts of the world, particularly in humid and tropical regions. We have developed a simple and semiautomated method to mask clouds and shadows in Landsat ETM+ imagery, and have developed a recent cloud-free composite of multitemporal images for Puerto Rico and...

  4. Z CVn - Still mysterious

    NASA Astrophysics Data System (ADS)

    Skarka, M.; Liška, J.; Dřevěný, R.; Sódor, Á.; Barnes, T.; Kolenberg, K.

    2018-04-01

    We comment on short- and long-term pulsation period variations of Z CVn, a classical RR Lyrae star with the Blazhko effect. Z CVn shows cyclic-like O-C diagram that can be interpreted as a consequence of binarity throught the light travel time effect. We show that this hypothesis is false and that the observed long-term period variations must be caused by some effect that is intrinsic to the star. We also show that the Blazhko period is not simply anti-correlated with the long-term period variations as was suggested by previous authors.

  5. [Primary Study on Predicting the Termination of Paroxysmal Atrial Fibrillation Based on a Novel RdR RR Intervals Scatter Plot].

    PubMed

    Lu, Hongwei; Zhang, Chenxi; Sun, Ying; Hao, Zhidong; Wang, Chunfang; Tian, Jiajia

    2015-08-01

    Predicting the termination of paroxysmal atrial fibrillation (AF) may provide a signal to decide whether there is a need to intervene the AF timely. We proposed a novel RdR RR intervals scatter plot in our study. The abscissa of the RdR scatter plot was set to RR intervals and the ordinate was set as the difference between successive RR intervals. The RdR scatter plot includes information of RR intervals and difference between successive RR intervals, which captures more heart rate variability (HRV) information. By RdR scatter plot analysis of one minute RR intervals for 50 segments with non-terminating AF and immediately terminating AF, it was found that the points in RdR scatter plot of non-terminating AF were more decentralized than the ones of immediately terminating AF. By dividing the RdR scatter plot into uniform grids and counting the number of non-empty grids, non-terminating AF and immediately terminating AF segments were differentiated. By utilizing 49 RR intervals, for 20 segments of learning set, 17 segments were correctly detected, and for 30 segments of test set, 20 segments were detected. While utilizing 66 RR intervals, for 18 segments of learning set, 16 segments were correctly detected, and for 28 segments of test set, 20 segments were detected. The results demonstrated that during the last one minute before the termination of paroxysmal AF, the variance of the RR intervals and the difference of the neighboring two RR intervals became smaller. The termination of paroxysmal AF could be successfully predicted by utilizing the RdR scatter plot, while the predicting accuracy should be further improved.

  6. 77 FR 1009 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... Field Repair Scheme FRS5367/B, and A mandatory terminating action to the repetitive inspections to be... Repaired Using RR Field Repair Scheme FRS5367/B Borescope-inspect combustion liner head sections previously repaired using RR Field Repair Scheme FRS5367/B. Use paragraphs 3.A.(1) through 3.A.(5) of the...

  7. Re-evaluating the Cloud Lifetime Effect: Does Precipitation Suppression Always Lead to an Increased Cloud Extent in Warm Clouds?

    NASA Astrophysics Data System (ADS)

    Douglas, A.; L'Ecuyer, T.

    2017-12-01

    Aerosol influences on cloud lifetime remain a poorly understood pathway of aerosol-cloud-radiation interaction with large margins of error according to the fifth IPCC report. Increases in cloud lifetime are attributed to changes in cloud extent due to the suppression of precipitation by increased aerosol concentrations. The dependence of changes in cloud fraction and probability of precipitation on aerosol perturbations for controlled cloud regimes will be investigated using A-Train measurements. CloudSat, MODIS, and AMSR-E measurements from 2006 to 2010 are sorted into regimes established using stability to describe local meteorology, and relative humidity and liquid water path to describe cloud morphology. Holding the thermodynamic and meteorological environments constant allows variations in precipitation and cloud extent owing to regime-specific cloud lifetime effects to be attributed to aerosol perturbations. The relationship between precipitation suppression, cloud extent, and liquid water path will be analyzed. The cloud lifetime effect will be constrained using regimes in the hopes of improving our understanding of precipitation-aerosol interactions.

  8. Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2016-10-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.

  9. Clouds Aerosols Internal Affaires: Increasing Cloud Fraction and Enhancing the Convection

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Kaufman, Yoram; Remer, Lorraine; Rosenfeld, Danny; Rudich, Yinon

    2004-01-01

    Clouds developing in a polluted environment have more numerous, smaller cloud droplets that can increase the cloud lifetime and liquid water content. Such changes in the cloud droplet properties may suppress low precipitation allowing development of a stronger convection and higher freezing level. Delaying the washout of the cloud water (and aerosol), and the stronger convection will result in higher clouds with longer life time and larger anvils. We show these effects by using large statistics of the new, 1km resolution data from MODIS on the Terra satellite. We isolate the aerosol effects from meteorology by regression and showing that aerosol microphysical effects increases cloud fraction by average of 30 presents for all cloud types and increases convective cloud top pressure by average of 35mb. We analyze the aerosol cloud interaction separately for high pressure trade wind cloud systems and separately for deep convective cloud systems. The resultant aerosol radiative effect on climate for the high pressure cloud system is: -10 to -13 W/sq m at the top of the atmosphere (TOA) and -11 to -14 W/sq m at the surface. For deeper convective clouds the forcing is: -4 to -5 W/sq m at the TOA and -6 to -7 W/sq m at the surface.

  10. Chicago, Burlington, & Quincy R.R car works aurora, ILL. Photocopy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chicago, Burlington, & Quincy R.R car works aurora, ILL. Photocopy of an undated lithograph based on an ambrotype by D.C. Pratt, C. 1857 - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL

  11. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  12. Evidence for a perception of prosodic cues in bat communication: contact call classification by Megaderma lyra.

    PubMed

    Janssen, Simone; Schmidt, Sabine

    2009-07-01

    The perception of prosodic cues in human speech may be rooted in mechanisms common to mammals. The present study explores to what extent bats use rhythm and frequency, typically carrying prosodic information in human speech, for the classification of communication call series. Using a two-alternative, forced choice procedure, we trained Megaderma lyra to discriminate between synthetic contact call series differing in frequency, rhythm on level of calls and rhythm on level of call series, and measured the classification performance for stimuli differing in only one, or two, of the above parameters. A comparison with predictions from models based on one, combinations of two, or all, parameters revealed that the bats based their decision predominantly on frequency and in addition on rhythm on the level of call series, whereas rhythm on level of calls was not taken into account in this paradigm. Moreover, frequency and rhythm on the level of call series were evaluated independently. Our results show that parameters corresponding to prosodic cues in human languages are perceived and evaluated by bats. Thus, these necessary prerequisites for a communication via prosodic structures in mammals have evolved far before human speech.

  13. Overlap Properties of Clouds Generated by a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Khairoutdinov, M.

    2002-01-01

    In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will

  14. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  15. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; hide

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  16. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  17. Unveiling the Hybrid Genome Structure of Escherichia coli RR1 (HB101 RecA+)

    PubMed Central

    Jeong, Haeyoung; Sim, Young Mi; Kim, Hyun Ju; Lee, Sang Jun

    2017-01-01

    There have been extensive genome sequencing studies for Escherichia coli strains, particularly for pathogenic isolates, because fast determination of pathogenic potential and/or drug resistance and their propagation routes is crucial. For laboratory E. coli strains, however, genome sequence information is limited except for several well-known strains. We determined the complete genome sequence of laboratory E. coli strain RR1 (HB101 RecA+), which has long been used as a general cloning host. A hybrid genome sequence of K-12 MG1655 and B BL21(DE3) was constructed based on the initial mapping of Illumina HiSeq reads to each reference, and iterative rounds of read mapping, variant detection, and consensus extraction were carried out. Finally, PCR and Sanger sequencing-based finishing were applied to resolve non-single nucleotide variant regions with aberrant read depths and breakpoints, most of them resulting from prophages and insertion sequence transpositions that are not present in the reference genome sequence. We found that 96.9% of the RR1 genome is derived from K-12, and identified exact crossover junctions between K-12 and B genomic fragments. However, because RR1 has experienced a series of genetic manipulations since branching from the common ancestor, it has a set of mutations different from those found in K-12 MG1655. As well as identifying all known genotypes of RR1 on the basis of genomic context, we found novel mutations. Our results extend current knowledge of the genotype of RR1 and its relatives, and provide insights into the pedigree, genomic background, and physiology of common laboratory strains. PMID:28421066

  18. Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data

    NASA Technical Reports Server (NTRS)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny

    2010-01-01

    Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.

  19. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    NASA Technical Reports Server (NTRS)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  20. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  1. The Influence of Cloud Field Uniformity on Observed Cloud Amount

    NASA Astrophysics Data System (ADS)

    Riley, E.; Kleiss, J.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.

    2017-12-01

    Two ground-based measurements of cloud amount include cloud fraction (CF) obtained from time series of zenith-pointing radar-lidar observations and fractional sky cover (FSC) acquired from a Total Sky Imager (TSI). In comparison with the radars and lidars, the TSI has a considerably larger field of view (FOV 100° vs. 0.2°) and therefore is expected to have a different sensitivity to inhomogeneity in a cloud field. Radiative transfer calculations based on cloud properties retrieved from narrow-FOV overhead cloud observations may differ from shortwave and longwave flux observations due to spatial variability in local cloud cover. This bias will impede radiative closure for sampling reasons rather than the accuracy of cloud microphysics retrievals or radiative transfer calculations. Furthermore, the comparison between observed and modeled cloud amount from large eddy simulations (LES) models may be affected by cloud field inhomogeneity. The main goal of our study is to estimate the anticipated impact of cloud field inhomogeneity on the level of agreement between CF and FSC. We focus on shallow cumulus clouds observed at the U.S. Department of Energy Atmospheric Radiation Measurement Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Our analysis identifies cloud field inhomogeneity using a novel metric that quantifies the spatial and temporal uniformity of FSC over 100-degree FOV TSI images. We demonstrate that (1) large differences between CF and FSC are partly attributable to increases in inhomogeneity and (2) using the uniformity metric can provide a meaningful assessment of uncertainties in observed cloud amount to aide in comparing ground-based measurements to radiative transfer or LES model outputs at SGP.

  2. Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Lohmann, Ulrike

    2003-08-01

    The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.

  3. Stellar Populations and Nearby Galaxies with the LSST

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Olsen, K.; Monet, D. G.; LSST Stellar Populations Collaboration

    2009-01-01

    The LSST will produce a multi-color map and photometric object catalog of half the sky to r=27.6 (AB mag; 5-sigma). Time-space sampling of each field spanning ten years will allow variability, proper motion and parallax measurements for objects brighter than r=24.7. As part of providing an unprecedented map of the Galaxy, the accurate multi-band photometry will permit photometric parallaxes, chemical abundances and a handle on ages via colors at turn-off for main-sequence (MS) stars at all distances within the Galaxy as well as in the Magellanic Clouds, and dwarf satellites of the Milky Way. This will support comprehensive studies of star formation histories and chemical evolution for field stars. The structures of the Clouds and dwarf spheroidals will be traced with the MS stars, to equivalent surface densities fainter than 35 mag/square arc-second. With geometric parallax accuracy of 1 milli-arc-sec, comparable to HIPPARCOS but reaching more than 10 magnitudes fainter, a robust complete sample of solar neighborhood stars will be obtained. The LSST time sampling will identify and characterize variable stars of all types, from time scales of 1 hr to several years, a feast for variable star astrophysics. The combination of wide coverage, multi-band photometry, time sampling and parallax taken together will address several key problems: e.g. fine tuning the extragalactic distance scale by examining properties of RR Lyraes and Cepheids as a function of parent populations, extending the faint end of the galaxy luminosity function by discovering them using star count density enhancements on degree scales tracing, and indentifying inter-galactic stars through novae and Long Period Variables.

  4. CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert

    2015-01-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  5. Photocopy of floor plan of the C.B. & Q. R.R ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of floor plan of the C.B. & Q. R.R roundhouse and locomotive shops. June 1980. - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL

  6. Military clouds: utilization of cloud computing systems at the battlefield

    NASA Astrophysics Data System (ADS)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  7. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  8. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  9. Galaxy CloudMan: delivering cloud compute clusters.

    PubMed

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  10. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  11. Effects of cloud size and cloud particles on satellite-observed reflected brightness

    NASA Technical Reports Server (NTRS)

    Reynolds, D. W.; Mckee, T. B.; Danielson, K. S.

    1978-01-01

    Satellite observations allowed obtaining data on the visible brightness of cumulus clouds over South Park, Colorado, while aircraft observations were made in cloud to obtain the drop size distributions and liquid water content of the cloud. Attention is focused on evaluating the relationship between cloud brightness, horizontal dimension, and internal microphysical structure. A Monte Carlo cloud model for finite clouds was run using different distributions of drop sizes and numbers, while varying the cloud depth and width to determine how theory would predict what the satellite would view from its given location in space. Comparison of these results to the satellite observed reflectances is presented. Theoretical results are found to be in good agreement with observations. For clouds of optical thickness between 20 and 60, monitoring cloud brightness changes in clouds of uniform depth and variable width gives adequate information about a cloud's liquid water content. A cloud having a 10:1 width to depth ratio is almost reaching its maximum brightness for a specified optical thickness.

  12. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  13. Cloud-cloud collision in the Galactic center 50 km s-1 molecular cloud

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Miyazaki, Atsushi; Uehara, Kenta

    2015-12-01

    We performed a search of star-forming sites influenced by external factors, such as SNRs, H II regions, and cloud-cloud collisions (CCCs), to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO v = 0, J = 2-1, H13CO+J = 1-0, and CS J = 1-0 emission lines obtained with the Nobeyama 45 m telescope. We found a half-shell-like feature (HSF) with a high integrated line intensity ratio of ∫TB(SiO v = 0, J = 2-1)dv/∫TB(H13CO+J = 1-0)dv ˜ 6-8 in the 50 km s-1 molecular cloud; the HSF is a most conspicuous molecular cloud in the region and harbors an active star-forming site where several compact H II regions can be seen. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF can be also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature originates from a CCC. We analyzed the CS J = 1-0 emission line data obtained with the Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to ˜2500 M⊙, although the CMF of the non-CCC region reaches the upper limit of ˜1500 M⊙. Most massive molecular cores with Mgas > 750 M⊙ are located only around the ridge of the HSF and adjoin the compact H II region. These may be a sign of massive star formation induced by CCCs in the Galactic center region.

  14. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE PAGES

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations.more » Cloud-J is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  15. Galaxy CloudMan: delivering cloud compute clusters

    PubMed Central

    2010-01-01

    Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983

  16. Clustering of local group distances: Publication bias or correlated measurements? II. M31 and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Grijs, Richard; Bono, Giuseppe

    2014-07-01

    The accuracy of extragalactic distance measurements ultimately depends on robust, high-precision determinations of the distances to the galaxies in the local volume. Following our detailed study addressing possible publication bias in the published distance determinations to the Large Magellanic Cloud (LMC), here we extend our distance range of interest to include published distance moduli to M31 and M33, as well as to a number of their well-known dwarf galaxy companions. We aim at reaching consensus on the best, most homogeneous, and internally most consistent set of Local Group distance moduli to adopt for future, more general use based on themore » largest set of distance determinations to individual Local Group galaxies available to date. Based on a careful, statistically weighted combination of the main stellar population tracers (Cepheids, RR Lyrae variables, and the magnitude of the tip of the red-giant branch), we derive a recommended distance modulus to M31 of (m−M){sub 0}{sup M31}=24.46±0.10 mag—adopting as our calibration an LMC distance modulus of (m−M){sub 0}{sup LMC}=18.50 mag—and a fully internally consistent set of benchmark distances to key galaxies in the local volume, enabling us to establish a robust and unbiased, near-field extragalactic distance ladder.« less

  17. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    NASA Technical Reports Server (NTRS)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  18. Formation of massive, dense cores by cloud-cloud collisions

    NASA Astrophysics Data System (ADS)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-03-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  19. Formation of massive, dense cores by cloud-cloud collisions

    NASA Astrophysics Data System (ADS)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-05-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  20. Improved Thin Cirrus and Terminator Cloud Detection in CERES Cloud Mask

    NASA Technical Reports Server (NTRS)

    Trepte, Qing; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Doug; Haeffelin, Martial

    2006-01-01

    Thin cirrus clouds account for about 20-30% of the total cloud coverage and affect the global radiation budget by increasing the Earth's albedo and reducing infrared emissions. Thin cirrus, however, are often underestimated by traditional satellite cloud detection algorithms. This difficulty is caused by the lack of spectral contrast between optically thin cirrus and the surface in techniques that use visible (0.65 micron ) and infrared (11 micron ) channels. In the Clouds and the Earth s Radiant Energy System (CERES) Aqua Edition 1 (AEd1) and Terra Edition 3 (TEd3) Cloud Masks, thin cirrus detection is significantly improved over both land and ocean using a technique that combines MODIS high-resolution measurements from the 1.38 and 11 micron channels and brightness temperature differences (BTDs) of 11-12, 8.5-11, and 3.7-11 micron channels. To account for humidity and view angle dependencies, empirical relationships were derived with observations from the 1.38 micron reflectance and the 11-12 and 8.5-11 micron BTDs using 70 granules of MODIS data in 2002 and 2003. Another challenge in global cloud detection algorithms occurs near the day/night terminator where information from the visible 0.65 micron channel and the estimated solar component of 3.7 micron channel becomes less reliable. As a result, clouds are often underestimated or misidentified near the terminator over land and ocean. Comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer [AVHRR]) cloud coverage and Geoscience Laser Altimeter System (GLAS) measurements north of 60 N indicate significant amounts of missing clouds from CLAVR-x because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products (MOD06) and GLAS in the same region also show similar difficulties with MODIS cloud retrievals. The consistent detection of clouds through out the day is needed to provide reliable cloud and radiation products for CERES

  1. Cloud Collaboration: Cloud-Based Instruction for Business Writing Class

    ERIC Educational Resources Information Center

    Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny

    2014-01-01

    Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…

  2. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  3. A study of the continuum flux and the line structure in the IUE spectrum of Beta Lyrae

    NASA Technical Reports Server (NTRS)

    Aydin, C.; Engin, S.; Brandi, E.; Ferrer, O. E.; Hack, M.

    1988-01-01

    A study of the available archival IUE images of Beta Lyrae has led to the following results: (1) for lambda in the range of 1250 - 1500 A, the eclipse depth at second conjunction is slightly larger than the eclipse depth at primary conjunction; they are equal at about 1670 A; (2) the profiles of the resonance lines of SiIV (and the same seems to be true for NV and CIV) can be described as composite, formed by the superposition of a stationary P Cygni profile that suggests a velocity of approach of -170 km/s and a broad, less strong, emission that seems to yield a velocity distribution in antiphase with the velocity curve of the B8 II component of the system; and (3) the emission lines of the intercombination doublet of semiforbidden N II at about 2140 A suggest a velocity of about -130 km/s. The interpretation of the latter composite profile appears similar to the one suggested by Sahade (1966) to describe H-alpha and He I 5876 and He I 6678, and by Batten and Sahade (1973) to describe H-alpha.

  4. Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.

  5. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  6. Cloud Size Distributions from Multi-sensor Observations of Shallow Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Kleiss, J.; Riley, E.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.

    2017-12-01

    Combined radar-lidar observations have been used for almost two decades to document temporal changes of shallow cumulus clouds at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Since the ARM zenith-pointed radars and lidars have a narrow field-of-view (FOV), the documented cloud statistics, such as distributions of cloud chord length (or horizontal length scale), represent only a slice along the wind direction of a region surrounding the SGP site, and thus may not be representative for this region. To investigate this impact, we compare cloud statistics obtained from wide-FOV sky images collected by ground-based observations at the SGP site to those from the narrow FOV active sensors. The main wide-FOV cloud statistics considered are cloud area distributions of shallow cumulus clouds, which are frequently required to evaluate model performance, such as routine large eddy simulation (LES) currently being conducted by the ARM LASSO (LES ARM Symbiotic Simulation and Observation) project. We obtain complementary macrophysical properties of shallow cumulus clouds, such as cloud chord length, base height and thickness, from the combined radar-lidar observations. To better understand the broader observational context where these narrow FOV cloud statistics occur, we compare them to collocated and coincident cloud area distributions from wide-FOV sky images and high-resolution satellite images. We discuss the comparison results and illustrate the possibility to generate a long-term climatology of cloud size distributions from multi-sensor observations at the SGP site.

  7. 50 CFR 680.5 - Recordkeeping and reporting (R&R).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Recordkeeping and reporting (R&R). 680.5... information is true, correct, and complete to the best of his or her knowledge and belief. (5) Submittal. The..., 2005, as amended at 70 FR 33395, June 8, 2005; 70 FR 75421, Dec. 20, 2005; 73 FR 76189, Dec. 15, 2008...

  8. 50 CFR 680.5 - Recordkeeping and reporting (R&R).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Recordkeeping and reporting (R&R). 680.5... information is true, correct, and complete to the best of his or her knowledge and belief. (5) Submittal. The..., 2005, as amended at 70 FR 33395, June 8, 2005; 70 FR 75421, Dec. 20, 2005; 73 FR 76189, Dec. 15, 2008...

  9. 50 CFR 680.5 - Recordkeeping and reporting (R&R).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Recordkeeping and reporting (R&R). 680.5... information is true, correct, and complete to the best of his or her knowledge and belief. (5) Submittal. The..., 2005, as amended at 70 FR 33395, June 8, 2005; 70 FR 75421, Dec. 20, 2005; 73 FR 76189, Dec. 15, 2008...

  10. 50 CFR 680.5 - Recordkeeping and reporting (R&R).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Recordkeeping and reporting (R&R). 680.5... information is true, correct, and complete to the best of his or her knowledge and belief. (5) Submittal. The..., 2005, as amended at 70 FR 33395, June 8, 2005; 70 FR 75421, Dec. 20, 2005; 73 FR 76189, Dec. 15, 2008...

  11. 50 CFR 680.5 - Recordkeeping and reporting (R&R).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Recordkeeping and reporting (R&R). 680.5... information is true, correct, and complete to the best of his or her knowledge and belief. (5) Submittal. The..., 2005, as amended at 70 FR 33395, June 8, 2005; 70 FR 75421, Dec. 20, 2005; 73 FR 76189, Dec. 15, 2008...

  12. Implementing a warm cloud microphysics parameterization for convective clouds in NCAR CESM

    NASA Astrophysics Data System (ADS)

    Shiu, C.; Chen, Y.; Chen, W.; Li, J. F.; Tsai, I.; Chen, J.; Hsu, H.

    2013-12-01

    Most of cumulus convection schemes use simple empirical approaches to convert cloud liquid mass to rain water or cloud ice to snow e.g. using a constant autoconversion rate and dividing cloud liquid mass into cloud water and ice as function of air temperature (e.g. Zhang and McFarlane scheme in NCAR CAM model). There are few studies trying to use cloud microphysical schemes to better simulate such precipitation processes in the convective schemes of global models (e.g. Lohmann [2008] and Song, Zhang, and Li [2012]). A two-moment warm cloud parameterization (i.e. Chen and Liu [2004]) is implemented into the deep convection scheme of CAM5.2 of CESM model for treatment of conversion of cloud liquid water to rain water. Short-term AMIP type global simulations are conducted to evaluate the possible impacts from the modification of this physical parameterization. Simulated results are further compared to observational results from AMWG diagnostic package and CloudSAT data sets. Several sensitivity tests regarding to changes in cloud top droplet concentration (here as a rough testing for aerosol indirect effects) and changes in detrained cloud size of convective cloud ice are also carried out to understand their possible impacts on the cloud and precipitation simulations.

  13. Isolating signatures of major cloud-cloud collisions using position-velocity diagrams

    NASA Astrophysics Data System (ADS)

    Haworth, T. J.; Tasker, E. J.; Fukui, Y.; Torii, K.; Dale, J. E.; Shima, K.; Takahira, K.; Habe, A.; Hasegawa, K.

    2015-06-01

    Collisions between giant molecular clouds are a potential mechanism for triggering the formation of massive stars, or even super star clusters. The trouble is identifying this process observationally and distinguishing it from other mechanisms. We produce synthetic position-velocity diagrams from models of cloud-cloud collisions, non-interacting clouds along the line of sight, clouds with internal radiative feedback and a more complex cloud evolving in a galactic disc, to try and identify unique signatures of collision. We find that a broad bridge feature connecting two intensity peaks, spatially correlated but separated in velocity, is a signature of a high-velocity cloud-cloud collision. We show that the broad bridge feature is resilient to the effects of radiative feedback, at least to around 2.5 Myr after the formation of the first massive (ionizing) star. However for a head-on 10 km s-1 collision, we find that this will only be observable from 20 to 30 per cent of viewing angles. Such broad-bridge features have been identified towards M20, a very young region of massive star formation that was concluded to be a site of cloud-cloud collision by Torii et al., and also towards star formation in the outer Milky Way by Izumi et al.

  14. Limits to Cloud Susceptibility

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    2002-01-01

    1-kilometer AVHRR observations of ship tracks in low-level clouds off the west coast of the U S. were used to determine limits for the degree to which clouds might be altered by increases in anthropogenic aerosols. Hundreds of tracks were analyzed to determine whether the changes in droplet radii, visible optical depths, and cloud top altitudes that result from the influx of particles from underlying ships were consistent with expectations based on simple models for the indirect effect of aerosols. The models predict substantial increases in sunlight reflected by polluted clouds due to the increases in droplet numbers and cloud liquid water that result from the elevated particle concentrations. Contrary to the model predictions, the analysis of ship tracks revealed a 15-20% reduction in liquid water for the polluted clouds. Studies performed with a large-eddy cloud simulation model suggested that the shortfall in cloud liquid water found in the satellite observations might be attributed to the restriction that the 1-kilometer pixels be completely covered by either polluted or unpolluted cloud. The simulation model revealed that a substantial fraction of the indirect effect is caused by a horizontal redistribution of cloud water in the polluted clouds. Cloud-free gaps in polluted clouds fill in with cloud water while the cloud-free gaps in the surrounding unpolluted clouds remain cloud-free. By limiting the analysis to only overcast pixels, the current study failed to account for the gap-filling predicted by the simulation model. This finding and an analysis of the spatial variability of marine stratus suggest new ways to analyze ship tracks to determine the limit to which particle pollution will alter the amount of sunlight reflected by clouds.

  15. New Cloud Science from the New ARM Cloud Radar Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2010-12-01

    The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.

  16. Screaming Clouds

    NASA Astrophysics Data System (ADS)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  17. New insights about cloud vertical structure from CloudSat and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-09-01

    Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.

  18. ASTER cloud coverage reassessment using MODIS cloud mask products

    NASA Astrophysics Data System (ADS)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  19. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  20. ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Rossow, William B.; Warren, Stephen G.

    1999-01-01

    Individual surface weather observations from land stations and ships are compared with individual cloud retrievals of the International Satellite Cloud Climatology Project (ISCCP), Stage C1, for an 8-year period (1983-1991) to relate cloud optical thicknesses and cloud-top pressures obtained from satellite data to the standard cloud types reported in visual observations from the surface. Each surface report is matched to the corresponding ISCCP-C1 report for the time of observation for the 280x280-km grid-box containing that observation. Classes of the surface reports are identified in which a particular cloud type was reported present, either alone or in combination with other clouds. For each class, cloud amounts from both surface and C1 data, base heights from surface data, and the frequency-distributions of cloud-top pressure (p(sub c) and optical thickness (tau) from C1 data are averaged over 15-degree latitude zones, for land and ocean separately, for 3-month seasons. The frequency distribution of p(sub c) and tau is plotted for each of the surface-defined cloud types occurring both alone and with other clouds. The average cloud-top pressures within a grid-box do not always correspond well with values expected for a reported cloud type, particularly for the higher clouds Ci, Ac, and Cb. In many cases this is because the satellites also detect clouds within the grid-box that are outside the field of view of the surface observer. The highest average cloud tops are found for the most extensive cloud type, Ns, averaging 7 km globally and reaching 9 km in the ITCZ. Ns also has the greatest average retrieved optical thickness, tau approximately equal 20. Cumulonimbus clouds may actually attain far greater heights and depths, but do not fill the grid-box. The tau-p(sub c) distributions show features that distinguish the high, middle, and low clouds reported by the surface observers. However, the distribution patterns for the individual low cloud types (Cu, Sc, St

  1. Estrellas variables en campos de cúmulos abiertos galácticos detectadas en el relevamiento VVV

    NASA Astrophysics Data System (ADS)

    Palma, T.; Dékany, I.; Clariá, J. J.; Minniti, D.; Alonso-García, J. A.; Ramírez Alegría, S.; Bonatto, C.

    2016-08-01

    The present project constitutes a massive search for variable stars in the field of open clusters projected on highly reddened regions of the galactic disk and bulge. This search is being performed using -, - and -band observations of the near-infrared variability Survey Vista variables in the Via Lactea. We present the first results obtained in four open clusters projected on the Galactic bulge. The new variables discovered in the current work, 182 in total, are classified on the basis of their light curves and their locations in the corresponding color-magnitude diagrams. Among the newly discovered variable stars, Cepheids, RR Lyrae, Scuti, eclipsing binaries and other types have been found.

  2. VizieR Online Data Catalog: The distance modulus of the LMC (Kovacs, 2000)

    NASA Astrophysics Data System (ADS)

    Kovacs, G.

    2000-11-01

    This table provides periods, intensity averaged V magnitudes and magnitude averaged V-Rc (Johnson V & Kron-Cousins R) colors of the MACHO LMC double-mode RR Lyrae variables employed in the above paper. For the calculation of the averages, an iterative 3-sigma condition was used to omit outliers. Further references (coordinates, amplitude ratios, etc.) to these variables can be found in Alcock et al. (1997ApJ...482...89A) and in Alcock et al. (2000, Cat. ). Trasformation to the standard system has been performed in accordance with Alcock et al. (1999PASP..111.1539A). (1 data file).

  3. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE PAGES

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 %more » errors using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  4. Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Self, S.

    1980-01-01

    Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.

  5. Cloud microstructure studies

    NASA Technical Reports Server (NTRS)

    Blau, H. H., Jr.; Fowler, M. G.; Chang, D. T.; Ryan, R. T.

    1972-01-01

    Over two thousand individual cloud droplet size distributions were measured with an optical cloud particle spectrometer flown on the NASA Convair 990 aircraft. Representative droplet spectra and liquid water content, L (gm/cu m) were obtained for oceanic stratiform and cumuliform clouds. For non-precipitating clouds, values of L range from 0.1 gm/cu m to 0.5 gm/cu m; with precipitation, L is often greater than 1 gm/cu m. Measurements were also made in a newly formed contrail and in cirrus clouds.

  6. Diurnal and Seasonal Cloud Base Patterns Highlight Small-Mountain Tropical Cloud Forest Vulnerability

    NASA Astrophysics Data System (ADS)

    Van Beusekom, A.; Gonzalez, G.; Scholl, M. A.

    2016-12-01

    The degree to which cloud immersion sustains tropical montane cloud forests (TMCFs) during rainless periods and the amount these clouds are affected by urban areas is not well understood, as cloud base is rarely quantified near mountains. We found that a healthy small-mountain TMCF in Puerto Rico had lowest cloud base during the mid-summer dry season. In addition, we observed that cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons, based on 2.5 years of direct and 16 years of indirect observations. The low clouds during dry season appear to be explained by proximity to the oceanic cloud system where lower clouds are seasonally invariant in altitude and cover; along with orographic lifting and trade-wind control over cloud formation. These results suggest that climate change impacts on small-mountain TMCFs may not be limited to the dry season; changes in regional-scale patterns that cause drought periods during the wet seasons will likely have higher cloud base, and thus may threaten cloud water support to sensitive mountain ecosystems. Strong El Niño's can cause drought in Puerto Rico; we will report results from the summer of 2015 that examined El Niño effects on cloud base altitudes. Looking at regionally collected airport cloud data, we see indicators that diurnal urban effects may already be raising the low cloud bases.

  7. Evaluation of the i3 Scale-up of Reading Recovery: Year One Report, 2011-12. RR-76

    ERIC Educational Resources Information Center

    May, Henry; Gray, Abigail; Gillespie, Jessica N.; Sirinides, Philip; Sam, Cecile; Goldsworthy, Heather; Armijo, Michael; Tognatta, Namrata

    2013-01-01

    Reading Recovery (RR) is a short-term early intervention designed to help the lowest-achieving readers in first grade reach average levels of classroom performance in literacy. Students identified to receive Reading Recovery meet individually with a specially trained Reading Recovery (RR) teacher every school day for 30-minute lessons over a…

  8. VizieR Online Data Catalog: omega Cen RR Lyrae and SX Phoenicis stars (Navarrete+, 2017)

    NASA Astrophysics Data System (ADS)

    Navarrete, C.; Catelan, M.; Contreras Ramos, R.; Alonso-Garcia, J.; Gran, F.; Dekany, I.; Minniti, D.

    2017-10-01

    The VIRCAM camera, mounted on the VISTA telescope, was used to monitor ω Cen, obtaining 42 and 100 epochs in the J and KS bands, respectively. The effective field of view (FoV) of VISTA (1.1x1.5deg2) is large enough to encompass all the pulsating stars known in the field of the cluster, except for four RRL located farther away than the cluster's tidal radius and which are thus likely non-members (Navarrete et al., 2015A&A...577A..99N). The characteristics of the observations and data reduction are the same as those already explained in Navarrete et al. (2013IBVS.6078....1N, 2015A&A...577A..99N), and will accordingly not be repeated here. Point-spread function (PSF) photometry was performed using the photometry packages DoPhot (Schechter et al., 1993PASP..105.1342S; Alonso-Garcia et al., 2012, Cat. J/AJ/143/70) for the outer regions, and DAOPHOT II/ALLFRAME (Stetson 1987PASP...99..191S, 1994PASP..106..250S) for the central part of the cluster (i.e., the innermost ~10'). All the magnitudes are presented in the VISTA photometric system. (2 data files).

  9. Integrated Cloud-Aerosol-Radiation Product using CERES, MODIS, CALIPSO and CloudSat Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave

    2007-01-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  10. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  11. Modeling Cloud Phase Fraction Based on In-situ Observations in Stratiform Clouds

    NASA Astrophysics Data System (ADS)

    Boudala, F. S.; Isaac, G. A.

    2005-12-01

    Mixed-phase clouds influence weather and climate in several ways. Due to the fact that they exhibit very different optical properties as compared to ice or liquid only clouds, they play an important role in the earth's radiation balance by modifying the optical properties of clouds. Precipitation development in clouds is also enhanced under mixed-phase conditions and these clouds may contain large supercooled drops that freeze quickly in contact with aircraft surfaces that may be a hazard to aviation. The existence of ice and liquid phase clouds together in the same environment is thermodynamically unstable, and thus they are expected to disappear quickly. However, several observations show that mixed-phase clouds are relatively stable in the natural environment and last for several hours. Although there have been some efforts being made in the past to study the microphysical properties of mixed-phase clouds, there are still a number of uncertainties in modeling these clouds particularly in large scale numerical models. In most models, very simple temperature dependent parameterizations of cloud phase fraction are being used to estimate the fraction of ice or liquid phase in a given mixed-phase cloud. In this talk, two different parameterizations of ice fraction using in-situ aircraft measurements of cloud microphysical properties collected in extratropical stratiform clouds during several field programs will be presented. One of the parameterizations has been tested using a single prognostic equation developed by Tremblay et al. (1996) for application in the Canadian regional weather prediction model. The addition of small ice particles significantly increased the vapor deposition rate when the natural atmosphere is assumed to be water saturated, and thus this enhanced the glaciation of simulated mixed-phase cloud via the Bergeron-Findeisen process without significantly affecting the other cloud microphysical processes such as riming and particle sedimentation

  12. Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations

    NASA Astrophysics Data System (ADS)

    Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.

    2018-03-01

    Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further

  13. Tiny, Dusty, Galactic HI Clouds: The GALFA-HI Compact Cloud Catalog

    NASA Astrophysics Data System (ADS)

    Saul, Destry R.; Putman, M. E.; Peek, J. G.

    2013-01-01

    The recently published GALFA-HI Compact Cloud Catalog contains 2000 nearby neutral hydrogen clouds under 20' in angular size detected with a machine-vision algorithm in the Galactic Arecibo L-Band Feed Array HI survey (GALFA-HI). At a distance of 1kpc, the compact clouds would typically be 1 solar mass and 1pc in size. We observe that nearly all of the compact clouds that are classified as high velocity (> 90 km/s) are near previously-identified high velocity complexes. We separate the compact clouds into populations based on velocity, linewidth, and position. We have begun to search for evidence of dust in these clouds using IRIS and have detections in several populations.

  14. A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Chen, C.; Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.

  15. Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.

    2012-12-01

    Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in

  16. Community Cloud Computing

    NASA Astrophysics Data System (ADS)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  17. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the

  18. Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Romps, D. M.

    2016-12-01

    Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.

  19. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations andmore » subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.« less

  20. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  1. The Exoplanet Cloud Atlas

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Marley, Mark S.; Morley, Caroline; Fortney, Jonathan J.

    2017-10-01

    Clouds have been readily inferred from observations of exoplanet atmospheres, and there exists great variability in cloudiness between planets, such that no clear trend in exoplanet cloudiness has so far been discerned. Equilibrium condensation calculations suggest a myriad of species - salts, sulfides, silicates, and metals - could condense in exoplanet atmospheres, but how they behave as clouds is uncertain. The behavior of clouds - their formation, evolution, and equilibrium size distribution - is controlled by cloud microphysics, which includes processes such as nucleation, condensation, and evaporation. In this work, we explore the cloudy exoplanet phase space by using a cloud microphysics model to simulate a suite of cloud species ranging from cooler condensates such as KCl/ZnS, to hotter condensates like perovskite and corundum. We investigate how the cloudiness and cloud particle sizes of exoplanets change due to variations in temperature, metallicity, gravity, and cloud formation mechanisms, and how these changes may be reflected in current and future observations. In particular, we will evaluate where in phase space could cloud spectral features be observable using JWST MIRI at long wavelengths, which will be dependent on the cloud particle size distribution and cloud species.

  2. Cloud4Psi: cloud computing for 3D protein structure similarity searching.

    PubMed

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-10-01

    Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.

  3. Cloud4Psi: cloud computing for 3D protein structure similarity searching

    PubMed Central

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur

    2014-01-01

    Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141

  4. Lost in Cloud

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  5. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  6. Parameterization of Cirrus Cloud Vertical Profiles and Geometrical Thickness Using CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Iwabuchi, H.; Saito, M.

    2017-12-01

    High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.

  7. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.

  8. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    NASA Astrophysics Data System (ADS)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  9. Interpretation of multi-wavelength-retrieved cloud droplet effective radii in terms of cloud vertical inhomogeneity based on water cloud simulations using a spectral-bin microphysics cloud model

    NASA Astrophysics Data System (ADS)

    Matsui, T. N.; Suzuki, K.; Nakajima, T. Y.; Matsumae, Y.

    2011-12-01

    Clouds play an import role in energy balance and climate changes of the Earth. IPCC AR4, however, pointed out that cloud feedback is still the large source of uncertainty in climate estimates. In the recent decade, the new satellites with the active instruments (e.g. Cloudsat) represented a new epoch in earth observations. The active remote sensing is powerful for illustrating the vertical structures of clouds, but the passive remote sensing from satellite images also contribute to better understating of cloud system. For instance, Nakajima et al. (2010a) and Suzuki et al. (2010) illustrated transition of cloud growth, from cloud droplet to drizzle to rain, using the combine analysis of the cloud droplet size retrieved from passive images (MODIS) and the reflectivity profiles from Cloudsat. Furthermore, EarthCARE that is a new satellite launched years later is composed of not only the active but also passive instruments for the combined analysis. On the other hands, the methods to retrieve the advanced information of cloud properties are also required because many imagers have been operated and are now planned (e.g. GCOM-C/SGLI), and have the advantages such as wide observation width and more observation channels. Cloud droplet effective radius (CDR) and cloud optical thickness (COT) can be retrieved using a non-water-absorbing band (e.g. 0.86μm) and a water-absorbing band (1.6, 2.1, 3.7μm) of imagers under the assumptions such as the log-normal droplet size distribution and the plane-parallel cloud structure. However, the differences between three retrieved CDRs using 1.6, 2.1 or 3.7μm (R16, R21 and R37) are found in the satellite observations. Several studies pointed out that vertical/horizontal inhomogeneity of cloud structure, difference of penetration depth of water-absorbing bands, multi-modal droplet distribution and/or 3-D radiative transfer effect cause the CDR differences. In other words, the advanced information of clouds may lie hidden in the

  10. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  11. Query Storage and Relay in Research Root (LACREND RR)

    DTIC Science & Technology

    2017-05-30

    QUERY STORAGE AND RELAY IN RESEARCH ROOT (LACREND-RR) UNIVERSITY OF SOUTHERN CALIFORNIA MAY 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC ...exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy clarification...memorandum dated 16 Jan 09. This report is available to the general public , including foreign nationals. Copies may be obtained from the Defense Technical

  12. Statistical Analyses of Satellite Cloud Object Data from CERES. Part III; Comparison with Cloud-Resolving Model Simulations of Tropical Convective Clouds

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Xu, Kuan-Man; Wielicki, Bruce A.; Wong, Takmeng; Eitzen, Zachary A.

    2007-01-01

    The present study evaluates the ability of a cloud-resolving model (CRM) to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System (CERES) data product. The emphasis of this study is the comparisons among the small-, medium- and large-size categories of cloud objects observed during March 1998 and between the large-size categories of cloud objects observed during March 1998 (strong El Ni o) and March 2000 (weak La Ni a). Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and they are averaged to match the scale of the CERES satellite footprints. Cloud physical properties are analyzed in terms of their summary histograms for each category. It is found that there is a general agreement in the overall shapes of all cloud physical properties between the simulated and observed distributions. Each cloud physical property produced by the CRM also exhibits different degrees of disagreement with observations over different ranges of the property. The simulated cloud tops are generally too high and cloud top temperatures are too low except for the large-size category of March 1998. The probability densities of the simulated top-of-the-atmosphere (TOA) albedos for all four categories are underestimated for high albedos, while those of cloud optical depth are overestimated at its lowest bin. These disagreements are mainly related to uncertainties in the cloud microphysics parameterization and inputs such as cloud ice effective size to the radiation calculation. Summary histograms of cloud optical depth and TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods, consistent with the CERES observations. However, the CRM is unable to reproduce the significant differences in the observed cloud top height while it overestimates the differences in the

  13. Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud

    NASA Astrophysics Data System (ADS)

    Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok

    Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.

  14. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yan, Y.; Lu, J.

    2017-12-01

    The vertical structure of clouds and its connection with precipitation and cloud radiative effects (CRE) over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) products and the Tropical Rainfall Measuring Mission (TRMM) precipitation data. Unique characteristics of cloud vertical structure and CRE over the TP are found. The cloud amount shows seasonal variation over the TP, which presents a single peak (located in 7-11 km) during January to April and two peaks (located in 5-8 km and 11-17 km separately) after mid-June, and then resumes to one peak (located in 5-10 km) after mid-August. Topography-induced restriction on moisture supply leads to a compression effect on clouds, i.e., the reduction in both cloud thickness and number of cloud layers, over the TP. The topography-induced compression effect is also shown in the range in the variation of cloud thickness and cloud-top height corresponding to different precipitation intensity, which is much smaller over the TP than its neighboring regions. In summer, cloud ice particles over the TP are mostly located at lower altitude (5-10 km) with richer variety of sizes and aggregation in no rain conditions compared to other regions. Ice water content becomes abundant and the number concentration tends to be dense at higher levels when precipitation is enhanced. The longwave CRE in the atmosphere over the TP is a net cooling effect. The vertical structure of CRE over the TP is unique compared to other regions: there exists a strong cooling layer of net CRE at the altitude of 8 km, from June to the beginning of October; the net radiative heating layer above the surface is shallower but stronger underneath 7 km and with a stronger seasonal variation over the TP.

  15. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  16. Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds

    DOE PAGES

    Yang, Fan; Luke, Edward P.; Kollias, Pavlos; ...

    2018-04-20

    Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less

  17. Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Luke, Edward P.; Kollias, Pavlos

    Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less

  18. Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model

    DOE PAGES

    Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.

    2017-05-08

    A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less

  19. Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.

    A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less

  20. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  1. Risk in the Clouds?: Security Issues Facing Government Use of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wyld, David C.

    Cloud computing is poised to become one of the most important and fundamental shifts in how computing is consumed and used. Forecasts show that government will play a lead role in adopting cloud computing - for data storage, applications, and processing power, as IT executives seek to maximize their returns on limited procurement budgets in these challenging economic times. After an overview of the cloud computing concept, this article explores the security issues facing public sector use of cloud computing and looks to the risk and benefits of shifting to cloud-based models. It concludes with an analysis of the challenges that lie ahead for government use of cloud resources.

  2. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulatedmore » cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.« less

  3. The Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2006-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.

  4. Climate Cloud Height

    Atmospheric Science Data Center

    2017-11-27

    article title:  Is Climate Changing Cloud Heights? Too Soon to Say Climate change may eventually change global cloud heights, but scientists need ... whether that's happening already. For details see: Is Climate Changing Cloud Heights? Too Soon to Say . Climate ...

  5. Comparison of Monthly Mean Cloud Fraction and Cloud Optical depth Determined from Surface Cloud Radar, TOVS, AVHRR, and MODIS over Barrow, Alaska

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Frisch, Shelby; Wang, Xuan-Ji; Key, Jeff; Schweiger, Axel; Sun-Mack, Sunny; Minnis, Patrick

    2005-01-01

    A one year comparison is made of mean monthly values of cloud fraction and cloud optical depth over Barrow, Alaska (71 deg 19.378 min North, 156 deg 36.934 min West) between 35 GHz radar-based retrievals, the TOVS Pathfinder Path-P product, the AVHRR APP-X product, and a MODIS based cloud retrieval product from the CERES-Team. The data sets represent largely disparate spatial and temporal scales, however, in this paper, the focus is to provide a preliminary analysis of how the mean monthly values derived from these different data sets compare, and determine how they can best be used separately, and in combination to provide reliable estimates of long-term trends of changing cloud properties. The radar and satellite data sets described here incorporate Arctic specific modifications that account for cloud detection challenges specific to the Arctic environment. The year 2000 was chosen for this initial comparison because the cloud radar data was particularly continuous and reliable that year, and all of the satellite retrievals of interest were also available for the year 2000. Cloud fraction was chosen as a comparison variable as accurate detection of cloud is the primary product that is necessary for any other cloud property retrievals. Cloud optical depth was additionally selected as it is likely the single cloud property that is most closely correlated to cloud influences on surface radiation budgets.

  6. Research on the Solid State Fermentation of Jerusalem Artichoke Pomace for Producing R,R-2,3-Butanediol by Paenibacillus polymyxa ZJ-9.

    PubMed

    Cao, Can; Zhang, Li; Gao, Jian; Xu, Hong; Xue, Feng; Huang, Weiwei; Li, Yan

    2017-06-01

    R,R-2,3-butanediol (R,R-2,3-BD) was produced by Paenibacillus polymyxa ZJ-9, which was capable of utilizing inulin without previous hydrolysis. The Jerusalem artichoke pomace (JAP) derived from the conversion of Jerusalem artichoke powder into inulin extract, which was usually used for biorefinery by submerged fermentation (SMF), was utilized in solid state fermentation (SSF) to produce R,R-2,3-BD. In this study, the fermentation parameters of SSF were optimized and determined in flasks. A novel bioreactor was designed and assembled for the laboratory scale-up of SSF, with a maximum yield of R,R-2,3-BD (67.90 g/kg (JAP)). This result is a 36.3% improvement compared with the flasks. Based on the same bath of Jerusalem artichoke powder, the total output of R,R-2,3-BD increased by 38.8% for the SSF of JAP combined with the SMF of inulin extraction. Overall, the utilization of JAP for R,R-2,3-BD production was beneficial to the comprehensive utilization of Jerusalem artichoke tuber.

  7. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  8. Synergistic use of MODIS cloud products and AIRS radiance measurements for retrieval of cloud parameters

    NASA Astrophysics Data System (ADS)

    Li, J.; Menzel, W.; Sun, F.; Schmit, T.

    2003-12-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.

  9. Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick

    2008-01-01

    A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.

  10. A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment

    NASA Astrophysics Data System (ADS)

    Nishant, Nidhi; Sherwood, Steven C.

    2017-06-01

    In convective clouds, satellite-observed deepening or increased amount of clouds with increasing aerosol concentration has been reported and is sometimes interpreted as aerosol-induced invigoration of the clouds. However, such correlations can be affected by meteorological factors that affect both aerosol and clouds, as well as observational issues. In this study, we examine the behavior in a 660 × 660 km2 region of the South Pacific during June 2007, previously found by Koren et al. (2014) to show strong correlation between cloud fraction, cloud top pressure, and aerosols, using a cloud-resolving model with meteorological boundary conditions specified from a reanalysis. The model assumes constant aerosol loading, yet reproduces vigorous clouds at times of high real-world aerosol concentrations. Days with high- and low-aerosol loading exhibit deep-convective and shallow clouds, respectively, in both observations and the simulation. Synoptic analysis shows that vigorous clouds occur at times of strong surface troughs, which are associated with high winds and advection of boundary layer air from the Southern Ocean where sea-salt aerosol is abundant, thus accounting for the high correlation. Our model results show that aerosol-cloud relationships can be explained by coexisting but independent wind-aerosol and wind-cloud relationships and that no cloud condensation nuclei effect is required.

  11. Marine cloud brightening – as effective without clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlm, Lars; Jones, Andy; Stjern, Camilla W.

    Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less

  12. Marine cloud brightening – as effective without clouds

    DOE PAGES

    Ahlm, Lars; Jones, Andy; Stjern, Camilla W.; ...

    2017-11-06

    Marine cloud brightening through sea spray injection has been proposed as a climate engineering method for avoiding the most severe consequences of global warming. A limitation of most of the previous modelling studies on marine cloud brightening is that they have either considered individual models or only investigated the effects of a specific increase in the number of cloud droplets. Here we present results from coordinated simulations with three Earth system models (ESMs) participating in the Geoengineering Model Intercomparison Project (GeoMIP) G4sea-salt experiment. Injection rates of accumulation-mode sea spray aerosol particles over ocean between 30°N and 30°S are set in each model tomore » generate a global-mean effective radiative forcing (ERF) of –2.0 W m –2 at the top of the atmosphere. We find that the injection increases the cloud droplet number concentration in lower layers, reduces the cloud-top effective droplet radius, and increases the cloud optical depth over the injection area. We also find, however, that the global-mean clear-sky ERF by the injected particles is as large as the corresponding total ERF in all three ESMs, indicating a large potential of the aerosol direct effect in regions of low cloudiness. The largest enhancement in ERF due to the presence of clouds occur as expected in the subtropical stratocumulus regions off the west coasts of the American and African continents. However, outside these regions, the ERF is in general equally large in cloudy and clear-sky conditions. Lastly, these findings suggest a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.« less

  13. Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests

    NASA Technical Reports Server (NTRS)

    Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.

    2010-01-01

    Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.

  14. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  15. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  16. Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin; hide

    2006-01-01

    Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.

  17. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    NASA Astrophysics Data System (ADS)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  18. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    PubMed Central

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081

  19. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers.

    PubMed

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Barbosa, Henrique M J; Pöschl, Ulrich; Andreae, Meinrat O

    2016-05-24

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day.

  20. Cloud computing security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for bothmore » academia and government, including configuration options, hardware issues, challenges, and solutions.« less

  1. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    PubMed

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds

    NASA Astrophysics Data System (ADS)

    Borys, Randolph D.; Lowenthal, Douglas H.; Mitchell, David L.

    A study was conducted to examine the relationships among air pollutant loadings, cloud microphysics, and snowfall rates in cold mountain clouds. It was hypothesized that variations in pollutant loadings would be reflected in shifts in the cloud droplet size distribution. A field program was conducted at Storm Peak Laboratory (SPL) at an elevation of 3210 m MSL in northwestern Colorado. Cold precipitating clouds were sampled during January, 1995. Cloud water was collected and analyzed for major ion and trace element chemistry. Cloud droplet concentrations and size were measured continuously using a PMS FSSP-100. The results indicate a direct relationship between clear-air equivalent (CAE) sulfate concentrations in cloud water and cloud droplet concentrations, an indirect relationship between droplet number and droplet size, a direct relationship between droplet size and snowfall rate, and an indirect relationship between CAE sulfate concentration and snowfall rate.

  3. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.

    2015-01-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud

  4. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean

  5. 77 FR 13483 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... service information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31...), or, have Rolls-Royce plc revise Alert Service Bulletin (ASB) No. RB.211-72-AF964 to remove the...

  6. 76 FR 65136 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA... information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby...-166679 (76 FR 24793, May 3, 2011), and adding the following new AD: Rolls-Royce plc: Docket No. FAA-2010...

  7. ATLAS Cloud R&D

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  8. Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES

    NASA Astrophysics Data System (ADS)

    Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.

    2017-12-01

    The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.

  9. CloudSat-Constrained Cloud Ice Water Path and Cloud Top Height Retrievals from MHS 157 and 183.3 GHz Radiances

    NASA Technical Reports Server (NTRS)

    Gong, J.; Wu, D. L.

    2014-01-01

    Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.

  10. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  11. Cloud Computing for radiologists

    PubMed Central

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  12. ProteoCloud: a full-featured open source proteomics cloud computing pipeline.

    PubMed

    Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart

    2013-08-02

    We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. CloudMC: a cloud computing application for Monte Carlo simulation.

    PubMed

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  14. A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project

    NASA Astrophysics Data System (ADS)

    Barker, H. W.; Korolev, A. V.; Hudak, D. R.; Strapp, J. W.; Strawbridge, K. B.; Wolde, M.

    2008-04-01

    Reflectivities recorded by the W-band Cloud Profiling Radar (CPR) aboard NASA's CloudSat satellite and some of CloudSat's retrieval products are compared to Ka-band radar reflectivities and in situ cloud properties gathered by instrumentation on the NRC's Convair-580 aircraft. On 20 February 2007, the Convair flew several transects along a 60 nautical mile stretch of CloudSat's afternoon ground track over southern Quebec. On one of the transects it was well within CloudSat's radar's footprint while in situ sampling a mixed phase boundary layer cloud. A cirrus cloud was also sampled before and after overpass. Air temperature and humidity profiles from ECMWF reanalyses, as employed in CloudSat's retrieval stream, agree very well with those measured by the Convair. The boundary layer cloud was clearly visible, to the eye and lidar, and dominated the region's solar radiation budget. It was, however, often below or near the Ka-band's distance-dependent minimum detectable signal. In situ samples at overpass revealed it to be composed primarily of small, supercooled droplets at the south end and increasingly intermixed with ice northward. Convair and CloudSat CPR reflectivities for the low cloud agree well, but while CloudSat properly ascribed it as overcast, mixed phase, and mostly liquid near the south end, its estimates of liquid water content LWC (and visible extinction coefficient κ) and droplet effective radii are too small and large, respectively. The cirrus consisted largely of irregular crystals with typical effective radii ˜150 μm. While both CPR reflectivities agree nicely, CloudSat's estimates of crystal number concentrations are too large by a factor of 5. Nevertheless, distributions of ice water content and κ deduced from in situ data agree quite well with values retrieved from CloudSat algorithms.

  15. Cloud Computing Explained

    ERIC Educational Resources Information Center

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  16. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less

  17. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    DOE PAGES

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; ...

    2016-03-04

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less

  18. Exploring the crowded central region of ten Galactic globular clusters using EMCCDs. Variable star searches and new discoveries

    NASA Astrophysics Data System (ADS)

    Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Kains, N.; Jørgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K. B. W.; Haugbølle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Wang, X.-B.; Wertz, O.

    2016-04-01

    Aims: We aim to obtain time-series photometry of the very crowded central regions of Galactic globular clusters; to obtain better angular resolution thanhas been previously achieved with conventional CCDs on ground-based telescopes; and to complete, or improve, the census of the variable star population in those stellar systems. Methods: Images were taken using the Danish 1.54-m Telescope at the ESO observatory at La Silla in Chile. The telescope was equipped with an electron-multiplying CCD, and the short-exposure-time images obtained (ten images per second) were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). Photometry was performed via difference image analysis. Automatic detection of variable stars in the field was attempted. Results: The light curves of 12 541 stars in the cores of ten globular clusters were statistically analysed to automatically extract the variable stars. We obtained light curves for 31 previously known variable stars (3 long-period irregular, 2 semi-regular, 20 RR Lyrae, 1 SX Phoenicis, 3 cataclysmic variables, 1 W Ursae Majoris-type and 1 unclassified) and we discovered 30 new variables (16 long-period irregular, 7 semi-regular, 4 RR Lyrae, 1 SX Phoenicis and 2 unclassified). Fluxes and photometric measurements for these stars are available in electronic form through the Strasbourg astronomical Data Center. Based on data collected by the MiNDSTEp team with the Danish 1.54m telescope at ESO's La Silla observatory in Chile.Full Table 1 is only available at CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A128

  19. Near-IR period-luminosity relations for pulsating stars in ω Centauri (NGC 5139)

    NASA Astrophysics Data System (ADS)

    Navarrete, C.; Catelan, M.; Contreras Ramos, R.; Alonso-García, J.; Gran, F.; Dékány, I.; Minniti, D.

    2017-08-01

    Aims: The globular cluster ω Centauri (NGC 5139) hosts hundreds of pulsating variable stars of different types, thus representing a treasure trove for studies of their corresponding period-luminosity (PL) relations. Our goal in this study is to obtain the PL relations for RR Lyrae and SX Phoenicis stars in the field of the cluster, based on high-quality, well-sampled light curves in the near-infrared (IR). Methods: Observations were carried out using the VISTA InfraRed CAMera (VIRCAM) mounted on the Visible and Infrared Survey Telescope for Astronomy (VISTA). A total of 42 epochs in J and 100 epochs in KS were obtained, spanning 352 days. Point-spread function photometry was performed using DoPhot and DAOPHOT crowded-field photometry packages in the outer and inner regions of the cluster, respectively. Results: Based on the comprehensive catalog of near-IR light curves thus secured, PL relations were obtained for the different types of pulsators in the cluster, both in the J and KS bands. This includes the first PL relations in the near-IR for fundamental-mode SX Phoenicis stars. The near-IR magnitudes and periods of Type II Cepheids and RR Lyrae stars were used to derive an updated true distance modulus to the cluster, with a resulting value of (m - M)0 = 13.708 ± 0.035 ± 0.10 mag, where the error bars correspond to the adopted statistical and systematic errors, respectively. Adding the errors in quadrature, this is equivalent to a heliocentric distance of 5.52 ± 0.27 kpc. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, with the VISTA telescope (project ID 087.D-0472, PI R. Angeloni).

  20. Ages of the Bulge Globular Clusters NGC 6522 and NGC 6626 (M28) from HST Proper-motion-cleaned Color–Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Kerber, L. O.; Nardiello, D.; Ortolani, S.; Barbuy, B.; Bica, E.; Cassisi, S.; Libralato, M.; Vieira, R. G.

    2018-01-01

    Bulge globular clusters (GCs) with metallicities [Fe/H] ≲ ‑1.0 and blue horizontal branches are candidates to harbor the oldest populations in the Galaxy. Based on the analysis of HST proper-motion-cleaned color–magnitude diagrams in filters F435W and F625W, we determine physical parameters for the old bulge GCs NGC 6522 and NGC 6626 (M28), both with well-defined blue horizontal branches. We compare these results with similar data for the inner halo cluster NGC 6362. These clusters have similar metallicities (‑1.3 ≤ [Fe/H] ≤ ‑1.0) obtained from high-resolution spectroscopy. We derive ages, distance moduli, and reddening values by means of statistical comparisons between observed and synthetic fiducial lines employing likelihood statistics and the Markov chain Monte Carlo method. The synthetic fiducial lines were generated using α-enhanced BaSTI and Dartmouth stellar evolutionary models, adopting both canonical (Y ∼ 0.25) and enhanced (Y ∼ 0.30–0.33) helium abundances. RR Lyrae stars were employed to determine the HB magnitude level, providing an independent indicator to constrain the apparent distance modulus and the helium enhancement. The shape of the observed fiducial line could be compatible with some helium enhancement for NGC 6522 and NGC 6626, but the average magnitudes of RR Lyrae stars tend to rule out this hypothesis. Assuming canonical helium abundances, BaSTI and Dartmouth models indicate that all three clusters are coeval, with ages between ∼12.5 and 13.0 Gyr. The present study also reveals that NGC 6522 has at least two stellar populations, since its CMD shows a significantly wide subgiant branch compatible with 14% ± 2% and 86% ± 5% for first and second generations, respectively. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  1. TWO DISTANT HALO VELOCITY GROUPS DISCOVERED BY THE PALOMAR TRANSIENT FACTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Cohen, Judith G.; Levitan, David

    2012-08-20

    We report the discovery of two new halo velocity groups (Cancer groups A and B) traced by eight distant RR Lyrae stars and observed by the Palomar Transient Factory survey at R.A. {approx} 129 Degree-Sign , decl. {approx} 20 Degree-Sign (l {approx} 205 Degree-Sign , b {approx} 32 Degree-Sign ). Located at 92 kpc from the Galactic center (86 kpc from the Sun), these are some of the most distant substructures in the Galactic halo known to date. Follow-up spectroscopic observations with the Palomar Observatory 5.1 m Hale telescope and W. M. Keck Observatory 10 m Keck I telescope indicatemore » that the two groups are moving away from the Galaxy at v-bar{sub gsr}{sup A} = 78.0{+-}5.6 km s{sup -1} (Cancer group A) and v-bar{sub gsr}{sup B} = 16.3{+-}7.1 km s{sup -1} (Cancer group B). The groups have velocity dispersions of {sigma}{sub v{sub g{sub s{sub r}{sup A}}}} = 12.4{+-}5.0 km s{sup -1} and {sigma}B{sub v{sub g{sub s{sub r}{sup B}}}} =14.9{+-}6.2 km s{sup -1} and are spatially extended (about several kpc), making it very unlikely that they are bound systems, and more likely to be debris of tidally disrupted dwarf galaxies or globular clusters. Both groups are metal-poor (median metallicities of [Fe/H]{sup A} = -1.6 dex and [Fe/H]{sup B} = -2.1 dex) and have a somewhat uncertain (due to small sample size) metallicity dispersion of {approx}0.4 dex, suggesting dwarf galaxies as progenitors. Two additional RR Lyrae stars with velocities consistent with those of the Cancer groups have been observed {approx}25 Degree-Sign east, suggesting possible extension of the groups in that direction.« less

  2. Deep Clouds

    NASA Image and Video Library

    2008-05-27

    Bright puffs and ribbons of cloud drift lazily through Saturn's murky skies. In contrast to the bold red, orange and white clouds of Jupiter, Saturn's clouds are overlain by a thick layer of haze. The visible cloud tops on Saturn are deeper in its atmosphere due to the planet's cooler temperatures. This view looks toward the unilluminated side of the rings from about 18 degrees above the ringplane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft wide-angle camera on April 15, 2008 at a distance of approximately 1.5 million kilometers (906,000 miles) from Saturn. Image scale is 84 kilometers (52 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA09910

  3. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2018-04-01

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.

  4. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less

  5. A Cloud Mask for AIRS

    NASA Technical Reports Server (NTRS)

    Brubaker, N.; Jedlovec, G. J.

    2004-01-01

    With the preliminary release of AIRS Level 1 and 2 data to the scientific community, there is a growing need for an accurate AIRS cloud mask for data assimilation studies and in producing products derived from cloud free radiances. Current cloud information provided with the AIRS data are limited or based on simplified threshold tests. A multispectral cloud detection approach has been developed for AIRS that utilizes the hyper-spectral capabilities to detect clouds based on specific cloud signatures across the short wave and long wave infrared window regions. This new AIRS cloud mask has been validated against the existing AIRS Level 2 cloud product and cloud information derived from MODIS. Preliminary results for both day and night applications over the continental U.S. are encouraging. Details of the cloud detection approach and validation results will be presented at the conference.

  6. Titan Lingering Clouds

    NASA Image and Video Library

    2009-06-03

    Lots of clouds are visible in this infrared image of Saturn's moon Titan. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini spacecraft show. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. Three false-color images make up this mosaic and show the clouds at 40 to 50 degrees mid-latitude. The images were taken by Cassini's visual and infrared mapping spectrometer during a close flyby of Titan on Sept. 7, 2006, known as T17. For a similar view see PIA12005. Each image is a color composite, with red shown at the 2-micron wavelength, green at 1.6 microns, and blue at 2.8 microns. An infrared color mosaic is also used as a background (red at 5 microns, green at 2 microns and blue at 1.3 microns). The characteristic elongated mid-latitude clouds, which are easily visible in bright bluish tones are still active even late into 2006-2007. According to climate models, these clouds should have faded out since 2005. http://photojournal.jpl.nasa.gov/catalog/PIA12004

  7. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  8. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.

    2017-01-01

    The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.

  9. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  10. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications.

    PubMed

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-03-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  11. Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.

    2003-12-01

    Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each

  12. Wave Clouds over Ireland

    NASA Image and Video Library

    2017-12-08

    Visualization Date 2003-12-18 Clouds ripple over Ireland and Scotland in a wave pattern, similar to the pattern of waves along a seashore. The similarity is not coincidental — the atmosphere behaves like a fluid, so when it encounters an obstacle, it must move around it. This movement forms a wave, and the wave movement can continue for long distances. In this case, the waves were caused by the air moving over and around the mountains of Scotland and Ireland. As the air crested a wave, it cooled, and clouds formed. Then, as the air sank into the trough, the air warmed, and clouds did not form. This pattern repeated itself, with clouds appearing at the peak of every wave. Other types of clouds are also visible in the scene. Along the northwestern and southwestern edges of this true-color image from December 17, 2003, are normal mid-altitude clouds with fairly uniform appearances. High altitude cirrus-clouds float over these, casting their shadows on the lower clouds. Open- and closed-cell clouds formed off the coast of northwestern France, and thin contrail clouds are visible just east of these. Contrail clouds form around the particles carried in airplane exhaust. Fog is also visible in the valleys east of the Cambrian Mountains, along the border between northern/central Wales and England. This is an Aqua MODIS image. Sensor Aqua/MODIS Credit Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC For more information go to: visibleearth.nasa.gov/view_rec.php?id=6146

  13. Cloud Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pete Beckman and Ian Foster

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  14. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processesmore » is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model

  15. The Community Cloud Atlas - Building an Informed Cloud Watching Community

    NASA Astrophysics Data System (ADS)

    Guy, N.; Rowe, A.

    2014-12-01

    The sky is dynamic, from long lasting cloud systems to ethereal, fleeting formations. After years of observing the sky and growing our personal collections of cloud photos, we decided to take to social media to share pictures, as well as build and educate a community of cloud enthusiasts. We began a Facebook page, the Community Cloud Atlas, described as "...the place to show off your pictures of the sky, identify clouds, and to discuss how specific cloud types form and what they can tell you about current and future weather." Our main goal has been to encourage others to share their pictures, while we describe the scenes from a meteorological perspective and reach out to the general public to facilitate a deeper understanding of the sky. Nearly 16 months later, we have over 1400 "likes," spanning 45 countries with ages ranging from 13 to over 65. We have a consistent stream of submissions; so many that we decided to start a corresponding blog to better organize the photos, provide more detailed explanations, and reach a bigger audience. Feedback from users has been positive in support of not only sharing cloud pictures, but also to "learn the science as well as admiring" the clouds. As one community member stated, "This is not 'just' a place to share some lovely pictures." We have attempted to blend our social media presence with providing an educational resource, and we are encouraged by the response we have received. Our Atlas has been informally implemented into classrooms, ranging from a 6th grade science class to Meteorology courses at universities. NOVA's recent Cloud Lab also made use of our Atlas as a supply of categorized pictures. Our ongoing goal is to not only continue to increase understanding and appreciation of the sky among the public, but to provide an increasingly useful tool for educators. We continue to explore different social media options to interact with the public and provide easier content submission, as well as software options for

  16. 16. The Baltimore & Ohio R.R System, Division BaltimoreEast, Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. The Baltimore & Ohio R.R System, Division Baltimore-East, Bridge No 13-A, Branch Philadelphia. Baltimore: Office of Engineer of Bridges, 1945. Copy of drawing located at the Baltimore County Department of Public Works, Towson, Maryland. - Allender Road Bridge, Spanning CSX Transportation railroad tracks at Allender Road, White Marsh, Baltimore County, MD

  17. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  18. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions

    PubMed Central

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2018-01-01

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious. PMID:29651373

  19. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    PubMed

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  20. What does reflection from cloud sides tell us about vertical distribution of cloud droplets?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor

    2006-01-01

    In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.