Science.gov

Sample records for cmb polarization maps

  1. A new map-making algorithm for CMB polarization experiments

    NASA Astrophysics Data System (ADS)

    Wallis, Christopher G. R.; Bonaldi, A.; Brown, Michael L.; Battye, Richard A.

    2015-10-01

    With the temperature power spectrum of the cosmic microwave background (CMB) at least four orders of magnitude larger than the B-mode polarization power spectrum, any instrumental imperfections that couple temperature to polarization must be carefully controlled and/or removed. Here we present two new map-making algorithms that can create polarization maps that are clean of temperature-to-polarization leakage systematics due to differential gain and pointing between a detector pair. Where a half-wave plate is used, we show that the spin-2 systematic due to differential ellipticity can also be removed using our algorithms. The algorithms require no prior knowledge of the imperfections or temperature sky to remove the temperature leakage. Instead, they calculate the systematic and polarization maps in one step directly from the time-ordered data (TOD). The first algorithm is designed to work with scan strategies that have a good range of crossing angles for each map pixel and the second for scan strategies that have a limited range of crossing angles. The first algorithm can also be used to identify if systematic errors that have a particular spin are present in a TOD. We demonstrate the use of both algorithms and the ability to identify systematics with simulations of TOD with realistic scan strategies and instrumental noise.

  2. Delensing CMB polarization with external datasets

    SciTech Connect

    Smith, Kendrick M.; Hanson, Duncan; LoVerde, Marilena; Hirata, Christopher M.; Zahn, Oliver E-mail: duncan.hanson@jpl.nasa.gov E-mail: chirata@tapir.caltech.edu

    2012-06-01

    One of the primary scientific targets of current and future CMB polarization experiments is the search for a stochastic background of gravity waves in the early universe. As instrumental sensitivity improves, the limiting factor will eventually be B-mode power generated by gravitational lensing, which can be removed through use of so-called ''delensing'' algorithms. We forecast prospects for delensing using lensing maps which are obtained externally to CMB polarization: either from large-scale structure observations, or from high-resolution maps of CMB temperature. We conclude that the forecasts in either case are not encouraging, and that significantly delensing large-scale CMB polarization requires high-resolution polarization maps with sufficient sensitivity to measure the lensing B-mode. We also present a simple formalism for including delensing in CMB forecasts which is computationally fast and agrees well with Monte Carlos.

  3. POLARBEAR CMB Polarization Experiment

    NASA Astrophysics Data System (ADS)

    Nishino, H.; Ade, P.; Akiba, Y.; Anthony, A.; Arnold, K.; Barron, D.; Boettger, D.; Borrill, J.; Chapmann, S.; Chinone, Y.; Dobbs, M. A.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Fuller, G.; Ghribi, A.; Grainger, W.; Halverson, N.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Howard, J.; Hyland, P.; Inoue, Y.; Jaffe, A.; Jaehnig, G.; Kaneko, Y.; Katayama, N.; Keating, B.; Kermish, Z.; Kimura, N.; Kisner, T.; Lee, A. T.; Le Jeune, M.; Linder, E.; Lungu, M.; Matsuda, F.; Matsumura, T.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; O'Brient, R.; Okamura, T.; Paar, H.; Peloton, J.; Quealy, E.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Shimizu, A.; Shimon, M.; Shimmin, C.; Sholl, M.; Siritanasak, P.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Suzuki, J.; Tanaka, K.; Tomaru, T.; Tucker, C.; Yadav, A.; Zahn, O.

    POLARBEAR is a ground-based experiment in the Atacama desert in hile, measuring the polarization of the Cosmic Microwave Background (CMB) radiation. One of the science goals of POLARBEAR is to detect the B-mode polarization pattern of the CMB produced by primordial gravitational waves from the epoch of inflation. The detection of the B-mode polarization provides strong evidence for inflationary cosmological models. POLARBEAR is expected to reach a sensitivity to the tensor-to-scalar ratio r = 0.025 at 95% confidence level, using the data from two years of observation. With a beam size of 3.5 arcminutes, POLARBEAR is also sensitive to B-mode polarization signals at small-angular scales produced by weak gravitational lensing of large-scale structure. POLARBEAR is expected to provide a constraint on the sum of neutrino masses because of their effect on the large-scale structure. POLARBEAR was deployed in late 2011 and started observing in early 2012 at 150 GHz with an array of 1,274 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers. The current status of the POLARBEAR experiment is reported.

  4. New Measurements of CMB Polarization with SPTpol

    NASA Astrophysics Data System (ADS)

    Henning, Jason; SPTpol Collaboration

    2016-06-01

    All-sky surveys of the primary temperature anisotropies of the Cosmic Microwave Background (CMB) are now cosmic variance limited on large to intermediate scales. To place tighter constraints on cosmology from CMB primary anisotropies we turn to measurements of CMB polarization. Not only is polarization another probe of ΛCDM cosmology, but secondary anisotropies are expected to have low polarized emission, which opens more of the so-called CMB damping tail to cosmological study. In this talk, we present new 150 GHz measurements of the CMB E-mode polarization auto-power and temperature-E-mode cross-power spectra from a 500 deg2 patch of sky observed with the SPTpol instrument, the second-generation receiver installed on the South Pole Telescope. Over a range of spherical harmonic multipoles 50 ≤ l < 10000 we detect 9 acoustic peaks in the E-mode spectrum. With these spectra we constrain ΛCDM cosmology independently from temperature-only measurements, and present new joint constraints with the Planck temperature auto-power spectrum. The CMB is also gravitationally lensed by large-scale structure. We use our high-fidelity map of E-mode polarization, in conjunction with SPTpol maps of B-mode polarization and temperature, to map the lensing potential of the CMB and measure its corresponding power spectrum. Finally, the CMB lensing potential can be combined with our E-mode map to estimate lensing B modes present in our field, which can be delensed to improve constraints on primordial B modes and the energy scale of inflation through the tensor-to-scalar ratio, r.

  5. Probing Inflation with CMB Polarization

    SciTech Connect

    Baumann, Daniel; Jackson, Mark G.; Adshead, Peter; Easther, Richard; Amblard, Alexandre; Cooray, Asantha; Ashoorioon, Amjad; Watson, Scott; Bartolo, Nicola; Matarrese, Sabino; Bean, Rachel; Beltran, Maria; Dvorkin, Cora; Bernardis, Francesco de; Melchiorri, Alessandro; Pagano, Luca; Bird, Simeon; Peiris, Hiranya V.; Chen Xingang; Hertzberg, Mark P.

    2009-06-09

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  6. Galactic dust polarized emission at high latitudes and CMB polarization

    NASA Astrophysics Data System (ADS)

    Prunet, S.; Sethi, S. K.; Bouchet, F. R.; Miville-Deschenes, M.-A.

    1998-11-01

    With recent instrumental advances, it might become possible to measure the polarization of the Cosmic Microwave Background (CMB), e.g. by future space missions like MAP and Planck Surveyor. In this paper, we estimate the dust polarized emission in our galaxy which is the major foreground to cope with for measuring the CMB polarization in the Wien part of CMB spectrum. We model the dust polarized emission in the galaxy using the three-dimensional HI maps of the Leiden/Dwingeloo survey at high galactic latitudes. We use the fact that the dust emission, for a wide range of wavelengths, has a tight correlation with the HI emission maps of this survey (Boulanger et al. 1996). Assuming the dust grains to be oblate with axis ratio =~ 2/3, which recent studies support, we determine the intrinsic dust polarized emissivity. The distribution of magnetic field with respect to the dust grain distribution is quite uncertain, we thus consider three extreme cases: (1) The magnetic field is aligned with the major axis of the dust structure, (2) the magnetic field has a random direction in the plane perpendicular to the direction of major axis of the dust structure, and (3) the magnetic field is unidirectional throughout. We further assume, as recent observations and theoretical analyses support, that the dust grains align with the magnetic field independently of its strength. The polarization reduction factor from misalignment of the direction of polarization from the plane of the sky and the differential polarization along a line of sight is calculated using these maps, to construct two-dimensional maps of dust polarized emission. We calculate the angular power spectrum of dust polarized emission from these maps and cast it in variables which allow a direct comparison with the polarized component of the CMB. Our results, at frequencies =~ 100 GHz, suggest that: (a) This foreground contamination is smaller than the scalar-induced polarization of the CMB at l ga 200 while the tensor

  7. Cosmic string induced CMB maps

    SciTech Connect

    Landriau, M.; Shellard, E. P. S.

    2011-02-15

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  8. Early Universe with CMB polarization

    NASA Astrophysics Data System (ADS)

    Souradeep, Tarun

    2011-12-01

    The Universe is the grandest conceivable scale on which the human mind can strive to understand nature. The amazing aspect of cosmology, the branch of science that attempts to understand the origin and evolution of the Universe, is that it is largely comprehensible by applying the same basic laws of physics that we use for other branches of physics. The observed cosmic microwave background (CMB) is understood by applying the basic laws of radiative processes and transfer, masterfully covered in the classic text by S. Chandrasekhar, in the cosmological context. In addition to the now widely acclaimed temperature anisotropy, there is also linear polarization information imprinted on the observed Cosmic Microwave background. CMB polarization already has addressed, and promises to do a lot more to unravel the deepest fundamental queries about physics operating close to the origin of the Universe.

  9. Nonlinear electrodynamics and CMB polarization

    SciTech Connect

    Cuesta, Herman J. Mosquera; Lambiase, G. E-mail: lambiase@sa.infn.it

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  10. Generation of circular polarization of the CMB

    NASA Astrophysics Data System (ADS)

    Zarei, M.; Bavarsad, E.; Haghighat, M.; Mohammadi, R.; Motie, I.; Rezaei, Z.

    2010-04-01

    According to the standard cosmology, near the last scattering surface, the photons scattered via Compton scattering are just linearly polarized and then the primordial circular polarization of the cosmic microwave background (CMB) photons is zero. In this work we show that CMB polarization acquires a small degree of circular polarization when a background magnetic field is considered or the quantum electrodynamic sector of standard model is extended by Lorentz-noninvariant operators as well as noncommutativity. The existence of circular polarization for the CMB radiation may be verified during future observation programs, and it represents a possible new channel for investigating new physics effects.

  11. The BRAIN CMB polarization experiment

    NASA Astrophysics Data System (ADS)

    Polenta, G.; Ade, P. A. R.; Bartlett, J.; Bréelle, E.; Conversi, L.; de Bernardis, P.; Dufour, C.; Gervasi, M.; Giard, M.; Giordano, C.; Giraud-Heraud, Y.; Maffei, B.; Masi, S.; Nati, F.; Orlando, A.; Peterzen, S.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Pons, R.; Rosset, C.; Savini, G.; Sironi, G.; Tartari, A.; Veneziani, M.; Zannoni, M.

    2007-03-01

    In the standard cosmological scenario tensor perturbations of the metric produce a rotational component in the Cosmic Microwave Background polarization, called B-modes. The expected signal is of the order of ˜0.1 μK, well beyond the sensitivity of current experiments. In this paper, we introduce the BRAIN experiment, a bolometric interferometer devoted to measure the B-modes polarization of the CMB from Concordia station in Antarctica. This experiment will take advantage of both high sensitivity of bolometer arrays and low level of systematic effects of interferometers. We report the results obtained during the first campaign we carried out this austral summer at Dome-C. Using a pathfinder experiment, we demonstrated that a cryocooler based cryogenic system can work in such environmental conditions. We also carried out preliminary observations of the atmospheric emission at 145 GHz from Dome-C, and during the next campaign we'll extend the measurements to all the Stokes parameters I, Q, U, V all over the winter.

  12. Amplifier arrays for CMB polarization

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Lawrence, Charles R.; Seiffert, Michael D.; Wells, Mary M.; Kangaslahti, Pekka; Dawson, Douglas

    2003-01-01

    Cryogenic low noise amplifier technology has been successfully used in the study of the cosmic microwave background (CMB). MMIC (Monolithic Millimeter wave Integrated Circuit) technology makes the mass production of coherent detection receivers feasible.

  13. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  14. CMB Polarization Detector Operating Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Randle, Kirsten; Chuss, David; Rostem, Karwan; Wollack, Ed

    2015-04-01

    Examining the polarization of the Cosmic Microwave Background (CMB) provides the only known way to probe the physics of inflation in the early universe. Gravitational waves produced during inflation are posited to produce a telltale pattern of polarization on the CMB and if measured would provide both tangible evidence for inflation along with a measurement of inflation's energy scale. Leading the effort to detect and measure this phenomenon, Goddard Space Flight Center has been developing high-efficiency detectors. In order to optimize signal-to-noise ratios, sources like the atmosphere and the instrumentation must be considered. In this work we examine operating parameters of these detectors such as optical power loading and photon noise. SPS Summer Internship at NASA Goddard Spaceflight Center.

  15. CMB: polarization and temperature waves from spatially limited cosmological structures

    NASA Astrophysics Data System (ADS)

    Baccigalupi, Carlo

    1999-05-01

    The most known inflationary model leaves traces in the form of Gaussian scale-invariant perturbations. It univoquely marks the CMB angular power spectrum. However, high energy physics may be more complicated and may leave other (and richer) traces, in the form of non-Gaussian scale-dependent perturbations. In this work we change our mind to the second issue. Instead of the CMB angular power spectrum only, we predict the temperature and polarization anisotropies from single well shaped spatially limited structures. These are generally characterized by some symmetries, and here we concentrate on the spherical ones. The treatment developed allows to express the anisotropy pattern as a function of (i) the geometrical coordinates of the particular structure under investigation, including its position relative to the last scattering surface, and (ii) the photon propagation direction n̂. Due to the wave-like behavior of the relevant equations, the general phenomenology that turns out is that for a localized initial inhomogeneity, the corresponding CMB perturbation propagates beyond the initial size, generating waves traveling outward with the sound velocity cs, and reaching the size of the sound horizon at the time we are examinating it. This behavior is a common feature of both the pure temperature and polarization anisotropies. The natural test of these computations will be the comparison with the observational data from the forthcoming high resolution CMB maps from the Planck mission.

  16. Joint Planck and WMAP CMB map reconstruction

    NASA Astrophysics Data System (ADS)

    Bobin, J.; Sureau, F.; Starck, J.-L.; Rassat, A.; Paykari, P.

    2014-03-01

    We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method coined"local-generalized morphological component analysis" (LGMCA) and based on the sparse distribution of the foregrounds in the wavelet domain. The proposed estimation procedure takes advantage of the IRIS 100 μm as an extra observation on the galactic center for enhanced dust removal. We show that this new CMB map presents several interesting aspects: i) it is a full sky map without using any inpainting or interpolating method; ii) foreground contamination is very low; iii) the Galactic center is very clean with especially low dust contamination as measured by the cross-correlation between the estimated CMB map and the IRIS 100 μm map; and iv) it is free of thermal SZ contamination. Appendix is available in electronic form at http://www.aanda.org

  17. Circular polarization of the CMB: Foregrounds and detection prospects

    NASA Astrophysics Data System (ADS)

    King, Soma; Lubin, Philip

    2016-07-01

    The cosmic microwave background (CMB) is one of the finest probes of cosmology. Its all-sky temperature and linear polarization fluctuations have been measured precisely at a level of δ T /TCMB˜10-6 . In contrast, circular polarization (C P ) of the CMB has not been precisely explored. The current upper limit on the C P of the CMB is at a level of δ V /TCMB˜10-4 and is limited on large scales. Some of the cosmologically important sources which can induce a C P in the CMB include early Universe symmetry breaking, a primordial magnetic field, galaxy clusters, and Pop III stars (also known as the first stars). Among these sources, Pop III stars are expected to induce the strongest signal with levels strongly dependent on the frequency of observation and on the number, Np, of the Pop III stars per halo. Optimistically, a C P signal in the CMB resulting from the Pop III stars could be at a level of δ V /TCMB˜2 ×10-7 in scales of 1° at 10 GHz, which is much smaller than the currently existing upper limits on the C P measurements. Primary foregrounds in the cosmological C P detection will come from the galactic synchrotron emission, which is naturally (intrinsically) circularly polarized. We use data-driven models of the galactic magnetic field, thermal electron density, and relativistic electron density to simulate all-sky maps of the galactic C P . This work also points out that the galactic C P levels are important below 50 GHz and is an important factor for telescopes aiming to detect primordial B modes using C P as a systematic rejection channel. In this paper, we focus on a SNR evaluation for the detectability of the Pop III induced C P signal in the CMB. We find that a SNR higher than unity is achievable, for example, with a 10 m telescope and an observation time of 20 months at 10 GHz, if Np≥100 . We also find that, if frequency of observation and resolution of the beam is appropriately chosen, a SNR higher than unity is possible with Np≥10 and

  18. CMB polarization features from inflation versus reionization

    SciTech Connect

    Mortonson, Michael J.; Dvorkin, Cora; Peiris, Hiranya V.; Hu, Wayne

    2009-05-15

    The angular power spectrum of the cosmic microwave background temperature anisotropy observed by WMAP has an anomalous dip at l{approx}20 and a bump at l{approx}40. One explanation for this structure is the presence of features in the primordial curvature power spectrum, possibly caused by a step in the inflationary potential. The detection of these features is only marginally significant from temperature data alone. However, the inflationary feature hypothesis predicts a specific shape for the E-mode polarization power spectrum with a structure similar to that observed in temperature at l{approx}20-40. Measurement of the CMB polarization on few-degree scales can therefore be used as a consistency check of the hypothesis. The Planck satellite has the statistical sensitivity to confirm or rule out the model that best fits the temperature features with 3{sigma} significance, assuming all other parameters are known. With a cosmic variance limited experiment, this significance improves to 8{sigma}. For tests of inflationary models that can explain both the dip and the bump in temperature, the primary source of uncertainty is confusion with polarization features created by a complex reionization history, which, at most, reduces the significance to 2.5{sigma} for Planck and 5{sigma}-6{sigma} for an ideal experiment. Smoothing of the polarization spectrum by a large tensor component only slightly reduces the ability of polarization to test for inflationary features, as does requiring that polarization is consistent with the observed temperature spectrum, given the expected low level of TE correlation on few-degree scales. If polarized foregrounds can be adequately subtracted, Planck will supply valuable evidence for or against features in the primordial power spectrum. A future high-sensitivity polarization satellite would enable a decisive test of the feature hypothesis and provide complementary information about the shape of a possible step in the inflationary potential.

  19. CMB polarization features from inflation versus reionization

    NASA Astrophysics Data System (ADS)

    Mortonson, Michael J.; Dvorkin, Cora; Peiris, Hiranya V.; Hu, Wayne

    2009-05-01

    The angular power spectrum of the cosmic microwave background temperature anisotropy observed by WMAP has an anomalous dip at ℓ˜20 and a bump at ℓ˜40. One explanation for this structure is the presence of features in the primordial curvature power spectrum, possibly caused by a step in the inflationary potential. The detection of these features is only marginally significant from temperature data alone. However, the inflationary feature hypothesis predicts a specific shape for the E-mode polarization power spectrum with a structure similar to that observed in temperature at ℓ˜20-40. Measurement of the CMB polarization on few-degree scales can therefore be used as a consistency check of the hypothesis. The Planck satellite has the statistical sensitivity to confirm or rule out the model that best fits the temperature features with 3σ significance, assuming all other parameters are known. With a cosmic variance limited experiment, this significance improves to 8σ. For tests of inflationary models that can explain both the dip and the bump in temperature, the primary source of uncertainty is confusion with polarization features created by a complex reionization history, which, at most, reduces the significance to 2.5σ for Planck and 5σ-6σ for an ideal experiment. Smoothing of the polarization spectrum by a large tensor component only slightly reduces the ability of polarization to test for inflationary features, as does requiring that polarization is consistent with the observed temperature spectrum, given the expected low level of TE correlation on few-degree scales. If polarized foregrounds can be adequately subtracted, Planck will supply valuable evidence for or against features in the primordial power spectrum. A future high-sensitivity polarization satellite would enable a decisive test of the feature hypothesis and provide complementary information about the shape of a possible step in the inflationary potential.

  20. CMB lensing forecasts for constraining the primordial perturbations: adding to the CMB temperature and polarization information

    SciTech Connect

    Kasanda, Simon Muya; Moodley, Kavilan E-mail: moodleyk41@ukzn.ac.za

    2014-12-01

    We forecast how current (PLANCK) and future (PRISM) cosmic microwave background (CMB) experiments constrain the adiabatic mode and its admixtures with primordial isocurvature modes. The forecasts are based on measurements of the reconstructed CMB lensing potential and lensing-induced CMB B-mode polarization anisotropies in combination with the CMB temperature and E-mode polarization anisotropies. We first study the characteristic features of the CMB temperature, polarization and lensing spectra for adiabatic and isocurvature modes. We then consider how information from the CMB lensing potential and B-mode polarization induced by lensing can improve constraints on an admixture of adiabatic and three correlated isocurvature modes. We find that the CMB lensing spectrum improves constraints on isocurvature modes by at most 10% for the PLANCK and PRISM experiments. The limited improvement is a result of the low amplitude of isocurvature lensing spectra and cancellations between these spectra that render them only slightly detectable. There is a larger gain from using the lensing-induced B-mode polarization spectrum measured by PRISM. In this case constraints on isocurvature mode amplitudes improve by as much as 40% relative to the CMB temperature and E-mode polarization constraints. The addition of both lensing and lensing-induced B-mode polarization information constrains isocurvature mode amplitudes at the few percent level or better. In the case of admixtures of the adiabatic mode with one or two correlated isocurvature modes we find that constraints at the percent level or better are possible. We investigate the dependence of our results to various assumptions in our analysis, such as the inclusion of dark energy parameters, the CMB temperature-lensing correlation, and the presence of primordial tensor modes, and find that these assumptions do not significantly change our main results.

  1. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Xia, Jun-Qing; Li, Mingzhe; Li, Hong; Zhang, Xinmin

    2015-12-01

    Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [ α (n ˆ)] which can be separated into a background isotropic part [ α bar ] and a small anisotropic part [ Δα (n ˆ)]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the "self-calibration" method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα (n ˆ) in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial gravitational

  2. Probing the statistical properties of CMB B-mode polarization through Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Santos, Larissa; Wang, Kai; Zhao, Wen

    2016-07-01

    The detection of the magnetic type B-mode polarization is the main goal of future cosmic microwave background (CMB) experiments. In the standard model, the B-mode map is a strong non-gaussian field due to the CMB lensing component. Besides the two-point correlation function, the other statistics are also very important to dig the information of the polarization map. In this paper, we employ the Minkowski functionals to study the morphological properties of the lensed B-mode maps. We find that the deviations from Gaussianity are very significant for both full and partial-sky surveys. As an application of the analysis, we investigate the morphological imprints of the foreground residuals in the B-mode map. We find that even for very tiny foreground residuals, the effects on the map can be detected by the Minkowski functional analysis. Therefore, it provides a complementary way to investigate the foreground contaminations in the CMB studies.

  3. Cosmology from CMB polarization with POLARBEAR and the Simons Array

    NASA Astrophysics Data System (ADS)

    Barron, Darcy; POLARBEAR Collaboration

    2016-01-01

    POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012. The POLARBEAR team has published results from its first season of observations on a small fraction of the sky, including a measurement of a non-zero B-mode polarization angular power spectrum at sub-degree scales, where the dominant signal is gravitational lensing of the CMB. Improving these measurements requires precision characterization of the CMB polarization signal over large fractions of the sky, at multiple frequencies. To achieve these goals, POLARBEAR has begun expanding to include an additional two 3.5 meter telescopes with multi-chroic receivers, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. The Simons Array data will place strong constraints on the sum of the neutrino masses, when combined with data from the next generation of baryon acoustic oscillation measurements. We present the status of this funded instrument and its expected capabilities.

  4. Measuring the Polarized CMB with ACT

    NASA Astrophysics Data System (ADS)

    Staggs, Suzanne

    2016-06-01

    The Atacama Cosmology Telescope is a special-purpose 6m telescope designed for cosmic microwave background (CMB) measurements at arcminute resolution. We will describe recent results using the second-generation camera called ACTPol. The camera comprises three sets of optics and detectors. Two operate at 150 GHz, and the third is the first multichroic detector array deployed for the CMB. The latter operates at 90 and 150 GHz.

  5. Novel calibration system with sparse wires for CMB polarization receivers

    SciTech Connect

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  6. Novel Calibration System with Sparse Wires for CMB Polarization Receivers

    NASA Astrophysics Data System (ADS)

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.

    2012-06-01

    A curl competent (also known as B-modes) in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate "simultaneously" all detectors on the large focal plane. We developed a novel calibration system that rotates a large "sparse" grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature photons from the wire surface. Since the detector has a finite beam size, the observed signal is convolved with the beam property. The intensity of the of the calibrator is reasonable (a few Kelvin or less) compared to sky temperature for typical observing conditions (˜10 K). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  7. The Polarization of the CMB with Planck

    NASA Astrophysics Data System (ADS)

    Rocha, Graca; Planck Collaboration

    2016-06-01

    In this talk I will give an overview of Planck data and Cosmological results focusing on the analysis of polarized data. I will present new insights into the polarization of foregrounds rendered by the Planck satelite and an account of current constraints on the optical depth due to reionization, τ, and the scalar to tensor ratio, r.

  8. The BICEP/Keck CMB polarization program: Status and results

    NASA Astrophysics Data System (ADS)

    Steinbach, Bryan

    2016-06-01

    The BICEP/Keck program is searching for the imprint of inflationary gravitational waves on the Cosmic Microwave Background polarization with 5000 detectors in sub 1-m aperture telescopes observing at 95, 150 and 220GHz. Combining BICEP/Keck data with Planck polarization data, we constrain the tensor to scalar ratio (r) to be less than 0.09 at 95% confidence, for the first time exceeding the strength of the constraint from CMB temperature data. In this talk we report on this result, along with the quality of polarized 220GHz observations at the South Pole and the deployment of the BICEP-3 camera.

  9. ACTPol: Overview of a next-generation polarization-sensitive CMB observatory in Chile

    NASA Astrophysics Data System (ADS)

    McMahon, Jeff

    2013-04-01

    ACTPol is a new polarization sensitive receiver on the six-meter Atacama Cosmology Telescope which is surveying the Chilean sky and will produce deep maps of the polarization, temperature, and lensing of the Cosmic Microwave Background (CMB) in two frequency bands centered near 90 and 150 GHz. These measurements will improve constraints on inflation, neutrino properties, curvature, the primordial helium abundance, and dark energy. Cross correlating the ACTPol maps with optical surveys accessible from Chile will significantly amplify these constraints. In this talk I provide an overview of the project inclduing discussions of the instrument, science goals, and status of ACTPol.

  10. Preferred axis of CMB parity asymmetry in the masked maps

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Zhao, Wen; Huang, Qing-Guo; Santos, Larissa

    2016-06-01

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  11. Testable polarization predictions for models of CMB isotropy anomalies

    SciTech Connect

    Dvorkin, Cora; Peiris, Hiranya V.; Hu, Wayne

    2008-03-15

    Anomalies in the large-scale cosmic microwave background (CMB) temperature sky measured by the Wilkinson Microwave Anisotropy Probe have been suggested as possible evidence for a violation of statistical isotropy on large scales. In any physical model for broken isotropy, there are testable consequences for the CMB polarization field. We develop simulation tools for predicting the polarization field in models that break statistical isotropy locally through a modulation field. We study two different models: dipolar modulation, invoked to explain the asymmetry in power between northern and southern ecliptic hemispheres, and quadrupolar modulation, posited to explain the alignments between the quadrupole and octopole. For the dipolar case, we show that predictions for the correlation between the first 10 multipoles of the temperature and polarization fields can typically be tested at better than the 98% CL. For the quadrupolar case, we show that the polarization quadrupole and octopole should be moderately aligned. Such an alignment is a generic prediction of explanations which involve the temperature field at recombination and thus discriminate against explanations involving foregrounds or local secondary anisotropy. Predicted correlations between temperature and polarization multipoles out to l=5 provide tests at the {approx}99% CL or stronger for quadrupolar models that make the temperature alignment more than a few percent likely. As predictions of anomaly models, polarization statistics move beyond the a posteriori inferences that currently dominate the field.

  12. Expected dipole asymmetry in CMB polarization

    NASA Astrophysics Data System (ADS)

    Namjoo, M. H.; Abolhasani, A. A.; Assadullahi, H.; Baghram, S.; Firouzjahi, H.; Wands, D.

    2015-05-01

    We explore the hemispherical asymmetry predicted in cosmic microwave background polarization when there is an asymmetry in temperature anisotropies due to primordial perturbations. We consider the cases of asymmetries due to adiabatic and isocurvature modes, and tensor perturbations. We show that the asymmetry in the TE, EE and/or BB correlations can be substantially larger than those in the TT power spectrum in certain cases. The relative asymmetry in the different cross-correlations, as well as the angular scale dependence, can in principle distinguish between different origins for the asymmetry.

  13. Measurement of the CMB Polarization at 95 GHz from QUIET

    NASA Astrophysics Data System (ADS)

    Buder, Immanuel

    2012-09-01

    (Abridged) Despite the great success of precision cosmology, cosmologists cannot fully explain the initial conditions of the Universe. Inflation, an exponential expansion in the first 10^-36s, is a promising potential explanation. A generic prediction of inflation is odd-parity (B-mode) polarization in the cosmic microwave background (CMB). The Q/U Imaging ExperimenT (QUIET) aimed to limit or detect this polarization. We built a coherent pseudo-correlation microwave polarimeter. An array of mass-produced modules populated the focal plane of a 1.4m telescope. Each module had a sensitivity to polarization of 756muK sqrt{s} with a bandwidth of 10.7+/-1.1 GHz centered at 94.5+/-0.8 GHz; the combined sensitivity was 87+/-7muK sqrt{s}. We incorporated deck rotation, an absorbing ground screen, a new time-stream double-demodulation technique, and optimized optics into the design to reduce instrumental polarization. We observed with this instrument at the Atacama Plateau in Chile between August 2009 and December 2010. We collected 5336.9 hours of CMB observation and 1090 hours of astronomical calibration. This thesis describes the analysis and results of these data. We characterized the instrument using the astronomical calibration data as well as purpose-built artificial sources. We developed noise modeling, filtering, and data selection following a blind-analysis strategy. Central to this strategy was a suite of 32 null tests, each motivated by a possible instrumental problem or systematic effect. We also evaluated the systematic errors in the blind stage of the analysis before the result was known. We then calculated the CMB power spectra using a pseudo-Cl cross-correlation technique that suppressed contamination and made the result insensitive to noise bias.

  14. EBEX: A Balloon-Borne CMB Polarization Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel; Aboobaker, A. M.; Ade, P.; Aubin, F.; Baccigalupi, C.; Bandura, K.; Bao, C.; Borrill, J.; Didier, J.; Dobbs, M.; Gold, B.; Grain, J.; Grainger, W.; Hanany, S.; Helson, K.; Hillbrand, S. N.; Hilton, G.; Hubmayr, H.; Irwin, K.; Johnson, B.; Jaffe, A.; Jones, T. J.; Kisner, T.; Klein, J.; Korotkov, A.; Leach, S.; Lee, A. T.; Levinson, L.; Limon, M.; MacDermid, K.; Miller, A. D.; Milligan, M.; Pascale, E.; Raach, K.; Reichborn-Kjennerud, B.; Sagiv, I.; Smecher, G.; Stompor, R.; Tristram, M.; Tucker, G. S.; Westbrook, B.; Zilic, K.

    2014-01-01

    The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX is the first balloon-borne astrophysical polarimeter to use a continuously rotating achromatic half-wave plate on a superconducting magnetic bearing and over 1000 transition edge sensor bolometers read out with SQUID amplifiers. The instrument completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. We will provide an overview of the experiment and the Antarctic flight, and give an update on the analysis.

  15. Designs for a large-aperture telescope to map the CMB 10× faster.

    PubMed

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope. PMID:26974631

  16. Efficient inversion for CMB topography: benchmarks and preliminary maps

    NASA Astrophysics Data System (ADS)

    Colombi, A.; Nissen-Meyer, T.; Boschi, L.

    2012-12-01

    We map lateral topography variations of global seismic discontinuities focusing on the core-mantle boundary (CMB), in the framework of high-resolution forward modeling and seismic imaging. We present a method to compute sensitivity kernels relating seismic travel times (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wave-field that collapses to a 2D numerical domain. We compute and analyze a suite of kernels for CMB sensitive phases that can be used for finite frequency waveform inversion. We benchmark and tune our methodology inverting cross-correlation travel-times of PcP, various PKP branches, Pdiff and ScS computed with 3-D wave-propagation with ground-truth Earth models including realistic CMB topography. Finally, we present CMB topography maps derived from two different datasets that we inverted using our technique. One includes ~50000 cross-correlated travel-time measurement for SKSac, and ScS phases while the other consists of ~220000 ISC manually picked travel-time for PKIKP and PcP phases. Prior to interpretation, we analyze the coverage using the approximate Hessian to discriminate well-constrained areas from less determined locations. Although with different amplitudes, our new CMB models reveal a low-elevation ring around the Pacific similar to other studies. While this is a pilot study extending topography inversions to full-wave based imaging mainly showing consistency with previous findings, we expect to further enhance these studies for a new generation of CMB topography models by combining various datasets and joint inversion with mantle structure.

  17. Non-Gaussianity in the foreground-reduced CMB maps

    SciTech Connect

    Bernui, A.; Reboucas, M. J.

    2010-03-15

    A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) data is crucial not only to discriminate inflationary models but also to test alternative scenarios. Non-Gaussianity offers, therefore, a powerful probe of the physics of the primordial Universe. The extraction of primordial non-Gaussianity is a difficult enterprise since several effects of a nonprimordial nature can produce non-Gaussianity. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early Universe, it is important to employ a range of different statistical tools to quantify and/or constrain its amount in order to have information that may be helpful for identifying its causes. Moreover, different indicators can in principle provide information about distinct forms of non-Gaussianity that can be present in CMB data. Most of the Gaussianity analyses of CMB data have been performed by using part-sky frequency, where the mask is used to deal with the galactic diffuse foreground emission. However, full-sky map seems to be potentially more appropriate to test for Gaussianity of the CMB data. On the other hand, masks can induce bias in some non-Gaussianity analyses. Here we use two recent large-angle non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, to examine the question of non-Gaussianity in the available full-sky five-year and seven-year Wilkinson Microwave Anisotropy Probe (WMAP) maps. We show that these full-sky foreground-reduced maps present a significant deviation from Gaussianity of different levels, which vary with the foreground-reducing procedures. We also make a Gaussianity analysis of the foreground-reduced five-year and seven-year WMAP maps with a KQ75 mask, and compare with the similar analysis performed with the corresponding full-sky foreground-reduced maps. This comparison shows a significant reduction in the levels of non

  18. Modeling the Effect of Refractive Optics on CMB Polarization

    NASA Astrophysics Data System (ADS)

    Bruno, Sarah Marie; Gallardo, Patricio; Koopman, Brian; Niemack, Michael; ACTPol Collaboration

    2015-04-01

    Precise CMB polarization measurements are crucial in investigating dark energy. The Atacama Cosmology Telescope Polarimeter (ACTPol) in Chile is built to simultaneously measure temperature and polarization. Polarization angle measurements require an error margin < 0.1°, or these will limit our results. This requires greater understanding of how refractive optics alter the polarization of the microwave radiation. Lens coatings are necessary to avoid the reflection of the majority of the incoming light. Early experiments found that there were systematic angular distortions in the data, in which the optical elements in the ACTPol telescope rotated the polarization of the incoming microwave radiation slightly. We modeled a single lens using two commercial optics modeling software packages, CodeV and Zemax, with single and double-layer coatings. Unexpectedly, significant disparities between these models were observed. We subsequently developed our own Python model of the single lens system in order to predict the polarization rotation values. I will present the results of this work. Our next aim is to reproduce the modeled phenomena using physical lenses.

  19. B-mode CMB polarization from patchy screening during reionization

    SciTech Connect

    Dvorkin, Cora; Hu, Wayne; Smith, Kendrick M.

    2009-05-15

    B modes in CMB polarization from patchy reionization arise from two effects: generation of polarization from scattering of quadrupole moments by reionization bubbles and fluctuations in the screening of E modes from recombination. The scattering contribution has been studied previously, but the screening contribution has not yet been calculated. We show that on scales smaller than the acoustic scale (l > or approx. 300), the B-mode power from screening is larger than the B-mode power from scattering. The ratio approaches a constant {approx}2.5 below the damping scale (l > or approx. 2000). On degree scales relevant for gravitational waves (l < or approx. 100), screening B modes have a white noise tail and are subdominant to the scattering effect. These results are robust to uncertainties in the modeling of patchy reionization.

  20. Precision CMB Polarization from Dome-C: the BRAIN experiment

    NASA Astrophysics Data System (ADS)

    Masi, S.; de Bernardis, P.; Giordano, C.; Nati, F.; Piacentini, F.; Polenta, G.; Veneziani, M.; Gervasi, M.; Sironi, G.; Tartari, A.; Zannoni, M.; Peterzen, S.; Bartlett, J.; Giraud-Heraud, Y.; Piat, M.; Rosset, C.; Giard, M.; Pons, R.; Maffei, B.; Ade, P.; Gear, W.; Mauskopf, P.; Piccirillo, L.; Pisano, G.; Savini, G.

    In the current cosmological scenario, part of the linearly polarized emission of the CMB is expected to be rotational (B-modes). This component is due to tensor perturbations of the metric produced by primordial gravitational waves, which are generated a split-second after the Big Bang. The signal expected is of the order of ≲ 0.1 μ K, well below the non-rotational component of the polarization signal (E-modes), and beyond the sensitivity of present generation instruments. New, more sensitive instruments are developed in several labs, with the goal to measure the B-modes. Control of systematics and foregrounds will be the key to make the results of these experiments believable. In this paper we shortly outline BRAIN, a bolometric interferometer devoted to B-modes research, and its pathfinder experiment, devoted to test the Dome-C site.

  1. On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies

    NASA Astrophysics Data System (ADS)

    Bonavera, L.; Barreiro, R. B.; Marcos-Caballero, A.; Vielva, P.

    2016-06-01

    In this work we present a method to extract the signal induced by the integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB). It makes use of the Linear Covariance-Based filter introduced by Barreiro et al., and combines CMB data with any number of large-scale structure (LSS) surveys and lensing information. It also exploits CMB polarization to reduce cosmic variance. The performance of the method has been thoroughly tested with simulations taking into account the impact of non-ideal conditions such as incomplete sky coverage or the presence of noise. In particular, three galaxy surveys are simulated, whose redshift distributions peak at low (z ≃ 0.3), intermediate (z ≃ 0.6) and high redshift (z ≃ 0.9). The contribution of each of the considered data sets as well as the effect of a mask and noise in the reconstructed ISW map is studied in detail. When combining all the considered data sets (CMB temperature and polarization, the three galaxy surveys and the lensing map), the proposed filter successfully reconstructs a map of the weak ISW signal, finding a perfect correlation with the input signal for the ideal case and around 80 per cent, on average, in the presence of noise and incomplete sky coverage. We find that including CMB polarization improves the correlation between input and reconstruction although only at a small level. Nonetheless, given the weakness of the ISW signal, even modest improvements can be of importance. In particular, in realistic situations, in which less information is available from the LSS tracers, the effect of including polarization is larger. For instance, for the case in which the ISW signal is recovered from CMB plus only one survey, and taking into account the presence of noise and incomplete sky coverage, the improvement in the correlation coefficient can be as large as 10 per cent.

  2. Evidence for horizon-scale power from CMB polarization

    SciTech Connect

    Mortonson, Michael J.; Hu, Wayne

    2009-07-15

    The CMB temperature power spectrum offers ambiguous evidence for the existence of horizon-scale power in the primordial power spectrum due to uncertainties in spatial curvature and the physics of cosmic acceleration as well as the observed low quadrupole. Current polarization data from WMAP provide evidence for horizon-scale power that is robust to these uncertainties. Polarization on the largest scales arises mainly from scattering at z < or approx. 6 when the Universe is fully ionized, making the evidence robust to ionization history variations at higher redshifts as well. A cutoff in the power spectrum is limited to C=k{sub C}/10{sup -4} Mpc{sup -1}<5.2 (95% C.L.) by polarization, only slightly weaker than joint temperature and polarization constraints in flat {lambda}CDM (C<4.2). Planck should improve the polarization limit to C<3.6 for any model of the acceleration epoch and ionization history as well as provide tests for foreground and systematic contamination.

  3. N-body lensed CMB maps: lensing extraction and characterization

    SciTech Connect

    Antolini, Claudia; Martinelli, Matteo; Baccigalupi, Carlo; Fantaye, Yabebal; Carbone, Carmelita E-mail: y.t.fantaye@astro.uio.no E-mail: carmelita.carbone@brera.inaf.it

    2014-02-01

    We reconstruct shear maps and angular power spectra from simulated weakly lensed total intensity (TT) and polarised (EB) maps of the Cosmic Microwave Background (CMB) anisotropies, obtained using Born approximated ray-tracing through the N-body simulated Cold Dark Matter (CDM) structures in the Millennium Simulations (MS). We compare the recovered signal with the ΛCDM prediction, on the whole interval of angular scales which is allowed by the finite box size, extending from the degree scale to the arcminute, by applying a quadratic estimator in the flat sky limit; we consider PRISM-like instrumental specification for future generation CMB satellites, corresponding to arcminute angular resolution of 3.2' and sensitivity of 2.43 μK-arcmin. The noise contribution in the simulations closely follows the estimator prediction, becoming dominated by limits in the angular resolution for the EB signal, at ℓ ≅ 1500. The recovered signal shows no visible departure from predictions of the weak lensing power within uncertainties, when considering TT and EB data singularly. In particular, the reconstruction precision reaches the level of a few percent in bins with Δℓ ≅ 100 in the angular multiple interval 1000∼<ℓ∼<2000 for T, and about 10% for EB. Within the adopted specifications, polarisation data do represent a significant contribution to the lensing shear, which appear to faithfully trace the underlying N-body structure down to the smallest angular scales achievable with the present setup, validating at the same time the latter with respect to semi-analytical predictions from ΛCDM cosmology at the level of CMB lensing statistics. This work demonstrates the feasibility of CMB lensing studies based on large scale simulations of cosmological structure formation in the context of the current and future high resolution and sensitivity CMB experiment.

  4. SILC: a new Planck internal linear combination CMB temperature map using directional wavelets

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew

    2016-08-01

    We present new clean maps of the cosmic microwave background (CMB) temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretized wavelets - scale-discretized, directional wavelet ILC or Scale-discretised, directional wavelet Internal Linear Combination (SILC). Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localize the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimize the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining the use of directional and axisymmetric wavelets depending on scale could yield higher quality CMB temperature maps. Our results set the stage for the application of SILC to polarization anisotropies through an extension to spin wavelets.

  5. EBEX: a balloon-borne CMB polarization experiment

    NASA Astrophysics Data System (ADS)

    Reichborn-Kjennerud, Britt; Aboobaker, Asad M.; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Sagiv, Ilan; Smecher, Graeme; Stivoli, Federico; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-07-01

    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from l = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constraints on r using expected noise levels show that, for a likelihood centered around zero and with negligible foregrounds, 99% of the area falls below r = 0.035. This value increases by a factor of 1.6 after a process of foreground subtraction. This estimate does not include systematic uncertainties. An engineering flight was launched in June, 2009, from Ft. Sumner, NM, and the long duration science flight in Antarctica is planned for 2011. These proceedings describe the EBEX instrument and the North American engineering flight.

  6. Constraints on cosmological birefringence energy dependence from CMB polarization data

    SciTech Connect

    Gubitosi, G.; Paci, F. E-mail: fpaci@sissa.it

    2013-02-01

    We study the possibility of constraining the energy dependence of cosmological birefringence by using CMB polarization data. We consider four possible behaviors, characteristic of different theoretical scenarios: energy-independent birefringence motivated by Chern-Simons interactions of the electromagnetic field, linear energy dependence motivated by a 'Weyl' interaction of the electromagnetic field, quadratic energy dependence, motivated by quantum gravity modifications of low-energy electrodynamics, and inverse quadratic dependence, motivated by Faraday rotation generated by primordial magnetic fields. We constrain the parameters associated to each kind of dependence and use our results to give constraints on the models mentioned. We forecast the sensitivity that Planck data will be able to achieve in this respect.

  7. Exploring two-spin internal linear combinations for the recovery of the CMB polarization

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Marcos-Caballero, A.; Vielva, P.; Martínez-González, E.; Barreiro, R. B.

    2016-06-01

    We present a methodology to recover cosmic microwave background (CMB) polarization in which the quantity P = Q + iU is linearly combined at different frequencies using complex coefficients. This is the most general linear combination of the Q and U Stokes parameters which preserves the physical coherence of the residual contribution on the CMB estimation. The approach is applied to the internal linear combination (ILC) and the internal template fitting (ITF) methodologies. The variance of P of the resulting map is minimized to compute the coefficients of the linear combination. One of the key aspects of this procedure is that it serves to account for a global frequency-dependent shift of the polarization phase. Although in the standard case, in which no global E-B transference depending on frequency is expected in the foreground components, minimizing <|P|2> is similar to minimizing and separately (as previous methodologies proceed), multiplying Q and U by different coefficients induces arbitrary changes in the polarization angle and it does not preserve the coherence between the spinorial components. The approach is tested on simulations, obtaining a similar residual level with respect to the one obtained with other implementations of the ILC, and perceiving the polarization rotation of a toy model with the frequency dependence of the Faraday rotation.

  8. Planck 2014 and beyond: the CMB polarization at large angular scales

    NASA Astrophysics Data System (ADS)

    Mangilli, Anna

    2015-08-01

    One of the main challenge left for the present and the future CMB experiments is the high precision measurement of the CMB polarization at large angular scales. The reionization bump in the CMB polarization EE and BB power spectra encodes unique informations about the reionization history of the Universe and the inflationary epoch. Such valuable information can be accessed only with an unprecedented accuracy and care on each step of the data analysis and its interpretation. The Planck 2014 release represents a first step towards the accurate characterization of the CMB polarization on the full sky. In this talk I will go through a brief introduction about the CMB polarization mainly focusing on the large angular scales. I will show how the EE and BB spectra at low-l can be used to improve the constraints on the cosmological parameters, in particular those related to the reionization history (τ) and the amount of tensor modes (r). As a Planck Scientist I will present, on behalf of the Planck collaboration, the status of the CMB analysis at large scales after the 2014 release. I will present different methods that can be used for the low-l analysis, focusing on a spectral based approach (Mangilli et al. in preparation). Finally I will present the theoretical implications of the results and the future prospects in view of the Planck release at the end of 2015 and future CMB experiments.

  9. The shape of CMB temperature and polarization peaks on the sphere

    NASA Astrophysics Data System (ADS)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.; Vielva, P.

    2016-04-01

    We present a theoretical study of CMB temperature peaks, including its effect over the polarization field, and allowing nonzero eccentricity. The formalism is developed in harmonic space and using the covariant derivative on the sphere, which guarantees that the expressions obtained are completely valid at large scales (i.e., no flat approximation). The expected patterns induced by the peak, either in temperature or polarization, are calculated, as well as their covariances. It is found that the eccentricity introduces a quadrupolar dependence in the peak shape, which is proportional to a complex bias parameter bepsilon, characterizing the peak asymmetry and orientation. In addition, the one-point statistics of the variables defining the peak on the sphere is reviewed, finding some differences with respect to the flat case for large peaks. Finally, we present a mechanism to simulate constrained CMB maps with a particular peak on the field, which is an interesting tool for analysing the statistical properties of the peaks present in the data.

  10. Cosmological Parameters from CMB Maps without Likelihood Approximation

    NASA Astrophysics Data System (ADS)

    Racine, B.; Jewell, J. B.; Eriksen, H. K.; Wehus, I. K.

    2016-03-01

    We propose an efficient Bayesian Markov chain Monte Carlo (MCMC) algorithm for estimating cosmological parameters from cosmic microwave background (CMB) data without the use of likelihood approximations. It builds on a previously developed Gibbs sampling framework that allows for exploration of the joint CMB sky signal and power spectrum posterior, P({\\boldsymbol{s}},{C}{\\ell }| {\\boldsymbol{d}}), and addresses a long-standing problem of efficient parameter estimation simultaneously in regimes of high and low signal-to-noise ratio. To achieve this, our new algorithm introduces a joint Markov chain move in which both the signal map and power spectrum are synchronously modified, by rescaling the map according to the proposed power spectrum before evaluating the Metropolis-Hastings accept probability. Such a move was already introduced by Jewell et al., who used it to explore low signal-to-noise posteriors. However, they also found that the same algorithm is inefficient in the high signal-to-noise regime, since a brute-force rescaling operation does not account for phase information. This problem is mitigated in the new algorithm by subtracting the Wiener filter mean field from the proposed map prior to rescaling, leaving high signal-to-noise information invariant in the joint step, and effectively only rescaling the low signal-to-noise component. To explore the full posterior, the new joint move is then interleaved with a standard conditional Gibbs move for the sky map. We apply our new algorithm to simplified simulations for which we can evaluate the exact posterior to study both its accuracy and its performance, and find good agreement with the exact posterior; marginal means agree to ≲0.006σ and standard deviations to better than ˜3%. The Markov chain correlation length is of the same order of magnitude as those obtained by other standard samplers in the field.

  11. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    NASA Astrophysics Data System (ADS)

    Errard, Josquin; Feeney, Stephen M.; Peiris, Hiranya V.; Jaffe, Andrew H.

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)~1.3×10-4, σ(nt)~0.03, σ( ns )~1.8×10

  12. The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000

    SciTech Connect

    Naess, Sigurd; Allison, Rupert; Calabrese, Erminia; Hasselfield, Matthew; McMahon, Jeff; Coughlin, Kevin; Datta, Rahul; Niemack, Michael D.; De Bernardis, Francesco; Addison, Graeme E.; Amiri, Mandana; Ade, Peter A. R.; Battaglia, Nick; Beall, James A.; Britton, Joe; Cho, Hsiao-mei; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J.; and others

    2014-10-01

    We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 μK-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < ℓ < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at ℓ < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 μ {sup 2} at ℓ = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7{sup o} ± 0.6{sup o} when smoothed with a 5' Gaussian beam.

  13. CMB Lensing Cross Correlations

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey

    2014-03-01

    A new generation of experiments designed to conduct high-resolution, low-noise observations of the Cosmic Microwave Background (CMB)--including ACTpol, Planck, POLARBEAR and SPTpol--are producing exquisite measurements of the gravitational lensing of the CMB. Such measurements, covering large fractions of the sky, provide detailed maps of the projected mass distribution extending to the surface of the CMB's last scattering. Concurrently, a large number of deep, wide-area imaging and spectroscopic surveys (e.g., the Dark Energy Survey (DES),WISE all-sky survey, Subaru HyperSuprimeCam Survey, LSST, MS-DESI, BigBoss, etc.) are, or will soon be, providing maps of the distribution of galaxies in the Universe. Correlations of such tracer populations with lensing data allows new probes of where and how galaxies form in the dark matter skeleton of the Universe. Recent correlations of maps of galaxy and quasar densities with lensing convergence maps have produced significant measurements of galaxy bias. The near-term prospect for improvements in such measurements is notable as more precise lensing data from CMB polarization experiments will help to break cosmological and astrophysical parameter degeneracies. Work by the Planck, SPT, and POLARBEAR collaborations has also focused on the correlation of the Cosmic Infrared Background (CIB) with CMB lensing convergence maps. This correlation is particularly strong as the redshifts of the CIB and CMB lensing kernel are well matched. Such correlations probe high-redshift structure, constraining models of star-formation and the characteristic mass scale for halos hosting CIB galaxies and have also been used to demonstrate the first detection of CMB B-mode polarization--an important milestone in CMB observations. Finally, combining galaxy number density, cosmic shear and CMB lensing maps has the potential to provide valuable systematic tests for upcoming cosmological results from large optical surveys such as LSST.

  14. Dipole modulation in tensor modes: signatures in CMB polarization

    NASA Astrophysics Data System (ADS)

    Zarei, Moslem

    2015-06-01

    In this work we consider a dipole asymmetry in tensor modes and study the effects of this asymmetry on the angular power spectra of CMB. We derive analytical expressions for the and in the presence of such dipole modulation in tensor modes for . We also discuss on the amplitude of modulation term and show that the is considerably modified due to this term.

  15. Linear and Circular polarization of CMB and cosmic 21cm radiation

    NASA Astrophysics Data System (ADS)

    De, Soma; Vachaspati, T.; Pogosian, L.; Tashiro, H.

    2014-01-01

    I will discuss the effect of galactic and primordial magnetic field on the linear polarization of CMB. Faraday Rotation (FR) of CMB polarization, as measured through mode-coupling correlations of E and B modes, can be a promising probe of a stochastic primordial magnetic field (PMF). We use existing estimates of the Milky Way rotation measure (RM) to forecast its detectability with upcoming and future CMB experiments. We find that a realistic future sub-orbital experiment, covering a patch of the sky near the galactic poles, can detect a scale-invariant PMF of 0.1 nano-Gauss at better than 95% confidence level. Next I'll discuss how the galactic magnetic field affects polarization of 21 cm. Unpolarized 21 cm radiation acquires a certain level of linear polarization during the EoR due to Thompson scattering. This linear polarization, if measured, could probe important information about the EoR. We show that a 99 % accuracy on galactic rotation measure (RM) data is necessary to recover the initial E-mode signal. I will conclude my talk by addressing the very interesting question of if CMB can be circularly polarized due to the secondary effects along the line of sight. As the CMB passes through galaxies and galaxy clusters, which could generate a circular polarization by the method of Faraday conversion (FC) (Pacholczyk, 1998, Cooray et al, 2002). Particularly explosions of first stars can induce circular polarization (due to Faraday conversion) and it has no strong local foreground. The unique frequency dependence of FC signal will allow one to eliminate other possible sources of circular polarization enabling to probe the first star explosions.

  16. An improved upper limit to the CMB circular polarization at large angular scales

    NASA Astrophysics Data System (ADS)

    Mainini, R.; Minelli, D.; Gervasi, M.; Boella, G.; Sironi, G.; Baú, A.; Banfi, S.; Passerini, A.; De Lucia, A.; Cavaliere, F.

    2013-08-01

    Circular polarization of the Cosmic Microwave Background (CMB) offers the possibility of detecting rotations of the universe and magnetic fields in the primeval universe or in distant clusters of galaxies. We used the Milano Polarimeter (MIPOL) installed at the Testa Grigia Observatory, on the italian Alps, to improve the existing upper limits to the CMB circular polarization at large angular scales. We obtain 95% confidence level upper limits to the degree of the CMB circular polarization ranging between 5.0ṡ10-4 and 0.7ṡ10-4 at angular scales between 8° and 24°, improving by one order of magnitude preexisting upper limits at large angular scales. Our results are still far from the nK region where today expectations place the amplitude of the V Stokes parameter used to characterize circular polarization of the CMB but improve the preexisting limit at similar angular scales. Our observations offered also the opportunity of characterizing the atmospheric emission at 33 GHz at the Testa Grigia Observatory.

  17. Analytical Spectra of RGWs and its Induced CMB Anisotropies and Polarization

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    We present our results from a series of analytical studies on the relic gravitational waves (RGW). Influences of various cosmological parameters and processes, possible detections of, and constraints on RGWs are examined. With the resulting RGW, we present the analytical spectra ClXX of CMB anisotropies and polarizations, particularly, reionization is also included.

  18. An improved upper limit to the CMB circular polarization at large angular scales

    SciTech Connect

    Mainini, R.; Minelli, D.; Gervasi, M.; Boella, G.; Sironi, G.; Baú, A.; Banfi, S.; Passerini, A.; Lucia, A. De; Cavaliere, F. E-mail: daniele.minelli@gmail.com E-mail: giuliano.boella@unimib.it E-mail: bau@mib.infn.it E-mail: andrea.passerini@mib.infn.it E-mail: francesco.cavaliere@fisica.unimi.it

    2013-08-01

    Circular polarization of the Cosmic Microwave Background (CMB) offers the possibility of detecting rotations of the universe and magnetic fields in the primeval universe or in distant clusters of galaxies. We used the Milano Polarimeter (MIPOL) installed at the Testa Grigia Observatory, on the italian Alps, to improve the existing upper limits to the CMB circular polarization at large angular scales. We obtain 95% confidence level upper limits to the degree of the CMB circular polarization ranging between 5.0⋅10{sup −4} and 0.7⋅10{sup −4} at angular scales between 8° and 24°, improving by one order of magnitude preexisting upper limits at large angular scales. Our results are still far from the nK region where today expectations place the amplitude of the V Stokes parameter used to characterize circular polarization of the CMB but improve the preexisting limit at similar angular scales. Our observations offered also the opportunity of characterizing the atmospheric emission at 33 GHz at the Testa Grigia Observatory.

  19. Searching for primordial non-Gaussianity in Planck CMB maps using a combined estimator

    NASA Astrophysics Data System (ADS)

    Novaes, C. P.; Bernui, A.; Ferreira, I. S.; Wuensche, C. A.

    2014-01-01

    The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of local primordial non-Gaussianity quantified by the dimensionless parameter f NL. We apply it to these sets of CMB maps and find gtrsim 98% of chance of positive detection, even for small intensity local non-Gaussianity like f NL = 38±18, the current limit from Planck data for large angular scales. Additionally, we test the suitability to distinguish between primary and secondary non-Gaussianities: first we train the Neural Network with two sets, one of nearly Gaussian CMB maps (|f NL| <= 10) but contaminated with realistic inhomogeneous Planck noise (i.e., secondary non-Gaussianity) and the other of non-Gaussian CMB maps, that is, maps endowed with weak primordial non-Gaussianity (28 <= f NL <= 48); after that we test an ensemble composed of CMB maps either with one of these non-Gaussian contaminations, and find out that our method successfully classifies ~ 95% of the tested maps as being CMB maps containing primordial or secondary non-Gaussianity. Furthermore

  20. Searching for primordial non-Gaussianity in Planck CMB maps using a combined estimator

    SciTech Connect

    Novaes, C.P.; Wuensche, C.A.; Bernui, A.; Ferreira, I.S. E-mail: bernui@on.br E-mail: ca.wuensche@inpe.br

    2014-01-01

    The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of local primordial non-Gaussianity quantified by the dimensionless parameter f{sub  NL}. We apply it to these sets of CMB maps and find ∼> 98% of chance of positive detection, even for small intensity local non-Gaussianity like f{sub  NL} = 38±18, the current limit from Planck data for large angular scales. Additionally, we test the suitability to distinguish between primary and secondary non-Gaussianities: first we train the Neural Network with two sets, one of nearly Gaussian CMB maps (|f{sub  NL}| ≤ 10) but contaminated with realistic inhomogeneous Planck noise (i.e., secondary non-Gaussianity) and the other of non-Gaussian CMB maps, that is, maps endowed with weak primordial non-Gaussianity (28 ≤ f{sub  NL} ≤ 48); after that we test an ensemble composed of CMB maps either with one of these non-Gaussian contaminations, and find out that our method successfully classifies ∼ 95% of the tested maps as being CMB maps containing primordial or

  1. Polarized cosmic microwave background map recovery with sparse component separation

    NASA Astrophysics Data System (ADS)

    Bobin, J.; Sureau, F.; Starck, J.-L.

    2015-11-01

    The polarization modes of the cosmological microwave background are an invaluable source of information for cosmology and a unique window to probe the energy scale of inflation. Extracting this information from microwave surveys requires distinguishing between foreground emissions and the cosmological signal, which means solving a component separation problem. Component separation techniques have been widely studied for the recovery of cosmic microwave background (CMB) temperature anisotropies, but very rarely for the polarization modes. In this case, most component separation techniques make use of second-order statistics to distinguish between the various components. More recent methods, which instead emphasize the sparsity of the components in the wavelet domain, have been shown to provide low-foreground, full-sky estimates of the CMB temperature anisotropies. Building on sparsity, we here introduce a new component separation technique dubbed the polarized generalized morphological component analysis (PolGMCA), which refines previous work to specifically work on the estimation of the polarized CMB maps: i) it benefits from a recently introduced sparsity-based mechanism to cope with partially correlated components; ii) it builds upon estimator aggregation techniques to further yield a better noise contamination/non-Gaussian foreground residual trade-off. The PolGMCA algorithm is evaluated on simulations of full-sky polarized microwave sky simulations using the Planck Sky Model (PSM). The simulations show that the proposed method achieves a precise recovery of the CMB map in polarization with low-noise and foreground contamination residuals. It provides improvements over standard methods, especially on the Galactic center, where estimating the CMB is challenging.

  2. Kinetic Sunyaev-Zeldovich effect in an anisotropic CMB model: Measuring low multipoles of the CMB at higher redshifts using intensity and polarization spectral distortions

    NASA Astrophysics Data System (ADS)

    Yasini, Siavash; Pierpaoli, Elena

    2016-07-01

    We present a novel mathematical formalism that allows us to easily compute the expected kinetic Sunyaev-Zeldovich (kSZ) signal in intensity and polarization due to an anisotropic primordial cosmic microwave background (CMB). We derive the expected intensity and polarization distortions in the direction of nonmoving galaxy clusters, and then we generalize our calculations for nonzero peculiar velocity. We show that, in the direction of moving clusters, low CMB multipoles impose intensity and polarization spectral distortions with different frequency dependences. The polarization signal primarily probes the quadrupole moment of the CMB, with a significant contribution from the primordial dipole and octupole moments. For a typical cluster velocity of 1000 km /s , corrections to the quadrupole-induced polarization of a nonmoving cluster are of the order of 2%-10% between 200-600 GHz, and depend on cluster's position on the sky, velocity magnitude, and direction of motion. We also find that the angular dependence of the signal varies with frequency of observation. The distinct frequency and angular dependences of the polarization induced by the primordial dipole and octupole can be exploited to measure them despite other physical effects and foregrounds. Contrary to polarization, intensity distortions are affected by all the CMB multipoles, so they cannot be readily used to probe the low multipoles at higher redshifts. However, correlations between intensity and polarization signals can be used to enhance the signal to noise ratio for the measurements of the primordial dipole, quadrupole, and octupole. The more general calculation of the aberration kernel presented in this work has applications reaching beyond the SZ cluster science addressed here. For example, it can be exploited to the deboost/deaberrate CMB multipoles as observed in our local frame.

  3. CMB anisotropy power spectrum using linear combinations of WMAP maps

    SciTech Connect

    Saha, Rajib; Prunet, Simon; Jain, Pankaj; Souradeep, Tarun

    2008-07-15

    In recent years the goal of estimating different cosmological parameters precisely has set new challenges in the effort to accurately measure the angular power spectrum of the CMB. This has required removal of foreground contamination as well as detector noise bias with reliability and precision. Recently, a novel, model-independent method for the estimation of the CMB angular power spectrum solely from multifrequency observations has been proposed and implemented on the first year WMAP data by Saha et al. 2006. All previous estimates of the power spectrum of the CMB are based upon foreground templates using data sets from different experiments. However, our methodology demonstrates that the CMB angular spectrum can be reliably estimated with precision from a self-contained analysis of the WMAP data. In this work we provide a detailed description of this method. We also study and identify the biases present in our power spectrum estimate. We apply our methodology to extract the power spectrum from the WMAP data.

  4. CMB polarization systematics due to beam asymmetry: Impact on inflationary science

    SciTech Connect

    Shimon, Meir; Keating, Brian; Ponthieu, Nicolas; Hivon, Eric

    2008-04-15

    Cosmic microwave background (CMB) polarization provides a unique window into cosmological inflation; the amplitude of the B-mode polarization from last scattering is uniquely sensitive to the energetics of inflation. However, numerous systematic effects arising from optical imperfections can contaminate the observed B-mode power spectrum. In particular, systematic effects due to the coupling of the underlying temperature and polarization fields with elliptical or otherwise asymmetric beams yield spurious systematic signals. This paper presents a nonperturbative analytic calculation of some of these signals. We show that results previously derived in real space can be generalized, formally, by including infinitely many higher-order corrections to the leading order effects. These corrections can be summed and represented as analytic functions when a fully Fourier-space approach is adopted from the outset. The formalism and results presented in this paper were created to determine the susceptibility of CMB polarization probes of the primary gravitational wave signal but can be easily extended to the analysis of gravitational lensing of the CMB.

  5. Signature of cosmic string wakes in the CMB polarization

    SciTech Connect

    Danos, Rebecca J.; Brandenberger, Robert H.; Holder, Gil

    2010-07-15

    We calculate a signature of cosmic strings in the polarization of the cosmic microwave background. We find that ionization in the wakes behind moving strings gives rise to extra polarization in a set of rectangular patches in the sky whose length distribution is scale-invariant. The length of an individual patch is set by the comoving Hubble radius at the time the string is perturbing the cosmic microwave background. The polarization signal is largest for string wakes produced at the earliest post-recombination time, and for an alignment in which the photons cross the wake close to the time the wake is created. The maximal amplitude of the polarization relative to the temperature quadrupole is set by the overdensity of free electrons inside a wake which depends on the ionization fraction f inside the wake. For a cosmic string wake coming from an idealized string segment, the signal can be as high as 0.06 {mu}K in degree scale polarization for a string at high redshift (near recombination) and a string tension {mu} given by G{mu}=10{sup -7}.

  6. Analytical Spectra of Rgw and its Induced CMB Anisotropies and Polarization

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2010-04-01

    We present the results from a series of analytical studies on relic gravitational waves (RGW) and the anisotropies and polarization of cosmic background radiation (CMB). The analytical spectrum h(ν) of RGW shows the influences of the dark energy, neutrino free-streaming (NFS), quantum chro-modynamical (QCD) phase transition, e+e- annihilation, and inflation. Various possible detections of, and constraints on RGW are examined. The resulting h(ν) is then used to analytically calculate the spectra ClXX of CMB anisotropies and polarizations. The influences of the inflation index, NFS, and baryon on ClXX are demonstrated. We also extend analytical calculation of ClXX to the case with reionization. The explicit dependence of ClXX on the optical depth is obtained, whose degeneracies with the amplitude and index of RGW are shown, and the consequential implications in extracting RGW signal from observed ClXX are explored.

  7. Status of EBEX, a Balloon Borne CMB Polarization Experiment

    NASA Astrophysics Data System (ADS)

    Hubmayr, Johannes; EBEX Collaboration

    2006-12-01

    We discuss the status of EBEX, a NASA funded balloon-borne polarimeter equipped with 1462 bolometric transition edge sensor (TES) detectors and designed to measure the B-mode polarization of the cosmic microwave background radiation. EBEX will scan 350 square degrees of the sky over a 14 day long-duration balloon flight. Given the expected sensitivity we will put a 2σ upper limit of r ≤ 0.03. The EBEX instrument employs a 1.5 meter Gregorian-type telescope giving 8 arcminute resolution. Three frequency bands at 150, 250 and 420 GHz provide strong leverage against polarized dust foreground. Systematic errors are controlled by modulating the input polarization with a continuously rotating achromatic half wave plate (AHWP). Signal is detected in 1462 independent polarimeters distributed over two focal planes such that both polarization states are detected simultaneously. A superconducting magnetic bearing (SMB) allows smooth rotation of the AHWP with low heat dissipation suitable for a long duration balloon flight. The detectors are read out with a frequency domain multiplexing SQUID system.

  8. Birefringence, CMB polarization, and magnetized B-mode

    SciTech Connect

    Giovannini, Massimo; Kunze, Kerstin E.

    2009-04-15

    Even in the absence of a sizable tensor contribution, a B-mode polarization can be generated because of the competition between a pseudoscalar background and predecoupling magnetic fields. By investigating the dispersion relations of a magnetoactive plasma supplemented by a pseudoscalar interaction, the total B-mode polarization is shown to depend not only upon the plasma and Larmor frequencies but also on the pseudoscalar rotation rate. If the (angular) frequency channels of a given experiment are larger than the pseudoscalar rotation rate, the only possible source of (frequency-dependent) B-mode autocorrelations must be attributed to Faraday rotation. In the opposite case the pseudoscalar contribution dominates and the total rate becomes, in practice, frequency independent. The B-mode cross correlations can be used, under certain conditions, to break the degeneracy by disentangling the two birefringent contributions.

  9. CMB polarization systematics, cosmological birefringence, and the gravitational waves background

    SciTech Connect

    Pagano, Luca; Bernardis, Paolo de; Gubitosi, Giulia; Masi, Silvia; Melchiorri, Alessandro; Piacentini, Francesco; De Troia, Grazia; Natoli, Paolo; Polenta, Gianluca

    2009-08-15

    Cosmic microwave background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several nonstandard, symmetry breaking theories of electrodynamics that allow for in vacuo rotation of the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the cosmic microwave background may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle {alpha}=-4.3 deg. {+-}4.1 deg. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then 1 deg. for Planck and 0.2 deg. for the Experimental Probe of Inflationary Cosmology, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a gravitational waves background.

  10. Excess B-modes extracted from the Planck polarization maps

    NASA Astrophysics Data System (ADS)

    Nørgaard-Nielsen, H. U.

    2016-07-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) from mm/submm observations is the pollution from the main Galactic components: synchrotron, free-free and thermal dust emission. The feasibility of using simple neural networks to extract CMB has been demonstrated on both temperature and polarization data obtained by the WMAP satellite. The main goal of this paper is to demonstrate the feasibility of neural networks for extracting the CMB signal from the Planck polarization data with high precision. Both auto-correlation and cross-correlation power spectra within a mask covering about 63 % of the sky have been used together with a ``high pass filter'' in order to minimize the influence of the remaining systematic errors in the Planck Q and U maps. Using the Planck 2015 released polarization maps, a BB power spectrum have been extracted by Multilayer Perceptron neural networks. This spectrum contains a bright feature with signal to noise ratios ≃ 4.5 within 200 ≤ l ≤ 250. The spectrum is significantly brighter than the BICEP2 2015 spectrum, with a spectral behaviour quite different from the ``canonical'' models (weak lensing plus B-modes spectra with different tensor to scalar ratios). The feasibility of the neural network to remove the residual systematics from the available Planck polarization data to a high level has been demonstrated.

  11. CMB and random flights: temperature and polarization in position space

    SciTech Connect

    Reimberg, Paulo H.F.; Abramo, L. Raul E-mail: abramo@fma.if.usp.br

    2013-06-01

    The fluctuations in the temperature and polarization of the cosmic microwave background are described by a hierarchy of Boltzmann equations. In its integral form, this Boltzmann hierarchy can be converted from the usual Fourier-space base into a position-space and causal description. We show that probability densities for random flights play a key role in this description. The integral system can be treated as a perturbative series in the number of steps of the random flights, and the properties of random flight probabilities impose constraints on the domains of dependence. We show that, as a result of these domains, a Fourier-Bessel decomposition can be employed in order to calculate the random flight probability densities. We also illustrate how the H-theorem applies to the cosmic microwave background: by using analytical formulae for the asymptotic limits of these probability densities, we show that, as the photon distribution approaches a state of equilibrium, both the temperature anisotropies and the net polarization must vanish.

  12. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    SciTech Connect

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha E-mail: luca.pagano@roma1.infn.it E-mail: alessandro.melchiorri@roma1.infn.it

    2009-08-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10{sup −4} (PLANCK), 6.1 × 10{sup −3} (Spider), and 1.0 × 10{sup −5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10{sup −6}.

  13. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  14. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Stiehl, gregory M.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  15. Constraints on standard and non-standard early universe models from CMB B-mode polarization

    SciTech Connect

    Ma, Yin-Zhe; Brown, Michael L.; Zhao, Wen E-mail: Wen.Zhao@astro.cf.ac.uk

    2010-10-01

    We investigate the observational signatures of three models of the early Universe in the B-mode polarization of the Cosmic Microwave Background (CMB) radiation. In addition to the standard single field inflationary model, we also consider the constraints obtainable on the loop quantum cosmology model (from Loop Quantum Gravity) and on cosmic strings, expected to be copiously produced during the latter stages of Brane inflation. We first examine the observational features of the three models, and then use current B-mode polarization data from the BICEP and QUaD experiments to constrain their parameters. We also examine the detectability of the primordial B-mode signal predicted by these models and forecast the parameter constraints achievable with future CMB polarization experiments. We find that: (a) since B-mode polarization measurements are mostly unaffected by parameter degeneracies, they provide the cleanest probe of these early Universe models; (b) using the BICEP and QUaD data we obtain the following parameter constraints: r = 0.02{sup +0.31}{sub −0.26} (1σ for the tensor-to-scalar ratio in the single field inflationary model); m < 1.36 × 10{sup −8}M{sub pl} and k{sub *} < 2.43 × 10{sup −4} Mpc{sup −1} (1σ for the mass and scale parameters in the loop quantum cosmology model); and Gμ < 5.77 × 10{sup −7} (1σ for the cosmic string tension); (c) future CMB observations (both satellite missions and forthcoming sub-orbital experiments) will provide much more rigorous tests of these early Universe models.

  16. Efficient decomposition of cosmic microwave background polarization maps into pure E, pure B, and ambiguous components

    SciTech Connect

    Bunn, Emory F.

    2011-04-15

    Separation of the B component of a cosmic microwave background (CMB) polarization map from the much larger E component is an essential step in CMB polarimetry. For a map with incomplete sky coverage, this separation is necessarily hampered by the presence of ambiguous modes which could be either E or B modes. I present an efficient pixel-space algorithm for removing the ambiguous modes and separating the map into pure E and B components. The method, which works for arbitrary geometries, does not involve generating a complete basis of such modes and scales the cube of the number of pixels on the boundary of the map.

  17. A special kind of local structure in the CMB intensity maps: duel peak structure

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Ti-Pei

    2009-03-01

    We study the local structure of Cosmic Microwave Background (CMB) temperature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less 'similar spots', and the temperature peaks or valleys will be less significant. The presented 'similar spots' have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.

  18. Impact of reionization on CMB polarization tests of slow-roll inflation

    NASA Astrophysics Data System (ADS)

    Mortonson, Michael J.; Hu, Wayne

    2008-02-01

    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision.

  19. Comparing and combining the Saskatoon, QMAP, and COBE CMB maps

    SciTech Connect

    Xu, Yongzhong; Tegmark, Max; de Oliveira-Costa, Angelica; Devlin, Mark J.; Herbig, Thomas; Miller, Amber D.; Netterfield, C. Barth; Page, Lyman

    2001-05-15

    We present a method for comparing and combining maps with different resolutions and beam shapes, and apply it to the Saskatoon, QMAP, and COBE-DMR data sets. Although the Saskatoon and QMAP maps detect signals at the 21{sigma} and 40{sigma} levels, respectively, their difference is consistent with pure noise, placing strong limits on possible systematic errors. In particular, we obtain quantitative upper limits on relative calibration and pointing errors. Splitting the combined data by frequency shows similar consistency between the Ka and Q bands, placing limits on foreground contamination. The visual agreement between the maps is equally striking. Our combined QMAP+Saskatoon map, nicknamed QMASK, is publicly available on the web together with its 6495x6495 noise covariance matrix. This thoroughly tested data set covers a large enough area (648 square degrees -- currently the largest degree-scale map available) to allow a statistical comparison with COBE-DMR, showing good agreement.

  20. VizieR Online Data Catalog: CMB intensity map from WMAP and Planck PR2 data (Bobin+, 2016)

    NASA Astrophysics Data System (ADS)

    Bobin, J.; Sureau, F.; Starck, J.-L.

    2016-05-01

    This paper presents a novel estimation of the CMB map reconstructed from the Planck 2015 data (PR2) and the WMAP nine-year data (Bennett et al., 2013ApJS..208...20B), which updates the CMB map we published in (Bobin et al., 2014A&A...563A.105B). This new map is based on the sparse component separation method L-GMCA (Bobin et al., 2013A&A...550A..73B). Additionally, the map benefits from the latest advances in this field (Bobin et al., 2015, IEEE Transactions on Signal Processing, 63, 1199), which allows us to accurately discriminate between correlated components. In this update to our previous work, we show that this new map presents significant improvements with respect to the available CMB map estimates. (3 data files).

  1. Semi-blind Bayesian inference of CMB map and power spectrum

    NASA Astrophysics Data System (ADS)

    Vansyngel, Flavien; Wandelt, Benjamin D.; Cardoso, Jean-François; Benabed, Karim

    2016-04-01

    We present a new blind formulation of the cosmic microwave background (CMB) inference problem. The approach relies on a phenomenological model of the multifrequency microwave sky without the need for physical models of the individual components. For all-sky and high resolution data, it unifies parts of the analysis that had previously been treated separately such as component separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, spectral mismatch independent component analysis (SMICA), and internal linear combination (ILC), and discuss possible future extensions.

  2. Non-Gaussian extrema counts for CMB maps

    SciTech Connect

    Pogosyan, Dmitri; Pichon, Christophe; Gay, Christophe

    2011-10-15

    In the context of the geometrical analysis of weakly non-Gaussian cosmic microwave background maps, the 2D differential extrema counts as functions of the excursion set threshold is derived from the full moments expansion of the joint probability distribution of an isotropic random field, its gradient, and invariants of the Hessian. Analytic expressions for these counts are given to second order in the non-Gaussian correction, while a Monte Carlo method to compute them to arbitrary order is presented. Matching count statistics to these estimators is illustrated on fiducial non-Gaussian Planck data.

  3. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  4. Analytic spectra of CMB anisotropies and polarization generated by scalar perturbations in synchronous gauge

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Zhang, Y.

    2012-05-01

    The temperature anisotropies and polarization of the cosmic microwave background (CMB) radiation not only serve as indispensable cosmological probes, but also provide a unique channel to detect relic gravitational waves (RGW) at very long wavelengths. Analytical studies of the anisotropies and polarization improve our understanding of various cosmic processes and help to separate the contribution of RGW from that of density perturbations. We present a detailed analytical calculation of CMB temperature anisotropies αk and polarization βk generated by scalar metric perturbations in synchronous gauge, parallel to our previous work with RGW as a generating source. This is realized primarily by an analytic time integration of Boltzmann’s equation, yielding the closed forms of αk and βk. Approximations, such as the tight-coupling approximation for photons a priori to the recombination and the long-wavelength limit for scalar perturbations, are used. The residual gauge modes in scalar perturbations are analyzed and a proper joining condition of scalar perturbations at the radiation-matter equality is chosen, ensuring the continuity of energy perturbation. The resulting analytic expressions of the multipole moments of polarization aEl and of temperature anisotropies aTl are explicit functions of the scalar perturbations, recombination time, recombination width, photon-free streaming damping factor, baryon fraction, initial amplitude, primordial scalar spectral index and the running index. These results show that a longer recombination width yields higher amplitudes of polarization on large scales and more damping on small scales, and that a late recombination time shifts the peaks of C^{XX^{\\prime }}_l to larger angular scales. Calculations show that aEl is generated in the presence of the quadrupole α2 of temperature anisotropies via scattering, both having similar structures and being smaller than the total aTl, which consists of the contributions from the

  5. Mapping submillimetre polarization with BLASTPol

    NASA Astrophysics Data System (ADS)

    Benton, Steven James

    BLASTPol observes the linearly polarized emission from interstellar dust. Dust polarization traces magnetic fields, and submillimetre wavelengths can see into the dense molecular clouds in which stars are born. With this measurement, BLASTPol can help resolve long-standing questions about the role of magnetic fields in the beginning of star formation. BLASTPol is a 1.8 m telescope with 288 Herschel/SPIRE-heritage bolometric detectors at 250 μm, 350 μm, and 500 μm. Polarimetric capability was added with photolithographed grids and a stepped half-wave plate. This work outlines the instrument, with a focus on the BLASTbus electronics system for detector readout, telescope attitude control, and cryogenic housekeeping. In December 2010 and in December 2012, BLASTPol had two long duration balloon flights. An improved map making procedure has been used for reducing the 2012 dataset to maps of the polarized sky. The overall data analysis procedure is described, along with details of the map maker characterization. Finally, maps are presented for the seven targets observed during the 2012 flight. The 14 square degree map of the Vela C giant molecular cloud is of particularly high quality and will be used in several upcoming studies of dust physics and star formation.

  6. Mapping Submillimetre Polarization with BLASTPol

    NASA Astrophysics Data System (ADS)

    Benton, Steven James

    The Balloon-borne Large Aperture Submillimetre Telescope for Polarimetery (BLASTPol) observes the linearly polarized emission from interstellar dust. Dust polarization traces magnetic fields, and submillimetre wavelengths can see into the dense molecular clouds in which stars are born. With this measurement, BLASTPol can help resolve long-standing questions about the role of magnetic fields in the beginning of star formation. BLASTPol is a 1.8m telescope with 288 Herschel/SPIRE-heritage bolometric detectors at 250 mum, 350 mum, and 500 mum. Polarimetric capability was added with photolithographed grids and a stepped half-wave plate. This work outlines the instrument, with a focus on the BLASTbus electronics system for detector readout, telescope attitude control, and cryogenic housekeeping. In December 2010 and in December 2012, BLASTPol had two long duration balloon flights. An improved map making procedure has been used for reducing the 2012 dataset to maps of the polarized sky. The overall data analysis procedure is described, along with details of the map maker characterization. Finally, maps are presented for the seven targets observed during the 2012 flight. The 14 square degree map of the Vela C giant molecular cloud is of particularly high quality and will be used in several upcoming studies of dust physics and star formation.

  7. CMB lensing power spectrum biases from galaxies and clusters using high-angular resolution temperature maps

    SciTech Connect

    Van Engelen, A.; Sehgal, N.; Bhattacharya, S.; Holder, G. P.; Zahn, O.; Nagai, D.

    2014-05-01

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to the Atacama Cosmology Telescope and the South Pole Telescope. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on σ{sub 8} and an uncertainty on the total neutrino mass of ∼50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M {sub vir} = 10{sup 14} M {sub ☉}. To achieve such percent level bias, we find that only modes up to a maximum multipole of l {sub max} ∼ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.

  8. The Parkes Galactic Meridian Survey: observations and CMB polarization foreground analysis

    NASA Astrophysics Data System (ADS)

    Carretti, E.; Haverkorn, M.; McConnell, D.; Bernardi, G.; McClure-Griffiths, N. M.; Cortiglioni, S.; Poppi, S.

    2010-07-01

    We present observations and cosmic microwave background (CMB) foreground analysis of the Parkes Galactic Meridian Survey, an investigation of the Galactic latitude behaviour of the polarized synchrotron emission at 2.3GHz with the Parkes Radio Telescope. The survey consists of a 5° wide strip along the Galactic meridian l = 254° extending from the Galactic plane to the South Galactic pole. We identify three zones distinguished by polarized emission properties: the disc, the halo and a transition region connecting them. The halo section lies at latitudes |b| > 40° and has weak and smooth polarized emission mostly at large scale with steep angular power spectra of median slope βmed ~ -2.6. The disc region covers the latitudes |b| < 20° and has a brighter, more complex emission dominated by the small scales with flatter spectra of median slope βmed = -1.8. The transition region has steep spectra as in the halo, but the emission increases towards the Galactic plane from halo to disc levels. The change of slope and emission structure at b ~ -20° is sudden, indicating a sharp disc-halo transition. The whole halo section is just one environment extended over 50° with very low emission which, once scaled to 70GHz, is equivalent to the CMB B-mode emission for a tensor-to-scalar perturbation power ratio rhalo = (3.3 +/- 0.4) × 10-3. Applying a conservative cleaning procedure, we estimate an r detection limit of δr ~ 2 × 10-3 at 70GHz (3σ confidence limit) and, assuming a dust polarization fraction of <12per cent, δr ~ 1 × 10-2 at 150GHz. The 150-GHz limit matches the goals of planned sub-orbital experiments, which can therefore be conducted at this high frequency. The 70-GHz limit is close to the goal of proposed next-generation space missions, which thus might not strictly require space-based platforms.

  9. MAXIMA: Observations of CMB anisotropy

    NASA Astrophysics Data System (ADS)

    Rabii, Bahman

    This document describes the Millimeter Anisotropy eXperiment IMaging Array (MAXIMA), a balloon-borne experiment measuring the temperature anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 10 ' to 5°. MAXIMA data are used to discriminate between cosmological models and to determine cosmological parameters. MAXIMA maps the CMB using 16 bolometric detectors observing in spectral bands centered at 150 GHz, 230 GHz, and 410 GHz, with 10 ' resolution at all frequencies. The combined receiver sensitivity to CMB anisotropy is ˜40 μK sec , the best reported by any CMB experiment. Systematic errors are rejected by using four uncorrelated spatial modulations, multiple independent CMB observations, heavily baffled optics, and strong spectral discrimination. Observation patterns are well cross-linked and optimized for the extraction of cosmological information. Pointing is reconstructed to an accuracy of 1'. Absolute calibration uncertainty of 3 4% is the best achieved by any sub-orbital CMB experiment. Two MAXIMA flights were launched from the National Scientific Balloon Facility in Palestine Texas in 1998 and 1999. During a total of 8.5 hours of CMB observations, 300 deg2 of the sky were mapped, with ˜50 deg2 overlap between the two flights. The observed region was selected for low foreground emission and post-flight data analysis confirms that foreground contamination is negligible. Cosmological results are presented from the 1998 flight, MAXIMA-I , in which 122 deg2 of sky were mapped over 3 hours. A maximum likelihood map with 3' pixelization is obtained from the three most sensitive and best tested detectors. The angular power spectrum derived from this map shows a narrow peak near ℓ = 200, and is consistent with inflationary Big Bang models. Within these models, cosmological parameters are estimated, including total density Ωtot = 0.9+0.18-0.16 , baryon density Ωbh2 = 0.033 ± 0.013, and power spectrum normalization C

  10. Cross-correlation of Planck CMB lensing and CFHTLenS galaxy weak lensing maps

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Hill, J. Colin

    2015-09-01

    We cross-correlate cosmic microwave background (CMB) lensing and galaxy weak lensing maps using the Planck 2013 and 2015 data and the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). This measurement probes large-scale structure at intermediate redshifts ≈0.9 , between the high- and low-redshift peaks of the CMB and CFHTLenS lensing kernels, respectively. Using the noise properties of these data sets and standard Planck 2015 Λ CDM cosmological parameters, we forecast a signal-to-noise ratio ≈4.6 for the cross-correlation. We find that the noise level of our actual measurement agrees well with this estimate, but the amplitude of the signal lies well below the theoretical prediction. The best-fit amplitudes of our measured cross-correlations are A2013=0.48 ±0.26 and A2015=0.44 ±0.22 , using the 2013 and 2015 Planck CMB lensing maps, respectively, where A =1 corresponds to the fiducial Planck 2015 Λ CDM prediction. Due to the low measured amplitude, the detection significance is moderate (≈2 σ ) and the data are in tension with the theoretical prediction (≈2 - 2.5 σ ) . The tension is reduced somewhat when compared to predictions using WMAP9 parameters, for which we find A2013=0.56 ±0.30 and A2015=0.52 ±0.26 . We consider various systematic effects, finding that photometric redshift uncertainties, contamination by intrinsic alignments, and effects due to the masking of galaxy clusters in the Planck 2015 CMB lensing reconstruction are able to help resolve the tension at a significant level (≈10 % each). An overall multiplicative bias in the CFHTLenS shear data could also play a role, which can be tested with existing data. We close with forecasts for measurements of the CMB lensing—galaxy lensing cross-correlation using ongoing and future weak lensing surveys, which will definitively test the significance of the tension in our results with respect to Λ CDM .

  11. Testing statistics of the CMB B -mode polarization toward unambiguously establishing quantum fluctuation of the vacuum

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Hikage, Chiaki; Namba, Ryo; Namikawa, Toshiya; Hazumi, Masashi

    2016-08-01

    The B -mode polarization in the cosmic microwave background (CMB) anisotropies at large angular scales provides compelling evidence for the primordial gravitational waves (GWs). It is often stated that a discovery of the GWs establishes the quantum fluctuation of vacuum during the cosmic inflation. Since the GWs could also be generated by source fields, however, we need to check if a sizable signal exists due to such source fields before reaching a firm conclusion when the B mode is discovered. Source fields of particular types can generate non-Gaussianity (NG) in the GWs. Testing statistics of the B mode is a powerful way of detecting such NG. As a concrete example, we show a model in which gauge field sources chiral GWs via a pseudoscalar coupling and forecast the detection significance at the future CMB satellite LiteBIRD. Effects of residual foregrounds and lensing B mode are both taken into account. We find the B -mode bispectrum "BBB" is in particular sensitive to the source-field NG, which is detectable at LiteBIRD with a >3 σ significance. Therefore the search for the BBB will be indispensable toward unambiguously establishing quantum fluctuation of vacuum when the B mode is discovered. We also introduced the Minkowski functional to detect the NGs. While we find that the Minkowski functional is less efficient than the harmonic-space bispectrum estimator, it still serves as a useful cross-check. Finally, we also discuss the possibility of extracting clean information on parity violation of GWs and new types of parity-violating observables induced by lensing.

  12. Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Mitra, Sanjit; Rotti, Aditya; Pant, Nidhi; Souradeep, Tarun

    2016-06-01

    Statistical isotropy (SI) of cosmic microwave background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmological ramification, it is important to recognise their possible origin in systematic effects of observations. The WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients and . Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of "throwing the baby out with the bathwater".

  13. Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

    SciTech Connect

    Carbone, Carmelita; Baldi, Marco; Baccigalupi, Carlo E-mail: marco.baldi5@unibo.it E-mail: bacci@sissa.it

    2013-09-01

    We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to

  14. Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators

    NASA Astrophysics Data System (ADS)

    Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.; Moseley, S. H.; Rostem, K.; Switzer, E. R.; Watts, D. J.

    2016-02-01

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.

  15. Lensing-induced morphology changes in CMB temperature maps in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, D.; Hu, B.; Matsubara, T.; Coles, P.; Heavens, A.

    2016-04-01

    Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f(R) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise for detection of lensing-induced morphology changes, reaches Script O(103) for the future planned CMB polarization mission COrE+. Assuming foreground removal is possible to lmax=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.

  16. Searching for hidden mirror symmetries in CMB fluctuations from WMAP 7 year maps

    SciTech Connect

    Finelli, Fabio; Gruppuso, Alessandro; Starobinsky, Alexey A. E-mail: gruppuso@iasfbo.inaf.it E-mail: alstar@landau.ac.ru

    2012-07-01

    We search for hidden mirror symmetries at large angular scales in the WMAP 7 year Internal Linear Combination map of CMB temperature anisotropies using global pixel based estimators introduced for this aim. Two different axes are found for which the CMB intensity pattern is anomalously symmetric (or anti-symmetric) under reflection with respect to orthogonal planes at the 99.84(99.96)% CL (confidence level), if compared to a result for an arbitrary axis in simulations without the symmetry. We have verified that our results are robust to the introduction of the galactic mask. The direction of such axes is close to the CMB kinematic dipole and nearly orthogonal to the ecliptic plane, respectively. If instead the real data are compared to those in simulations taken with respect to planes for which the maximal mirror symmetry is generated by chance, the confidence level decreases to 92.39(76.65)%. But when the effect in question translates into the anomalous alignment between normals to planes of maximal mirror (anti)-symmetry and these natural axes mentioned. We also introduce the representation of the above estimators in the harmonic domain, confirming the results obtained in the pixel one. The symmetry anomaly is shown to be almost entirely due to low multipoles, so it may have a cosmological and even primordial origin. Contrary, the anti-symmetry one is mainly due to intermediate multipoles that probably suggests its non-fundamental nature. We have demonstrated that these anomalies are not connected to the known issue of the low variance in WMAP observations and we have checked that axially symmetric parts of these anomalies are small, so that the axes are not the symmetry ones.

  17. From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Smoot, George F.; Zahn, Oliver

    2009-07-15

    We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the {approx}10% level, that can be improved to {approx}3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the {approx}1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.

  18. North-South non-Gaussian asymmetry in Planck CMB maps

    SciTech Connect

    Bernui, A.; Oliveira, A.F.; Pereira, T.S. E-mail: adhimar@unifei.edu.br

    2014-10-01

    We report the results of a statistical analysis performed with the four foreground-cleaned Planck maps by means of a suitably defined local-variance estimator. Our analysis shows a clear dipolar structure in Planck's variance map pointing in the direction (l,b) ≅ (220°,-32°), thus consistent with the North-South asymmetry phenomenon. Surprisingly, and contrary to previous findings, removing the CMB quadrupole and octopole makes the asymmetry stronger. Our results show a maximal statistical significance, of 98.1% CL, in the scales ranging from ℓ=4 to ℓ=500. Additionally, through exhaustive analyses of the four foreground-cleaned and individual frequency Planck maps, we find unlikely that residual foregrounds could be causing this dipole variance asymmetry. Moreover, we find that the dipole gets lower amplitudes for larger masks, evidencing that most of the contribution to the variance dipole comes from a region near the galactic plane. Finally, our results are robust against different foreground cleaning procedures, different Planck masks, pixelization parameters, and the addition of inhomogeneous real noise.

  19. GroundBIRD: an experiment for CMB polarization measurements at a large angular scale from the ground

    NASA Astrophysics Data System (ADS)

    Tajima, Osamu; Choi, Jhoon; Hazumi, Masashi; Ishitsuka, Hikaru; Kawai, Masanori; Yoshida, Mitsuhiro

    2012-09-01

    Odd-parity patterns in the cosmic microwave background (CMB) polarization, B-modes, could provide important cosmological information. Detection of the primordial B-mode power at a large angular scale would be a smoking gun signature of the inflationary universe. In particular, detecting a reionization bump (at a multipole of <= 10) should be a clear evidence of it. GroundBIRD is designed to detect the B-mode signal at this large angular scale from the ground. We will use superconducting detector arrays with small telescope that will also be cooled down to 4K. Therefore, the basic design can be extended to a satellite experiment. GroundBIRD employs a high-speed (20 rpm) rotation scan instead of the usual left-right azimuthal scan; this allows us to maintain a high-speed scan without any deceleration, resulting in a significant expansion of the scan range to 60° without any effect of the detector 1/f noise. Our target is measuring the CMB polarization power in a multipole (l) range of 6 <= l <= 300. We plan to start commissioning the instruments in Japan in early 2014; they will then be moved to the Atacama Desert in Chile for scientific observations.

  20. Berkeley CMB Experiments

    NASA Astrophysics Data System (ADS)

    Richards, P. L.

    This paper describes the status of four CMB cosmology experiments which are currently being developed by the Berkeley group. These include the APEXSZ and South Pole Telescope searches for clusters of galaxies using the Sunyaev-Zeldovich effect and the Polar Bear and EBEX CMB polarization anisotropy experiments. These experiments exploit new detector technologies with Superconducting TES bolometers and frequency domain output multiplexing, which has been developed at Berkeley.

  1. Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Migliaccio, M.; Natoli, P.; De Troia, G.; Hikage, C.; Komatsu, E.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Contaldi, C. R.; Crill, B. P.; de Bernardis, P.; de Gasperis, G.; de Oliveira-Costa, A.; Di Stefano, G.; Hivon, E.; Kisner, T. S.; Jones, W. C.; Lange, A. E.; Masi, S.; Mauskopf, P. D.; MacTavish, C. J.; Melchiorri, A.; Montroy, T. E.; Netterfield, C. B.; Pascale, E.; Piacentini, F.; Polenta, G.; Ricciardi, S.; Romeo, G.; Ruhl, J. E.; Tegmark, M.; Veneziani, M.; Vittorio, N.

    2009-10-01

    Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [Hikage C., Komatsu E., & Matsubara T., 2006, ApJ, 653, 11] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f as -1020

  2. Fabrication of large dual-polarized multichroic TES bolometer arrays for CMB measurements with the SPT-3G camera

    NASA Astrophysics Data System (ADS)

    Posada, C. M.; Ade, P. A. R.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Bleem, L. E.; Benson, B. A.; Byrum, K.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Ciocys, S. T.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Czaplewski, D.; Ding, J.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Halverson, N. W.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hubmayr, J.; Irwin, K. D.; Jeong, O.; Keisler, R.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Lendinez, S.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Myers, M.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Ruhl, J. E.; Saliwanchik, B. R.; Smecher, G.; Sayre, J. T.; Shirokoff, E.; Stan, L.; Stark, A. A.; Sobrin, J.; Story, K.; Suzuki, A.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Ziegler, K. E.

    2015-09-01

    This work presents the procedures used at Argonne National Laboratory to fabricate large arrays of multichroic transition-edge sensor (TES) bolometers for cosmic microwave background (CMB) measurements. These detectors will be assembled into the focal plane for the SPT-3G camera, the third generation CMB camera to be installed in the South Pole Telescope. The complete SPT-3G camera will have approximately 2690 pixels, for a total of 16 140 TES bolometric detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a Nb microstrip line. In-line filters are used to define the different bands before the millimeter-wavelength signal is fed to the respective Ti/Au TES bolometers. There are six TES bolometer detectors per pixel, which allow for measurements of three band-passes (95, 150 and 220 GHz) and two polarizations. The steps involved in the monolithic fabrication of these detector arrays are presented here in detail. Patterns are defined using a combination of stepper and contact lithography. The misalignment between layers is kept below 200 nm. The overall fabrication involves a total of 16 processes, including reactive and magnetron sputtering, reactive ion etching, inductively coupled plasma etching and chemical etching.

  3. The Kullback-Leibler divergence as an estimator of the statistical properties of CMB maps

    NASA Astrophysics Data System (ADS)

    Ben-David, Assaf; Liu, Hao; Jackson, Andrew D.

    2015-06-01

    The identification of unsubtracted foreground residuals in the cosmic microwave background maps on large scales is of crucial importance for the analysis of polarization signals. These residuals add a non-Gaussian contribution to the data. We propose the Kullback-Leibler (KL) divergence as an effective, non-parametric test on the one-point probability distribution function of the data. With motivation in information theory, the KL divergence takes into account the entire range of the distribution and is highly non-local. We demonstrate its use by analyzing the large scales of the Planck 2013 SMICA temperature fluctuation map and find it consistent with the expected distribution at a level of 6%. Comparing the results to those obtained using the more popular Kolmogorov-Smirnov test, we find the two methods to be in general agreement.

  4. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    SciTech Connect

    Sunyaev, Rashid A.; Khatri, Rishi E-mail: khatri@mpa-garching.mpg.de

    2013-03-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.

  5. Bolometeric detector arrays for CMB polarimetry

    NASA Technical Reports Server (NTRS)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Rossinot, P.; Sterb, J.; Vayonakis, A.; Wang, G.; Yun, M.; Zmuidzinas, J.

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  6. The Signature of Patchy Reionization in the Polarization Anisotropy of the CMB

    SciTech Connect

    Dore, Olivier; Holder, Gil; Alvarez, Marcelo; Iliev, Ilian T.; Mellema, Garrelt; Pen, Ue-Li; Shapiro, Paul R.; /Texas U., Astron. Dept.

    2007-05-16

    The inhomogeneous ionization state of the universe when the first sources of ionizing radiation appeared should lead to anisotropies in the polarization of the cosmic microwave background. We use cosmological simulations of the process by which the first sources ionized the intergalactic medium to study the induced polarization anisotropies. We find that the polarization anisotropies have rms of order {approx} 0.01 {mu}K, and local peak values of {approx} 0.1 {mu}K, smaller than those due to gravitational lensing on small scales. The polarization direction is highly coherent over degree scales. This directional coherence is not expected from either primary anisotropy or gravitational lensing effects, making the largest signals due to inhomogeneous ionization relatively easy to isolate, should experiments achieve the necessary very low noise levels.

  7. Signature of patchy reionization in the polarization anisotropy of the CMB

    SciTech Connect

    Dore, Olivier; Iliev, Ilian T.; Pen, Ue-Li; Holder, Gil; Alvarez, Marcelo; Mellema, Garrelt; Shapiro, Paul R.

    2007-08-15

    The inhomogeneous ionization state of the Universe when the first sources of ionizing radiation appeared should lead to anisotropies in the polarization of the cosmic microwave background. We use cosmological simulations of the process by which the first sources ionized the intergalactic medium to study the induced polarization anisotropies. We find that the polarization anisotropies have rms of order {approx}0.01 {mu}K, and local peak values of {approx}0.1 {mu}K, smaller than those due to gravitational lensing on small scales. The polarization direction is highly coherent over degree scales. This directional coherence is not expected from either primary anisotropy or gravitational lensing effects, making the largest signals due to inhomogeneous ionization relatively easy to isolate, should experiments achieve the necessary very low noise levels.

  8. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  9. B -mode polarization of the CMB and the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Mohammadi, Rohoollah; Khodagholizadeh, Jafar; Sadegh, M.; Xue, She-Sheng

    2016-06-01

    It is known that in contrast with the E -mode polarization the B -mode polarization of the cosmic microwave background cannot be generated by the Compton scattering in the case of the scalar mode of metric perturbation. However, it is possible to generate the B mode by the Compton scattering in the case of the tensor mode of metric perturbation. For this reason, the ratio of tensor to scalar modes of metric perturbation (r ˜CB l/CE l ) is estimated by comparing the B -mode power spectrum with the E mode at least for small l . We study the cosmic microwave background polarization, especially the B mode due to the weak interaction of the cosmic neutrino background and cosmic microwave background, in addition to the Compton scattering in both cases of scalar and tensor metric perturbations. It is shown that the power spectrum CB l of the B -mode polarization receives some contributions from scalar and tensor modes, which have effects on the value of the r parameter. We also show that the B -mode polarization power spectrum can be used as an indirect probe into the cosmic neutrino background.

  10. CMB polarization power spectra contributions from a network of cosmic strings

    SciTech Connect

    Bevis, Neil; Hindmarsh, Mark; Urrestilla, Jon; Kunz, Martin

    2007-08-15

    We present the first calculation of the possible (local) cosmic string contribution to the cosmic microwave background polarization spectra from simulations of a string network (rather than a stochastic collection of unconnected string segments). We use field-theory simulations of the Abelian Higgs model to represent local U(1) strings, including their radiative decay and microphysics. Relative to previous estimates, our calculations show a shift in power to larger angular scales, making the chance of a future cosmic string detection from the B-mode polarization slightly greater. We explore a future ground-based polarization detector, taking the CLOVER project as our example. In the null hypothesis (that cosmic strings make a zero contribution) we find that CLOVER should limit the string tension {mu} to G{mu}<0.12x10{sup -6} (where G is the gravitational constant), above which it is likely that a detection would be possible.

  11. Last scattering, relic gravitons, and the circular polarization of the CMB

    SciTech Connect

    Giovannini, Massimo

    2010-06-15

    The tensor contribution to the V-mode polarization induced by a magnetized plasma at last scattering vanishes exactly when the magnetic field is parallel to the direction of propagation of the gravitational wave. For propagation perpendicular to the magnetic field orientation the effect depends on the ratio between the Larmor frequency of the electrons and the observational frequency. If the source term of the V-mode equation is averaged over the directions of the magnetic field, the circular polarization evolves independently from all the other Stokes parameters.

  12. A consistency relation for the CMB B-mode polarization in the squeezed limit

    SciTech Connect

    Kehagias, A.; Dizgah, A. Moradinezhad; Noreña, J.; Perrier, H.; Riotto, A. E-mail: Azadeh.Moradinezhad@unige.ch E-mail: Hideki.Perrier@unige.ch

    2014-10-01

    A large-scale temperature perturbation has a non-zero correlation with the power spectrum of B-modes of cosmological origin on short scales while the corresponding correlation is expected to be zero for B-modes sourced by galactic foregrounds. We thus compute the squeezed limit of a three-point function in which one correlates the temperature fluctuations at large scales with two polarization modes at small scales. In the particular case of the B-mode polarization we obtain a relation that connects the squeezed limit of the TBB three-point function with the cosmological B-mode power spectrum, which can be used as a consistency relation. This could in principle help to distinguish a primordial signal from that induced by inter-stellar dust.

  13. Polar Maps of Thermal and Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show views of the polar regions of Mars in thermal neutrons (top) and epithermal neutrons (bottom). In these maps, deep blue indicates a low amount of neutrons, and red indicates a high amount. Thermal neutrons are sensitive to the presence of hydrogen and the presence of carbon dioxide, in this case 'dry ice' frost. The red area in the upper right map indicates that about one meter (three feet) of carbon dioxide frost covers the surface around the north pole, as it does every Mars winter in the polar regions. An enhancement of thermal neutrons close to the south pole, seen as a light green color on the upper left map, indicates the presence of residual carbon dioxide in the south polar cap, even though the annual frost dissipated from that region during southern summer. Soil enriched with hydrogen is indicated by the deep blue colors on the epithermal maps (bottom), showing a low intensity of epithermal neutrons. The deep blue areas in the polar regions are believed to contain up to 50 percent water ice in the upper one meter (three feet) of the soil. The views shown here are of measurements made during the first three months of mapping using the neutron spectrometer instrument, part of the gamma ray spectrometer instrument suite. Topographic features are superimposed on the map for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime

  14. BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization

    NASA Astrophysics Data System (ADS)

    Ahmed, Z.; Amiri, M.; Benton, S. J.; Bock, J. J.; Bowens-Rubin, R.; Buder, I.; Bullock, E.; Connors, J.; Filippini, J. P.; Grayson, J. A.; Halpern, M.; Hilton, G. C.; Hristov, V. V.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kovac, J. M.; Kuo, C. L.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W.; Pryke, C.; Reintsema, C. D.; Richter, S.; Thompson, K. L.; Turner, A. D.; Vieregg, A. G.; Wu, W. L. K.; Yoon, K. W.

    2014-08-01

    Bicep3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of Bicep1, Bicep2 and the Keck Array experiments | it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, Bicep3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5x larger than a Bicep2/Keck Array receiver and faster optics (f=1:6 vs. f=2:4). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, Bicep3 will have survey speed comparable to Keck Array 150 GHz (2013), and will signifcantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the Bicep2 observation patch

  15. Detection of endometrial lesions by degree of linear polarization maps

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Fazleabas, Asgerally; Walsh, Joseph T.

    2010-02-01

    Endometriosis is one of the most common causes of chronic pelvic pain and infertility and is characterized by the presence of endometrial glands and stroma outside of the uterine cavity. A novel laparoscopic polarization imaging system was designed to detect endometriosis by imaging endometrial lesions. Linearly polarized light with varying incident polarization angles illuminated endometrial lesions. Degree of linear polarization image maps of endometrial lesions were constructed by using remitted polarized light. The image maps were compared with regular laparoscopy image. The degree of linear polarization map contributed to the detection of endometriosis by revealing structures inside the lesion. The utilization of rotating incident polarization angle (IPA) for the linearly polarized light provides extended understanding of endometrial lesions. The developed polarization system with varying IPA and the collected image maps could provide improved characterization of endometrial lesions via higher visibility of the structure of the lesions and thereby improve diagnosis of endometriosis.

  16. Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    SciTech Connect

    Chingangbam, Pravabati; Park, Changbom E-mail: cbp@kias.re.kr

    2009-12-01

    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g{sub NL}. The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g{sub NL} and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g{sub NL} > 0 and less of both for g{sub NL} < 0. The deviation increases linearly with g{sub NL} and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g{sub NL} that are clearly distinct from the quadratic order perturbations, encoded in the parameter f{sub NL}. Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g{sub NL} and f{sub NL} type non-Gaussianities.

  17. CMB component separation in the pixel domain

    SciTech Connect

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-15

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of 'homogeneous' subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum C{sub l} at l{<=}30 and provides results similar to WMAP for larger l. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the 'axis of evil' is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high l power spectrum.

  18. General parity-odd CMB bispectrum estimation

    SciTech Connect

    Shiraishi, Maresuke; Liguori, Michele; Fergusson, James R. E-mail: michele.liguori@pd.infn.it

    2014-05-01

    We develop a methodology for estimating parity-odd bispectra in the cosmic microwave background (CMB). This is achieved through the extension of the original separable modal methodology to parity-odd bispectrum domains (ℓ{sub 1}+ℓ{sub 2}+ℓ{sub 3} = odd). Through numerical tests of the parity-odd modal decomposition with some theoretical bispectrum templates, we verify that the parity-odd modal methodology can successfully reproduce the CMB bispectrum, without numerical instabilities. We also present simulated non-Gaussian maps produced by modal-decomposed parity-odd bispectra, and show the consistency with the exact results. Our new methodology is applicable to all types of parity-odd temperature and polarization bispectra.

  19. Astrophysical Uses Of Cmb Lensing

    NASA Astrophysics Data System (ADS)

    Das, Sudeep

    2009-01-01

    The future of Cosmic Microwave Background (CMB) research lies in exploiting the arcminute scale secondary anisotropies which encode information about the late time interaction of the CMB photons with the structure in the Universe. A specific form of such interaction is the gravitational lensing of the CMB - the main topic of this thesis. Upcoming experiments like ACT, SPT and PLANCK will measure these anisotropies with unprecedented resolution and sensitivity. In this thesis, we present new techniques to model and analyse such high resolution data and explore the implications of such measurements on Cosmology. First, we describe a novel method for simulating high resolution large sky lensed CMB maps. Maps simulated through this method will be instrumental in developing the detection and analysis techniques for CMB lensing. Second, we describe a new and efficient method for measuring the power spectrum of arcminute resolution CMB maps. At these resolutions, aliasing of power due to hard edges and point source masks become a serious problem. Our method efficiently remedies these problems and the reduces uncertainties in the final power spectrum estimate by several factors over those obtainable by the now standard methods. This technique will be also useful for estimating higher order statistics from the maps, like the ones related to the detection of CMB lensing and its cross-correlation with large scale structure. Next, we exemplify how such cross-correlations can be turned into Cosmological probes. We propose an estimator for cosmological distance ratios based on CMB and galaxy lensing and show that it can be measured to sufficient accuracy in future experiments to be Cosmologically useful. Finally, we show that CMB lensing can be used to constrain the void and the texture hypotheses that have been put forward for explaining the intriguing Cold Spot anomaly in the WMAP data.

  20. Simulation of Cosmic Microwave Background Polarization Fields for AMiBA Experiment

    NASA Astrophysics Data System (ADS)

    Park, Chan-Gyung; Park, Changbom

    2002-06-01

    We have made a topological study of cosmic microwave background (CMB) polarization maps by simulating the AMiBA experiment results. A ΛCDM CMB sky is adopted to make mock interferometric observations designed for the AMiBA experiment. CMB polarization fields are reconstructed from the AMiBA mock visibility data using the maximum entropy method. We have also considered effects of Galactic foregrounds on the CMB polarization fields. The genus statistic is calculated from the simulated Q and U polarization maps, where Q and U are Stokes parameters. Our study shows that the Galactic foreground emission, even at low Galactic latitude, is expected to have small effects on the CMB polarization field. Increasing survey area and integration time is essential to detect non-Gaussian signals of cosmological origin through genus measurement.

  1. Assimilative Mapping of Interhemispheric Polar Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Matsuo, T.; Richmond, A. D.; Knipp, D. J.; McGranaghan, R. M.

    2015-12-01

    The Earth's main magnetic field is asymmetric between hemispheres due to its non-dipolar component, leading to various hemispherical differences in the coupling among the solar wind, magnetosphere and ionosphere. Manifestation of the asymmetric coupling through different electrodynamic parameters reported in past studies is considerably diverse. To fill the gap in our current understanding, obtained so far by analyzing individual parameters separately and comparing statistical behaviors of the parameters, we quantify the degree of instantaneous inter-hemispheric imbalance of electromagnetic energy deposition (Poynting flux), field-aligned currents, and convection electric fields though global and self-consistent analysis of electrodynamic variables at both polar regions, by means of data assimilation. Inter-hemispheric assimilative maps of different high-latitude electrodynamical parameters are obtained from simultaneous analysis of multiple types of space-based and ground-based observations made available though the AMPERE, SuperDARN, SuperMAG and DMSP programs with rigorous consideration of the uncertainty associated with each observation.

  2. Astrophysical uses of CMB lensing

    NASA Astrophysics Data System (ADS)

    Das, Sudeep

    The future of Cosmic Microwave Background (CMB) research lies in exploiting the arcminute scale secondary anisotropies which encode information about the late time interaction of the CMB photons with the structure in the Universe. A specific form of such interaction is the gravitational lensing of the CMB photons by intervening matter--the main topic of this thesis. Upcoming experiments like the Atacama Cosmology Telescope (ACT) and PLANCK will measure these anisotropies with unprecedented resolution and sensitivity. In four separate papers, laid out as four chapters in this thesis, we present new techniques to model and analyze such high resolution data and explore the implications of such measurements on Cosmology, mainly in the context of CMB lensing. The first chapter describes a novel and accurate method for simulating high resolution lensed CMB maps by ray-tracing through a large scale structure simulation. This method does not adopt the flat sky approximation and retains information from large angular scales in the dark matter distribution. Maps simulated through this method will be instrumental in developing the detection and analysis techniques for CMB lensing in high resolution CMB experiments like ACT. In the second chapter, we describe a new and efficient method for measuring the power spectrum of arcminute resolution CMB maps. At these resolutions, the CMB power spectrum is extremely red and is prone to aliasing of power due to hard edges and point source masks. By combining two new techniques, namely, prewhitening and the adaptive multitaper method, we show that these problems can be efficiently remedied and the uncertainties in the final power spectrum estimate can be reduced by several factors over those obtainable by the now standard methods. These techniques will be also useful for estimating higher order statistics from the maps, like the ones related to the detection of CMB lensing and its cross-correlation with large scale structure tracers. In

  3. Recent Geologic Mapping Results for the Polar Regions of Mars

    NASA Technical Reports Server (NTRS)

    tanaka, K. L.; Kolb, E. J.

    2008-01-01

    The polar regions of Mars include the densest data coverage for the planet because of the polar orbits of MGS, ODY, and MEX. Because the geology of the polar plateaus has been among the most dynamic on the planet in recent geologic time, the data enable the most detailed and complex geologic investigations of any regions on Mars, superseding previous, even recent, mapping efforts [e.g., 1-3]. Geologic mapping at regional and local scales is revealing that the stratigraphy and modificational histories of polar materials by various processes are highly complex at both poles. Here, we describe some of our recent results in polar geologic mapping and how they address the geologic processes involved and implications for polar climate history.

  4. Mapping the southern polar cap with a balloon-borne millimeter-wave telescope

    NASA Astrophysics Data System (ADS)

    Crawford, Thomas Mcfarland

    2003-10-01

    TopHat is a balloon-borne millimeter-wave telescope designed to make a map of a 48°-diameter region centered on the South Celestial Pole. The instrument consists of telescope optics, radiometer, rotational drive system, sun/earth shield, attitude and thermal sensors, and support electronics mounted on top of a 28-million cubic foot balloon, with a support gondola hanging below. The five-channel, single- pixel radiometer sits at the focus of an on-axis Cassegrain telescope with a 1-meter primary aperture. The detectors are monolithic, ion-implanted silicon bolometers, cooled to 265 mK by a sorption-pumped helium- 3 fridge. The five frequency bands have effective centers of 175, 245, 400, 460, and 630 GHz. The two lowest- frequency bands are designed to be sensitive to the 2.7 K Cosmic Microwave Background (CMB), while the three highest bands are designed to monitor thermal emission from interstellar dust grains. Together with a modified Winston cone at the Cassegrain focus, the telescope optics define a beam designed to be steeper than gaussian with a full-width at half-maximum of 20', rendering TopHat in principle sensitive to fluctuations in the CMB from scales of less than a degree up to the diameter of the map (6 ≤ ℓ ≤ 600). TopHat was launched on 4 January 2001 from McMurdo Station, Antarctica as part of the NASA National Scientific Balloon Facility (NSBF) Polar Long-Duration Balloon program and observed for four sidereal days until cryogens were exhausted. An unexpected ˜5° tilt in the mounting platform at the top of the balloon resulted in large scan-synchronous instrumental signals which were not removable at the level necessary to make an internally consistent measurement of the CMB power spectrum. Minimum-variance maps of the data in all five channels have been made and used to measure the integrated flux from three regions in the Magellanic Clouds, using a flux analysis technique that minimizes the aforementioned instrumental contamination. When

  5. Geomorphologic Map of Titan's Polar Terrains

    NASA Astrophysics Data System (ADS)

    Birch, S. P. D.; Hayes, A. G.; Malaska, M. J.; Lopes, R. M. C.; Schoenfeld, A.; Williams, D. A.

    2016-06-01

    Titan's lakes and seas contain vast amounts of information regarding the history and evolution of Saturn's largest moon. To understand this landscape, we created a geomorphologic map, and then used our map to develop an evolutionary model.

  6. Amiba Observation of CMB Anisotropies

    NASA Astrophysics Data System (ADS)

    Ng, Kin-Wang

    2003-03-01

    The Array for Microwave Background Anisotropies (AMiBA), a 13-element dual-channel 85-105 GHz interferometer array with full polarization capabilities, is being built to search for high redshift clusters of galaxies via the Sunyaev-Zel'dovich effect as well as to probe the polarization properties of the cosmic microwave background (CMB). We discuss several important issues in the observation of the CMB anisotropies such as observing strategy, l space resolution and mosaicing, optimal estimation of the power spectra, and ground pickup removal.

  7. How accurately can suborbital experiments measure the CMB?

    SciTech Connect

    Oliveira-Costa, Angelica de; Tegmark, Max; Devlin, Mark J.; Page, Lyman; Miller, Amber D.; Netterfield, C. Barth; Xu Yongzhong

    2005-02-15

    Great efforts are currently being channeled into ground- and balloon-based CMB experiments, mainly to explore polarization and anisotropy on small angular scales. To optimize instrumental design and assess experimental prospects, it is important to understand in detail the atmosphere-related systematic errors that limit the science achievable with new instruments. As a step in this direction, we spatially compare the 648 square degree ground- and balloon-based QMASK map with the atmosphere-free WMAP map, finding beautiful agreement on all angular scales where both are sensitive. Although much work remains on quantifying atmospheric effects on CMB experiments, this is a reassuring quantitative assessment of the power of the state-of-the-art fast-Fourier-transform- and matrix-based mapmaking techniques that have been used for QMASK and virtually all subsequent experiments.

  8. Bayesian Inference of CMB Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Anderes, Ethan; Wandelt, Benjamin D.; Lavaux, Guilhem

    2015-08-01

    The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.

  9. Cosmic 21 cm delensing of microwave background polarization and the minimum detectable energy scale of inflation.

    PubMed

    Sigurdson, Kris; Cooray, Asantha

    2005-11-18

    We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes. PMID:16384131

  10. CMB component separation in the pixel domain

    NASA Astrophysics Data System (ADS)

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-01

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of “homogeneous” subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum Cℓ at ℓ≤30 and provides results similar to WMAP for larger ℓ. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the “axis of evil” is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high ℓ power spectrum.

  11. Preliminary albedo map of the south polar region

    NASA Technical Reports Server (NTRS)

    Devaucouleurs, G.; Roth, J.; Mulholand, C.

    1973-01-01

    A preliminary albedo map of the Martian south polar region in stereographic projection was prepared mainly from mission test video system (MTVS) prints before rectified and gridded prints were received, but some adjustments were made to conform with a semi-controlled photomosaic. Wherever possible, use also was made of crater coordinates. Two versions of the map are presented: one with a coordinate grid overlay and one without it. The precision of the coordinates is generally within 1 deg in latitude and the corresponding are in longitude. The maps show both the albedo markings and, with subdued contrast, the craters and topographic features that are necessary to locate the former. The map covers the range of latitudes from - 65 deg to the south pole.

  12. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  13. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10-7, where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  14. Topology-based clustering using polar self-organizing map.

    PubMed

    Xu, Lu; Chow, Tommy W S; Ma, Eden W M

    2015-04-01

    Cluster analysis of unlabeled data sets has been recognized as a key research topic in varieties of fields. In many practical cases, no a priori knowledge is specified, for example, the number of clusters is unknown. In this paper, grid clustering based on the polar self-organizing map (PolSOM) is developed to automatically identify the optimal number of partitions. The data topology consisting of both the distance and density is exploited in the grid clustering. The proposed clustering method also provides a visual representation as PolSOM allows the characteristics of clusters to be presented as a 2-D polar map in terms of the data feature and value. Experimental studies on synthetic and real data sets demonstrate that the proposed algorithm provides higher clustering accuracy and lower computational cost compared with six conventional methods. PMID:25312942

  15. Future detectability of gravitational-wave induced lensing from high-sensitivity CMB experiments

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya; Yamauchi, Daisuke; Taruya, Atsushi

    2015-02-01

    We discuss the future detectability of gravitational-wave induced lensing from high-sensitivity cosmic microwave background (CMB) experiments. Gravitational waves can induce a rotational component of the weak-lensing deflection angle, usually referred to as the curl mode, which would be imprinted on the CMB maps. Using the technique of reconstructing lensing signals involved in CMB maps, this curl mode can be measured in an unbiased manner, offering an independent confirmation of the gravitational waves complementary to B-mode polarization experiments. Based on the Fisher matrix analysis, we first show that with the noise levels necessary to confirm the consistency relation for the primordial gravitational waves, the future CMB experiments will be able to detect the gravitational-wave induced lensing signals. For a tensor-to-scalar ratio of r ≲0.1 , even if the consistency relation is difficult to confirm with a high significance, the gravitational-wave induced lensing will be detected at more than 3 σ significance level. Further, we point out that high-sensitivity experiments will be also powerful to constrain the gravitational waves generated after the recombination epoch. Compared to the B-mode polarization, the curl mode is particularly sensitive to gravitational waves generated at low redshifts (z ≲10 ) with a low frequency (k ≲1 0-3 Mpc-1 ), and it could give a much tighter constraint on their energy density ΩGW by more than 3 orders of magnitude.

  16. The CMB bispectrum

    SciTech Connect

    Fergusson, J.R.; Liguori, M.; Shellard, E.P.S. E-mail: michele.liguori@pd.infn.it

    2012-12-01

    We use a separable mode expansion estimator with WMAP7 data to estimate the bispectrum for all the primary families of non-Gaussian models, including non-scaling feature (periodic) models, the flat (trans-Planckian) model, DBI and ghost inflation, as well as previously constrained simple cases. We review the late-time mode expansion estimator methodology which can be applied to any non-separable primordial and CMB bispectrum model, and we demonstrate how the method can be used to reconstruct the CMB bispectrum from an observational map. We extend the previous validation of the general estimator using local map simulations. We apply the estimator to the coadded WMAP 7-year V and W channel maps, reconstructing the WMAP bispectrum using l < 500 multipoles and n = 50 orthonormal 3D eigenmodes; both the mode expansion parameters and the reconstructed 3D WMAP bispectrum are plotted. We constrain all popular nearly scale-invariant models, ensuring that the theoretical bispectrum is well-described by a convergent mode expansion. Constraints from the local model f{sub NL} = 20.31±27.64 and the equilateral model f{sub NL} = 10.19±127.38 (F{sub NL} = 1.90±23.79) are consistent with previously published results. (Here, we use a nonlinearity parameter F{sub NL} normalised to the local case, to allow more direct comparison between different models.) Notable new constraints from our method include those for the constant model F{sub NL} = 7.82±24.57, the flat model F{sub NL} = 7.31±26.22, and warm inflation F{sub NL} = 2.10±25.83. We investigate feature models, which break scale invariance, surveying a wide parameter range for both the scale and phase (scanning for feature models with an effective period l* > 150). We find no significant evidence of non-Gaussianity for all cases well-described by the given eigenmodes. In the overall non-Gaussian analysis, we find one anomalous mode n = 33 with a 3.39σ amplitude which could give rise to an oscillatory model signal with l*

  17. Reionization and CMB non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Munshi, D.; Corasaniti, P. S.; Coles, P.; Heavens, A.; Pandolfi, S.

    2014-08-01

    We show how cross-correlating a high-redshift external tracer field, such as the 21-cm neutral hydrogen distribution and product maps involving cosmic microwave background (CMB) temperature and polarization fields, that probe mixed bispectrum involving these fields, can help to determine the reionization history of the Universe, beyond what can be achieved from cross-spectrum analysis. Taking clues from recent studies for the detection of primordial non-Gaussianity, we develop a set of estimators that can study reionization using a power spectrum associated with the bispectrum (or skew-spectrum). We use the matched filtering inherent in this method to investigate different reionization histories. We check to what extent they can be used to rule out various models of reionization and study cross-contamination from different sources such as the lensing of the CMB. The estimators can be fine-tuned to optimize study of a specific reionization history. We consider three different types of tracers in our study, namely: proto-galaxies; 21-cm maps of neutral hydrogen; and quasars. We also consider four alternative models of reionization. We find that the cumulative signal-to-noise ratio (S/N) for detection at ℓmax = 2000 can reach O(70) for cosmic variance limited all-sky experiments. Combining 100 GHz, 143 GHz and 217 GHz channels of the Planck experiment, we find that the S/N lies in the range O(5)-O(35). The S/N depends on the specific choice of a tracer field, and multiple tracers can be effectively used to map out the entire reionization history with reasonable S/N. Contamination from weak lensing is investigated and found to be negligible, and the effects of Thomson scattering from patchy reionization are also considered.

  18. What do we learn from the CMB observations?

    SciTech Connect

    Rubakov, V. A.; Vlasov, A. D.

    2012-09-15

    We give an account, at nonexpert and quantitative level, of physics behind the CMB temperature anisotropy and polarization and their peculiar features. We discuss, in particular, how cosmological parameters are determined from the CMB measurements and their combinations with other observations. We emphasize that CMB is the major source of information on the primordial density perturbations and, possibly, gravitational waves, and discuss the implication for our understanding of the extremely early Universe.

  19. A neural-network based estimator to search for primordial non-Gaussianity in Planck CMB maps

    NASA Astrophysics Data System (ADS)

    Novaes, C. P.; Bernui, A.; Ferreira, I. S.; Wuensche, C. A.

    2015-09-01

    We present an upgraded combined estimator, based on Minkowski Functionals and Neural Networks, with excellent performance in detecting primordial non-Gaussianity in simulated maps that also contain a weighted mixture of Galactic contaminations, besides real pixel's noise from Planck cosmic microwave background radiation data. We rigorously test the efficiency of our estimator considering several plausible scenarios for residual non-Gaussianities in the foreground-cleaned Planck maps, with the intuition to optimize the training procedure of the Neural Network to discriminate between contaminations with primordial and secondary non-Gaussian signatures. We look for constraints of primordial local non-Gaussianity at large angular scales in the foreground-cleaned Planck maps. For the SMICA map we found fNL = 33 ± 23, at 1σ confidence level, in excellent agreement with the WMAP-9yr and Planck results. In addition, for the other three Planck maps we obtain similar constraints with values in the interval fNL in [33, 41], concomitant with the fact that these maps manifest distinct features in reported analyses, like having different pixel's noise intensities.

  20. Cosmological parameter estimation: impact of CMB aberration

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Notari, Alessio

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  1. Cosmological parameter estimation: impact of CMB aberration

    SciTech Connect

    Catena, Riccardo; Notari, Alessio E-mail: notari@ffn.ub.es

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a{sub lm}'s via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  2. COSMIC MICROWAVE BACKGROUND POLARIZATION AND TEMPERATURE POWER SPECTRA ESTIMATION USING LINEAR COMBINATION OF WMAP 5 YEAR MAPS

    SciTech Connect

    Samal, Pramoda Kumar; Jain, Pankaj; Saha, Rajib; Prunet, Simon; Souradeep, Tarun

    2010-05-01

    We estimate cosmic microwave background (CMB) polarization and temperature power spectra using Wilkinson Microwave Anisotropy Probe (WMAP) 5 year foreground contaminated maps. The power spectrum is estimated by using a model-independent method, which does not utilize directly the diffuse foreground templates nor the detector noise model. The method essentially consists of two steps: (1) removal of diffuse foregrounds contamination by making linear combination of individual maps in harmonic space and (2) cross-correlation of foreground cleaned maps to minimize detector noise bias. For the temperature power spectrum we also estimate and subtract residual unresolved point source contamination in the cross-power spectrum using the point source model provided by the WMAP science team. Our TT, TE, and EE power spectra are in good agreement with the published results of the WMAP science team. We perform detailed numerical simulations to test for bias in our procedure. We find that the bias is small in almost all cases. A negative bias at low l in TT power spectrum has been pointed out in an earlier publication. We find that the bias-corrected quadrupole power (l(l + 1)C{sub l} /2{pi}) is 532 {mu}K{sup 2}, approximately 2.5 times the estimate (213.4 {mu}K{sup 2}) made by the WMAP team.

  3. Planned CMB Satellite Mission Overview

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    2016-03-01

    I will summarize space missions that are in the planning stage to measure the polarized spatial fluctuations of the cosmic microwave background (CMB). Space missions are complementary to ground-based observatories. First, the absence of atmospheric emission results in a wider range of frequencies that can be observed, which in turn improves removal of galactic foreground emission. Second, the stable observations possible from space give high-fidelity measurements at angular scales of tens of degrees where inflation theory predicts a peak in the B-mode angular power spectrum. Robust detection of both this ``reionization'' peak and the ``recombination'' peak at degree angular scales will give the most convincing case that the fingerprints of inflation have been detected. CMB polarization space missions in the planning stage include CORE+, LiteBIRD, and PIXIE. Science goals for all these missions include the detection and characterization of inflation and the characterization of the reionization epoch. CORE+ and LiteBIRD are imaging telescopes with sub-Kelvin superconducting focal-plane detector arrays with several thousand detectors. PIXIE is a two-beam differential spectrometer that will measure the Planck spectrum of the CMB in addition to searching for inflation.

  4. A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE

    SciTech Connect

    Bleem, L. E.; Becker, M. R.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Van Engelen, A.; Holder, G. P.; De Haan, T.; Dobbs, M. A.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Biesiadzinski, T.; Brodwin, M.; Busha, M. T.; Cho, H. M.; Desai, S.; Dore, O.; and others

    2012-07-01

    We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg{sup 2} of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4{sigma}, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg{sup 2} SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe.

  5. Mapping of magnetic chrons: paleomagnetic polarity map of East Iceland, 0-13 Myr

    NASA Astrophysics Data System (ADS)

    Helgason, Johann

    2016-04-01

    Through data on palaeomagnetism, stratigraphy and radiometric age dating an immense database on magnetic chrons has been established for the lava succession in Iceland (e.g. Kristjánsson, 2008). Correlation of magnetic chrons with the geomagnetic time scale provides a reasonable age estimate for vast stratigraphic sequences. The basalt lava succession in Iceland has a thickness of tens of kilometers. The magnetostratigraphic data offer, through the help of paleomagnetism and radiometric dating, a detailed timing of events in the evolution of the Iceland mantle plume region. Yet a magnetic polarity map for Iceland has been lacking but during the last 50 years, comprehensive stratigraphic mapping has paved the way for a magnetic polarity map in various parts of Iceland. Here, such a map is presented for a segment of East Iceland, i.e. for lavas ranging in age from 0 to 13 M yr. The map is a compilation based on various studies into the cliff section and stratigraphic work performed by numerous research initiatives, both in relation to hydroelectric research as well as academic projects. References: Kristjánsson, L., 2008. Paleomagnetic research on Icelandic lava flows. Jökull, 58, 101-116. Helgason, J., Duncan, R.A., Franzson, H., Guðmundsson, Á., and M. Riishuus., 2015. Magnetic polarity map of Akrafjall and Skarðsheiði and new 40Ar-39Ar age dating from West Iceland., Presentation at the spring conference of the Icelandic Geological Society, held on March 13th 2015 at the University of Iceland.

  6. Impact of secondary non-Gaussianities on the search for primordial non-Gaussianity with CMB maps

    SciTech Connect

    Serra, Paolo; Cooray, Asantha

    2008-05-15

    When constraining the primordial non-Gaussianity parameter f{sub NL} with cosmic microwave background anisotropy maps, the bias resulting from the covariance between primordial non-Gaussianity and secondary non-Gaussianities to the estimator of f{sub NL} is generally assumed to be negligible. We show that this assumption may not hold when attempting to measure the primordial non-Gaussianity out to angular scales below a few tens arcminutes with an experiment like Planck, especially if the primordial non-Gaussianity parameter is around the minimum detectability level with f{sub NL} between 5 and 10. In the future, it will be necessary to jointly estimate the combined primordial and secondary contributions to the cosmic microwave background bispectrum and establish f{sub NL} by properly accounting for the confusion from secondary non-Gaussianiti0008.

  7. SPECTRAL MAPPING OF THE INTERMEDIATE POLAR DQ HERCULIS

    SciTech Connect

    Saito, R. K.; Baptista, R.; Horne, K.; Martell, P.

    2010-06-15

    We report an eclipse-mapping study of the intermediate polar DQ Her based on time-resolved optical spectroscopy ({Delta}{lambda} {approx} 3800-5000 A) covering four eclipses. The spectra were sliced into 295 narrow passbands in the continuum and in the lines, and the corresponding light curves were analyzed to solve for a set of monochromatic maps of the disk brightness distribution and for the flux of an additional uneclipsed component in each band. Eclipse maps of the He II {lambda}4686 line indicate that an azimuthally and vertically extended bright spot at disk rim is an important source of the reprocessing of X-rays from the magnetic poles. The disk spectrum is flat with no Balmer or Helium lines in the inner regions, and shows double-peaked emission lines in the intermediate and outer disk regions, while the slope of the continuum becomes progressively redder with increasing radius. The inferred disk temperatures are in the range T {approx_equal} 13500-5000 K and can be reasonably well described by a steady-state disk with mass accretion rate of M-dot =(2.7{+-}1.0)x10{sup -9} M{sub sun} yr{sup -1}. A comparison of the radial intensity distribution for the Balmer lines reveals a linear correlation between the slope of the distribution and the transition energy. The spectrum of the uneclipsed light is dominated by Balmer and He I lines in emission (probably from the extended nova shell) with narrow absorption cores (likely from a collimated and optically thick wind from the accretion disk). The observed narrow and redshifted Ca II {lambda}3934 absorption line in the total light spectra plus the inverse P-Cygni profiles of the Balmer and He II {lambda}4686 emission lines in spectra of the asymmetric component indicate radial inflow of gas in the innermost disk regions and are best explained in terms of magnetically controlled accretion inside the white dwarf magnetosphere. We infer projected radial inflow velocities of {approx}200-500 km s{sup -1}, significantly

  8. CMB Anisotropies Two Years after Cobe: Observations, Theory and the Future - Proceedings of the 1994 Cwru Workshop

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence M.

    1995-01-01

    The Table of Contents for the book is as follows: * Preface * I. The Experimental Situation Two Years After COBE: Anisotropies, and the CMB Power Spectrum * COBE DMR Data, Signal and Noise: Color Plates * CMB Two Years After the COBE Discovery of Anisotropies * Comparison of Spectral Index Determinations * Two-Point Correlations in the COBE-DMR Two-Year Anisotropy Maps * A Preliminary Analysis of UCSB's South Pole 1993-94 Results * CMB Anisotropy Measurements During the Fourth Flight of MAX * Observations of the Anisotropy in the Cosmic Microwave Background by the Firs, SK93, and MSAM-I Experiments * The Python Microwave Background Anisotropy Experiment * II. Theoretical Implications and Cosmology: The Early Universe, Large Scale Structure and Dark Matter * Testing Inflationary Cosmology and Measuring Cosmological Parameters Using the Cosmic Microwave Background * Inflation Confronts the CMB: An Analysis Including the Effects of Foreground * Testing Inflation with MSAM, MAX Tenerife and COBE * CMBR Anisotropy Due to Gravitational Radiation in Inflationary Cosmologies * Black Holes From Blue Spectra * Cosmic Microwave Background Anisotropies and the Geometry of the Universe * Ω and Cosmic Microwave Background Anisotropies * CDM Cosmogony in an Open Universe * Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings * Temperature Anisotropies in a Universe with Global Defects * The Nature Versus Nurture of Anisotropies * The Existence of Baryons at z = 1000 * Polarization-Temperature Correlations in the Microwave Background * III. Related Issues: BBN Limits on ΩB, and Comparing Theoretical Predictions and Observations * Big Bang Nucleosynthesis and ΩB: A Guide for CMB Interpreters * Quoting Experimental Information

  9. CMB B -mode non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Meerburg, P. Daniel; Meyers, Joel; van Engelen, Alexander; Ali-Haïmoud, Yacine

    2016-06-01

    We study the degree to which the cosmic microwave background (CMB) can be used to constrain primordial non-Gaussianity involving one tensor and two scalar fluctuations, focusing on the correlation of one polarization B mode with two temperature modes. In the simplest models of inflation, the tensor-scalar-scalar primordial bispectrum is nonvanishing and is of the same order in slow-roll parameters as the scalar-scalar-scalar bispectrum. We calculate the ⟨B T T ⟩ correlation arising from a primordial tensor-scalar-scalar bispectrum, and show that constraints from an experiment like CMB-Stage IV using this observable are more than an order of magnitude better than those on the same primordial coupling obtained from temperature measurements alone. We argue that B -mode non-Gaussianity opens up an as-yet-unexplored window into the early Universe, demonstrating that significant information on primordial physics remains to be harvested from CMB anisotropies.

  10. Properties of Interstellar Turbulence from Gradients of Linear Polarization Maps

    NASA Astrophysics Data System (ADS)

    Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.

    2012-04-01

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic "double jump" profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a "swiss cheese" topology, while the subsonic cases have characteristics of a "clump" topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.

  11. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    SciTech Connect

    Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.

    2012-04-20

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized

  12. General open-system quantum evolution in terms of affine maps of the polarization vector

    SciTech Connect

    Byrd, Mark S.; Bishop, C. Allen; Ou, Yong-Cheng

    2011-01-15

    The operator-sum decomposition of a map from one density matrix to another has many applications in quantum information science. To this mapping there corresponds an affine map which provides a geometric description of the map of the density matrix in terms of the polarization vector representation. This has been thoroughly explored for qubits since the components of the polarization vector are measurable quantities (corresponding to expectation values of Hermitian operators) and also because it enables the description of map domains geometrically. Here we extend the operator-sum-affine-map correspondence to qudits, briefly discuss general properties of the map and the form for some particular cases, and provide several explicit results for qutrit maps. We use the affine map and a singular-value-like decomposition to find positivity constraints that provide a symmetry for small polarization vector magnitudes (states which are closer to the maximally mixed state), which is broken as the polarization vector increases in magnitude (a state becomes more pure). The dependence of this symmetry on the magnitude of the polarization vector implies the polar decomposition of the map cannot be used as it can for the qubit case. However, it still leads us to a connection between positivity and purity for general d-state systems.

  13. The axis of evil - a polarization perspective

    NASA Astrophysics Data System (ADS)

    Frommert, M.; Enßlin, T. A.

    2010-04-01

    We search for an unusual alignment of the preferred axes of the quadrupole and octopole, the so-called axis of evil, in the cosmic microwave background (CMB) temperature and polarization data from the Wilkinson Microwave Anisotropy Probe. We use the part of the polarization map which is uncorrelated with the temperature map as a statistically independent probe of the axis of evil, which helps to assess whether the latter has a cosmological origin or if it is a mere chance fluctuation in the temperature. Note, though, that for certain models creating a preferred axis in the temperature map, we would not expect to see the axis in the uncorrelated polarization map. We find that the axis of the quadrupole of the uncorrelated polarization map roughly aligns with the axis of evil within our measurement precision, whereas the axis of the octopole does not. However, with our measurement uncertainty, the probability of such a scenario to happen by chance in an isotropic universe is of the order of 50 per cent. We also find that the so-called cold spot present in the CMB temperature map is even colder in the part of the temperature map which is uncorrelated with the polarization, although there is still a large uncertainty in the latter. Therefore, our analysis of the axis of evil and a future analysis of the cold spot in the uncorrelated temperature data will strongly benefit from the polarization data expected from the Planck satellite.

  14. CMB cold spot from inflationary feature scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Ma, Yin-Zhe

    2016-05-01

    We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from WMAP and Planck maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at ℓ ∼ 20.

  15. The Next Generation Ground-based CMB experiment, CMB-S4

    NASA Astrophysics Data System (ADS)

    Carlstrom, John E.; CMB-S4 Collaboration

    2016-06-01

    This talk will review the goals and status of the community planning for the next generation ground-based CMB experiment, CMB-S4. Following the detection of CMB polarization in 2002, the current generation of ground-based experiments each fielding of order 1000 superconducting detectors (Stage II experiments) have led to the first detection of the much fainter lensing B-mode polarization signal and the most stringent constraints on the level of the B-mode signal from inflationary gravitational waves. We can expect significant advances in the next few years as the ongoing ground-based experiments deploy of order 10,000 detectors (Stage III). The CMB community is now planning an ambitious next generation (Stage IV) ground-based program with order of 500,000 detectors, CMB-S4, to achieve critical threshold crossing goals of 1) detecting or ruling out large field inflationary models, 2) determining the effective number and masses of the neutrinos, and 3) providing precision constraints on dark energy through its impact on structure formation.

  16. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    SciTech Connect

    Cabella, Paolo; Silk, Joseph; Natoli, Paolo

    2007-12-15

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle {delta}{alpha}=-2.5{+-}3.0 ({delta}{alpha}=-2.5{+-}6.0) at the one (two) {sigma} level, consistent with a null detection.

  17. Effects of Rayleigh scattering on the CMB and cosmic structure

    NASA Astrophysics Data System (ADS)

    Alipour, Elham; Sigurdson, Kris; Hirata, Christopher M.

    2015-04-01

    During and after recombination, in addition to Thomson scattering with free electrons, photons also couple to neutral hydrogen and helium atoms through Rayleigh scattering. This coupling influences both cosmic microwave background (CMB) anisotropies and the distribution of matter in the Universe. The frequency dependence of the Rayleigh cross section breaks the thermal nature of CMB temperature and polarization anisotropies and effectively doubles the number of variables needed to describe CMB intensity and polarization statistics, while the additional atomic coupling changes the matter distribution and the lensing of the CMB. We introduce a new method to capture the effects of Rayleigh scattering on cosmological power spectra. Rayleigh scattering modifies CMB temperature and polarization anisotropies at the ˜1 % level at 35 GHz (scaling ∝ν4 ), and modifies matter correlations by as much as ˜0.3 %. We show the Rayleigh signal, especially the cross-spectra between the thermal (Rayleigh) E -polarization and Rayleigh (thermal) intensity signal, may be detectable with future CMB missions even in the presence of foregrounds, and how this new information might help to better constrain the cosmological parameters.

  18. SU(2,CMB), the nature of light and accelerated cosmological expansion

    NASA Astrophysics Data System (ADS)

    Hofmann, Ralf

    2006-09-01

    We present quantitative and qualitative arguments in favor of the claim that, within the present cosmological epoch, the U(1)Y factor in the Standard Model is an effective manifestation of SU(2) pure gauge dynamics of Yang-Mills scale Λ ˜ 10-4 eV. Results for the pressure and the energy density in the deconfining phase of this theory, obtained in a nonperturbative and analytical way, support this connection in view of large-angle features inherent in the map of the CMB tempera- ture fluctuations and temperature-polarization cross correlations. Dedicated to Pierre van Baal with best wishes for a soon recuperation.

  19. Environment Polarity in Proteins Mapped Noninvasively by FTIR Spectroscopy

    PubMed Central

    Manor, Joshua; Feldblum, Esther S.; Zanni, Martin T.; Arkin, Isaiah T.

    2012-01-01

    The polarity pattern of a macromolecule is of utmost importance to its structure and function. For example, one of the main driving forces for protein folding is the burial of hydrophobic residues. Yet polarity remains a difficult property to measure experimentally, due in part to its non-uniformity in the protein interior. Herein, we show that FTIR linewidth analysis of noninvasive 1-13C=18O labels can be used to obtain a reliable measure of the local polarity, even in a highly multi-phasic system, such as a membrane protein. We show that in the Influenza M2 H+ channel, residues that line the pore are located in an environment that is as polar as fully solvated residues, while residues that face the lipid acyl chains are located in an apolar environment. Taken together, FTIR linewidth analysis is a powerful, yet chemically non-perturbing approach to examine one of the most important properties in proteins - polarity. PMID:22563521

  20. Rayleigh scattering: blue sky thinking for future CMB observations

    SciTech Connect

    Lewis, Antony

    2013-08-01

    Rayleigh scattering from neutral hydrogen during and shortly after recombination causes the CMB anisotropies to be significantly frequency dependent at high frequencies. This may be detectable with Planck, and would be a strong signal in any future space-based CMB missions. The later peak of the Rayleigh visibility compared to Thomson scattering gives an increased large-scale CMB polarization signal that is a greater than 4% effect for observed frequencies ν ∼> 500GHz. There is a similar magnitude suppression on small scales from additional damping. Due to strong correlation between the Rayleigh and primary signal, measurement of the Rayleigh component is limited by noise and foregrounds, not cosmic variance of the primary CMB, and should observable over a wide range of angular scales at frequencies 200GHz ∼< ν ∼< 800GHz. I give new numerical calculations of the temperature and polarization power spectra, and show that future CMB missions could measure the temperature Rayleigh cross-spectrum at high precision, detect the polarization from Rayleigh scattering, and also accurately determine the cross-spectra between the Rayleigh temperature signal and primary polarization. The Rayleigh scattering signal may provide a powerful consistency check on recombination physics. In principle it can be used to measure additional horizon-scale primordial perturbation modes at recombination, and distinguish a significant tensor mode B-polarization signal from gravitational lensing at the power spectrum level.

  1. BICEP2/Keck - Planck joint analysis and prospects for Galactic foreground removal from CMB observations

    NASA Astrophysics Data System (ADS)

    Crill, Brendan

    2015-08-01

    The joint analysis of 150 GHz polarized maps from BICEP2 and Keck Array at 150 GHz with Planck data at 353 GHzallowed the removal of Galactic dust contamination from the measurement of lensed B-modes in the deep (57 nK deg)BICEP2/Keck maps as well as setting an upper limit on the primordial gravitational wave background from inflation. We present this analysis, describe prospects for polarized foreground cleaning of future suborbitalmeasurements of CMB, and additionally describe Planck's measurements of the spatial correlation of polarizedemission from synchrotron and dust at high galactic latitude, which complicates the removal of Galactic foregrounds at the foregroundminimum of 70-100 GHz.

  2. Large-Angle Anomalies in the CMB

    DOE PAGESBeta

    Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; Starkman, Glenn D.

    2010-01-01

    We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion of the solar ssystem, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.

  3. A protein interaction map for cell polarity development

    PubMed Central

    Drees, Becky L.; Sundin, Bryan; Brazeau, Elizabeth; Caviston, Juliane P.; Chen, Guang-Chao; Guo, Wei; Kozminski, Keith G.; Lau, Michelle W.; Moskow, John J.; Tong, Amy; Schenkman, Laura R.; McKenzie, Amos; Brennwald, Patrick; Longtine, Mark; Bi, Erfei; Chan, Clarence; Novick, Peter; Boone, Charles; Pringle, John R.; Davis, Trisha N.; Fields, Stanley; Drubin, David G.

    2001-01-01

    Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein–protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express ∼90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein–protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed. PMID:11489916

  4. A protein interaction map for cell polarity development.

    PubMed

    Drees, B L; Sundin, B; Brazeau, E; Caviston, J P; Chen, G C; Guo, W; Kozminski, K G; Lau, M W; Moskow, J J; Tong, A; Schenkman, L R; McKenzie, A; Brennwald, P; Longtine, M; Bi, E; Chan, C; Novick, P; Boone, C; Pringle, J R; Davis, T N; Fields, S; Drubin, D G

    2001-08-01

    Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed. PMID:11489916

  5. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-01

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics. PMID:24745402

  6. Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-Correlation with the Cosmic Infrared Background

    NASA Astrophysics Data System (ADS)

    Ade, P. A. R.; Akiba, Y.; Anthony, A. E.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Borrill, J.; Borys, C.; Chapman, S.; Chinone, Y.; Dobbs, M.; Elleflot, T.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Gilbert, A.; Grainger, W.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Hori, Y.; Howard, J.; Hyland, P.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Linder, E.; Lungu, M.; Matsuda, F.; Matsumura, T.; Meng, X.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Poletti, D.; Quealy, E.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K.; Schanning, I.; Schenck, D. E.; Sherwin, B. D.; Shimizu, A.; Shimmin, C.; Shimon, M.; Siritanasak, P.; Smecher, G.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Wilson, B.; Yadav, A.; Zahn, O.; Polarbear Collaboration

    2014-04-01

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  7. Tracking algorithms using log-polar mapped image coordinates

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.; Juday, Richard D.

    1990-01-01

    The use of log-polar image sampling coordinates rather than conventional Cartesian coordinates offers a number of advantages for visual tracking and docking of space vehicles. Pixel count is reduced without decreasing the field of view, with commensurate reduction in peripheral resolution. Smaller memory requirements and reduced processing loads are the benefits in working environments where bulk and energy are at a premium. Rotational and zoom symmetries of log-polar coordinates accommodate range and orientation extremes without computational penalties. Separation of radial and rotational coordinates reduces the complexity of several target centering algorithms, described below.

  8. Constraining fundamental physics with future CMB experiments

    SciTech Connect

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-15

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  9. Microwave maps of the polar ice of the earth

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.

    1974-01-01

    Synoptic views of the entire polar regions of earth have been obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals from December 1972 to February 1973. Large discrepancies exist between the long-term ice cover depicted in various atlases and the actual extent of the canopies. The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. The brightness temperatures of the Greenland and Antarctic glaciers show interesting contours probably related to the ice and snow morphologic structure.

  10. Low-ℓ CMB analysis and inpainting

    NASA Astrophysics Data System (ADS)

    Starck, J.-L.; Fadili, M. J.; Rassat, A.

    2013-02-01

    Reconstructing the cosmic microwave background (CMB) in the Galactic plane is extremely difficult due to the dominant foreground emissions such as dust, free-free or synchrotron. For cosmological studies, the standard approach consists in masking this area where the reconstruction is insufficient. This leads to difficulties for the statistical analysis of the CMB map, especially at very large scales (to study for instance the low quadrupole, integrated Sachs Wolfe effect, axis of evil, etc.). We investigate how well some inpainting techniques can recover the low-ℓ spherical harmonic coefficients. We introduce three new inpainting techniques based on three different kinds of priors: sparsity, energy, and isotropy, which we compare. We show that sparsity and energy priors can lead to extremely high-quality reconstruction, within 1% of the cosmic variance for a mask with a sky coverage larger than 80%.

  11. Status of CMB Observations in 2015

    NASA Astrophysics Data System (ADS)

    Bucher, Martin

    2016-07-01

    The 2.725 K cosmic microwave background has played a key role in the development of modern cosmology by providing a solid observational foundation for constraining possible theories of what happened at very large redshifts and theoretical speculation reaching back almost to the would-be big bang initial singularity. After recounting some of the lesser known history of this area, I summarize the current observational situation and also discuss some exciting challenges that lie ahead: the search for B modes, the precision mapping of the CMB gravitational lensing potential, and the ultra-precise characterization of the CMB frequency spectrum, which would allow the exploitation of spectral distortions to probe new physics.

  12. A measurement of the cosmic microwave background polarization with the south pole telescope

    NASA Astrophysics Data System (ADS)

    Crites, Abigail Tinney

    We present maps of the cosmic microwave background (CMB) polarization at 90 and 150 GHz measured with SPTpol and the first EE and TE CMB power spectrum measurements from SPTpol. We also describe the SPTpol instrument in detail. We discuss the development of the SPTpol camera including the cryogenic design and the transition edge sensor (TES) detectors developed at NIST and Argonne National Laboratory. The goals of the SPTpol project are to exploit the high resolution of the telescope (1 arcminute beam) and the high sensitivity afforded by the 1536 detector camera to measure the E-mode power spectrum of the CMB, characterize the B-mode polarization induced by the gravitational lensing of the primordial E-mode CMB polarization, and to detector set an upper limit on the level of the B-mode polarization from inflationary gravitational waves. This thesis is a first step toward accomplishing these goals. Measuring the E-mode power spectrum will allow us to improve constraints on parameters of the current cosmological models that are sensitive to the damping tail of the CMB.

  13. Experimental stability maps of a 1550nm-VCSEL subject to polarized optical injection

    NASA Astrophysics Data System (ADS)

    Hurtado, A.; Schires, K.; Khan, N.; Quirce, A.; Valle, A.; Pesquera, L.; Henning, I. D.; Adams, M. J.

    2010-02-01

    We report an experimental study of the injection locking properties and nonlinear dynamics of a 1550nm-Vertical Cavity Surface Emitting Laser (VCSEL) subject to parallel and to orthogonal polarized optical injection into the two orthogonal polarizations of the fundamental transverse mode of the device. A rich variety of nonlinear dynamics have been observed for both parallel and orthogonal optical injection outside the stable locking range, including limit cycle, period doubling, chaos and polarization switching. Additionally, for the case of orthogonal optical injection, we report a first experimental observation of the change in the shape of the stability map as the applied bias current is increased well above threshold.

  14. TESTING CPT SYMMETRY WITH CURRENT AND FUTURE CMB MEASUREMENTS

    SciTech Connect

    Li, Si-Yu; Zhang, Xinmin; Xia, Jun-Qing; Li, Hong; Li, Mingzhe

    2015-02-01

    In this paper, we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector L{sub cs}∼p{sub μ}A{sub ν} F-tilde {sup μν}, which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the 9 yr WMAP, BOOMERanG 2003, and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle α-bar =−2.12±1.14 (1σ), indicating that the significance of the CPT violation is about 2σ. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [Δα( n-hat )] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data cannot constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle C {sup α}(0) < 0.035 from all of the CMB data sets. More interestingly, including the anisotropies of rotation angle could lower the best-fit value of r and relax the tension on the constraints of r between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on α-bar and Δα( n-hat ). Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

  15. Testing CPT Symmetry with Current and Future CMB Measurements

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Xia, Jun-Qing; Li, Mingzhe; Li, Hong; Zhang, Xinmin

    2015-02-01

    In this paper, we use the current and future cosmic microwave background (CMB) experiments to test the Charge-Parity-Time Reversal (CPT) symmetry. We consider a CPT-violating interaction in the photon sector {L}_cs˜ p_μ A_ν \\tilde{F}μ ν , which gives rise to a rotation of the polarization vectors of the propagating CMB photons. By combining the 9 yr WMAP, BOOMERanG 2003, and BICEP1 observations, we obtain the current constraint on the isotropic rotation angle \\bar{α } = -2.12 +/- 1.14 (1σ), indicating that the significance of the CPT violation is about 2σ. Here, we particularly take the systematic errors of CMB measurements into account. Then, we study the effects of the anisotropies of the rotation angle [Δ {α }({\\hat{n}})] on the CMB polarization power spectra in detail. Due to the small effects, the current CMB polarization data cannot constrain the related parameters very well. We obtain the 95% C.L. upper limit of the variance of the anisotropies of the rotation angle C α(0) < 0.035 from all of the CMB data sets. More interestingly, including the anisotropies of rotation angle could lower the best-fit value of r and relax the tension on the constraints of r between BICEP2 and Planck. Finally, we investigate the capabilities of future Planck polarization measurements on \\bar{α } and Δ {α }({\\hat{n}}). Benefited from the high precision of Planck data, the constraints of the rotation angle can be significantly improved.

  16. Phases of new physics in the CMB

    NASA Astrophysics Data System (ADS)

    Baumann, Daniel; Green, Daniel; Meyers, Joel; Wallisch, Benjamin

    2016-01-01

    Fluctuations in the cosmic neutrino background are known to produce a phase shift in the acoustic peaks of the cosmic microwave background. It is through the sensitivity to this effect that the recent CMB data has provided a robust detection of free-streaming neutrinos. In this paper, we revisit the phase shift of the CMB anisotropy spectrum as a probe of new physics. The phase shift is particularly interesting because its physical origin is strongly constrained by the analytic properties of the Green's function of the gravitational potential. For adiabatic fluctuations, a phase shift requires modes that propagate faster than the speed of fluctuations in the photon-baryon plasma. This possibility is realized by free-streaming relativistic particles, such as neutrinos or other forms of dark radiation. Alternatively, a phase shift can arise from isocurvature fluctuations. We present simple models to illustrate each of these effects. We then provide observational constraints from the Planck temperature and polarization data on additional forms of radiation. We also forecast the capabilities of future CMB Stage IV experiments. Whenever possible, we give analytic interpretations of our results.

  17. CMB Observations from DomeC

    NASA Astrophysics Data System (ADS)

    de Bernardis, P.

    DomeC is likely to be the best site in the world for mm and sub-mm observations. In this paper we focus on what can be done from DomeC to investigate the detailed properties of the Cosmic Microwave Background (CMB). Two experiment typologies are particularly promising: precision measurements of the polarization of the CMB, to confirm the presence of an inflation phase in the very early universe, and high resolution measurements of the Sunyaev-Zeldovich effect (SZE) in clusters of galaxies, which can be used to investigate dark energy and dark matter in the Universe. Several important teams are currently carrying out experiments of the first kind; DomeC is the location of the BRAIN experiment, which uses bolometric interferometry as the tool to produce sensitive measurements with low systematic effects, and certainly orthogonal to the systematic effects of all other instruments currently developed to this purpose. DomeC will be an ideal location for a large dish telescope for mm and sub-mm measurements. In addition to cutting-edge sub-mm science, a telescope complementing SPT (in size and/or in frequency) will be ideal for special CMB observation, like the detection of non-Gaussian features, the measurement of relativistic effects in SZE, the measurement of the SZE resulting from the decay products of super-symmetric dark matter in selected clusters.

  18. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.

  19. Radargram of Mars' North Polar Layered Deposits with Topographic Map

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The upper image is a radargram from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), showing data from the subsurface of Mars in the layered deposits that surround the north pole. The lower image shows the position of the ground track on a topographic map of the area based on Mars Orbiter Laser Altimeter data. The images are 458 kilometers (285 miles) wide.

    The MARSIS echo trace splits into two traces to the right of center, at the point where the ground track crosses from the smooth plains onto the elevated layered deposits on the right. The upper trace is the echo from the surface of the deposits, while the lower trace is interpreted to be the boundary between the lower surface of the deposits and the underlying material. The strength of the lower echo suggests that the intervening material is nearly pure water ice. The time delay between the two echoes reaches a maximum of 21 microseconds at the right of the image, corresponding to a thickness of 1.8 kilometer (1.1 mile) of ice. The total elevation difference shown in the topographic map is about 2 kilometers (1.2 mile) between the lowest surface (magenta) and the highest (orange).

    MARSIS is an instrument on the European Space Agency's Mars Express orbiter. NASA and the Italian Space Agency jointly funded the instrument. The Mars Orbiter Laser Altimeter is an instrument on NASA's Mars Global Surveyor orbiter.

  20. External priors for the next generation of CMB experiments

    NASA Astrophysics Data System (ADS)

    Manzotti, Alessandro; Dodelson, Scott; Park, Youngsoo

    2016-03-01

    Planned cosmic microwave background (CMB) experiments will improve what we know about neutrino physics, inflation, and dark energy. The low level of noise, together with improved angular resolution, will increase the signal-to-noise ratio of the CMB polarized data as well as the reconstructed lensing potential of large scale structure. Projected constraints on cosmological parameters are tight, but these can be improved even further with information from external experiments. Here, we examine quantitatively the extent to which external priors can lead to improvement in projected constraints from a CMB-Stage IV (S4) experiment on neutrino and dark energy properties. We find that CMB S4 constraints on neutrino mass could be strongly enhanced by external constraints on the cold dark matter density Ωch2 and the Hubble constant H0. If polarization on the largest scales (ℓ<50 ) will not be measured, an external prior on the primordial amplitude As or the optical depth τ will also be important. A CMB constraint on the number of relativistic degrees of freedom, Neff, will benefit from an external prior on the spectral index ns and the baryon energy density Ωbh2. Finally, an external prior on H0 will help constrain the dark energy equation of state (w ).

  1. External priors for the next generation of CMB experiments

    SciTech Connect

    Manzotti, Alessandro; Dodelson, Scott; Park, Youngsoo

    2015-12-08

    Planned cosmic microwave background (CMB) experiments can dramatically improve what we know about neutrino physics, inflation, and dark energy. The low level of noise, together with improved angular resolution, will increase the signal to noise of the CMB polarized signal as well as the reconstructed lensing potential of high redshift large scale structure. Projected constraints on cosmological parameters are extremely tight, but these can be improved even further with information from external experiments. Here, we examine quantitatively the extent to which external priors can lead to improvement in projected constraints from a CMB-Stage IV (S4) experiment on neutrino and dark energy properties. We find that CMB S4 constraints on neutrino mass could be strongly enhanced by external constraints on the cold dark matter density $\\Omega_{c}h^{2}$ and the Hubble constant $H_{0}$. If polarization on the largest scales ($\\ell<50$) will not be measured, an external prior on the primordial amplitude $A_{s}$ or the optical depth $\\tau$ will also be important. A CMB constraint on the number of relativistic degrees of freedom, $N_{\\rm eff}$, will benefit from an external prior on the spectral index $n_{s}$ and the baryon energy density $\\Omega_{b}h^{2}$. Finally, an external prior on $H_{0}$ will help constrain the dark energy equation of state ($w$).

  2. Suppressing CMB low multipoles with ISW effect

    SciTech Connect

    Das, Santanu; Souradeep, Tarun E-mail: tarun@iucaa.ernet.in

    2014-02-01

    Recent results of Planck data reveal that the power [1,2] in the low multipoles of the CMB angular power spectrum, approximately up to l = 30, is significantly lower than the theoretically predicted in the best fit ΛCDM model. There are different known physical effects that can affect the power at low multipoles, such as features in the primordial power spectrum (PPS) in some models of inflation and ISW effect. In this paper we investigate the possibility of invoking the Integrated Sachs-Wolfe (ISW) effect to explain the power deficit at low multipoles. The ISW effect that originates from the late time expansion history of the universe is rich in possibilities given the limited understanding of the origin of dark energy (DE). It is a common understanding that the ISW effect adds to the power at the low multipoles of the CMB angular power spectrum. In this paper we carry out an analytic study to show that there are some expansion histories in which the ISW effect, instead of adding power, provides negative contribution to the power at low multipoles. Guided by the analytic study, we present examples of the features required in the late time expansion history of the universe that could explain the power deficiency through the ISW effect. We also show that an ISW origin of power deficiency is consistent, at present, with other cosmological observations that probe the expansion history such as distance modulus, matter power spectrum and the evolution of cluster number count. We also show that the ISW effect may be distinguished from power deficit originating from features in the PPS using the measurements of the CMB polarization spectrum at low multipoles expected from Planck. We conclude that the power at low multipoles of the CMB anisotropy could well be closely linked to Dark Energy puzzle in cosmology and this observation could be actually pointing to richer phenomenology of DE beyond the cosmological constant Λ.

  3. Magnetized CMB observables: A dedicated numerical approach

    SciTech Connect

    Giovannini, Massimo; Kunze, Kerstin E.

    2008-03-15

    Large-scale magnetic fields affect the scalar modes of the geometry whose ultimate effect is to determine the anisotropies of the cosmic microwave background (CMB in what follows). For the first time, a consistent numerical approach to the magnetized CMB anisotropies is pursued with the aim of assessing the angular power spectra of temperature and polarization when the scalar modes of the geometry and a stochastic background of inhomogeneous magnetic fields are simultaneously present in the plasma. The effects related to the magnetized nature of the plasma are taken into account both at the level of the dynamical equations and at the level of the initial conditions of the Einstein-Boltzmann hierarchy. The temperature and polarization observables are exploited to infer the peculiar signatures of a pre-equality magnetic field. Using the extrapolated best fit to the three-year WMAP (Wilkinson Microwave Anisotropy Probe) data the increase and distortions of the first seven peaks in the temperature autocorrelations are monitored for different values of the regularized magnetic field intensity and for the physical range of spectral indices. Similar analyses are also conducted for the first few anticorrelation (and corrrelation) peaks of the temperature-polarization power spectra. Possible interesting degeneracies and stimulating perspectives are pointed out and explored.

  4. A Polarized Universe

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    The CMB polarization was produced as light scattered off a primordial cloud of protons and electrons nearly 14 billion years ago, about 400,000 years after the Big Bang. This marks the moment of recombination, when the universe finally cooled enough to allow electrons to join protons. The CMB is the light that broke through the fog.

  5. Water in the Moon's polar areas: Results of LEND neutron telescope mapping

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I. G.; Sanin, A. B.; Litvak, M. L.

    2016-02-01

    The results of LEND neutron telescope mapping of the lunar surface are presented. The estimations obtained show that the water content in the regolith in the polar areas of the Moon reaches 0.4 % by weight and not directly determined by the illuminated surface.

  6. Ir Spectral Mapping of the Martian South Polar Residual CAP Using Crism

    NASA Astrophysics Data System (ADS)

    Campbell, Jacqueline; Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are considered to be important in theories of abiogenesis (Allamandola, 2011) . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft (Cruikshank et al., 2007). The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012). This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC) structural evolution (Thomas et al., 2009) that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called "Swiss Cheese Terrain", a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009). We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), on board NASA's Mars Reconnaissance Orbiter (MRO). CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  7. CMB as a Probe of New Physics and Old Times

    NASA Astrophysics Data System (ADS)

    Gluscevic, Vera

    Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree. In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB. We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves. We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles. In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we

  8. Antenna-coupled TES bolometer arrays for CMB polarimetry

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Bock, J. J.; Bonetti, J. A.; Brevik, J.; Chattopadhyay, G.; Day, P. K.; Golwala, S.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Nguyen, H.; Ogburn, R. W.; Orlando, A.; Transgrud, A.; Turner, A.; Wang, G.; Zmuidzinas, J.

    2008-07-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL.

  9. Polarization predictions for cosmological models with large-scale power modulation

    NASA Astrophysics Data System (ADS)

    Bunn, Emory F.; Xue, Qingyang

    2016-01-01

    Several "anomalies" have been noted on large angular scales in maps of the cosmic microwave background (CMB) radiation, although the statistical significance of these anomalies is hotly debated. Of particular interest is the evidence for large-scale power modulation: the variance in one half of the sky is larger than the other half. Either this variation is a mere fluke, or it requires a major revision of the standard cosmological paradigm. The way to determine which is the case is to make predictions for future data sets, based on the hypothesis that the anomaly is meaningful and on the hypothesis that it is a fluke. We make predictions for the CMB polarization anisotropy based on a cosmological model in which statistical isotropy is broken via coupling with a dipolar modulation field. Our predictions are constrained to match the observed Planck temperature variations. We identify the modes in CMB polarization data that most strongly distinguish between the modulation and no-modulation hypotheses.

  10. MAPPING THE LINEARLY POLARIZED SPECTRAL LINE EMISSION AROUND THE EVOLVED STAR IRC+10216

    SciTech Connect

    Girart, J. M.; Patel, N.; Vlemmings, W. H. T.; Rao, Ramprasad

    2012-05-20

    We present spectro-polarimetric observations of several molecular lines obtained with the Submillimeter Array toward the carbon-rich asymptotic giant branch star IRC+10216. We have detected and mapped the linear polarization of the CO 3-2, SiS 19-18, and CS 7-6 lines. The polarization arises at a distance of {approx_equal} 450 AU from the star and is blueshifted with respect to the Stokes I. The SiS 19-18 polarization pattern appears to be consistent with a locally radial magnetic field configuration. However, the CO 3-2 and CS 7-6 line polarization suggests an overall complex magnetic field morphology within the envelope. This work demonstrates the feasibility of using spectro-polarimetric observations to carry out tomographic imaging of the magnetic field in circumstellar envelopes.

  11. Principal components of CMB non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Regan, Donough; Munshi, Dipak

    2015-04-01

    The skew-spectrum statistic introduced by Munshi & Heavens has recently been used in studies of non-Gaussianity from diverse cosmological data sets including the detection of primary and secondary non-Gaussianity of cosmic microwave background (CMB) radiation. Extending previous work, focused on independent estimation, here we deal with the question of joint estimation of multiple skew-spectra from the same or correlated data sets. We consider the optimum skew-spectra for various models of primordial non-Gaussianity as well as secondary bispectra that originate from the cross-correlation of secondaries and lensing of CMB: coupling of lensing with the Integrated Sachs-Wolfe effect, coupling of lensing with thermal Sunyaev-Zeldovich, as well as from unresolved point sources. For joint estimation of various types of non-Gaussianity, we use the principal component analysis (PCA) to construct the linear combinations of amplitudes of various models of non-Gaussianity, e.g. f^loc_NL,f^eq_NL,f^ortho_NL that can be estimated from CMB maps. We describe how the bias induced in the estimation of primordial non-Gaussianity due to secondary non-Gaussianity may be evaluated for arbitrary primordial models using a PCA analysis. The PCA approach allows one to infer approximate (but generally accurate) constraints using CMB data sets on any reasonably smooth model by use of a look-up table and performing a simple computation. This principle is validated by computing constraints on the Dirac-Born-Infeld bispectrum using a PCA analysis of the standard templates.

  12. The Polar Cap Tongue of Ionization: A survey of GPS TEC mappings from 2000 to 2014

    NASA Astrophysics Data System (ADS)

    David, M.; Sojka, J. J.; Schunk, R. W.; Coster, A. J.

    2015-12-01

    The tongue of ionization (TOI) is a sporadic large-scale feature of the F-region polar ionosphere; a volume of high density plasma transported anti-sunward across the polar cap by the magnetospheric convection electric field. Sometimes the TOI may exist in the form of polar cap patches, owing to the solar wind and M-I coupling causing variations in convection, breaking up the TOI into discrete patchy structures. Figure 1 shows an example of a TOI under quiet geomagnetic conditions, from the GPS TEC map for 1637 UT on 05 Nov 2012, a day on which the Kp index was never higher than 1.7. The data is taken from Millstone Hill's on-line Madrigal data base. The TOI is often thought of as a storm-time phenomenon; this work challenges that assumption by examining observations from all levels of geomagnetic activity throughout the period of availability of the GPS TEC maps (2000-2014).Sojka et al [1994] carried out a modeling study to determine the seasonal and universal time dependence of the tongue of ionization (and polar cap patches); Figure 2 is reproduced from that paper. In essence, this figure is intended to indicate the times when a TOI may and may not exist. A notable feature is the "hole" that is seen during winter days between 0600 and 1200 UT. At the time of that publication it was not possible to test the prediction, but there now exists a wealth of data in the form of maps of total electron content (TEC), available from the on-line Madrigal data base. These TEC maps, especially in the northern hemisphere, cover the mid-latitude and polar cap regions with sufficient resolution to determine whether or not a TOI exists, for nearly every day from the year 2000 to the present time, at 5 minute intervals. In this study we make a comprehensive survey of this immense data base and outline the conditions under which TOIs have been seen in the northern hemisphere, based on seasonal and UT dependencies, as well as levels of geomagnetic disturbance. The winter "hole" in

  13. Local Maps of the Polarization and Depolarization in Organic Ferroelectric Field-Effect Transistors

    PubMed Central

    Cai, Ronggang; Jonas, Alain M.

    2016-01-01

    We study the local ferroelectric polarization and depolarization of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) in p-type ferroelectric field-effect transistors (FeFETs). Piezoresponse force microscopy (PFM) is used to obtain local maps of the polarization on model metal-semiconductor-ferroelectric stacks, and on FeFETs stripped from their top-gate electrode; transfer curves are measured on complete FeFETs. The influence of the semiconductor layer thickness and of the polarity and amplitude of the poling voltage are investigated. In accumulation, the stable “on” state consists of a uniform upward-polarized ferroelectric layer, with compensation holes accumulating at the ferroelectric/semiconducting interface. In depletion, the stable “off” state consists of a depolarized region in the center of the transistor channel, surrounded by partially downward-polarized regions over the source and drain electrodes and neighboring regions. The partial depolarization of these regions is due to the incomplete screening of polarization charges by the charges of the remote electrodes. Therefore, thinner semiconducting layers provide higher downward polarizations, which result in a more depleted transistor channel and a higher charge injection barrier between the electrodes and the semiconductor, leading to lower threshold voltages and higher on/off current values at zero gate bias. Clues for optimization of the devices are finally provided. PMID:26905962

  14. Optical polarization map of the Polaris Flare with RoboPol

    NASA Astrophysics Data System (ADS)

    Panopoulou, G.; Tassis, K.; Blinov, D.; Pavlidou, V.; King, O. G.; Paleologou, E.; Ramaprakash, A.; Angelakis, E.; Baloković, M.; Das, H. K.; Feiler, R.; Hovatta, T.; Khodade, P.; Kiehlmann, S.; Kus, A.; Kylafis, N.; Liodakis, I.; Mahabal, A.; Modi, D.; Myserlis, I.; Papadakis, I.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Pearson, T. J.; Rajarshi, C.; Readhead, A. C. S.; Reig, P.; Zensus, J. A.

    2015-09-01

    The stages before the formation of stars in molecular clouds are poorly understood. Insights can be gained by studying the properties of quiescent clouds, such as their magnetic field structure. The plane-of-the-sky orientation of the field can be traced by polarized starlight. We present the first extended, wide-field (˜10 deg2) map of the Polaris Flare cloud in dust-absorption induced optical polarization of background stars, using the Robotic Polarimeter (RoboPol) polarimeter at the Skinakas Observatory. This is the first application of the wide-field imaging capabilities of RoboPol. The data were taken in the R band and analysed with the automated reduction pipeline of the instrument. We present in detail optimizations in the reduction pipeline specific to wide-field observations. Our analysis resulted in reliable measurements of 641 stars with median fractional linear polarization 1.3 per cent. The projected magnetic field shows a large-scale ordered pattern. At high longitudes it appears to align with faint striations seen in the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) map of dust emission (250 μm), while in the central 4-5 deg2 it shows an eddy-like feature. The overall polarization pattern we obtain is in good agreement with large-scale measurements by Planck of the dust emission polarization in the same area of the sky.

  15. PIPER: Primordial Inflation Polarization Explorer

    NASA Astrophysics Data System (ADS)

    Lazear, Justin; Ade, P.; Benford, D. J.; Bennett, C. L.; Chuss, D. T.; Dotson, J. L.; Eimer, J.; Fixsen, D. J.; Halpern, M.; Hinderks, J.; Hinshaw, G. F.; Irwin, K.; Jhabvala, C.; Johnson, B.; Kogut, A. J.; Mirel, P.; Moseley, S. H.; Staguhn, J.; Switzer, E.; Tucker, C. E.; Weston, A.; Wollack, E.

    2014-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne cosmic microwave background (CMB) polarization experiment searching for large-angular scale B-mode polarization to constrain Inflation in the early universe. The Inflationary Big Bang theory predicts that the epoch of inflation will result in a background of gravitational waves. These gravitational waves imprinted their unique B-mode signature on the CMB polarization, two features of which are a peak at ell ~ 80 and a "bump" below ell ~ 10 in the B-mode angular power spectrum. The ell ~ 80 "recombination" peak is the first peak caused by gravitational waves imprinting tensor (B-mode) perturbations onto the CMB spectrum during recombination. Gravitational waves at larger scales have not yet entered the horizon and may not contribute, and at smaller scales have decayed away by other interactions, giving rise to a peak at horizon scale. The ell ~ 10 "reionization" bump is caused by a similar mechanism as the recombination peak, where gravitational waves imprint B-mode perturbations into the spectrum, now at larger horizon scales. PIPER will target the reionization bump while keeping enough angular resolution to measure the recombination peak, with sensitivity down to tensor-to-scalar ratio r = 0.007. A series of flights alternating between north and south will produce nearly full-sky temperature and polarization maps and measure the low-ell spectra. 5120 transition edge sensor (TES) bolometers each with 20 arcmin beamwidth, distributed into 4 rectangular close-packed arrays maintained at 150 mK will provide small-scale resolution and sensitivity. PIPER consists of two co-aligned telescopes, each with a front-end variable-delay polarization modulator rapidly modulating either the Q or U Stokes parameters to provide polarization sensitivity and mitigate systematic errors. To achieve background-limited sensitivity, the entire instrument is enclosed in an open bucket dewar maintained at 1.5 K. PIPER

  16. Mapping Vesta Mid-Latitude Quadrangle V-12EW: Mapping the Edge of the South Polar Structure

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; Williams, D. A.; Hiesinger, H.; Garry, W. B.; Yingst, R.; Buczkowski, D.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Le Corre, L.; Roatsch, T.; Preusker, F.; White, O. L.; DeSanctis, C.; Filacchione, G.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-12EW. This quadrangle is dominated by the arcuate edge of the large 460+ km diameter south polar topographic feature first observed by HST (Thomas et al., 1997). Sparsely cratered, the portion of this feature covered in V-12EW is characterized by arcuate ridges and troughs forming a generalized arcuate pattern. Mapping of this terrain and the transition to areas to the north will be used to test whether this feature has an impact or other (e.g., internal) origin. We are also using FC stereo and VIR images to assess whether their are any compositional differences between this terrain and areas further to the north, and image data to evaluate the distribution and age of young impact craters within the map area. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams.

  17. Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics

    SciTech Connect

    Gubitosi, Giulia; Migliaccio, Marina; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Natoli, Paolo; Polenta, Gianluca E-mail: Marina.Migliaccio@roma2.infn.it E-mail: giovanni.amelino-camelia@roma1.infn.it E-mail: paolo.natoli@roma2.infn.it

    2011-11-01

    We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.

  18. The Primordial Inflation Polarization Explorer: Science from Circular Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Switzer, Eric; Ade, P.; Benford, D. J.; Bennett, C. L.; Chuss, D. T.; Dotson, J. L.; Eimer, J.; Fixsen, D. J.; Halpern, M.; Hinshaw, G. F.; Irwin, K.; Jhabvala, C.; Johnson, B.; Kogut, A. J.; Lazear, J.; Mirel, P.; Moseley, S. H.; Staguhn, J.; Tucker, C. E.; Weston, A.; Wollack, E.

    2014-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne CMB polarimeter designed to constrain the B-mode signature of cosmological inflation. Sequential one-day flights from Northern- and Southern- Hemisphere sites will yield maps of Stokes I, Q, U and V at 200, 270, 350 and 600 GHz over 85% of the sky. The full optical path is cooled to 1.5 K by liquid helium in the ARCADE bucket dewar, and a variable-delay polarization modulator (VPM) at the front of the optics modulates the polarization response. Independent Q and U cameras each have two 32x40 Transition Edge Sensor array receivers. In addition to its primary inflationary science goal, PIPER will also measure the circular (Stokes V) polarization to a depth similar to that of the primary linear polarization. The circular polarization has received relatively little attention in large-area surveys, with constraints from the 1980’s and recent results by the Milan Polarimeter. Astrophysical circular polarization is generally tied to the presence of magnetic fields, either in relativistic plasmas or Zeeman splitting of resonances. These effects are thought to be undetectable at PIPER's frequencies and resolution, despite the depth. The expectation of a null result makes the deep Stokes V map a good cross-check for experimental systematics. More fundamentally, the fact that the sky is expected to be dark in Stokes V makes it a sector sensitive to processes such as Lorentz-violating terms in the standard model or magnetic fields in the CMB era.

  19. CMB all-scale blackbody distortions induced by linearizing temperature

    NASA Astrophysics Data System (ADS)

    Notari, Alessio; Quartin, Miguel

    2016-08-01

    Cosmic microwave background (CMB) experiments, such as WMAP and Planck, measure intensity anisotropies and build maps using a linearized formula for relating them to the temperature blackbody fluctuations. However, this procedure also generates a signal in the maps in the form of y -type distortions which is degenerate with the thermal Sunyaev Zel'dovich (tSZ) effect. These are small effects that arise at second order in the temperature fluctuations not from primordial physics but from such a limitation of the map-making procedure. They constitute a contaminant for measurements of our peculiar velocity, the tSZ and primordial y -distortions. They can nevertheless be well modeled and accounted for. We show that the distortions arise from a leakage of the CMB dipole into the y -channel which couples to all multipoles, mostly affecting the range ℓ≲400 . This should be visible in Planck's y -maps with an estimated signal-to-noise ratio of about 12. We note however that such frequency-dependent terms carry no new information on the nature of the CMB dipole. This implies that the real significance of Planck's Doppler coupling measurements is actually lower than reported by the collaboration. Finally, we quantify the level of contamination in tSZ and primordial y -type distortions and show that it is above the sensitivity of proposed next-generation CMB experiments.

  20. CMB lensing and giant rings

    NASA Astrophysics Data System (ADS)

    Rathaus, Ben; Itzhaki, Nissan

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  1. Forest mapping with multi-temporal dual polarization ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Ling, Feilong; Li, Zengyuan; Chen, Erxue; Wang, Qinmin

    2008-12-01

    The objective of this study is to exploit the new features of ALOS PALSAR dual polarization mode data and to develop novel classification method for forest mapping in heterogeneous areas. A test site was selected in Fujian province in southeast of China. Traditionally, forest is detected by its low coherence, low temporal variability of the backscattering intensity and mediate backscattering intensity. However, the analyses in this paper indicate that it is not possible to discriminate forest from nonforest by any single PALSAR feature in this test site. After examination the dependences of the multitemporal backscatter intensity, the polarimetric parameters and the interferometric coherence on different land cover types, a hierarchical classification method is proposed for coastal forest and hilly forest mapping. The forest maps are validated by forest inventory data and SPOPT-5 images. The results show that multitemporal PALSAR dual polarization data can accurate maps for coastal forest in flat areas using the proposed method. The capability to map forest in hilly regions is still limited.

  2. Testing cosmic microwave background polarization data using position angles

    NASA Astrophysics Data System (ADS)

    Preece, Michael; Battye, Richard A.

    2014-10-01

    We consider a novel null test for contamination which can be applied to cosmic microwave background (CMB) polarization data that involves analysis of the statistics of the polarization position angles. Specifically, we will concentrate on using histograms of the measured position angles to illustrate the idea. Such a test has been used to identify systematics in the NRAO-VLA Sky Survey point source catalogue with an amplitude well below the noise level. We explore the statistical properties of polarization angles in CMB maps. If the polarization angle is not correlated between pixels, then the errors follow a simple √{N_{pix}} law. However, this is typically not the case for CMB maps since these have correlations which result in an increase in the variance as the effective number of independent pixels is reduced. Then, we illustrate how certain classes of systematic errors can result in very obvious patterns in these histograms, and thus that these errors could possibly be identified using this method. We discuss how this idea might be applied in a realistic context, and make a preliminary analysis of the Wilkinson Microwave Anisotropy Probe 7 data, finding evidence of a systematic error in the Q- and W- band data, consistent with a constant offset in Q and U.

  3. Crystallite orientation maps in starch granules from polarized Raman spectroscopy (PRS) data.

    PubMed

    Galvis, Leonardo; Bertinetto, Carlo G; Putaux, Jean-Luc; Montesanti, Nicole; Vuorinen, Tapani

    2016-12-10

    In this work, polarized Raman spectroscopy (PRS) was used to determine orientation maps of crystallites present in Phajus grandifolius starch granules based on the anisotropic response of the glycosidic Raman band at 865cm(-1). The response of this band was preliminarily evaluated using model A-amylose crystals as standard. The A-amylose crystals oriented "in plane" showed a maximal intensity ratio of ∼3.0 for bands 865/1343cm(-1) when the polarization of the laser was along the chain axis of the crystal, i.e., parallel to the axis of the amylose double helices, and a minimal intensity ratio of ∼0.25 when perpendicular. The orientation maps of Phajus grandifolius starch granules showed two distinct regions: one isotropic and the other with a highly anisotropic response. The origin of the difference might be changes in both organization/concentration and orientation of the crystallites across the starch granules. PMID:27577898

  4. CMB hemispherical asymmetry: long mode modulation and non-Gaussianity

    SciTech Connect

    Namjoo, Mohammad Hossein; Baghram, Shant; Firouzjahi, Hassan; Abolhasani, Ali Akbar E-mail: abolhasani@ipm.ir E-mail: firouz@ipm.ir

    2014-08-01

    The observed hemispherical asymmetry in CMB map can be explained by modulation from a long wavelength super horizon mode which non-linearly couples to the CMB modes. We address the criticism in [1] about the role of non-Gaussianities in squeezed and equilateral configurations in generating hemispherical asymmetry from the long mode modulation. We stress that the modulation is sensitive to the non-Gaussianity in the squeezed limit. In addition, we demonstrate the validity of our approach in providing a consistency condition relating the amplitude of dipole asymmetry to f{sub NL} in the squeezed limit.

  5. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitry D.; Shvachkina, Marina E.; Sherman, Maria M.; Spivak, Andrey V.; Pravdin, Alexander B.; Yakovlev, Dmitry A.

    2016-07-01

    Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000 μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment.

  6. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy.

    PubMed

    Yakovlev, Dmitry D; Shvachkina, Marina E; Sherman, Maria M; Spivak, Andrey V; Pravdin, Alexander B; Yakovlev, Dmitry A

    2016-07-01

    Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000  μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment. PMID:27027930

  7. Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    NASA Astrophysics Data System (ADS)

    Grandis, S.; Rapetti, D.; Saro, A.; Mohr, J. J.; Dietrich, J. P.

    2016-08-01

    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat ΛCDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat ΛCDM. We find a clear preference for models with free curvature, ΩK, or free amplitude of the CMB lensing potential, AL. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15 CMB data and six other CMB and distance datasets. In flat ΛCDM we find a 4.8σ tension between the base P15 CMB data and a distance ladder measurement, whereas the former are consistent with the other datasets. In the curved ΛCDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-ℓ multipoles of the CMB data. In the flat ΛCDM+AL model, however, all datasets are consistent with the base P15 CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15 CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat ΛCDM model.

  8. Mapping the Martian Polar Ice Caps: Applications of Terrestrial Optical Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Nolin, A. W.

    1998-01-01

    With improvements in both instrumentation and algorithms, methods for mapping terrestrial snow cover using optical remote sensing data have progressed significantly over the past decade. Multispectral data can now be used to determine not only the presence or absence of snow but the fraction of snow cover in a pixel. Radiative transfer models have been used to quantify the nonlinear relationship between surface reflectance and grain size, thereby providing the basis for mapping snow grain size from surface reflectance images Because subpixel mixtures of snow and other land cover types create erroneous estimates of snow grain-size, the snow fraction information can be used in tandem with the grain size algorithm to limit its use to only those pixels that have complete snow cover. Model-derived characterization of the bidirectional reflectance distribution function (BRDF) provides the means for converting measured bidirectional reflectance to directional-hemispherical albedo. In recent work, this approach has allowed climatologists to examine the large-scale seasonal variability of albedo on the Greenland ice sheet. This seasonal albedo variability results from increases in snow grain size and exposure of the underlying ice cap as the seasonal snow cover ablates away. it will soon be possible to apply some of these terrestrial mapping methods to learn more about martian polar caps. What is most needed for this purpose is multispectral optical imagery. The extent and variability of the ice caps and their seasonal CO2 frost covering can be mapped with only a few spectral bands distributed through the visible and near-infrared wavelengths. Imaging spectrometer data would provide the ability to quantify mineral-ice mixtures and to better characterize the martian atmosphere. These are both needed for albedo determinations while only the former is required for subpixel frost/ice mapping. Perhaps the most significant terrestrial mapping application is the potential use of

  9. Polarization of Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Buzzelli, A.; Cabella, P.; de Gasperis, G.; Vittorio, N.

    2016-02-01

    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross- correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales.

  10. Measuring the CMB Dipole at 11 GHz—for cheap!

    NASA Astrophysics Data System (ADS)

    Markowitz, Aaron; Harrison, S.; Karkare, K. S.; Kimbert, R.; Kovac, J. M.

    2014-01-01

    We report the design of a telescope capable of making mK-sensitivity maps of the microwave sky, with potential to map large-scale structure of the CMB and galaxy, within the budget of a classroom or amateur astronomer. This project modifies a telescope designed by Harvard’s advanced undergraduate astrophysics lab course, with the goal of improving sensitivity enough to detect the CMB dipole. The telescope’s design allows replication of the experiment within the resources of most similar undergraduate laboratory research courses. We use a low-noise block (LNB) receiver and a bandpass filter to amplify radiation near 10.7 GHz and remove RFI, and we rotate the telescope at constant angular velocity and elevation to provide coverage of the entire visible sky over 24 hours. Before modifications, the telescope accurately measured the isotropic CMB temperature, but interference and 1/f noise limited detection of isotropies in the microwave signal. With current modifications, the telescope can collect data continuously for over 24 hours, and produce maps used to constrain galactic and CMB signals.

  11. A combined binary interaction and phenotypic map of C. elegans cell polarity proteins

    PubMed Central

    Koorman, Thijs; Lemmens, Irma; Ramalho, João J.; Nieuwenhuize, Susan; van den Heuvel, Sander; Tavernier, Jan; Nance, Jeremy; Boxem, Mike

    2015-01-01

    The establishment of cell polarity is an essential process for the development of multicellular organisms and the functioning of cells and tissues. Here, we combine large-scale protein interaction mapping with systematic phenotypic profiling to study the network of physical interactions that underlies polarity establishment and maintenance in the nematode Caenorhabditis elegans. Using a fragment-based yeast two-hybrid strategy, we identified 439 interactions between 296 proteins, as well as the protein regions that mediate these interactions. Phenotypic profiling of the network resulted in the identification of 100 physically interacting protein pairs for which RNAi-mediated depletion caused a defect in the same polarity-related process. We demonstrate the predictive capabilities of the network by showing that the physical interaction between the RhoGAP PAC-1 and PAR-6 is required for radial polarization of the C. elegans embryo. Our network represents a valuable resource of candidate interactions that can be used to further our insight into cell polarization. PMID:26780296

  12. Polarization Reversal Over Flooded Regions and Applications to Large-Scale Flood Mapping with Spaceborne Scatterometers

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Liu, W. Timothy; Xie, Xiao-Su

    1999-01-01

    We present the polarization reversal in backscatter over flooded land regions, and demonstrate for the first time the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. Scatterometer data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on the Japanese ADEOS spacecraft from September 1996 to June 1997. During this time span, several severe floods occurred. Over most land surface, vertical polarization backscatter (Sigma(sub upsilon(upsilon)) is larger than horizontal polarization backscatter (sigma(sub hh)). Such polarization characteristics is reversed and sigma(sub upsilon(upsilon)) is smaller than sigma(sub hh) over flooded regions, except under a dense forest canopy. The total backscatter from the flooded landscape consists of direct backscatter and boundary-interaction backscatter. The direct term is contributed by direct backscattering from objects protruding above the water surface, and by backscattering from waves on the water surface. The boundary-interaction term is contributed by the forward scattering from the protruding objects and then reflected from the water surface, and also by the forward scattering from these objects after the water-surface reflection. Over flooded regions, the boundary-interaction term is dominant at large incidence angles and the strong water-surface reflection is much larger for horizontal polarization than the vertical one due to the Brewster effect in transverse-magnetic waves. These scattering mechanisms cause the polarization reversal over flooded regions. An example obtained with the Analytic Wave Theory is used to illustrate the scattering mechanisms leading to the polarization reversal. We then demonstrate the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. We process NSCAT data to obtain the polarization ratio sigma(sub hh)/sigma(sub upsilon(upsilon)) with colocated data at incidence angles larger than 40 deg. The results over Asian

  13. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    NASA Astrophysics Data System (ADS)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  14. CMB constraints on dark matter models with large annihilation cross section

    SciTech Connect

    Galli, Silvia; Iocco, Fabio; Bertone, Gianfranco; Melchiorri, Alessandro

    2009-07-15

    The injection of secondary particles produced by dark matter (DM) annihilation around redshift {approx}1000 would inevitably affect the process of recombination, leaving an imprint on cosmic microwave background (CMB) anisotropies and polarization. We show that the most recent CMB measurements provided by the WMAP satellite mission place interesting constraints on DM self-annihilation rates, especially for models that exhibit a large Sommerfeld enhancement of the annihilation cross section, as recently proposed to fit the PAMELA and ATIC results. Furthermore, we argue that upcoming CMB experiments such as Planck, will improve the constraints by at least 1 order of magnitude, thus providing a sensitive probe of the properties of DM particles.

  15. Smoothed Quantum Fluctuations and CMB Observations

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Kamionka, Michał

    2012-10-01

    In this paper, we investigate power spectrum of a smoothed scalar field. The smoothing leads to regularization of the UV divergences and can be related with the internal structure of the considered field or the space itself. We perform Gaussian smoothing to the quantum fluctuations generated during the phase of cosmic inflation. We study whether this effect can be probed observationally and conclude that the modifications of the power spectrum due to the smoothing on the Planck scale are negligible and far beyond the observational abilities. Subsequently, we investigate whether smoothing in any other form can be probed observationally. We introduce phenomenological smoothing factor e-k2σ2 to the inflationary spectrum and investigate its effects on the spectrum of CMB anisotropies and polarization. We show that smoothing can lead to suppression of high multipoles in the spectrum of the CMB. Based on seven years observations of WMAP satellite we indicate that the present scale of high multipoles suppression is constrained by σ < 3.19 Mpc (95% CL). This corresponds to the constraint σ < 100 μm at the end of inflation. Despite this value is far above the Planck scale, other processes of smoothing can be possibly studied with this constraint, as decoherence or diffusion of primordial perturbations.

  16. Understanding the origin of CMB constraints on dark energy

    NASA Astrophysics Data System (ADS)

    Jassal, H. K.; Bagla, J. S.; Padmanabhan, T.

    2010-07-01

    We study the observational constraints of cosmic microwave background (CMB) temperature and polarization anisotropies on models of dark energy, with special focus on models with variation in properties of dark energy with time. We demonstrate that the key constraint from CMB observations arises from the location of acoustic peaks. An additional constraint arises from the limits on ΩNR from the relative amplitudes of acoustic peaks. Further, we show that the distance to the last scattering surface is not how the CMB observations constrain the combination of parameters for models of dark energy. We also use constraints from supernova observations and show that unlike the gold and silver samples, the Supernova Legacy Survey (SNLS) sample prefers a region of parameter space that has a significant overlap with the region preferred by the CMB observations. This is a verification of a conjecture made by us in an earlier work. We discuss combined constraints from Wilkinson Microwave Anisotropy Probe 5-yr and SNLS observations. We find that models with w ~= - 1 are preferred for models with a constant equation-of-state parameters. In case of models with a time-varying dark energy, we show that constraints on evolution of dark energy density are almost independent of the type of variation assumed for the equation-of-state parameter. This makes it easy to get approximate constraints from CMB observations on arbitrary models of dark energy. Constraints on models with a time-varying dark energy are predominantly due to CMB observations, with supernova constraints playing only a marginal role.

  17. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  18. CMB temperature bispectrum induced by cosmic strings

    SciTech Connect

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-15

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  19. Collagen fiber spatial orientation mapping using polarization-sensitive SHG microscopy

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir A.; Hu, Po-Sheng; Dong, Chen-Yuan

    2012-12-01

    Collagen, the main structural protein in vertebrates, possesses different structural organization that is responsible for specific functions of the tissues. Polarization dependence of the second harmonic generation (SHG) signal on spatial orientation of optically nonlinear materials, such as collagen, provides information on characteristic organization and architecture not available from intensity measurements alone. Here we describe a simple approach for determining both the azimuth and elevation angles of collagen fiber orientation in biological tissues. Azimuth angle of the fiber orientation is determined as an orthogonal angle to the laser polarization direction, when laser-induced total SHG signal is minimal, whereas the elevation angle is estimated from the ratio of the minimal SHG intensity to the intensity when laser polarization and fiber directions are parallel to each other. Using this approach pixel-resolved mapping of the spatial orientation of collagen fibers in tendon and cornea is demonstrated. The new approach may be used for analyzing of biological tissues in vivo. Spatial orientation mapping method provides additional information concerning fiber organization, and may be incorporated into nonlinear optical imaging systems.

  20. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Wainwright, Haruko M.; Flores Orozco, Adrian; Bücker, Matthias; Dafflon, Baptiste; Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.

    2016-01-01

    In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this study, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys and drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.

  1. Probing cosmic strings with satellite CMB measurements

    SciTech Connect

    Jeong, E.; Baccigalupi, Carlo; Smoot, G.F. E-mail: bacci@sissa.it

    2010-09-01

    We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy maps from isolated strings. We derive the statistical distributions of null detections from purely Gaussian fluctuations and instrumental performances of the operating satellites, and show that the biggest factor that produces confusion is represented by the acoustic oscillation features of the scale comparable to the size of horizon at recombination. Simulations show that the distribution of null detections converges to a χ{sup 2} distribution, with detectability threshold at 99% confidence level corresponding to a string induced step signal with an amplitude of about 100 μK which corresponds to a limit of roughly Gμ ∼ 1.5 × 10{sup −6}. We implement simulations for deriving the statistics of spurious detections caused by extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds, which represents the dominant source of contamination, we construct sky masks outlining the available region of the sky where the Galactic confusion is sub-dominant, specializing our analysis to the case represented by the frequency coverage and nominal sensitivity and resolution of the Planck experiment. As for other CMB measurements, the maximum available area, corresponding to 7%, is reached where the foreground emission is expected to be minimum, in the 70–100 GHz interval.

  2. Dielectric Maps of the Martian Polar Regions from MARSIS/Mex Surface Reflectivity Measurements

    NASA Astrophysics Data System (ADS)

    Beck, P.; Mouginot, J.; Pommerol, A.; Kofman, W. W.; Clifford, S. M.

    2011-12-01

    Most of classic remote-sensing methods probe the surface and very close subsurface of the Martian crust and are thus only sensitive to processes that occurred under the Amazonian climate. Sounding radar has the potential to probe deeper into the crust, revealing processes that occurred in a distant past.We report here on the completion and improvement of dielectric maps of the Martian polar regions assembled from MARSIS measurements, building upon the initial work of [1]. New data collected by MARSIS since 2008 have been incorporated to greatly increase the level of details in the northern hemisphere. In our presentation, we will briefly discuss the method used to extract values of dielectric con-stant from MARSIS measurements which was explained in details by [1]. As a reasonable ap-proximation, we show that these maps are representative of the average dielectric constant of the first 50 to 100 meters below the surface. We compare the dielectric maps of the northern and southern polar regions of Mars and note a stricking difference between both hemispheres. In the south, a strong decrease of the dielectric constant is consistent with the inferred limit for the presence of stable water ice in the ground. In the north, a similar decrease of dielectric constant is observed but it compasses a much broader area than the one where water ice is at equilibrium under the current climate. The dielectric constant pattern displays a much better correlation with the global topography and, to some extent, with the putative shorelines of the past ocean. Ancient water activity is likely responsible for the observed dielectric pattern. To test the link between the geologic nature of the terrains and the value of dielectric con-stant, we produced a composite geologic / dielectric map from the geologic map of [2] and our dielectric map. A detailed examination of this map confirms the strong link between the geologic nature of the formations and their dielectric constant. Hesperian

  3. Multi-Wavelength, Multi-Beam, and Polarization-Sensitive Laser Transmitter for Surface Mapping

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Ramos-Izquierdo, Luis; Harding, David; Huss, Tim

    2011-01-01

    A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A second set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple

  4. 3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips.

    PubMed

    Ahn, J S; Kihm, H W; Kihm, J E; Kim, D S; Lee, K G

    2009-02-16

    We have measured local electric field polarization vectors in 3-dimensional space on the nanoscale. A radial polarized light is generated by using a radial polarization converter and focused by an objective lens. Gold nanoparticle functionalized tips are used to scatter the focused field into the far-field region. Two different methods, rotational analyzer ellipsometry and Stokes parameters, are used in determining the polarization state of the scattered light. Two methods give consistent results with each other. Three dimensional local polarization vectors could be reconstructed by applying back transformation of the fully characterized polarizability tensor of the tip. PMID:19219131

  5. Ultra-high resolution, polarization sensitive transversal optical coherence tomography for structural analysis and strain mapping

    NASA Astrophysics Data System (ADS)

    Wiesauer, Karin; Pircher, Michael; Goetzinger, Erich; Hitzenberger, Christoph K.; Engelke, Rainer; Ahrens, Gisela; Pfeiffer, Karl; Ostrzinski, Ute; Gruetzner, Gabi; Oster, Reinhold; Stifter, David

    2006-02-01

    Optical coherence tomography (OCT) is a contactless and non-invasive technique nearly exclusively applied for bio-medical imaging of tissues. Besides the internal structure, additionally strains within the sample can be mapped when OCT is performed in a polarization sensitive (PS) way. In this work, we demonstrate the benefits of PS-OCT imaging for non-biological applications. We have developed the OCT technique beyond the state-of-the-art: based on transversal ultra-high resolution (UHR-)OCT, where an axial resolution below 2 μm within materials is obtained using a femtosecond laser as light source, we have modified the setup for polarization sensitive measurements (transversal UHR-PS-OCT). We perform structural analysis and strain mapping for different types of samples: for a highly strained elastomer specimen we demonstrate the necessity of UHR-imaging. Furthermore, we investigate epoxy waveguide structures, photoresist moulds for the fabrication of micro-electromechanical parts (MEMS), and the glass-fibre composite outer shell of helicopter rotor blades where cracks are present. For these examples, transversal scanning UHR-PS-OCT is shown to provide important information about the structural properties and the strain distribution within the samples.

  6. High Resolution North and South Polar Maps of the Moon with AMIE/SMART-1

    NASA Astrophysics Data System (ADS)

    Despan, Daniela; Erard, Stephane; Beauvivre, Stephane; Chevrel, Serge; Pinet, Patrick; Almeida, Miguel; Grieger, Bjoern; Cerroni, Priscilla; Barucci, M. A.; Josset, Jean-Luc; Koschny, Detlef; Foing, Bernard H.

    The northern and southern polar areas maps of the Moon are obtained by processing and mosaiking of the AMIE, SMART-1 images. The Advanced Moon micro-Imager Experiment (AMIE) on board the ESA lunar mission Smart-1 has performed colour imaging of the lunar surface using various filters in the visible and NIR. The low pericenter, polar orbit, allowed to obtain high resolution images in various locations at the surface. From the 300 km pericenter altitude, the field of view (5,3° x5,3° ) corresponds to a spatial resolution about 30 m. The 1024x1024 images are shared by the various filters, allowing to derive mosaics of the surface in up to 3 colors depending on pointing mode. Spot-pointing observations and multiple observations from different orbits have provided photometric sequences that allow to study the surface properties in restricted areas. Geometrical analysis of the AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. Images from various orbits are first identified for each selected region of interest. These images are then selected according to signal to noise ratio, spatial coverage, and spatial resolution. The best images obtained with the neutral filter are calibrated, and mosaicked using the coordinates of the image frames corners. In the polar areas, images are selected so as to provide the best possible viewing of surface topography, depending on solar illumination angle, while preserving images continuity in shadowed areas. The maps of other regions of interest are yielded: Marius Hills, the Gruitheisen Domes, Rumker Hills, Aristarchus Plateau. Eventually, this method will be applied in all regions where AMIE has provided high resolution observations of the surface, typically a factor of 3 higher than the Clementine UV-vis camera. These regions are essentially located at latitude ranging from 80 to 40° S, specially

  7. What will we learn from the CMB?

    SciTech Connect

    Dodelson, S.

    1997-10-01

    Within the next decade, experiments measuring the anisotropies in the cosmic microwave background (CMB) will add greatly to our knowledge of the universe. There are dozens of experiments scheduled to take data over the next several years, capped by the satellite missions of NASA (MAP) and ESA (PLANCK). What will we learn from these experiments? I argue that the potential pay-off is immense: We are quite likely to determine cosmological parameters to unprecedented accuracy. This will provide key information about the theory of structure formation and even about the physics behind inflation. If the experiments succeed, can anything spoil this pay-off? I focus on three possible spoilers - foregrounds, reionization, and defect models - and argue that we have every reason to be optimistic.

  8. Cross-correlation analysis of CMB with foregrounds for residuals

    NASA Astrophysics Data System (ADS)

    Aluri, Pavan K.; Rath, Pranati K.

    2016-06-01

    In this paper, we try to probe whether a clean cosmic microwave background (CMB) map obtained from the raw satellite data using a cleaning procedure is sufficiently clean. Specifically, we study if there are any foreground residuals still present in the cleaned data using a cross-correlation statistic. Residual contamination is expected to be present, primarily, in the Galactic plane due to the high emission from our own Galaxy. A foreground mask is applied conventionally to avoid biases in the estimated quantities of interest due to foreground leakage. Here, we map foreground residuals, if present, in the unmasked region i.e. outside a CMB analysis mask. Further locally extended foreground-contaminated regions, found eventually, are studied to understand them better. The few contaminated regions thus identified may be used to slightly extend the available masks to make them more stringent.

  9. Can CMB Experiments Find Planet Nine?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    authors propose that CMB experiments with high enough resolution (~5m telescopes and larger) could have the ability to detect Planet Nine!Theres one major catch: how can we differentiate between Planet Nine and the ~4000 foreground asteroids that are brighter than 30 mJy at millimeter wavelengths?Cowan and collaborators argue that this can be done using a combination of asteroid databases and parallax measurements. The authors calculate that Planet Nine should move roughly a few arcseconds per day, mostly due to parallax. In comparison, asteroids will move ~10 arcminutes per day in a combination of proper motion and parallax an order of magnitude faster than Planet Nine.Resolution ConstraintsTo hunt down Planet Nine, we therefore need telescopes that can not only resolve a 30 mJy point source, but can also resolve an annual parallax motion of ~5 arcminutes per year.The authors demonstrate that several current and planned CMB experiments have the resolution and ability to detect Planet Nine, provided that they map large swatches of the sky and return to the same regions every few months. These experiments include CCAT, the South Pole Telescope, the Atacama Cosmology Telescope, CMB-S4, and even possibly Planck.With the astronomical community coming together to brainstormwaysto trackdown this elusive possible planet, the use of CMB experiments is an intriguing option. And even if Planet Nine is discovered by other means, measuring its heat signaturewillteach usmore about the internal workings of giant planets.CitationNicolas B. Cowan et al 2016 ApJ 822 L2. doi:10.3847/2041-8205/822/1/L2

  10. Cosmic ray contributions to the WMAP polarization data on the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Wibig, Tadeusz; Wolfendale, Arnold W.

    2016-01-01

    We have updated our analysis of the 9-year WMAP data using the collection of polarization maps looking for the presence of additional evidence for a finite ‘cosmic ray (CR) foreground’ for the cosmic microwave background (CMB). We have given special attention to high Galactic latitudes, where the recent BICEP2 findings were reported although very recent Planck data claims that dust is prevalent, thus nullifying the BICEP2 results. The method of examining the correlation with the observed gamma ray flux proposed in our earlier papers and applied to the polarization data shows that the foreground related to CRs is still observed even at high Galactic latitudes and conclusions about gravitational waves are not yet secure. Theory has it that there is important information about inflationary gravitational waves in the fine structure of the CMB polarization properties (polarization vector and angle) and it is necessary to examine further the conclusions that can be gained from studies of the CMB maps, in view of the disturbing foreground effects.

  11. Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-07-11

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves. PMID:25062161

  12. Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR Experiment

    NASA Astrophysics Data System (ADS)

    Ade, P. A. R.; Akiba, Y.; Anthony, A. E.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Dobbs, M.; Elleflot, T.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Gilbert, A.; Grainger, W.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Hori, Y.; Howard, J.; Hyland, P.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Linder, E.; Leitch, E. M.; Lungu, M.; Matsuda, F.; Matsumura, T.; Meng, X.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Quealy, E.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Schanning, I.; Schenck, D. E.; Sherwin, B.; Shimizu, A.; Shimmin, C.; Shimon, M.; Siritanasak, P.; Smecher, G.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Takakura, S.; Tomaru, T.; Wilson, B.; Yadav, A.; Zahn, O.; Polarbear Collaboration

    2014-07-01

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ˜30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat +sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

  13. The full squeezed CMB bispectrum from inflation

    SciTech Connect

    Lewis, Antony

    2012-06-01

    The small-scale CMB temperature we observe on the sky is modulated by perturbations that were super-horizon at recombination, giving differential focussing and lensing that generate a non-zero bispectrum even for single-field inflation where local physics is identical. Understanding this signal is important for primordial non-Gaussianity studies and also parameter constraints from the CMB lensing bispectrum signal. Because of cancellations individual effects can appear larger or smaller than they are in total, so a full analysis may be required to avoid biases. I relate angular scales on the sky to physical scales at recombination using the optical equations, and give full-sky results for the large-scale adiabatic temperature bispectrum from Ricci focussing (expansion of the ray bundle), Weyl lensing (convergence and shear), and temperature redshift modulations of small-scale power. The δN expansion of the beam is described by the constant temperature 3-curvature, and gives a nearly-observable version of the consistency relation prediction from single-field inflation. I give approximate arguments to quantify the likely importance of dynamical effects, and argue that they can be neglected for modulation scales l∼<100, which is sufficient for lensing studies and also allows robust tests of local primordial non-Gaussianity using only the large-scale modulation modes. For accurate numerical results early and late-time ISW effects must be accounted for, though I confirm that the late-time non-linear Rees-Sciama contribution is negligible compared to other more important complications. The total corresponds to f{sub NL} ∼ 7 for Planck-like temperature constraints and f{sub NL} ∼ 11 for cosmic-variance limited data to l{sub max} = 2000. Temperature lensing bispectrum estimates are affected at the 0.2σ level by Ricci focussing, and up to 0.5σ with polarization.

  14. Detection of degree-scale B-mode polarization and studying cosmic polarization rotation with the BICEP1 and BICEP2 telescopes

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan Philip

    The BICEP1 and BICEP2 telescopes studied the temperature and polarization of the Cosmic Microwave Background (CMB) from 2006 -- 2008 and 2010 -- 2012, respectively, producing the deepest maps of polarization created to date. From BICEP2 three-year data, we detect B-mode polarization at the degree-scale above the expectation from lensed-ΛCDM to greater than 5sigma significance, consistent with that expected from gravitational waves created during Inflation. Instrumental systematic effects have been characterized and ruled out, and galactic foreground contamination is disfavored by the data. Additionally, correlations between temperature and B-mode polarization and between E-mode and B-mode polarization show evidence of polarization rotation of --1° to 5sigma significance; however, adding systematic uncertainty reduces this significance to ˜ 2sigma. These measurements, combined with other CMB and astrophysical measurements, point to possible parity violating physics like cosmic birefringence, but more precise calibration techniques are required to break the degeneracy between cosmic polarization rotation and systematic effects. Improved calibration is possible with current generation technology and may be achieved within the next few years. In this work, I present experimental and analysis techniques employed for BICEP1 and BICEP2 to measure B-mode polarization and temperature and polarization correlations, as well as the scientific motivation, results, and a path forward for future measurements.

  15. PETROLEUM RESIDUA SOLUBILITY PARAMETER/POLARITY MAP: STABILITY STUDIES OF RESIDUA PYROLYSIS

    SciTech Connect

    John F. Schabron; A. Troy Pauli; Joseph F. Rovani, Jr.

    1999-04-30

    A new molecular weight/polarity map based on the Scatchard-Hildebrand solubility equation has been developed for petroleum residua. A series of extractions are performed with solvents of increasing solubility parameter, and the fractions are analyzed by vapor pressure osmometry for number average molecular weight and by analytical-scale size exclusion chromatography for molecular weight spread. Work was performed for a heavy oil material subjected to three increasing severities of thermal treatment prior to and through the onset of coke formation. The results are diagnostic of the layers of solvations by resin-type molecules around a central asphaltene core. Two additional stability diagnostic methods were also used. These were the Heithaus titration ''P-index'' and Gaestel ''G'' index, which have been applied to paving asphalts for decades. The Heithaus titration involves the titration of three toluene solutions of a residuum at three concentrations with a poor solvent, such as isooctane, to the point of asphaltene flocculation. In the present work, the significance of the data are developed in terms of the Hildebrand solubility parameter. The Heithaus results are combined with data from the new molecular weight/polarity map. The solubility parameters for the toluene-soluble asphaltene components are measured, and the solubility parameters of the maltenes can be calculated. As thermal treatment progresses, the solubility parameters of asphaltene materials increase and the molecular weights decrease. A new coking index is proposed based on Heithaus titration data. Preliminary results suggest that an alternative, simpler coking index may be developed by measuring the weight percent of cyclohexane solubles in heptane asphaltenes. Coking onset appears to coincide with the depletion of these resin-type asphaltene solubilizing components of residua. The objective of the present study was to develop a mapping tool that will enhance understanding of the changes that occur

  16. Probing gravity at large scales through CMB lensing

    NASA Astrophysics Data System (ADS)

    Pullen, Anthony R.; Alam, Shadab; Ho, Shirley

    2015-06-01

    We describe a methodology to probe gravity with the cosmic microwave background (CMB) lensing convergence κ, specifically by measuring EG, the ratio of the Laplacian of the gravitational scalar potential difference to the velocity divergence. Using CMB lensing instead of galaxy-galaxy lensing avoids intrinsic alignments while also lacking a hard limit on the lens redshift and significant uncertainties in the source plane. We model EG for general relativity and modified gravity, finding that EG for f(R) gravity should be scale dependent due to the scale dependence of the growth rate f. Next, we construct an estimator for EG in terms of the galaxy-CMB lensing and galaxy clustering angular power spectra, along with the redshift-space distortion parameter β. We also forecast statistical errors for EG from the current Planck CMB lensing map and the spectroscopic galaxy and quasar samples from the Sloan Digital Sky Survey Data Release 11, being 9 per cent with galaxies and 8 per cent when quasars are included. We also find that upcoming spectroscopic and photometric surveys, combined with the final Planck lensing map, can measure precisely the redshift- and scale dependence of EG out to redshifts z = 2 and higher, with photometric surveys having an advantage due to their high number densities. Advanced ACTPol's lensing map will increase the EG sensitivity even further. Finally, we find that Advanced ACTPol cross-correlated with spectroscopic (photometric) surveys can differentiate between general relativity and f(R) gravity at the level of 3σ (13σ). Performing a <1 per cent measurement of EG requires a 10 per cent precision in β from Euclid or Large Synoptic Survey Telescope, currently achievable with a spectroscopic survey but difficult with only a photometric survey.

  17. Application of time domain induced polarization to the mapping of lithotypes in a landfill site

    NASA Astrophysics Data System (ADS)

    Gazoty, A.; Fiandaca, G.; Pedersen, J.; Auken, E.; Christiansen, A. V.; Pedersen, J. K.

    2012-06-01

    A direct current (DC) resistivity and time domain induced polarization (TDIP) survey was undertaken at a decommissioned landfill site situated in Hørløkke, Denmark, for the purpose of mapping the waste deposits and to discriminate important geological units that control the hydrology of the surrounding area. It is known that both waste deposits and clay have clear signatures in TDIP data, making it possible to enhance the resolution of geological structures compared to DC surveys alone. Four DC/TDIP profiles were carried out crossing the landfill, and another seven profiles in the surroundings provide a sufficiently dense coverage of the entire area. The whole dataset was inverted using a 1-D laterally constrained inversion scheme, recently implemented for TDIP data, in order to use the entire decay curves for reconstructing the electrical parameters of the soil in terms of the Cole-Cole polarization model. Results show that it is possible to resolve both the geometry of the buried waste body and key geological structures. In particular, it was possible to find a silt/clay lens at depth that correlates with the flow direction of the pollution plume spreading out from the landfill and to map a shallow sandy layer rich in clay that likely has a strong influence on the hydrology of the site. This interpretation of the geophysical findings was constrained by borehole data, in terms of geology and gamma ray logging. The results of this study are important for the impact of the resolved geological units on the hydrology of the area, making it possible to construct more realistic scenarios of the variation of the pollution plume as a function of the climate change.

  18. Application of time domain induced polarization to the mapping of lithotypes in a landfill site

    NASA Astrophysics Data System (ADS)

    Gazoty, A.; Fiandaca, G.; Pedersen, J.; Auken, E.; Christiansen, A. V.; Pedersen, J. K.

    2012-01-01

    A DC resistivity (DC) and Time Domain Induced Polarization (TDIP) survey was undertaken at a decommissioned landfill site situated in Hørløkke, Denmark, for the purpose of mapping the waste deposits and to discriminate important geological units that control the hydrology of the surrounding area. It is known that both waste deposits and clay have clear signatures in TDIP data, making possible to enhance the resolution of geological structures, when compared to DC surveys alone. Four DC/TDIP profiles were carried out crossing the landfill and another seven profiles in the surroundings, giving a dense coverage over the entire area. The whole dataset was inverted using a 1-D Laterally Constrained Inversion scheme, recently implemented for IP data, in order to use the entire decay curves for reconstructing the electrical parameters of the soil in terms of the Cole-Cole polarization model. Results show that it is possible to both resolve the geometry of the buried waste body and key geological structures. In particular, it was possible to find a silt/clay lens at depth, which correlates with the flow direction of the pollution plume spreading out from the landfill, and to map a shallow sandy layer rich in clay that likely has a strong influence on the hydrology of the site. This interpretation of the geophysical findings was constrained by boreholes data, in terms of geology and gamma ray logging. The results of this study are important for the impact that the resolved geological units have in the hydrology of the area, making it possible to construct more realistic scenarios of the variation of the pollution plume as a function of the climate change.

  19. The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches

    NASA Astrophysics Data System (ADS)

    Bucher, Martin; Racine, Benjamin; van Tent, Bartjan

    2016-05-01

    We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlation function) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called fNL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in order to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.

  20. Non-Gaussianity and CMB aberration and Doppler

    SciTech Connect

    Catena, Riccardo; Liguori, Michele; Renzi, Alessandro; Notari, Alessio E-mail: michele.liguori@pd.infn.it E-mail: arenzi@pd.infn.it

    2013-09-01

    The peculiar motion of an observer with respect to the CMB rest frame induces a deflection in the arrival direction of the observed photons (also known as CMB aberration) and a Doppler shift in the measured photon frequencies. As a consequence, aberration and Doppler effects induce non trivial correlations between the harmonic coefficients of the observed CMB temperature maps. In this paper we investigate whether these correlations generate a bias on non-Gaussianity estimators f{sub NL}. We perform this analysis simulating a large number of temperature maps with Planck-like resolution (lmax = 2000) as different realizations of the same cosmological fiducial model (WMAP7yr). We then add to these maps aberration and Doppler effects employing a modified version of the HEALPix code. We finally evaluate a generalization of the Komatsu, Spergel and Wandelt non-Gaussianity estimator for all the simulated maps, both when peculiar velocity effects have been considered and when these phenomena have been neglected. Using the value v/c = 1.23 × 10{sup −3} for our peculiar velocity, we found that the aberration/Doppler induced non-Gaussian signal is at most of about half of the cosmic variance σ for f{sub NL} both in a full-sky and in a cut-sky experimental configuration, for local, equilateral and orthogonal estimators. We conclude therefore that when estimating f{sub NL} it is safe to ignore aberration and Doppler effects if the primordial map is already Gaussian. More work is necessary however to assess whether a map which contains non-Gaussianity can be significantly distorted by a peculiar velocity.

  1. Foreground-induced biases in CMB polarimeter self-calibration

    NASA Astrophysics Data System (ADS)

    Abitbol, Maximilian H.; Hill, James; Johnson, Bradley

    2016-06-01

    Precise polarization measurements of the cosmic microwave background (CMB) require accurate knowledge of the instrument orientation relative to the sky frame used to define the cosmological Stokes parameters. Suitable celestial calibration sources that could be used to measure the polarimeter orientation angle are limited, so current experiments commonly `self-calibrate.' The self-calibration method exploits the theoretical fact that the EB and TB cross-spectra of the CMB vanish in the standard cosmological model, so any detected EB and TB signals must be due to systematic errors. However, this assumption neglects the fact that polarized Galactic foregrounds in a given portion of the sky may have non-zero EB and TB cross-spectra. If these foreground signals remain in the observations, then they will bias the self-calibrated telescope polarization angle and produce a spurious B-mode signal. In this paper, we estimate the foreground-induced bias for various instrument configurations and then expand the self-calibration formalism to account for polarized foreground signals. Assuming the EB correlation signal for dust is in the range constrained by angular power spectrum measurements from Planck at 353 GHz (scaled down to 150 GHz), then the bias is negligible for high angular resolution experiments, which have access to CMB-dominated high 'ell' modes with which to self-calibrate. Low-resolution experiments observing particularly dusty sky patches can have a bias as large as 0.5°. A miscalibration of this magnitude generates a spurious BB signal corresponding to a tensor-to-scalar ratio of approximately r ~ 2 × 10-3, within the targeted range of planned experiments.

  2. Foreground-induced biases in CMB polarimeter self-calibration

    NASA Astrophysics Data System (ADS)

    Abitbol, Maximilian H.; Hill, J. Colin; Johnson, Bradley R.

    2016-04-01

    Precise polarization measurements of the cosmic microwave background (CMB) require accurate knowledge of the instrument orientation relative to the sky frame used to define the cosmological Stokes parameters. Suitable celestial calibration sources that could be used to measure the polarimeter orientation angle are limited, so current experiments commonly `self-calibrate.' The self-calibration method exploits the theoretical fact that the EB and TB cross-spectra of the CMB vanish in the standard cosmological model, so any detected EB and TB signals must be due to systematic errors. However, this assumption neglects the fact that polarized Galactic foregrounds in a given portion of the sky may have non-zero EB and TB cross-spectra. If these foreground signals remain in the observations, then they will bias the self-calibrated telescope polarization angle and produce a spurious B-mode signal. In this paper, we estimate the foreground-induced bias for various instrument configurations and then expand the self-calibration formalism to account for polarized foreground signals. Assuming the EB correlation signal for dust is in the range constrained by angular power spectrum measurements from Planck at 353 GHz (scaled down to 150 GHz), then the bias is negligible for high angular resolution experiments, which have access to CMB-dominated high ℓ modes with which to self-calibrate. Low-resolution experiments observing particularly dusty sky patches can have a bias as large as 0.5°. A miscalibration of this magnitude generates a spurious BB signal corresponding to a tensor-to-scalar ratio of approximately r ˜ 2 × 10-3, within the targeted range of planned experiments.

  3. The polarized Galaxy at 43 and 95 GHz as seen by QUIET

    NASA Astrophysics Data System (ADS)

    Melvær Ruud, Tone

    2015-08-01

    I will present mm-wave polarization measurements of two Galactic plane fields, one of which cover the Galactic Centre, made by the QUIET instrument from October 2008 through December 2010. QUIET was a ground-based radiometer experiment targeting the polarized CMB in two frequency bands, Q (43 GHz) and W (95 GHz). Recognizing the importance of constraining the foregrounds in order to produce clean CMB maps, we also devoted some 1400 hours to observing the Galactic plane. The resulting QUIET maps represent the deepest Galactic polarization measurements to date at their frequencies, with instrumental noise levels 2-6 times lower than corresponding maps from Planck and WMAP, and very low systematics. The WMAP and QUIET sky maps at 43 GHz agree very well, while Planck shows systematic deviations from both QUIET and WMAP, with a signature resembling residual temperature-to-polarization leakage at the 0.2% level. Both raw QUIET and inverse variance weighted QUIET+WMAP maps are made publicly available.

  4. Mapping polar bear maternal denning habitat in the National Petroleum Reserve -- Alaska with an IfSAR digital terrain model

    USGS Publications Warehouse

    Durner, George M.; Simac, Kristin; Amstrup, Steven C.

    2013-01-01

    The National Petroleum Reserve–Alaska (NPR-A) in northeastern Alaska provides winter maternal denning habitat for polar bears (Ursus maritimus) and also has high potential for recoverable hydrocarbons. Denning polar bears exposed to human activities may abandon their dens before their young are able to survive the severity of Arctic winter weather. To ensure that wintertime petroleum activities do not threaten polar bears, managers need to know the distribution of landscape features in which maternal dens are likely to occur. Here, we present a map of potential denning habitat within the NPR-A. We used a fine-grain digital elevation model derived from Interferometric Synthetic Aperture Radar (IfSAR) to generate a map of putative denning habitat. We then tested the map’s ability to identify polar bear denning habitat on the landscape. Our final map correctly identified 82% of denning habitat estimated to be within the NPR-A. Mapped denning habitat comprised 19.7 km2 (0.1% of the study area) and was widely dispersed. Though mapping denning habitat with IfSAR data was as effective as mapping with the photogrammetric methods used for other regions of the Alaskan Arctic coastal plain, the use of GIS to analyze IfSAR data allowed greater objectivity and flexibility with less manual labor. Analytical advantages and performance equivalent to that of manual cartographic methods suggest that the use of IfSAR data to identify polar bear maternal denning habitat is a better management tool in the NPR-A and wherever such data may be available.

  5. IRTM brightness temperature maps of the Martian south polar region during the polar night: The cold spots don't move

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Crisp, D.; Santee, M. L.; Richardson, M. I.

    1993-01-01

    A series of infrared thermal mapper (IRTM) south polar brightness temperature maps obtained by Viking Orbiter 2 during a 35-day period during the southern fall season in 1978 was examined. The maps show a number of phenomena that have been identified in previous studies, including day to day brightness temperature variations in individual low temperature regions and the tendency for IRTM 11-micron channel brightness temperatures to also decrease in regions where low 20-micron channel brightness temperatures are observed. The maps also show new phenomena, the most striking of which is a clear tendency for the low brightness temperature regions to occur at fixed geographic regions. During this season, the coldest low brightness temperatures appear to be concentrated in distinct regions, with spatial scales ranging from 50 to 300 km. There are approximately a dozen of these concentrations, with the largest centered near the location of the south residual polar cap. Other concentrations are located at Cavi Angusti and close to the craters Main, South, Lau, and Dana. Broader, less intense regions appear to be well correlated with the boundaries of the south polar layered deposits and the Mountains of Mitchell. No evidence for horizontal motion of any of these regions has been detected.

  6. Re-evaluation of the Cosmic Microwave Background (CMB)

    NASA Astrophysics Data System (ADS)

    Haynes, R.

    2009-12-01

    The cosmic microwave background (CMB) has an almost perfect black-body spectrum, with polarization. These characteristics are inconsistent with the Standard Big Bang (SBB) model. An almost perfect spectrum can arise only from a surface of last scattering which is an almost perfect black-body. Thermodynamically, this is matter in thermal equilibrium, absorbing almost 100% of incident radiation and re-emitting it as black-body radiation. By definition, a perfect black-body is matter at zero kelvin, and cold matter better approaches this perfection. SBB theory describes the CMB as originating from a hydrogen-helium plasma, condensing at a temperature of about 3,000 K. Such a surface would exhibit a continuous radiation spectrum, not unlike that of the sun, which is shown to have a spectrum similar, but not identical to, a black-body spectrum. An imperfect spectrum, even stretched 1100 fold as in the SBB model, remains an imperfect spectrum. Also, a plasma would not support the orientation required to impart polarization to the CMB. A better explanation of the observational evidence is possible if one views the observable universe as part of, and originating from, a much larger structure. Here we propose a defined physical description for such a model. It is shown how a "cosmic fabric" of spin-oriented atomic hydrogen, at zero kelvin, surrounding a matter-depletion zone and the observable universe, would produce the CMB observations. The cosmic fabric would be a perfect black-body and subsequently re-emit an almost perfect black-body spectrum. The radiation would be almost perfectly isotropic, imposed by the spherical distribution of the surface of last scattering, and spin-oriented hydrogen would impart the observed polarization. This geometry also obviates the so-called "horizon problem" of the SBB, why the CMB radiation is essentially isotropic when coming from points of origin with no apparent causal contact. This problem was supposedly "solved" with the

  7. Mapping the inner regions of the polar disk galaxy NGC 4650A with MUSE

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Coccato, L.; Combes, F.; de Zeeuw, T.; Arnaboldi, M.; Weilbacher, P. M.; Bacon, R.; Kuntschner, H.; Spavone, M.

    2015-11-01

    The polar disk galaxy NGC 4650A was observed during the commissioning of the Multi Unit Spectroscopic Explorer (MUSE) at the ESO Very Large Telescope to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC 4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The stellar velocity field shows that there are two main directions of rotation, one along the host galaxy major axis (PA = 67 deg) and the other along the polar disk (PA = 160 deg). The host galaxy has, on average, the typical pattern of a rotating disk, with receding velocities on the SW side and approaching velocities on the NE side, and a velocity dispersion that remains constant at all radii (σstar ~ 50-60 km s-1). The polar disk shows a large amount of differential rotation from the centre up to the outer regions, reaching V ~ 100-120 km s-1 at R ~ 75 arcsec ~ 16 kpc. Inside the host galaxy, a velocity gradient is measured along the photometric minor axis. Close to the centre, for R ≤ 2 arcsec the velocity profile of the gas suggests a decoupled component and the velocity dispersion increases up to ~110 km s-1, while at larger distances it remains almost constant (σgas ~ 30-40 km s-1). The extended view of NGC 4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC 4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of the galaxy where the

  8. Optimal constraint on g{sub NL} from CMB

    SciTech Connect

    Sekiguchi, Toyokazu; Sugiyama, Naoshi E-mail: naoshi@nagoya-u.jp

    2013-09-01

    An optimal method to constrain the non-linearity parameter g{sub NL} of the local-type non-Gaussianity from CMB data is proposed. Our optimal estimator for g{sub NL} is separable and can be efficiently computed in real space. Combining the exact filtering of CMB maps with the full covariance matrix, our method allows us to extract cosmological information from observed data as much as possible and obtain a tighter constraint on g{sub NL} than previous studies. Applying our method to the WMAP 9-year data, we obtain the constraint g{sub NL} = (−3.3±2.2) × 10{sup 5}, which is a few times tighter than previous ones. We also make a forecast for PLANCK data by using the Fisher matrix analysis.

  9. Parametric Dielectric Map of the Martian North Polar Layered Deposits in Support of the MARSIS and SHARAD data analysis

    NASA Astrophysics Data System (ADS)

    Cosmidis, J.; Heggy, E.; Clifford, S. M.

    2007-12-01

    Laboratory dielectric characterizations of Ice-dust mixtures are crucial for the quantitative analysis of radar sounding data as for the case of the MARSIS and SHARAD experiments. Understanding the range of the dielectric properties of the Martian northmen Polar layer deposits as well as their geographical an vertical distribution result in a better topographical mapping of the basement material below the northern polar cap and help constrain the ambiguities on the identification of layering and any potential subglaciar melting. In order to achieve this task, we constructed first order modeled maps of the surface dielectric properties oh the NPLD. We first used the recent Mars Global Surveyor Thermal Emission Spectrometer (TES) thermal inertia observations in order to derive a map of the dust mass fraction in the ice at the top of the permanent cap. Then we used parametric laboratory measurements of the dielectric properties of Martian polar ice analogs with various temperatures, radar frequencies and mass fractions and compositions of dust in order to obtain the parametric dielectric maps. Thermal inertia maps have been derived from recent TES observations of the surface temperatures of Mars taken over three Mars-years from orbit 1583 to 24346. Laboratory dielectric characterization of ice-dust mixtures has been performed using TES dust calibration samples provided by the ARES group at NASA JSC. Our Maps suggest that surface dielectric properties of the northern Polar cap ranges from 2.72 to 3.23 in the 2-20 MHz band for a dust inclusion typical of Martian basalt. Parametric maps of loss tangent, penetration depth for several dust types will be presented at the conference.

  10. Atomically-resolved mapping of polarization and electric fields across ferroelectric-oxide interfaces by Z-contrast imaging

    SciTech Connect

    Chang, Hye Jung; Kalinin, Sergei; Morozovska, A. N.; Huijben, Mark; Chu, Ying-Hao; Yu, P; Ramesh, R.; Eliseev, E. A.; Svechnikov, S. V.; Pennycook, Stephen J; Borisevich, Albina Y

    2011-01-01

    Direct atomic displacement mapping at ferroelectric interfaces by aberration corrected scanning transmission electron microscopy(STEM) (a-STEM image, b-corresponding displacement profile) is combined with Landau-Ginsburg-Devonshire theory to obtain the complete interface electrostatics in real space, including separate estimates for the polarization and intrinsic interface charge contributions.