Science.gov

Sample records for cme delivery format

  1. A comparative evaluation of the effect of internet-based CME delivery format on satisfaction, knowledge and confidence

    PubMed Central

    2010-01-01

    Background Internet-based instruction in continuing medical education (CME) has been associated with favorable outcomes. However, more direct comparative studies of different Internet-based interventions, instructional methods, presentation formats, and approaches to implementation are needed. The purpose of this study was to conduct a comparative evaluation of two Internet-based CME delivery formats and the effect on satisfaction, knowledge and confidence outcomes. Methods Evaluative outcomes of two differing formats of an Internet-based CME course with identical subject matter were compared. A Scheduled Group Learning format involved case-based asynchronous discussions with peers and a facilitator over a scheduled 3-week delivery period. An eCME On Demand format did not include facilitated discussion and was not based on a schedule; participants could start and finish at any time. A retrospective, pre-post evaluation study design comparing identical satisfaction, knowledge and confidence outcome measures was conducted. Results Participants in the Scheduled Group Learning format reported significantly higher mean satisfaction ratings in some areas, performed significantly higher on a post-knowledge assessment and reported significantly higher post-confidence scores than participants in the eCME On Demand format that was not scheduled and did not include facilitated discussion activity. Conclusions The findings support the instructional benefits of a scheduled delivery format and facilitated asynchronous discussion in Internet-based CME. PMID:20113493

  2. Evidence of a blast shock wave formation in a "CME-streamer" interaction

    NASA Astrophysics Data System (ADS)

    Eselevich, V. G.; Eselevich, M. V.; Sadykov, V. M.; Zimovets, I. V.

    2015-12-01

    Analysis of the solar event on 16 February 2011 (SOL2011-02-16T14:19) allows to classify it as an "impulsive" coronal mass ejection (CME) event. It is argued that the observed deviation of a streamer ray from its pre-event state and generation of a metric type II radio burst in this event was a result of a "CME-streamer" interaction in the lower corona (r? 1.5R?). Most probably, it was a consequence of an impulsive action of a compressed magnetic field to the streamer. This compression of the coronal magnetic field was due to a moving and expanding magnetic flux rope, which was a core of the CME. The estimated radial speed of the type II burst sources was significantly (?2-;8 times) larger than the radial speed of the erupting flux rope, and it decreased rapidly with time. This indicates that during the "CME-streamer" interaction a blast shock wave could be excited and propagated along the streamer.

  3. CME Initiation

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2008-01-01

    One of the most challenging problems in solar physics is understanding the processes responsible for giant magnetic disruptions such as the event of July 14, 2000, which consisted of a massive filament ejection, a fast coronal mass ejection (CME), prolonged X-class flaring, and an intense particle storm. These major events are of critical importance because they drive the most destructive forms of space weather and they provide a unique opportunity to study, in revealing detail, MHD instability and nonequilibrium -- processes that are at the heart of plasma astrophysics. It is now widely accepted that CMEs/eruptive flares represent the explosive release of magnetic energy stored in the corona. Therefore, in order to understand the phenomenon, we must answer the following questions: What is the field structure responsible for the disruption and why is the energy released explosively? In this talk we address these two questions using the latest theories and numerical models for CMEs/eruptive flares.

  4. A Real Source of a Stealth CME - Energetics of a Filament Eruption and Giant Arcade Formation

    NASA Astrophysics Data System (ADS)

    Asai, Ayumi; Ishii, Takako T.; Otsuji, Kenichi; Ichimoto, Kiyoshi; Shibata, Kazunari

    2015-08-01

    Various active phenomena occurring on the solar surface are sources of disturbances in the solar-terrestrial environment. It is, however, sometimes said that solar flares, the most energetic explosions in the active phenome on the sun, are not crucially important for space weather researches, but coronal mass ejections (CMEs) are more significant. This is because not all flares are associated with CMEs, and therefore, not geo-effective, and because geo-effective CMEs sometimes occur without any notable active phenomena (such as flares) on the sun. The latter is sometimes called as a “stealth CME” event. However, for even such cases, we often see filament eruptions in H-alpha observations and formations of giant arcade in X-ray and/or extreme ultraviolet (EUV) observations.The geomagnetic storm with the Dst index of -105 nT that occurred on October 8, 2012 was such a stealth event. We, on the other hand, recognize formation of an X-ray giant arcade and activation of an H-alpha filament on October 5, 2012. We examined the velocity field of the filament by using the H-alpha wing data obtained with SMART telescope at Hida Observatory, Kyoto University. We also derived the temperature and the volume emission measure by using the X-ray and EUV data obtained by Hinode/XRT and SDO/AIA. We discuss the energetics of this event on the solar surface

  5. Controlled Delivery of Zoledronate Improved Bone Formation Locally In Vivo

    PubMed Central

    Peng, Jiang; Lu, Qiang; Wang, Yu; Wang, Aiyuan; Guo, Quanyi; Gao, Xupeng; Xu, Wenjing; Lu, Shibi

    2014-01-01

    Bisphosphonates (BPs) have been widely used in clinical treatment of bone diseases with increased bone resorption because of their strong affinity for bone and their inhibition of bone resorption. Recently, there has been growing interest in their improvement of bone formation. However, the effect of local controlled delivery of BPs is unclear. We used polylactide acid-glycolic acid copolymer (PLGA) as a drug carrier to deliver various doses of the bisphosphonate zoledronate (Zol) into the distal femur of 8-week-old Sprague-Dawley rats. After 6 weeks, samples were harvested and analyzed by micro-CT and histology. The average bone mineral density and mineralized bone volume fraction were higher with medium- and high-dose PLGA-Zol (30 and 300 g Zol, respectively) than control and low-dose Zol (3 g PLGA-Zol; p<0.05). Local controlled delivery of Zol decreased the numbers of osteoclast and increased the numbers of osteoblast. Moreover, local controlled delivery of medium- and high-dose Zol accelerated the expression of bone-formation markers. PLGA used as a drug carrier for controlled delivery of Zol may promote local bone formation. PMID:24618585

  6. Haze activity of different barley trypsin inhibitors of the chloroform/methanol type (BTI-CMe).

    PubMed

    Ye, Lingzhen; Huang, Lu; Huang, Yuqing; Wu, Dezhi; Hu, Hongliang; Li, Chengdao; Zhang, Guoping

    2014-12-15

    Our previous study found that the critical protein in SE (silica eluted) proteins is BTI-CMe, and assumed that SE-ve malt for brewing may improve the haze stability in beer. In this study, we investigated the difference in gene sequence and corresponding amino acid sequence of BTI-CMe between SE+ve and SE-ve types. The results showed that there were 7 amino acid differences between Yerong (SE-ve) and Franklin (SE+ve). Two types BTI-CMe were expressed in vitro and purified successfully. By adding the purified BTI-CMe into commercial beer, we found that both original turbidity and alcohol chill haze degree of beer were increased. BTI-CMe of SE-ve haplotype showed a lower level of haze formation in beer than SE+ve haplotype. Response surface methodology (RSM) was conducted to determine the relationship between BTI-CMe and tannic acid, and their effects on haze formation. It was found that (1) higher content of BTI-CMe and/or tannic acid in beer would give rise to higher turbidity; (2) there was a significant interaction between BTI-CMe and tannic acid; (3) haze activity disparity of BTI-CMe between two types was significantly and positively correlated with the tannic acid concentration. PMID:25038664

  7. The State of the Art in CME.

    ERIC Educational Resources Information Center

    Richards, Robert K.

    1983-01-01

    The author describes major trends and directions related to continuing medical education (CME). The rapid changes he observed in the state of the art in CME are presented in relation to three historical periods in the past 16 years. (SSH)

  8. Reflections on CME Congress 2012

    ERIC Educational Resources Information Center

    Knox, Alan B.

    2013-01-01

    This commentary reflects the author's impressions of Continuing Medical Education (CME) Congress 2012, a provocative international conference on professional development and quality improvement in the health professions that took place in Toronto, Ontario, last spring. The sessions he attended and conversations he had with other attendees were

  9. Numerical models of Oort Cloud formation and comet delivery

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.

    I use a newly designed numerical algorithm to simulate the dynamics of the Oort Cloud. The processes I model are the formation of the cloud, the current delivery of comets to the planetary region, and long-period comet production during comet showers. Concerning the cloud's formation, I find that the Sun's birth environment dramatically affects the structure of the inner Oort Cloud as well as the amount of material trapped in this region. In addition, the structure of this reservoir is also sensitive to the Sun's orbital history in the Milky Way. This raises the possibility that constraining our inner Oort Cloud's properties can constrain the Sun's dynamical history. In this regard, I use my simulations of comet delivery to better understand what the population of comets passing through the planetary region can tell us about the inner Oort Cloud. I find that the inner Oort Cloud (rather than the scattered disk) dominates the production of planet-crossing TNOs with perihelia beyond 15 AU and semimajor axes greater than a few hundred AU. My results indicate that two objects representing this population (2000 00 67 and 2006 SQ 372 ) have already been detected, and the detection of many analogous objects can constrain the inner Oort Cloud. In addition, these simulations of comet delivery also demonstrate that, contrary to previous understanding, the inner Oort Cloud is a significant and perhaps the dominant source of known long-period comets. This result can be used to place the first observationally motivated upper limit on the inner Oort Cloud's population. Finally, with this maximum population value, I use my comet shower simulations to show that comet showers are unlikely to be responsible for more than one minor extinction event since the Cambrian Explosion.

  10. A panoptic model for planetesimal formation and pebble delivery

    NASA Astrophysics Data System (ADS)

    Krijt, S.; Ormel, C. W.; Dominik, C.; Tielens, A. G. G. M.

    2016-02-01

    Context. The journey from dust particle to planetesimal involves physical processes acting on scales ranging from micrometers (the sticking and restructuring of aggregates) to hundreds of astronomical units (the size of the turbulent protoplanetary nebula). Considering these processes simultaneously is essential when studying planetesimal formation. Aims: The goal of this work is to quantify where and when planetesimal formation can occur as the result of porous coagulation of icy grains and to understand how the process is influenced by the properties of the protoplanetary disk. Methods: We develop a novel, global, semi-analytical model for the evolution of the mass-dominating dust particles in a turbulent protoplanetary disk that takes into account the evolution of the dust surface density while preserving the essential characteristics of the porous coagulation process. This panoptic model is used to study the growth from sub-micron to planetesimal sizes in disks around Sun-like stars. Results: For highly porous ices, unaffected by collisional fragmentation and erosion, rapid growth to planetesimal sizes is possible in a zone stretching out to ~10 AU for massive disks. When porous coagulation is limited by erosive collisions, the formation of planetesimals through direct coagulation is not possible, but the creation of a large population of aggregates with Stokes numbers close to unity might trigger the streaming instability (SI). However, we find that reaching conditions necessary for SI is difficult and limited to dust-rich disks, (very) cold disks, or disks with weak turbulence. Conclusions: Behind the snow-line, porosity-driven aggregation of icy grains results in rapid (~104 yr) formation of planetesimals. If erosive collisions prevent this, SI might be triggered for specific disk conditions. The numerical approach introduced in this work is ideally suited for studying planetesimal formation and pebble delivery simultaneously and will help build a coherent picture of the start of the planet formation process.

  11. Simulations of Overexpanding CME Cavities

    NASA Astrophysics Data System (ADS)

    Kliem, B.; Forbes, T.; Vourlidas, A.; Patsourakos, S.

    2010-12-01

    Coronal mass ejection (CME) cavities seen in white-light coronagraphs expand nearly self similarly in the outer corona and inner solar wind. Little is known about their initial expansion in the inner corona. A two-phase evolution, consisting of an initial overexpansion up to a heliocentric front height of about 1.5 solar radii, followed by nearly self-similar expansion, was recently discovered in STEREO/SECCHI observations of a fast CME (Patsourakos et al. 2010). The overexpansion is expressed as a decrease of the cavity aspect ratio (center height by radius) by at least a factor of 2 during the rise phase of the main CME acceleration. We present MHD simulations of erupting flux ropes that show the initial overexpansion of a cavity in line with the observed evolution. The contributions of ideal-MHD expansion and of magnetic reconnection to the growth of the flux rope and cavity in the simulations will be quantified to identify the primary cause of the overexpansion. This assesses the diagnostic potential of the overexpansion for the change of flux rope current and the role of magnetic reconnection in the early evolution of CMEs.

  12. Parametric Study of CME Acceleration

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zhang, T. X.; Fry, C. F.; Tan, A.

    2003-05-01

    Observations obtained by Skylab and SMM using HAO/CP (MacQueen and Fisher, 1983) and by the recent SOHO/LASCO mission (Andrews and Howard, 2001) indicate that there at two distinct types of CMEs with different kinematic characteristics. These are (a) constant velocity CMEs and (b) accelerated CMEs. Recently, Low and Zhang (2002) have proposed a theoretical model based on specific magnetic topology which could explain these two types of CME kinematic properties. This theoretical model was attested by observation (Zhang et al. 2002) and simulated by using MHD models (Liu et al. 2002). To investigate the potential mechanisms to reveal these two types of CME kinematic properties, we have used a 2 1/2-D streamer and flux-rope MHD model (Wu and Guo, 1997) by specifying the total magnetic energy content of the streamer and flux-rope system which forms a perturbation at the lower boundary. Our results show (a) that the accelerated CMEs are due solely to the flux-rope eruption which destabilizes the streamer and (b) that the constant speed CMEs are due to drainage of flux rope material with additional heat. The results also showed that the higher the magnetic energy content of the system, the higher the CME propagation speed. Work by STW and TXZ is supported by a NASA grant NAG5-12843 and CDF's work is supported by NASA Grant NAG5-12527 and the DOD University Partnering for Operational Support (UPOS) program.

  13. CME Ensemble Forecasting - A Primer

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.; de Koning, C. A.; Cash, M. D.; Millward, G. H.; Biesecker, D. A.; Codrescu, M.; Puga, L.; Odstrcil, D.

    2014-12-01

    SWPC has been evaluating various approaches for ensemble forecasting of Earth-directed CMEs. We have developed the software infrastructure needed to support broad-ranging CME ensemble modeling, including composing, interpreting, and making intelligent use of ensemble simulations. The first step is to determine whether the physics of the interplanetary propagation of CMEs is better described as chaotic (like terrestrial weather) or deterministic (as in tsunami propagation). This is important, since different ensemble strategies are to be pursued under the two scenarios. We present the findings of a comprehensive study of CME ensembles in uniform and structured backgrounds that reveals systematic relationships between input cone parameters and ambient flow states and resulting transit times and velocity/density amplitudes at Earth. These results clearly indicate that the propagation of single CMEs to 1 AU is a deterministic process. Thus, the accuracy with which one can forecast the gross properties (such as arrival time) of CMEs at 1 AU is determined primarily by the accuracy of the inputs. This is no tautology - it means specifically that efforts to improve forecast accuracy should focus upon obtaining better inputs, as opposed to developing better propagation models. In a companion paper (deKoning et al., this conference), we compare in situ solar wind data with forecast events in the SWPC operational archive to show how the qualitative and quantitative findings presented here are entirely consistent with the observations and may lead to improved forecasts of arrival time at Earth.

  14. Objective CME detection over the solar cycle

    NASA Astrophysics Data System (ADS)

    Robbrecht, E.; Berghmans, D.

    We have developed a software package for 'Computer Aided CME Tracking' (CACTus), that autonomously detects CMEs in image sequences from LASCO. The crux of the CACTus software is the detection of CMEs as bright ridges in [height, time] maps using the Hough transform. The output is a list of events, similar to the classic catalogs, with principle angle, angular width and velocity estimation for each CME. In contrast to catalogs assembled by human operators, these CME detections by software can be faster and possibly also more objective, as the detection criterion is written explicitly in a program. Especially on the timescale of a solar cycle, it is questionnable whether human, visual CME detection is stable, as the operator gains experience or personnel is replaced. In this paper we overview the latest improvements of CACTUS and validate its performance by comparing the CACTus output with the classical, visually assembled CME catalogs. Discrepancies between the classical catalogs and the CACTUS catalogs are discussed. Such discrepancies highlight not only the performance of CACTUS but also the caveats of the classical catalogs. Indeed, CACTUS sometimes finds CMEs that are not listed in the catalogs or interpreted differently (eg halo CME or not). It is important to know these caveats when using the CME catalogs as input for statistical CME studies over the solar cycle. The near realtime output of the software is available on the web(http://sidc.oma.be/cactus) and is updated daily.

  15. The Solar Stormwatch CME catalogue.

    NASA Astrophysics Data System (ADS)

    Barnard, Luke

    2015-04-01

    Since the launch of the twin STEREO satellites in late 2006, the Heliospheric Imagers have been used, with good results, in tracking transients of solar origin, such as Coronal Mass Ejections (CMEs), out through the inner heliosphere. A frequently used approach is to build a "J-Map", in which multiple elongation profiles along a constant position angle are stacked in time, building an image in which radially propagating transients form curved tracks in the J-Map. From this the time-elongation profile of a solar transient can be manually identified. This is a time consuming and laborious process, and the results are subjective, depending on the skill and expertise of the investigator. With the Heliospheric Imager data it is possible to follow CMEs from the outer limits of the solar corona all the way to 1AU. Solar Stormwatch is a citizen science project that employs the power of thousands of volunteers to both identify and track CMEs in the Heliospheric Imager data. The CMEs identified by Solar Stormwatch are tracked many times by multiple users and this allows the calculation of consensus time-elongation profiles for each event and also provides an estimate of the error in the consensus profile. Therefore this system does not suffer from the potential subjectivity of individual researchers identifying and tracking CMEs. In this sense, the Solar Stormwatch system can be thought of as providing a middle ground between manually identified CME catalogues, such as the CDAW list, and CME catalogues generated through fully automated algorithms, such as CACtus and ARTEMIS etc. We provide a summary of the reduction of the Solar Stormwatch data into a catalogue of CMEs observed by STEREO-A and STEREO-B through the deep minimum of solar cycle 23 and review some key statistical properties of these CMEs. Through some case studies of the propagation of CMEs out into the inner heliosphere we argue that the Solar Stormwatch CME catalogue, which publishes the time-elongation profiles of CMEs observed at multiple position angles, is a new and valuable dataset for space weather community.

  16. Energy spectral property in an isolated CME-driven shock

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yan, Yi-Hua; Ding, Ming-De; Wang, Na; Shan, Hao

    2016-02-01

    Observations from multiple spacecraft show that there are energy spectral “breaks” at 1–10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral “breaks” by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy “tails,” which can potentially exceed the “break” energy range. However, we have not found the highest energy “tails” beyond the “break” energy range, but instead find that the highest energy “tails” reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral “cut off” in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral “break” property.

  17. Energy spectral property in an isolated CME-driven shock

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yan, Yi-Hua; Ding, Ming-De; Wang, Na; Shan, Hao

    2016-02-01

    Observations from multiple spacecraft show that there are energy spectral breaks at 110 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral breaks by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy tails, which can potentially exceed the break energy range. However, we have not found the highest energy tails beyond the break energy range, but instead find that the highest energy tails reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral cut off in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral break property.

  18. CME Link to the Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2009-01-01

    The coronal mass ejection (CME) link to geomagnetic storms stems from the southward component of the interplanetary magnetic field contained in the CME flux ropes and in the sheath between the flux rope and the CME-driven shock. A typical storm-causing CME is characterized by (i) high speed, (ii) large angular width (mostly halos and partial halos), and (iii)solar source location close to the central meridian. For CMEs originating at larger central meridian distances, the storms are mainly caused by the sheath field. Both the magnetic and energy contents of the storm-producing CMEs can be traced to the magnetic structure of active regions and the free energy stored in them.

  19. CME - Coming At You - Duration: 4 seconds.

    NASA Video Gallery

    An oldie but goody: The September 12, 2000 coronal mass ejection (CME), which moves directly from the sun's surface toward the viewer. This was recorded by the Solar and Heliospheric Observatory (S...

  20. Ensemble Modeling of CME Propagation and Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Mays, M. Leila; Taktakishvili, Aleksandre; Pulkkinen, Antti; MacNeice, Peter; Rastätter, Lutz; Odstrcil, Dusan; Jian, Lan; Richardson, Ian

    2015-04-01

    Ensemble modeling of coronal mass ejections (CMEs) provides a probabilistic forecast of CME arrival time which includes an estimation of arrival time uncertainty from the spread and distribution of predictions and forecast confidence in the likelihood of CME arrival. The real-time ensemble modeling of CME propagation uses the Wang-Sheeley-Arge (WSA)-ENLIL+Cone model installed at the {Community Coordinated Modeling Center} (CCMC) and executed in real-time at the CCMC/{Space Weather Research Center}. The current implementation of this ensemble modeling method evaluates the sensitivity of WSA-ENLIL+Cone model simulations of CME propagation to initial CME parameters. We discuss the results of real-time ensemble simulations for a total of 35 CME events which occurred between January 2013 - July 2014. For the 17 events where the CME was predicted to arrive at Earth, the mean absolute arrival time prediction error was 12.3 hours, which is comparable to the errors reported in other studies. For predictions of CME arrival at Earth the correct rejection rate is 62%, the false-alarm rate is 38%, the correct alarm ratio is 77%, and false alarm ratio is 23%. The arrival time was within the range of the ensemble arrival predictions for 8 out of 17 events. The Brier Score for CME arrival predictions is 0.15 (where a score of 0 on a range of 0 to 1 is a perfect forecast), which indicates that on average, the predicted probability, or likelihood, of CME arrival is fairly accurate. The reliability of ensemble CME arrival predictions is heavily dependent on the initial distribution of CME input parameters (e.g. speed, direction, and width), particularly the median and spread. Preliminary analysis of the probabilistic forecasts suggests undervariability, indicating that these ensembles do not sample a wide enough spread in CME input parameters. Prediction errors can also arise from ambient model parameters, the accuracy of the solar wind background derived from coronal maps, or other model limitations. Finally, predictions of the KP geomagnetic index differ from observed values by less than one for 11 out of 17 of the ensembles and KP prediction errors computed from the mean predicted KP show a mean absolute error of 1.3. The CCMC, located at NASA Goddard Space Flight Center, is an interagency partnership to facilitate community research and accelerate implementation of progress in research into space weather operations. The CCMC also serves the {Space Weather Scoreboard} website (http://kauai.ccmc.gsfc.nasa.gov/SWScoreBoard) to the research community who may submit CME arrival time predictions in real-time for a variety of forecasting methods. The website facilitates model validation under real-time conditions and enables collaboration. For every CME event table on the site, the average of all submitted forecasts is automatically computed, thus itself providing a community-wide ensemble mean CME arrival time and impact forecast from a variety of models/methods.

  1. HELCATS Prediction of Planetary CME arrival times

    NASA Astrophysics Data System (ADS)

    Boakes, Peter; Moestl, Christian; Davies, Jackie; Harrison, Richard; Byrne, Jason; Barnes, David; Isavnin, Alexey; Kilpua, Emilia; Rollett, Tanja

    2015-04-01

    We present the first results of CME arrival time prediction at different planetary locations and their comparison to the in situ data within the HELCATS project. The EU FP7 HELCATS (Heliospheric Cataloguing, Analysis & Techniques Service) is a European effort to consolidate the exploitation of the maturing field of heliospheric imaging. HELCATS aims to catalogue solar wind transients, observed by the NASA STEREO Heliospheric Imager (HI) instruments, and validate different methods for the determination of their kinematic properties. This validation includes comparison with arrivals at Earth, and elsewhere in the heliosphere, as well as onsets at the Sun (http://www.helcats-fp7.eu/). A preliminary catalogue of manually identified CMEs, with over 1000 separate events, has been created from observations made by the STEREO/HI instruments covering the years 2007-2013. Initial speeds and directions of each CME have been derived through fitting the time elongation profile to the state of the art Self-Similar Expansion Fitting (SSEF) geometric technique (Davies et al., 2012). The technique assumes that, in the plane corresponding to the position angle of interest, CMEs can be modelled as circles subtending a fixed angular width to Sun-center and propagating anti-sunward in a fixed direction at a constant speed (we use an angular width of 30 degrees in our initial results). The model has advantages over previous geometric models (e.g. harmonic mean or fixed phi) as it allows one to predict whether a CME will 'hit' a specific heliospheric location, as well as to what degree (e.g. direct assault or glancing blow). We use correction formulae (Mstl and Davies, 2013) to convert CME speeds, direction and launch time to speed and arrival time at any in situ location. From the preliminary CME dataset, we derive arrival times for over 400 Earth-directed CMEs, and for over 100 Mercury-, Venus-, Mars- and Saturn-directed CMEs predicted to impact each planet. We present statistics of predicted CME arrival properties. In addition, we independently identify CME arrival at in situ locations using magnetic field data from the Venus Express, Messenger, and Ulysses spacecraft and show first comparisons to predicted arrival times. The results hold important implications for space weather prediction at Earth and other locations, allowing model and predicted CME parameters to be compared to their in situ counterparts.

  2. Commercial Buildings Partnership Projects - Metered Data Format and Delivery

    SciTech Connect

    Katipamula, Srinivas

    2010-11-16

    A number of the Commercial Building Partnership Projects (CBPs) will require metering, monitoring, data analysis and verification of savings after the retrofits are complete. Although monitoring and verification (M&V) agents are free to use any metering and monitoring devices that they chose, the data they collect should be reported to Pacific Northwest National Laboratory (PNNL) in a standard format. PNNL will store the data collected in its CBP database for further use by PNNL and U.S. Department of Energy. This document describes the data storage process and the deliver format of the data from the M&V agents.

  3. Professional Development Integrating Technology: Does Delivery Format Matter?

    ERIC Educational Resources Information Center

    Claesgens, Jennifer; Rubino-Hare, Lori; Bloom, Nena; Fredrickson, Kristi; Henderson-Dahms, Carol; Menasco, Jackie; Sample, James

    2013-01-01

    The goal of the two Power of Data (POD) projects was to increase science, technology and math skills through the implementation of project-based learning modules that teach students how to solve problems through data collection and analysis utilizing geospatial technologies. Professional development institutes in two formats were offered to

  4. Solar Back-sided Halo CME - Duration: 13 seconds.

    NASA Video Gallery

    The Sun erupted with several CMEs (coronal mass ejections) during a period just over a day (Nov. 8-9, 2012), the largest of which was a halo CME. This CME appears to have originated from an active ...

  5. Investigation of Reagent Delivery Formats in a Multivalent Malaria Sandwich Immunoassay and Implications for Assay Performance.

    PubMed

    Liang, Tinny; Robinson, Robert; Houghtaling, Jared; Fridley, Gina; Ramsey, Stephen A; Fu, Elain

    2016-02-16

    Conventional lateral flow tests (LFTs), the current standard bioassay format used in low-resource point-of-care (POC) settings, have limitations that have held back their application in the testing of low concentration analytes requiring high sensitivity and low limits of detection. LFTs use a premix format for a rapid one-step delivery of premixed sample and labeled antibody to the detection region. We have compared the signal characteristics of two types of reagent delivery formats in a model system of a sandwich immunoassay for malarial protein detection. The premix format produced a uniform binding profile within the detection region. In contrast, decoupling the delivery of sample and labeled antibody to the detection region in a sequential format produced a nonuniform binding profile in which the majority of the signal was localized to the upstream edge of the detection region. The assay response was characterized in both the sequential and premix formats. The sequential format had a 4- to 10-fold lower limit of detection than the premix format, depending on assay conjugate concentration. A mathematical model of the assay quantitatively reproduced the experimental binding profiles for a set of rate constants that were consistent with surface plasmon resonance measurements and absorbance measurements of the experimental multivalent malaria system. PMID:26835721

  6. The CME Flare Arcade and the Width of the CME in the Outer Corona

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2008-01-01

    Moore, Sterling, & Suess (2007, ApJ, 668, 1221) present evidence that (1) a CME is typically a magnetic bubble, a low-beta gplasmoid with legs h having roughly the 3D shape of a light bulb, and (2) in the outer corona the CME plasmoid is in lateral pressure equilibrium with the ambient magnetic field. They present three CMEs observed by SOHO/LASCO, each from a very different source located near the limb. One of these CMEs came from a compact ejective eruption from a small part of a sunspot active region, another came from a large quiet-region filament eruption, and the third CME, an extremely large and fast one, was produced in tandem with an X20 flare arcade that was centered on a huge delta sunspot. Each of these CMEs had more or less the classic lightbulb silhouette and attained a constant heliocentric angular width in the outer corona. This indicates that the CME plasmoid attained lateral magnetic pressure balance with the ambient radial magnetic field in the outer corona. This lateral pressure balance, together with the standard scenario for CME production by the eruption of a sheared-core magnetic arcade, yields the following simple estimate of the strength B(sub Flare) of the magnetic field in the flare arcade produced together with the CME: B(sub Flare) 1.4(theta CME/theta Flare)sup 2 G, where theta (sub CME) is the heliocentric angular width of the CME plasmoid in the outer corona and theta (sub Flare) is the heliocentric angular width of the full-grown flare arcade. Conversely, theta (sub CME) approximately equal to (R(sub Sun)sup -1(phi(sub Flare)/1.4)sup 1/2 radians, where Flare is the magnetic flux covered by the full-grown flare arcade. In addition to presenting the three CMEs of Moore, Sterling, & Suess (2007) and their agreement with this relation between CME and Flare, we present a further empirical test of this relation. For CMEs that erupt from active regions, the co-produced flare arcade seldom if ever covers the entire active region: if AR is the total magnetic flux of the active region, Flare . AR, and we predict that CME. (R(sub Sun))sup -1(theta AR/1.4)sup 1/2 radians. For a random sample of 31 CMEs that erupted from active regions within 30 of the limb, for each CME we have measured CME from LASCO/C3 and have measured AR from a SOHO/MDI magnetogram of the source active region when it was within 30 of disk center. We find that each CME obeys the above predicted inequality, none having width greater than half of the upper bound given by theta(sub AR). Thus, an active region's magnetic flux content, together with its location on the solar disk, largely determines whether the active region can possibly produce a CME that is wide enough to intercept the Earth.

  7. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. III. Catastrophe of the Eruptive Filament at a Magnetic Null Point and Formation of an Opposite-Handedness CME

    NASA Astrophysics Data System (ADS)

    Uralov, A. M.; Grechnev, V. V.; Rudenko, G. V.; Myshyakov, I. I.; Chertok, I. M.; Filippov, B. P.; Slemzin, V. A.

    2014-10-01

    Our analysis in Papers I and II (Grechnev et al., Solar Phys. 289, 289, 2014b and Solar Phys. 289, 1279, 2014c) of the 18 November 2003 solar event responsible for the 20 November geomagnetic superstorm has revealed a complex chain of eruptions. In particular, the eruptive filament encountered a topological discontinuity located near the solar disk center at a height of about 100 Mm, bifurcated, and transformed into a large cloud, which did not leave the Sun. Concurrently, an additional CME presumably erupted close to the bifurcation region. The conjectures about the responsibility of this compact CME for the superstorm and its disconnection from the Sun are confirmed in Paper IV (Grechnev et al., Solar Phys. submitted, 2014a), which concludes about its probable spheromak-like structure. The present article confirms the presence of a magnetic null point near the bifurcation region and addresses the origin of the magnetic helicity of the interplanetary magnetic clouds and their connection to the Sun. We find that the orientation of a magnetic dipole constituted by dimmed regions with the opposite magnetic polarities away from the parent active region corresponded to the direction of the axial field in the magnetic cloud, while the pre-eruptive filament mismatched it. To combine all of the listed findings, we propose an intrinsically three-dimensional scheme, in which a spheromak-like eruption originates via the interaction of the initially unconnected magnetic fluxes of the eruptive filament and pre-existing ones in the corona. Through a chain of magnetic reconnections their positive mutual helicity was transformed into the self-helicity of the spheromak-like magnetic cloud.

  8. The Growth, Characteristics, and Future of Online CME

    ERIC Educational Resources Information Center

    Harris, John M., Jr.; Sklar, Bernard M.; Amend, Robert W.; Novalis-Marine, Cheryl

    2010-01-01

    Introduction: Physician use of online continuing medical education (CME) is growing, but there are conflicting data on the uptake of online CME and few details on this market. Methods: Analyses of 11 years of data from the Accreditation Council for Continuing Medical Education (ACCME) and a survey of 272 publicly available CME Web sites.

  9. Sharing Collaborative Designs of Tobacco Cessation Performance Improvement CME Projects

    ERIC Educational Resources Information Center

    Mullikin, Elizabeth A.; Ales, Mary W.; Cho, Jane; Nelson, Teena M.; Rodrigues, Shelly B.; Speight, Mike

    2011-01-01

    Introduction: Performance Improvement Continuing Medical Education (PI CME) provides an important opportunity for CME providers to combine educational and quality health care improvement methodologies. Very few CME providers take on the challenges of planning this type of intervention because it is still a new practice and there are limited

  10. Assessment of Barriers to Changing Practice as CME Outcomes

    ERIC Educational Resources Information Center

    Price, David W.; Miller, Elaine K.; Rahm, Alanna Kulchak; Brace, Nancy E.; Larson, R. Sam

    2010-01-01

    Introduction: Continuing medical education (CME) is meant to drive and support improvements in practice. To achieve this goal, CME activities must move beyond simply purveying knowledge, instead helping attendees to contextualize information and to develop strategies for implementing new learning. CME attendees face different barriers to…

  11. Using Focus Groups for Strategic Planning in a CME Unit

    ERIC Educational Resources Information Center

    Takhar, Jatinder; Tipping, Jane

    2008-01-01

    The University of Western Ontario, having established a fully functional continuing medical education (CME) office over the last 4 years, needed to plan the future for its academic CME unit. It needs a method for evaluating the progress and shaping the organizational future of the CME unit. A literature search and consultations suggested focus

  12. Sharing Collaborative Designs of Tobacco Cessation Performance Improvement CME Projects

    ERIC Educational Resources Information Center

    Mullikin, Elizabeth A.; Ales, Mary W.; Cho, Jane; Nelson, Teena M.; Rodrigues, Shelly B.; Speight, Mike

    2011-01-01

    Introduction: Performance Improvement Continuing Medical Education (PI CME) provides an important opportunity for CME providers to combine educational and quality health care improvement methodologies. Very few CME providers take on the challenges of planning this type of intervention because it is still a new practice and there are limited…

  13. CME and Change in Practice: An Alternative Perspective.

    ERIC Educational Resources Information Center

    Wergin, Jon F.; And Others

    1988-01-01

    Results of a study by the American College of Cardiology revealed that continuing medical education (CME) courses contain relatively little information that is new to the audience, that other influences on practice interact with CME content, and that change attributable to CME is subtle and often delayed. (JOW)

  14. Assessment of Barriers to Changing Practice as CME Outcomes

    ERIC Educational Resources Information Center

    Price, David W.; Miller, Elaine K.; Rahm, Alanna Kulchak; Brace, Nancy E.; Larson, R. Sam

    2010-01-01

    Introduction: Continuing medical education (CME) is meant to drive and support improvements in practice. To achieve this goal, CME activities must move beyond simply purveying knowledge, instead helping attendees to contextualize information and to develop strategies for implementing new learning. CME attendees face different barriers to

  15. Learning to Collaborate: A Case Study of Performance Improvement CME

    ERIC Educational Resources Information Center

    Shershneva, Marianna B.; Mullikin, Elizabeth A.; Loose, Anne-Sophie; Olson, Curtis A.

    2008-01-01

    Introduction: Performance Improvement Continuing Medical Education (PI CME) is a mechanism for joining quality improvement (QI) in health care to continuing medical education (CME) systems together. Although QI practices and CME approaches have been recognized for years, what emerges from their integration is largely unfamiliar, because it

  16. Mechanism of Membranous Tunnelling Nanotube Formation in Viral Genome Delivery

    PubMed Central

    Peralta, Bibiana; Gil-Carton, David; Castao-Dez, Daniel; Bertin, Aurelie; Boulogne, Claire; Oksanen, Hanna M.; Bamford, Dennis H.; Abrescia, Nicola G. A.

    2013-01-01

    In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems. PMID:24086111

  17. Characteristics of Kinematics of a Coronal Mass Ejection During the 2010 August 1 CME-CME Interaction Event

    NASA Technical Reports Server (NTRS)

    Temmer, Manuela; Vrsnak, Bojan; Rollett, Tanja; Bein, Bianca; de Koning, Curt A.; Liu, Ying; Bosman, Eckhard; Davies, Jackie A.; Mostl, Christian; Zic, Tomislav; Veronig, Astrid M.; Bothmer, Volker; Harrison, Richard; Nitta, Nariaki; Bisi, Mario; Flor, Olga; Eastwood, Jonathan; Odstrcil, Dusan; Forsyth, Robert

    2012-01-01

    We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; (is) approximately 1200 km s-1) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; (is) approximately 700 km s-1). By applying a drag-based model we are able to reproduce the kinematical profile of CME2 suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.

  18. CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME-CME INTERACTION EVENT

    SciTech Connect

    Temmer, Manuela; Rollett, Tanja; Bein, Bianca; Moestl, Christian; Veronig, Astrid M.; Flor, Olga; Vrsnak, Bojan; Zic, Tomislav; De Koning, Curt A.; Liu, Ying; Bosman, Eckhard; Davies, Jackie A.; Bothmer, Volker; Harrison, Richard; Nitta, Nariaki; Bisi, Mario; Eastwood, Jonathan; Forsyth, Robert; Odstrcil, Dusan

    2012-04-10

    We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and heliospheric imager (HI) data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field of view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; {approx}1200 km s{sup -1}) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; {approx}700 km s{sup -1}). By applying a drag-based model we are able to reproduce the kinematical profile of CME2, suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.

  19. 3-D views of the expanding CME: from the Sun to 1AU

    NASA Astrophysics Data System (ADS)

    Rouillard, Alexis P.

    2015-03-01

    Three-dimensional information on Coronal Mass Ejections (CMEs) can be obtained from a wide range of in-situ measurements and remote-sensing techniques. Extreme ultraviolet (EUV) and white-light imaging sensed from several vantage points can be used to infer the 3-D geometry of the different parts that constitute a CME. High-resolution and high-cadence coronal imaging provides detailed information on the formation and release phase of a magnetic flux rope, the lateral expansion of the CME and the reconfiguration of the corona associated with the effects of pressure variations and reconnection. The evolution of the CME in the interplanetary medium and the connection of its various substructures with in-situ measurements can be obtained from multi-point heliospheric imaging.

  20. Parenting Interventions Implementation Science: How Delivery Format Impacts the Parenting Wisely Program

    ERIC Educational Resources Information Center

    Cotter, Katie L.; Bacallao, Martica; Smokowski, Paul R.; Robertson, Caroline I. B.

    2013-01-01

    Objectives: This study examines the implementation and effectiveness of Parenting Wisely, an Internet-based parenting skills intervention. The study assesses whether parents benefit from Parenting Wisely participation and whether the delivery format influences program effectiveness. Method: This study uses a quasi-experimental design.

  1. Parenting Interventions Implementation Science: How Delivery Format Impacts the Parenting Wisely Program

    ERIC Educational Resources Information Center

    Cotter, Katie L.; Bacallao, Martica; Smokowski, Paul R.; Robertson, Caroline I. B.

    2013-01-01

    Objectives: This study examines the implementation and effectiveness of Parenting Wisely, an Internet-based parenting skills intervention. The study assesses whether parents benefit from Parenting Wisely participation and whether the delivery format influences program effectiveness. Method: This study uses a quasi-experimental design.…

  2. Educational Administration Students' Perceptions of Traditional vs. Online Instructional Delivery Formats

    ERIC Educational Resources Information Center

    Chapman, Paul E.; Diaz, Sebastian R.; Moore, Lucas C.; Deering, Pamela R.

    2009-01-01

    The authors investigated the perceptions of instructional delivery formats held by graduate students enrolled in a public school principal-preparation program. Two main research questions guided the study: How do students perceive the relative value of online courses as compared to traditional courses? and How do students perceive the relative

  3. Contributions from Ultraviolet Spectroscopy to the Prediction of High-energy Proton Hazards from CME Shocks

    NASA Astrophysics Data System (ADS)

    Lin, J.; Raymond, J. C.; Cranmer, S. R.; Kohl, J. L.

    2004-05-01

    A significant potential hazard to astronauts and their equipment in interplanetary space is the relativistic proton flux produced by coronal mass ejections (CMEs) and solar flares. The longest-duration phase of solar energetic particle (SEP) activity is believed to come from the CME shock as it propagates through the extended corona and heliosphere. Ultraviolet spectroscopy by SOHO has revealed a means for: (1) detecting and characterizing CME shocks in the corona, and (2) determining the plasma conditions in the pre-CME corona which are needed to understand the formation and evolution of shocks. Such remote sensing - combined with models of SEP acceleration and transport - can be used to predict the strength, duration, and production sites of the radiation. This poster describes the specific means by which ultraviolet spectroscopy and other remote-sensing data can be used to determine the inputs and boundary conditions for individual events (such as the October-November 2003 storms) in existing SEP model codes. We also discuss an additional potential source of SEP radiation associated with electric fields in the current sheets that form in flare regions in the wake of CME. Both observations and model calculations show that the reconnection-induced electric field can reach a maximum strength of a few V/cm within tens of minutes after the onset of the eruption, then decreases gradually over several hours. SEPs produced in these regions may account for X-rays and ? -rays observed prior to the formation of CME shocks. Ultraviolet spectroscopy has been shown to provide constraints on the plasma properties in all of the above CME features. This work is supported by NASA under grant NAG5-12865 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to ESA's PRODEX program.

  4. CME Productivity of Active Regions 11158 and 11166

    NASA Astrophysics Data System (ADS)

    Yashiro, S.; Gopalswamy, N.; Akiyama, S.; Makela, P. A.

    2011-12-01

    Active regions (ARs) 11158 and 11166 respectively produced an X-class flare on 2011 Feb 15 and March 9. The former flare was associated with a CME, but the latter one was not. We examined the CME productivity of the two active regions. AR 11158 emerged at around 3 UT on 2011 Feb 10. The first major flare from the active region was the M6.6 flare at 17:28 on Feb 13 which was associated with a CME. The CME productivity was very high on Feb 14 and 15. Out of 11 flares (>C3 level), 10 had an associated CMEs. The CME productivity suddenly dropped on Feb 18. There were 2 M- and 4 C-class flares but none of them had an associated CME. AR 11166 emerged on Feb 25 on the far side of the Sun and appeared on the east limb on March 2. One X-, four M-, and 16 upper C-class (C3-C9) flares occurred during the disk passage. The CME productivity of the AR was not low since 11 out of 20 M- and C-class flares had an associated CME. The X1.5 flare lacking an associated CME is very special in terms of the CME productivity of the AR 11166. We discuss the reason why the X flare lacked a CME.

  5. Radio signatures of CME-streamer interaction

    NASA Astrophysics Data System (ADS)

    CHEN, Y.; Feng, S.; Kong, X.; Li, G.; Song, H.

    2011-12-01

    Recent observational finding of streamer waves using the LASCO white light data presents us interesting physical consequence of CME-streamer interactions [1, 2, 3]. CME-streamer interactions can also manifest themselves in the Type-II-related radio dynamic spectra as recorded by the ground-based or space-borne instruments. A large body of studies exists revealing the possible roles of pre-existing helmet streamers in the radio emission during a solar eruption. In this presentation, we will summary our efforts in classifying the roles of streamers affecting Type-II radio emissions. Generally speaking, there exist two groups of CME-streamer-Type-II events. In the first group, the shock as well as the Type-II radio emission seems to exist prior to the CME-streamer interaction. The interaction can be clearly discerned from the well-defined bump of the Type-II radio dynamic spectra. The spectral bump is a direct result of plasma emissions when the radio emitting region traversing the denser streamer structure. In the other group of events, the Type-II burst is excited as a result of the CME-streamer interaction. Either the shock is formed and radio-emitting electrons are accelerated inside the streamer, or a prior non-emitting shock becomes radio aloud during the interacting process. A novel triangular-streamer-shock model is proposed to interpret the associated electron acceleration inside the streamer. Observational examples of CME-streamer-radio events corresponding to both cases will be presented. [1] Chen, Y., Song, H.Q., Li, B., Xia, L.D., Wu, Z., Fu, H., Li, X., 2010, Astrophys. J. 714, 644 [2] Chen, Y., Feng, S.W., Li, B., Song, H.Q., Xia, L.D., Kong, X.L., Li, X., 2011, Astrophys. J. 728, 147 [3] Feng S. W., Chen Y., Li B., Song H. Q., Kong X. L., Xia L. D., Feng, X. S., 2011, Sol. Phys., DOI 10.1007/s11207-011-9814-6

  6. Role of Components in the Formation of Self-microemulsifying Drug Delivery Systems

    PubMed Central

    Gurram, A. K.; Deshpande, P. B.; Kar, S. S.; Nayak, Usha Y.; Udupa, N.; Reddy, M. S.

    2015-01-01

    Pharmaceutical research is focused in designing novel drug delivery systems to improve the bioavailability of poorly water soluble drugs. Self-microemulsifying drug delivery systems, one among the lipid-based dosage forms were proven to be promising in improving the oral bioavailability of such drugs by enhancing solubility, permeability and avoiding first-pass metabolism via enhanced lymphatic transport. Further, they have been successful in avoiding both inter and intra individual variations as well as the dose disproportionality. Aqueous insoluble drugs, in general, show greater solubility in lipid based excipients, and hence they are formulated as lipid based drug delivery systems. The extent of solubility of a hydrophobic drug in lipid excipients i.e. oil, surfactant and co-surfactant (components of self-microemulsifying drug delivery systems) greatly affects the drug loading and in producing stable self-microemulsifying drug delivery systems. The present review highlighted the influence of physicochemical factors and structural features of the hydrophobic drug on its solubility in lipid excipients and an attempt was made to explore the role of each component of self-microemulsifying drug delivery systems in the formation of stable microemulsion upon dilution. PMID:26180269

  7. Morphology and Density Structure of Post-CME Current Sheets

    NASA Technical Reports Server (NTRS)

    Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.

    2009-01-01

    Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.

  8. Global Trends of CME Deflections Based on CME and Solar Parameters

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2015-06-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including any deflections close to the Sun or through interplanetary space. Kay et al. introduced ForeCAT, a model of CME deflection resulting from the background solar magnetic field. For a magnetic field solution corresponding to Carrington Rotation (CR) 2029 (declining phase, 2005 April-May), the majority of the CMEs deflected to the Heliospheric Current Sheet, the minimum in magnetic pressure on global scales. Most of the deflection occurred below 4 {{R}? }. Here we extend ForeCAT to include a three-dimensional description of the deflecting CME. We attempt to answer the following questions: (1) do all CMEs deflect to the magnetic minimum? and (2) does most deflection occur within the first few solar radii (4 {{R}? })? Results for solar minimum and declining-phase CMEs show that not every CME deflects to the magnetic minimum and that typically the majority of the deflection occurs below 10 {{R}? }. Slow, wide, low-mass CMEs in declining-phase solar backgrounds with strong magnetic field and magnetic gradients exhibit the largest deflections. Local gradients related to active regions tend to cause the largest deviations from the deflection predicted by global magnetic gradients, but variations can also be seen for CMEs in the quiet-Sun regions of the declining-phase CR. We show the torques due to differential forces along the CME can cause rotation about the CMEs toroidal axis.

  9. Deflected Propagation ---- A Factor Deciding the Geoeffectiveness of A CME

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, C.; Liu, J.; Gui, B.; Wang, S.

    2010-12-01

    To answer the question if a CME can cause a significant change of the states of geo-space, the first issue we have to address is whether or not the CME will intersect with the Earth or what the trajectory of the CME is. From several observational cases and statistical studies, we show that the deflected propagations of CMEs are a common phenomenon. The amount of the deflection could be as large as several tens degrees in either latitude, longitude or both. Thus, an on-disk CME may not necessarily encounter the Earth, while a limb CME may be able to hit the Earth. Roughly, the CMEs' deflections can be classified as two different kinds. One is the deflection occurring in the corona, in which the CME's trajectory is controled by the distribution of the energy density of undisturbed coronal magnetic field. The other is that happenning in the IP space and in the ecliptic plane, in which the direction of the CME's propagation will be changed by the preceding or trailing background solar wind plasma depending on the velocity difference between the CME and ambient solar wind. Two models are proposed to describe the two different CME deflection behaviors, respectively. By applying the models to several cases, we may show that the trajectories of these CMEs predicted by the models match the observations fairly well.

  10. Forecasting a CME by Spectroscopic Precursor?

    NASA Astrophysics Data System (ADS)

    Baker, D.; van Driel-Gesztelyi, L.; Green, L. M.

    2012-02-01

    Multi-temperature plasma flows resulting from the interaction between a mature active region (AR) inside an equatorial coronal hole (CH) are investigated. Outflow velocities observed by Hinode EIS ranged from a few to 13 km s-1 for three days at the AR’s eastern and western edges. However, on the fourth day, velocities intensified up to 20 km s-1 at the AR’s western footpoint about six hours prior to a CME. 3D MHD numerical simulations of the observed magnetic configuration of the AR-CH complex showed that the expansion of the mature AR’s loops drives persistent outflows along the neighboring CH field (Murray et al. in Solar Phys. 261, 253, 2010). Based on these simulations, intensification of outflows observed pre-eruption on the AR’s western side where same-polarity AR and CH field interface, is interpreted to be the result of the expansion of a sigmoidal AR, in particular, a flux rope containing a filament that provides stronger compression of the neighboring CH field on this side of the AR. Intensification of outflows in the AR is proposed as a new type of CME precursor.

  11. Desktop document delivery using portable document format (PDF) files and the Web.

    PubMed

    Shipman, J P; Gembala, W L; Reeder, J M; Zick, B A; Rainwater, M J

    1998-07-01

    Desktop access to electronic full-text literature was rated one of the most desirable services in a client survey conducted by the University of Washington Libraries. The University of Washington Health Sciences Libraries (UW HSL) conducted a ten-month pilot test from August 1996 to May 1997 to determine the feasibility of delivering electronic journal articles via the Internet to remote faculty. Articles were scanned into Adobe Acrobat Portable Document Format (PDF) files and delivered to individuals using Multipurpose Internet Mail Extensions (MIME) standard e-mail attachments and the Web. Participants retrieved scanned articles and used the Adobe Acrobat Reader software to view and print files. The pilot test required a special programming effort to automate the client notification and file deletion processes. Test participants were satisfied with the pilot test despite some technical difficulties. Desktop delivery is now offered as a routine delivery method from the UW HSL. PMID:9681165

  12. Formation of liposome by microfluidic flow focusing and its application in gene delivery

    NASA Astrophysics Data System (ADS)

    Wi, Rinbok; Oh, Yeonsu; Chae, Chanhee; Kim, Do Hyun

    2012-06-01

    We report the formation of liposomes in a simple procedure using a microfluidic hydrodynamic flow focusing method for the application in gene delivery. We fabricated microfluidic device using soft lithography and polydimethylsiloxane (PDMS) molding technique. Lipid-containing stream was surrounded by aqueous stream and liposomes were formed at the lipid-water interface. Size distribution of liposomes and zeta potential of liposome dispersion were investigated under various flow rate ratio (FRR) and processing temperature. Size distributions of liposomes were measured by dynamic light scattering (DLS), and zeta potential was measured to quantify the colloidal stability. Prepared liposomes were used as a vehicle for gene delivery, and the successful expression of delivered gene was observed by fluorescent microscope.

  13. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.

    PubMed

    Mishima, Kenji

    2008-02-14

    Recent developments in biodegradable particle formation using supercritical fluids and dense gases have been reviewed with an emphasis on studies of micronizing and encapsulating poorly-soluble pharmaceuticals and gene. General review articles published in previous years have then been provided. A brief description of the operating principles of some types of particle formation processes is given. These include the rapid expansion of supercritical solutions (RESS), the particles from gas-saturated solution (PGSS) processes, the gas antisolvent process (GAS), and the supercritical antisolvent process (SAS). The papers have been reviewed under two groups, one involving the production of particles from pure biodegradable substances, and the other involving coating, capsule, and impregnation that contain active components, especially those that relate to pharmaceuticals. This review is a comprehensive review specifically focused on the formation of biodegradable particles for drug and gene delivery system using supercritical fluid and dense gas. PMID:18061302

  14. CME masses measured by the HELIOS spacecraft photometers

    NASA Technical Reports Server (NTRS)

    Jackson, B. V.; Webb, D. F.

    1995-01-01

    We have cataloged 160 CMEs detected in the HELIOS 1 and 2 90 deg zodiacal light photometers observed from 1975-1985. The HELIOS 1 and 2 spacecraft orbited from 0.3 to 1.0 AU on 6-month orbits. From the photometer observations of Thomson-scattered light in the inner heliosphere, we have determined CME masses for these events using two methods: (1) by integration over the contours drawn between the three photometers at a given time; and (2) by integration of the mass flow over time past a given photometer. The second method, not readily available using coronagraph observations, is derived from CME speeds measured by using the timing of the peak CME brightness from the 16 deg to 31 deg sets of photometers. The two different HELIOS methods of determining CME mass are consistent with one another for individual CMEs. We find that the CME mass values range from 10(exp 15)g to nearly 10(exp 17)g. We compare the mass distributions of HELIOS-measured CMEs with those from coronagraphs and find that CMEs measured by HELIOS over the same time interval are generally more massive. The solar cycle variation of the total CME mass present in the heliosphere varies by over a factor of approximately 15 from solar minimum to solar maximum. Slightly more massive CMEs carry the bulk of the CME mass during maximum. The total CME mass at solar maximum is found to be near 15% of the total solar wind mass.

  15. Feasibility of a Knowledge Translation CME Program: "Courriels Cochrane"

    ERIC Educational Resources Information Center

    Pluye, Pierre; Grad, Roland; Granikov, Vera; Theriault, Guylene; Fremont, Pierre; Burnand, Bernard; Mercer, Jay; Marlow, Bernard; Arroll, Bruce; Luconi, Francesca; Legare, France; Labrecque, Michel; Ladouceur, Roger; Bouthillier, France; Sridhar, Soumya Bindiganavile; Moscovici, Jonathan

    2012-01-01

    Introduction: Systematic literature reviews provide best evidence, but are underused by clinicians. Thus, integrating Cochrane reviews into continuing medical education (CME) is challenging. We designed a pilot CME program where summaries of Cochrane reviews ("Courriels Cochrane") were disseminated by e-mail. Program participants automatically

  16. Improved Cardiovascular Prevention Using Best CME Practices: A Randomized Trial

    ERIC Educational Resources Information Center

    Laprise, Rejean; Thivierge, Robert; Gosselin, Gilbert; Bujas-Bobanovic, Maja; Vandal, Sylvie; Paquette, Daniel; Luneau, Micheline; Julien, Pierre; Goulet, Serge; Desaulniers, Jean; Maltais, Paule

    2009-01-01

    Introduction: It was hypothesized that after a continuing medical education (CME) event, practice enablers and reinforcers addressing main clinical barriers to preventive care would be more effective in improving general practitioners' (GPs) adherence to cardiovascular guidelines than a CME event only. Methods: A cluster-randomized trial was

  17. Evaluating Conflicts of Interest in Research Presented in CME Venues

    ERIC Educational Resources Information Center

    Davis, Nancy L.; Galliher, James M.; Spano, Mindy S.; Main, Deborah S.; Brannigan, Michael; Pace, Wilson D.

    2008-01-01

    Introduction: There is much in the literature regarding the potential for commercial bias in clinical research and in continuing medical education (CME), but no studies were found regarding the potential for bias in reporting original research in CME venues. This pilot study investigated the presence of perceived bias in oral and print content of

  18. Developing an Instrument to Measure Bias in CME

    ERIC Educational Resources Information Center

    Takhar, Jatinder; Dixon, Dave; Donahue, Jill; Marlow, Bernard; Campbell, Craig; Silver, Ivan; Eadie, Jason; Monette, Celine; Rohan, Ivan; Sriharan, Abi; Raymond, Kathryn; Macnab, Jennifer

    2007-01-01

    Introduction: The pharmaceutical industry, by funding over 60% of programs in the United States and Canada, plays a major role in continuing medical education (CME), but there are concerns about bias in such CME programs. Bias is difficult to define, and currently no tool is available to measure it. Methods: Representatives from industry and

  19. Improved Cardiovascular Prevention Using Best CME Practices: A Randomized Trial

    ERIC Educational Resources Information Center

    Laprise, Rejean; Thivierge, Robert; Gosselin, Gilbert; Bujas-Bobanovic, Maja; Vandal, Sylvie; Paquette, Daniel; Luneau, Micheline; Julien, Pierre; Goulet, Serge; Desaulniers, Jean; Maltais, Paule

    2009-01-01

    Introduction: It was hypothesized that after a continuing medical education (CME) event, practice enablers and reinforcers addressing main clinical barriers to preventive care would be more effective in improving general practitioners' (GPs) adherence to cardiovascular guidelines than a CME event only. Methods: A cluster-randomized trial was…

  20. Improving CME Forecasts Using the Hydro-Solution

    NASA Astrophysics Data System (ADS)

    de Koning, C. A.; Pizzo, V. J.; St John, D.; Cash, M. D.; Millward, G. H.; Odstrcil, D.

    2014-12-01

    Since October 2011, the Space Weather Prediction Center (SWPC) has used Enlil, a well-documented magnetohydrodynamic model of the heliosphere, to make numerical space weather forecasts of the arrival of coronal mass ejections (CMEs) at Earth. An accurate space weather forecast of CME arrival time at Earth depends upon an accurate characterization of all inputs to Enlil, including the background solar wind and the CME speed, width, and direction of propagation. Using the SWPC operational event repository, we compared the forecast for CME arrival time with ground-truth Wind observations and found multiple examples in which the CME forecast failed principally because of incorrect specification of the upstream solar wind speed. We suggest a simple process that can be used in near-real-time to improve CME forecasts.

  1. Comprehensive STEREO Observations of the 2008 February 4 CME

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Howard, R. A.; Plunkett, S. P.; Socker, D. G.

    2008-12-01

    Thanks to the two Heliospheric Imagers that are part of STEREO's SECCHI instrument package, the two STEREO spacecraft are the first that are capable of following a CME continuously from the Sun all the way to 1 AU, where the PLASTIC and IMPACT instruments on the spacecraft can then also provide in situ information on the CME, assuming it hits one of the the two satellites. We present the first kinematic study of a CME that has been observed in such a comprehensive manner. The event begins on 2008 February 4 and is successfully tracked by STEREO-A to 1 AU where it hits STEREO-B on February 7. This is therefore a good example of STEREO's capability for one satellite (STEREO-A in this case) to observe a white-light CME front hitting the other satellite (STEREO-B in this case) at the same time as that second satellite is measuring the CME properties in situ.

  2. Acceleration of Fast CME: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zhang, T. X.; Tan, A.

    2003-12-01

    The analysis of LASCO/SOHO, Skylab and Solar Maximum Mission (SMM) observations show that there are many CMEs initiated with streamer and flux-rope magnetic topology (Dere et al. 1999; St. Cyr et al., 1999; Plunkett et al., 2000). Two types of CMEs have been distinguished with different kinematic characteristics (MacQueen and Fisher, 1983; Andrews and Howard, 2001). These are fast CMEs with high initial speeds (i.e. constant speed) and slow CMEs with low initial speeds but gradual acceleration (i.e. accelerated CMEs). Efforts have been made to probe the underlying physics responsible for these dual characteristics. Low and Zhang (2002) proposed that fast and slow CMEs result from initial topology of the magnetic field characterized by normal and inverse quiescent prominences, respectively. Liu et al. have successfully performed a numerical MHD simulation for this scenario. In this presentation, we explore other possible processes using a 2.5D, time-dependent streamer and flux-rope MHD model (Wu and Guo, 1997) to investigate the dual kinematic properties of the CMEs by specifying the different initiation processes with a particular magnetic topology (i.e. inverse quiescent prominence magnetic topology). Two typical initiation processes are tested; (1) injection of the magnetic flux into the flux-rope causes additional Lorentz force to destabilize the streamer launching a CME (Wu et al., 1997) resulting in a category slow CME and (2) draining the plasma from the flux-rope together with flux injection leads to a balloon instability due to the magnetic buoyancy force which results in a impulsive eruption and launches a fast CME. References Andrews, M.D. and Howard, R.A., Space Sci. Rev., 95, 147, 2001 Dere, K.P. et al., Ap. J., 529, 575, 1999 Lin, et al., Proceedings of ICSC 2003: Solar Variability as an Input to the Earth's Environemnt, ESA-SP-535, 2003 (in press). Low, B.C. and Zhang, M., Ap. J., 564, L53, 2002. MacQueen, R.M. and Fisher, R.R., Solar Phys. 89, 89, 1983. Plunket, S., et al., Solar Phys. 194, 321, 2000. St. Cry., O.C. et al., J. Geophys. Res., 104, 12493, 1999. Wu, S.T. and Guo, W.P. in Coronal Mass Ejection, Geophys. Monogr. Ser. 99, (N. Crooker, et al. eds.), AGU Washington, DC 1997. Wu, S.T. et al., Solar Phys., 175, 719, 1997.

  3. pH-sensitive tubular polymersomes: formation and applications in cellular delivery.

    PubMed

    Robertson, James D; Yealland, Guy; Avila-Olias, Milagros; Chierico, Luca; Bandmann, Oliver; Renshaw, Stephen A; Battaglia, Giuseppe

    2014-05-27

    Optimizing the shape of a nanovector influences its interaction with a cell and determines the internalization kinetics. Block copolymer amphiphiles self-assemble into monodisperse structures in aqueous solutions and have been explored extensively as drug delivery vectors. However, the structure of self-assembled block copolymers has mainly been limited to spherical vesicles or spherical and worm-like micelles. Here we show the controlled formation and purification of tubular polymersomes, long cylindrical vesicles. Tubular polymersomes are purified from other structures, and their formation is manipulated by incorporating the biocompatible membrane components cholesterol and phospholipids. Finally we show that these tubular polymersomes have different cellular internalization kinetics compared with spherical polymersomes and can successfully encapsulate and deliver fluorescent bovine serum albumin protein intracellularly. PMID:24724711

  4. Growth Factor Tethering to Protein Nanoparticles via Coiled-Coil Formation for Targeted Drug Delivery.

    PubMed

    Assal, Yasmine; Mizuguchi, Yoshinori; Mie, Masayasu; Kobatake, Eiry

    2015-08-19

    Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery. PMID:26079837

  5. Delivery

    PubMed Central

    Miller, Thomas A

    2013-01-01

    Enthusiasm greeted the development of synthetic organic insecticides in the mid-twentieth century, only to see this give way to dismay and eventually scepticism and outright opposition by some. Regardless of how anyone feels about this issue, insecticides and other pesticides have become indispensable, which creates something of a dilemma. Possibly as a result of the shift in public attitude towards insecticides, genetic engineering of microbes was first met with scepticism and caution among scientists. Later, the development of genetically modified crop plants was met with an attitude that hardened into both acceptance and hard-core resistance. Transgenic insects, which came along at the dawn of the twenty-first century, encountered an entrenched opposition. Those of us responsible for studying the protection of crops have been affected more or less by these protagonist and antagonistic positions, and the experiences have often left one thoughtfully mystified as decisions are made by non-participants. Most of the issues boil down to concerns over delivery mechanisms. © 2013 Society of Chemical Industry PMID:23852646

  6. Delivery.

    PubMed

    Miller, Thomas A

    2013-11-01

    Enthusiasm greeted the development of synthetic organic insecticides in the mid-twentieth century, only to see this give way to dismay and eventually scepticism and outright opposition by some. Regardless of how anyone feels about this issue, insecticides and other pesticides have become indispensable, which creates something of a dilemma. Possibly as a result of the shift in public attitude towards insecticides, genetic engineering of microbes was first met with scepticism and caution among scientists. Later, the development of genetically modified crop plants was met with an attitude that hardened into both acceptance and hard-core resistance. Transgenic insects, which came along at the dawn of the twenty-first century, encountered an entrenched opposition. Those of us responsible for studying the protection of crops have been affected more or less by these protagonist and antagonistic positions, and the experiences have often left one thoughtfully mystified as decisions are made by non-participants. Most of the issues boil down to concerns over delivery mechanisms. PMID:23852646

  7. CME Interaction with Large-Scale Coronal Structures

    NASA Technical Reports Server (NTRS)

    Gopalswarny, Nat

    2012-01-01

    This talk presents some key observations that highlight the importance of CME interaction with other large scale structures such as CMEs and coronal holes . Such interactions depend on the phase of the solar cycle: during maximum, CMEs are ejected more frequently, so CME-CME interaction becomes dominant. During the rise phase, the polar coronal holes are strong, so the interaction between polar coronal holes and CMEs is important, which also leads to a possible increase in the number of interplanetary CMEs observed as magnetic clouds. During the declining phase, there are more equatorial coronal holes, so CMEs originating near these coronal holes are easily deflected. CMEs can be deflected toward and away from the Sun-Earth line resulting in interesting geospace consequences. For example, the largest geomagnetic storm of solar cycle 23 was due to a CME that was deflected towards the Sun-earth line from E22. CME deflection away from the Sun-Earth line diminishes the chance of a CME producing a geomagnetic storm. CME interaction in the coronagraphic field of view was first identified using enhanced radio emission, which is an indication of acceleration of low energy (approx.10 keV) electrons in the interaction site. CME interaction, therefore, may also have implications for proton acceleration. For example, solar energetic particle events typically occur with a higher intensity, whenever multiple CMEs occur in quick succession from the same source region. CME deflection may also have implications to the arrival of energetic particles to earth because magnetic connectivity may be changed by the interaction. I illustrate the above points using examples from SOHO, STEREO, Wind, and ACE data .

  8. Nanoparticle formation by using shellac and chitosan for a protein delivery system.

    PubMed

    Kraisit, Pakorn; Limmatvapirat, Sontaya; Nunthanid, Jurairat; Sriamornsak, Pornsak; Luangtana-anan, Manee

    2013-01-01

    The potential of using two natural polymers (chitosan and shellac) for the formation of nanoparticles by the process of ionic cross-linking to encapsulate bovine serum albumin, a model protein was investigated. Depending on the concentrations of chitosan, shellac and bovine serum albumin, three physical states - nanoparticle, aggregation, and solution could be observed as a result of the electrostatic force. The formation of nanoparticles was due to the balance between the repulsion force and attractive force while the imbalance between both forces resulted in the formation of aggregation and solution. The Fourier transform infrared spectroscopy and differential scanning calorimetry were applied to prove the nanoparticle formation. The particle size was characterized by the light scattering technique and was found in the range between 100 and 300 nm. The morphology of the particles, detected by transmission electron microscopy was spherical shape. The result showed that the zeta potential of the nanoparticles possessed positive charges. The concentrations of chitosan, shellac and bovine serum albumin had an influence on the physicochemical properties of the nanoparticles such as the particle size, the zeta potential, the encapsulation, the loading efficiencies and the cumulative release. Therefore, chitosan and shellac could be used to form nanoparticles for protein delivery by the ionic cross-linking method. PMID:22568768

  9. Synergistic Effects of Anti-CmeA and Anti-CmeB Peptide Nucleic Acids on Sensitizing Campylobacter jejuni to Antibiotics

    PubMed Central

    Mu, Yang; Shen, Zhangqi; Jeon, Byeonghwa; Dai, Lei

    2013-01-01

    The CmeABC efflux pump in Campylobacter jejuni confers resistance to structurally divergent antimicrobials, and inhibition of CmeABC represents a promising strategy to control antibiotic-resistant Campylobacter. Antisense peptide nucleic acids (PNAs) targeting the three components of CmeABC were evaluated for inhibition of CmeABC expression. The result revealed a synergistic effect of the PNAs targeting CmeA and CmeB on sensitizing C. jejuni to antibiotics. This finding further demonstrates the feasibility of using PNAs to potentiate antibiotics against antibiotic-resistant Campylobacter. PMID:23817373

  10. CME front and severe space weather

    NASA Astrophysics Data System (ADS)

    Balan, N.; Skoug, R.; Tulasi Ram, S.; Rajesh, P. K.; Shiokawa, K.; Otsuka, Y.; Batista, I. S.; Ebihara, Y.; Nakamura, T.

    2014-12-01

    Thanks to the work of a number of scientists who made it known that severe space weather can cause extensive social and economic disruptions in the modern high-technology society. It is therefore important to understand what determines the severity of space weather and whether it can be predicted. We present results obtained from the analysis of coronal mass ejections (CMEs), solar energetic particle (SEP) events, interplanetary magnetic field (IMF), CME-magnetosphere coupling, and geomagnetic storms associated with the major space weather events since 1998 by combining data from the ACE and GOES satellites with geomagnetic parameters and the Carrington event of 1859, the Quebec event of 1989, and an event in 1958. The results seem to indicate that (1) it is the impulsive energy mainly due to the impulsive velocity and orientation of IMF Bz at the leading edge of the CMEs (or CME front) that determine the severity of space weather. (2) CMEs having high impulsive velocity (sudden nonfluctuating increase by over 275 km s-1 over the background) caused severe space weather (SvSW) in the heliosphere (failure of the solar wind ion mode of Solar Wind Electron Proton Alpha Monitor in ACE) probably by suddenly accelerating the high-energy particles in the SEPs ahead directly or through the shocks. (3) The impact of such CMEs which also show the IMF Bz southward from the leading edge caused SvSW at the Earth including extreme geomagnetic storms of mean DstMP < -250 nT during main phases, and the known electric power outages happened during some of these SvSW events. (4) The higher the impulsive velocity, the more severe the space weather, like faster weather fronts and tsunami fronts causing more severe damage through impulsive action. (5) The CMEs having IMF Bz northward at the leading edge do not seem to cause SvSW on Earth, although, later when the IMF Bz turns southward, they can lead to super geomagnetic storms of intensity (Dstmin) less than even -400 nT.

  11. A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance

    2016-02-01

    Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.

  12. December 2008 CME as Viewed by Spacecraft - Duration: 16 seconds.

    NASA Video Gallery

    Newly reprocessed images from NASA's STEREO-A spacecraft, allow scientists to trace the anatomy of the December 2008 CME as it moves and changes on its journey from the Sun to the Earth, identify t...

  13. Can solar wind viscous drag account for CME deceleration?

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Lara, Alejandro; Borgazzi, Andrea

    2012-07-01

    An understanding of the forces that act on Coronal Mass Ejections (CMEs) in the interplanetary medium are of prime importance in predicting their arrival at the Earth. These forces have been evaluated so far only in terms of an empirical drag coefficient C_{D} 1 that quantifies the role of the aerodynamic drag experienced by a typical CME due to its interaction with the ambient solar wind. We examine microphysical models for viscosity in the turbulent solar wind and apply them to a simplified model for CME propagation. Using this, we obtain an analytical expression for the dynamical viscosity coefficient and C_{D} as a function of heliocentric distance. This is the first physical characterization of the important issue of the aerodynamic drag experienced by CMEs. Our results elucidate the essential physics involved in explaining observations of CME deceleration and have implications for predictions of CME arrival time at the Earth.

  14. Comparisons of Remote And In-situ CME Features

    NASA Astrophysics Data System (ADS)

    Reinard, Alysha; Mulligan, T.; Lynch, B.

    2011-05-01

    We present a comparison of remote and in-situ CME ejecta using data from the Ulysses and SOHO missions. Quadrature occurs when two spacecraft form a 90 degree angle with the Sun. Quadrature studies allow the comparison of visible features of limb CMEs and and in-situ ICME properties. We investigate several events, including so-called "cannibal" CMEs, and compare the relationship between CME morphology and in-situ structures such as magnetic field, composition, and plasma properties.

  15. The Role of Magnetic Reconnection in CME Acceleration

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zhang, T. X.; Dryer, M.; Feng, X. S.; Tan, Arjun

    2005-11-01

    Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53 L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157 175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157 175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a CME.

  16. Current Sheet Evolution in the Aftermath of a CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.

    2005-01-01

    We report on SOHO-UVCS observations of the coronal restructuring following a Coronal Mass Ejection (CME) on November 26,2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after a CME in the NW quadrant, UVCS began taking spectra at 1.7 solar radius, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the Fe XVIII emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by Ulysses-SWICS throughout the magnetic cloud associated with the CME. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  17. Automated Prediction of CMEs Using Machine Learning of CME - Flare Associations

    NASA Astrophysics Data System (ADS)

    Qahwaji, R.; Colak, T.; Al-Omari, M.; Ipson, S.

    2008-04-01

    Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks (CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the input of a flares properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided.

  18. Asymmetry in the CME-CME interaction process for the events from 2011 February 14-15

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Peinhart, V.; Vrnak, B.

    2014-04-20

    We present a detailed study of the interaction process of two coronal mass ejections (CMEs) successively launched on 2011 February 14 (CME1) and 2011 February 15 (CME2). Reconstructing the three-dimensional shape and evolution of the flux ropes, we verify that the two CMEs interact. The frontal structure of both CMEs, measured along different position angles (PAs) over the entire latitudinal extent, reveals differences in the kinematics for the interacting flanks and the apexes. The interaction process is strongly PA-dependent in terms of timing as well as kinematical evolution. The central interaction occurs along PA-100, which shows the strongest changes in kinematics. During interaction, CME1 accelerates from ?400 km s{sup 1} to ?700 km s{sup 1} and CME2 decelerates from ?1300 km s{sup 1} to ?600 km s{sup 1}. Our results indicate that a simplified scenario such as inelastic collision may not be sufficient to describe the CME-CME interaction. The magnetic field structures of the intertwining flux ropes and the momentum transfer due to shocks each play an important role in the interaction process.

  19. Sponsorship and conflicts of interests in CME: the Italian experience.

    PubMed

    Villani, G

    2009-03-01

    Pursuant to the Italian healthcare framework, sponsorship of Continuing Medical Education (CME) for healthcare professionals governs the relationship between the medical industry and the healthcare sector, as public institutions are directly involved in it. Sponsorship is based on a voluntarily sharing of mutual benefits between two contracting parties, namely the sponsor and the sponsorship beneficiary, whose interests are relevant to the same degree. To avoid conflicts of interests from occurring, sponsorship shall comply with two ethical standards: 1) the contracting parties shall verify if their interests about CME activities converge or conflict; 2) the sponsorship contract shall be published and advertised to disclose what kind of commitment the contracting parties undertook. When entering a CME sponsorship contract as sponsorship beneficiary, Italian local health authorities may rely on a code of conduct which lays down all principles, criteria and proceedings that shall apply. PMID:19705637

  20. Current Sheet Evolution In The Aftermath Of A CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Seuss, S. T.; Schwardron, N. A.; Elliott, H. A.; Raymond, J. C.

    2006-01-01

    We report on SOHO UVCS observations of the coronal restructuring following a coronal mass ejection (CME) on 2002 November 26, at the time of a SOHO-Ulysses quadrature campaign. Starting about 1.5 hr after a CME in the northwest quadrant, UVCS began taking spectra at 1.7 R, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 A line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature versus time in the current sheet and estimate its density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by the Ulysses SWICS throughout the magnetic cloud associated with the CME, although its rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. The SOHO-Ulysses data set provided us with the unique opportunity of analyzing a current sheet structure from its lowest coronal levels out to its in situ properties. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  1. Development and Evaluation of CmeC Subunit Vaccine against Campylobacter jejuni

    PubMed Central

    Zeng, Ximin; Xu, Fuzhou; Lin, Jun

    2011-01-01

    Campylobacter jejuni is the leading bacterial cause of human enteritis in many industrialized countries. There is no commercial vaccine against C. jejuni available to date. CmeC is an essential outer membrane component of CmeABC multidrug efflux pump that plays a critical role in antibiotic resistance and in vivo colonization of C. jejuni. CmeC is prevalent in C. jejuni strains and is dramatically induced and immunogenic in vivo. In this study, we analyzed CmeC sequence homology, examined in vitro immune protection of CmeC peptide antibodies, and produced full-length recombinant CmeC (rCmeC) for evaluating immunogenicity and protective efficacy of the CmeC subunit vaccine against C. jejuni using chicken model system. Amino acid sequences of CmeC from 24 diverse C. jejuni strains were determined and subjected to alignment, which revealed that CmeC is highly conserved in C. jejuni with a identity ranging from 97.3% to 100%. CmeC peptide antibodies inhibited the function of CmeABC efflux pump and enhanced susceptibility of C. jejuni to bile salts, the natural antimicrobial present in the intestine. Two full-length rCmeC proteins with N- or C-terminal His tag were produced in E. coli; the N-terminal His-tagged rCmeC with high purity and yield was obtained by single step affinity purification. The purified rCmeC was used in two vaccination trials using a chicken model of C. jejuni infection. Stimulation of CmeC-specific serum IgG responses via oral vaccination required immunization with higher doses of rCmeC (200?g) together with 70?g of mucosal adjuvant mLT (modified E. coli heat-labile enterotoxin). Subcutaneous vaccination of chickens with rCmeC remarkably stimulated both serum IgG and IgA responses. However, CmeC-specific intestinal secretory IgA response was not significantly stimulated regardless of vaccination regimen and the rCmeC vaccination did not confer protection against C. jejuni infection. Together, these findings provide further compelling evidence that CmeC is a promising subunit vaccine candidate against C. jejuni infection. However, the CmeC vaccination regimen should be optimized to enhance CmeC-specific mucosal immune response in for protection against C. jejuni. PMID:22140651

  2. Validation of CME Detection Software (CACTus) by Means of Simulated Data, and Analysis of Projection Effects on CME Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Bonte, K.; Jacobs, C.; Robbrecht, E.; de Groof, A.; Berghmans, D.; Poedts, S.

    2011-05-01

    In the context of space weather forecasting, an automated detection of coronal mass ejections (CMEs) becomes more and more important for efficiently handling a large data flow which is expected from recently-launched and future solar missions. In this paper we validate the detection software package "CACTus" by applying the program to synthetic data from our 3D time-dependent CME simulations instead of observational data. The main strength of this study is that we know in advance what should be detected. We describe the sensitivities and strengths of automated detection, more specific for the CACTus program, resulting in a better understanding of CME detection on one hand and the calibration of the CACTus software on the other hand, suggesting possible improvements of the package. In addition, the simulation is an ideal tool to investigate projection effects on CME velocity measurements.

  3. Coronal magnetic reconnection driven by CME expansionthe 2011 June 7 event

    SciTech Connect

    Van Driel-Gesztelyi, L.; Baker, D.; Green, L. M.; Williams, D. R.; Carlyle, J.; Kliem, B.; Long, D. M.; Matthews, S. A.; Trk, T.; Pariat, E.; Valori, G.; Dmoulin, P.; Malherbe, J.-M.

    2014-06-10

    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent active regions during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube at the interface between the CME and the neighboring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is redirected toward remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10{sup 10} cm{sup 3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale reconfiguration of the coronal magnetic field.

  4. Space Weather Model of July 22-23, 2012 CME - Duration: 5 seconds.

    NASA Video Gallery

    NASA's Space Weather Research Center modeled the July 23, 2012 CME using a modeling program called ENLIL. The CME can be seen to expand dramatically as it travels through space. By comparing how we...

  5. 01.22.12: SOHO's View of Earth-directed CME - Duration: 7 seconds.

    NASA Video Gallery

    The Solar Heliospheric Observatory captured the coronal mass ejection (CME) in this video (which shows the sun's activity from January 19 to January 23). The CME is associate with an M8.7 class sol...

  6. Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation.

    PubMed

    Duong, Hien T T; Jung, Kenward; Kutty, Samuel K; Agustina, Sri; Adnan, Nik Nik M; Basuki, Johan S; Kumar, Naresh; Davis, Thomas P; Barraud, Nicolas; Boyer, Cyrille

    2014-07-14

    Biofilms are increasingly recognized as playing a major role in human infectious diseases, as they can form on both living tissues and abiotic surfaces, with serious implications for applications that rely on prolonged exposure to the body such as implantable biomedical devices or catheters. Therefore, there is an urgent need to develop improved therapeutics to effectively eradicate unwanted biofilms. Recently, the biological signaling molecule nitric oxide (NO) was identified as a key regulator of dispersal events in biofilms. In this paper, we report a new class of core cross-linked star polymers designed to store and release nitric oxide, in a controlled way, for the dispersion of biofilms. First, core cross-linked star polymers were prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) via an arm first approach. Poly(oligoethylene methoxy acrylate) chains were synthesized by RAFT polymerization, and then chain extended in the presence of 2-vinyl-4,4-dimethyl-5-oxazolone monomer (VDM) with N,N-methylenebis(acrylamide) employed as a cross-linker to yield functional core cross-linked star polymers. Spermine was successfully attached to the star core by reaction with VDM. Finally, the secondary amine groups were reacted with NO gas to yield NO-core cross-linked star polymers. The core cross-linked star polymers were found to release NO in a controlled, slow delivery in bacterial cultures showing great efficacy in preventing both cell attachment and biofilm formation in Pseudomonas aeruginosa over time via a nontoxic mechanism, confining bacterial growth to the suspended liquid. PMID:24915286

  7. Improving CME: Using Participant Satisfaction Measures to Specify Educational Methods

    ERIC Educational Resources Information Center

    Olivieri, Jason J.; Regala, Roderick P.

    2013-01-01

    Imagine having developed a continuing medical education (CME) initiative to educate physicians on updated guidelines regarding high cholesterol in adults. This initiative consisted of didactic presentations and case-based discussions offered in 5 major US cities, followed by a Web-based enduring component to distill key points of the live

  8. The new CORIMP CME catalog & 3D reconstructions

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Morgan, Huw; Gallagher, Peter; Habbal, Shadia; Davies, Jackie

    2015-04-01

    A new coronal mass ejection catalog has been built from a unique set of coronal image processing techniques, called CORIMP, that overcomes many of the limitations of current catalogs in operation. An online database has been produced for the SOHO/LASCO data and event detections therein; providing information on CME onset time, position angle, angular width, speed, acceleration, and mass, along with kinematic plots and observation movies. The high-fidelity and robustness of these methods and derived CME structure and kinematics will lead to an improved understanding of the dynamics of CMEs, and a realtime version of the algorithm has been implemented to provide CME detection alerts to the interested space weather community. Furthermore, STEREO data has been providing the ability to perform 3D reconstructions of CMEs that are observed in multipoint observations. This allows a determination of the 3D kinematics and morphologies of CMEs characterised in STEREO data via the 'elliptical tie-pointing' technique. The associated observations of SOHO, SDO and PROBA2 (and intended use of K-Cor) provide additional measurements and constraints on the CME analyses in order to improve their accuracy.

  9. Improving CME: Using Participant Satisfaction Measures to Specify Educational Methods

    ERIC Educational Resources Information Center

    Olivieri, Jason J.; Regala, Roderick P.

    2013-01-01

    Imagine having developed a continuing medical education (CME) initiative to educate physicians on updated guidelines regarding high cholesterol in adults. This initiative consisted of didactic presentations and case-based discussions offered in 5 major US cities, followed by a Web-based enduring component to distill key points of the live…

  10. STEREO Captures Fastest CME to Date - Duration: 15 seconds.

    NASA Video Gallery

    This movie shows a coronal mass ejection (CME) on the sun from July 22, 2012 at 10:00 PM EDT until 2 AM on July 23 as captured by NASA's Solar TErrestrial RElations Observatory-Ahead (STEREO-A). Be...

  11. Quality framework proposal for Component Material Evaluation (CME) projects.

    SciTech Connect

    Christensen, Naomi G.; Arfman, John F.; Limary, Siviengxay

    2008-09-01

    This report proposes the first stage of a Quality Framework approach that can be used to evaluate and document Component Material Evaluation (CME) projects. The first stage of the Quality Framework defines two tools that will be used to evaluate a CME project. The first tool is used to decompose a CME project into its essential elements. These elements can then be evaluated for inherent quality by looking at the subelements that impact their level of quality maturity or rigor. Quality Readiness Levels (QRLs) are used to valuate project elements for inherent quality. The Framework provides guidance for the Principal Investigator (PI) and stakeholders for CME project prerequisites that help to ensure the proper level of confidence in the deliverable given its intended use. The Framework also Provides a roadmap that defined when and how the Framework tools should be applied. Use of these tools allow the Principal Investigator (PI) and stakeholders to understand what elements the project will use to execute the project, the inherent quality of the elements, which of those are critical to the project and why, and the risks associated to the project's elements.

  12. Obstetrician/Gynecologists and Postpartum Mental Health: Differences between CME Course Takers and Nontakers

    ERIC Educational Resources Information Center

    Leddy, Meaghan A.; Farrow, Victoria A.; Joseph, Gerald F., Jr.; Schulkin, Jay

    2012-01-01

    Introduction: Continuing medical education (CME) courses are an essential component of professional development. Research indicates a continued need for understanding how and why physicians select certain CME courses, as well as the differences between CME course takers and nontakers. Purpose: Obstetrician-gynecologists (OB-GYNs) are health care

  13. Does participation in CME SLG (small group learning) influence medical practice? The experience of general practitioners attending CME SLG after the introduction of the Medical Practitioners Act.

    PubMed

    Dowling, S; Finnegan, H; Collins, C

    2015-04-01

    In Ireland, Continuing Medical Education (CME) for GPs is delivered by a national network of 37 tutors who coordinate learning sessions for between 2 and 5 small groups of physicians (SGL). Each group meets up to 8 times per year; 1100 to 1700 doctors attend CME-SGL nationally each month, with numbers increased since the Irish Medical Practitioners Act. This study investigated whether CME-SGL improves clinical knowledge of doctors. A questionnaire was administered by 35 CME tutors at their scheduled meetings in November/December 2012; 1366 (96%) attendees responded. In total 1312 (97%) doctors reported that they want to improve their clinical practice, and 1143 (86.3%) agreed that CME had helped them to do so. Of these, 1041 (91.1%) doctors gave specific examples. This survey provides evidence of how CME-SGL has impacted on the knowledge, skills, attitudes, prescribing, use of investigations, and application of guidelines and audit of these Irish GPs. PMID:26016300

  14. Student Perception of Improvement in Communication and Value in 2 Interprofessional Education Delivery Formats.

    PubMed

    Arentsen, Ashley; Welsh, Darlene; Jones, Mikael; Weber, Donna; Taylor, Stacy; Kuperstein, Janice; Rayens, Mary Kay; Salt, Elizabeth

    2016-01-01

    A preferred format to deliver interprofessional education (IPE) has not been described. The aim of this study was to compare students' (N = 150) perceived value and improvement in communication between an IPE activity delivered using a comprehensive versus an abbreviated format. Although both formats were perceived by students to improve their communication skills and add value to their education, students indicated the abbreviated format was more effective than the comprehensive format. PMID:26237007

  15. Coronal Magnetic Field Measurement Using CME-Driven Shock Observations

    NASA Technical Reports Server (NTRS)

    Gopalswarmy, Nat; Nitta, N.; Yashiro, S.; Makela, P.; Xie, H.; Akiyama, S.

    2012-01-01

    Collisionless shocks form ahead of coronal mass ejections (CMEs) when the CME speed exceeds the Alfven speed of the ambient plasma in the corona and interplanetary medium. The shock stands at a distance from the CME flux rope that depends on the shock Mach number, the geometry of the driver, and the adiabatic index. While the shock ahead of the CME has been observed for a long time in the in situ data, it has been identified recently near the Sun in the coronagraphic and EUV images. Unlike in situ observations, the imaging observations are two dimensional, so one can better discern the CME-shock relationship near the Sun. Gopalswamy and Yashiro demonstrated that the coronal magnetic field can be derived from the shock standoff distance measured in coronagraphic images. The method involves measuring the standoff distance, the radius of curvature of the flux rope, and assuming the value of the adiabatic index and deriving the Alfvenic Mach number. The next step is to derive the Alfvenic Mach number from the measured shock speed and an estimate of the local solar wind speed. The final step involves deriving the magnetic field from the Alfven speed by measuring the local plasma density either from coronagraphic (polarized brightness) images or from the band-splitting of type II radio bursts. In this paper, we derive the combined magnetic field profile from near the Sun to the edge of the LASCO field of view (1.5 to 30 solar radii) and compare it with the current model profiles.

  16. Solar Eruption Model Relating CME Kinematics to Flare Emissions

    NASA Astrophysics Data System (ADS)

    Moats, Stephanie; Reeves, K.

    2010-05-01

    The combination of a loss-of-equilibrium coronal mass ejection (CME) model with a multi-threaded flare loop model is used to develop a model of solar eruptions. The CME kinematics, thermal energy release, and flare emissions are compared in order to understand the relationship between these properties of solar eruptions. CME accelerations and peak x-ray fluxes are modeled for many different cases, and it is found that the timing of the peak flux derivative and the peak acceleration are well correlated when the inflow Alfven Mach number is fast and the magnetic field is high. The total thermal energy release and peak soft x-ray flux are observed to have a power law relationship, where the peak flux is about equal to the thermal energy to the power of alpha (alpha is between 2.54 and 1.54, depending on the reconnection rate). This finding conflicts with theoretical underpinnings of the Neupert Effect, which assumes the soft x-ray flux is proportional to the thermal energy release.

  17. CME Propagation: Where does Aerodynamic Drag 'Take Over'?

    NASA Astrophysics Data System (ADS)

    Sachdeva, Nishtha; Subramanian, Prasad; Colaninno, Robin; Vourlidas, Angelos

    2015-08-01

    We investigate the Sun-Earth dynamics of a set of eight well observed solar coronal mass ejections (CMEs) using data from the Solar Terrestrial Relations Observatory spacecraft. We seek to quantify the extent to which momentum coupling between these CMEs and the ambient solar wind (i.e., the aerodynamic drag) influences their dynamics. To this end, we use results from a 3D flux rope model fit to the CME data. We find that solar wind aerodynamic drag adequately accounts for the dynamics of the fastest CME in our sample. For the relatively slower CMEs, we find that drag-based models initiated below heliocentric distances ranging from 15 to 50 {R}? cannot account for the observed CME trajectories. This is at variance with the general perception that the dynamics of slow CMEs are influenced primarily by solar wind drag from a few {R}? onwards. Several slow CMEs propagate at roughly constant speeds above 15-50 {R}? . Drag-based models initiated above these heights therefore require negligible aerodynamic drag to explain their observed trajectories.

  18. Methods and apparatuses for reagent delivery, reactive barrier formation, and pest control

    DOEpatents

    Gilmore, Tyler [Pasco, WA; Kaplan, Daniel I [Aiken, SC; Last, George [Richland, WA

    2002-07-09

    A reagent delivery method includes positioning reagent delivery tubes in contact with soil. The tubes can include a wall that is permeable to a soil-modifying reagent. The method further includes supplying the reagent in the tubes, diffusing the reagent through the permeable wall and into the soil, and chemically modifying a selected component of the soil using the reagent. The tubes can be in subsurface contact with soil, including groundwater, and can be placed with directional drilling equipment independent of groundwater well casings. The soil-modifying reagent includes a variety of gases, liquids, colloids, and adsorbents that may be reactive or non-reactive with soil components. The method may be used inter alia to form reactive barriers, control pests, and enhance soil nutrients for microbes and plants.

  19. Stent-based delivery of ABT-578 via a phosphorylcholine surface coating reduces neointimal formation in the porcine coronary model.

    PubMed

    Collingwood, Robin; Gibson, Lori; Sedlik, Souad; Virmani, Renu; Carter, Andrew J

    2005-06-01

    Stent-based delivery of the antiproliferative and immunosuppressive macrocyclic lactone sirolimus reduces neointimal formation and restenosis by cytostatic inhibition of vascular smooth muscle cell proliferation. The objective of this study was to determine the feasibility and efficacy of stent-based delivery of ABT-578, a structurally unique macrocyclic lactone. Stainless steel balloon-expandable stents were coated with thin layer of phosphorylcholine (PC) or PC with ABT-578 (10 microg/mm). Fifteen juvenile domestic pigs underwent placement of oversized bare metal (n = 15), PC (n = 8), and PC with ABT-578 (n = 9) stents in the coronary arteries. At 28 days, histology demonstrated similar mean injury scores for the control, PC-, and ABT-578-coated stents. The mean neointimal area (mm2) was significantly reduced for ABT-578 (1.70 +/- 0.47) as compared with PC (2.82 +/- 1.24) and control (2.89 +/- 1.91) stents (P < or = 0.05). The 40% reduction in neointimal area resulted in significantly less mean percent diameter stenosis for ABT-578 (19.4% +/- 4.0%) as compared with PC (30.3 +/- 12.1 %) and control (29.4% +/- 15.5%) stents (P < or = 0.03). Twelve of the 45 bare metal stent cross-sections (26.7%) exhibited a giant cell reaction, while none of the sections from the ABT-578-eluting stents had a giant cell reaction (P = 0.004). Stent-based delivery of ABT-578 via a PC surface coating inhibits neointimal formation at 28 days in the porcine coronary model. Further study is necessary to determine the dose-response and long-term effects ABT-578-eluting stents in the porcine coronary model. PMID:15900559

  20. Investigating the Relationship between Quality, Format and Delivery of Feedback for Written Assignments in Higher Education

    ERIC Educational Resources Information Center

    Sopina, Elizaveta; McNeill, Rob

    2015-01-01

    Feedback can have a great impact on student learning. However, in order for it to be effective, feedback needs to be of high quality. Electronic marking has been one of the latest adaptations of technology in teaching and offers a new format of delivering feedback. There is little research investigating the impact the format of feedback has on

  1. Investigating the Relationship between Quality, Format and Delivery of Feedback for Written Assignments in Higher Education

    ERIC Educational Resources Information Center

    Sopina, Elizaveta; McNeill, Rob

    2015-01-01

    Feedback can have a great impact on student learning. However, in order for it to be effective, feedback needs to be of high quality. Electronic marking has been one of the latest adaptations of technology in teaching and offers a new format of delivering feedback. There is little research investigating the impact the format of feedback has on…

  2. STUDY OF THE 2007 APRIL 20 CME-COMET INTERACTION EVENT WITH AN MHD MODEL

    SciTech Connect

    Jia, Y. D.; Russell, C. T.; Jian, L. K.; Manchester, W. B.; Cohen, O.; Hansen, K. C.; Combi, M. R.; Gombosi, T. I.; Vourlidas, A.

    2009-05-01

    This study examines the tail disconnection event on 2007 April 20 on comet 2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of 0.34 AU. During their interaction, both the CME and the comet are visible with high temporal and spatial resolution by the STEREO-A spacecraft. Previously, only current sheets or shocks have been accepted as possible reasons for comet tail disconnections, so it is puzzling that the CME caused this event. The MHD simulation presented in this work reproduces the interaction process and demonstrates how the CME triggered a tail disconnection in the April 20 event. It is found that the CME disturbs the comet with a combination of a 180 deg. sudden rotation of the interplanetary magnetic field (IMF), followed by a 90 deg. gradual rotation. Such an interpretation applies our understanding of solar wind-comet interactions to determine the in situ IMF orientation of the CME encountering Encke.

  3. Interaction between CME and surrounding magnetic fields producing multiple flaring sites

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), T. Török (4), E. Pariat (2), L.M. Green (1),D.R. Williams (1), J. Carlyle (1,5) G. Valori (1, 2), P. Démoulin (2), B. Kliem (1,7,8),D. Long (1), S.A. Matthews (1), J.-M. Malherbe (2)(1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Predictive Science, Dan Diego, USA, (5) Max Planck Inst., Göttingen, Germany, (6) INAF, Obs. Roma, Italy, (7) Potsdam Univ., Germany, (8) Yunnan Observatories, Kunming, ChinaAnalyzing Solar Dynamics Observatory (SDO) observations of the spectacular Coronal Mass Ejection eruption on 7 June 2011, we present evidence of coronal magnetic reconnection between the expanding magnetic structure of the CME and the magnetic fields of an adjacent active region (AR). The onset of reconnection first became apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, was re-directed towards remote areas in the neighboring AR, tracing the change of large-scale magnetic connectivity. The observations are presented jointly with a topological analysis of the pre-eruption magnetic configuration, and a data-constrained numerical simulation of the three-AR complex, demonstrating the formation/intensification of current sheets along a pre-existing hyperbolic flux tube (HFT) at the interface between the CME and the neighboring AR, where a secondary flare ribbon was created. Reconnection across this current sheet resulted in the formation of new magnetic connections between the erupting magnetic structure and a neighboring AR about 200 Mm from the eruption site, in strong qualitative agreement with the observations. In addition, the CME temporarily created unusually dense plasma conditions around a reconnection region at high coronal altitudes, enabling us to observe emission resulting from it. We argue that this exceptional observation of a coronal brightening was directly observable at SDO/AIA wavelengths owing to the presence of down-flowing cool and dense (estimated to be of the order of 1010 cm-3) filament plasma in the vicinity of the reconnection region.

  4. Crystal Structure of the Transcriptional Regulator CmeR From Campylobacter Jejuni

    SciTech Connect

    Gu, R.; Su, C.-C.; Shi, F.; McDermott, G.; Zhang, Q.; Yu, E.W.

    2009-06-01

    The CmeABC multidrug efflux pump, which belongs to the resistance-nodulation-division (RND) family, recognizes and extrudes a broad range of antimicrobial agents and is essential for Campylobacter jejuni colonization of the animal intestinal tract by mediating the efflux of bile acids. The expression of CmeABC is controlled by the transcriptional regulator CmeR, whose open reading frame is located immediately upstream of the cmeABC operon. To understand the structural basis of CmeR regulation, we have determined the crystal structure of CmeR to 2.2 {angstrom} resolution, revealing a dimeric two-domain molecule with an entirely helical architecture similar to members of the TetR family of transcriptional regulators. Unlike the rest of the TetR regulators, CmeR has a large center-to-center distance (54 {angstrom}) between two N termini of the dimer, and a large flexible ligand-binding pocket in the C-terminal domain. Each monomer forms a 20 {angstrom} long tunnel-like cavity in the ligand-binding domain of CmeR and is occupied by a fortuitous ligand that is identified as glycerol. The binding of glycerol to CmeR induces a conformational state that is incompatible with target DNA. As glycerol has a chemical structure similar to that of potential ligands of CmeR, the structure obtained mimics the induced form of CmeR. These findings reveal novel structural features of a TetR family regulator, and provide new insight into the mechanisms of ligand binding and CmeR regulation.

  5. Evolution of two Flaring Active Regions With CME Association

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2008-12-01

    We study the coronal magnetic field structure of two active regions, one during solar activity minimum (June 2007) and another one during a more active time (January 2004). The temporal evolution was explored with the help of nonlinear force-free coronal magnetic field extrapolations of SOLIS/VSM and NAOJ/SFT photospheric vector magnetograms. We study the active region NOAA 10960 observed on 2007 June 7 with three SOLIS/VSM snapshots taken during a small C1.0 flare of time cadence 10 minutes and six snapshots during a quiet period. The total magnetic energy in the active region was approximately 3 × 1025 J. Before the flare the free magnetic energy was about 5~% of the potential field energy. A part of this excess energy was released during the flare, producing almost a potential configuration at the beginning of the quiet period. The return to an almost potential structure can be assigned to a CME as recorded by the SoHO/LASCO instrument on 2007 June 07 around 10 minutes after the flare peaked, so that whatever magnetic helicity was bodily removed from the structure. This was compared with active region 10540 observed on 2004 January 18 -- 21, which was analyzed with the help of vector magnetograph data from the Solar Flare Telescope in Japan of time cadence of about 1 day. The free energy was Efree≈ 66~% of the total energy which was sufficiently high to power a M6.1 flare on January 20, which was associated with a CME 20 minutes later. The activity of AR 10540 was significantly higher than for AR 10960, as was the total magnetic energy. Furthermore, we found the common feature that magnetic energy accumulates before the flare/CME and a significant part of the excess energy is released during the eruption.

  6. Cosmic Ray Anisotropy Near a CME-Driven Shock

    NASA Astrophysics Data System (ADS)

    Leerungnavarat, K.; Ruffolo, D.; Bieber, J. W.

    2002-05-01

    As a CME-driven shock approaches and passes earth, neutron monitors and muon detectors observe enhancements of the cosmic ray anisotropy. Precursor anisotropies are caused by the interaction of the cosmic rays with the shock and provide useful information for space weather forecasting with a lead time of several hours. We numerically simulate the distribution of particles in position and pitch angle, and predict how the cosmic ray pitch angle distribution near the shock depends on particle energy and shock geometry. This work was supported by NSF grant ATM-0000315 and the Thailand Research Fund.

  7. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  8. Scientific goals of the Cooperative Multiscale Experiment (CME)

    NASA Technical Reports Server (NTRS)

    Cotton, William

    1993-01-01

    Mesoscale Convective Systems (MCS) form the focus of CME. Recent developments in global climate models, the urgent need to improve the representation of the physics of convection, radiation, the boundary layer, and orography, and the surge of interest in coupling hydrologic, chemistry, and atmospheric models of various scales, have emphasized the need for a broad interdisciplinary and multi-scale approach to understanding and predicting MCS's and their interactions with processes at other scales. The role of mesoscale systems in the large-scale atmospheric circulation, the representation of organized convection and other mesoscale flux sources in terms of bulk properties, and the mutually consistent treatment of water vapor, clouds, radiation, and precipitation, are all key scientific issues concerning which CME will seek to increase understanding. The manner in which convective, mesoscale, and larger scale processes interact to produce and organize MCS's, the moisture cycling properties of MCS's, and the use of coupled cloud/mesoscale models to better understand these processes, are also major objectives of CME. Particular emphasis will be placed on the multi-scale role of MCS's in the hydrological cycle and in the production and transport of chemical trace constituents. The scientific goals of the CME consist of the following: understand how the large and small scales of motion influence the location, structure, intensity, and life cycles of MCS's; understand processes and conditions that determine the relative roles of balanced (slow manifold) and unbalanced (fast manifold) circulations in the dynamics of MCS's throughout their life cycles; assess the predictability of MCS's and improve the quantitative forecasting of precipitation and severe weather events; quantify the upscale feedback of MCS's to the large-scale environment and determine interrelationships between MCS occurrence and variations in the large-scale flow and surface forcing; provide a data base for initialization and verification of coupled regional, mesoscale/hydrologic, mesoscale/chemistry, and prototype mesoscale/cloud-resolving models for prediction of severe weather, ceilings, and visibility; provide a data base for initialization and validation of cloud-resolving models, and for assisting in the fabrication, calibration, and testing of cloud and MCS parameterization schemes; and provide a data base for validation of four dimensional data assimilation schemes and algorithms for retrieving cloud and state parameters from remote sensing instrumentation.

  9. Genetic Basis and Functional Consequences of Differential Expression of the CmeABC Efflux Pump in Campylobacter jejuni Isolates

    PubMed Central

    Grinnage-Pulley, Tara; Zhang, Qijing

    2015-01-01

    The CmeABC multidrug efflux transporter of Campylobacter jejuni plays a key role in antimicrobial resistance and is suppressed by CmeR, a transcriptional regulator of the TetR family. Overexpression of CmeABC has been observed in laboratory-generated mutants, but it is unknown if this phenotype occurs naturally in C. jejuni isolates and if it has any functional consequences. To answer these questions, expression of cmeABC in natural isolates obtained from broiler chickens, turkeys and humans was examined, and the genetic mechanisms and role of cmeABC differential expression in antimicrobial resistance was determined. Among the 64 C. jejuni isolates examined in this study, 43 and 21 were phenotypically identified as overexpression (OEL) and wild-type expression (WEL) levels. Representative mutations of the cmeABC promoter and/or CmeR-coding sequence were analyzed using electrophoretic mobility shift assays and transcriptional fusion assays. Reduced CmeR binding to the mutated cmeABC promoter sequences or decreased CmeR levels increased cmeABC expression. Several examined amino acid substitutions in CmeR did not affect its binding to the cmeABC promoter, but a mutation that led to C-terminal truncation of CmeR abolished its DNA-binding activity. Interestingly, some OEL isolates harbored no mutations in known regulatory elements, suggesting that cmeABC is also regulated by unidentified mechanisms. Overexpression of cmeABC did not affect the susceptibility of C. jejuni to most tested antimicrobials except for chloramphenicol, but promoted the emergence of ciprofloxacin-resistant mutants under antibiotic selection. These results link CmeABC overexpression in natural C. jejuni isolates to various mutations and indicate that this phenotypic change promotes the emergence of antibiotic-resistant mutants under selection pressure. Thus, differential expression of CmeABC may facilitate Campylobacter adaptation to antibiotic treatments. PMID:26132196

  10. Modeling the Influence of Fatty Acid Incorporation on Mesophase Formation in Amphiphilic Therapeutic Delivery Systems.

    PubMed

    Le, By Tu C; Tran, Nhiem; Mulet, Xavier; Winkler, David A

    2016-03-01

    Dispersed amphiphile-fatty acid systems are of great interest in drug delivery and gene therapies because of their potential for triggered release of their payload. The mesophase behavior of these systems is extremely complex and is affected by environmental factors such as drug loading, percentage and nature of incorporated fatty acids, temperature, pH, and so forth. It is important to study phase behavior of amphiphilic materials as the mesophases directly influence the release rate of the incorporated drugs. We describe a robust machine learning method for predicting the phase behavior of these systems. We have developed models for each mesophase that simultaneous and reliably model the effects of amphiphile and fatty acid structure, concentration, and temperature and that make accurate predictions of these mesophases for conditions not used to train the models. PMID:26824251

  11. Update from the BU-CME Group: Accurate Prediction of CME Deflection and Magnetic reconnection in the interior of interplanetary CMEs

    NASA Astrophysics Data System (ADS)

    Opher, M.; Kay, C.; Fermo, R. L.; Drake, J. F.; Evans, R. M.

    2013-05-01

    The accurate prediction of the path of coronal mass ejections (CMEs) plays an important role in space weather forecasting, and knowing the source location of the CME does not always suffice. During solar minimum, for example, polar coronal holes (CHs) can deflect high latitude CMEs toward the ecliptic plane and when CHs extend to lower latitudes deflections in other directions can occur. To predict whether a CME will impact Earth the effects of the solar background on the CME's trajectory must be taken into account. Here we develop a model (Kay et al. 2013), called ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection close to the Sun where magnetic forces dominate. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (such as its mass and size), ForeCAT predicts the deflection of the CME as well as the full trajectory as the CME propagates away from the Sun. For a magnetic background where the CME is launched from an active region located in between a CH and streamer region the strong magnetic gradients cause a deflection of 39.0o in latitude and 21.9o in longitude. Varying the CME's input parameters within observed ranges leads to deflections predominantly between 36.2o and 44.5o in latitude and between 19.5o and 27.9 in longitude. For all cases, the majority of the deflection occurs before the CME reaches a radial distance of 3 R?. Recent in situ observations of interplanetary mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. This result suggests that the internal magnetic field reconnects with itself. To this end, we propose an approach (Fermo et al. 2013) borrowed from the fusion plasma community. Taylor (1974) showed that the lowest energy state corresponds to one in which \\grad B = ? B. Variations from this state will result in the magnetic field trying to re-orient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In tokamaks, the result is a sawtooth crash. In an ICME, if we likewise treat the flux rope as a toroidal flux tube, any variation from the Taylor state will result in reconnection within the interior of the flux tube, in accord with the observations by Gosling et al. (2007). We present MHD and PIC simulations that shows that indeed this is the case and discuss the implications for ICMEs.

  12. Continuous delivery of rhBMP2 and rhVEGF165 at a certain ratio enhances bone formation in mandibular defects over the delivery of rhBMP2 alone - An experimental study in rats.

    PubMed

    Lohse, N; Moser, N; Backhaus, S; Annen, T; Epple, M; Schliephake, H

    2015-12-28

    The aim of the present study was to test the hypothesis that different amounts of vascular endothelial growth factor and bone morphogenic protein differentially affect bone formation when applied for repair of non-healing defects in the rat mandible. Porous composite PDLLA/CaCO3 carriers were fabricated as slow release carriers and loaded with rhBMP2 and rhVEGF165 in 10 different dosage combinations using gas foaming with supercritical carbon dioxide. They were implanted in non-healing defects of the mandibles of 132 adult Wistar rats with additional lateral augmentation. Bone formation was assessed both radiographically (bone volume) and by histomorphometry (bone density). The use of carriers with a ratio of delivery of VEGF/BMP between 0.7 and 1.2 was significantly related to the occurrence of significant increases in radiographic bone volume and/or histologic bone density compared to the use of carriers with a ratio of delivery of ?0.5 when all intervals and all outcome parameters were considered. Moreover, simultaneous delivery at this ratio helped to "save" rhBMP2 as both bone volume and bone density after 13weeks were reached/surpassed using half the dosage required for rhBMP2 alone. It is concluded, that the combined delivery of rhVEGF165 and rhBMP2 for repair of critical size mandibular defects can significantly enhance volume and density of bone formation over delivery of rhBMP2 alone. It appears from the present results that continuous simultaneous delivery of rhVEGF165 and rhBMP2 at a ratio of approximately 1 is favourable for the enhancement of bone formation. PMID:26485046

  13. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery.

    PubMed

    Blessing, T; Kursa, M; Holzhauser, R; Kircheis, R; Wagner, E

    2001-01-01

    With the aim of generating gene delivery systems for tumor targeting, we have synthesized a conjugate consisting of polyethylenimine (PEI) covalently modified with epidermal growth factor (EGF) peptides. Transfection efficiency of the conjugate was evaluated and compared to native PEI in three tumor cell lines: KB epidermoid carcinoma cells, CMT-93 rectum carcinoma cells, and Renca-EGFR renal carcinoma cells. Depending on the tumor cell line, incorporation of EGF resulted in an up to 300-fold increased transfection efficiency. This ligand-mediated enhancement and competition with free EGF strongly suggested uptake of the complexes through the EGF receptor-mediated endocytosis pathway. Shielded particles being crucial for systemic gene delivery, we studied the effect of covalent surface modification of EGF-PEI/DNA complexes with a poly(ethylene glycol) (PEG) derivative. An alternative way for the formation of PEGylated EGF-containing complexes was also evaluated where EGF was projected away from PEI/DNA core complexes through a PEG linker. Both strategies led to shielded particles still able to efficiently transfect tumor cells in a receptor-dependent fashion. These PEGylated EGF-containing complexes were 10- to 100-fold more efficient than PEGylated complexes without EGF. PMID:11459457

  14. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability.

    PubMed

    Guttoff, Marrisa; Saberi, Amir Hossein; McClements, David Julian

    2015-03-15

    Oil-in-water nanoemulsions are particularly suitable for encapsulation of lipophilic nutraceuticals because of their ability to form stable and transparent delivery systems with high oral bioavailability. In this study, the influence of system composition and preparation conditions on the particle size and stability of vitamin D nanoemulsions prepared by spontaneous emulsification (SE) was investigated. SE relies on the formation of small oil droplets when an oil/surfactant mixture is titrated into an aqueous solution. The influence of oil phase composition (vitamin D and MCT), surfactant-to-oil ratio (SOR), surfactant type (Tween 20, 40, 60, 80 and 85), and stirring conditions on the initial particle size of vitamin D nanoemulsions was studied. Nanoemulsions with small droplet diameters (d<200 nm) could be formed using Tween 80 at SOR⩾1 at high stirring speeds (800 rpm). These systems were relatively stable to droplet growth at ambient temperatures (<10% in diameter after 1 month storage), but unstable to heating (T>80°C). The thermal stability of the nanoemulsions could be improved by adding a cosurfactant (sodium dodecyl sulphate (SDS)). The spontaneous emulsification method is simple and inexpensive to carry out and therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications. PMID:25308650

  15. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses.

    PubMed

    Lakhkar, Nilay J; Lee, In-Ho; Kim, Hae-Won; Salih, Vehid; Wall, Ivan B; Knowles, Jonathan C

    2013-04-01

    The role of metal ions in the body and particularly in the formation, regulation and maintenance of bone is only just starting to be unravelled. The role of some ions, such as zinc, is more clearly understood due to its central importance in proteins. However, a whole spectrum of other ions is known to affect bone formation but the exact mechanism is unclear as the effects can be complex, multifactorial and also subtle. Furthermore, a significant number of studies utilise single doses in cell culture medium, whereas the continual, sustained release of an ion may initiate and mediate a completely different response. We have reviewed the role of the most significant ions that are known to play a role in bone formation, namely calcium, zinc, strontium, magnesium, boron, titanium and also phosphate anions as well as copper and its role in angiogenesis, an important process interlinked with osteogenesis. This review will also examine how delivery systems may offer an alternative way of providing sustained release of these ions which may effect and potentiate a more appropriate and rapid tissue response. PMID:22664230

  16. Analyzing Reasons for Non-Adoption of Distance Delivery Formats in Occupational Therapy Assistant (OTA) Education

    ERIC Educational Resources Information Center

    Gergen, Theresa; Roblyer, M. D.

    2013-01-01

    Though distance education formats could help address an urgent need for growth in the occupational therapy assistant (OTA) workforce, distance methods are not as accepted in these programs as they are in other professional and clinical programs. This study investigated whether beliefs and levels of experience of OTA program directors shaped their

  17. The Impact of Course Delivery Format on Wellness Patterns of University Students

    ERIC Educational Resources Information Center

    Everhart, Kim; Dimon, Chelsea

    2013-01-01

    University students (N = 103) enrolled in multiple wellness courses at a small northeastern public university completed a questionnaire measuring wellness patterns at the beginning and end of a wellness course delivered totally on line (web-based), in the traditional classroom, or in a mix of the two formats (blended). Attrition of participants

  18. Analyzing Reasons for Non-Adoption of Distance Delivery Formats in Occupational Therapy Assistant (OTA) Education

    ERIC Educational Resources Information Center

    Gergen, Theresa; Roblyer, M. D.

    2013-01-01

    Though distance education formats could help address an urgent need for growth in the occupational therapy assistant (OTA) workforce, distance methods are not as accepted in these programs as they are in other professional and clinical programs. This study investigated whether beliefs and levels of experience of OTA program directors shaped their…

  19. Propagation of the 7 January 2014 CME and Resulting Geomagnetic Non-event

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Thompson, B. J.; Jian, L. K.; Colaninno, R. C.; Odstrcil, D.; Mstl, C.; Temmer, M.; Savani, N. P.; Collinson, G.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.

    2015-10-01

    On 2014 January 7 an X1.2 flare and coronal mass ejection (CME) with a radial speed ?2500 km s?1 was observed from near an active region close to disk center. This led many forecasters to estimate a rapid arrival at Earth (?36 hr) and predict a strong geomagnetic storm. However, only a glancing CME arrival was observed at Earth with a transit time of ?49 hr and a KP geomagnetic index of only 3?. We study the interplanetary propagation of this CME using the ensemble Wang-Sheeley-Arge (WSA)ENLIL+Cone model, that allows a sampling of CME parameter uncertainties. We explore a series of simulations to isolate the effects of the background solar wind solution, CME shape, tilt, location, size, and speed, and the results are compared with observed in situ arrivals at Venus, Earth, and Mars. Our results show that a tilted ellipsoid CME shape improves the initial real-time prediction to better reflect the observed in situ signatures and the geomagnetic storm strength. CME parameters from the Graduated Cylindrical Shell model used as input to WSAENLIL+Cone, along with a tilted ellipsoid cloud shape, improve the arrival-time error by 14.5, 18.7, 23.4 hr for Venus, Earth, and Mars respectively. These results highlight that CME orientation and directionality with respect to observatories play an important role in understanding the propagation of this CME, and for forecasting other glancing CME arrivals. This study also demonstrates the importance of three-dimensional CME fitting made possible by multiple viewpoint imaging.

  20. SEP acceleration in CME driven shocks using a hybrid code

    SciTech Connect

    Gargat, L.; Fonseca, R. A.; Silva, L. O.

    2014-09-01

    We perform hybrid simulations of a super-Alfvnic quasi-parallel shock, driven by a coronal mass ejection (CME), propagating in the outer coronal/solar wind at distances of between 3 to 6 solar radii. The hybrid treatment of the problem enables the study of the shock propagation on the ion timescale, preserving ion kinetics and allowing for a self-consistent treatment of the shock propagation and particle acceleration. The CME plasma drags the embedded magnetic field lines stretching from the sun, and propagates out into interplanetary space at a greater velocity than the in situ solar wind, driving the shock, and producing very energetic particles. Our results show that electromagnetic Alfvn waves are generated at the shock front. The waves propagate upstream of the shock and are produced by the counter-streaming ions of the solar wind plasma being reflected at the shock. A significant fraction of the particles are accelerated in two distinct phases: first, particles drift from the shock and are accelerated in the upstream region, and second, particles arriving at the shock get trapped and are accelerated at the shock front. A fraction of the particles diffused back to the shock, which is consistent with the Fermi acceleration mechanism.

  1. Effect on the Lunar Exosphere of a CME Passage

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Hurley, Dana M.; Farrell, William M.; Sarantos, Menelaos

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that the sputter yield can be noticeably increased in the case of a good insulating surface. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. The heavy ion component, especially the He++ component, greatly enhances the total sputter yield during times when the heavy ion population is enhanced, most notably during a coronal mass ejection. To simulate the effect on the lunar exosphere of a CME passage past the Moon, we ran a Monte Carlo code for the species Na, K, Mg and Ca.

  2. Acceleration of SEPs in Flaring Loops and CME Driven shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe; Chen, Qingrong

    2014-06-01

    We consider two stage acceleration of the Solar Energetic Particles (SEPs). The first occurring via the stochastic acceleration mechanism at the flare site in the corona, which produces the so-called impulsive SEPs, with anomalous abundances, as well as nonthermal particles responsible for the observed radiation. The second is re-acceleration the flare accelerated particles at the CME driven shock associated with larger, longer duration events with relatively normal abundances. Turbulence plays a major role in both stages. We will show how stochastic acceleration can explain some of the salient features of the impulsive SEP observations; such as extreme enrichment of 3He (and heavy ions), and the observed broad distributions and ranges of the 3He and 4He fluences. We will then show that the above hybrid mechanism of first stochastic acceleration of ions in the reconnecting coronal magnetic structures and then their re-acceleration in the CME shock can produce the varied shapes of the 3He and 4He spectra observed in all events ranging from weak impulsive to strong gradual events.

  3. Formation of thermally reversible optically transparent emulsion-based delivery systems using spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2015-12-01

    Transparent emulsion-based delivery systems suitable for encapsulating lipophilic bioactive agents can be fabricated using low-energy spontaneous emulsification methods. These emulsions are typically fabricated from non-ionic surfactants whose hydrophilic head groups are susceptible to dehydration upon heating. This phenomenon may promote emulsion instability due to enhanced droplet coalescence at elevated temperatures. Conversely, the same phenomenon can be used to fabricate optically transparent emulsions through the phase inversion temperature (PIT) method. The purpose of the current study was to examine the influence of oil phase composition and surfactant-to-oil ratio on the thermal behavior of surfactant-oil-water systems containing limonene, medium chain triglycerides (MCT), and Tween 60. Various types of thermal behavior (turbidity versus temperature profiles) were exhibited by these systems depending on their initial composition. For certain compositions, thermoreversible emulsions could be formed that were opaque at high temperatures but transparent at ambient temperatures. These systems may be particularly suitable for the encapsulation of bioactive agents in applications where optical clarity is important. PMID:26431057

  4. Effect of CME on Primary Care and OB/GYN Treatment of Breast Masses

    ERIC Educational Resources Information Center

    Price, David W.; Xu, Stanley; McClure, David

    2005-01-01

    Introduction: CME program planners are being asked to move beyond assessments of knowledge to assessing the impact of CME on practice and patient outcomes. Methods: We conducted a pre-post analysis of administrative data from 107 physicians, nurse practitioners (NPs), or physician's assistants (PAs) who attended one or two continuing medical

  5. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni

    SciTech Connect

    Su, Chih-Chia; Shi, Feng; Gu, Ruoyu; Li, Ming; McDermott, Gerry; Yu, Edward W.; Zhang, Qijing

    2007-01-01

    The transcriptional regulator CmeR from C. jejuni has been purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.2 Å. In Campylobacter jejuni, a Gram-negative bacterial pathogen causing gastroenteritis in humans, the CmeR regulatory protein controls transcription of the multidrug transporter gene operon cmeABC. CmeR belongs to the TetR family of transcriptional regulators. The 210-residue CmeR consists of two functional motifs: an N-terminal DNA-binding domain and a C-terminal ligand-binding domain. It is predicted that the DNA-binding domain interacts directly with target promoters, while the C-terminal motif interacts with inducing ligands (such as bile salts). As an initial step towards confirming this structural model, recombinant CmeR protein containing a 6×His tag at the N-terminus was crystallized. Crystals of ligand-free CmeR belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 37.4, b = 57.6, c = 93.3 Å. Diffraction was observed to at least 2.2 Å at 100 K. Analysis of the detailed CmeR structure is currently in progress.

  6. A Community-Based Trial of Online Intimate Partner Violence CME

    PubMed Central

    Short, Lynn M.; Surprenant, Zita J.; Harris, John M.

    2006-01-01

    Background: There is a broad need to improve physician continuing medical education (CME) in the management of intimate partner violence (IPV). However, there are only a few examples of successful IPV CME programs and none of these are suitable for widespread distribution. Design: Randomized, controlled trial beginning in September 2003 and ending November 2004. Data were analyzed in 2005. Setting/Participants: Fifty-two primary care physicians in small (< 8 physicians), community-based medical offices in Arizona and Missouri. Intervention: Twenty-three physicians completed a minimum of 4 hours of an asynchronous, multimedia, interactive, case-based, online CME program, which provided them flexibility in constructing their educational experience (“constructivism”). Control physicians received no CME. Main Outcome Measures: Scores on a standardized 10-scale self-reported survey of IPV knowledge, attitudes, beliefs, and self-reported behaviors (KABB) administered prior to randomization and repeated at 6 and 12 months following the CME program. Results: Use of the online CME program was associated with a significant improvement in eight of 10 KABB outcomes, including physician self-efficacy and reported IPV management practices, over the study period. These measures did not improve in the control group. Conclusion: The Internet-based CME program was clearly effective in improving long-term individual educational outcomes, including self-reported IPV practices. This type of CME may be an effective and less costly alternative to live IPV training sessions and workshops. PMID:16459218

  7. Controlling Quality in CME/CPD by Measuring and Illuminating Bias

    ERIC Educational Resources Information Center

    Dixon, David; Takhar, Jatinder; Macnab, Jennifer; Eadie, Jason; Lockyer, Jocelyn; Stenerson, Heather; Francois, Jose; Bell, Mary; Monette, Celine; Campbell, Craig; Marlow, Bernie

    2011-01-01

    Introduction: There has been a surge of interest in the area of bias in industry-supported continuing medical education/continuing professional development (CME/CPD) activities. In 2007, we published our first study on measuring bias in CME, demonstrating that our assessment tool was valid and reliable. In light of the increasing interest in this…

  8. KELVIN-HELMHOLTZ INSTABILITY OF THE CME RECONNECTION OUTFLOW LAYER IN THE LOW CORONA

    SciTech Connect

    Foullon, Claire; Verwichte, Erwin; Nykyri, Katariina; Aschwanden, Markus J.; Hannah, Iain G.

    2013-04-20

    New capabilities for studying the Sun allow us to image for the first time the magnetic Kelvin-Helmholtz (KH) instability developing at the surface of a fast coronal mass ejecta (CME) less than 150 Mm above the solar surface. We conduct a detailed observational investigation of this phenomenon, observed off the east solar limb on 2010 November 3, in the EUV with SDO/AIA. In conjunction with STEREO-B/EUVI, we derive the CME source surface position. We ascertain the timing and early evolution of the CME outflow leading to the instability onset. We perform image and spectral analysis, exploring the CME plasma structuring and its parabolic flow pattern. As we evaluate and validate the consistency of the observations with theoretical considerations and predictions, we take the view that the ejecta layer corresponds to a reconnection outflow layer surrounding the erupting flux rope, accounting for the timing, high temperature ({approx}11.6 MK), and high flow shear ({approx}680 km s{sup -1}) on the unstable CME northern flank and for the observed asymmetry between the CME flanks. From the irregular evolution of the CME flow pattern, we infer a shear gradient consistent with expected spatial flow variations across the KH-unstable flank. The KH phenomenon observed is tied to the first stage of a linked flare-CME event.

  9. Implications of CME Deflections on the Habitability of Planets Around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Opher, Merav

    2014-06-01

    Solar coronal mass ejections (CMEs) are known to produce adverse space weather effects at Earth. These effects include geomagnetically induced currents and energetic particles accelerated by CME-driven shocks. Significant non-radial motions are observed for solar CMEs with the CME path deviating as much as 30 degrees within 20 solar radii. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts the deflected path of a CME according to the magnetic forces of the background solar wind. In Kay et al (2013), we show that these magnetic forces cause CMEs to deflect towards the region of minimum magnetic field strength. For the Sun, this magnetic minimum corresponds to the Heliospheric Current Sheet (HCS). We predict that the Earth is most likely to be impacted by a deflected CME when its orbit brings it near the HCS. M dwarfs can have magnetic field strengths several orders of magnitude larger than the Sun which will strongly affect CME deflections. We explore stellar CME deflections with ForeCAT. We present results for M4V star V374 Peg. We determine potential impacts caused by CME deflections for a planet located within the habitable zone of V374 Peg 20-40 solar radii). We discuss future extensions as including variations in solar cycle, capturing small structures such as active regions, and extensions for other M dwarf stars.

  10. Controlling Quality in CME/CPD by Measuring and Illuminating Bias

    ERIC Educational Resources Information Center

    Dixon, David; Takhar, Jatinder; Macnab, Jennifer; Eadie, Jason; Lockyer, Jocelyn; Stenerson, Heather; Francois, Jose; Bell, Mary; Monette, Celine; Campbell, Craig; Marlow, Bernie

    2011-01-01

    Introduction: There has been a surge of interest in the area of bias in industry-supported continuing medical education/continuing professional development (CME/CPD) activities. In 2007, we published our first study on measuring bias in CME, demonstrating that our assessment tool was valid and reliable. In light of the increasing interest in this

  11. Promoting Free Online CME for Intimate Partner Violence: What Works at What Cost?

    ERIC Educational Resources Information Center

    Harris, John M., Jr.; Novalis-Marine, Cheryl; Amend, Robert W.; Surprenant, Zita J.

    2009-01-01

    Introduction: There is a need to provide practicing physicians with training on the recognition and management of intimate partner violence (IPV). Online continuing medical education (CME) could help meet this need, but there is little information on the costs and effectiveness of promoting online CME to physicians. This lack of information may…

  12. Effect of CME on Primary Care and OB/GYN Treatment of Breast Masses

    ERIC Educational Resources Information Center

    Price, David W.; Xu, Stanley; McClure, David

    2005-01-01

    Introduction: CME program planners are being asked to move beyond assessments of knowledge to assessing the impact of CME on practice and patient outcomes. Methods: We conducted a pre-post analysis of administrative data from 107 physicians, nurse practitioners (NPs), or physician's assistants (PAs) who attended one or two continuing medical…

  13. A Reflective Learning Framework to Evaluate CME Effects on Practice Reflection

    ERIC Educational Resources Information Center

    Leung, Kit H.; Pluye, Pierre; Grad, Roland; Weston, Cynthia

    2010-01-01

    Introduction: The importance of reflective practice is recognized by the adoption of a reflective learning model in continuing medical education (CME), but little is known about how to evaluate reflective learning in CME. Reflective learning seldom is defined in terms of specific cognitive processes or observable performances. Competency-based

  14. Promoting Free Online CME for Intimate Partner Violence: What Works at What Cost?

    ERIC Educational Resources Information Center

    Harris, John M., Jr.; Novalis-Marine, Cheryl; Amend, Robert W.; Surprenant, Zita J.

    2009-01-01

    Introduction: There is a need to provide practicing physicians with training on the recognition and management of intimate partner violence (IPV). Online continuing medical education (CME) could help meet this need, but there is little information on the costs and effectiveness of promoting online CME to physicians. This lack of information may

  15. Effect of monoacyl phosphatidylcholine content on the formation of microemulsions and the dermal delivery of flufenamic acid.

    PubMed

    Hoppel, Magdalena; Juric, Sonja; Ettl, Hanna; Valenta, Claudia

    2015-02-01

    The choice of appropriate excipients is crucial for the success of a dermal drug delivery system. Especially surfactants should be chosen carefully, because of their possible interactions with the skin or the applied drug. Since monoacyl phosphatidylcholine (MAPL) exhibits great emulsification properties and can be derived from natural sources, it is of great interest as surfactant in microemulsions. Therefore, the aim of the present study was to investigate the effect of the MAPL content on the formation of microemulsions. The great emulsification power of MAPL was confirmed by increased isotropic areas with increasing MAPL content. Moreover, a decrease in particle size, particle size distribution and viscosity with increasing MAPL content was determined. Besides its effects on microemulsion structure, MAPL exhibited a significant influence on the skin permeation of flufenamic acid. Interestingly, the higher the MAPL content, the lower was the skin permeation of flufenamic acid. A possible explanation might be that the hydrophilic MAPL could hinder the permeation of the lipophilic drug. In contrast, the skin permeation enhancing effects of the microemulsion with the lowest MAPL content might be attributed to formation of a patch-like structure and therefore better contact between the formulation and the skin. PMID:25542986

  16. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents.

    PubMed

    Uskokovi?, Vuk; Uskokovi?, Dragan P

    2011-01-01

    The first part of this review looks at the fundamental properties of hydroxyapatite (HAP), the basic mineral constituent of mammalian hard tissues, including the physicochemical features that govern its formation by precipitation. A special emphasis is placed on the analysis of qualities of different methods of synthesis and of the phase transformations intrinsic to the formation of HAP following precipitation from aqueous solutions. This serves as an introduction to the second part and the main subject of this review, which relates to the discourse regarding the prospects of fabrication of ultrafine, nanosized particles based on calcium phosphate carriers with various therapeutic and/or diagnostic agents coated on and/or encapsulated within the particles. It is said that the particles could be either surface-functionalized with amphiphiles, peptides, proteins, or nucleic acids or injected with therapeutic agents, magnetic ions, or fluorescent molecules. Depending on the additive, they could be subsequently used for a variety of applications, including the controlled delivery and release of therapeutic agents (extracellularly or intracellularly), magnetic resonance imaging and hyperthermia therapy, cell separation, blood detoxification, peptide or oligonucleotide chromatography and ultrasensitive detection of biomolecules, and in vivo and in vitro gene transfection. Calcium phosphate nanoparticles as carriers of therapeutic agents that would enable a controlled drug release to treat a given bone infection and at the same be resorbed in the body so as to regenerate hard tissue lost to disease are emphasized hereby as one of the potentially attractive smart materials for the modern medicine. PMID:21061364

  17. Synthetic radio maps of CME-driven shocks below 4 solar radii heliocentric distance

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Gopalswamy, N.

    2008-08-01

    We present 2 1/2 D numerical MagnetoHydroDynamic (MHD) simulations of coronal mass ejections (CMEs) in conjunction with plasma simulations of radio emission from the CME-driven shocks. The CME-driven shock extends to an almost spherical shape during the temporal evolution of the CME. Our plasma simulations can reproduce the dynamic spectra of coronal type II radio bursts, with the frequency drift rates corresponding to the shock speeds. We find further, that the CME-driven shock is an effective radio emitter at metric wavelengths, when the CME has reached a heliocentric distance of about two solar radii (?). We apply our simulation results to explain the radio images of type II bursts obtained by radio heliographs, in particular to the banana-shaped images of radio sources associated with fast CMEs.

  18. Automatic CME front edge detection from STEREO white-light coronagraph images

    NASA Astrophysics Data System (ADS)

    Kirnosov, Vladimir; Chang, Lin-Ching; Pulkkinen, Antti

    2015-08-01

    The coronagraph images captured by a Solar Terrestrial Relations Observatory (STEREO) Ahead/Behind (A/B) spacecraft allow tracking of a coronal mass ejection (CME) from two different viewpoints and reconstructing its propagation in three-dimensional space. The reconstruction can be done using a triangulation technique that requires a CME front edge location. There are currently no robust automatic CME front edge detection methods that can be integrated with the triangulation technique. In this paper, we propose a novel automatic method to detect the front edge of the CME using STEREO coronagraph 2 red-colored Red, Green, Blue color model images. Our method consists of two modules: preprocessing and classification. The preprocessing module decomposes each coronagraph image into its three channels and uses only the red channel image for CME segmentation. The output of the preprocessing module is a set of segmented running-difference binary images which is fed into the classification module. These images are then transformed into polar coordinates followed by CME front edge detection based on the distance that CME travels in the field of view. The proposed method was validated against a manual method using total 56 CME events, 28 from STEREO A and 28 from STEREO B, captured in the period from 1 January 2008 to 16 August 2009. The results show that the proposed method is effective for CME front edge detection. The proposed method is useful in quantitative CME processing and analysis and will be immediately applicable to assist automatic triangulation method for real-time space weather forecasting.

  19. Effects of Alternate Format In-Service Delivery on Teacher Knowledge Base and Problem-Solving Related to Autism & Adaptations: What Teachers Need to Know

    ERIC Educational Resources Information Center

    Bruening, Marie Diane

    2010-01-01

    This study's purpose was to explore effectiveness of alternate format in-service delivery for what teachers needed to know to effectively teach their students with Autism Spectrum Disorder/High Functioning Autism/Asperger Syndrome (ASD/HFA/AS) in the general education setting. The study's research questions included: Did participants learn

  20. Exercise Motivation of College Students in Online, Face-to-Face, and Blended Basic Studies Physical Activity and Wellness Course Delivery Formats

    ERIC Educational Resources Information Center

    Sidman, Cara Lynn; Fiala, Kelly Ann; D'Abundo, Michelle Lee

    2011-01-01

    Objective: The purpose of this study was to assess exercise motivation among college students self-selected into 4 online (OL) and face-to-face (F2F) basic studies' physical activity and wellness course delivery formats. Participants/Methods: Out of 1,037 enrolled students during the Spring 2009 semester, 602 responded online to demographic

  1. Nozzle Driven Shocks in Post-CME Plasma

    NASA Astrophysics Data System (ADS)

    Scott, Roger B.; Longcope, D. W.; McKenzie, D. E.

    2012-05-01

    Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of energy and momentum across field lines. Here we present a simple 2D model in which a localized region of reconnected flux creates an apparent constriction in the surrounding layer of unreconnected field. The moving constriction acts as a de Laval nozzle and ultimately leads to shocks which can extend out to several times the diameter of the flux tube, altering the density and temperature of the plasma in that region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as wakes seen behind supra-arcade downflows and high temperatures in post-CME current sheets. This work was supported by a joint grant from the NSF and DOE.

  2. CME Interaction with Coronal Holes and Their Interplanetary Consequences

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2008-01-01

    A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.

  3. Biomimetic synthesized bimodal nanoporous silica: Bimodal mesostructure formation and application for ibuprofen delivery.

    PubMed

    Li, Jing; Xu, Lu; Zheng, Nan; Wang, Hongyu; Lu, Fangzheng; Li, Sanming

    2016-01-01

    The present paper innovatively reports bimodal nanoporous silica synthesized using biomimetic method (B-BNS) with synthesized polymer (C16-L-serine) as template. Formation mechanism of B-BNS was deeply studied and exploration of its application as carrier of poorly water-soluble drug ibuprofen (IBU) was conducted. The bimodal nanopores and curved mesoscopic channels of B-BNS were achieved due to the dynamic self-assembly of C16-L-serine induced by silane coupling agent (3-aminopropyltriethoxysilane, APTES) and silica source (tetraethoxysilane, TEOS). Characterization results confirmed the successful synthesis of B-BNS, and particularly, nitrogen adsorption/desorption measurement demonstrated that B-BNS was meso-meso porous silica material. In application, B-BNS loaded IBU with high drug loading content due to its enlarged nanopores. After being loaded, IBU presented amorphous phase because nanoporous space and curved mesoscopic channels of B-BNS prevented the crystallization of IBU. In vitro release result revealed that B-BNS controlled IBU release with two release phases based on bimodal nanopores and improved dissolution in simulated gastric fluid due to crystalline conversion of IBU. It is convincible that biomimetic method provides novel theory and insight for synthesizing bimodal nanoporous silica, and unique functionalities of B-BNS as drug carrier can undoubtedly promote the application of bimodal nanoporous silica and development of pharmaceutical science. PMID:26478410

  4. Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery.

    PubMed

    Hsieh, Albert Tsung-Hsi; Hori, Nicole; Massoudi, Rustin; Pan, Patrick Jen-Hao; Sasaki, Hirotaka; Lin, Yuh Adam; Lee, Abraham P

    2009-09-21

    A novel picolitre incubator based microfluidic system for consistent nonviral gene carrier formulation is presented. A cationic lipid-based carrier is the most attractive nonviral solution for delivering plasmid DNA, shRNA, or drugs for pharmaceutical research and RNAi applications. The size of the cationic lipid and DNA complex (CL-DNA), or the lipoplex, is one of the important variations for consistency of gene transfection. CL-DNA size, in turn, may be controlled by factors such as the cationic lipid and DNA mixing order, mixing rate, and mixture incubation time. The Picolitre Microfluidic Reactor and Incubator (PMRI) system described here is able to control these parameters in order to create homogeneous CL-DNA. Compared with conventional CL-DNA preparation techniques involving hand-shaking or vortexing, the PMRI system demonstrates a greater ability to constantly and uniformly mix cationic lipids and DNA simultaneously. After mixing in the picolitre droplet reactors, the cationic lipid and DNA is incubated within the picolitre incubator to form CL-DNA. The PMRI generates a narrower size distribution band, while also turning the sample loading, mixing and incubation steps into an integrated process enabling the consistent formation of CL-DNA. The coefficient of variation (CV) of transfection efficiency is 0.05 and 0.30 for PMRI-based and conventional methods, respectively. In addition, this paper demonstrates that the gene transfection efficiency of lipoplex created in the PMRI is more reproducible. PMID:19704978

  5. Local delivery of platelets with encapsulated iloprost to balloon injured pig carotid arteries: effect on platelet deposition and neointima formation.

    PubMed

    Banning, A; Brewer, L; Wendt, M; Groves, P H; Cheadle, H; Penny, W J; Crawford, N

    1997-01-01

    Local delivery of a drug to the arterial wall during angioplasty is an approach which might reduce the incidence of occlusive events such as thrombosis and restenosis, without the risk of systemic side effects. By exploiting their natural primary haemostatic properties, platelets, with encapsulated drugs, can be targeted to a vessel wall injury site and act as a depot for sustained release. The platelet plasma membrane can be reversibly permeabilised by high voltage, short duration electrical pulses (electroporation). Drugs will diffuse into porated platelets and become trapped on resealing. We have studied the effects of autologous platelets, electroloaded with the stable prostacyclin analogue, iloprost on platelet deposition and neointima formation in a pig carotid angioplasty model. Iloprost loaded or control platelets were delivered locally and immediately to the balloon injured site using a double balloon delivery catheter. Acute platelet deposition was measured using 111-Indium, and neointima formation at 21 days post angioplasty was assessed by morphometric analysis. In pigs treated with iloprost loaded platelets, platelet deposition on the artery at 2 hours post injury was dramatically reduced (to approximately monolayer coverage), when compared with arteries from pigs treated with control platelets. In pigs with deeply injured arteries, i.e. with extensively ruptured internal elastic lamina (IEL), platelet deposition was reduced by 88% compared with control arteries (118 +/- 20 x 10(6)/cm vs. 14 +/- 2 x 10(6)/cm, means +/- SI, 2P < 0.001). In minimally injured arteries (IEL intact) a 65% reduction in platelet deposition was observed (55 +/- 24 x 10(6)/cm vs. 19 +/- 3 x 10(6)/cm. 2P < 0.002). A high concentration of free iloprost, delivered to the angioplasty site, with control platelets, had far less effect on platelet deposition, substantiating the advantage of platelet encapsulation. At 21 days post injury, morphometry of the carotid arteries after treatment with iloprost loaded platelets showed significant reductions in intimal area and intimal/medial ratios in minimally injured vessels (P < 0.05) as compared with vessels from pigs treated with control platelets. With deeply injured vessels, the mean differences (control vs. treated) for the same morphometric parameters were not significant. This novel approach of electro-encapsulating drugs within autologous platelets, and using them as highly biocompatible and biodegradable drug targeting vehicles might, with the appropriate choice of encapsulated agent, have potential for reducing the incidence of occlusion after angioplasty and thrombolysis procedures. PMID:9031472

  6. The Width of a CME and the Source of the Driving Magnetic Explosion

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Sterling, A. C.; Suess, S. T.

    2007-01-01

    We show that the strength of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width of the CME in the outer corona and the final angular width of the flare arcade. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid, (2) in the outer corona the CME is roughly a "spherical plasmoid with legs" shaped like a light bulb, and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement indicates via the model that CMEs (1) are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field, and (2) can explode from flare regions that are laterally far offset from the radial path of the CME in the outer corona.

  7. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice.

    PubMed

    Su, Jin; Sherman, Alexandra; Doerfler, Phillip A; Byrne, Barry J; Herzog, Roland W; Daniell, Henry

    2015-10-01

    Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation. PMID:26053072

  8. Heliospheric tracking of enhanced density structures of the 6 October 2010 CME

    NASA Astrophysics Data System (ADS)

    Mishra, Wageesh; Srivastava, Nandita

    2015-07-01

    A Coronal Mass Ejection (CME) is an inhomogeneous structure consisting of different features which evolve differently with the propagation of the CME. Simultaneous heliospheric tracking of different observed features of a CME can improve our understanding about relative forces acting on them. It also helps to estimate accurately their arrival times at the Earth and identify them in in-situ data. This also enables finding any association between remotely observed features and in-situ observations near the Earth. In this paper, we attempt to continuously track two density enhanced features in the CME of 6 October 2010, one at the front and another at the rear edge. This is achieved by using time-elongation maps constructed from STEREO/SECCHI observations. We derive the kinematics of the tracked features using various reconstruction methods. The estimated kinematics are used as inputs in the Drag Based Model (DBM) to estimate the arrival time of the tracked features of the CME at L1. On comparing the estimated kinematics as well as the arrival times of the remotely observed features with in-situ observations by Advanced Composition Explorer (ACE) and Wind, we find that the tracked bright feature at the rear edge of 6 October 2010 CME corresponds most probably to the enhanced density structure after the magnetic cloud detected by ACE and Wind. In-situ plasma and compositional parameters provide evidence that the rear edge density structure may correspond to a filament associated with the CME while the density enhancement at the front corresponds to the leading edge of the CME. Based on this single event study, we discuss the relevance and significance of Heliospheric Imager (HI) observations in identification of the three-part structure of the CME.

  9. 3D Numerical Study of Typical CME Event: The 2010-04-03 Event

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.; Zhao, X.

    2014-12-01

    The coronal mass ejection (CME) event on April 3, 2010 is the first fast CME observed by STEREO SECCHI/HI for the full Sun-Earth line. Such an event provides us a good opportunity to study the propagation and evolution of CME from the Sun up to 1 AU. In this paper, we study the time-dependent evolution and propagation of this event from the Sun to Earth using the 3D SIP-CESE MHD model. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We find that the results can successfully reproduce the observations in the STEREO A/B COR1 and COR2 field of view and generate many basic structures of the in situ measurement: such as the similar curves of the plasma density and velocity, an increase in the magnetic field magnitude, the large-scale smooth magnetic field rotation and prolonged southward IMF (a well known source of magnetic storms). The MHD model gives the shock arrival time at Earth with an error of 1.5 hours. Finally, we analyze in detail the propagation velocity, the spread angle, the trajectory of CME. The speed of the CME rapidly increases from near the Sun, then decreases due to interaction with the solar wind ambient. The spread angle of the CME quickly increases due to lateral material expansion by the pressure gradients within the realistic solar wind background, then the expansion decreases with distance and ends until a pressure equilibrium is established. We also study the CME deflection and find that the CME almost does not deflects in the latitudinal and longitudinal direction during its propagation from the Sun to 1 AU.

  10. Effects of the 5 October 1996 CME at 4.4 AU: Ulysses observations

    SciTech Connect

    Marsden, R.G.; Desai, M.I.; Sanderson, T.R.; Forsyth, R.J.; Gosling, J.T.

    1997-09-01

    The authors present observations from Ulysses associated with a large coronal mass ejection (CME) that lifted off the west limb of the Sun on 5 October, 1996. The study focuses on the effects of the interplanetary counterpart of the CME on the energetic particle populations at the location of Ulysses, in particular the effect on the sequence of corotating enhancements that had been observed prior to its arrival. They conclude that, despite its large spatial extent, the CME caused no permanent deformation of the heliospheric current sheet.

  11. Royal College's CME initiative focuses on lifelong, practice-integrated learning

    PubMed Central

    Berube, Brian

    1995-01-01

    An innovative continuing medical education (CME) initiative of the Royal College of Physicians and Surgeons of Canada is gaining worldwide attention. Emphasizing lifelong learning, the Maintenance of Competence Program gives college fellows an efficient, effective way to determine their educational needs, manage their CME activities and hone their clinical practice habits. More than half of college fellows are expected to join it by this summer. A spokesperson predicts that in 5 years bodies such as licensing authorities and hospital-privileges committees will require evidence of participation in a structured CME plan. Imagesp967-a

  12. ON A CORONAL BLOWOUT JET: THE FIRST OBSERVATION OF A SIMULTANEOUSLY PRODUCED BUBBLE-LIKE CME AND A JET-LIKE CME IN A SOLAR EVENT

    SciTech Connect

    Shen Yuandeng; Liu Yu

    2012-02-01

    The coronal blowout jet is a peculiar category among various jet phenomena, in which the sheared base arch, often carrying a small filament, experiences a miniature version of blowout eruption that produces large-scale coronal mass ejection (CME). In this paper, we report such a coronal blowout jet with high-resolution multi-wavelength and multi-angle observations taken from Solar Dynamics Observatory, Solar Terrestrial Relations Observatory, and Big Bear Solar Observatory. For the first time, we find that simultaneous bubble-like and jet-like CMEs were dynamically related to the blowout jet that showed cool and hot components next to each other. Our observational results indicate that (1) the cool component resulted from the eruption of the filament contained within the jet's base arch, and it further caused the bubble-like CME; (2) the jet-like CME was associated with the hot component, which was the outward moving heated plasma generated by the reconnection of the base arch and its ambient open field lines. On the other hand, bifurcation of the jet's cool component was also observed, which resulted from the uncoupling of the erupting filament's two legs that were highly twisted at the very beginning. Based on these results, we propose a model to interpret the coronal blowout jet, in which the external reconnection not only produces the jet-like CME, but also leads to the rising of the filament. Subsequently, internal reconnection starts underneath the rising filament and thereby causes the bubble-like CME.

  13. Academic podcasting: quality media delivery.

    PubMed

    Tripp, Jacob S; Duvall, Scott L; Cowan, Derek L; Kamauu, Aaron W C

    2006-01-01

    A video podcast of the CME-approved University of Utah Department of Biomedical Informatics seminar was created in order to address issues with streaming video quality, take advantage of popular web-based syndication methods, and make the files available for convenient, subscription-based download. An RSS feed, which is automatically generated, contains links to the media files and allows viewers to easily subscribe to the weekly seminars in a format that guarantees consistent video quality. PMID:17238744

  14. SOHO Captures CME From X5.4 Solar Flare - Duration: 5 seconds.

    NASA Video Gallery

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  15. CME on Oct. 21, 2011 Caused Red Aurora in U.S. - Duration: 14 seconds.

    NASA Video Gallery

    The SOlar Heliospheric Observatory (SOHO) captured this "coronograph" – so-called because the images block the sun, and only show the sun's atmosphere, or corona. The coronal mass ejection (CME)...

  16. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells.

    PubMed

    Sherman, Alexandra; Su, Jin; Lin, Shina; Wang, Xiaomei; Herzog, Roland W; Daniell, Henry

    2014-09-01

    Hemophilia A is the X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). To address serious complications of inhibitory antibody formation in current replacement therapy, we created tobacco transplastomic lines expressing FVIII antigens, heavy chain (HC) and C2, fused with the transmucosal carrier, cholera toxin B subunit. Cholera toxin B-HC and cholera toxin B-C2 fusion proteins expressed up to 80 or 370 g/g in fresh leaves, assembled into pentameric forms, and bound to GM1 receptors. Protection of FVIII antigen through bioencapsulation in plant cells and oral delivery to the gut immune system was confirmed by immunostaining. Feeding of HC/C2 mixture substantially suppressed T helper cell responses and inhibitor formation against FVIII in mice of 2 different strain backgrounds with hemophilia A. Prolonged oral delivery was required to control inhibitor formation long-term. Substantial reduction of inhibitor titers in preimmune mice demonstrated that the protocol could also reverse inhibitor formation. Gene expression and flow cytometry analyses showed upregulation of immune suppressive cytokines (transforming growth factor ? and interleukin 10). Adoptive transfer experiments confirmed an active suppression mechanism and revealed induction of CD4(+)CD25(+) and CD4(+)CD25(-) T cells that potently suppressed anti-FVIII formation. In sum, these data support plant cell-based oral tolerance for suppression of inhibitor formation against FVIII. PMID:24825864

  17. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells

    PubMed Central

    Sherman, Alexandra; Su, Jin; Lin, Shina; Wang, Xiaomei; Herzog, Roland W.

    2014-01-01

    Hemophilia A is the X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). To address serious complications of inhibitory antibody formation in current replacement therapy, we created tobacco transplastomic lines expressing FVIII antigens, heavy chain (HC) and C2, fused with the transmucosal carrier, cholera toxin B subunit. Cholera toxin B-HC and cholera toxin B-C2 fusion proteins expressed up to 80 or 370 g/g in fresh leaves, assembled into pentameric forms, and bound to GM1 receptors. Protection of FVIII antigen through bioencapsulation in plant cells and oral delivery to the gut immune system was confirmed by immunostaining. Feeding of HC/C2 mixture substantially suppressed T helper cell responses and inhibitor formation against FVIII in mice of 2 different strain backgrounds with hemophilia A. Prolonged oral delivery was required to control inhibitor formation long-term. Substantial reduction of inhibitor titers in preimmune mice demonstrated that the protocol could also reverse inhibitor formation. Gene expression and flow cytometry analyses showed upregulation of immune suppressive cytokines (transforming growth factor ? and interleukin 10). Adoptive transfer experiments confirmed an active suppression mechanism and revealed induction of CD4+CD25+ and CD4+CD25? T cells that potently suppressed anti-FVIII formation. In sum, these data support plant cell-based oral tolerance for suppression of inhibitor formation against FVIII. PMID:24825864

  18. CME-Associated Radio Bursts from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    Coronal mass ejections (CMEs) are closely associated with various types of radio bursts from the Sun. All radio bursts are due to nonthermal electrons, which are accelerated during the eruption of CMEs. Radio bursts at frequencies below about 15 MHz are of particular interest because they are associated with energetic CMEs that contribute to severe space weather. The low-frequency bursts need to be observed primarily from space because of the ionospheric cutoff. The main CME-related radio bursts are associated are: type III bursts due to accelerated electrons propagating along open magnetic field lines, type II bursts due to electrons accelerated in shocks, and type IV bursts due to electrons trapped in post-eruption arcades behind CMEs. This paper presents a summary of results obtained during solar cycle 23 primarily using the white-light coronagraphic observations from the Solar Heliospheric Observatory (SOHO) and the WAVES experiment on board Wind. Particular emphasis will be placed on what we can learn about particle acceleration in the coronal and interplanetary medium by analyzing the CMEs and the associated radio bursts.

  19. Kinematic Treatment of CME Evolution in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Crooker, N. U.

    2004-01-01

    We present a kinematic study of the evolution of coronal mass ejections (CMEs) in the solar wind. Specifically, we consider the effects of: (1) spherical expansion; and (2) uniform expansion due to pressure gradients between the Interplanetary CME (ICME) and the ambient solar wind. We compare these results with an MHD model, which allows us to isolate these effects from the combined kinematic and dynamical effects, which are included in MHD models. They also provide compelling evidence that the fundamental cross section of so-called "force-free" flux ropes (or magnetic clouds) is neither circular or elliptical, but rather a convex-outward, "pancake" shape. We apply a force-free fitting to the magnetic vectors from the MHD simulation to assess how the distortion of the flux rope affects the fitting. In spite of these limitations, force-free fittings, which are straightforward to apply, do provide an important description of a number of parameters, including the radial dimension, orientation and chirality of the ICME.

  20. X-ray and EUV Observations of CME Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2004-01-01

    Why Coronal Mass Ejections (CMEs) erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations from SOHO/EIT and from TRACE in EUV, and from Yohkoh/SXT in soft X-rays of the pre-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  1. CME Eruption Onset Observations from EIT and SXT

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2004-01-01

    Why CMEs erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations in EUV from SOHO/EIT and in soft X-rays from Yohkoh/SXT of the re-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  2. ForeCAT: Using CME Deflections to Constrain their Mass and the Drag

    NASA Astrophysics Data System (ADS)

    Kay, C.; dos Santos, L. F. G.; Opher, M.

    2014-12-01

    Observations show that CMEs can deflect from a purely radial trajectory yet no consensus exists as to the cause of these deflections. The majority of the deflection motion occurs in the corona at distances where the magnetic energy dominates. Accordingly, many theories attribute the CME deflection to magnetic forces. In Kay et al. (2013) we presented ForeCAT, a model for CME deflections based on the magnetic forces (magnetic tension and magnetic pressure gradients). Kay et al. (2014) introduced an improved three-dimensional version of ForeCAT. Here we study the 2008 December 12 CME which occurred during solar minimum of Solar Cycle 24 (Byrne et al 2010, Gui et al. 2011, Liu et al 2010a,b). This CME erupted from high latitudes, and, despite the weak background magnetic field, deflected to the ecliptic, impacting Earth. From the observations, we are able to constrain all of the ForeCAT input parameters except for the CME mass and the drag coefficient that affects the CME motion. The reduced chi-square best fit to the observations constrains the CME mass range to 3e14 to 7e14 g and the drag coefficient range to 1.9 to 2.4. We explore the effects of a different magnetic background which decreases less rapidly than our standard Potential Field Source Surface (PFSS) model, as type II radio bursts suggest that the PFSS magnetic field decays too rapidly above active regions. For the case of the filament eruption of 2008 December 12 we find that the quiet sun coronal magnetic field should behave similar to the PFSS model. Finally, we present our current work exploring the case of the 2008 April 9 CME.

  3. CME, Physicians, and Pavlov: Can We Change What Happens When Industry Rings the Bell?

    PubMed Central

    Lichter, Paul R.

    2008-01-01

    Purpose To show how physicians conditioned response to keeping up has helped industrys opportunistic funding of continuing medical education (CME) and to propose ways to counter the conditioned response to the benefit of patients and the public. Methods Review of the literature and commentary on it. Results The pharmaceutical and device industries (hereafter referred to as industry) have a long history of bribing physicians to prescribe and use their products. Increasing pressure from Congress and the public has been brought to bear on industry gifting. This pressure, coinciding with increasing financial problems for the providers of CME, provided industry with reason and opportunity to expand its role in the financing of CME. Industrys incentive to make its CME funding appear to be an arms-length transaction has spawned medical education service supplier (MESS) companies. Industry makes unrestricted grants to the MESS, and the MESS puts on the CME program. Helped by these CME programs, industry is able to subtly buy physicians one at a time, so that under the cover of education they and their academic institutions and medical organizations lose sight of being CME pawns in industrys sole objective: profit. Conclusions Despite a vast literature showing how physician integrity is easy prey to industry, the medical profession continues to allow industry to have a detrimental influence on the practice of medicine and on physician respectability. It will take resolute action to change the medical professions conditioned response to industrys CME bell and its negative effect on patients and the public. PMID:19277219

  4. The Relationship Between Solar X-Ray Flux and Coronal Mass Ejection (CME) Energy

    NASA Astrophysics Data System (ADS)

    Hirschberger, M.; Damas, M. C.; O'Connell, M.; Mezzafonte, D.; Marchese, A.; Carbone, A.; Chen, K.; Marchese, P.

    2013-12-01

    Solar flares and their associated CMEs are an integral part of solar weather that can have profound effects on Earth's atmosphere. The charged particles emitted by strong CMEs and strong x-ray fluxes produced by solar flares can cause damage to satellites, disrupt radio and GPS signals, and strain power grids. It is critical to understand how solar flare intensity influences the magnitude of CMEs so as to minimize and prevent these consequential negative effects. This study investigated the hypothesis that solar x-ray flux has a direct correlation to CME energy. Total daily x-ray flux was correlated with CME energy for the years 2000-2012. X-ray flux data consisted of background and solar flare flux obtained from the Geostationary Operational Environmental Satellites (GOES). CME energy was obtained by squaring the 2nd-order speed at 20 Rs (solar radii) and summing these squared values for each day of each year. CME speed data was obtained from the NASA Large Angle and Spectrometric Coronagraph (LASCO) located on the Solar and Heliospheric Observatory satellite (SOHO). Results indicate significant correlations between solar x-ray flux and CME energy for the various years. Other factors that influence CME energy were also investigated.

  5. Differences between CME-driven storms and CIR-driven storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Denton, Michael H.

    2006-07-01

    Twenty one differences between CME-driven geomagnetic storms and CIR-driven geomagnetic storms are tabulated. (CME-driven includes driving by CME sheaths, by magnetic clouds, and by ejecta; CIR-driven includes driving by the associated recurring high-speed streams.) These differences involve the bow shock, the magnetosheath, the radiation belts, the ring current, the aurora, the Earth's plasma sheet, magnetospheric convection, ULF pulsations, spacecraft charging in the magnetosphere, and the saturation of the polar cap potential. CME-driven storms are brief, have denser plasma sheets, have strong ring currents and Dst, have solar energetic particle events, and can produce great auroras and dangerous geomagnetically induced currents; CIR-driven storms are of longer duration, have hotter plasmas and stronger spacecraft charging, and produce high fluxes of relativistic electrons. Further, the magnetosphere is more likely to be preconditioned with dense plasmas prior to CIR-driven storms than it is prior to CME-driven storms. CME-driven storms pose more of a problem for Earth-based electrical systems; CIR-driven storms pose more of a problem for space-based assets.

  6. Distribution of Solar Flares with Respect to Associated Coronal Mass Ejection (CME) Span During 1996 to 2012

    NASA Astrophysics Data System (ADS)

    Bhatt, B.; Prasad, L.; Mathpal, Hema; Mathpal, R.

    2015-09-01

    In the present study we have selected 131 events of the flare-CME accompanied by type II radio burst chosen during the period from 1996 to 2012. Statistical analyses are performed to examine the distribution of solar flares with respect to CME span and it was found that from 131 events only 49 lie under the CME span, whereas 82 events are outside the CME span. Our analysis indicates that flare-CME accompanied by type II radio burst does not follow the CSHKP flare-CME model. Under the CME span, 57% events occurred in the northern region and 43% events in the southern region, whereas outside the CME span 51% events occurred in the northern region and 49% events in the southern region. The northern and southern hemispheres between 10 to 20o latitudinal belts are found to be more effective in producing events. We also found that under the CME span the maximum number of events resided at the center, and outside the CME span all the 82 events spread out to one particular side.

  7. Connecting Near-Sun CME flux Ropes to the 1-AU Flux Ropes using the Flare-CME Relationship

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Xie, H.; Yashiro, S.; Akiyama, S.

    2013-07-01

    Coronal mass ejections (CMEs) and solar flares are closely related in various ways because the two phenomena are different manifestations of the same energy release in closed magnetic regions on the sun. Of particular interest is the relation between flare reconnection flux at the Sun and the poloidal flux of the 1-AU flux rope associated with the flare. If a flux rope forms due to flare reconnection, then the two fluxes are almost equal. The flare reconnection flux is normally computed from the flare-ribbon area and the photospheric field strength in the ribbon area. Here we report on another technique, which makes use of the area under the post-eruption arcade (PEA). We show that the reconnection flux derived from the PEA technique agrees with the one derived from flare ribbons. We also fit a flux rope to the white-light CME observations and derive the aspect ratio of the flux rope. Assuming self-similar expansion of the flux rope, we show that the magnetic content and size of the 1-AU flux rope can be predicted from the flare magnetic field (the average photospheric field strength within half of the PEA area) and the aspect ratio of the coronal flux rope. We illustrate the method with several examples.

  8. Cme Associated with Transequatorial Loops and a Bald Patch Flare

    NASA Astrophysics Data System (ADS)

    Delanne, C.; Aulanier, G.

    1999-12-01

    We study a flare which occurred on 3 November 1997 at 10:31 UT in the vicinity of a parasitic polarity of AR 8100. Using SOHO/EIT 195 observations, we identify the brightening of thin transequatorial loops connecting AR 8100 and AR 8102, and dimmings located between the two active regions. Difference images highlight the presence of a loop-like structure rooted near the flare location usually called an EIT wave. The coronal magnetic field derived from potential extrapolations from a SOHO/MDI magnetogram shows that the topology is complex near the parasitic polarity. There, a `bald patch' (defined as the locations where the magnetic field is tangent to the photosphere) is present. We conclude that the flare was a `bald patch flare'. Moreover, the extrapolation confirms that there is a large coronal volume filled with transequatorial field lines interconnecting AR 8100 and AR 8102, and overlaying the bald patch. We show that the dimmings are located at the footpoints of these large field lines, which can be also related to the thin bright loops observed during the flare. As this event was related to a coronal mass ejection (CME) observed by SOHO/LASCO, we propose that the observed dimmings are due to a decrease in plasma density during the opening of the transequatorial loops connecting both ARs. We propose a scenario where these large field lines are in fact pushed up by the opening of low-lying sheared field lines forming the bald patch. We finally discuss how the fast opening of these field lines can produce the brightening near the footpoints of the separatrix, observed as an `EIT wave'.

  9. The CORIMP CME Catalogue: Automatically Detecting and Tracking CMEs in Coronagraph Data

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Morgan, H.; Habbal, S. R.

    2012-05-01

    Studying CMEs in coronagraph data can be challenging due to their diffuse structure and transient nature, and user-specific biases may be introduced through visual inspection of the images. The large amount of data available from the SOHO and STEREO missions also makes manual cataloguing of CMEs tedious, and so a robust method of detection and analysis is required. This has led to the development of automated CME detection and cataloguing packages such as CACTus, SEEDS and ARTEMIS. Here we present the development of the CORIMP (coronal image processing) Catalogue: a new, automated, multiscale, CME detection and tracking catalogue, that overcomes many of the drawbacks of current catalogues. It works by first employing a dynamic CME separation technique to remove the static background, and then characterizing CME structure via a multiscale edge-detection algorithm. The detections are chained through time to determine the CME kinematics and morphological changes as it propagates across the plane-of-sky. The effectiveness of the method is demonstrated by its application to a selection of SOHO/LASCO and STEREO/SECCHI images, as well as to synthetic coronagraph images created from a model corona with a variety of CMEs. These algorithms are being applied to the whole LASCO and SECCHI datasets, and a CORIMP catalogue of results will soon be available to the community.

  10. Teaching tools useful to understand the Space Weather, through kinematic analysis of some CME

    NASA Astrophysics Data System (ADS)

    Amazo-Gomez, Eliana

    The earth is a planet belonging to a medium dynamic, interacting, is not restricted a closed system, but it is affected by her multiple external phenomena, storms geomagnetic, coronal mass ejections, spatial tremors, changes in the environment plasma and magnetic fields near the sun and affecting the planet and overall radiation from other parts of space are subject study space weather. In this work I teach to my school students some tools and main ideas about some things about the Space Weather, through the analysis to five CME events and the localization the CMEs sources. We use Stereo and ISWA tools and datasets, also SOHO and STEREO Within the missions (Cor 1.2, HI 1.2, of A & B and SOHO spacecraft/LASCO C2 & C3), we proceed to calibrate the data, and make movies of the CME seen from of all 3 spacecrafts, then we can estimate the CME front (position), calculate the velocity of the CME and plot the velocity/time diagram, create J-plots, and finally, we Infer the velocity of the CME out of the J-plot. The coronal mass ejections measures were compared with records and this got us some a description of the stage in which the dynamic system is they belong to the earth and the sun, the idea of this work was show and describe some of the measurements that are used to develop the study of Space Weather.

  11. Strong coronal deflection of a CME and its interplanetary evolution to Earth and Mars

    NASA Astrophysics Data System (ADS)

    Möstl, Christian; Rollett, Tanja; Frahm, Rudy A.; Liu, Ying D.; Long, David M.; Colaninno, Robin C.; Reiss, Martin A.; Temmer, Manuela; Farrugia, Charles J.; Posner, Arik; Dumbovic, Mateja; Janvier, Miho; Demoulin, Pascal; Boakes, Peter; Devos, Andy; Kraaikamp, Emil; Mays, Mona L.; Vrsnak, Bojan

    2015-04-01

    We discuss multipoint imaging and in situ observations of the coronal mass ejection (CME) on January 7 2014 which resulted in a major false alarm. While the source region was almost at disk center facing Earth, the eruption was strongly deflected in the corona, and in conjunction with its particular orientation this CME missed Earth almost entirely, leading to no significant geomagnetic effects. We demonstrate this by a synthesis of data from 7 different heliospheric and planetary space missions (STEREO-A/B, SOHO, SDO, Wind, Mars Express, Mars Science Laboratory). The CMEs ecliptic part was deflected by 37 ± 10° in heliospheric longitude, a value larger than previously thought. Multipoint in situ observations at Earth and Mars confirm the deflection, and are consistent with an elliptical interplanetary shock shape of aspect ratio 1.4 ± 0.4. We also discuss our new method, the Ellipse Evolution (ElEvo) model, which allows us to optimize the global shape of the CME shock with multipoint in situ observations of the interplanetary CME arrival. ElEvo, which is an extension to the Drag-Based-Model by Vrsnak et al., may also be used for real time space weather forecasting. The presented results enhance our understanding of CME deflection and shape, which are fundamental ingredients for improving space weather forecasts.

  12. Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Hall, J. R.; Howard, R. A.; DeJong, E. M.; Thompson, W. T.; Thernisten, A.

    2010-01-01

    The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) coronagraphs on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft provide simultaneous views of the corona and coronal mass ejections from two view points. Here, we analyze simultaneous image pairs using the technique of tie-pointing and triangulation (T&T) to determine the three-dimensional trajectory of seven coronal mass ejections (CMEs). The bright leading edge of a CME seen in coronagraph images results from line-of-sight integration through the CME front; the two STEREO coronagraphs see different apparent leading edges, leading to a systematic error in its three-dimensional reconstruction. We analyze this systematic error using a simple geometric model of a CME front. We validate the technique and analysis by comparing T&T trajectory determinations for seven CMEs with trajectories determined by Thernisien et al. (2009) using a forward modeling technique not susceptible to this systematic effect.

  13. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel

    PubMed Central

    Su, Chih-Chia; Radhakrishnan, Abhijith; Kumar, Nitin; Long, Feng; Bolla, Jani Reddy; Lei, Hsiang-Ting; Delmar, Jared A; Do, Sylvia V; Chou, Tsung-Han; Rajashankar, Kanagalaghatta R; Zhang, Qijing; Yu, Edward W

    2014-01-01

    As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance-nodulation-cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export. PMID:24753291

  14. Relation of CME apparent parameters with solar source regions during the solar minimum 1997 - 1998

    NASA Astrophysics Data System (ADS)

    Wang, Yuming

    According to the LASCO CME catalog, all the CMEs observed during 1997 - 1998 are investigated. By visually examing the LASCO and EIT movies, the source regions of them are identified, in which near half of them are believed come from front-side of solar disk. Based on the identified CME source locations, the following issues are addressed, (1) the statistical bias of halo CMEs, (2) projection effects, (3) invisibility of disk CMEs, and (4) deflection of CMEs in latitude. Further, for those CMEs originating from active regions (ARs), a technique of regiongrowing with thresholds is applied to determine the parameters of active regions based on MDI synoptic charts. Then the properties of ARs with/without CMEs and the AR capability of producing CMEs in regard to the CME numbers and the fastest speed are analyzed.

  15. MLSO Mark III K-Coronameter Observations of the CME Rate from 1989 - 1996

    NASA Astrophysics Data System (ADS)

    St. Cyr, O. C.; Flint, Q. A.; Xie, H.; Webb, D. F.; Burkepile, J. T.; Lecinski, A. R.; Quirk, C.; Stanger, A. L.

    2015-10-01

    We report here an attempt to fill the 1990 - 1995 gap in the CME rate using the Mauna Loa Solar Observatory's Mark III (Mk3) K-coronameter. The Mk3 instrument observed routinely several hours most days beginning in 1980 until it was upgraded to Mk4 in 1999. We describe the statistical properties of the CMEs detected during 1989 - 1996, and we determine a CME rate for each of those years. Since spaceborne coronagraphs have more complete duty cycles than a ground-based instrument at a single location, we compare the Mk3-derived CME rate from 1989 with the rate from the SMM C/P coronagraph, and from 1996 with the rate from the SOHO LASCO coronagraphs.

  16. The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project

    NASA Astrophysics Data System (ADS)

    Barnard, L.; Scott, C.; Owens, M.; Lockwood, M.; Tucker-Hood, K.; Thomas, S.; Crothers, S.; Davies, J. A.; Harrison, R.; Lintott, C.; Simpson, R.; O'Donnell, J.; Smith, A. M.; Waterson, N.; Bamford, S.; Romeo, F.; Kukula, M.; Owens, B.; Savani, N.; Wilkinson, J.; Baeten, E.; Poeffel, L.; Harder, B.

    2014-12-01

    Solar Stormwatch was the first space weather citizen science project, the aim of which is to identify and track coronal mass ejections (CMEs) observed by the Heliospheric Imagers aboard the STEREO satellites. The project has now been running for approximately 4 years, with input from >16,000 citizen scientists, resulting in a data set of >38,000time-elongation profiles of CME trajectories, observed over 18 preselected position angles. We present our method for reducing this data set into a CME catalogue. The resulting catalogue consists of 144 CMEs over the period January 2007 to February 2010, of which 110 were observed by STEREO-A and 77 were observed by STEREO-B. For each CME, the time-elongation profiles generated by the citizen scientists are averaged into a consensus profile along each position angle that the event was tracked. We consider this catalogue to be unique, being at present the only citizen science-generated CME catalogue, tracking CMEs over an elongation range of 4° out to a maximum of approximately 70°. Using single spacecraft fitting techniques, we estimate the speed, direction, solar source region, and latitudinal width of each CME. This shows that at present, the Solar Stormwatch catalogue (which covers only solar minimum years) contains almost exclusively slow CMEs, with a mean speed of approximately 350 km s-1. The full catalogue is available for public access at www.met.reading.ac.uk/~spate/solarstormwatch. This includes, for each event, the unprocessed time-elongation profiles generated by Solar Stormwatch, the consensus time-elongation profiles, and a set of summary plots, as well as the estimated CME properties.

  17. Seed Population in Large Solar Energetic Particle Events and the Twin-CME Scenario

    NASA Astrophysics Data System (ADS)

    Ding, Liu-Guan; Li, Gang; Le, Gui-Ming; Gu, Bin; Cao, Xin-Xin

    2015-10-01

    It has recently been suggested that large solar energetic particle (SEP) events are often caused by twin coronal mass ejections (CMEs). In the twin-CME scenario, the preceding CME provides both an enhanced turbulence level and enhanced seed population at the main CME-driven shock. In this work, we study the effect of the preceding CMEs on the seed population. We examine event-integrated abundance of iron to oxygen ratio (Fe/O) at energies above 25 MeV/nuc for large SEP events in solar cycle 23. We find that the Fe/O ratio (normalized to the reference coronal value of 0.134) ?2.0 for almost all single-CME events and these events tend to have smaller peak intensities. In comparison, the Fe/O ratio of twin-CME events scatters in a larger range, reaching as high as 8, suggesting the presence of flare material from perhaps preceding flares. For extremely large SEP events with peak intensities above 1000 pfu, the Fe/O ratios drop below 2, indicating that the seed particles are dominated by coronal material rather than flare material in these extreme events. The Fe/O ratios of ground level enhancement (GLE) events, which are all twin-CME events, scatter in a broad range. For a given Fe/O ratio, GLE events tend to have larger peak intensities than non-GLE events. Using velocity dispersion analysis, we find that GLE events have lower solar particle release heights than non-GLE events, agreeing with earlier results by Reames.

  18. Role of Ambient Solar Wind Conditions in CME evolution (P21)

    NASA Astrophysics Data System (ADS)

    Jadav, R.; Jadeja, A. K.; Iyer, K. N.

    2006-11-01

    ipsraj@yahoo.com Solar events are mainly responsible for producing storms at the Earth. Coronal Mass Ejection (CME) is a major cause for this. In this paper, Coronal Mass Ejections occurred during 1998-2004 are studied. Ambient solar wind does play some role in determining the effect of a CME. The effects produced at the Earth during the period 1999 2004 are considered and an attempt has been made to understand the role of ambient solar wind. This is to draw some conclusion about how some of the events become geo- effective.

  19. Enhancing Quality Improvements in Cancer Care Through CME Activities at a Nationally Recognized Cancer Center

    PubMed Central

    Uemura, Marc; Morgan, Robert; Mendelsohn, Mary; Kagan, Jean; Saavedra, Crystal; Leong, Lucille

    2013-01-01

    Changing healthcare policy will undoubtedly affect the healthcare environment in which providers function. The current Fee for Service reimbursement model will be replaced by Value-Based Purchasing, where higher quality and more efficient care will be emphasized. Because of this, large healthcare organizations and individual providers must adapt to incorporate performance outcomes into patient care. Here, we present a Continuing Medical Education (CME)-based initiative at the City of Hope National Cancer Center that we believe can serve as a model for using CME as a value added component to achieving such a goal. PMID:23608956

  20. A pH-responsive chitosan-b-poly(p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery

    NASA Astrophysics Data System (ADS)

    Tang, Dao-Lu; Song, Fei; Chen, Cheng; Wang, Xiu-Li; Wang, Yu-Zhong

    2013-04-01

    Increasing attention has recently been paid to the fabrication of drug delivery systems with excellent cell internalization and intracellular drug release properties. In this study, an amphiphilic block copolymer of chitosan was synthesized for the first time, which can self-assemble into micelles in a neutral aqueous solution but partially disassemble in an acidic endosomal/lysosomal environment. The antitumor drug, camptothecin (CPT), was encapsulated in the cores of the micelles for tumor cell therapy. In vitro drug release studies demonstrated that the micelles presented a much faster release of CPT at pH 5.0 than at pH 7.4. Blank micelles were found to be nontoxic in preliminary in vitro cytotoxicity assays. Cell experiments showed that the CPT-loaded micelles could be effectively internalized by Hela cells and accomplished a potent antitumor cell efficacy, indicating that the chitosan-based micelles might be an attractive new platform for efficient intracellular drug delivery.

  1. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery.

    PubMed

    Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun

    2016-01-01

    A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an ?-cyclodextrin (?-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-?-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. PMID:26692041

  2. Tablets of pre-liposomes govern in situ formation of liposomes: concept and potential of the novel drug delivery system.

    PubMed

    Vani?, eljka; Planinek, Odon; kalko-Basnet, Nataa; Tho, Ingunn

    2014-10-01

    The purpose of this study was to develop a novel drug delivery system for challenging drugs with potential for scale-up manufacturing and controlled release of incorporated drug. Pre-liposomes powder containing metronidazole, lecithin and mannitol, prepared by spray-drying, was mixed with different tableting excipients (microcrystalline cellulose, lactose monohydrate, mannitol, dibasic calcium phosphate, pregelatinized starch, pectin or chitosan) and compressed into tablets. The delivery system was characterized with respect to (i) dry powder characteristics, (ii) mechanical tablet properties and drug release, and (iii) liposomal characteristics. The pre-liposomes powder was free-flowing, and tablets of similarly high qualities as tablets made of physical mixtures were prepared with all excipients. Liposomes were formed in situ upon tablet disintegration, dissolution or erosion depending on the type of tablet excipient used. The liposomal characteristics and drug release were found to depend on the tablet excipient. The new delivery system offers a unique synergy between the ability of liposomes to encapsulate and protect drugs and increased stability provided by compressed formulations. It can be adjusted for drug administration via various routes, e.g. oral, buccal and vaginal. PMID:24929211

  3. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems. PMID:26041190

  4. On GLE71 Concurrent CME-driven Shock Wave

    NASA Astrophysics Data System (ADS)

    Abul Firoz, Kazi; Gan, Weiqun; Li, Youping; Rodrguez-Pacheco, Javier

    2014-05-01

    Recent studies, which were carried out based on both temporal and spatial evolutions, on the first GLE event of the solar cycle 24 (GLE71 17 May 2012) suggested that the CME-driven shock played the principal role to cause the event. To verify the claim, it is essential to illustrate the shock wave. For this purpose, we have carried out an investigation by using the spectral data of Wind-WAVES (NASA) for solar radio bursts while temporal data of cosmic ray intensity from SOPO and SOPB Neutron Monitors for GLE. To comprehend the particle acceleration in shock wave, we have exploited the concurrent electron fluxes from Wind spacecraft (NASA) and solar radio fluxes from NoRH (JAXA). When the temporal profiles are shifted necessarily at ~ 1 AU, the onset of the type II burst is observed nearly simultaneous with the onsets of the impulsive phases of the particle intensity, and the frequency drift follows the trends of decreasing electron density whereas the frequency drift rate follows the trends of increasing electron density. This extends the idea to study the polynomial correlations. It is found that there are strong correlations between frequency drift rate of type II burst and concurrent electron fluxes. The intensive particle accelerations occurred in between ~ 0.80 Rs and ~ 1.10 Rs altitude of the solar corona. Key results of the study are noted as follows. 1. Extreme emission phase of high frequency solar flux component is earlier than that of the low frequency solar flux while the flash phase of high energy flare component is earlier than that of low energy flare component. 2. Some of the high-energy flare components maintained very good correlations with fundamental phase of the type II burst, indicating that the flare flash phase was associated with the onset of the shock. This was further corroborated by the evidence that the principal drifting bands of the type II burst appeared as a continuous succession of type III burst, and some of the peaks of SFU components are coincidence with the onset of type II burst. This makes sense that the preceding flare might have scope to contribute any fractional amount of energy to the shock wave. 3. Although blast wave might be capable to produce GLE (presumably prompt event), the energy contribution of the preceding flare components to the shock wave did not expose any evidence to believe that the shock wave was turned into a blast wave. This was further realized by the fact that the low frequency spectral evolution in type II bursts has strong correlations with the concurrent particle fluxes, inferring that the strongest particle acceleration might have taken place at any higher altitude of the corona.

  5. 3D MHD simulations of the May 2, 1998 halo CME: Comparison of CME initiation models and their characteristics at L1

    NASA Astrophysics Data System (ADS)

    Manchester, W. B.; Roussev, I. I.; Gombosi, T. I.; Sokolov, I. V.; Forbes, T. G.

    We present the results of two numerical models of the partial-halo CME event associated with NOAA AR8210 on May 2, 1998. Our simulations are fully three-dimensional and involve compressible magnetohydrodynamics with turbulent energy transport. We begin by first producing a steady-state solar wind for Carrington Rotation 1935/6, following the methodology described in Roussev et al. (2003). For the first model, we superpose the Gibbson-Low magnetic flux rope into the helmet streamer of AR8210. In the second newer model, instead, we impose shearing motions along the polarity inversion line of AR8210, followed by converging motions, both via the modification of the boundary conditions at the Sun's surface. In the first model, a magnetic flux rope exists in the corona prior to the eruption, whereas in the second model, a flux rope forms from reconnection within the sheared arcade during the CME. In either case, flux ropes are expelled from the Sun, manifesting a partial-halo CME through a highly structured, ambient solar wind. We follow the ejected plasma flows from the corona to the Earth's orbit and compare the time evolution of the solar wind parameters predicted by the two models with satellite observations at the L1 point. With such a comparison, we hope to address much debated issue of whether magnetic flux ropes are a component of the pre-event corona.

  6. 3D MHD simulations of the May 2, 1998 halo CME: Comparison of CME initiation models and their characteristics at L1

    NASA Astrophysics Data System (ADS)

    Manchester, W. B.; Roussev, I. I.; Gombosi, T.; Sokolov, I. V.; Forbes, T.

    2004-05-01

    We present the results of two numerical models of the partial-halo CME event associated with NOAA AR8210 on May 2, 1998. Our simulations are fully three-dimensional and involve compressible magnetohydrodynamics with turbulent energy transport. We begin by first producing a steady-state solar wind for Carrington Rotation 1935/6, following the methodology described in Roussev et al. (2003). For the first model, we superpose the Gibbson-Low magnetic flux rope into the helmet streamer of AR8210. In the second newer model, instead, we impose shearing motions along the polarity inversion line of AR8210, followed by converging motions, both via the modification of the boundary conditions at the Sun's surface. In the first model, a magnetic flux rope exists in the corona prior to the eruption, whereas in the second model, a flux rope forms from reconnection within the sheared arcade during the CME. In either case, flux ropes are expelled from the Sun, manifesting a partial-halo CME through a highly structured, ambient solar wind. We follow the ejected plasma flows from the corona to the Earth's orbit and compare the time evolution of the solar wind parameters predicted by the two models with satellite observations at the L1 point. With such a comparison, we hope to address much debated issue of whether magnetic flux ropes are a component of the pre-event corona.

  7. The Great "Non-Event" of 7 January 2014: Challenges in CME Arrival Time and Geomagnetic Storm Strength Prediction

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Thompson, B. J.; Jian, L.; Evans, R. M.; Savani, N.; Odstrcil, D.; Nieves-Chinchilla, T.; Richardson, I. G.

    2014-12-01

    We present a case study of the 7 January 2014 event in order to highlight current challenges in space weather forecasting of CME arrival time and geomagnetic storm strength. On 7 January 2014 an X1.2 flare and CME with a radial speed ~2400 km/s was observed from active region 11943. The flaring region was only ten degrees southwest of disk center with extensive dimming south of the active region and preliminary analysis indicated a fairly rapid arrival at Earth (~36 hours). Of the eleven forecasting groups world-wide who participated in CCMC's Space Weather Scoreboard (http://kauai.ccmc.gsfc.nasa.gov/SWScoreBoard), nine predicted early arrivals and six predicted dramatic geomagnetic storm impacts (Kp predictions ranged from 6 to 9). However, the CME only had a glancing blow arrival at Earth - Kp did not rise above 3 and there was no geomagnetic storm. What happened? One idea is that the large coronal hole to the northeast of the active region could have deflected the CME. This coronal hole produced a high speed stream near Earth reaching an uncommon speed of 900 km/s four days after the observed CME arrival. However, no clear CME deflection was observed in the outer coronagraph fields of view (~5-20Rs) where CME measurements are derived to initiate models, therefore deflection seems unlikely. Another idea is the effect of the CME flux rope orientation with respect to Earth orbit. We show that using elliptical major and minor axis widths obtained by GCS fitting for the initial CME parameters in ENLIL would have improved the forecast to better reflect the observed glancing blow in-situ signature. We also explore the WSA-ENLIL+Cone simulations, the background solar wind solution, and compare with the observed CME arrival at Venus (from Venus Express) and Earth.

  8. Effects of efflux-pump inducers and genetic variation of the multidrug transporter cmeB in biocide resistance of Campylobacter jejuni and Campylobacter coli.

    PubMed

    Mavri, Ana; Smole Moina, Sonja

    2013-03-01

    Multidrug efflux pumps, such as CmeABC and CmeDEF, are involved in the resistance of Campylobacter to a broad spectrum of antimicrobials. The aim of this study was to analyse the effects of two putative efflux-pump inducers, bile salts and sodium deoxycholate, on the resistance of Campylobacter to biocides (triclosan, benzalkonium chloride, chlorhexidine diacetate, cetylpyridinium chloride and trisodium phosphate), SDS and erythromycin. The involvement of the CmeABC and CmeDEF efflux pumps in this resistance was studied on the basis of the effects of bile salts and sodium deoxycholate in Campylobacter cmeB, cmeF and cmeR mutants. The genetic variation in the cmeB gene was also examined, to see whether this polymorphism is related to the function of the efflux pump. In 15 Campylobacter jejuni and 23 Campylobacter coli strains, bile salts and sodium deoxycholate increased the MICs of benzalkonium chloride, chlorhexidine diacetate, cetylpyridinium chloride and SDS, and decreased the MICs of triclosan, trisodium phosphate and erythromycin. Bile salts and sodium deoxycholate further decreased or increased the MICs of biocides and erythromycin in the cmeF and cmeR mutants. For cmeB polymorphisms, 17 different cmeB-specific PCR-RFLP patterns were identified: six within C. jejuni only, nine within C. coli only and two in both species. In conclusion, bile salts and sodium deoxycholate can increase or decrease bacterial resistance to structurally unrelated antimicrobials. The MIC increases in the cmeF and cmeR mutants indicated that at least one non-CmeABC efflux system is involved in resistance to biocides. These results indicate that the cmeB gene polymorphism identified is not associated with biocide and erythromycin resistance in Campylobacter. PMID:23161768

  9. Reconciling CME Kinematics using Radio and White-light Observations from STEREO and SOHO

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Akiyama, Sachiko; Reiner, Michael; MacDowall, Robert

    2014-05-01

    We study the characteristics of nonthermal radio emission associated with coronal mass ejections (CMEs) observed by STEREO, SOHO, and Wind spacecraft. In particular, we examine three backside CMEs associated with type II radio bursts at frequencies below 16 MHz. These bursts are known to be excellent indicators of solar energetic particle events. We use the universal drift rate spectrum of type II radio bursts and the inferred density scale heights in the corona and interplanetary medium o estimate the speed of the shock waves that produce the type II radio bursts. We find that the radio bursts can provide an accurate estimate of the CME speeds. We consider three backside events and a cannibalism event to show the usefulness of radio dynamic spectrum in inferring CME kinematics. We use radio direction finding technique to show that CME-CME interaction results in enhanced nonthermal radio emission. The radio data also provide constraints on the particle acceleration mechanisms and the reason for the energetic particles observed at wide-ranging longitudes. Finally we infer the shape and extent of the shock associated with one of the biggest solar energetic particle events in the space era.

  10. Interrater Reliability to Assure Valid Content in Peer Review of CME-Accredited Presentations

    ERIC Educational Resources Information Center

    Quigg, Mark; Lado, Fred A.

    2009-01-01

    Introduction: The Accreditation Council for Continuing Medical Education (ACCME) provides guidelines for continuing medical education (CME) materials to mitigate problems in the independence or validity of content in certified activities; however, the process of peer review of materials appears largely unstudied and the reproducibility of

  11. Modeling Extreme Space Weather Scenarios: July 23, 2012 Rare-Type CME

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.

    2014-12-01

    Space weather is a major concern for modern day society because of its adverse impacts on technological infrastructure such as power grids, oil pipelines, and global navigation systems. Particularly, earth directed coronal mass ejections (CMEs) are the main drivers of the most extreme geomagnetic storms in the near-Earth space environment. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast CME that traveled 0.96 astronomical units (~1 AU) in about 19 h. In our study, we use the Space Weather Modeling Framework (SWMF), a 3-D MHD based code, to perform simulations of this rare CME by considering STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of the study is to investigate what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active magnetometer sites. Simulation results show that the July 23 CME would have produced ground effects comparable to previously observed extreme geomagnetic storms such as the Halloween 2003 storm. In addition, we discuss how this study compares to other independent studies on this same event.

  12. A CME-driven solar wind distrubance observed at both low and high heliographic latitudes

    SciTech Connect

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.

    1995-07-01

    A solar wind disturbance produced by a fast coronal mass ejection, CME, that departed from the Sun on Feburary 20, 1994 was observed in the ecliptic plane at 1 AU by IMP 8 and at high heliographic latitudes at 3.53 AU by Ulysses. In the ecliptic the disturbance included a strong forward shock but no reverse shock, while at high latitudes the disturbance was bounded by a relatively weak forward-reverse shock pair. It is clear that the disturbance in the ecliptic plane was driven primarily by the relative speed between the CME and a slower ambient solar wind ahead, whereas at higher latitudes the disturbance was driven by expansion of the CME. The combined IMP 8 and Ulysses observations thus provide a graphic illustration of how a single fast CME can produce very different types of solar wind disturbances at low and high heliographic latitudes. Simple numerical simulations help explain observed differences at the two spacecraft. 12 refs., 3 figs.

  13. Solar Wind Electron Strahls Associated with a High-Latitude CME: Ulysses Observations

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Pomoell, J.; Poedts, S.; Dumitrache, C.; Popescu, N. A.

    2014-11-01

    Counterstreaming beams of electrons are ubiquitous in coronal mass ejections (CMEs) - although their existence is not unanimously accepted as a necessary and/or sufficient signature of these events. We continue the investigation of a high-latitude CME registered by the Ulysses spacecraft on 18 - 19 January 2002 (Dumitrache, Popescu, and Oncica, Solar Phys. 272, 137, 2011), by surveying the solar-wind electron distributions associated with this event. The temporal evolution of the pitch-angle distributions reveals populations of electrons that are distinguishable through their anisotropy, with clear signatures of i) electron strahls, ii) counter-streaming in the magnetic clouds and their precursors, and iii) unidirectionality in the fast wind preceding the CME. The analysis of the counter-streams inside the CME allows us to elucidate the complexity of the magnetic-cloud structures embedded in the CME and to refine the borders of the event. Identifying such strahls in CMEs, which preserve properties of the low ? [<1] coronal plasma, gives more support to the hypothesis that these populations are remnants of the hot coronal electrons that escape from the electrostatic potential of the Sun into the heliosphere.

  14. Medical Education and Communication Companies Involved in CME: An Updated Profile

    ERIC Educational Resources Information Center

    Peterson, Eric D.; Overstreet, Karen M.; Parochka, Jacqueline N.; Lemon, Michael R.

    2008-01-01

    Introduction: Medical Education and Communication Companies (MECCs) represent approximately 21% of the providers accredited by the Accreditation Council for Continuing Medical Education (ACCME), yet relatively little is known about these organizations in the greater continuing medical education (CME) community. Two prior studies described them,

  15. Organizational Change in Management of Hepatitis C: Evaluation of a CME Program

    ERIC Educational Resources Information Center

    Garrard, Judith; Choudary, Veena; Groom, Holly; Dieperink, Eric; Willenbring, Mark L.; Durfee, Janet M.; Ho, Samuel B.

    2006-01-01

    Introduction: Effective treatment regimens exist for the hepatitis C virus (HCV); however, clinicians are often resistant to evaluation or treatment of patients with alcohol or substance abuse problems. We describe a continuing medical education (CME) program for clinicians in a nationwide health care system, with emphasis on current treatment

  16. Constraints on CME Evolution from in situ Observations of Ionic Charge States

    NASA Technical Reports Server (NTRS)

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Antiochos, Spiro K.

    2010-01-01

    We present a novel procedure for deriving the physical properties of Coronal Mass Ejections (CMES) in the corona. Our methodology uses in-situ measurements of ionic charge states of C, O, Si and Fe in the heliosphere and interprets them in the context of a model for the early evolution of ICME plasma, between 2 - 5 R-solar. We find that the data can be fit only by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnect ion jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time-history and, therefore, provide important constraints for the heating and expansion time-scales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.

  17. Interrater Reliability to Assure Valid Content in Peer Review of CME-Accredited Presentations

    ERIC Educational Resources Information Center

    Quigg, Mark; Lado, Fred A.

    2009-01-01

    Introduction: The Accreditation Council for Continuing Medical Education (ACCME) provides guidelines for continuing medical education (CME) materials to mitigate problems in the independence or validity of content in certified activities; however, the process of peer review of materials appears largely unstudied and the reproducibility of…

  18. Medical Education and Communication Companies Involved in CME: An Updated Profile

    ERIC Educational Resources Information Center

    Peterson, Eric D.; Overstreet, Karen M.; Parochka, Jacqueline N.; Lemon, Michael R.

    2008-01-01

    Introduction: Medical Education and Communication Companies (MECCs) represent approximately 21% of the providers accredited by the Accreditation Council for Continuing Medical Education (ACCME), yet relatively little is known about these organizations in the greater continuing medical education (CME) community. Two prior studies described them,…

  19. Superposed epoch analyses of ion temperatures during CME- and CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Elfritz, J. G.; Fok, M.-C.; McComas, D. J.; Scime, E. E.

    2014-08-01

    Coronal mass ejections (CMEs) and corotating interaction regions associated with high speed solar wind streams (CIR/HSSs) drive geomagnetic storms in the terrestrial magnetosphere. Each type of storm driver yields different dynamics of storm evolution. We present results from comparative superposed epoch analyses of global ion temperatures calculated from TWINS energetic neutral atom (ENA) data and simulations using the comprehensive ring current model (CRCM). During the June 2008-April 2012 timeframe, 48 geomagnetic storms (minimum Dst?-40 nT) occurred. Of these, 21 storms were CME-driven and 15 were driven by CIR/HSSs. Superposed epoch analysis results demonstrate that ion temperatures increase during the recovery phase of CIR/HSS-driven storms, while ions are rapidly heated at the commencement of CME-driven storms then cool over the main phase, particularly for intense (minimum Dst?-78 nT) CME-driven storms. Higher energy ions are convected to lower L-shells during CME-driven storms, while CIR/HSS-driven storms tend to have average ion temperatures that are higher on the dayside than nightside.

  20. Homologous Flare-CME Events and Their Metric Type II Radio Burst Association

    NASA Technical Reports Server (NTRS)

    Yashiro, S.; Gopalswamy, N.; Makela, P.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Jain, R.; Awasthi, A. K.; Nitta, N. V.; Aschwanden, M. J.; Choudhary, D. P.

    2014-01-01

    Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43deg and 44deg), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME-CME interaction might be a key process in exciting the type II radio emission by slow CMEs.

  1. When to Recommend Compulsory versus Optional CME Programs? A Study to Establish Criteria.

    ERIC Educational Resources Information Center

    Miller, Francois; Jacques, Andre; Brailovsky, Carlos; Sindon, Andre; Bordage, Georges

    1997-01-01

    A study designed to establish criteria for requiring continuing medical education (CME) for family physicians by analyzing 14 structured oral interviews (SOIs) with physicians. The SOI consists of 40 cases, focuses on 10 aspects of physician competence required to face critical practice issues. Judges determined from the interviews a number of…

  2. To What Extent Does Continuing Professional Education (CPE) and Continuing Medical Education (CME) Affect Physicians Practice?

    ERIC Educational Resources Information Center

    Johnson, Kathleen A.

    2005-01-01

    The purpose of this paper is to explore to what extent is there an understanding among physicians as to how continuing professional education (CPE) and Continuing Medical Education (CME) affect physicians practice? To address the question, focus groups were used to begin a process of identifying the components within each type of education so that…

  3. The Integrated Joslin Performance Improvement/CME Program: A New Paradigm for Better Diabetes Care

    ERIC Educational Resources Information Center

    Brown, Julie A.; Beaser, Richard S.; Neighbours, James; Shuman, Jill

    2011-01-01

    Ongoing continuing medical education is an essential component of life-long learning and can have a positive influence on patient outcomes. However, some evidence suggests that continuing medical education has not fulfilled its potential as a performance improvement (PI) tool, in part due to a paradigm of CME that has focused on the quantity of

  4. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun

    2016-01-01

    A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h

  5. Differences Between CME Associated and CH Associated RED Events During 2005 (P4)

    NASA Astrophysics Data System (ADS)

    Alyana, R.; et al.

    2006-11-01

    As Part of study of RED (Relativistic Electron Decrease) events at Geostationary orbit, we have classified them on the basis of their solar cause. We find that the solar causes associated with RED events (J.J.Lee et.al., 2006) are Interplanetary Shocks (IPS), Coronal Mass Ejection (CME), Coronal Hole (CH), Flares, Magnetic Clouds and Corotating Interaction Regions (CIR). For present, we have taken CME and CH associated RED events during 2005. We study Interplanetary parameters (i.e. solar wind Velocity (Vsw), solar wind Ion density (Nsw), solar wind dynamic pressure (Pdsw), total Interplanetary magnetic field B along with its north-south component, Bz), Radiation belt parameters at geostationary orbit (i.e. electron flux>2Mev, Hp component (i.e. the component of magnetic field parallel to the spin axis of the satellite) and dayside magnetopause distance (MP)) and the geomagnetic indices (i.e. Dst, Kp and CRNM count). The parameters which show significant differences between CME and CH events are Vsw, Psw, B, Bz, Dst and Kp, with Vsw and Dstc showing the largest differences. As typical examples, in the case of the CME of 22nd January, 2005, Vsw touches over 975 km/sec and Dst is Sudden Storm Commencement (SSC) type with minimum Dst being 110 nT. In the case of the CH of 5th April, Vsw is only 650 km/sec and Dst is of Gradual Commencement (GC) type with minimum Dst of -80 nT. In this paper we present differences observed in the above mentioned parameters for several RED events associated with CME and CH during 2005.

  6. Differences between CME associated and CH associated RED events during 2005

    NASA Astrophysics Data System (ADS)

    Alyana, Radharani; Rajaram, Girija; Rathod, Jatin; Chandrasekhar Reddy, A.; Misra, D. S.; Patil, C. G.; Prasad, M. Y. S.

    2007-12-01

    As part of study of RED (Relativistic Electron Dropout) events at Geostationary orbit, we have classified them on the basis of their solar causes. We find that the solar causes associated with RED events are Interplanetary (IP) Shocks, Coronal Mass Ejection (CME), Flares, Magnetic Clouds and Corotating Interaction Regions (CIR) followed by Coronal Hole (CH) stream. Here we have taken CME and CH associated RED events during 2005. We have studied Interplanetary parameters (IP) (i.e. solar wind Velocity (Vsw), solar wind Ion density (Nsw), solar wind dynamic pressure (P_sw), total Interplanetary magnetic field B along with its north-south component, Bz), Radiation belt (RB) parameters at geostationary orbit (i.e. electron flux >2 MeV, Hp component (i.e. the component of magnetic field parallel to the spin axis of the satellite) and dayside magnetopause distance (MP)) and the geomagnetic indices (i.e. Dst and Kp) and Cosmic Ray Neutron Monitor (CRNM) count. The parameters which show significant differences between CME and CH events are Vsw, Psw, B, Bz, Dst and Kp, with Vsw and Dst showing the largest differences. As typical examples, in the case of the CME of 22 January, 2005, Vsw touches over 975 km s^{-1} and Dst is Sudden Storm Commencement (SSC) type with minimum Dst being -110 nT . In the case of the CH of 05 April, Vsw is only 650 km s^{-1} and Dst is of Gradual Commencement (GC) type with minimum Dst of -80 nT. In this paper we present differences observed in the above mentioned parameters for several RED events associated with CME and CH during 2005.

  7. The Properties of Solar Energetic Particle Event-Associated Coronal Mass Ejections Reported in Different CME Catalogs

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2015-06-01

    We compare estimates of the speed and width of coronal mass ejections (CMEs) in several catalogs for the CMEs associated with 200 solar energetic particle (SEP) events in 2006 - 2013 that included 25 MeV protons. The catalogs used are: CDAW, CACTUS, SEEDS, and CORIMP, all derived from observations by the LASCO coronagraphs on the SOHO spacecraft, the CACTUS catalog derived from the COR2 coronagraphs on the STEREO-A and -B spacecraft, and the DONKI catalog, which uses observations from SOHO and the STEREO spacecraft. We illustrate how, for this set of events, CME parameters can differ considerably in each catalog. The well-known correlation between CME speed and proton event intensity is shown to be similar for most catalogs, but this is largely because it is determined by a few large particle events associated with fast CMEs, and small events associated with slow CMEs. Intermediate particle events "shuffle" in position when speeds from different catalogs are used. Quadrature spacecraft CME speeds do not improve the correlation. CME widths also vary widely between catalogs, and they are influenced by plane-of-the-sky projection and how the width is inferred from the coronagraph images. The high degree of association ( 50 %) between the 25 MeV proton events and "full halo" (360?-width) CMEs as defined in the CDAW catalog is removed when other catalogs are considered. Using CME parameters from the quadrature spacecraft, the SEP intensity is correlated with CME width, which is also correlated with CME speed.

  8. Probing the Role of Magnetic-Field Variations in NOAA AR 8038 in Producing a Solar Flare and CME on 12 May 1997

    NASA Astrophysics Data System (ADS)

    Jain, Rajmal; Awasthi, Arun K.; Chandel, Babita; Bharti, Lokesh; Hanaoka, Y.; Kiplinger, A. L.

    2011-07-01

    We carried out a multi-wavelength study of a Coronal Mass Ejection (CME) and an associated flare, occurring on 12 May 1997. We present a detailed investigation of magnetic-field variations in NOAA Active Region 8038 which was observed on the Sun during 7 - 16 May 1997. This region was quiet and decaying and produced only a very small flare activity during its disk passage. However, on 12 May 1997 it produced a CME and associated medium-size 1B/C1.3 flare. Detailed analyses of H? filtergrams and SOHO/MDI magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed the two important results that the major opposite polarities of pre-existing region as well as in the emerging-flux region were approaching towards each other and moving magnetic features (MMF) were ejected from the major north polarity at a quasi-periodicity of about ten hours during 10 - 13 May 1997. These activities were probably caused by magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The quantitative measurements of magnetic-field variations such as magnetic flux, gradient, and sunspot rotation revealed that in this active region, free energy was slowly being stored in the corona. Slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration, revealed from fast separation of the H ? ribbons of the first 150 seconds, suggests that the CME accelerated in the inner corona, which is also consistent with the temporal profile of the reconnection electric field. Based on observations and analysis we propose a qualitative model, and we conclude that the mass ejections, filament eruption, CME, and subsequent flare were connected with one another and should be regarded within the framework of a solar eruption.

  9. INVESTIGATION OF THE FORMATION AND SEPARATION OF AN EXTREME-ULTRAVIOLET WAVE FROM THE EXPANSION OF A CORONAL MASS EJECTION

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Olmedo, O.; Vourlidas, A.; Liu, Y. E-mail: jzhang7@gmu.edu

    2012-01-20

    We address the nature of EUV waves through direct observations of the formation of a diffuse wave driven by the expansion of a coronal mass ejection (CME) and its subsequent separation from the CME front. The wave and the CME on 2011 June 7 were well observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Following the solar eruption onset, marked by the beginning of the rapid increasing of the CME velocity and the X-ray flux of accompanying flare, the CME exhibits a strong lateral expansion. During this impulsive expansion phase, the expansion speed of the CME bubble increases from 100 km s{sup -1} to 450 km s{sup -1} in only six minutes. An important finding is that a diffuse wave front starts to separate from the front of the expanding bubble shortly after the lateral expansion slows down. Also a type II burst is formed near the time of the separation. After the separation, two distinct fronts propagate with different kinematic properties. The diffuse front travels across the entire solar disk, while the sharp front rises up, forming the CME ejecta with the diffuse front ahead of it. These observations suggest that the previously termed EUV wave is a composite phenomenon and driven by the CME expansion. While the CME expansion is accelerating, the wave front is cospatial with the CME front, thus the two fronts are indiscernible. Following the end of the acceleration phase, the wave moves away from the CME front with a gradually increasing distance between them.

  10. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression.

    PubMed

    Zhang, Yufeng; Wei, Lingfei; Miron, Richard J; Shi, Bin; Bian, Zhuan

    2015-02-01

    Semaphorins have been recently targeted as new molecules directly implicated in the cell-cell communication that occurs between osteoclasts and osteoblasts. Overexpression of certain semaphorins, such as semaphorin4D (sema4D), is found in an osteoporotic phenotype and plays a key role in osteoclast activity by suppressing osteoblast maturation, thus significantly altering the bone modeling cycle. In the present study, we fabricate a site-specific bone-targeting drug-delivery system from polymeric nanoparticles with the incorporation of siRNA interference molecule for sema4D and demonstrate their cellular uptake and intracellular trafficking within osteoclasts, thus preventing the suppression of osteoblast activity. We then demonstrate in an osteoporotic animal model induced by ovariectomy that weekly intravenous injections led to a significantly greater number of active osteoblasts at the bone surface, resulting in higher bone volume in compromised animals. The findings from the present study demonstrate a novel and promising site-specific therapeutic option for the treatment of osteoporosis via interference of the sema4D-plexin cell communication pathway between osteoclasts and osteoblasts. PMID:25088728

  11. A Novel Approach of Daunorubicin Application on Formation of Proliferative Retinopathy Using a Porous Silicon Controlled Delivery System: Pharmacodynamics

    PubMed Central

    Hou, Huiyuan; Huffman, Kristyn; Rios, Sandy; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2015-01-01

    Purpose. Proliferative vitreoretinopathy (PVR) is the most common cause of poor visual outcomes in association with retinal detachment surgeries and ocular trauma. Daunorubicin (DNR) has shown the strongest efficacy in proliferation inhibition in vitro. However, clinical studies have shown only mild effect owing to limitations of narrow therapeutic window and short vitreous half-life. Methods. Three milligrams of DNR-loaded particles were intravitreally injected into 18 pigmented rabbits, and vitreous samples were collected up to 84 days for analysis. Thirty-seven rabbits were used for a dose-escalation (1, 3, 6 mg) safety and efficacy study in a rabbit PVR model using a pretreatment design. Results. Loading efficiency of DNR was 108.55 12 ?g per 1 mg particles. Eighty-four days of follow-up did not reveal any adverse reaction. Pharmacokinetic analysis demonstrated a vitreous half-life of 29 days with a maximum DNR concentration of 178 ng/mL and a minimum concentration of 29 ng/mL at day 84. Daunorubicin-loaded porous silicon (pSi) particles were dosed 8 to 9 weeks before PVR induction, and PVR severity score was dose dependent (Spearman ? = ?0.25, P = 0.0005). Proliferative vitreoretinopathy with tractional retinal detachment was 88% in the control group, 63% in the low-dose group, 14% in the medium-dose group, and 0% in the high-dose group (Cochran-Armitage Trend Test, Z = 8.99, ? = ?0.67, P < 0.0001). Conclusions. Daunorubicin-loaded pSi particles can safely reside in the vitreous for at least 3 months. The pSi-based delivery expanded the therapeutic window of DNR by a factor of 862 and drove down the minimum effective concentration by a factor of 175. PMID:25829415

  12. Modeling CME-shock-driven storms in 2012-2013: MHD test particle simulations

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Paral, J.; Kress, B. T.; Wiltberger, M.; Baker, D. N.; Foster, J. C.; Turner, D. L.; Wygant, J. R.

    2015-02-01

    The Van Allen Probes spacecraft have provided detailed observations of the energetic particles and fields environment for coronal mass ejection (CME)-shock-driven storms in 2012 to 2013 which have now been modeled with MHD test particle simulations. The Van Allen Probes orbital plane longitude moved from the dawn sector in 2012 to near midnight and prenoon for equinoctial storms of 2013, providing particularly good measurements of the inductive electric field response to magnetopause compression for the 8 October 2013 CME-shock-driven storm. An abrupt decrease in the outer boundary of outer zone electrons coincided with inward motion of the magnetopause for both 17 March and 8 October 2013 storms, as was the case for storms shortly after launch. Modeling magnetopause dropout events in 2013 with electric field diagnostics that were not available for storms immediately following launch have improved our understanding of the complex role that ULF waves play in radial transport during such events.

  13. Effects of Dynamical Evolution of Giant Planets on the Delivery of Atmophile Elements during Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Matsumura, Soko; Brasser, Ramon; Ida, Shigeru

    2016-02-01

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.

  14. The double-belt outer radiation belt during CME- and CIR-driven geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Yuan, Chongjing; Zong, Qiugang

    2013-10-01

    We have identified eight events with double-belt structure in the outer radiation belt from 110 coronal mass ejection (CME) driven magnetic storms and 223 corotating interaction regions (CIR) driven storms during 1994 to 2003 based on the SAMPEX data sets. Among them, three cases are related to CME-driven magnetic storms and five cases are related CIR-driven storms. All double-belt structure events in the outer radiation belt are found during the recovery phase of a magnetic storm for both CME- and CIR-related eventsthey usually start to form within 3-4 days after the onset of the magnetic storm. The preconditions needed to form a double-belt structure, for all the CME-related events, are found to be high solar wind dynamic pressure (Pdy) and southward interplanetary magnetic field Bz; nevertheless, for the CIR-related events, they are found to be associated with high-speed stream with southward interplanetary magnetic field, which is enhanced by a suitably orientated By component.It is further found that the flux distributions of the double-belt structure can be fitted well with a simply exponential decay function of L?. Based on the radiation belt content index, the proportion of the total number of 1.5-6.0 MeV electrons inside the position of maximum fluxes to that outside the maximum fluxes keeps rising during the double-belt period, which implies that the acceleration mainly occurs at regions inside the location of maximum fluxes. We suggest that the plasmapause and the strong wave-particle interactions with VLF and ULF waves near it play an important role in the development of the double-belt structures.

  15. The Double-belt Outer Radiation Belt During CME- and CIR-driven Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Yuan, C.; Zong, Q.

    2013-12-01

    We have identified 8 events with double-belt structure in the outer radiation belt from 110 CME-driven magnetic storms and 223 CIR-driven storms during 1994 to 2003 based on the SAMPEX data sets. Among them, 3 cases are related to CME-driven magnetic storms and 5 cases are related CIR-driven storms. All double-belt structure events in the outer radiation belt are found during the recovery phase of a magnetic storm for both CME- and CIR-related events---they usually start to form within 3-4 days after the onset of the magnetic storm. The pre-conditions needed to form a double-belt structure, for all the CME-related events, are found to be high solar wind dynamic pressure (Pdy) and southward IMF Bz; Nevertheless, for the CIR-related events, they are found to be associated with high speed stream with southward interplanetary magnetic field caused by the Russell-McPherron effect. It is further found that the double-belt structure can be fitted well with a simple exponential decay function. Based on the RBC index, the proportion of the total number of 1.5-6.0MeV electrons inside the position of maximum fluxes to that outside the maximum fluxes keeps rising during the double-belt period, which implies that the acceleration mainly occurs at regions inside the location of maximum fluxes. We suggest that local acceleration mechanisms play an important role in the development of the higher belt during the period of the double-belt structure event in the outer radiation belt.

  16. The Dependence of Characteristic Times of Gradual SEP Events on Their Associated CME Properties

    NASA Astrophysics Data System (ADS)

    Pan, Z. H.; Wang, C. B.; Xue, X. H.; Wang, Y. M.

    It is generally believed that coronal mass ejections CMEs are the drivers of shocks that accelerate gradual solar energetic particles SEPs One might expect that the characteristics of the SEP intensity time profiles observed at 1 AU are determined by properties of the associated CMEs such as the radial speed and the angular width Recently Kahler statistically investigated the characteristic times of gradual SEP events observed from 1998-2002 and their associated coronal mass ejection properties Astrophys J 628 1014--1022 2005 Three characteristic times of gradual SEP events are determined as functions of solar source longitude 1 T 0 the time from associated CME launch to SEP onset at 1 AU 2 T R the rise time from SEP onset to the time when the SEP intensity is a factor of 2 below peak intensity and 3 T D the duration over which the SEP intensity is within a factor of 2 of the peak intensity However in his study the CME speeds and angular widths are directly taken from the LASCO CME catalog In this study we analyze the radial speeds and the angular widths of CMEs by an ice-cream cone model and re-investigate their correlationships with the characteristic times of the corresponding SEP events We find T R and T D are significantly correlated with radial speed for SEP events in the best-connected longitude range and there is no correlation between T 0 and CME radial speed and angular width which is consistent with Kahler s results On the other hand it s found that T R and T D are also have

  17. Critical Role of Multidrug Efflux Pump CmeABC in Bile Resistance and In Vivo Colonization of Campylobacter jejuni

    PubMed Central

    Lin, Jun; Sahin, Orhan; Overbye Michel, Linda; Zhang, Qijing

    2003-01-01

    CmeABC functions as a multidrug efflux pump contributing to the resistance of Campylobacter to a broad range of antimicrobials. In this study, we examined the role of CmeABC in bile resistance and its contribution to the adaptation of Campylobacter jejuni in the intestinal tract of the chicken, a natural host and a major reservoir for Campylobacter. Inactivation of cmeABC drastically decreased the resistance of Campylobacter to various bile salts. Addition of choleate (2 mM) in culture medium impaired the in vitro growth of the cmeABC mutants but had no effect on the growth of the wild-type strain. Bile concentration varied in the duodenum, jejunum, and cecum of chicken intestine, and the inhibitory effect of the intestinal extracts on the in vitro growth of Campylobacter was well correlated with the total bile concentration in the individual sections of chicken intestine. When inoculated into chickens, the wild-type strain colonized the birds as early as day 2 postinoculation with a density as high as 107 CFU/g of feces. In contrast, the cmeABC mutants failed to colonize any of the inoculated chickens throughout the study. The minimum infective dose for the cmeABC mutant was at least 2.6 × 104-fold higher than that of the wild-type strain. Complementation of the cmeABC mutants with a wild-type cmeABC allele in trans fully restored the in vitro growth in bile-containing media and the in vivo colonization to the levels of the wild-type strain. Immunoblotting analysis indicated that CmeABC is expressed and immunogenic in chickens experimentally infected with C. jejuni. Together, these findings provide compelling evidence that CmeABC, by mediating resistance to bile salts in the intestinal tract, is required for successful colonization of C. jejuni in chickens. Inhibition of CmeABC function may not only control antibiotic resistance but also prevent the in vivo colonization of pathogenic Campylobacter. PMID:12874300

  18. The Sustained Delivery of Resveratrol or a Defined Grape Powder Inhibits New Blood Vessel Formation in a Mouse Model of Choroidal Neovascularization

    PubMed Central

    Kanavi, Mozhgan Rezaie; Darjatmoko, Soesiawati; Wang, Shoujian; Azari, Amir A.; Farnoodian, Mitra; Kenealey, Jason D.; van Ginkel, Paul R.; Albert, Daniel M.; Sheibani, Nader; Polans, Arthur S.

    2015-01-01

    The objective of this study was to determine whether resveratrol or a defined, reconstituted grape powder can attenuate the formation of new blood vessels in a mouse model of choroidal neovascularization (CNV). To accomplish this objective, C57BL/6J mice were randomized into control or treatment groups which received either resveratrol or grape powder by daily oral gavage, resveratrol or grape powder delivered ad libitum through the drinking water, or resveratrol by slow release via implanted osmotic pumps. A laser was used to rupture Bruch’s membrane to induce CNV which was then detected in sclerochoroidal eyecups stained with antibodies against intercellular adhesion molecule-2. CNV area was measured using fluorescence microscopy and Image J software. Ad libitum delivery of both resveratrol and grape powder was shown to significantly reduce the extent of CNV by 68% and 57%, respectively. Parallel experiments conducted in vitro demonstrated that resveratrol activates p53 and inactivates Akt/protein kinase B in choroidal endothelial cells, contributing to its anti-proliferative and anti-migratory properties. In addition resveratrol was shown to inhibit the formation of endothelial cell networks, augmenting its overall anti-angiogenic effects. The non-toxic nature of resveratrol makes it an especially attractive candidate for the prevention and/or treatment of CNV. PMID:25361423

  19. Charge state composition in coronal hole and CME related solar wind: Latitudinal variations observed by Ulysses and WIND

    NASA Technical Reports Server (NTRS)

    Galvin, A. B.; Gloeckler, G.

    1997-01-01

    Iron charge states in recurrent coronal hole-associated solar wind flows are obtained in the ecliptic by WIND/SMS, while measurements of iron and silicon from the polar coronal holes are available from Ulysses/SWICS. Ulysses/SWICS also provides ion composition of coronal mass ejection (CME)-related solar wind. Both coronal hole-associated and CME-related solar wind charge charges show heliographic latitudinal variations.

  20. NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO

    SciTech Connect

    Cohen, Ofer; Attrill, Gemma D. R.; Wills-Davey, Meredith J.; Manchester, Ward B.

    2009-11-01

    On 2009 February 13, a coronal wave-CME-dimming event was observed in quadrature by the Solar Terrestrial Relations Observatory (STEREO) spacecraft. We analyze this event using a three-dimensional, global magnetohydrodynamic model for the solar corona. The numerical simulation is driven and constrained by the observations, and indicates where magnetic reconnection occurs between the expanding CME core and surrounding environment. We focus primarily on the lower corona, extending out to 3 R{sub sun}; this range allows simultaneous comparison with both EUVI and COR1 data. Our simulation produces a diffuse coronal bright front remarkably similar to that observed by STEREO/EUVI at 195 A. It is made up of two components, and is the result of a combination of both wave and non-wave mechanisms. The CME becomes large-scale quite low (< 200 Mm) in the corona. It is not, however, an inherently large-scale event; rather, the expansion is facilitated by magnetic reconnection between the expanding CME core and the surrounding magnetic environment. In support of this, we also find numerous secondary dimmings, many far from the initial CME source region. Relating such dimmings to reconnecting field lines within the simulation provides further evidence that CME expansion leads to the 'opening' of coronal field lines on a global scale. Throughout the CME expansion, the coronal wave maps directly to the CME footprint. Our results suggest that the ongoing debate over the 'true' nature of diffuse coronal waves may be mischaracterized. It appears that both wave and non-wave models are required to explain the observations and understand the complex nature of these events.

  1. Validation of a priori CME arrival predictions made using real-time heliospheric imager observations

    NASA Astrophysics Data System (ADS)

    Tucker-Hood, Kimberley; Scott, Chris; Owens, Mathew; Jackson, David; Barnard, Luke; Davies, Jackie A.; Crothers, Steve; Lintott, Chris; Simpson, Robert; Savani, Neel P.; Wilkinson, J.; Harder, B.; Eriksson, G. M.; L Baeten, E. M.; Wan Wah, Lily Lau

    2015-01-01

    Between December 2010 and March 2013, volunteers for the Solar Stormwatch (SSW) Citizen Science project have identified and analyzed coronal mass ejections (CMEs) in the near real-time Solar Terrestrial Relations Observatory Heliospheric Imager observations, in order to make "Fearless Forecasts" of CME arrival times and speeds at Earth. Of the 60 predictions of Earth-directed CMEs, 20 resulted in an identifiable Interplanetary CME (ICME) at Earth within 1.5-6 days, with an average error in predicted transit time of 22 h, and average transit time of 82.3 h. The average error in predicting arrival speed is 151 km s-1, with an average arrival speed of 425km s-1. In the same time period, there were 44 CMEs for which there are no corresponding SSW predictions, and there were 600 days on which there was neither a CME predicted nor observed. A number of metrics show that the SSW predictions do have useful forecast skill; however, there is still much room for improvement. We investigate potential improvements by using SSW inputs in three models of ICME propagation: two of constant acceleration and one of aerodynamic drag. We find that taking account of interplanetary acceleration can improve the average errors of transit time to 19 h and arrival speed to 77 km s-1.

  2. Spectral Hardening in Solar Flares and Evolution of Proton Events resulting CME acceleration

    NASA Astrophysics Data System (ADS)

    Tripathi, Sharad Chandra; Gwal, Ashok Kumar; Jain, Rajmal; Awasthi, Arun Kumar; Khan, Parvaiz A.; Purohit, Pramod K.

    2012-07-01

    We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23-24 alongwith associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) and Solar X-Ray Spectrometer (SOXS) in order to estimate flare plasma parameters. Further, we employ the observations from Geostationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior with occurrence of Solar Proton Events. In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.

  3. Great Expectations: How STEREO Data Will Impact the Art of CME Modeling

    NASA Astrophysics Data System (ADS)

    Krall, J.

    2005-05-01

    Driven by modern space-based solar and solar-wind observations, three-dimensional (3D) models of coronal mass ejections (CMEs), both numerical magnetohydrodynamic[1-4] and semi-analytical[5-7], have produced many exciting results. From among the current avenues of model-driven CME research, we shall highlight two areas where STEREO data might be expected to have a significant impact: 1) the near-sun geometrical relationship between the CME, the embedded prominence, and the underlying magnetic structure, and 2) the morphology and dynamics of erupting flux-ropes in the interplanetary medium, especially halo CMEs. We shall discuss the expected impact of STEREO data on "state of the art", model-driven CME research. Supported by ONR and NASA [1] Roussev et al. 2003, ApJ, 588, L45 [2] Amari et al. 2003, ApJ, 595, 1231 [3] Lynch et al. 2004, ApJ, 617, 589 [4] Manchester et al. 2004, JGR, 109, doi:10.1029/2003JA010150 [5] Chen 1996, JGR, 101, 27499 [6] Gibson and Low 2000, JGR, 105, 18187 [7] Chen and Krall 2003, JGR, 108, doi:10.1029/2003JA009849

  4. RECONNECTIONLESS CME ERUPTION: PUTTING THE ALY-STURROCK CONJECTURE TO REST

    SciTech Connect

    Rachmeler, L. A.; DeForest, C. E.; Kankelborg, C. C.

    2009-03-10

    We demonstrate that magnetic reconnection is not necessary to initiate fast Coronal mass ejections (CMEs). The Aly-Sturrock conjecture states that the magnetic energy of a given force-free boundary field is maximized when the field is open. This is problematic for CME initiation because it leaves little or no magnetic energy to drive the eruption, unless reconnection is present to allow some of the flux to escape without opening. Thus, it has been thought that reconnection must be present to initiate CMEs. This theory has not been subject to rigorous numerical testing because conventional magnetohydrodynamics (MHD) numerical models contain numerical diffusion, which introduces uncontrolled numerical reconnection. We use a quasi-Lagrangian simulation technique to run the first controlled experiments of CME initiation in the complete lack of reconnection. We find that a flux rope confined by an arcade, when twisted beyond a critical amount, can escape to an open state, allowing some of the surrounding arcade to shrink, and releasing magnetic energy from the global field. This mechanism includes a true ideal MHD instability. We conclude that reconnection is not a necessary trigger for fast CME eruptions.

  5. Origin of coronal and interplanetary shock and particle acceleration of a flare/CME event

    NASA Astrophysics Data System (ADS)

    Tang, Y. H.; Dai, Y.

    By using radio data from ground-based telescopes (from 270 MHz to 25 MHz), and from the Radio and Plasma Wave experiment (WAVES) on board the WIND spacecraft (1-14 MHz and several kHz-11 MHz), as well as FY -2 satellite data, the origin of coronal and interplanetary shock and particle acceleration of the 14 July 2000 flare/CME event (the Bastille day event) have been studied. Main conclusions are as follows: (1) We investigate the causal relationship between metric type 11 bursts observed by the digital IZMIRAN radio spectrograph and type II radio emissions in the frequency range from 1-14 MHz and several kHz-11 MHz observed by the WAVES/WIND. The analysis indicate that the fast CME is the origin of both coronal and interplanetary shocks. (2)According to the time profiles of Hard X-ray, and energetic particles (include proton, 3He, and 4He) from FY-2 satellite, it is obvious that the Bastille day event is the event, in which both impulsive and gradual phenomena occur. The energetic particles accelerated not only in flare but also in CME.

  6. Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-12-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.

  7. CME-Sheath and Shock Heating by Surface Alfven Wave Dissipation in the Lower Corona

    NASA Astrophysics Data System (ADS)

    Evans, R.; Opher, M.; van der Holst, B.

    2011-12-01

    We use the new solar corona component of the Space Weather Modeling Framework (van der Holst et al. 2010), in which the Alfven wave energy evolution is coupled self-consistently to the magnetohydrodynamic equations, to study the evolution of a coronal mass ejection (CME) and the shock it drives in the lower corona (2-8Rs). In this solar wind model, the wave pressure gradient accelerates the wind, and wave dissipation heats the wind. Kolmogorov-like dissipation and surface Alfven wave damping are considered for the dissipation of the waves (Evans et al. 2011). We use a modified Titov-Demoulin flux rope to initiate an eruption, and include magnetogram data from CR2029 (May 2005) as a boundary condition for the coronal magnetic field. Synthetic white light images from the simulation are used to determine the lateral expansion. We show that the expansion of the flux rope leads to the concentration of wave energy at the shock and in the sheath region. The expansion also creates a piled-up compression (PUC) region of plasma density at the back of the sheath, strongest at the flanks of the CME. The wave energy concentrated at the shock and sheath is dissipated by surface Alfven wave damping due to the density gradients, which heats the sheath. We present analysis of the momentum exchange between the solar wind and the waves, and discuss the effect of wave dissipation on the CME evolution.

  8. Forecasting the magnetic vectors within a CME at L1 by using solar observations.

    NASA Astrophysics Data System (ADS)

    Savani, N.; Vourlidas, A.; Szabo, A.; Mays, M. L.; Evans, R. M.; Thompson, B. J.; Richardson, I. G.; Pulkkinen, A. A.; Nieves-Chinchilla, T.

    2014-12-01

    The direction of magnetic vectors within coronal mass ejections has important consequences to forecasting terrestrial behaviour, however forecasting these vectors remains predominately elusive. Here, we report that a simplified system is capable of replicating the broad field rotations seen within flux rope CMEs at L1 monitors. The predictions are performed under three main themes: 1) The majority of the field rotations can be simplified to the constant-alpha force-free (CAFF) flux model first implemented circa 1990. 2) The helicity will follow the Bothmer & Schwenn system that relies on a reliable helicity prediction of active regions during solar cycle. Which has been recently confirmed by Wang [2013 ApJ]. 3) The majority of the distortions, deflections and rotations will have already occurred within coronagraphic field of view, thereby allowing the creation of a projected "volume-of-influence" on the Sun, from which Earth's position relative to the CME can be estimated. This presentation will compare predicted results to the observations from 7 CME events and then estimate the sources of uncertainty. As an example, the difference in robust statistics from 2 solar cycles of CAFF model fittings for the field magnitude will be compared to estimates generated from simulated CME-sheaths within forecasting Enlil runs. The figure displays an example field vector forecast from the techniques employed above.

  9. Topological Evolution of a Fast Magnetic Breakout CME in 3-Dimensions

    NASA Technical Reports Server (NTRS)

    Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Luhmann, J. G.; Zurbuchen, T. H.

    2008-01-01

    W present the extension of the magnetic breakout model for CME initiation to a fully 3-dimensional, spherical geometry. Given the increased complexity of the dynamic magnetic field interactions in 3-dimensions, we first present a summary of the well known axisymmetric breakout scenario in terms of the topological evolution associated with the various phases of the eruptive process. In this context, we discuss the completely analogous topological evolution during the magnetic breakout CME initiation process in the simplest 3-dimensional multipolar system. We show that an extended bipolar active region embedded in an oppositely directed background dipole field has all the necessary topological features required for magnetic breakout, i.e. a fan separatrix surface between the two distinct flux systems, a pair of spine fieldlines, and a true 3-dimensional coronal null point at their intersection. We then present the results of a numerical MHD simulation of this 3-dimensional system where boundary shearing flows introduce free magnetic energy, eventually leading to a fast magnetic breakout CME. The eruptive flare reconnection facilitates the rapid conversion of this stored free magnetic energy into kinetic energy and the associated acceleration causes the erupting field and plasma structure to reach an asymptotic eruption velocity of greater than or approx. equal to 1100 km/s over an approx.15 minute time period. The simulation results are discussed using the topological insight developed to interpret the various phases of the eruption and the complex, dynamic, and interacting magnetic field structures.

  10. Diversity of planetary systems in low-mass disks. Terrestrial-type planet formation and water delivery

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; de Ela, G. C.

    2014-07-01

    Context. Several studies, observational and theoretical, suggest that planetary systems with only rocky planets are the most common in the Universe. Aims: We study the diversity of planetary systems that might form around Sun-like stars in low-mass disks without gas-giant planets. We focus especially on the formation process of terrestrial planets in the habitable zone (HZ) and analyze their water contents with the goal to determine systems of astrobiological interest. In addition, we study the formation of planets on wide orbits because they can be detected with the microlensing technique. Methods: N-body simulations of high resolution were developed for a wide range of surface density profiles. A bimodal distribution of planetesimals and planetary embryos with different physical and orbital configurations was used to simulate the planetary accretion process. The surface density profile combines a power law for the inside of the disk of the form r-?, with an exponential decay to the outside. We performed simulations adopting a disk of 0.03 M? and values of ? = 0.5, 1 and 1.5. Results: All our simulations form planets in the HZ with different masses and final water contents depending on the three different profiles. For ? = 0.5, our simulations produce three planets in the HZ with masses ranging from 0.03 M? to 0.1 M? and water contents between 0.2 and 16 Earth oceans (1 Earth ocean =2.8 10-4 M?). For ? = 1, three planets form in the HZ with masses between 0.18 M? and 0.52 M? and water contents from 34 to 167 Earth oceans. Finally, for ? = 1.5, we find four planets in the HZ with masses ranging from 0.66 M? to 2.21 M? and water contents between 192 and 2326 Earth oceans. This profile shows distinctive results because it is the only one of those studied here that leads to the formation of water worlds. Conclusions: Since planetary systems with ? = 1 and 1.5 present planets in the HZ with suitable masses to retain a long-lived atmosphere and to maintain plate tectonics, they seem to be the most promising candidates to be potentially habitable. Particularly, these systems form Earths and Super-Earths of at least 3 M? around the snow line, which can be discovered by the microlensing technique.

  11. Tracking the CME-driven Shock Wave on 2012 March 5 and Radio Triangulation of Associated Radio Emission

    NASA Astrophysics Data System (ADS)

    Magdaleni?, J.; Marqu, C.; Krupar, V.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Maksimovi?, M.; Cecconi, B.

    2014-08-01

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  12. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  13. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. PMID:25703045

  14. Review on Current Sheets in CME Development: Theories and Observations

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Murphy, Nicholas A.; Shen, Chengcai; Raymond, John C.; Reeves, Katharine K.; Zhong, Jiayong; Wu, Ning; Li, Yan

    2015-11-01

    We introduce how the catastrophe model for solar eruptions predicted the formation and development of the long current sheet (CS) and how the observations were used to recognize the CS at the place where the CS is presumably located. Then, we discuss the direct measurement of the CS region thickness by studying the brightness distribution of the CS region at different wavelengths. The thickness ranges from 104 km to about 105 km at heights between 0.27 and 1.16 R_{⊙} from the solar surface. But the traditional theory indicates that the CS is as thin as the proton Larmor radius, which is of order tens of meters in the corona. We look into the huge difference in the thickness between observations and theoretical expectations. The possible impacts that affect measurements and results are studied, and physical causes leading to a thick CS region in which reconnection can still occur at a reasonably fast rate are analyzed. Studies in both theories and observations suggest that the difference between the true value and the apparent value of the CS thickness is not significant as long as the CS could be recognised in observations. We review observations that show complex structures and flows inside the CS region and present recent numerical modelling results on some aspects of these structures. Both observations and numerical experiments indicate that the downward reconnection outflows are usually slower than the upward ones in the same eruptive event. Numerical simulations show that the complex structure inside CS and its temporal behavior as a result of turbulence and the Petschek-type slow-mode shock could probably account for the thick CS and fast reconnection. But whether the CS itself is that thick still remains unknown since, for the time being, we cannot measure the electric current directly in that region. We also review the most recent laboratory experiments of reconnection driven by energetic laser beams, and discuss some important topics for future works.

  15. The formation of jupiter, the jovian early bombardment and the delivery of water to the asteroid belt: the case of (4) vesta.

    PubMed

    Turrini, Diego; Svetsov, Vladimir

    2014-01-01

    The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1-2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement. PMID:25370027

  16. The Formation of Jupiter, the Jovian Early Bombardment and the Delivery of Water to the Asteroid Belt: The Case of (4) Vesta

    PubMed Central

    Turrini, Diego; Svetsov, Vladimir

    2014-01-01

    The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1–2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement. PMID:25370027

  17. Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system.

    PubMed

    Ogasawara, Y; Lacourciere, G; Stadtman, T C

    2001-08-14

    Selenophosphate is the active selenium-donor compound required by bacteria and mammals for the specific synthesis of Secys-tRNA, the precursor of selenocysteine in selenoenzymes. Although free selenide can be used in vitro for the synthesis of selenophosphate, the actual physiological selenium substrate has not been identified. Rhodanese (EC ) normally occurs as a persulfide of a critical cysteine residue and is believed to function as a sulfur-delivery protein. Also, it has been demonstrated that a selenium-substituted rhodanese (E-Se form) can exist in vitro. In this study, we have prepared and characterized an E-Se rhodanese. Persulfide-free bovine-liver rhodanese (E form) did not react with SeO(3)(2-) directly, but in the presence of reduced glutathione (GSH) and SeO(3)(2-) E-Se rhodanese was generated. These results indicate that the intermediates produced from the reaction of GSH with SeO(3)(2-) are required for the formation of a selenium-substituted rhodanese. E-Se rhodanese was stable in the presence of excess GSH at neutral pH at 37 degrees C. E-Se rhodanese could effectively replace the high concentrations of selenide normally used in the selenophosphate synthetase in vitro assay in which the selenium-dependent hydrolysis of ATP is measured. These results show that a selenium-bound rhodanese could be used as the selenium donor in the in vitro selenophosphate synthetase assay. PMID:11493708

  18. AN INTERPRETATION OF GLE71 CONCURRENT CME-DRIVEN SHOCK WAVE

    SciTech Connect

    Firoz, Kazi A.; Rodríguez-Pacheco, J.; Zhang, Q. M.; Gan, W. Q.; Li, Y. P.; Moon, Y.-J.; Kudela, K.; Park, Y.-D.; Dorman, Lev I. E-mail: firoz.kazi@uah.es

    2014-08-01

    Particle accelerations in solar flares and CME-driven shocks can sometimes result in very high-energy particle events (≥1 GeV) that are known as ground level enhancements (GLEs). Recent studies on the first GLE event (GLE71 2012 May 17 01:50 UT) of solar cycle 24 suggested that CME-driven shock played a leading role in causing the event. To verify this claim, we have made an effort to interpret the GLE71 concurrent shock wave. For this, we have deduced the possible speed and height of the shock wave in terms of the frequency (MHz) of the solar radio type II burst and its drift rate (MHz min{sup –1}), and studied the temporal evolution of the particle intensity profiles at different heights of the solar corona. For a better perception of the particle acceleration in the shock, we have studied the solar radio type II burst with concurrent solar radio and electron fluxes. When the particle intensity profiles are necessarily shifted in time at ∼1 AU, it is found that the growth phases of the electron and cosmic ray intensity fluxes are strongly correlated (>0.91; ≥0.87) with the frequency drift rate of the type II burst, which is also consistent with the intensive particle accelerations at upper coronal heights (∼≥0.80 R {sub S} < 1.10 R {sub S}). Thus, we conclude that the CME-driven shock was possibly capable of producing the high-energy particle event. However, since the peaks of some flare components are found to be strongly associated with the fundamental phase of the type II burst, the preceding flare is supposed to contribute to the shock acceleration process.

  19. The Driving Magnetic Field and Reconnection in CME/Flare Eruptions and Coronal Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast "tether-cutting" reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast "breakout" reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an ejective eruption in the manner of a miniature CME/flare eruption. The jet is then a combination of a miniature CME and the products of more widely distributed reconnection of the erupting arcade with the open field than in simple jets.

  20. Comparison of the WSA-ENLIL model with three CME cone types

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.; Na, H.

    2013-07-01

    We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.Abstract (2,250 Maximum Characters): We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.

  1. The CME Rate over Four Solar Cycles: Filling the Final Gap with MLSO MK3 Observations [1989-1996

    NASA Astrophysics Data System (ADS)

    St Cyr, O. C.; Flint, Q.; Quirk, C. A.; Burkepile, J.; Webb, D. F.; Lecinski, A. R.

    2013-12-01

    Coronal mass ejections (CMEs) were discovered in the early 1970's by the OSO-7 coronagraph, and large numbers were characterized for the first time by the Skylab ATM coronagraph. Since 1973 there has been only a single major gap in CME coverage in white light. Instruments that have contributed to estimates of the rate and properties of CMEs have included: Skylab ATM (1973-1974); Helios photometers (1974-1981); Solwind (1979-1985); SMM C/P (1980; 1984-1989); SOHO LASCO (1996-present); the Solar Mass Ejection Imager (SMEI, 2003-2011); and STEREO SECCHI (2006-present). We report here the first attempt to fill the 1989-1996 gap in the CME rate using the Mauna Loa Solar Observatory's MK3 K-coronameter. The MK3 instrument observed routinely several hours most days beginning in 1980 until it was upgraded to MK4 in 1998. MK3 CMEs detected from 1980-1989 were compared with Solwind and SMM and reported by St. Cyr et al. (1999). Since spaceborne instruments have more complete duty cycles than a groundbased instrument at a single location, we have 'calibrated' the MK3-derived CME rate from 1989 with the SMM C/P coronagraph, and from 1996 with the SOHO LASCO coronagraphs. CME rate calculations have been documented in Webb & Howard (1994), St. Cyr et al. (2000) and Robbrecht et al. (2009). Here we provide the preliminary CME rate calculation for 1989-1996 using the MLSO MK3 coronameter.

  2. Plasma properties from the multi-wavelength analysis of the November 1st 2003 CME/shock event

    PubMed Central

    Benna, Carlo; Mancuso, Salvatore; Giordano, Silvio; Gioannini, Lorenzo

    2012-01-01

    The analysis of the spectral properties and dynamic evolution of a CME/shock event observed on November 1st 2003 in white-light by the LASCO coronagraph and in the ultraviolet by the UVCS instrument operating aboard SOHO, has been performed to compute the properties of some important plasma parameters in the middle corona below about 2R?. Simultaneous observations obtained with the MLSO/Mk4 white-light coronagraph, providing both the early evolution of the CME expansion in the corona and the pre-shock electron density profile along the CME front, were also used to study this event. By combining the above information with the analysis of the metric type II radio emission detected by ground-based radio spectrographs, we finally derive estimates of the values of the local Alfvn speed and magnetic field strength in the solar corona. PMID:25685432

  3. Observations and analysis of the April 9, 2008 CME using STEREO, Hinode TRACE and SoHO data

    NASA Astrophysics Data System (ADS)

    Reeves, K. K.; Patsourakos, S.; Stenborg, G.; Miralles, M.; Deluca, E.; Forbes, T.; Golub, L.; Kasper, J.; Landi, E.; McKenzie, D.; Narukage, N.; Raymond, J.; Savage, S.; Su, Y.; van Ballegooijen, A.; Vourlidas, A.; Webb, D.

    2008-12-01

    On April 9, 2008 a CME originating from an active region behind the limb was well-observed by STEREO, Hinode, TRACE and SoHO. Several interesting features connected to this eruption were observed. (1) The interaction of the CME with open field lines from a nearby coronal hole appeared to cause an abrupt change in the direction of the CME ejecta. (2) The prominence material was heated, as evidenced by a change from absorption to emission in the EUV wavelengths. (3) Because the active region was behind the limb, the X-Ray Telescope on Hinode was able to take long enough exposure times to observe a faint current- sheet like structure, and it was able to monitor the dynamics of the plasma surrounding this structure. This event is also being studied in the context of activity that occurred during the Whole Heliosphere Interval (WHI).

  4. The Width of a Solar Coronal Mass Ejection and the Source of the Driving Magnetic Explosion: A Test of the Standard Scenario for CME Production

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T.

    2007-01-01

    We show that the strength (B(sub F1are)) of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width (Final Theta(sub CME)) of the CME in the outer corona and the final angular width (Theta(sub Flare)) of the flare arcade: B(sub Flare) approx. equals 1.4[(Final Theta(sub CME)/Theta(sub Flare)] (exp 2)G. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid; (2) in the outer corona (R > 2 (solar radius)) the CME is roughly a "spherical plasmoid with legs" shaped like a lightbulb; and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs was an over-and-out CME, that is, in the outer corona the CME was laterally far offset from the flare-marked source of the driving magnetic explosion. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field; (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs; and (3) shows that a CME's final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade.

  5. The Width of a Solar Coronal Mass Ejection and the Source of the Driving Magnetic Explosion: A Test of the Standard Scenario for CME Production

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T.

    2007-10-01

    We show that the strength (BFlare) of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width (Final ?CME) of the CME in the outer corona and the final angular width (?Flare) of the flare arcade: BFlare~1.4[(Final ?CME)/?Flare2 G. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid; (2) in the outer corona (R>2 Rsolar) the CME is roughly a ``spherical plasmoid with legs'' shaped like a lightbulb; and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs was an over-and-out CME, that is, in the outer corona the CME was laterally far offset from the flare-marked source of the driving magnetic explosion. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field; (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs; and (3) shows that a CME's final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade.

  6. PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.

    2009-12-01

    In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.

  7. Superposed epoch analysis of ion temperatures during CME- and CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.

    2012-12-01

    The NASA Two Wide-angle Imaging Neutral atom Spectrometers (TWINS) Mission provides a global view of the magnetosphere with near-continuous coverage. Utilizing a novel technique to calculate ion temperatures from the TWINS energetic neutral atom (ENA) measurements, we generate ion temperature maps of the magnetosphere. These maps can be used to study ion temperature evolution during geomagnetic storms. A superposed epoch analysis of the ion temperature evolution during 48 storms will be presented. Zaniewski et al. [2006] performed a superposed epoch analysis of ion temperatures by storm interval using data from the MENA instrument on the IMAGE mission, demonstrating significant dayside ion heating during the main phase. The TWINS measurements provide more continuous coverage and improved spatial and temporal resolution. Denton and Borovsky [2008] noted differences in ion temperature evolution at geosynchronous orbit between coronal mass ejection (CME)- and corotating interaction region (CIR)/high speed stream (HSS)- driven storms. Using our global ion temperature maps, we have found consistent results for select individual storms [Keesee et al., 2012]. We will present superposed epoch analyses for the subgroups of CME- and CIR/HSS-driven storms to compare global ion temperature evolution during the two types of storms.

  8. Human immunodeficiency virus risk awareness. Evaluation of a CME program for family physicians.

    PubMed Central

    Martin, F.; Murphy, P.

    1997-01-01

    OBJECTIVE: To determine whether a continuing medical education (CME) program on AIDS risk awareness would enhance physicians' knowledge of HIV and AIDS, their "intent-to-change" practice behaviour, and their ability to integrate their knowledge into hypothetical clinical scenarios; and to identify participant characteristics that affect their knowledge of risks and how they intend to behave regarding HIV testing. DESIGN: Before-and-after study using a questionnaire. SETTING: The city of Winnipeg and 16 rural communities in Manitoba. PARTICIPANTS: Convenience sample of physicians who attended the AIDS Risk Awareness Program and completed a questionnaire before the presentation (96 of 142 eligible physicians). MAIN OUTCOME MEASURE: A two-point or greater change on a Likert scale in the desired direction for each questionnaire item. RESULTS: Physicians were classified as sensitized or less sensitized depending on previous experience with HIV-positive and AIDS patients. Less sensitized physicians significantly improved their scores in all three areas. Sensitized physicians and women physicians significantly improved their knowledge and reported more intent to ask patients routinely about HIV risk behaviours. Physicians' sex, age, religion, and years in practice had an effect on these improvements. CONCLUSIONS: The AIDS Risk Awareness Program was successful in improving physicians' knowledge, attitude to intent-to-change behaviour and ability to integrate knowledge into practice scenarios. Physicians with true learning needs benefited the most from the CME program. PMID:9266123

  9. Solar Source and CME Properties of Solar Cycle 23 Ground Level Enhancement Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Xie, H.; Yashiro, S.; Akiyama, S.; Makela, P.; Usoskin, I.

    2010-01-01

    Solar cycle 23 witnessed the most complete set of observations of coronal mass ejections (CMEs) associated with the Ground Level Enhancement (GLE) events. GLE events are extreme cases of solar energetic particle (SEP) events in that the energetic particles penetrate Earth's neutral atmosphere to be detected by neutron monitors. In this paper we present the CME and their source properties that seem to be equally extreme. These observations are consistent with the idea that the GLE particles are accelerated in the same way as the regular SEP events by CME-driven shocks. While we cannot rule out the possibility of the presence of a flare component during GLE events, we can definitely say that a shock component is present in all the GLE events. We provide additional information on the GLE-associated type II radio bursts, complex type III radio bursts, and soft X-ray flares, which are not very different from those associated with large SEP events. Finally we compare the properties of GLEassociated CMEs in cycle 23 with those in cycle 22.

  10. The Divergence of CME and Sunspot Number Rates During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Webb, David F.; St. Cyr, Orville Chris; Xie, Hong; Kuchar, Thomas Andrew

    2014-06-01

    In the previous three solar cycles the frequency of occurrence of CMEs observed in white light has closely tracked the solar cycle in both phase and amplitude, varying by an order of magnitude over the cycle. LASCO has now observed the entire solar Cycle 23 and continues to observe through the current rise and maximum phases of Cycle 24. Cycle 23 had an unusually long decline and extended minimum. During this period we have been able to image and count CMEs in the heliosphere, and can determine rates from both LASCO and STEREO SECCHI (since 2007) coronagraphs and from the Solar Mass Ejection Imager (SMEI - since 2003) and the SECCHI Heliospheric Imagers in the heliosphere. Manual rates estimated by observers are now supplemented by counts from identifications made by automatic programs, such as contained in the SEEDS, CACTus and ARTEMIS catalogs. Since the cycle 23/24 minimum, the CME and sunspot number rates have diverged, with similar cycle 23/24 rise and peak CME rates but much lower SSN rates in this cycle. We will discuss these rate estimates and their implications for the evolution of the global solar magnetic field.

  11. Longitudinal Dependence of SEP Peak Intensities as Evidence of CME-Driven Shock Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Lario, D.; Roelof, E. C.; Decker, R. B.

    2014-05-01

    Multi-spacecraft observations of solar energetic particle (SEP) events allow us to estimate the longitudinal distributions of SEP peak intensities. By fitting a Gaussian functional form to the ensemble of SEP peak intensities measured by two or more spacecraft as a function of the longitudinal distance between the associated parent solar flare and the footpoint labels of the magnetic field lines connecting each spacecraft with the Sun, we found that such distributions are not centered at nominal well-connected flare longitudes but slightly offset to the west of the associated flare (Lario et al. 2006, 2013). We offer an interpretation of this result in terms of long-lived particle injection from shocks driven by the associated coronal mass ejections (CMEs). By assuming that (i) CME-driven shocks are centered on the longitude of the associated solar flare, (ii) the injection of shock accelerated particles maximizes at the nose of the shock which propagates radially outward from the Sun, and (iii) SEP particle injection from the shock starts at a certain distance above the solar surface, we infer an average radial distance where shocks are located when peak intensities in the prompt component of the SEP events are observed. We estimate the heliocentric distance of the CME-driven shock when particle injection from the shock maximizes and conclude that the injection of 20 MeV protons and near-relativistic electrons maximizes well inside 0.2 AU.

  12. An Application of the Stereoscopic Self-similar-Expansion Model to the Determination of CME-Driven Shock Parameters

    NASA Astrophysics Data System (ADS)

    Volpes, L.; Bothmer, V.

    2015-10-01

    We present an application of the stereoscopic self-similar-expansion model (SSSEM) to Solar Terrestrial Relations Observatory (STEREO)/ Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) observations of the CME on 3 April 2010 and its associated shock. The aim is to verify whether CME-driven shock parameters can be inferred from the analysis of j-maps. For this purpose, we used the SSSEM to derive the CME and the shock kinematics. Arrival times and speeds, inferred assuming either propagation at constant speed or with uniform deceleration, agree well with Advanced Composition Explorer (ACE) measurements. The shock standoff distance [?], the density compression [?d/?u], and the Mach number [M] were calculated by combining the results obtained for the CME and shock kinematics with models for the shock location. Their values were extrapolated to L1 and compared to in-situ data. The in-situ standoff distance was obtained from ACE solar-wind measurements, and the Mach number and compression ratio were provided by the interplanetary shock database of the Harvard-Smithsonian Center for Astrophysics. They are ?d/?u =2.84 and M = 2.2. The best fit to observations was obtained when the SSSEM half-width ?= 40, and the CME and shock propagate with uniform deceleration. In this case we found ?= 23 R_{?}, ?d/?u =2.61, and M = 2.93. The study shows that CME-driven shock parameters can be estimated from the analysis of time-elongation plots and can be used to predict their in-situ values.

  13. SCEC Community Modeling Environment (SCEC/CME) - Seismic Hazard Analysis Applications and Infrastructure

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Kesselman, C.; Moore, R.; Minster, B.; SCEC ITR Collaboration

    2003-12-01

    The Southern California Earthquake Center (SCEC) has formed a Geoscience/IT partnership to develop an advanced information infrastructure for system-level earthquake science in Southern California. This SCEC/ITR partnership comprises SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. This collaboration recently completed the second year in a five-year National Science Foundation (NSF) funded ITR project called the SCEC Community Modeling Environment (SCEC/CME). The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed by project collaborators include a Probabilistic Seismic Hazard Analysis system called OpenSHA [Field et al., this meeting]. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERF's). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. A Rupture Dynamic Model (RDM) has also been developed that couples a rupture dynamics simulation into an anelastic wave model. The collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of SHA programs. To support computationally expensive simulations, we have constructed a grid-based system utilizing Globus software [Kesselman et al., this meeting]. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC, NPACI and Teragrid High Performance Computing Centers. We have developed a SCEC Community Velocity Model server based on Internet standards (XML, SOAP, and WSDL) to provide access to the SCEC Community Velocity Model. We have also continued development of the SCEC Fault Information System (SCEC/FIS) to provide access to the SCEC Community Fault Model and the SCEC Fault Activity Database. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB) [Minster et al., this meeting]. This system provides a robust and secure system for maintaining the association between the data sets and their metadata. A browser-based computational pathway assembly web site has been developed [Gupta et al., this meeting]. Users can compose SHA calculations and call SCEC/CME computational programs to process the data and the output. By assembling a series of computational steps, users can develop complex computational pathways the validity of which can be verified with an ontology-based pathway assembly tool. Data visualization software developed by the collaboration to support analysis and validation of data sets includes 4D wave propagation visualization software based on OpenGL [Thiebaux et al., this meeting] and 3D Geowall-based visualization of earthquakes and faults.

  14. Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Bemporad, A.; Mackay, D. H.

    2015-10-01

    Context. Understanding the 3D structure of coronal mass ejections (CMEs) is crucial for understanding the nature and origin of solar eruptions. However, owing to the optical thinness of the solar corona we can only observe the line of sight integrated emission. As a consequence the resulting projection effects hide the true 3D structure of CMEs. To derive information on the 3D structure of CMEs from white-light (total and polarized brightness) images, the polarization ratio technique is widely used. The soon-to-be-launched METIS coronagraph on board Solar Orbiter will use this technique to produce new polarimetric images. Aims: This work considers the application of the polarization ratio technique to synthetic CME observations from METIS. In particular we determine the accuracy at which the position of the centre of mass, direction and speed of propagation, and the column density of the CME can be determined along the line of sight. Methods: We perform a 3D MHD simulation of a flux rope ejection where a CME is produced. From the simulation we (i) synthesize the corresponding METIS white-light (total and polarized brightness) images and (ii) apply the polarization ratio technique to these synthesized images and compare the results with the known density distribution from the MHD simulation. In addition, we use recent results that consider how the position of a single blob of plasma is measured depending on its projected position in the plane of the sky. From this we can interpret the results of the polarization ratio technique and give an estimation of the error associated with derived parameters. Results: We find that the polarization ratio technique reproduces with high accuracy the position of the centre of mass along the line of sight. However, some errors are inherently associated with this determination. The polarization ratio technique also allows information to be derived on the real 3D direction of propagation of the CME. The determination of this is of fundamental importance for future space weather forecasting. In addition, we find that the column density derived from white-light images is accurate and we propose an improved technique where the combined use of the polarization ratio technique and white-light images minimizes the error in the estimation of column densities. Moreover, by applying the comparison to a set of snapshots of the simulation we can also assess the errors related to the trajectory and the expansion of the CME. Conclusions: Our method allows us to thoroughly test the performance of the polarization ratio technique and allows a determination of the errors associated with it, which means that it can be used to quantify the results from the analysis of the forthcoming METIS observations in white light (total and polarized brightness). Finally, we describe a satellite observing configuration relative to the Earth that can allow the technique to be efficiently used for space weather predictions. A movie attached to Fig. 15 is available in electronic form at http://www.aanda.org

  15. On the interplanetary evolution of CME-driven shocks: a comparison between remote sensing observations and in-situ data

    NASA Astrophysics Data System (ADS)

    Volpes, Laura; Bothmer, Volker

    2015-08-01

    Fast coronal mass ejections (CMEs) are a prime driver of major space weather effects and strong geomagnetic storms. When the CME propagation speed is higher than the Alfvn speed a shock forms in front of the CME leading edge. CME-driven shocks are observed in in-situ data and, with the advent of increasingly sensitive imaging instruments, also in remote sensing observations in the form of bright fronts ahead of the CMEs.In this work we present the study of 4 Earth-directed CMEs which drove shocks detected in STEREO COR 2 and HI observations. For each event we identify the source region and the signatures of CME eruption such as waves, EUV dimmings, flare and prominence eruptions. The shock and CME interplanetary evolution is determined from COR2 and HI observations via an application of triangulation techniques. Furthermore, propagation speed and arrival times are inferred. The CME geometry is modelled in COR2 via the graduated cylindrical shell (GCS) model and the assumption on self-similar expansion is tested by expanding the flux rope to the HI1 field of view. A combination of these results with models for the shock location allows to infer the time evolution of the compression ratio ?d/?u across the shock and of the upstream Mach number M at locations where no direct plasma measurements are available. These values, as well as the arrival time and speed, are compared to ACE in-situ measurements to validate the results. For the 03 April 2010 event, e.g., the values of the Mach number and the compression ratio extrapolated to the position of ACE are respectively 2.1 < ?d/?u < 2.4 and 2.3 < M < 2.5, in good agreement with the in-situ values found in literature, ?d/?u = 2.84 and M = 2.2. This study is carried out in conjunction to simulations of CME initiation. Combined results from observations and simulations allow to connect the interplanetary and near-Earth properties of CMEs to those of their source regions, and to the mechanisms of CME onset.

  16. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation.

    PubMed

    Curtin, Caroline M; Cunniffe, Grinne M; Lyons, Frank G; Bessho, Kazuhisa; Dickson, Glenn R; Duffy, Garry P; O'Brien, Fergal J

    2012-02-01

    The ability of nano-hydroxyapatite (nHA) particles developed in-house to act as non-viral delivery vectors is assessed. These nHA particles are combined with collagen to yield bioactive, biodegradable collagen nano-hydroxyapatite (coll-nHA) scaffolds. Their ability to act as gene-activated matrices for BMP2 delivery is demonstrated with successful transfection of mesenchymal stem cells (MSCs) resulting in high calcium production. PMID:22213347

  17. [Home delivery].

    PubMed

    Olivier, S; Guidicelli, B; Gamerre, M

    1994-10-01

    Home delivery, although unconventional, has not totally disappeared. It sometimes results from the desire to "demedicalise" an event deemed natural and is sometimes the consequence of government policy and hence approved by medical authorities. This is the unique situation of Holland, where a highly efficient home delivery system has been created, with the possibility of transfer of the mother at any time to rapidly available emergency medical teams. In fact the large majority of home deliveries are accidental, unprepared and take place in the absence of any medical or paramedical assistance. All available studies show that perinatal and maternal morbidity associated with these accidental deliveries is greater than that of hospital deliveries, and this despite the setting up of emergency services responding as soon as a distress call is received. Home delivery should remain the exception at present since it is unable to guarantee a birth as undangerous as possible. PMID:7817075

  18. Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed?

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Leila Mays, M.; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-12-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (1 AU) in about 19 h. Here we use the Space Weather Modeling Framework (SWMF) to perform a simulation of this rare CME. We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  19. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    NASA Technical Reports Server (NTRS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  20. C-ME: A 3D Community-Based, Real-Time Collaboration Tool for Scientific Research and Training

    PubMed Central

    Kolatkar, Anand; Kennedy, Kevin; Halabuk, Dan; Kunken, Josh; Marrinucci, Dena; Bethel, Kelly; Guzman, Rodney; Huckaby, Tim; Kuhn, Peter

    2008-01-01

    The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members. PMID:18286178

  1. 43 CFR 11.42 - How does the authorized official apply the NRDAM/CME or NRDAM/GLE?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false How does the authorized official apply the NRDAM/CME or NRDAM/GLE? 11.42 Section 11.42 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Type A Procedures § 11.42 How does the authorized...

  2. 43 CFR 11.42 - How does the authorized official apply the NRDAM/CME or NRDAM/GLE?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true How does the authorized official apply the NRDAM/CME or NRDAM/GLE? 11.42 Section 11.42 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Type A Procedures § 11.42 How does the authorized...

  3. 43 CFR 11.42 - How does the authorized official apply the NRDAM/CME or NRDAM/GLE?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false How does the authorized official apply the NRDAM/CME or NRDAM/GLE? 11.42 Section 11.42 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Type A Procedures § 11.42 How does the authorized...

  4. 43 CFR 11.42 - How does the authorized official apply the NRDAM/CME or NRDAM/GLE?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How does the authorized official apply the NRDAM/CME or NRDAM/GLE? 11.42 Section 11.42 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Type A Procedures § 11.42 How does the authorized...

  5. 43 CFR 11.42 - How does the authorized official apply the NRDAM/CME or NRDAM/GLE?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false How does the authorized official apply the NRDAM/CME or NRDAM/GLE? 11.42 Section 11.42 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Type A Procedures § 11.42 How does the authorized...

  6. Relation Between the 3D-Geometry of the Coronal Wave and Associated CME During the 26 April 2008 Event

    NASA Technical Reports Server (NTRS)

    Temmer, M.; Veronig, A. M.; Gopalswamy, N.; Yashiro, S.

    2011-01-01

    We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of approx 240 km/s. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of approx 750 +/- 50 km/s, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.

  7. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    NASA Astrophysics Data System (ADS)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  8. Plasma Physical Parameters along CME-driven Shocks. II. Observation-Simulation Comparison

    NASA Astrophysics Data System (ADS)

    Bacchini, F.; Susino, R.; Bemporad, A.; Lapenta, G.

    2015-08-01

    In this work, we compare the spatial distribution of the plasma parameters along the 1999 June 11 coronal mass ejection (CME)-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD particle-in-cell method. The observational data are retrieved from the combination of white-light coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvnic Mach number MA at the shock nose, and a stronger magnetic field deflection d toward the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and {? }{Bn} (the angle between the upstream magnetic field and the shock front normal) for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness {? }{sh} and plasma-to magnetic pressure ratio {? }u are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new one-dimensional Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-? model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvn waves, etc.).

  9. Wavelet analysis of CME, X-ray flare, and sunspot series

    NASA Astrophysics Data System (ADS)

    Guedes, M. R. G.; Pereira, E. S.; Cecatto, J. R.

    2015-01-01

    Context. Coronal mass ejections (CMEs) and solar flares are the most energetic transient phenomena taking place at the Sun. Together they are principally responsible for disturbances in outer geospace. Coronal mass ejections and solar flares are believed to be correlated with the solar cycle, which is mainly characterized by sunspot numbers. Aims: Here, we search for pattern identification in CMEs, X-ray solar flares, and sunspot number time series using a new data mining process and a quantitative procedure to correlate these series. Methods: This new process consists of the combination of a decomposition method with the wavelet transform technique applied to the series ranging from 2000 until 2012. A simple moving average is used for the time-series decomposition as a high-pass filter. A continuous wavelet transform is applied to the series in sequence, which permits us to uncover signals previously masked by the original time series. We made use of the wavelet coherence to find some correlation between the data. Results: The results have shown the existence of periodic and intermittent signals in the CMEs, flares, and sunspot time series. For the CME and flare series, few and relatively short time intervals without any signal were observed. Signals with an intermittent character take place during some epochs of the maximum and descending phases of the solar cycle 23 and rising phase of solar cycle 24. A comparison among X-ray flares, sunspots, and CME time series shows a stronger relation between flare and CMEs, although during some short intervals (four-eight months) and in a relatively narrow band. Yet, in contrast we have obtained a fainter or even absent relation between the X-ray flares and sunspot number series as well as between the CMEs and sunspot number series.

  10. On-board CME detection algorithm for the Solar Orbiter-METIS coronagraph

    NASA Astrophysics Data System (ADS)

    Bemporad, A.; Andretta, V.; Pancrazzi, M.; Focardi, M.; Straus, T.; Sasso, C.; Spadaro, D.; Uslenghi, M.; Antonucci, E.; Fineschi, S.; Abbo, L.; Nicolini, G.; Landini, F.; Romoli, M.; Naletto, G.; Nicolosi, P.

    2014-07-01

    The METIS coronagraph is one of the instruments part of the payload of the ESA - Solar Orbiter mission to be launched in 2017. The spacecraft will operate much like a planetary encounter mission, with the main scientific activity taking place with the remote-sensing instruments during three 10-days intervals per orbit: optimization of the different instrument observing modes will be crucial. One of the key scientific targets of METIS will be the study of transient ejections of mass through the solar corona (Coronal Mass Ejections - CMEs) and their heliospheric evolution. METIS will provide for the first time imaging of CMEs in two different wavelengths: VL (visible light 580- 640 nm) and UV (Lyman-? line of HI at 121.6 nm). The detection of transient phenomena shall be managed directly by the METIS Processing and Power Unit (MPPU) by means of both external triggers ("flags") coming from other Solar Orbiter instruments, and internal "flags" produced directly by the METIS on-board software. METIS on-board algorithm for the automatic detection of CMEs will be based on running differences between consecutive images re-binned to very low resolution and thresholded for significant changes over a minimum value. Given the small relative variation of white light intensity during CMEs, the algorithm will take advantage of VL images acquired with different polarization angles to maximize the detection capability: possible false detections should be automatically managed by the algorithm. The algorithm will be able to provide the CME first detection time, latitudinal direction of propagation on the plane of the sky (within 45 degrees), a binary flag indicating whether a "halo CME" has been detected.

  11. Shock wave driven by CME evidenced by metric type II burst and EUV wave

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Fernandes, F. C. R.; Selhorst, C. L.

    2015-12-01

    Solar type II radio bursts are produced by plasma oscillations in the solar corona as a result of shock waves. The relationship between type II bursts and coronal shocks is well evidenced by observations since the 1960s. However, the drivers of the shocks associated with type II events at metric wavelengths remain as a controversial issue among solar physicists. The flares and the coronal mass ejections (CMEs) are considered as potential drivers of these shocks. In this article, we present an analysis of a metric type II burst observed on May 17, 2013, using data provided by spectrometers from e-CALLISTO (extended-Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatories) and EUV images from the Extreme Ultraviolet Imager (EUVI), aboard the Solar Terrestrial Relations Observatory (STEREO). The event was associated with an M3.2 SXR flare and a halo CME. The EUV wave produced by the expansion of the CME was clear from the EUV images. The heights of the EUV wave fronts proved to be consistent with the heights of the radio source obtained with the 2-4 × Newkirk density model, which provided a clue to an oblique propagation of the type-II-emitting shock segment. The results for the magnetic field in the regions of the shock also revealed to be consistent with the heights of the radio source obtained using the 2-4 × Newkirk density model. Exponential fit on the intensity maxima of the harmonic emission provided a shock speed of ∼580-990 km s-1, consistent with the average speed of the associated EUV wave front of 626 km s-1.

  12. Differences between the CME fronts tracked by an expert, an automated algorithm, and the Solar Stormwatch project

    NASA Astrophysics Data System (ADS)

    Barnard, L.; Scott, C. J.; Owens, M.; Lockwood, M.; Crothers, S. R.; Davies, J. A.; Harrison, R. A.

    2015-10-01

    Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterizing the propagation of CMEs through the inner heliosphere. Three such catalogues are the Rutherford Appleton Laboratory (RAL)-HI event list, the Solar Stormwatch CME catalogue, and, presented here, the J-tracker catalogue. Each catalogue uses a different method to characterize the location of CME fronts in the HI images: manual identification by an expert, the statistical reduction of the manual identifications of many citizen scientists, and an automated algorithm. We provide a quantitative comparison of the differences between these catalogues and techniques, using 51 CMEs common to each catalogue. The time-elongation profiles of these CME fronts are compared, as are the estimates of the CME kinematics derived from application of three widely used single-spacecraft-fitting techniques. The J-tracker and RAL-HI profiles are most similar, while the Solar Stormwatch profiles display a small systematic offset. Evidence is presented that these differences arise because the RAL-HI and J-tracker profiles follow the sunward edge of CME density enhancements, while Solar Stormwatch profiles track closer to the antisunward (leading) edge. We demonstrate that the method used to produce the time-elongation profile typically introduces more variability into the kinematic estimates than differences between the various single-spacecraft-fitting techniques. This has implications for the repeatability and robustness of these types of analyses, arguably especially so in the context of space weather forecasting, where it could make the results strongly dependent on the methods used by the forecaster.

  13. Predicting CME Ejecta and Sheath Front Arrival at L1 with a Data-constrained Physical Model

    NASA Astrophysics Data System (ADS)

    Hess, Phillip; Zhang, Jie

    2015-10-01

    We present a method for predicting the arrival of a coronal mass ejection (CME) flux rope in situ, as well as the sheath of solar wind plasma accumulated ahead of the driver. For faster CMEs, the front of this sheath will be a shock. The method is based upon geometrical separate measurement of the CME ejecta and sheath. These measurements are used to constrain a drag-based model, improved by including both a height dependence and accurate de-projected velocities. We also constrain the geometry of the model to determine the error introduced as a function of the deviation of the CME nose from the Sun-Earth line. The CME standoff-distance in the heliosphere fit is also calculated, fit, and combined with the ejecta model to determine sheath arrival. Combining these factors allows us to create predictions for both fronts at the L1 point and compare them against observations. We demonstrate an ability to predict the sheath arrival with an average error of under 3.5 hr, with an rms error of about 1.58 hr. For the ejecta the error is less than 1.5 hr, with an rms error within 0.76 hr. We also discuss the physical implications of our model for CME expansion and density evolution. We show the power of our method with ideal data and demonstrate the practical implications of having a permanent L5 observer with space weather forecasting capabilities, while also discussing the limitations of the method that will have to be addressed in order to create a real-time forecasting tool.

  14. A Full Study on the Sun-Earth Connection of an Earth-directed CME Magnetic Flux Rope

    NASA Astrophysics Data System (ADS)

    Vemareddy, Panditi; Mishra, Wageesh

    2015-11-01

    We present an investigation of an eruption event of a coronal mass ejection (CME) magnetic flux rope (MFR) from the source active region (AR) NOAA 11719 on 2013 April 11 utilizing observations from the Solar Dynamic Observatory, the Solar Terrestrial Relations Observatory, the Solar and Heliospheric Observatory, and the WIND spacecraft. The source AR consists of a pre-existing sigmoidal structure stacked over a filament channel which is regarded as an MFR system. EUV observations of low corona suggest further development of this MFR system by added axial flux through tether-cutting reconnection of loops at the middle of the sigmoid under the influence of continuous slow flux motions for two days. Our study implies that the MFR system in the AR is initiated to upward motion by kink instability and further driven by torus instability. The CME morphology, captured in simultaneous three-point coronagraph observations, is fitted with a Graduated Cylindrical Shell (GCS) model and discerns an MFR topology with its orientation aligning with a magnetic neutral line in the source AR. This MFR expands self-similarly and is found to have source AR twist signatures in the associated near-Earth magnetic cloud (MC). We further derived the kinematics of this CME propagation by employing a plethora of stereoscopic as well as single-spacecraft reconstruction techniques. While stereoscopic methods perform relatively poorly compared to other methods, fitting methods worked best in estimating the arrival time of the CME compared to in situ measurements. Supplied with the values of constrained solar wind velocity, drag parameter, and three-dimensional kinematics from the GCS fit, we construct CME kinematics from the drag-based model consistent with in situ MC arrival.

  15. The Relationship Between CME Properties in the CDAW, CACTUS and SEEDS Catalogs and ?25 MeV Solar Proton Event Intensities

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2013-12-01

    The existence of a correlation between the intensity of solar energetic proton (SEP) events and the speed of the associated coronal mass ejection near the Sun is well known, and is often interpreted as evidence for particle acceleration at CME-driven shocks. However, this correlation is far from perfect and might be improved by taking other parameters into consideration (e.g., CME width). In studies of cycle 23 SEP events, values of CME speed, width and other parameters were typically taken from the CDAWWeb LASCO CME catalog. This is compiled 'by hand' from examination of LASCO images by experienced observers. Other automated LASCO CME catalogs have now been developed, e.g., CACTUS (Royal Observatory of Belgium) and SEEDS (George Mason University), but the basic CME parameters do not always agree with those from the CDAWweb catalog since they are not determined in the same way. For example the 'CME speed' might be measured at a specific position angle against the plane of the sky in one catalog, or be the average of speeds taken along the CME front in another. Speeds may also be based on linear or higher order fits to the coronagraph images. There will also be projection effects in these plane of the sky speeds. Similarly, CME widths can vary between catalogs and are dependent on how they are defined. For example, the CDAW catalog lists any CME that surrounds the occulting disk as a 'halo' (360 deg. width) CME even though the CME may be highly-asymmetric and originate from a solar event far from central meridian. Another catalog may give a smaller width for the same CME. The problem of obtaining the 'true' CME width is especially acute for assessing the relationship between CME width and SEP properties when using the CDAW catalog since a significant fraction, if not the majority, of the CMEs associated with major SEP events are reported to be halo CMEs. In principle, observations of CMEs from the STEREO A and B spacecraft, launched in late 2006, might be used to overcome some of these problems. In particular, a spacecraft in quadrature with the solar source of an SEP event should observe the 'true' width and speed of the associated CME. However, STEREO CME parameters are derived using the CACTUS method, and cannot be directly compared with the LASCO CDAW catalog values that have been so widely used for many years. In this study, we will examine the relationship between the properties of CMEs in various catalogs and the intensities of a large sample of particle events that include 25 MeV protons in cycles 23 and 24. In particular, we will compare the proton intensity-speed relationships obtained using the CDAW, CACTUS and SEEDS LASCO catalogs, and also using the CACTUS values from whichever spacecraft (STEREO A, B or SOHO) is best in quadrature with the solar event. We will also examine whether there is any correlation between the width of the CMEs in the automated catalogs and proton intensity, and whether a combination of CME speed and width might improve the correlation with proton intensity.

  16. A solar type II radio burst from CME-coronal ray interaction:simultaneous radio and EUV imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Du, Guohui

    2014-06-01

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the 3-dimensional EUV wave front (presumably the type-II emitting shock) based on the imaging data of the two STEREO spacecraft. It is then combined with the Nan\\c{c}ay radio imaging data to infer the 3-dimensional position of the type II source. It is found that the type II source coincides with the interface between the CME EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  17. Elemental composition before, during and after the January 6, 1997, CME event measured by CELIAS/SOHO

    NASA Technical Reports Server (NTRS)

    Wurz, P.; Ipavich, F. M.; Galvin, A. B.; Bochsler, P.; Aellig, M. R.; Kallenbach, R.; Hovestadt, D.; Gruenwaldt, H.; Hilchenbach, M.; Axford, W. I.; Balsiger, H.; Buergi, A.; Coplan, M. A.; Geiss, J.; Gliem, F.; Gloeckler, G.; Hefti, S.; Hsieh, K. C.; Klecker, B.; Lee, M. A.

    1997-01-01

    Using solar wind particle data from the charge, element and isotope analysis system (CELIAS) experiment on the SOHO mission, densities of the elements O, Ne, Mg, Si, S, Ca, and Fe are derived, and their abundance is analyzed before, during and after the 6 Janaury 1997 coronal mass ejection event (CME). In the interstream and coronal hole regions before and after this event, typical solar wind abundances for the elements investigated were found. However, during the passage of the coronal mass ejection and during the passage of the erupted filament, the elemental composition differed markedly from typical solar wind. For the passage of the CME and for the passage of the erupted filament, a mass-dependent enhancement of the elements was found, with a monotonic increase towards heavier elements. Si/O and Fe/O ratios of the order of one during these time periods were observed.

  18. Tracking the Momentum Flux of a CME and Quantifying Its Influence on Geomagnetically Induced Currents at Earth

    NASA Technical Reports Server (NTRS)

    Savani, N. P.; Vourlidas, A.; Pulkkinen, A.; Nieves-Chinchilla, T.; Lavraud, B.; Owens, M. J.

    2013-01-01

    We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shockfront as detected by in situ measurements at L1. A time series of mass measurements from the STEREOCOR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dBdt) on the ground. The predicted dBdt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.

  19. Development of a full ice-cream cone model for halo CME structures

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Yong-Jae

    2015-04-01

    The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.

  20. Trauma-Informed Medical Care: A CME Communication Training for Primary Care Providers

    PubMed Central

    Green, Bonnie L.; Saunders, Pamela A.; Power, Elizabeth; Dass-Brailsford, Priscilla; Schelbert, Kavitha Bhat; Giller, Esther; Wissow, Larry; Hurtado-de-Mendoza, Alejandra; Mete, Mihriye

    2014-01-01

    BACKGROUND AND OBJECTIVES: Trauma exposure predicts mental disorders, medical morbidity, and healthcare costs. Yet trauma-related impacts have not received sufficient attention in primary care provider (PCP) training programs. This study adapted a theory-based approach to working with trauma survivors, Risking Connection, into a 6-hour CME course, Trauma-Informed Medical Care (TI-Med), and evaluated its efficacy. METHODS: We randomized PCPs to training or wait-list (delay) conditions; waitlist groups were trained after reassessment. The primary outcome assessing newly acquired skills was a patient-centeredness score derived from Roter Interactional Analysis System ratings of 90 taped visits between PCPs and standardized patients (SPs). PCPs were Family Medicine residents (n=17) and community physicians (n=13; 83% Family Medicine specialty), from four sites in the Washington DC metropolitan area. RESULTS: Immediately trained PCPs trended toward a larger increase in patient-centeredness than did the delayed PCPs (p < .09), with a moderate effect size (.66). The combined trained PCP groups showed a significant increase in patient-centeredness pre to post training, p < .01, Cohen’s D = .61. CONCLUSIONS: This is a promising approach to supporting relationship-based trauma-informed care among PCPs to help promote better patient health and higher compliance with medical treatment plans. PMID:25646872

  1. CHAMBER: A Regional Performance Improvement CME Initiative for Breast Cancer Health Care Providers.

    PubMed

    Sutton, Linda M; Geradts, Joseph; Hamilton, Erika P; Havlin, Kathleen A; Kimmick, Gretchen G; Marcom, P Kelly; Spector, Neil L; Watson, Melanie; Rabin, Daniel U; Bruno, Theodore O; Noe, Amanda; Miller, Stacy; Subramaniam, Chitra; Layton, Sherry; Grichnik, Katherine

    2015-08-01

    CHAMBER was a regional educational initiative for providers of care to patients with HER2+ breast cancer. The study goals were to (1) enhance testing for HER2/neu overexpression in patients with invasive breast cancer; (2) increase the appropriate use of targeted therapy for patients with HER2+ breast cancer; and (3) enhance patients' coping ability. This Performance Improvement Continuing Medical Education (PI-CME) initiative included clinical practice assessment, educational activities, and reassessment. Chart review revealed a high rate of HER2 testing (98%) before and after education. Targeted therapy for patients with HER2+ breast cancer declined after the program (from 96% to 61%), perhaps attributable to an increase in awareness of medical reasons to avoid use of targeted therapy. Assessment for patients' emotional coping ability increased after education (from 55% to 76%; P=.01). Rates of testing for HER2 amplification and assessment of emotional well-being after education were consistent with ASCO Quality Oncology Practice Initiative benchmark values. Documentation of actions to address emotional problems remained an area for improvement. PMID:26285246

  2. CME Mass Estimates via EVE Coronal Dimmings for X-class Flares

    NASA Astrophysics Data System (ADS)

    Hudson, Hugh S.; Hannah, Iain; Schrijver, Karel

    2014-06-01

    The EVE instrument on SDO detects post-flare dimmings, mainly in the spectral regions of Fe IX-XII in its MEGS-A range, which is available for most of the 29 X-class flares that have occurred between SDO launch and the end of April 2014. Based upon earlier X-ray observations we interpret these dimmings as the result of CME mass ejection from the low corona. We estimate the masses involved in these dimmings by deriving a best pre-event temperature and emission measure in the dimmed region from EVE, and a source volume from AIA images. The dimming for SOL2011-02-15, the first of these events, "peaked"at -3.4% in Fe IX in terms of the pre-event emission from the whole Sun, with smaller relative depletions in higher ionization states of Fe. The "maximum" occurred more than one hour after GOES peak. The dimming signature is generally cleanly measurable in the EVE/MEGS-A spectral samples at10 s cadence, with the dominant source of uncertainty stemming from the "sun-as-a-star" integrations; for example flare-related excess emission at a given wavelength tends to compensate for the dimming,and in this sense the mass estimate must be considered a lower limit. We address these uncertainties for the solar case by appealing to the AIA images, but for analogous processes in stellar flares one would not have this luxury.

  3. Comparison of CME masses and kinetic energies near the Sun and in the inner heliosphere

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Howard, R. A.; Jackson, B. V.

    1995-01-01

    Masses have now been determined for many of the CMEs observed in the inner heliosphere by the HELIOS 1 and 2 zodiacal light photometers. The speed of the brightest material of each CME has also been measured so that, for events having both mass and speed determinations, the kinetic energies of the CMEs are estimated. We compare the masses and kinetic energies of the individual CMEs measured in the inner heliosphere by HELIOS and near the Sun from observations by the SOLWIND (1979-1983) and SMM coronagraphs (1980). Where feasible we also compare the speeds of the same CMEs. We find that the HELIOS masses and energies tend to be somewhat larger by factors of 2-5 than those derived from the coronagraph data. We also compare the distribution of the masses and energies of the HELIOS and coronagraph CMEs over the solar cycle. These results provide an important baseline for observations of CMEs from coronagraphs, from the ISEE-3/ICE, WIND and Ulysses spacecraft and in the future from SOHO.

  4. Why S, Not X, Marks the Spot for CME/Flare Eruptions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse; Gary, Allen; Cirtain, Jonathan; Falconer, David

    2010-01-01

    For any major CME/flare eruption: I. The field that erupts is an arcade in which the interior is greatly sheared and twisted. Most of the free magnetic energy to be released: a) Is in the shear and twist of the interior field. b) Is Not due to a big current sheet. The eruption is unleashed by reconnection at a growing current sheet. The current sheet is still little when the reconnection turns on. The unleashed eruption then makes the current sheet much bigger by building it up faster than the reconnection can tear it down. II. Most X-ray jets work the opposite way: a) Tapped free energy is in the field of a pre-jet current sheet. b) Current sheet built by small arcade emerging into ambient field. c) Current sheet still much smaller than the arcade when reconnection turns on and tears it down, producing a jet. III. These rules reflect the low-beta condition in the eruptive magnetic field

  5. The Solar Corona and a CME at the 2010 Total Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Rusin, V.; Druckmllerov, H.; Saniga, M.; Lu, M.; Malamut, C.; Seaton, D. B.; Golub, L.; Engell, A. J.; Hill, S. W.; Lucas, R.

    2011-05-01

    The 11 July 2010 total solar eclipse was observed on the ground from French Polynesia and, 83 minutes later, from Easter Island, and near-simultaneous images were made with spacecraft instruments including AIA/SDO, HMI/SDO, EUVI/STEREO, SWAP/PROBA2, EIT/SOHO, and LASCO/SOHO. We report on changes in the corona detectable with high-resolution image processing of the ground-based eclipse coronal imaging, including two CME's that were seen to evolve. We compare with the spacecraft images to give a complete depiction of coronal structure at the time of the eclipse, which corresponded to a low but rising phase of the solar-activity cycle. We acknowledge the support of NASA's MSFC NNX10AK47A, NSF REU AST-1005024 with DoD ASSURE, VEGA 2/0098/10 of the Slovak Acad. Sci, 205/09/1469 of the Czech Science Foundation, PRODEX C90345 of ESA/BELSPO, FP7/2007-2013/218816 SOTERIA, Lockheed Martin; for equipment: Nikon Professional Services, ASTELCO Systems GmbH (Germany), and National Geographic Society's Photographic Division; and colleagues Y.-M. Wang (NRL), S. Habbal (U. Hawaii), H. Lanteires (Tatakoto), and J. Kern (Carnegie Obs.).

  6. Low Temperature Hysteretic Behavior of the Interpenetrating 3-D Network Structured [Ru2(O2CMe)4]3[Fe(CN)6] Magnet

    SciTech Connect

    Haque, F.; Del barco, Enrique; Fishman, Randy Scott; Miller, Joel S.

    2013-01-01

    The low temperature hysteretic behavior between 40 mK and 4.8 K was obtained for [Ru2(O2CMe)4]3[Fe(CN)6]. The unusual constricted hysteretic behavior reported for isomorphous [Ru2(O2CMe)4]3[Cr(CN)6] was not observed. Instead, the [Ru2(O2CMe)4]3-[Fe(CN)6] exhibits a single hysteresis loop and a temperature dependence of the coercivity atypical for a ferrimagnetic ordering transition. The coercive field, constant below ~0.3 K (1.06 kOe), shows a rapid initial decrease below 1 K, to continue decreasing at a slower rate up to at least 4.8 K. In contrast to [Ru2(O2CMe)4]3[Cr(CN)6] which has antiferromagnetic coupling of the ferrimagnetic lattices, due to the reduced spin on the [FeIII(CN)6]3-, [Ru2(O2CMe)4]3[Fe(CN)6] ferromagnetic coupling of the ferrimagnetic lattices dominates for [Ru2(O2CMe)4]3[Fe(CN)6].

  7. SMEI 3D RECONSTRUCTION OF A CORONAL MASS EJECTION INTERACTING WITH A COROTATING SOLAR WIND DENSITY ENHANCEMENT: THE 2008 APRIL 26 CME

    SciTech Connect

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Clover, J. M.; Bisi, M. M.; Webb, D. F.

    2010-12-01

    The Solar Mass Ejection Imager (SMEI) has recorded the brightness responses of hundreds of interplanetary coronal mass ejections (CMEs) in the interplanetary medium. Using a three-dimensional (3D) reconstruction technique that derives its perspective views from outward-flowing solar wind, analysis of SMEI data has revealed the shapes, extents, and masses of CMEs. Here, for the first time, and using SMEI data, we report on the 3D reconstruction of a CME that intersects a corotating region marked by a curved density enhancement in the ecliptic. Both the CME and the corotating region are reconstructed and demonstrate that the CME disrupts the otherwise regular density pattern of the corotating material. Most of the dense CME material passes north of the ecliptic and east of the Sun-Earth line: thus, in situ measurements in the ecliptic near Earth and at the Solar-TErrestrial RElations Observatory Behind spacecraft show the CME as a minor density increase in the solar wind. The mass of the dense portion of the CME is consistent with that measured by the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory spacecraft, and is comparable to the masses of many other three-dimensionally reconstructed solar wind features at 1 AU observed in SMEI 3D reconstructions.

  8. Expanding Alternative Delivery Systems.

    ERIC Educational Resources Information Center

    Baltzer, Jan A.

    Alternative educational delivery systems that might be useful to community colleges are considered. The following categories of delivery systems are covered: broadcast delivery systems; copy delivery systems, print delivery systems, computer delivery systems, telephone delivery systems, and satellites. Among the applications for broadcast…

  9. Preterm Delivery

    EPA Science Inventory

    This indicator describes the proportion of preterm infants—which are infants born prior to 37 weeks of gestation—born in the United States from 1995 to 2008. Preterm delivery is a leading cause of infant death. Scientists continue to explore possible links between ...

  10. Preterm Delivery

    EPA Science Inventory

    This indicator describes the proportion of preterm infantswhich are infants born prior to 37 weeks of gestationborn in the United States from 1995 to 2008. Preterm delivery is a leading cause of infant death. Scientists continue to explore possible links between ...

  11. SCEC/CME CyberShake: Probabilistic Seismic Hazard Analysis Using 3D Seismic Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Cui, Y.; Faerman, M.; Field, E.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T. H.; Kesselman, C.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.

    2005-12-01

    Researchers on the SCEC Community Modeling Environment (SCEC/CME) Project are calculating Probabilistic Seismic Hazard Curves for several sites in the Los Angeles area. The hazard curves calculated in this study use Intensity Measure Relationships (IMRs) based on 3D ground motion simulations rather than on attenuation relationships. State-of-the-art Probabilistic Seismic Hazard Analysis (PSHA) is currently conducted using IMRs that use empirically-based attenuation relationships. These attenuation relationships represent relatively simple analytical models based on the regression of observed data. However, it is widely believed that significant improvements in SHA will rely on the use of more physics-based, waveform modeling. In fact, a more physics-based approach to PSHA was endorsed in a recent assessment of earthquake science by National Research Council (2003). In order to introduce the use of 3D seismic waveform modeling into PSHA hazard curve calculations, the SCEC/CME CyberShake group is integrating state-of-the-art PSHA software tools (OpenSHA), SCEC-developed geophysical models (SCEC CVM3.0), validated anelastic wave modeling (AWM) software, and state-of-the-art computational technologies including high performance computing and grid-based scientific workflows in an effort to develop an OpenSHA-compatible 3D waveform-based IMR component. This will allow researchers to combine a new class of waveform-based IMRs with the large number of existing PSHA components, such as Earthquake Rupture Forecasts (ERF's), that are currently implemented in the OpenSHA system. To calculate a probabilistic hazard curve for a site of interest, we use the OpenSHA implementation of the NSHMP-2002 ERF and identify all ruptures within 200km of the site of interest. For each of these ruptures, we convert the NSHMP-2002 rupture definition into one, or more, Ruptures with Slip Time History (Rupture Variations) using newly developed Rupture Generator software. Strain Green Tensors are calculated for the site using well-validated AWM software together with the SCEC CVM3.0 3D velocity model. Then, using a reciprocity-based approach, we calculate synthetic seismograms for each Rupture Variation. The resulting suite of synthetics is processed to extract peak intensity measures of interest (such as spectral acceleration). The peak intensity measures are combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. The CyberShake calculations are performed on high performance computing systems including multiple TeraGrid sites (currently SDSC and NCSA), and at USCs High Performance Computing and Communications (HPCC) center. The CyberShake job submission and data management uses a grid-based scientific workflow system based on the Virtual Data System (VDS) to manage the job scheduling and data management requirements of the work.

  12. Association Rate of Major Sep Events As a Function of CME Speed and Source Longitude

    NASA Astrophysics Data System (ADS)

    Yashiro, S.; Gopalswamy, N.; Akiyama, S.; Makela, P. A.; Xie, H.

    2014-12-01

    We report on the fraction of fast and wide coronal mass ejections (FW CMEs; speed>900 km/s; width>60) that produce solar energetic particle (SEP) events. Source regions of the FW CMEs were identified using SOHO/EIT, STEREO/EUVI, and SDO/AIA. Using STEREO EUV observations, we are able to determine the source locations behind the west limb with a high degree of accuracy. The >10 MeV proton flux at Earth was examined using GOES/SEM. The >10 MeV proton flux at the STEREO spacecraft was estimated using STEREO/HET, which detects energetic protons in 11 channels from 13.6 to 100 MeV. We extrapolated the proton flux in the 10 - 150 MeV range with a power-law fit and derived the corresponding >10 MeV proton flux. For each FW CME, we have three proton flux values for three different relative source longitudes with respect to the observer. The SEP association rate is determined by dividing the number of SEP-producing CMEs by the total number of events in each 20 bin of the relative source longitude. We found that the SEP association rate peaked at the W60-W80 bin and the magnetically well-connected longitudes range from W20-W100. We also found that the rate distribution is skewed: the eastern wing of the rate distribution drops slowly compared to the western wing. This indicates that the eastern CMEs (longitude < 0) have a better chance to reach the magnetic field line connected to Earth than the far-behind-the-west-limb (longitude > 120) CMEs.

  13. Using email reminders to engage physicians in an Internet-based CME intervention

    PubMed Central

    Abdolrasulnia, Maziar; Collins, Blanche C; Casebeer, Linda; Wall, Terry; Spettell, Claire; Ray, Midge N; Weissman, Norman W; Allison, Jeroan J

    2004-01-01

    Background Engaging practicing physicians in educational strategies that reinforce guideline adoption and improve the quality of healthcare may be difficult. Push technologies such as email offer new opportunities to engage physicians in online educational reinforcing strategies. The objectives are to investigate 1) the effectiveness of email announcements in engaging recruited community-based primary care physicians in an online guideline reinforcement strategy designed to promote Chlamydia screening, 2) the characteristics of physicians who respond to email announcements, as well as 3) how quickly and when they respond to email announcements. Methods Over a 45-week period, 445 recruited physicians received up to 33 email contacts announcing and reminding them of an online women's health guideline reinforcing CME activity. Participation was defined as physician log-on at least once to the website. Data were analyzed to determine participation, to compare characteristics of participants with recruited physicians who did not participate, and to determine at what point and when participants logged on. Results Of 445 recruited physicians with accurate email addresses, 47.2% logged on and completed at least one module. There were no significant differences by age, race, or specialty between participants and non-participants. Female physicians, US medical graduates and MDs had higher participation rates than male physicians, international medical graduates and DOs. Physicians with higher baseline screening rates were significantly more likely to log on to the course. The first 10 emails were the most effective in engaging community-based physicians to complete the intervention. Physicians were more likely to log on in the afternoon and evening and on Monday or Thursday. Conclusions Email course reminders may enhance recruitment of physicians to interventions designed to reinforce guideline adoption; physicians' response to email reminders may vary by gender, degree, and country of medical training. Repetition of email communications contributes to physician online participation. PMID:15453911

  14. Use of Yohkoh SXT in Measuring the Net Current and CME Productivity of Active Regions

    NASA Astrophysics Data System (ADS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2002-01-01

    In our investigation of the correlation of global nonpotentiality of active regions to their CME productivity (Falconer, D. A. 2001, JGR, in press, and Falconer, Moore, & Gary, 2000, EOS 82, 20 S323), we use Yohkoh SXT images for two purposes. The first use is to help resolve the 180o ambiguity in the direction of the observed transverse magnetic field. Resolution of the 180o ambiguity is important, since the net current, one of our measures of global nonpotentiality, is derived from integrating the dot product of the transverse field around a contour (IN = int BTcdot dl). The ambiguity results from the observed transverse field being determined from the linear polarization, which gives the plane of the direction, but leaves a 180o ambiguity. Automated methods to resolve the ambiguity ranging from the simple acute angle rule (Falconer, D. A. 2001) to the more sophisticated annealing method (Metcalf T. R. 1994). For many active regions, especially ones that are nearly potential these methods work well. But for very nonpotential active regions where the shear angle (the angle between the observed and potential transverse field) is near 90o throughout large swaths along the main neutral line, both methods can resolve the ambiguity incorrectly for long segments of the neutral line. By determining from coronal images, such as those from Yohkoh/SXT, the sense of shear along the main neutral line in the active region, these cases can be identified and corrected by a modification of the acute angle rule described here. The second use of Yohkoh/SXT in this study is to check for the cusped coronal arcades of long-duration eruptive flares. This signature is an excellent proxy for CMEs, and was used by Canfield, Hudson, and McKenzie (1999 GRL V26, 6, 627-630). This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program.

  15. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances

  16. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... kelp) or invertebrate reef (e.g., coral reef) and is classified as “landward” in Table 6.2, Volume I of... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef) and is classified as... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal...

  17. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... kelp) or invertebrate reef (e.g., coral reef) and is classified as “landward” in Table 6.2, Volume I of... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef) and is classified as... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal...

  18. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of water that does not contain vegetation (e.g., wetland, seagrass, or kelp) or invertebrate reef (e... kelp) or invertebrate reef (e.g., coral reef) and is classified as “seaward” in Table 6.2, Volume I of..., seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal current—currents caused by...

  19. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... kelp) or invertebrate reef (e.g., coral reef) and is classified as “landward” in Table 6.2, Volume I of... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef) and is classified as... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal...

  20. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... kelp) or invertebrate reef (e.g., coral reef) and is classified as “landward” in Table 6.2, Volume I of... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef) and is classified as... vegetation (e.g., wetlands, seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal...

  1. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    NASA Astrophysics Data System (ADS)

    Robinson, I. M.; Simnett, G. M.

    2005-07-01

    We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003) and Li et al. (2003) which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons. Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections) Space plasma physics (Transport processes)

  2. Global Numerical Modeling of SEP Acceleration by a CME Shock in the Solar Corona and Subsequent Transport to 1 AU

    NASA Astrophysics Data System (ADS)

    Kozarev, K. A.; Evans, R. M.; Schwadron, N. A.; Dayeh, M. A.; Opher, M.; van der Holst, B.

    2012-12-01

    It has been suggested that solar energetic particles (SEP) may gain most of their energy at coronal mass ejection (CME)-driven shocks relatively close to the Sun. The observed and modeled Alfven speed profiles in the solar corona allow for fast shocks to develop within 10 solar radii. In addition, rapid changes occur in the ejected plasma structures and there is a great abundance of charged seed particles close to the Sun relative to the interplanetary populations. The combination of these conditions is favorable for the acceleration of large SEP fluxes, especially protons. However, the details of the acceleration process remain hidden due to the lack of in situ observations in the corona. As the next generation of solar exploratory missions (Solar Probe Plus and Solar Orbiter) gets ready to probe the plasma and particle conditions near the Sun directly, a better understanding of SEP acceleration processes in the corona is necessary. We have developed a comprehensive model for studying proton acceleration and global interplanetary transport. It consists of two parts: a three-dimensional magnetohydrodynamics (MHD) model of the solar corona and interplanetary space (part of the Space Weather Modeling Framework), which we use to simulate the corona, solar wind, and a CME; and a global energetic particle acceleration and transport kinetic model (the Energetic Particle Radiation Environment Module), which uses the results from the MHD simulation to model the time-dependent behavior of protons from the corona to 1 AU. We show that the shock and plasma structures may efficiently accelerate suprathermal protons to hundreds of MeV energies during their transit. We find that the resulting SEP spectra vary greatly depending on the location of their guiding field lines relative to the shock and CME.

  3. Testing the estimated hypothetical response of a major CME impact on Earth and its implications to space weather

    NASA Astrophysics Data System (ADS)

    Bala, Ramkumar; Reiff, Patricia; Russell, C. T.

    2015-05-01

    The high-speed coronal mass ejection (CME), ejected on 23 July 2012, observed by STEREO-A on the same day as the leading edge of the CME arrived at 1AU was unique both in respect to the observed plasma and magnetic structure and the large solar energetic particle flux that dynamically regulated the shock front. Because of its great intensity, it has been hailed as "Carrington 2" by some, warning that, had that CME been heading toward the Earth, it might have caused a major space weather event. We used the Rice Artificial Neural Network algorithms with the solar wind and interplanetary magnetic field parameters measured in situ by STEREO-A as inputs to infer what the "geoeffectiveness" of that storm might have been. We have also used an MHD model in Open Geospace General Circulation Model to understand the global magnetospheric process in time sequence. We presently show our neural network models of Kp and Dst on our real-time prediction site: http://mms.rice.edu/realtime/forecast.html. Running this event through our models showed that, in fact, this would have been an exceptional event. Our results show a prediction resulting in a Kp value of 8+, a Dst of nearly -250 nT, but when assumptions about maximum dipole angle tilt and density are made, predictions resulting in Kp of 11- and Dst dipping close to -700 nT are found. Finally, when solar energetic proton flux is included, the Kp and Dst predictions drop to 8- and ?-625 nT, respectively.

  4. Formation and Reactivity of Organo-Functionalized Tin Selenide Clusters.

    PubMed

    Rinn, Niklas; Euner, Jens P; Kaschuba, Willy; Xie, Xiulan; Dehnen, Stefanie

    2016-02-01

    Reactions of R(1) SnCl3 (R(1) =CMe2 CH2 C(O)Me) with (SiMe3 )2 Se yield a series of organo-functionalized tin selenide clusters, [(SnR(1) )2 SeCl4 ] (1), [(SnR(1) )2 Se2 Cl2 ] (2), [(SnR(1) )3 Se4 Cl] (3), and [(SnR(1) )4 Se6 ] (4), depending on the solvent and ratio of the reactants used. NMR experiments clearly suggest a stepwise formation of 1 through 4 by subsequent condensation steps with the concomitant release of Me3 SiCl. Furthermore, addition of hydrazines to the keto-functionalized clusters leads to the formation of hydrazone derivatives, [(Sn2 (?-R(3) )(?-Se)Cl4 ] (5, R(3) =[CMe2 CH2 CMe(NH)]2 ), [(SnR(2) )3 Se4 Cl] (6, R(2) =CMe2 CH2 C(NNH2 )Me), [(SnR(4) )3 Se4 ][SnCl3 ] (7, R(4) =CMe2 CH2 C(NNHPh)Me), [(SnR(2) )4 Se6 ] (8), and [(SnR(4) )4 Se6 ] (9). Upon treatment of 4 with [Cu(PPh3 )3 Cl] and excess (SiMe3 )2 Se, the cluster fragments to form [(R(1) Sn)2 Se2 (CuPPh3 )2 Se2 ] (10), the first discrete Sn/Se/Cu cluster compound reported in the literature. The derivatization reactions indicate fundamental differences between organotin sulfide and organotin selenide chemistry. PMID:26809118

  5. Comparison of the CME-associated shock arrival times at the earth using the WSA-ENLIL model with three cone models

    NASA Astrophysics Data System (ADS)

    Jang, S.; Moon, Y.; Na, H.

    2012-12-01

    We have made a comparison of CME-associated shock arrival times at the earth based on the WSA-ENLIL model with three cone models using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  6. The effect of rhBMP-2 and PRP delivery by biodegradable ?-tricalcium phosphate scaffolds on new bone formation in a non-through rabbit cranial defect model

    PubMed Central

    Lim, Hyun-Pil; Mercado-Pagan, Angel E.; Yun, Kwi-Dug; Kang, Seong-Soo; Choi, Taek-Hue; Bishop, Julius; Koh, Jeong-Tae; Maloney, William; Lee, Kwang-Min; Yang, Yunzhi; Park, Sang-Won

    2013-01-01

    This study evaluated whether the combination of biodegradable ?-tricalcium phosphate (?-TCP) scaffolds with recombinant human bone morphogenetic protein-2 (rhBMP-2) or platelet-rich plasma (PRP) could accelerate bone formation and increase bone height using a rabbit non-through cranial bone defect model. Four non-through cylindrical bone defects with a diameter of 8-mm were surgically created on the cranium of rabbits. ?-TCP scaffolds in the presence and absence of impregnated rhBMP-2 or PRP were placed into the defects. At 8 and 16 weeks after implantation, samples were dissected and fixed for analysis by microcomputed tomography and histology. Only defects with rhBMP-2 impregnated ?-TCP scaffolds showed significantly enhanced bone formation compared to non-impregnated ?-TCP scaffolds (p<0.05). Although new bone was higher than adjacent bone at 8 weeks after implantation, vertical bone augmentation was not observed at 16 weeks after implantation, probably due to scaffold resorption occurring concurrently with new bone formation. PMID:23779152

  7. A Parametric Study of Erupting Flux Rope Rotation: Modeling the 'Cartwheel CME' on 9 April 2008

    NASA Technical Reports Server (NTRS)

    Kliem, B.; Toeroek, T.; Thompson, W. T.

    2012-01-01

    The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear-field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance, due to the field's simple structure. In the low-beta corona, the rotation is not guided by the changing orientation of the vertical field component's polarity inversion line with height. The model yields strong initial rotations which saturate in the corona and differ qualitatively from the profile of rotation vs. height obtained in a recent simulation of an eruption without preexisting flux rope. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar within a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of approximately 115 deg. up to a height of 1.5 Solar R above the photosphere. Out of a range of initial equilibria which include strongly kink-unstable (Phi = 5 pi), weakly kink-unstable (Phi = 3.5 pi), and kink-stable (Phi = 2.5 pi) configurations, only the evolution of the weakly kink-unstable flux rope matches the observations in their entirety.

  8. Use of Yohkoh SXT in Measuring the Net Current and CME Productivity of Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.; Six, N. Frank (Technical Monitor)

    2001-01-01

    In our investigation of the correlation of global nonpotentiality of active regions to their CME productivity (Falconer, D.A. 2001, JGR, in press, and Falconer, Moore, & Gary, 2000, EOS 82, 20 S323), we use Yohkoh SXT images for two purposes. The first use is to help resolve the 180 degree ambiguity in the direction of the observed transverse magnetic field. Resolution of the 180 degree ambiguity is important, since the net current, one of our measures of global nonpotentiality, is derived from integrating the dot product of the transverse field around a contour (I(sub N)=(integral)BT(raised dot)dl). The ambiguity results from the observed transverse field being determined from the linear polarization, which gives the plane of the direction, but leaves a 180 degrees ambiguity. Automated methods to resolve the ambiguity ranging from the simple acute angle rule (Falconer, D.A. 2001) to the more sophisticated annealing method (Metcalf T.R. 1994). For many active regions, especially ones that are nearly potential these methods work well. But for very nonpotential active regions where the shear angle (the angle between the observed and potential transverse field) is near 90 degrees throughout large swaths along the main neutral line, both methods can resolve the ambiguity incorrectly for long segments of the neutral line. By determining from coronal images, such as those from Yohkoh/SXT, the sense of shear along the main neutral line in the active region, these cases can be identified and corrected by a modification of the acute angle rule described here. The second use of Yohkoh/SXT in this study is to check for the cusped coronal arcades of long-duration eruptive flares. This signature is an excellent proxy for CMEs, and was used by Canfield, Hudson, and McKenzie (1999 GRL V26, 6, 627-630). This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program.

  9. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  10. Information Delivery Options over Three Decades.

    ERIC Educational Resources Information Center

    Kennedy, H. Edward

    1986-01-01

    The rate of new technology-driven innovations for information delivery has accelerated over the past three decades. New information delivery formats in the 1950s and 1960s included microforms and, in response to demands from librarians, indexing and abstracting services began to make their publications available on this medium. Electronic

  11. Layered (2-D) Structure of [Ru2(O2CMe)4]2[Ni(CN)4] Determined via Rietveld Refinement of Synchrotron Powder Diffraction Data

    SciTech Connect

    J Her; P Stephens; B Kennon; C Liu; J Miller

    2011-12-31

    Reaction of [Ru{sub 2}(O{sub 2}CMe){sub 4}]Cl and K{sub 2}[Ni(CN){sub 4}] forms [Ru{sub 2}(O{sub 2}CMe){sub 4}]{sub 2}[Ni(CN){sub 4}] with the targeted layered structure possessing Ru-N{triple_bond}C-Ni linkages, albeit strained, with Ru-N{triple_bond}C and Ni-C{triple_bond}N angles in the range of 147-167{sup o}. The magnetic properties of [Ru{sub 2}(O{sub 2}CMe){sub 4}]{sub 2}[Ni(CN){sub 4}] can be fit to a zero-field splitting model with D/k{sub B} = 95 K (66 cm{sup -1}).

  12. RECONNECTION OUTFLOWS AND CURRENT SHEET OBSERVED WITH HINODE/XRT IN THE 2008 APRIL 9 'CARTWHEEL CME' FLARE

    SciTech Connect

    Savage, Sabrina L.; McKenzie, David E.; Longcope, Dana W.; Reeves, Katharine K.; Forbes, Terry G.

    2010-10-10

    Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft X-rays (SXR)), TRACE (extreme ultraviolet (EUV)), SOHO/LASCO (white light), SOHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics such as low emissivity and trajectories, which slow as they reach the top of the arcade, are consistent with post-reconnection magnetic flux tubes retracting from a reconnection site high in the corona until they reach a lower-energy magnetic configuration. Viewed from a perpendicular angle, SADs should appear as shrinking loops rather than downflowing voids. We present X-ray Telescope (XRT) observations of supra-arcade downflowing loops (SADLs) following a coronal mass ejection (CME) on 2008 April 9 and show that their speeds and decelerations are consistent with those determined for SADs. We also present evidence for a possible current sheet observed during this flare that extends between the flare arcade and the CME. Additionally, we show a correlation between reconnection outflows observed with XRT and outgoing flows observed with LASCO.

  13. Filament Eruption in NOAA 11093 Leading to a Two-Ribbon M1.0 Class Flare and CME

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Maurya, R. A.; Ambastha, A.

    2012-04-01

    We present a multi-wavelength analysis of an eruption event that occurred in active region NOAA 11093 on 7 August 2010, using data obtained from SDO, STEREO, RHESSI, and the GONG H? network telescope. From these observations, we inferred that an upward slow rising motion of an inverse S-shaped filament lying along the polarity inversion line resulted in a CME subsequent to a two-ribbon flare. Interaction of overlying field lines across the filament with the side-lobe field lines, associated EUV brightening, and flux emergence/cancelation around the filament were the observational signatures of the processes leading to its destabilization and the onset of eruption. Moreover, the time profile of the rising motion of the filament/flux rope corresponded well with flare characteristics, viz., the reconnection rate and hard X-ray emission profiles. The flux rope was accelerated to the maximum velocity as a CME at the peak phase of the flare, followed by deceleration to an average velocity of 590 km s-1. We suggest that the observed emergence/cancelation of magnetic fluxes near the filament caused it to rise, resulting in the tethers to cut and reconnection to take place beneath the filament; in agreement with the tether-cutting model. The corresponding increase/decrease in positive/negative photospheric fluxes found in the post-peak phase of the eruption provides unambiguous evidence of reconnection as a consequence of tether cutting.

  14. X-ray Emission from Jupiter's Aurora - Chandra Observations in 2011: CME and/or Io Connection?

    NASA Astrophysics Data System (ADS)

    Dunn, W.; Branduardi-Raymont, G.; Elsner, R.

    2014-04-01

    We report recent observations of Jupiter with the Chandra X-Ray Observatory (Figure 1). Given that it is uncertain whether the solar wind has a significant impact on Jupiter's X-ray aurora, we investigate the possible effects of solar activity on our observations. Specifically, we analyse Jupiter X-ray emission at a time when propagation models predicted the arrival of a Coronal Mass Ejection (CME) at Jupiter. We investigate spatial features and their temporal and morphological variability to determine whether in the short-term these might be impacted by the CME or changes in the orbital location of Io. In particular, we try to separate contributions from different charged particles thought to be at the origin of the emission. We investigate local time variations to determine whether Jupiter's magnetosphere compression might impact X-ray aurora signatures and we track the location of Io throughout the observation to further analyse whether its orbital-location impacts on X-ray emission. We also compare our analysis with previously published observations to search for any long-term variation in the system.

  15. A comparison of the effects of CIR- and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: Case studies

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Ming; Xu, Jiyao; Wang, Wenbin; Lei, Jiuhou; Burns, Alan G.

    2012-08-01

    So far studies of the effect of geomagnetic storms on thermospheric density and satellite orbits have been mainly focused on severe storm events caused by Coronal Mass Ejections (CMEs). The effect of long-duration, less intensive geomagnetic activity that is related to Corotating Interaction Regions (CIRs) has not been fully explored. In this paper, thermospheric densities observed by the CHAMP satellite and its orbit parameters are used to compare the responses of satellite orbital altitudes to geomagnetic activity caused by CMEs and CIRs. Three cases are investigated in this paper. Each case had one or two CME storm(s) and one CIR storm that occurred successively. In these cases three out of four CME-storms were stronger than their corresponding CIR-storms, but the durations of these CME-storms were much shorter. Thus, the satellite orbit decay rates during CME-storms are usually larger than those during CIR-storms. However, CIR-storms often had long durations that perturbed satellite orbits for longer periods of time. As a result, the total thermospheric density changes and satellite orbit decays for the entire periods of CIR-storms were much greater than those for the CME-storms since these parameters were related to the total energy deposited into the thermosphere/ionosphere, which depended on both the strengths and the durations of the storms. This study indicates that more attention should be paid to CIR storms during the declining phase and during solar minimum, when they occur frequently and periodically. Whereas fewer CME storms occurring under these conditions. We also found that changes in thermospheric densities and CHAMP orbit decay rates correlated well with variations of auroral hemispheric power, but lagging by about 3-6 h.

  16. Typical CME-IP shock events during the ascending phase of Solar Cycle 24 and their arrival time predictions at Earth

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Feng, X.

    2013-12-01

    Predicting arrival times of interplanetary (IP) shocks at the near Earth space is an important ingredient of space weather forecasting because the passage of an IP shock at Earth will compress the magnetosphere and produce corresponding space weather effects. We have developed a new shock arrival time prediction model, called SPM2, based on 551 solar disturbance events during Solar Cycle 23. Here new shock events in Solar Cycle 24 will be used to check the predicting performance of SPM2. 35 typical CME-IP shock events during the ascending phase of Solar Cycle 24 (2009-2013) with near-simultaneous coronagraph observations of CMEs and metric type II radio bursts are adopted as the sample events. Comparisons between the initial shock speed calculated from the type II burst drifting rate and the CME speed derived from coronagraph observations are investigated. It is found that the multi-spacecraft coronagraph observations combined with appropriate CME leading edge fitting model can give a more reliable CME radial speed than the type II burst shock speed. Then, SPM2 and an empirical model, which input the type II shock speed and CME speed respectively, are used to give the arrival time prediction of the associated IP shocks at the Earth orbit. The predicting precision of the empirical model would become better if the CME is tracked to a larger helio-distance. The prediction of SPM2 gives a similar predicting accuracy even its input parameters contain larger uncertainties. On this sense, the potential capability of the SPM2 model is also discussed in terms of real-time shock arrival time forecasts.

  17. Transcriptional Regulation of the CmeABC Multidrug Efflux Pump and the KatA Catalase by CosR in Campylobacter jejuni

    PubMed Central

    Hwang, Sunyoung; Zhang, Qijing; Ryu, Sangryeol

    2012-01-01

    CosR is an essential response regulator in Campylobacter jejuni, a major food-borne pathogen causing enteritis worldwide. A transcriptomic analysis performed in this study discovered 93 genes whose transcriptional levels were changed >2-fold due to the repression of CosR expression by antisense peptide nucleic acid. The identified CosR-regulated genes are involved in various cellular functions, such as energy production, protein synthesis and folding, flagellum biogenesis, and lipid metabolism. Interestingly, 17 of the 93 CosR-regulated genes (18.3%) are predicted essential genes, indicating that CosR may participate in the regulation of vital biological processes in C. jejuni. In particular, CosR knockdown increased the transcriptional levels of cmeA, cmeB, and cmeC genes, whose protein product (CmeABC) is an important determinant conferring multidrug resistance in Campylobacter. Negative regulation of cmeABC by CosR was verified by quantitative real-time PCR (qRT-PCR) and PcmeABC::lacZ assay. The results of electrophoretic mobility shift assays (EMSAs) and DNase I footprinting assays demonstrated that CosR directly binds to the cmeABC promoter. Another notable finding is that CosR regulates the transcription of katA, the sole catalase gene in C. jejuni. Further characterization with qRT-PCR, the catalase enzyme assay, EMSA, and DNase I footprinting assays successfully demonstrated that CosR affects the katA transcription and the catalase activity by direct interactions with the katA promoter. The findings in this study clearly demonstrated that CosR regulates resistance mechanisms in C. jejuni by controlling the expression of genes involved in oxidative stress defense and extrusion of toxic compounds out of the cell. PMID:23065977

  18. Driving Cartilage Formation in High-Density Human Adipose-Derived Stem Cell Aggregate and Sheet Constructs Without Exogenous Growth Factor Delivery

    PubMed Central

    Dang, Phuong N.; Solorio, Loran D.

    2014-01-01

    An attractive cell source for cartilage tissue engineering, human adipose-derived stem cells (hASCs) can be easily expanded and signaled to differentiate into chondrocytes. This study explores the influence of growth factor distribution and release kinetics on cartilage formation within 3D hASC constructs incorporated with transforming growth factor-β1 (TGF-β1)-loaded gelatin microspheres. The amounts of microspheres, TGF-β1 concentration, and polymer degradation rate were varied within hASC aggregates. Microsphere and TGF-β1 loading concentrations were identified that resulted in glycosaminoglycan (GAG) production comparable to those of control aggregates cultured in TGF-β1-containing medium. Self-assembling hASC sheets were then engineered for the production of larger, more clinically relevant constructs. Chondrogenesis was observed in hASC-only sheets cultured with exogenous TGF-β1 at 3 weeks. Importantly, sheets with incorporated TGF-β1-loaded microspheres achieved GAG production similar to sheets treated with exogenous TGF-β1. Cartilage formation was confirmed histologically via observation of cartilage-like morphology and GAG staining. This is the first demonstration of the self-assembly of hASCs into high-density cell sheets capable of forming cartilage in the presence of exogenous TGF-β1 or with TGF-β1-releasing microspheres. Microsphere incorporation may bypass the need for extended in vitro culture, potentially enabling hASC sheets to be implanted more rapidly into defects to regenerate cartilage in vivo. PMID:24873753

  19. An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA-Enlil heliospheric model

    NASA Astrophysics Data System (ADS)

    Millward, G.; Biesecker, D.; Pizzo, V.; Koning, C. A.

    2013-02-01

    Coronal mass ejections (CMEs)massive explosions of dense plasma that originate in the lower solar atmosphere and propagate outward into the solar windare the leading cause of significant space weather effects within Earth's environment. Computational models of the heliosphere such as WSA-Enlil offer the possibility of predicting whether a given CME will become geo-effective and, if so, the likely time of arrival at Earth. To be meaningful, such a forecast model is dependent upon accurately characterizing key parameters for the CME, notably its speed and direction of propagation, and its angular width. Studies by Zhao et al. (2002) and Xie et al. (2004) suggest that these key CME parameters can be deduced from geometric analysis of the elliptical "halo" forms observed in coronagraph images on spacecraft such as the Solar and Heliospheric Observatory (SOHO) and which result from a CME whose propagation is roughly toward or away from the observer. Both studies assume that the CME presents a circular cross-section and maintains a constant angular width during its radial expansion, the so called "cone model." Development work at the NOAA Space Weather Prediction Center (SWPC) has been concerned with building and testing software tools to allow forecasters to determine these CME parameters routinely within an operational context, a key aspect of transitioning the WSA-Enlil heliospheric model into operations at the National Weather Service. We find "single viewpoint" cone analysis, while a useful start, to be highly problematic in many real-world situations. In particular, it is extremely difficult to establish objectively the correct ellipse that should be applied to a given halo form and that small changes in the exact ellipse chosen can lead to large differences in the deduced CME parameters. The inaccuracies in the technique are particularly evident for analysis of the "nearly circular" elliptical forms which result from CMEs that are propagating directly toward the observer and are therefore the most likely to be geo-effective. In working to resolve this issue we have developed a new three-dimensional (3-D) graphics-based analysis system which seeks to reduce inaccuracies by analyzing a CME using coronagraph images taken concurrently by SOHO and also by the two Solar TErrestrial RElations Observatory (STEREO) spacecraft, which provide additional viewing locations well away from the Sun-Earth line. The resulting "three view" technique has led to the development of the CME Analysis Tool (CAT), an operational software system in routine use at the SWPC as the primary means to determine CME parameters for input into the WSA-Enlil model. Results from the operational WSA-Enlil system are presented: utilizing CAT to provide CME input parameters, we show that, during the first year of operations at SWPC, the WSA-Enlil model has forecasted the arrival of CMEs at Earth with an average error 7.5 h.

  20. Analysis and interpretation of a fast limb CME with eruptive prominence, C-flare, and EUV dimming

    NASA Astrophysics Data System (ADS)

    Koutchmy, S.; Slemzin, V.; Filippov, B.; Noens, J.-C.; Romeuf, D.; Golub, L.

    2008-05-01

    Aims: Coronal mass ejections or CMEs are large dynamical solar-corona events. The mass balance and kinematics of a fast limb CME, including its prominence progenitor and the associated flare, will be compared with computed magnetic structures to look for their origin and effect. Methods: Multi-wavelength ground-based and spaceborne observations are used to study a fast W-limb CME event of December 2, 2003, taking into account both on and off disk observations. Its erupting prominence is measured at high cadence with the Pic du Midi full H? line-flux imaging coronagraph. EUV images from SOHO/EIT and CORONAS-F/SPIRIT space instruments are processed including difference imaging. SOHO/LASCO images are used to study the mass excess and motions. Computed coronal structures from extrapolated surface magnetic fields are compared to observations. Results: A fast bright expanding coronal loop is identified in the region recorded slightly later by GOES as a C7.2 flare, followed by a brightening and an acceleration phase of the erupting material with both cool and hot components. The total coronal radiative flux dropped by ~7% in the 19.5 nm channel and by 4% in the 17.5 nm channel, revealing a large dimming effect at and above the limb over a 2 h interval. The typical 3-part structure observed 1 h later by the Lasco C2 and C3 coronagraphs shows a core shaped similarly to the eruptive filament/prominence. The total measured mass of the escaping CME (~1.51016 g from C2 LASCO observations) definitely exceeds the estimated mass of the escaping cool prominence material although assumptions made to analyze the H? erupting prominence, as well as the corresponding EUV darkening of the filament observed several days before, made this evaluation uncertain by a factor of 2. This mass budget suggests that the event is not confined to the eruption region alone. From the current free extrapolation we discuss the shape of the magnetic neutral surface and a possible scenario leading to an instability, including the small scale dynamics inside and around the filament.

  1. The First Ground Level Enhancement Event of Solar Cycle 24: Direct Observation of Shock Formation and Particle Release Heights

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Yashiro, S.; Usoskin, I. G.; Davila, J. M.

    2013-01-01

    We report on the 2012 May 17 ground level enhancement (GLE) event, which is the first of its kind in solar cycle 24. This is the first GLE event to be fully observed close to the surface by the Solar Terrestrial Relations Observatory (STEREO) mission.We determine the coronal mass ejection (CME) height at the start of the associated metric type II radio burst (i.e., shock formation height) as 1.38 Rs (from the Sun center). The CME height at the time of GLE particle release was directly measured from a STEREO image as 2.32 Rs, which agrees well with the estimation from CME kinematics. These heights are consistent with those obtained for cycle-23 GLEs using back-extrapolation. By contrasting the 2012 May 17 GLE with six other non-GLE eruptions from well-connected regions with similar or larger flare sizes and CME speeds, we find that the latitudinal distance from the ecliptic is rather large for the non-GLE events due to a combination of non-radial CME motion and unfavorable solar B0 angle, making the connectivity to Earth poorer. We also find that the coronal environment may play a role in deciding the shock strength.

  2. THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24: DIRECT OBSERVATION OF SHOCK FORMATION AND PARTICLE RELEASE HEIGHTS

    SciTech Connect

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Yashiro, S.; Davila, J. M.; Usoskin, I. G.

    2013-03-10

    We report on the 2012 May 17 ground level enhancement (GLE) event, which is the first of its kind in solar cycle 24. This is the first GLE event to be fully observed close to the surface by the Solar Terrestrial Relations Observatory (STEREO) mission. We determine the coronal mass ejection (CME) height at the start of the associated metric type II radio burst (i.e., shock formation height) as 1.38 Rs (from the Sun center). The CME height at the time of GLE particle release was directly measured from a STEREO image as 2.32 Rs, which agrees well with the estimation from CME kinematics. These heights are consistent with those obtained for cycle-23 GLEs using back-extrapolation. By contrasting the 2012 May 17 GLE with six other non-GLE eruptions from well-connected regions with similar or larger flare sizes and CME speeds, we find that the latitudinal distance from the ecliptic is rather large for the non-GLE events due to a combination of non-radial CME motion and unfavorable solar B0 angle, making the connectivity to Earth poorer. We also find that the coronal environment may play a role in deciding the shock strength.

  3. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    SciTech Connect

    Raghav, Anil; Lotekar, Ajay; Bhaskar, Ankush; Vichare, Geeta; Yadav, Virendra E-mail: ankushbhaskar@gmail.com E-mail: vicharegeeta@gmail.com

    2014-10-01

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase show rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud.

  4. Evolution of the 12 July 2012 CME from the Sun to the Earth: Data-constrained three-dimensional MHD simulations

    NASA Astrophysics Data System (ADS)

    Shen, Fang; Shen, Chenglong; Zhang, Jie; Hess, Phillip; Wang, Yuming; Feng, Xueshang; Cheng, Hongze; Yang, Yi

    2014-09-01

    The dynamic process of coronal mass ejections (CMEs) in the heliosphere provides us the key information for evaluating CMEs' geoeffectiveness and improving the accurate prediction of CME-induced shock arrival time at the Earth. We present a data-constrained three-dimensional (3-D) magnetohydrodynamic (MHD) simulation of the evolution of the CME in a realistic ambient solar wind for the 12-16 July 2012 event by using the 3-D corona interplanetary total variation diminishing (COIN-TVD) MHD code. A detailed comparison of the kinematic evolution of the CME between the observations and the simulation is carried out, including the usage of the time elongation maps from the perspectives of both STEREO A and STEREO B. In this case study, we find that our 3-D COIN-TVD MHD model, with the magnetized plasma blob as the driver, is able to reproduce relatively well the real 3-D nature of the CME in morphology and their evolution from the Sun to the Earth. The simulation also provides a relatively satisfactory comparison with the in situ plasma data from the Wind spacecraft.

  5. Calculation of CME kinematics and propagation directions by connecting STEREO HI-images with in situ data

    NASA Astrophysics Data System (ADS)

    Rollett, Tanja; Moestl, Christian; Temmer, Manuela; Veronig, Astrid; Biernat, Helfried K.

    On a sample of selected events we determined the propagation directions and the kinematics of several coronal mass ejections by using data provided by the Heliospheric Imagers (HI) and the PLASTIC and IMPACT instruments onboard the two STEREO satellites and the Wind spacecraft near Earth. We tracked for each CME the leading edge and core within time-elongation plots (Jplots) and converted the measured elongation angle into distance by using different methods (Point-P, Fixed-Phi and their harmonic mean). Furthermore, we used the Sheeley-method to fit our measurements and calculate the propagation angles and arrival times at the other spacecraft assuming that the CMEs propagate with constant velocity. Finally we discuss our results by comparing the kinematics derived from the different techniques.

  6. [Usability study of an e-learning system for CME in occupational medicine: preparatory analysis and remedial actions].

    PubMed

    Mazzoleni, M C; Rognoni, C; Finozzi, E; Giorgi, I; Raho, C; Nervi, D; Pugliese, F; Pagani, M; Imbriani, M

    2008-01-01

    This paper describes the activities carried out in order to make an e-learning system for CME be a good tool in terms of usability. The following steps are described:--the needs analysis of the potential users;--the prototype of the e-learning system that has been set up;--the usability evaluation of the prototype by a sample often users before and after the implementation of the identified remedial actions. The obtained results support the hypothesis of an effective usage of the system in the near future. The follow-up of real users' usage, through the tracing facilities of the e-learning platform, will confirm or reject our hypothesis. PMID:19344087

  7. A model on CME/Flare initiation: Loss of Equilibrium caused by mass loss of quiescent prominences

    NASA Astrophysics Data System (ADS)

    Miley, George; Chon Nam, Sok; Kim, Mun Song; Kim, Jik Su

    2015-08-01

    Coronal Mass Ejections (CMEs) model should give an answer to enough energy storage for giant bulk plasma into interplanetary space to escape against the sun’s gravitation and its explosive eruption. Advocates of ‘Mass Loading’ model (e.g. Low, B. 1996, SP, 167, 217) suggested a simple mechanism of CME initiation, the loss of mass from a prominence anchoring magnetic flux rope, but they did not associate the mass loss with the loss of equilibrium. The catastrophic loss of equilibrium model is considered as to be a prospective CME/Flare model to explain sudden eruption of magnetic flux systems. Isenberg, P. A., et al (1993, ApJ, 417, 368)developed ideal magnetohydrodynamic theory of the magnetic flux rope to show occurrence of catastrophic loss of equilibrium according to increasing magnetic flux transported into corona.We begin with extending their study including gravity on prominence’s material to obtain equilibrium curves in case of given mass parameters, which are the strengths of the gravitational force compared with the characteristic magnetic force. Furthermore, we study quasi-static evolution of the system including massive prominence flux rope and current sheet below it to obtain equilibrium curves of prominence’s height according to decreasing mass parameter in a properly fixed magnetic environment. The curves show equilibrium loss behaviors to imply that mass loss result in equilibrium loss. Released fractions of magnetic energy are greater than corresponding zero-mass case. This eruption mechanism is expected to be able to apply to the eruptions of quiescent prominences, which is located in relatively weak magnetic environment with 105 km of scale length and 10G of photospheric magnetic field.

  8. MICROWAVE QUASI-PERIODIC PULSATIONS IN MULTI-TIMESCALES ASSOCIATED WITH A SOLAR FLARE/CME EVENT

    SciTech Connect

    Tan Baolin; Zhang Yin; Tan Chengming; Liu Yuying

    2010-11-01

    Microwave observations of quasi-periodic pulsations (QPPs) in multi-timescales at the Solar Broadband Radio Spectrometer in Huairou (SBRS/Huairou) on 2006 December 13 are confirmed to be associated with an X3.4 flare/coronal mass ejection (CME) event. It is most remarkable that the timescales of QPPs are distributed in a broad range from hectoseconds (very long period pulsation, VLP, P>100 s), decaseconds (long period pulsation, LPP, 10 < P < 100 s), a few seconds (short period pulsation, SPP, 1 < P < 10 s), deciseconds (slow very short period pulsation, slow-VSP, 0.1 < P < 1.0 s), to centiseconds (fast very short period pulsation, fast-VSP, P < 0.1 s), and form a broad hierarchy. The statistical distribution of QPPs in logarithmic period-duration space indicates that all the QPPs can be classified into two groups: group I includes VLP, LPP, SPP, and some slow-VSPs distributed approximately around a line; group II includes fast-VSP and most of the slow-VSPs dispersively distributed away from the above line. This feature implies that the generation mechanism of group I is different from group II. Group I is possibly related to some MHD oscillations in magnetized plasma loops in the active region; e.g., VLPs may be generated by standing slow sausage mode coupling, resonating with the underlying photospheric 5 minute oscillation, with the modulation amplified and forming the main framework of the whole flare/CME process; LPPs, SPPs, and some slow-VSPs are most likely to be caused by standing fast modes or LRC-circuit resonance in current-carrying plasma loops. Group II is possibly generated by modulations of resistive tearing-mode oscillations in electric current-carrying flaring loops.

  9. An Ensemble Study of a January 2010 Coronal Mass Ejection (CME): Connecting a Non-obvious Solar Source with Its ICME/Magnetic Cloud

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Bisi, M. M.; de Koning, C. A.; Farrugia, C. J.; Jackson, B. V.; Jian, L. K.; Lugaz, N.; Marubashi, K.; Mstl, C.; Romashets, E. P.; Wood, B. E.; Yu, H.-S.

    2014-11-01

    A distinct magnetic cloud (MC) was observed in-situ at the Solar TErrestrial RElations Observatory (STEREO)-B on 20 - 21 January 2010. About three days earlier, on 17 January, a bright flare and coronal mass ejection (CME) were clearly observed by STEREO-B, which suggests that this was the progenitor of the MC. However, the in-situ speed of the event, several earlier weaker events, heliospheric imaging, and a longitude mismatch with the STEREO-B spacecraft made this interpretation unlikely. We searched for other possible solar eruptions that could have caused the MC and found a faint filament eruption and the associated CME on 14 - 15 January as the likely solar source event. We were able to confirm this source by using coronal imaging from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/EUVI and COR and Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronograph (LASCO) telescopes and heliospheric imaging from the Solar Mass Ejection Imager (SMEI) and the STEREO/ Heliospheric Imager instruments. We use several empirical models to understand the three-dimensional geometry and propagation of the CME, analyze the in-situ characteristics of the associated ICME, and investigate the characteristics of the MC by comparing four independent flux-rope model fits with the launch observations and magnetic-field orientations. The geometry and orientations of the CME from the heliospheric-density reconstructions and the in-situ modeling are remarkably consistent. Lastly, this event demonstrates that a careful analysis of all aspects of the development and evolution of a CME is necessary to correctly identify the solar counterpart of an ICME/MC.

  10. Responsibility of a Filament Eruption for the Initiation of a Flare, CME, and Blast Wave, and its Possible Transformation into a Bow Shock

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Uralov, A. M.; Kuzmenko, I. V.; Kochanov, A. A.; Chertok, I. M.; Kalashnikov, S. S.

    2015-01-01

    Multi-instrument observations of two filament eruptions on 24 February and 11 May 2011 suggest the following updated scenario for eruptive flare, coronal mass ejection (CME), and shock wave evolution. An initial destabilization of a filament results in stretching out of the magnetic threads belonging to its body that are rooted in the photosphere along the inversion line. Their reconnection leads to i) heating of parts of the filament or its environment, ii) an initial development of the flare cusp, arcade, and ribbons, iii) an increasing similarity of the filament to a curved flux rope, and iv) to its acceleration. Then the pre-eruption arcade enveloping the filament becomes involved in reconnection according to the standard model and continues to form the flare arcade and ribbons. The poloidal magnetic flux in the curved rope developing from the filament progressively increases and forces its toroidal expansion. This flux rope impulsively expands and produces a magnetohydrodynamical disturbance, which rapidly steepens into a shock. The shock passes through the arcade that expands above the filament and then freely propagates for some time ahead of the CME like a decelerating blast wave. If the CME is slow, then the shock eventually decays. Otherwise, the frontal part of the shock changes into the bow-shock regime. This was observed for the first time in the 24 February 2011 event. When reconnection ceases, the flux rope relaxes and constitutes the CME core-cavity system. The expanding arcade develops into the CME frontal structure. We also found that reconnection in the current sheet of a remote streamer forced by the shock passage results in a running flare-like process within the streamer responsible for a type II burst. The development of dimming and various associated phenomena are discussed.

  11. Ocular delivery of macromolecules

    PubMed Central

    Kim, Yoo-Chun; Chiang, Bryce; Wu, Xianggen; Prausnitz, Mark R.

    2014-01-01

    Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non--invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance. PMID:24998941

  12. Transdermal drug delivery

    PubMed Central

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  13. Transdermal drug delivery.

    PubMed

    Prausnitz, Mark R; Langer, Robert

    2008-11-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine. PMID:18997767

  14. Amphiplex Formation

    NASA Astrophysics Data System (ADS)

    Petersen, Shannon; Laaser, Jennifer; Lodge, Timothy

    2015-03-01

    Polymer-micelle complexes are currently under heavy investigation due to their potential applications in targeted drug delivery and gene therapy, yet the dynamics of the complex formation is still relatively unstudied. By varying the ratios of poly(styrene sulfonate) chains and cationic poly(dimethylaminoethyl methacrylate)-b-poly(styrene) micelles and the ionic strength of the system, we created a variety of complex configurations of different sizes and charges. The complexes were characterized dynamic light scattering and zeta potential measurements which provided information regarding the hydrodynamic radius, distribution of sizes, and effective charge.

  15. A Study of the 12 June 2010 C6.1/SF flare associated with a CME, surge and energetic particles

    NASA Astrophysics Data System (ADS)

    Uddin, Wahab; Jain, Rajmal; Manoharan, P. K.; Prasad Choudhary, Debi; Charan Dwivedi, Vidya; Aschwanden, Markus; Nitta, Nariaki; Gopalswamy, Nat; Awasthi, Arun Kumar; Chandra, Ramesh; Srivastava, Abhishek K.; Kayshap, Pradeep; Joshi, N. C.; Norris, Max; Makela, Pertti; Mahalaksh, K.

    2012-07-01

    In this paper, we present the multiwavelength analysis of the C6.1/SF flare on 12 June 2010 from NOAA AR 11081. The flare was observed by various ground based (ARIES H-alpha; HIRAS Radio) and space borne observatories (SDO, STEREO, SOHO, GOES). The flare was accompanied by a spray/surge and a slow coronal mass ejection (CME) that propagated with a speed of ~382 km/s. The eruption was associated with a weak solar energetic particle (SEP) event. The solar source of the eruption was a rapid emerging flux region. The eruption was also associated with the three major types of radio bursts (type II, III and IV). The interesting observation is the shock production (type II burst and SEP event) by a relatively slow CME. We interpret the results in the light of existing theories.

  16. Synopsis of Diet in Dermatology: A one day CME conducted by the Department of Dermatology, Kasturba Medical College, Manipal, March 3, 2013

    PubMed Central

    Prabhu, Smitha S; Nayak, Sudhir UK; Shenoi, Shrutakirthi Damodar; Pai, Sathish Ballambat

    2013-01-01

    Food is intricately related to mind and body and is one of the elements sustaining life, in disease as well as in health. There are many myths and misgivings regarding partake of food and its medicinal properties. The Department of Dermatology, Kasturba Medical College (KMC), Manipal organized a continuing medical education (CME) on Diet in Dermatology on 3rd March 2013 focusing on pertinent issues regarding diet and medicinal use of food. PMID:24350027

  17. Inner heliospheric evolution of a 'STEALTH' CME derived from multi-view imaging and multipoint in situ observations. I. Propagation to 1 AU

    SciTech Connect

    Nieves-Chinchilla, T.; Vourlidas, A.; Stenborg, G.; Savani, N. P.; Koval, A.; Szabo, A.; Jian, L. K.

    2013-12-10

    Coronal mass ejections (CMEs) are the main driver of space weather. Therefore, a precise forecasting of their likely geo-effectiveness relies on an accurate tracking of their morphological and kinematical evolution throughout the interplanetary medium. However, single viewpoint observations require many assumptions to model the development of the features of CMEs. The most common hypotheses were those of radial propagation and self-similar expansion. The use of different viewpoints shows that, at least for some cases, those assumptions are no longer valid. From radial propagation, typical attributes that can now be confirmed to exist are over-expansion and/or rotation along the propagation axis. Understanding the 3D development and evolution of the CME features will help to establish the connection between remote and in situ observations, and hence help forecast space weather. We present an analysis of the morphological and kinematical evolution of a STEREO-B-directed CME on 2009 August 25-27. By means of a comprehensive analysis of remote imaging observations provided by the SOHO, STEREO, and SDO missions, and in situ measurements recorded by Wind, ACE, and MESSENGER, we prove in this paper that the event exhibits signatures of deflection, which are usually associated with changes in the direction of propagation and/or also with rotation. The interaction with other magnetic obstacles could act as a catalyst of deflection or rotation effects. We also propose a method to investigate the change of the CME tilt from the analysis of height-time direct measurements. If this method is validated in further work, it may have important implications for space weather studies because it will allow for inference of the interplanetary counterpart of the CME's orientation.

  18. Thermosensitive polymers for drug delivery

    SciTech Connect

    Gutowska, A.; Kim, Sung Wan

    1996-12-31

    Thermosensitive polymers (TSP) demonstrating temperature-dependent temperature-dependent swelling in water have been extensively studied in recent years. Their molecular and physical properties have been tailored for a variety of biomedical and engineering uses. This presentation will discuss TSP based on poly(N-isopropylacrylamide) and its crosslinked networks modified with hydrophobic or hydrophilic components by copolymerization blending and formation of interpenetrating polymer networks (IPNs). TSP designed for three different areas of drug delivery will be presented. First, heparin releasing temperature-sensitive polymers for the prevention of surface induced thrombosis will be presented as an example of a local macromolecular delivery from a surface of a medical device. Second, a new oral delivery device based on a novel mechanical squeezing concept, utilizing specific swelling-deswelling characteristics of temperature- and temperature/pH-sensitive hydrogels will be described. These hydrogels were synthesized to exhibit a controlled swelling-deswelling kinetics, hence a variety of release profiles may be generated: a delayed, a zero-order or an {open_quotes}on-off{close_quotes} release profile. Finally, thermally reversible polymeric gels as an extracellular matrix for the entrapment of pancreatic islet cells in biohybrid artificial pancreas for insulin delivery will be discussed.

  19. Articulating feedstock delivery device

    SciTech Connect

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  20. Preliminary analysis of a CME observed by SOHO and Ulysses Experiments

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Romoli, M.; Suess, S. T.

    2003-01-01

    Over the last week of November 2002 SOHO/LASCO observed several Coronal Mass Ejections, most of which occurring in the NW quadrant. At that time SOHO/UVCS was involved in a SOHO-Sun-Ulysses quadrature campaign, making observations off the west limb of the Sun, at a northern latitude of 27 deg. Here we focus on data taken at 1.7 solar radii, over a time interval of approx. 7 hours, on 26/27 November 2002, when a large streamer disruption was imaged by LASCO C2 and C3 coronagraphs. UVCS spectra revealed the presence of lines from both high and low ionization ions, such as C III, O VI, Si VIII, IX, and XII, Fe X and XVIII, which brighten at different times, with a different time scale and at different positions and are apparently related to different phenomena. In particular, the intensity increase and fast disappearance of the C III 977 Angstrom line represents the passage through the UVCS slit of cold material released in a jet imaged by EIT in the He II 304 Angstrom line. The persistent presence of the Fe XVIII 974 Angstrom line is not easily related to any special feature crossing the UVCS slit. We suggest to interpret this behavior in terms of the reconnection events which lead to the formation of loops observed in the EIT He II 304 Angstrom line.

  1. Influence of solar flares and CME on the gaseous envelopes of hot Jupiter exoplanets

    NASA Astrophysics Data System (ADS)

    Bisikalo, Dmitry; Cherenkov, Alexander

    2015-08-01

    Hot Jupiters, i.e. exoplanets having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1~AU, have a number of outstanding features, caused mostly by their proximity to the host star. As a matter of fact, the atmospheres of several dozens of these planets fill their Roche lobes, which results in a powerful outflow of material from the planet toward the host star. In addition, since the planet orbits at a short distance, its orbital velocity is supersonic, which causes the formation of a bow shock ahead of the planet. These effects substantially change the mechanism of interaction between the planet's gaseous envelope (atmosphere) and the stellar wind. In this paper, we investigate the flow pattern in the vicinity of a typical hot Jupiter by using 3D gas dynamic simulations. By considering the star-planet interaction we study variations in the structure of the hot Jupiter's envelope and estimate the variations of atmospheres mass-loss rate caused by the influence of typical solar flares and coronal mass ejections.

  2. Analysis of EIT/LASCO Observations Using Available MHD Models: Investigation of CME Initiation Propagation and Geoeffectiveness

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2001-01-01

    The Sun's activity drives the variability of geospace (i.e., near-earth environment). Observations show that the ejection of plasma from the sun, called coronal mass ejections (CMEs), are the major cause of geomagnetic storms. This global-scale solar dynamical feature of coronal mass ejection was discovered almost three decades ago by the use of space-borne coronagraphs (OSO-7, Skylab/ATM and P78-1). Significant progress has been made in understanding the physical nature of the CMEs. Observations show that these global-scale CMEs have size in the order of a solar radius (approximately 6.7 x 10(exp 5) km) near the sun, and each event involves a mass of about 10(exp 15) g and an energy comparable to that of a large flare on the order of 10(exp 32) ergs. The radial propagation speeds of CMEs have a wide range from tens to thousands of kilometers per second. Thus, the transit time to near earth's environment [i.e., 1 AU (astronomical unit)] can be as fast as 40 hours to 100 hours. The typical transit time for geoeffective events is approximately 60-80 h. This paper consists of two parts: 1) A summary of the observed CMEs from Skylab to the present SOHO will be presented. Special attention will be made to SOHO/ LASCO/ EIT observations and their characteristics leading to a geoeffectiv a CME 2) The chronological development of theory and models to interpret the physical nature of this fascinating phenomenon will be reviewed. Finally, an example will be presented to illustrate the geoeffectiveness of the CMEs by using both observation and model.

  3. Community Digital Library Requirements for the Southern California Earthquake Center Community Modeling Environment (SCEC/CME)

    NASA Astrophysics Data System (ADS)

    Moore, R.; Faerman, M.; Minster, J.; Day, S. M.; Ely, G.

    2003-12-01

    A community digital library provides support for ingestion, organization, description, preservation, and access of digital entities. The technologies that traditionally provide these capabilities are digital libraries (ingestion, organization, description), persistent archives (preservation) and data grids (access). We present a design for the SCEC community digital library that incorporates aspects of all three systems. Multiple groups have created integrated environments that sustain large-scale scientific data collections. By examining these projects, the following stages of implementation can be identified: \\begin{itemize} Definition of semantic terms to associate with relevant information. This includes definition of uniform content descriptors to describe physical quantities relevant to the scientific discipline, and creation of concept spaces to define how the uniform content descriptors are logically related. Organization of digital entities into logical collections that make it simple to browse and manage related material. Definition of services that are used to access and manipulate material in the collection. Creation of a preservation environment for the long-term management of the collection. Each community is faced with heterogeneity that is introduced when data is distributed across multiple sites, or when multiple sets of collection semantics are used, and or when multiple scientific sub-disciplines are federated. We will present the relevant standards that simplify the implementation of the SCEC community library, the resource requirements for different types of data sets that drive the implementation, and the digital library processes that the SCEC community library will support. The SCEC community library can be viewed as the set of processing steps that are required to build the appropriate SCEC reference data sets (SCEC approved encoding format, SCEC approved descriptive metadata, SCEC approved collection organization, and SCEC managed storage location). Each digital entity that is ingested into the SCEC community library is processed and validated for conformance to SCEC standards. These steps generate provenance, descriptive, administrative, structural, and behavioral metadata. Using data grid technology, the descriptive metadata can be registered onto a logical name space that is controlled and managed by the SCEC digital library. A version of the SCEC community digital library is being implemented in the Storage Resource Broker. The SRB system provides almost all the features enumerated above. The peer-to-peer federation of metadata catalogs is planned for release in September, 2003. The SRB system is in production use in multiple projects, from high-energy physics, to astronomy, to earth systems science, to bio-informatics. The SCEC community library will be based on the definition of standard metadata attributes, the creation of logical collections within the SRB, the creation of access services, and the demonstration of a preservation environment. The use of the SRB for the SCEC digital library will sustain the expected collection size and collection capabilities.

  4. Intracochlear Drug Delivery Systems

    PubMed Central

    Borenstein, Jeffrey T.

    2011-01-01

    Introduction Advances in molecular biology and in the basic understanding of the mechanisms associated with sensorineural hearing loss and other diseases of the inner ear, are paving the way towards new approaches for treatments for millions of patients. However, the cochlea is a particularly challenging target for drug therapy, and new technologies will be required to provide safe and efficacious delivery of these compounds. Emerging delivery systems based on microfluidic technologies are showing promise as a means for direct intracochlear delivery. Ultimately, these systems may serve as a means for extended delivery of regenerative compounds to restore hearing in patients suffering from a host of auditory diseases. Areas covered in this review Recent progress in the development of drug delivery systems capable of direct intracochlear delivery is reviewed, including passive systems such as osmotic pumps, active microfluidic devices, and systems combined with currently available devices such as cochlear implants. The aim of this article is to provide a concise review of intracochlear drug delivery systems currently under development, and ultimately capable of being combined with emerging therapeutic compounds for the treatment of inner ear diseases. Expert Opinion Safe and efficacious treatment of auditory diseases will require the development of microscale delivery devices, capable of extended operation and direct application to the inner ear. These advances will require miniaturization and integration of multiple functions, including drug storage, delivery, power management and sensing, ultimately enabling closed-loop control and timed-sequence delivery devices for treatment of these diseases. PMID:21615213

  5. Commercial Document Delivery Services "Challenged" as EBSCO Drops Service.

    ERIC Educational Resources Information Center

    Machovec, George S.

    1998-01-01

    Discusses the EBSCO decision to stop its traditional commercial document delivery business. High prices for copyright clearance, government subsidized services, electronic formats available on the Internet, Web-based services, and consortium-based licensing activities are discussed as influencing the market for document delivery. (LRW)

  6. Formation of Opposite-Sign Magnetic Helicity by an Erupting Filament in a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Kurokawa, Hiroki

    2004-06-01

    It is unclear whether it is possible for magnetic helical fields of opposite signs to co-exist in a coronal mass ejection (CME). During filament eruption with high-cadence observations for the initial stage, evidence is found for the formation of right-handed helical fields in a rising dextral filament that is embedded in a CME with helical fields in a left-handed sense. The data include Mees multi-off-band H? observations with 16s cadence and TRACE 1600 observations of 2s cadence. The filament material is ejected outward and is associated with the expanding CME, suggesting that both of the opposite-sign helical fields are injected into interplanetary space. In this paper, we consider the key observational features, including the formation of a coil-like structure (due to barb reconnections) and the alignment of reconnected field lines with the primary axis of the filament. It is found that they are consistent with the predicted changes during filament eruption by the filament model of Martin and McAllister. However, our results do not reject the filament model of Rust and Kumar. Moreover, a model that reconciles both of them seems to be more convenient for understanding the complicated observations. Therefore, the formation of opposite-sign helicity in an eruptive flux rope should be common for such types of filament eruptions.

  7. One Quiz File, Several Modes of Delivery

    ERIC Educational Resources Information Center

    Herbert, John C.

    2012-01-01

    This report offers online course designers, particularly those keen on using Moodle CMSs, a means of diversifying accessibility to their educational materials via multiple modes of delivery that do not require the creation of numerous files and formats for just one activity. The author has made contributions to the development of an open source…

  8. Information Delivery Systems: The Future Is Here.

    ERIC Educational Resources Information Center

    O'Malley, Penelope Grenoble

    1993-01-01

    Looks at developments in information delivery (including new interactive media formats, vastly increased channel capacity for standard cable television, and the development of wireless cable and other distribution technologies) that are revolutionizing the communications industry. Raises questions about the role technical communicators are being

  9. An Asynchronous Augmentation to Traditional Course Delivery.

    ERIC Educational Resources Information Center

    Wolverton, Marvin L.; Wolverton, Mimi

    Asynchronous augmentation facilitates distributed learning, which relies heavily on technology and self-learning. This paper reports the results of delivering a real estate principles course using an asynchronous course delivery format. It highlights one of many ways to enhance learning using technology, and it provides information concerning how…

  10. Bioadhesive delivery systems for mucosal vaccine delivery.

    PubMed

    Baudner, Barbara C; O'Hagan, Derek T

    2010-12-01

    Mucosal vaccine delivery potentially induces mucosal as well as systemic immune responses and may have advantages particularly for optimal protection against pathogens that infect the host through mucosal surfaces. However, the delivery of antigens through mucosal membranes remains a major challenge due to unfavorable physiological conditions (pH and enzymes) and significant biological barriers, which restrict the uptake of antigens. To improve mucosal vaccine delivery, the use of bioadhesive delivery systems offers numerous advantages, including protection from degradation, increasing concentration of antigen in the vicinity of mucosal tissue for better absorption, extending their residence time, and/or targeting them to sites of antigen uptake. Although some bioadhesives have direct immune stimulating properties, it appears most likely that successful mucosal vaccination will require the addition of vaccine adjuvants for optimal immune responses, particularly if they are to be used in an unprimed population. Thus, complex vaccine formulations and delivery strategies have to be carefully designed to appropriately stimulate immune response for the target pathogen. In addition, careful consideration is needed to define the "best" route for mucosal immunization for each individual pathogen. PMID:21039314

  11. Comparison of interplanetary CME arrival times and solar wind parameters based on the WSA-ENLIL model with three cone types and observations

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock

    2014-09-01

    We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc 0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.

  12. Nonviral Vectors for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Baoum, Abdulgader Ahmed

    2011-12-01

    The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was also explored. Positively charged CPPs were complexed with pDNA or siRNA, which resulted in 'loose' (1 micron) particles. These were then condensed into small nanoparticles by using calcium, which formed "soft" crosslinks by interacting with both phosphates on nucleic acids and amines on CPPs. An optimal amount of CaCl2 produced stable, 100 nm complexes that exhibited higher transfection efficiency and gene silencing than PEI polyplexes. CPPs also displayed negligible cytotoxicity up to 5 mg/mL. Biophysical studies of the pDNA structure within complexes suggested that pDNA within CPP complexes (condensed with calcium) had similar structure, but enhanced thermal stability compared to PEI complexes. Thus, CPP complexes emerged as simple, attractive candidates for future studies on nonviral gene delivery in vivo.

  13. Pressure-driven high to low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6

    SciTech Connect

    O'Neal, K. R.; Liu, Z.; Miller, Joel S.; Fishman, Randy Scott; Musfeldt, J. L.

    2014-01-01

    Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high low spin transition in [Ru2(O2CMe)4]3[Cr(CN)6]. The extended nature of the diruthenium wavefunction combined with coupling to chromium-related local lattice distortions changes the relative energies of the and orbitals and drives the high low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism.

  14. Turkey. [CME Country Reports].

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    Since 1960, approximately 733,000 Turkish workers have migrated to European countries. One issue before the Turkish Government is adequately educating children of Turkish migrant workers in other countries. There are more than 117,000 children who are expected to retain their traditional Turkish culture while adjusting themselves to the host

  15. Belgium. [CME Country Reports].

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    From the end of World War II to 1964, immigration trends in Belgium were largely governed by the need to supply workers for the coal industry, which led to an influx of Italians, Greeks, Spaniards, Turks, and Morrocans. In 1971 there were approximately 200,000 foreign workers in Belgium; the majority of these were Italian. Relying heavily on

  16. CME or PME?

    ERIC Educational Resources Information Center

    Watts, Malcolm S. M.

    1990-01-01

    A concept of practice medical education could be a wonderfully challenging platform on which continuing medical education professionals could take their stand and define and develop the content and skills needed for more effective and relevant practice. (JOW)

  17. Spain. [CME Country Reports].

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    Initially, the Spanish Emigration Institute (Ministry of Labour) endeavored to meet the educational needs of Spanish emigrants. However, this proved to be inadequate as the number of emigrants rose. Therefore, in 1969 the Ministry of Labour and the Ministry of Education and Science divided the responsibility between them and set up a Schools

  18. Norway. [CME Country Reports].

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    In Norway all children, regardless of nationality, who are of compulsory school age (7-16 years old) have a right and obligation to attend compulsory school. The local school board is responsible for arranging auxiliary teaching for pupils who require extra help, in accordance with the instructions issued by the Ministry of Church and Education.

  19. Switzerland. [CME Country Reports].

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    Swiss Federal policy aims at stabilizing the number of foreign workers in the country. Since the demand for foreign manpower is and will continue to be heavy, this can only be achieved through restrictive measures. It will also be necessary to assimilate these migrant workers through equal schooling, occupational training, and housing. Education

  20. Italy. [CME Country Reports].

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    Ever since 1946, increased emigration in Italy has been paralleled by a slow but steady increase in educational activity. In 1971, Law No. 153 was adopted which provides for special educational arrangements to be made for migrant workers and their spouses adopted by the Italian Government are based on the need for Italian children to: (1) be

  1. Transdermal Delivery by Iontophoresis

    PubMed Central

    Rawat, Swati; Vengurlekar, Sudha; Rakesh, B.; Jain, S.; Srikarti, G.

    2008-01-01

    Recently there has been an increased interest in using iontophoretic technique for the transdermal delivery of medications, both ionic and nonionic. This article is an overview of the history of iontophoresis and factors affecting iontophoretic drug transfer for the systemic effects and laws for development of Transdermal delivery system are discussed. PMID:20390073

  2. Elective Delivery Before 39 Weeks

    MedlinePLUS

    ... Delivery, and Postpartum Care Elective Delivery Before 39 Weeks • What is a “medically indicated” delivery? • What is ... the baby grow and develop during the last weeks of pregnancy? • What are the risks for babies ...

  3. DETERMINATION OF THE HELIOSPHERIC RADIAL MAGNETIC FIELD FROM THE STANDOFF DISTANCE OF A CME-DRIVEN SHOCK OBSERVED BY THE STEREO SPACECRAFT

    SciTech Connect

    Poomvises, Watanachak; Gopalswamy, Nat; Yashiro, Seiji; Kwon, Ryun-Young; Olmedo, Oscar

    2012-10-20

    We report on the determination of radial magnetic field strength in the heliocentric distance range from 6 to 120 solar radii (R {sub Sun }) using data from Coronagraph 2 (COR2) and Heliospheric Imager I (HI1) instruments on board the Solar Terrestrial Relations Observatory spacecraft following the standoff-distance method of Gopalswamy and Yashiro. We measured the shock standoff distance of the 2008 April 5 coronal mass ejection (CME) and determined the flux-rope curvature by fitting the three-dimensional shape of the CME using the Graduated Cylindrical Shell model. The radial magnetic field strength is computed from the Alfven speed and the density of the ambient medium. We also compare the derived magnetic field strength with in situ measurements made by the Helios spacecraft, which measured the magnetic field at the heliocentric distance range from 60 to 215 R {sub Sun }. We found that the radial magnetic field strength decreases from 28 mG at 6 R {sub Sun} to 0.17 mG at 120 R {sub Sun }. In addition, we found that the radial profile can be described by a power law.

  4. Empirical Relationship Between CME Parameters and Geo-effectiveness of Halo CMEs in the Rising Phase of Solar Cycle 24 (2011 - 2013)

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Syed Ibrahim, M.; Moon, Y.-J.; Mujiber Rahman, A.; Umapathy, S.

    2015-05-01

    We analyzed the physical characteristics of 40 halo coronal mass ejections (CMEs) and their geo-effective parameters observed during the period 2011 to 2013 in the rising phase of Solar Cycle 24. Out of all halo CMEs observed by SOHO/LASCO, we selected 40 halo CMEs and investigated their geomagnetic effects. In particular, we estimated the CME direction parameter (DP) from coronagraph observations, and we obtained the geomagnetic storm disturbance index ( Dst) value corresponding to each event by following certain criteria. We studied the correlation between near-Sun parameters of CMEs such as speed and DP with Dst. For this new set of events in the current solar cycle, the relations are found to be consistent with those of previous studies. When the direction parameter increases, the Dst value also increases for symmetrical halo CME ejections. If DP>0.6, these events produce high Dst values. In addition, the intensity of geomagnetic storm calculated using an empirical model with the near-Sun parameters is nearly equal to the observed values. More importantly, we find that the geo-effectiveness in the rising phase of Solar Cycle 24 is much weaker than that in Cycle 23.

  5. Determination of the Heliospheric Radial Magnetic Field from the Standoff Distance of a CME-Driven Shock Observed by the Stereo Spacecraft

    NASA Technical Reports Server (NTRS)

    Poomvises, Watanachak; Gopalswamy, Nat; Yashiro, Seiji; Kwon, Ryun-Young; Olmedo, Oscar

    2012-01-01

    We report on the determination of radial magnetic field strength in the heliocentric distance range from 6 to 120 solar radii (R-solar) using data from Coronagraph 2 (COR2) and Heliospheric Imager I (HI1) instruments on board the Solar Terrestrial Relations Observatory spacecraft following the standoff-distance method of Gopalswamy & Yashiro. We measured the shock standoff distance of the 2008 April 5 coronal mass ejection (CME) and determined the flux-rope curvature by fitting the three-dimensional shape of the CME using the Graduated Cylindrical Shell model. The radial magnetic field strength is computed from the Alfven speed and the density of the ambient medium. We also compare the derived magnetic field strength with in situ measurements made by the Helios spacecraft, which measured the magnetic field at the heliocentric distance range from 60 to 215 R-solar.We found that the radial magnetic field strength decreases from 28 mG at 6 R-solar to 0.17 mG at 120 R-solar. In addition, we found that the radial profile can be described by a power law.

  6. Pulmonary vaccine delivery.

    PubMed

    Lu, Dongmei; Hickey, Anthony J

    2007-04-01

    This review will discuss developments in the field of pulmonary vaccine delivery. The possibilities of adopting aerosol-generation technology and specific pharmaceutical formulations for the purpose of pulmonary immunization are described. Aerosol-generation systems might offer advantages with respect to vaccine stability and antigenicity. Adjuvants and their inclusion in vaccine-delivery systems are described. Other formulation components, such as surfactants, particulate systems and dispersion of the aerosols are detailed in this paper. The noninvasive, relatively safe and low-cost nature of pulmonary delivery may provide great benefits to the public health vaccination campaign. PMID:17408371

  7. Neurotrophin delivery using nanotechnology.

    PubMed

    Angelova, Angelina; Angelov, Borislav; Drechsler, Markus; Lesieur, Sylviane

    2013-12-01

    Deficits or overexpression of neurotrophins cause neurodegenerative diseases and psychiatric disorders. These proteins are required for the maintenance of the function, plasticity and survival of neurons in the central (CNS) and peripheral nervous systems. Significant efforts have been devoted to developing therapeutic delivery systems that enable control of neurotrophin dosage in the brain. Here, we suggest that nanoparticulate carriers favoring targeted delivery in specific brain areas and minimizing biodistribution to the systemic circulation should be developed toward clinical benefits of neuroregeneration. We also provide examples of improved targeted neurotrophin delivery to localized areas in the CNS. PMID:23891881

  8. Optically generated ultrasound for enhanced drug delivery

    DOEpatents

    Visuri, Steven R.; Campbell, Heather L.; Da Silva, Luiz

    2002-01-01

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  9. Current perspectives on intrathecal drug delivery

    PubMed Central

    Bottros, Michael M; Christo, Paul J

    2014-01-01

    Advances in intrathecal analgesia and intrathecal drug delivery systems have allowed for a range of medications to be used in the control of pain and spasticity. This technique allows for reduced medication doses that can decrease the side effects typically associated with oral or parenteral drug delivery. Recent expert panel consensus guidelines have provided care paths in the treatment of nociceptive, neuropathic, and mixed pain syndromes. While the data for pain relief, adverse effect reduction, and cost-effectiveness with cancer pain control are compelling, the evidence is less clear for noncancer pain, other than spasticity. Physicians should be aware of mechanical, pharmacological, surgical, and patient-specific complications, including possible granuloma formation. Newer intrathecal drug delivery systems may allow for better safety and quality of life outcomes. PMID:25395870

  10. Project Delivery Methods.

    ERIC Educational Resources Information Center

    Dolan, Thomas G.

    2003-01-01

    Describes project delivery methods that are replacing the traditional Design/Bid/Build linear approach to the management, design, and construction of new facilities. These variations can enhance construction management and teamwork. (SLD)

  11. Failed Operative Vaginal Delivery

    PubMed Central

    Alexander, James M.; Leveno, Kenneth J.; Hauth, John C.; Landon, Mark B.; Gilbert, Sharon; Spong, Catherine Y.; Varner, Michael W.; Caritis, Steve N.; Meis, Paul; Wapner, Ronald J.; Sorokin, Yoram; Miodovnik, Menachem; O'Sullivan, Mary J.; Sibai, Baha M.; Langer, Oded; Gabbe, Steven G.

    2010-01-01

    Objective To compare maternal and neonatal outcomes in women undergoing a second stage cesarean after a trial of operative vaginal delivery with women undergoing a second stage cesarean without such an attempt. Methods This study is a secondary analysis of the women who underwent second stage cesarean. .The maternal outcomes examined included blood transfusion, endometritis, wound complication, anesthesia use, and maternal death. Infant outcomes examined included umbilical artery pH < 7.0, Apgar of 3 or less at 5 minutes, seizures within 24 hours of birth, hypoxic ischemic encephalopathy (HIE), stillbirth, skull fracture, and neonatal death. Results Of 3189 women who underwent second stage cesarean, operative vaginal delivery was attempted in 640. Labor characteristics were similar in the two groups with the exception of the admission to delivery time and cesarean indication. Those with an attempted operative vaginal delivery were more likely to undergo cesarean delivery for a non-reassuring fetal heart rate tracing (18.0% vs 13.9%, p=.01), have a wound complication (2.7% vs 1.0%; OR 2.65 95% CI 1.434.91), and require general anesthesia (8.0% vs 4.1%, OR 2.05 95% CI 1.442.91). Neonatal outcomes including umbilical artery pH less than 7.0, Apgar at or below 3 at 5 minutes, and hypoxic ischemic encephalopathy were more common for those with an attempted operative vaginal delivery. This was not significant when cases with a non-reassuring fetal heart rate tracing were removed. Conclusion Cesarean delivery after an attempt at operative vaginal delivery was not associated with adverse neonatal outcomes in the absence of a non-reassuring fetal heart rate tracing. PMID:20168101

  12. MHD modeling for Formation Process of Coronal Mass Ejections: Interaction between Ejecting Flux Rope and Ambient Field

    NASA Astrophysics Data System (ADS)

    Shiota, Daikou; Kusano, Kanya; Miyoshi, Takahiro; Shibata, Kazunari

    Coronal mass ejections (CMEs), in which large amount of magnetic flux is launched into the interplanetary space, are most explosive phenomena in the solar corona. Due to their large influences to the space environment near the Earth, it is very important to make cleat how CMEs are formed and how determine the field orientations within CMEs. In order to examine the sufficient conditions, we performed three dimensional magnetohydrodynamic simulation of formation processes of CMEs, focusing on interaction (reconnection) between an ejecting flux rope and its ambient field. We examined three cases with different ambient fields: no ambient field, and cases with dipole field of two opposite directions which are parallel and anti-parallel to that of the flux rope surface. As the results, while the flux rope disappears in the anti-parallel case, in other cases the flux ropes can evolve to CMEs and however shows different amount of rotation of the flux rope. The results mean that the interaction between an ejecting flux rope and its ambient field is a significant process for determining CME formation and CME orientation, and also show that the amount and direction of magnetic flux within the flux rope and the ambient field are key parameters for CME formation. Especially, the interaction (reconnection) plays a significant role to the rotation of the flux rope, with a process similar to "tilting instability" in a spheromak-type experiment of laboratory plasma.

  13. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering.

    PubMed

    Yan, Haoran; Liu, Xia; Zhu, Minghua; Luo, Guilin; Sun, Tao; Peng, Qiang; Zeng, Yi; Chen, Taijun; Wang, Yingying; Liu, Keliang; Feng, Bo; Weng, Jie; Wang, Jianxin

    2016-01-01

    In this study, a multilayer coating technology would be adopted to prepare a porous composite scaffold and the growth factor release and ultrasound techniques were introduced into bone tissue engineering to finally solve the problems of vascularization and bone formation in the scaffold whilst the designed multilayer composite with gradient degradation characteristics in the space was used to match the new bone growth process better. The results of animal experiments showed that the use of low intensity pulsed ultrasound (LIPUS) combined with growth factors demonstrated excellent capabilities and advantages in both vascularization and new bone formation in bone tissue engineering. The degradation of the used scaffold materials could match new bone formation very well. The results also showed that only RGD-promoted cell adhesion was insufficient to satisfy the needs of new bone formation while growth factors and LIPUS stimulation were the key factors in new bone formation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 195-208, 2016. PMID:26282063

  14. Local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6] probed with implanted muons

    SciTech Connect

    Lancaster, T.; Pratt, F. L.; Blundell, S. J.; Steele, Andrew J.; Baker, Peter J.; Wright, Jack D.; Fishman, Randy Scott; Miller, Joel S.

    2011-01-01

    We present a muon-spin relaxation study of local magnetism in the molecule-based metamagnet [Ru2(O2CMe)4]3[Cr(CN)6]. We observe magnetic order with TN = 33 K, although above 25 K the sublattice spins become less rigid and a degree of static magnetic disorder is observed. The comparison of measurements in applied magnetic field with simulations allows us to understand the origin of the muon response across the metamagnetic transition and to map out the phase diagram of the material. Applied hydrostatic pressures of up to 6 kbar lead to an increase in the local magnetic field along with a complex change in the internal magnetic field distribution.

  15. Nanomedicine in pulmonary delivery

    PubMed Central

    Mansour, Heidi M; Rhee, Yun-Seok; Wu, Xiao

    2009-01-01

    The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed. PMID:20054434

  16. Changes in Altitude Cause Unintended Insulin Delivery From Insulin Pumps

    PubMed Central

    King, Bruce R.; Goss, Peter W.; Paterson, Megan A.; Crock, Patricia A.; Anderson, Donald G.

    2011-01-01

    OBJECTIVE Children and adults with type 1 diabetes who receive insulin pump therapy have reported hypoglycemia during air travel. We studied the effects of atmospheric pressure on insulin pump delivery. RESEARCH DESIGN AND METHODS Ten insulin pumps were connected to capillary tubes. The effects of changes in ambient pressure on insulin delivery, bubble formation, bubble size, and cartridge plunger movement were analyzed. RESULTS During a flight (200 mmHg pressure decrease), excess insulin delivery of 0.623% of the cartridge volume occurred (P < 0.001, Student t test). In hypobaric chamber studies, bubbles developed in the insulin when the pressure decreased and displaced the insulin out of the cartridge. Pre-existing bubbles changed in size consistent with Boyle law. Cartridge plunger movement did not occur in normal flight conditions but did occur when catastrophic plane depressurization was mimicked. CONCLUSIONS Atmospheric pressure reduction causes predictable, unintended insulin delivery in pumps by bubble formation and expansion of existing bubbles. PMID:21816978

  17. Transcutaneous antigen delivery system

    PubMed Central

    Lee, Mi-Young; Shin, Meong-Cheol; Yang, Victor C.

    2013-01-01

    Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24] PMID:23351379

  18. The delivery system matters.

    PubMed

    Crosson, Francis J

    2005-01-01

    To meet the quality, affordability, and access challenges of today's health care system, the Institute of Medicine's (IOM's) Crossing the Quality Chasm report described the critical competencies of a twenty-first-century health care system. A growing body of research suggests that the nation's multispecialty group practices most nearly meet the delivery system challenges set forth by the IOM. A variety of current public and private initiatives and potential policy options could act as catalysts for the development and spread of group practice-based, accountable delivery systems that are effective and efficient. PMID:16284026

  19. DIRECT EVIDENCE FOR A FAST CORONAL MASS EJECTION DRIVEN BY THE PRIOR FORMATION AND SUBSEQUENT DESTABILIZATION OF A MAGNETIC FLUX ROPE

    SciTech Connect

    Patsourakos, S.; Vourlidas, A.; Stenborg, G.

    2013-02-20

    Magnetic flux ropes play a central role in the physics of coronal mass ejections (CMEs). Although a flux-rope topology is inferred for the majority of coronagraphic observations of CMEs, a heated debate rages on whether the flux ropes pre-exist or whether they are formed on-the-fly during the eruption. Here, we present a detailed analysis of extreme-ultraviolet observations of the formation of a flux rope during a confined flare followed about 7 hr later by the ejection of the flux rope and an eruptive flare. The two flares occurred during 2012 July 18 and 19. The second event unleashed a fast (>1000 km s{sup -1}) CME. We present the first direct evidence of a fast CME driven by the prior formation and destabilization of a coronal magnetic flux rope formed during the confined flare on July 18.

  20. Systems and Components Fuel Delivery System, Water Delivery System, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  1. Coordination Compounds of Strontium. Syntheses, Characterizations, and Crystal Structures of [Sr(u-ONc)(2)(HONc(4))]2 and Sr(5)(u(4)-O)(u(3)-ONep)(4)(u-ONep)(4)(HONep)(solv)(4) (ONc=O(2)CCH(2)CMe(3));Nep=CH(2)CMe(3); solv=tetrahydrofuran or 1-methyl-imida

    SciTech Connect

    Boyle, Timothy J.; Tafoya, Cory J.; Scott, Brian L.; Ziller, Joseph W.

    1999-07-21

    The authors have synthesized and characterized two novel Sr compounds: [Sr({mu}-ONc){sub 2}(HONc){sub 4}]{sub 2} (1, ONc = O{sub 2}CCH{sub 2}CMe{sub 3}), and Sr{sub 5}({mu}{sub 4}-O)({mu}{sub 3}-ONep){sub 4}({mu}-ONep){sub 4}(HONep)(solv){sub 4} [ONep = OCH{sub 2}CMe{sub 3}, solv = tetrahydrofuran (THF), 2a; 1-methyl-imidazole (MeIm), (2b)], that demonstrate increased solubility in comparison to the commercially available Sr precursors. The two metal centers of 1 share 4 unidentate bridging {mu}-ONc ligands and complete their octahedral geometry through the coordination of 4 monodentate terminal HONc ligands. The structure arrangement of the central core of 2a and b are identical, wherein 4 octahedral Sr atoms are arranged in a square geometry around a {mu}{sub 4}-O ligand. An additional 7-coordinated Sr atom sits directly atop the {mu}{sub 4}-O to form a square base pyramidal arrangement of the Sr atoms but the apical Sr-O distance is too long to be considered a bond. In solution, compound 1 is disrupted forming a monomer but 2a and b retain their structures.

  2. Educational Telecommunications Delivery Systems.

    ERIC Educational Resources Information Center

    Curtis, John A., Ed.; Biedenbach, Joseph M., Ed.

    This monograph is a single volume reference manual providing an overall review of the current status and likely near future application of six major educational telecommunications delivery technologies. The introduction provides an overview to the usage and potential for these systems in the context of the major educational issues involved. Each…

  3. Technological Delivery Systems.

    ERIC Educational Resources Information Center

    Kennedy, Don; And Others

    A section on technological delivery systems, presented as part of the second Australian National Workshop on Distance Education (Perth, 1983), contains four papers on using technological resources to provide educational services to persons in isolated locations. The first paper, by Don Kennedy, covers the use of satellite broadcasting of course

  4. Organogels in drug delivery.

    PubMed

    Murdan, Sudaxshina

    2005-05-01

    In the last decade, interest in physical organogels has grown rapidly with the discovery and synthesis of a very large number of diverse molecules, which can gel organic solvents at low concentrations. The gelator molecules immobilise large volumes of liquid following their self-assembly into a variety of aggregates such as rods, tubules, fibres and platelets. The many interesting properties of these gels, such as their thermoreversibility, have led to much excitement over their industrial applications. However, only a few organogels are currently being studied as drug/vaccine delivery vehicles as most of the existing organogels are composed of pharmaceutically unacceptable organic liquids and/or unacceptable/untested gelators. In this paper a brief overview of organogels is presented, followed by a more in-depth review of the gels that have been investigated for drug and/or vaccine delivery. These include microemulsion-based gels and lecithin gels (studied for transdermal delivery), sorbitan monostearate organogels and amphiphilogels (studied as vaccine adjuvants and for oral and transdermal drug delivery, respectively), gels composed of alanine derivatives (investigated as in situ forming gels) and Eudragit organogels (studied as a matrix for suppositories). Finally, pluronic lecithin organogels, descendents of lecithin gels but which are not really organogels, are briefly discussed for their interesting history, their root and the wide interest in these systems. PMID:16296770

  5. Vaccine delivery using nanoparticles.

    PubMed

    Gregory, Anthony E; Titball, Richard; Williamson, Diane

    2013-01-01

    Vaccination has had a major impact on the control of infectious diseases. However, there are still many infectious diseases for which the development of an effective vaccine has been elusive. In many cases the failure to devise vaccines is a consequence of the inability of vaccine candidates to evoke appropriate immune responses. This is especially true where cellular immunity is required for protective immunity and this problem is compounded by the move toward devising sub-unit vaccines. Over the past decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes, ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter antigen-presenting cells by different pathways, thereby modulating the immune response to the antigen. This may be critical for the induction of protective Th1-type immune responses to intracellular pathogens. Their properties also make them suitable for the delivery of antigens at mucosal surfaces and for intradermal administration. In this review we compare the utilities of different NP systems for the delivery of sub-unit vaccines and evaluate the potential of these delivery systems for the development of new vaccines against a range of pathogens. PMID:23532930

  6. Fluid delivery control system

    DOEpatents

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  7. Document Delivery Update.

    ERIC Educational Resources Information Center

    Nelson, Nancy Melin

    1992-01-01

    Presents highlights of research that used industrywide surveys, focus groups, personal interviews, and industry-published data to explore the future of electronic information delivery in libraries. Topics discussed include CD-ROMs; prices; full-text products; magnetic tape leasing; engineering and technical literature; connections between online

  8. Caesarean delivery: conflicting interests.

    PubMed

    Osuna, Eduardo; Prez Crceles, Maria Dolores; Snchez Ferrer, Maria Luisa; Machado, Francisco

    2015-12-01

    Within the maternal-fetal relationship, interests may sometimes diverge. In this paper, a pregnant woman's refusal to undergo a caesarean delivery, which was recommended both to save the life of the fetus and to minimize risks to her, is described. The legal aspects involved in the conflict between maternal autonomy and fetal well-being are analysed. The patient requested an abortion because of the poor condition of the fetus; however, according to Spanish legislation, the possibility of abortion was rejected as the pregnancy was in its 27th week. The woman still persisted in her refusal to accept a caesarian delivery. After the medical team sought guidance on the course to follow, the Duty Court authorized a caesarean delivery against the wishes of the patient. From a legal point of view, at stake were the freedom of the woman - expressed by the decision to reject a caesarean delivery - and the life of the unborn child. In clinical treatment, the interests of the fetus are generally aligned with those of the pregnant woman. When they are not, it is the pregnant woman's autonomy that should be respected, and coercion should form no part of treatment, contrary to the decision of this court. PMID:26371711

  9. Assisted delivery with forceps

    MedlinePLUS

    ... the baby the rest of the way out. After delivery, you can hold your baby on your tummy if he or she is doing well. If the forceps do not help move your baby, you may need to have a Cesearean section (C-section).

  10. Vaccine delivery using nanoparticles

    PubMed Central

    Gregory, Anthony E.; Titball, Richard; Williamson, Diane

    2013-01-01

    Vaccination has had a major impact on the control of infectious diseases. However, there are still many infectious diseases for which the development of an effective vaccine has been elusive. In many cases the failure to devise vaccines is a consequence of the inability of vaccine candidates to evoke appropriate immune responses. This is especially true where cellular immunity is required for protective immunity and this problem is compounded by the move toward devising sub-unit vaccines. Over the past decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes, ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter antigen-presenting cells by different pathways, thereby modulating the immune response to the antigen. This may be critical for the induction of protective Th1-type immune responses to intracellular pathogens. Their properties also make them suitable for the delivery of antigens at mucosal surfaces and for intradermal administration. In this review we compare the utilities of different NP systems for the delivery of sub-unit vaccines and evaluate the potential of these delivery systems for the development of new vaccines against a range of pathogens. PMID:23532930

  11. Nanotopography applications in drug delivery.

    PubMed

    Walsh, Laura A; Allen, Jessica L; Desai, Tejal A

    2015-12-01

    Refinement of micro- and nanofabrication in the semiconductor field has led to innovations in biomedical technologies. Nanotopography, in particular, shows great potential in facilitating drug delivery. The flexibility of fabrication techniques has created a diverse array of topographies that have been developed for drug delivery applications. Nanowires and nanostraws deliver drug cytosolically for in vitro and ex vivo applications. In vivo drug delivery is limited by the barrier function of the epithelium. Nanowires on microspheres increase adhesion and residence time for oral drug delivery, while also increasing permeability of the epithelium. Low aspect ratio nanocolumns increase paracellular permeability, and in conjunction with microneedles increase transdermal drug delivery of biologics in vivo. In summary, nanotopography is a versatile tool for drug delivery. It can deliver directly to cells or be used for in vivo delivery across epithelial barriers. This editorial highlights the application of nanotopography in the field of drug delivery. PMID:26512871

  12. PECTIN IN CONTROLLED DRUG DELIVERY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled drug delivery remains a research focus for public health to enhance patient compliance, drug efficiency and to reduce the side effects of drugs. Pectin, an edible plant polysaccharide, has shown potential for the construction of drug delivery systems for site-specific drug delivery. Sev...

  13. Mucoadhesive drug delivery systems

    PubMed Central

    Shaikh, Rahamatullah; Raj Singh, Thakur Raghu; Garland, Martin James; Woolfson, A David; Donnelly, Ryan F.

    2011-01-01

    Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal). PMID:21430958

  14. Delivery of the Obese Gravida.

    PubMed

    Faucett, Allison M; Metz, Torri D

    2016-03-01

    Obesity in pregnancy confers morbidity to both the mother and neonate. Obese women are at increased risk of cesarean delivery, operative vaginal delivery, and failed trial of labor after cesarean delivery. In addition to impacting the mode of delivery, obesity is associated with hemorrhage, infection, and thromboembolic complications in the peripartum period. The risk of these complications increases with increasing maternal body mass index. In this chapter, we discuss evidence-based strategies to mitigate these risks and to manage complications that occur at the time of delivery in obese parturients. PMID:26694496

  15. Nanofibers used for the delivery of analgesics.

    PubMed

    Tseng, Yuan-Yun; Liu, Shih-Jung

    2015-01-01

    Nanofibers are extremely advantageous for drug delivery because of their high surface area-to-volume ratios, high porosities and 3D open porous structures. Local delivery of analgesics by using nanofibers allows site-specificity and requires a lower overall drug dosage with lower adverse side effects. Different analgesics have been loaded onto various nanofibers, including those that are natural, synthetic and copolymer, for various medical applications. Analgesics can also be singly or coaxially loaded onto nanofibers to enhance clinical applications. In particular, analgesic-eluting nanofibers provide additional benefits to preventing wound adhesion and scar formation. This paper reviews current research and breakthrough discoveries on the innovative application of analgesic-loaded nanofibers that will alter the clinical therapy of pain. PMID:26080700

  16. Single compartment drug delivery

    PubMed Central

    Cima, Michael J.; Lee, Heejin; Daniel, Karen; Tanenbaum, Laura M.; Mantzavinou, Aikaterini; Spencer, Kevin C.; Ong, Qunya; Sy, Jay C.; Santini, John; Schoellhammer, Carl M.; Blankschtein, Daniel; Langer, Robert S.

    2014-01-01

    Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as “privileged,” since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective. PMID:24798478

  17. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  18. Novel antigen delivery systems.

    PubMed

    Trovato, Maria; De Berardinis, Piergiuseppe

    2015-08-12

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the "E2 scaffold" of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  19. Height of Shock Formation in the Solar Corona Inferred from Observations of Type II Radio Bursts and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Makela, P.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.

    2013-01-01

    Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.

  20. Particulate delivery systems for vaccines: what can we expect?

    PubMed

    Bramwell, Vincent W; Perrie, Yvonne

    2006-06-01

    In our attempts to thwart the unwanted attentions of microbes by prophylactic and therapeutic vaccination, the knowledge of interactions at the molecular level may prove to be an invaluable asset. This article examines how particulate delivery systems such as liposomes and polymer microspheres can be applied in the light of recent advances in immunological understanding. Some of the biological interactions of these delivery systems are discussed with relevance for antigen trafficking and molecular pathways of immunogenicity and emphasis on the possible interaction of liposomal components. In particular, traditional concepts such as antigen protection, delivery to antigen presenting cells and depot formation remain important aspects, whilst the inclusion of selected co-adjuvants and enhanced delivery of these moieties in conjunction with antigen now has a firm rationale. PMID:16734973

  1. Cubosomes and hexosomes as versatile platforms for drug delivery.

    PubMed

    Azmi, Intan Dm; Moghimi, Seyed M; Yaghmur, Anan

    2015-12-01

    Nonlamellar liquid crystalline phases are attractive platforms for drug solubilization and targeted delivery. The attractiveness of this formulation principle is linked to the nanostructural versatility, compatiblity, digestiblity and bioadhesive properties of their lipid constituents, and the capability of solubilizing and sustaining the release of amphiphilic, hydrophobic and hydrophilic drugs. Nonlamellar liquid crystalline phases offer two distinct promising strategies in the development of drug delivery systems. These comprise formation of ISAsomes (internally self-assembled 'somes' or particles) such as cubosomes and hexosomes, and in situ formation of parenteral dosage forms with tunable nanostructures at the site of administration. This review outlines the unique features of cubosomes and hexosomes and their potential utilization as promising platforms for drug delivery. PMID:26652281

  2. Importance of dual delivery systems for bone tissue engineering.

    PubMed

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ou, Keng-Liang; Mao, Chuanbin; Hosseinkhani, Hossein

    2016-03-10

    Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering. PMID:26805518

  3. Novel antigen delivery systems

    PubMed Central

    Trovato, Maria; Berardinis, Piergiuseppe De

    2015-01-01

    Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the “E2 scaffold” of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus. PMID:26279977

  4. Anemia and Oxygen Delivery.

    PubMed

    Bliss, Stuart

    2015-09-01

    Clinical assessment of tissue oxygenation is challenging. Anemia reflects a decreased oxygen carrying capacity of the blood and its significance in the perioperative setting relates largely to the associated risk of insufficient oxygen delivery and cellular hypoxia. Until meaningful clinical measures of tissue oxygenation are available in veterinary practice, clinicians must rely on evaluation of a patient's hemodynamic and ventilatory performance, along with biochemical and hemogasometric measurements. Blood transfusion is used commonly for treatment of perioperative anemia, and may improve tissue oxygenation by normalizing the rheologic properties of blood and enhancing perfusion, independent of increases in oxygen carrying capacity. PMID:26033442

  5. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  6. 76 FR 67456 - Common Formats for Patient Safety Data Collection and Event Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... safety of health care delivery. The Patient Safety Act (at 42 U.S.C. 299b-23) authorizes the collection... the safety and quality of health care delivery. Since the initial release of the Common Formats in... formats (Common Formats) that allow health care providers to voluntarily collect and submit...

  7. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  8. California Integrated Service Delivery Evaluation Report. Phase I

    ERIC Educational Resources Information Center

    Moore, Richard W.; Rossy, Gerard; Roberts, William; Chapman, Kenneth; Sanchez, Urte; Hanley, Chris

    2010-01-01

    This study is a formative evaluation of the OneStop Career Center Integrated Service Delivery (ISD) Model within the California Workforce System. The study was sponsored by the California Workforce Investment Board. The study completed four in-depth case studies of California OneStops to describe how they implemented the ISD model which brings…

  9. Vaginal Birth After Cesarean Delivery: Deciding on a Trial of Labor After a Cesarean Delivery (TOLAC)

    MedlinePLUS

    ... ASKED QUESTIONS FAQ070 LABOR, DELIVERY, AND POSTPARTUM CARE Vaginal Birth After Cesarean Delivery: Deciding on a Trial of Labor After Cesarean Delivery • What is a vaginal birth after cesarean delivery ( VBAC) ? • What is a ...

  10. Predictions and observations of HF radio propagation in the northerly ionosphere: The effect of the solar flares and a weak CME in early January 2014.

    NASA Astrophysics Data System (ADS)

    Hallam, Jonathan; Stocker, Alan J.; Warrington, Mike; Siddle, Dave; Zaalov, Nikolay; Honary, Farideh; Rogers, Neil; Boteler, David; Danskin, Donald

    2014-05-01

    We have previously reported on a significant new multi-national project to provide improved predictions and forecasts of HF radio propagation for commercial aircraft operating on trans-polar routes. In these regions, there are limited or no VHF air-traffic control facilities and geostationary satellites are below the horizon. Therefore HF radio remains important in maintaining communications with the aircraft at all times. Space weather disturbances can have a range of effects on the ionosphere and hence HF radio propagation - particularly in the polar cap. While severe space weather effects can lead to a total loss of communications (i.e. radio blackout), less intense events can still cause significant disruption. In this paper we will present the effect of a series of M and X class solar flares and a relatively weak CME on HF radio performance from 6 to 13 January 2014. This is an interesting interval from the point of view of HF radio propagation because while the solar effects on the ionosphere are significant, except for an interval of approximately 12 hours duration, they are not so intense as to produce a complete radio blackout on all paths. Observations of the signal-to-noise ratio, direction of arrival, and time of flight of HF radio signals on six paths (one entirely within the polar cap, three trans-auroral, and two sub-auroral) will be presented together with riometer measurements of the ionospheric absorption. Global maps of D-region absorption (D-region absorption prediction, DRAP) inferred from satellite measurements of the solar wind parameters will be compared with the HF and riometer observations. In addition, a ray-tracing model using a realistic background ionosphere and including localised features found in the ionospheric polar cap (e.g. polar patches and arcs) will be used to model the expected and observed HF radio propagation characteristics.

  11. New Evidence for the Role of Emerging Flux in a Solar Filament's Slow Rise Preceding its CME-Producing Fast Eruption

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Harra, Louis K.; Moore, Ronald L.

    2007-01-01

    We observe the eruption of a large-scale (approx.300,000 km) quiet-region solar filament, leading to an Earth-directed "halo" coronal mass ejection (CME). We use coronal imaging data in EUV from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) satellite, and in soft X-rays (SXRs) from the Soft X-ray Telescope (SXT) on the Yohkoh satellite. We also use spectroscopic data from the Coronal Diagnostic Spectrometer (CDS), magnetic data from the Michelson Doppler Imager (MDI), and white-light coronal data from the Large Angle and Spectrometric Coronagraph Experiment (LASCO), all on SOHO. Initially the filament shows a slow (approx.1 km/s projected against the solar disk) and approximately constant-velocity rise for about 6 hours, before erupting rapidly, reaching a velocity of approx. 8 km/s over the next approx. 25 min. CDS Doppler data show Earth-directed filament velocities ranging from < 20 km/s (the noise limit) during the slow-rise phase, to approx. 100 km/s-1 early in the eruption. Beginning within 10 hours prior to the start of the slow rise, localized new magnetic flux emerged near one end of the filament. Near the start of and during the slow-rise phase, SXR microflaring occurred repeatedly at the flux-emergence site, in conjunction with the development of a fan of SXR illumination of the magnetic arcade over the filament. The SXR microflares, development of the SXR fan, and motion of the slow-rising filament are all consistent with "tether-weakening" reconnection occurring between the newly-emerging flux and the overlying arcade field containing the filament field. The microflares and fan structure are not prominent in EUV, and would not have been detected without the SXR data. Standard "twin dimmings" occur near the location of the filament, and "remote dimmings" and "brightenings" occur further removed from the filament.

  12. Influence of a CMEs Initial Parameters on the Arrival of the Associated Interplanetary Shock at Earth and the Shock Propagational Model Version 3

    NASA Astrophysics Data System (ADS)

    Zhao, X. H.; Feng, X. S.

    2015-08-01

    Predicting the arrival times of coronal mass ejections (CMEs) and their related waves at Earth is an important aspect of space weather forecasting. The Shock Propagation Model (SPM) and its updated version (SPM2), which use the initial parameters of solar flare-Type II burst events as input, have been developed to predict the shock arrival time. This paper continues to investigate the influence of solar disturbances and their associated CMEs on the corresponding interplanetary (IP) shocks arrival at Earth. It has been found that IP shocks associated with wider CMEs have a greater probability of reaching the Earth, and the CME speed obtained from coronagraph observations can be supplementary to the initial shock speed computed from Type II radio bursts when predicting the shocks arrival time. Therefore, the third version of the model, i.e., SPM3, has been developed based on these findings. The new version combines the characteristics of solar flare-Type II events with the initial parameters of the accompanying CMEs to provide the prediction of the associated IP shocks arrival at Earth. The prediction test for 498 events of Solar Cycle 23 reveals that the prediction success rate of SPM3 is 70%-71%, which is apparently higher than that of the previous SPM2 model (61%-63%). The transit time prediction error of SPM3 for the Earth-encountered shocks is within 9 hr (mean-absolute). Comparisons between SPM3 and other similar models also demonstrate that SPM3 has the highest success rate and best prediction performance.

  13. Economical ground data delivery

    NASA Technical Reports Server (NTRS)

    Markley, Richard W.; Byrne, Russell H.; Bromberg, Daniel E.

    1994-01-01

    Data delivery in the Deep Space Network (DSN) involves transmission of a small amount of constant, high-priority traffic and a large amount of bursty, low priority data. The bursty traffic may be initially buffered and then metered back slowly as bandwidth becomes available. Today both types of data are transmitted over dedicated leased circuits. The authors investigated the potential of saving money by designing a hybrid communications architecture that uses leased circuits for high-priority network communications and dial-up circuits for low-priority traffic. Such an architecture may significantly reduce costs and provide an emergency backup. The architecture presented here may also be applied to any ground station-to-customer network within the range of a common carrier. The authors compare estimated costs for various scenarios and suggest security safeguards that should be considered.

  14. Fuel delivery system model

    SciTech Connect

    Ricci, G.; Verma, A.

    1996-09-01

    A fuel delivery system hydraulic model has been developed by coupling a distributed hydraulic network model with lumped models for the various components of the fuel system like the injectors, regulators, accumulators, etc. The resulting governing equations are linearized around the nominal system pressure and integrated using a fourth order Runge-Kutta algorithm with a variable time-stepping scheme. The model assumes isothermal behavior, negligible frictional losses and single-phase flow. The goal of the model is to study small signal type perturbations around the operating system pressure. Typical outputs from exercising the model are presented. The model can be used to study fuel pressure and velocity transients throughout the system and to design the various fuel system components in a system context.

  15. Secondary fuel delivery system

    DOEpatents

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  16. Innovative commercial retrofit delivery

    SciTech Connect

    Carlisle, N.; Woods, B.; Potter, T.

    1982-08-01

    This report provides a comprehensive review of firms in the energy-conservation industry that offer their services or products to potential clients through innovative financing approaches as opposed to working on a standard fee or net purchase basis. Generally all of these innovative financing approaches involve a building owner sharing the dollars saved from a building retrofit with the firm that supplied the product or provided the design service. The report includes a profile of firms offering innovative financing approaches for commercial building retrofits (based on a statistical analysis of 64 firms); a net benefit and cash flow analysis of five innovative delivery approaches; a discussion of products and services offered, and descriptions of six firms visited, including their similarities and differences. Conclusions drawn from the research and recommendations for further research are included. The questionnaire developed for this research and a list of firms responding to the questionnaire are provided.

  17. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  18. Emerging Frontiers in Drug Delivery.

    PubMed

    Tibbitt, Mark W; Dahlman, James E; Langer, Robert

    2016-01-27

    Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact. PMID:26741786

  19. Issues in Commercial Document Delivery.

    ERIC Educational Resources Information Center

    Marcinko, Randall Wayne

    1997-01-01

    Discusses (1) the history of document delivery; (2) the delivery process--end-user request, intermediary request, vendor reference, citation verification, obtaining document and source relations, quality control, transferring document to client, customer service and status, invoicing and billing, research and development, and copyright; and (3)…

  20. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  1. Distance Education Quality Course Delivery Framework: A Formative Research Study

    ERIC Educational Resources Information Center

    Berta, Michael Raymond

    2013-01-01

    In the Fall 2010 semester, student enrollment in distance education courses increased in the United States to over 6.1 million students taking at least one distance course. Distance education allows institutions to meet increasing demands from the government and business sectors for more graduates in ways that face-to-face courses cannot meet with…

  2. Two Distinct Course Formats in the Delivery of Connectivist MOOCs

    ERIC Educational Resources Information Center

    Rodriguez, C. Osvaldo

    2013-01-01

    Massive Open Online Courses based on the principles of connectivist educational pedagogy known as connectivist MOOCs (c-MOOCs) have been carried out with great success during the last years with hundreds of registered participants. Examples are CCK08 (2008), PLENK2010 (2010), MobiMOOC (2011), EduMOOC (2011), Change11 (2011/12), and LAK12 (2012).

  3. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  4. Introducing the Healthcare Delivery Research Program | Healthcare Delivery Research Blog

    Cancer.gov

    Understanding the many challenges of cancer care is the focus of the new Healthcare Delivery Research Program in the Division of Cancer Control and Population Sciences at the National Cancer Institute (NCI).

  5. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    SciTech Connect

    Romano, P.; Zuccarello, F. P.; Guglielmino, S. L.; Zuccarello, F.

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  6. On the existence of two different mechanisms of coronal mass ejection formation

    NASA Astrophysics Data System (ADS)

    Eselevich, Victor; Eselevich, Maxim

    Data from Mark 3 and 4, DPM (Mauna Loa Solar Observatory), and from spacecrafts place-SOHO (LASCO C2, EIT), STEREO (COR1, EUVI) were analyzed. It is demonstrated that the difference between the physical nature of the "impulsive" and the "gradual" CMEs is mainly represented by such parameters as the CME location, velocity and angular size at the moment the CME emerges. The "gradual" CMEs are formed in the corona at 0.1R0 ? h ? 0.7R0 above the limb of the Sun (R0 is the solar radius). They start moving, when their angular size is ? 15-65 degrees (in the heliocentric coordinate system) and their initial velocity V0 ? 0. A probable mechanism for their formation is the eruption of a coronal flux rope from the equilib-rium state. The formation of "impulsive" CMEs appears to begin under the photosphere of the Sun and may be related to ejection of floating magnetic tubes (flux ropes) from the convective zone. At the photospheric level, the radial velocities of such magnetic tubes exceed the local sound velocity and may reach hundreds km/s, while their angular sizes do not exceed ? (1-5) . Possible ejection of magnetic tubes from the convective zone was theoretically demonstrated earlier.

  7. Advanced drug delivery in motion.

    PubMed

    Mastrobattista, Enrico

    2013-09-15

    After 50 years of research on advanced drug delivery systems the time has come to critically reflect upon the past achievements. Despite some successes, many hurdles still need to be overcome before we can quantitatively deliver therapeutically relevant amounts of drug molecules to any desired location within the human body. In this commentary, I give my opinion on how to improve the current generation of nanocarriers for drug delivery. In addition, I speculate on which direction the drug delivery field should be going in order to fulfill the "magic bullet" dream in the long run. PMID:23665006

  8. Space age health care delivery

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1977-01-01

    Space age health care delivery is being delivered to both NASA astronauts and employees with primary emphasis on preventive medicine. The program relies heavily on comprehensive health physical exams, health education, screening programs and physical fitness programs. Medical data from the program is stored in a computer bank so epidemiological significance can be established and better procedures can be obtained. Besides health care delivery to the NASA population, NASA is working with HEW on a telemedicine project STARPAHC, applying space technology to provide health care delivery to remotely located populations.

  9. Why new delivery systems?

    PubMed

    Calkins, J M

    1984-01-01

    Although anesthetists have accomplished a remarkable safety record with commercially available anesthetic machines, these results have been obtained in spite of machine design, which could best be described as a nonsystem. In cases involving severely compromised patients, surgical procedures that severely alter patient physiology, and untoward events during "routine" anesthesia, it is a tribute to the flexibility and resourcefulness of anesthetists that more incidents do not occur. Industry has long sought precision, reliability, automatic control, and human-factors engineering in nonmedical applications, such as aircraft cockpit design, word-processing stations, and manufacturing processes. The relentless accretion of more and more nonintegrated gadgets onto an antiquated technology has exceeded the boundaries of proper function. Neither the patient nor the anesthetist is being served well by failure to implement state-of-the-art technology in anesthesic delivery systems. Anesthesiologists and others who are vitally interested in the welfare of their patients must insist that development of radically new integrated modular systems proceed at full speed. Their checkbooks can speak as loudly as the facts; it is time the manufacturers are aware that deep concern will be translated into purchasing decisions. PMID:6692678

  10. Electronic Nicotine Delivery Systems.

    PubMed

    Walley, Susan C; Jenssen, Brian P

    2015-11-01

    Electronic nicotine delivery systems (ENDS) are rapidly growing in popularity among youth. ENDS are handheld devices that produce an aerosolized mixture from a solution typically containing concentrated nicotine, flavoring chemicals, and propylene glycol to be inhaled by the user. ENDS are marketed under a variety of names, most commonly electronic cigarettes and e-cigarettes. In 2014, more youth reported using ENDS than any other tobacco product. ENDS pose health risks to both users and nonusers. Nicotine, the major psychoactive ingredient in ENDS solutions, is both highly addictive and toxic. In addition to nicotine, other toxicants, carcinogens, and metal particles have been detected in solutions and aerosols of ENDS. Nonusers are involuntarily exposed to the emissions of these devices with secondhand and thirdhand aerosol. The concentrated and often flavored nicotine in ENDS solutions poses a poisoning risk for young children. Reports of acute nicotine toxicity from US poison control centers have been increasing, with at least 1 child death reported from unintentional exposure to a nicotine-containing ENDS solution. With flavors, design, and marketing that appeal to youth, ENDS threaten to renormalize and glamorize nicotine and tobacco product use. There is a critical need for ENDS regulation, legislative action, and counter promotion to protect youth. ENDS have the potential to addict a new generation of youth to nicotine and reverse more than 50 years of progress in tobacco control. PMID:26504128

  11. Nonviral gene delivery.

    PubMed

    Akita, Hidetaka; Harashima, Hideyoshi

    2008-01-01

    Gene and RNA interference therapies are promising cures for intractable renal failure. However, low delivery efficiency of the therapeutic nucleic acid into the nucleus of the target cell is a significant obstacle in the clinical application of nonviral gene therapy. Various mechanical techniques (hydrodynamic injection, electroporation and ultrasound-microbubble) and topically applied preparations (HVJ liposome and cationic liposome/polymer), which introduce transgenes into specific renal compartments depending on the administration route, have been reported. Additional improvements in renal application of nonviral gene vectors must address the important issue of how to control intracellular trafficking. Therefore, novel vectors based on the 'programmed packaging' concept are desirable in which all functional devices are integrated into a single system so that each function occurs at the appropriate time and correct place. In parallel with development of the carrier, quantitative evaluation of intracellular trafficking is essential to determine the efficacy of the modified devices in the cellular environment. In particular, comparison of the intracellular trafficking of the engineered devices with that of viruses (i.e. adenovirus) is useful in identifying the rate-limiting intracellular processes of the vectors during development. PMID:18391582

  12. Concept Formation.

    ERIC Educational Resources Information Center

    Vaidya, Narendera

    This document, published in India by the Regional College of Education, deals with 13 subjects: the tough context (thinking), definitions of concept, functions of concept, the process of concept formation, discriminant learning, mediation process, second signalling system, factors affecting concept formation, studies in concept formation, the

  13. Controlled Release of Simvastatin from Biomimetic ?-TCP Drug Delivery System

    PubMed Central

    Chou, Joshua; Ito, Tomoko; Bishop, David; Otsuka, Makoto; Ben-Nissan, Besim; Milthorpe, Bruce

    2013-01-01

    Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin. PMID:23349949

  14. Adaptively biased sequential importance sampling for rare events in reaction networks with comparison to exact solutions from finite buffer dCME method

    NASA Astrophysics Data System (ADS)

    Cao, Youfang; Liang, Jie

    2013-07-01

    Critical events that occur rarely in biological processes are of great importance, but are challenging to study using Monte Carlo simulation. By introducing biases to reaction selection and reaction rates, weighted stochastic simulation algorithms based on importance sampling allow rare events to be sampled more effectively. However, existing methods do not address the important issue of barrier crossing, which often arises from multistable networks and systems with complex probability landscape. In addition, the proliferation of parameters and the associated computing cost pose significant problems. Here we introduce a general theoretical framework for obtaining optimized biases in sampling individual reactions for estimating probabilities of rare events. We further describe a practical algorithm called adaptively biased sequential importance sampling (ABSIS) method for efficient probability estimation. By adopting a look-ahead strategy and by enumerating short paths from the current state, we estimate the reaction-specific and state-specific forward and backward moving probabilities of the system, which are then used to bias reaction selections. The ABSIS algorithm can automatically detect barrier-crossing regions, and can adjust bias adaptively at different steps of the sampling process, with bias determined by the outcome of exhaustively generated short paths. In addition, there are only two bias parameters to be determined, regardless of the number of the reactions and the complexity of the network. We have applied the ABSIS method to four biochemical networks: the birth-death process, the reversible isomerization, the bistable Schlögl model, and the enzymatic futile cycle model. For comparison, we have also applied the finite buffer discrete chemical master equation (dCME) method recently developed to obtain exact numerical solutions of the underlying discrete chemical master equations of these problems. This allows us to assess sampling results objectively by comparing simulation results with true answers. Overall, ABSIS can accurately and efficiently estimate rare event probabilities for all examples, often with smaller variance than other importance sampling algorithms. The ABSIS method is general and can be applied to study rare events of other stochastic networks with complex probability landscape.

  15. Dual-column capillary microextraction (CME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the speciation of arsenic in human hair extracts.

    PubMed

    Zheng, Fei; Hu, Bin

    2010-02-01

    In this work, dual-column capillary microextraction (CME) system consisting of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS)-silica coated capillary (C1) and 3-mercaptopropyl trimethoxysilane (MPTS)-silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual-column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 microl of 0.01 mol l(-1) HNO(3) [for As(V)], 0.1 mol l(-1) HNO(3) [for MMA(V)] and 0.2 mol l(-1) HNO(3)-3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir-coated graphite tubes for further ETV-ICP-MS detection. With two-step ETV pyrolysis program, Cl(-) in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference-free, determined by ETV-ICP-MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 sigma) of the method were 3.9 pg ml(-1) for As(III), 2.7 pg ml(-1) for As(V), 2.6 pg ml(-1) for MMA(V) and 124 pg ml(-1) for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml(-1), n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. PMID:19950110

  16. Bioresponsive matrices in drug delivery

    PubMed Central

    2010-01-01

    For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli. PMID:21114841

  17. Protein delivery with nanoscale precision

    NASA Astrophysics Data System (ADS)

    Tang, Qiling; Zhang, Yuexing; Chen, Liaohai; Yan, Funing; Wang, Rong

    2005-08-01

    A novel assay of protein delivery to a surface with nanoscale precision was established. This was achieved by combining recent advancements in atomic force microscopy (AFM) and bioconjugation. We utilized a heterobifunctional photocleavable cross linker to functionalize an AFM tip with proteins. Upon irradiation, the proteins were released from the tip due to a photolytic reaction of the cross linker. These proteins bound tightly to their binding partners on a substrate. When tip functionalization is carefully controlled, proteins can be locally delivered to a desired area. Importantly, the result of protein delivery can be examined immediately by high-resolution imaging in the same area using the protein-free tip. Successful protein delivery was also confirmed by fluorescence imaging and was proved to be reproducible. The approach allows protein delivery and subsequent imaging to be performed in the same local area with the same AFM tip, thus opening up the possibility of monitoring protein functions in living cells in real time.

  18. Variable delivery, fixed displacement pump

    SciTech Connect

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  19. CME in the Soviet Union

    PubMed Central

    Clark, Marvin

    1978-01-01

    This article documents the system of continuing medical education in the Soviet Union, as seen through the eyes of a visiting Canadian physician. The information was not easily obtained, since the visit was fraught with administrative difficulties, but the experience was highly educational, giving particular insight into the advantages and disadvantages of an educational system which is totally government funded. PMID:21301547

  20. Development of insulin delivery systems.

    PubMed

    Siddiqui, N I; Siddiqui, Ni; Rahman, S; Nessa, A

    2008-01-01

    Delivery system of insulin is vital for its acceptance and adherence to therapy for achieving the glycemic targets. Enormous developments have occurred in the delivery system of insulin during the last twenty years and each improvement was aimed at two common goals: patients convenience and better glycemic control. Till to date, the various insulin delivery systems are: syringes/vials, injection aids, jet injectors, transmucosal delivery, transdermal delivery, external insulin infusion pump, implantable insulin pumps, insulin pens and insulin inhalers. Syringe/vial is the oldest and conventional method, still widely used and relatively cheaper. Modern plastic syringes are disposable, light weight with microfine needle for patients convenience and comfort. Oral route could be the most acceptable and viable, if the barriers can be overcome and under extensive trial. Insulin pen device is an important milestone in the delivery system of insulin as it is convenient, discrete, painless, attractive, portable with flexible life style and improved quality of life. More than 80% of European diabetic patients are using insulin pen. Future digital pen will have better memory option, blood glucose monitoring system, insulin dose calculator etc. Insulin infusion pump is a good option for the children, busy patients with flexible lifestyle and those who want to avoid multiple daily injections. Pulmonary route of insulin delivery is a promising, effective, non-invasive and acceptable alternative method. Exubera, the world first insulin inhaler was approved by FDA in 28 January 2006. But due to certain limitations, it has been withdrawn from the market in October 2007. The main concern of inhaled insulin are: long term pulmonary safety issues, cost effectiveness and user friendly device. In future, more acceptable and cost effective insulin inhaler will be introduced. Newer avenues are under extensive trial for better future insulin delivery systems. PMID:18285745

  1. Electroporation-mediated gene delivery.

    PubMed

    Young, Jennifer L; Dean, David A

    2015-01-01

    Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for invivo gene delivery in a number of animal models. PMID:25620008

  2. Radiation delivery system and method

    DOEpatents

    Sorensen, Scott A.; Robison, Thomas W.; Taylor, Craig M. V.

    2002-01-01

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  3. Advances in Gene Delivery Systems

    PubMed Central

    Kamimura, Kenya; Suda, Takeshi; Zhang, Guisheng; Liu, Dexi

    2011-01-01

    The transfer of genes into cells, both in vitro and in vivo, is critical for studying gene function and conducting gene therapy. Methods that utilize viral and nonviral vectors, as well as physical approaches, have been explored. Viral vector-mediated gene transfer employs replication-deficient viruses such as retro-virus, adenovirus, adeno-associated virus and herpes simplex virus. A major advantage of viral vectors is their high gene delivery efficiency. The nonviral vectors developed so far include cationic liposomes, cationic polymers, synthetic peptides and naturally occurring compounds. These nonviral vectors appear to be highly effective in gene delivery to cultured cells in vitro but are significantly less effective in vivo. Physical methods utilize mechanical pressure, electric shock or hydrodynamic force to transiently permeate the cell membrane to transfer DNA into target cells. They are simpler than viral- and nonviral-based systems and highly effective for localized gene delivery. The past decade has seen significant efforts to establish the most desirable method for safe, effective and target-specific gene delivery, and good progress has been made. The objectives of this review are to (i) explain the rationale for the design of viral, nonviral and physical methods for gene delivery; (ii) provide a summary on recent advances in gene transfer technology; (iii) discuss advantages and disadvantages of each of the most commonly used gene delivery methods; and (iv) provide future perspectives. PMID:22200988

  4. Nanogels for Oligonucleotide Delivery to the Brain

    PubMed Central

    Vinogradov, Serguei V.; Batrakova, Elena V.; Kabanov, Alexander V.

    2009-01-01

    Systemic delivery of oligonucleotides (ODN) to the central nervous system is needed for development of therapeutic and diagnostic modalities for treatment of neurodegenerative disorders. Macromolecules injected in blood are poorly transported across the bloodbrain barrier (BBB) and rapidly cleared from circulation. In this work we propose a novel system for ODN delivery to the brain based on nanoscale network of cross-linked poly(ethylene glycol) and polyethylenimine (nanogel). The methods of synthesis of nanogel and its modification with specific targeting molecules are described. Nanogels can bind and encapsulate spontaneously negatively charged ODN, resulting in formation of stable aqueous dispersion of polyelectrolyte complex with particle sizes less than 100 nm. Using polarized monolayers of bovine brain microvessel endothelial cells as an in vitro model this study demonstrates that ODN incorporated in nanogel formulations can be effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin. Importantly the ODN is transported across the brain microvessel cells through the transcellular pathway; after transport, ODN remains mostly incorporated in the nanogel and ODN displays little degradation compared to the free ODN. Using mouse model for biodistribution studies in vivo, this work demonstrated that as a result of incorporation into nanogel 1 h after intravenous injection the accumulation of a phosphorothioate ODN in the brain increases by over 15 fold while in liver and spleen decreases by 2-fold compared to the free ODN. Overall, this study suggests that nanogel is a promising system for delivery of ODN to the brain. PMID:14733583

  5. Nanostructured materials for applications in drug delivery and tissue engineering*

    PubMed Central

    GOLDBERG, MICHAEL; LANGER, ROBERT; JIA, XINQIAO

    2010-01-01

    Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering. PMID:17471764

  6. Controlled release polymeric ocular delivery of acyclovir.

    PubMed

    Deshpande, Praful Balavant; Dandagi, Panchaxari; Udupa, Nayanabhirama; Gopal, Shavi V; Jain, Samata S; Vasanth, Surenalli G

    2010-01-01

    The aim of the present study was to formulate and evaluate controlled release polymeric ocular delivery of acyclovir. Reservoir-type ocular inserts were fabricated by sandwiching hydroxypropyl methylcellulose (HPMC) matrix film containing acyclovir between two rate controlling membranes of cellulose acetate phthalate (CAP). The solubility and dissolution rate of poorly soluble acyclovir was enhanced by preparing binary systems with beta-cyclodextrin and then incorporated into HPMC matrix. Nine formulations (AB-1 to AB-9) with varying ratio of HPMC (drug matrix) and CAP (rate controlling membrane) were developed and sterilized by gamma radiation. The formulations were subjected to various physico-chemical evaluations. The in vitro release profile of all the formulations showed a steady, controlled drug release up to 20 h with non-Fickian diffusion behavior. A high correlation coefficient found between in vitro/in vivo release rate studies. Formation of acyclovir complex was confirmed by differential scanning calorimetry. In addition, dissolution rate studies revealed improved solubility of acyclovir when complexed with beta-cyclodextrin. Stability studies showed that the ocular inserts could be stored safely at study storage conditions. In conclusion, the present study demonstrated controlled release formulation of acyclovir inserts for ocular delivery using biodegradable polymers. PMID:19772377

  7. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery. PMID:26631222

  8. In situ forming polymeric drug delivery systems.

    PubMed

    Madan, M; Bajaj, A; Lewis, S; Udupa, N; Baig, J A

    2009-05-01

    In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289

  9. In Situ Forming Polymeric Drug Delivery Systems

    PubMed Central

    Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J. A.

    2009-01-01

    In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289

  10. Growth factor delivery for bone tissue engineering.

    PubMed

    Gittens, S A; Uludag, H

    2001-01-01

    Bone is a dynamic tissue that undergoes significant turnover during the life cycle of an individual. Despite having a significant regenerative capability, trauma and other pathological scenarios commonly require therapeutic intervention to facilitate the healing process. Bone tissue engineering, where cellular and biological processes at a site are deliberately manipulated for a therapeutic outcome, offers a viable option for the treatment of skeletal diseases. In this review paper, we aim to provide a brief synopsis of cellular and molecular basis of bone formation that are pertinent to current efforts of bone healing. Different approaches for engineering bone tissue were presented with special emphasis on the use of soluble (diffusible) therapeutic agents to accelerate bone healing. The latter agents have been used for both local bone repair (i.e. introduction of agents directly to a site of repair) as well as systemic bone regeneration (i.e. delivery for regeneration throughout the skeletal system). Critical drug delivery and targeting issues pertinent for each mode of bone regeneration are provided. In addition, future challenges and opportunities in bone tissue engineering are proposed from the authors' perspective. PMID:11822814

  11. Therapeutic angiogenesis: controlled delivery of angiogenic factors

    PubMed Central

    Chu, Hunghao; Wang, Yadong

    2013-01-01

    Therapeutic angiogenesis aims at treating ischemic diseases by generating new blood vessels from existing vasculature. It relies on delivery of exogenous factors to stimulate neovasculature formation. Current strategies using genes, proteins and cells have demonstrated efficacy in animal models. However, clinical translation of any of the three approaches has proved to be challenging for various reasons. Administration of angiogenic factors is generally considered safe, according to accumulated trials, and offers off-the-shelf availability. However, many hurdles must be overcome before therapeutic angiogenesis can become a true human therapy. This article will highlight protein-based therapeutic angiogenesis, concisely review recent progress and examine critical challenges. We will discuss growth factors that have been widely utilized in promoting angiogenesis and compare their targets and functions. Lastly, since bolus injection of free proteins usually result in poor outcomes, we will focus on controlled release of proteins. PMID:22838066

  12. Buccal and sublingual vaccine delivery.

    PubMed

    Kraan, Heleen; Vrieling, Hilde; Czerkinsky, Cecil; Jiskoot, Wim; Kersten, Gideon; Amorij, Jean-Pierre

    2014-09-28

    Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery. PMID:24911355

  13. Optimised transdermal delivery of pravastatin.

    PubMed

    Burger, Cornel; Gerber, Minja; du Preez, Jan L; du Plessis, Jeanetta

    2015-12-30

    Wiechers' programme "Formulating for Efficacy" initiated a new strategy to optimise the oil phase of topical formulations in order to achieve optimal transdermal drug delivery. This new approach uses the "Delivery Gap Theory" on any active pharmaceutical ingredients (APIs) to test if it could enhance transdermal drug delivery. The aim of the study was to formulate six different semi-solid formulations (three creams and three emulgels) with 2% pravastatin as the API in order to investigate the "Delivery Gap Principle", by determining which formulation would deliver pravastatin best to the target-site (system circulation). The three cream- and three emulgel formulations had different polarities, i.e. a formulation with polarity equal to that of the stratum corneum (optimised), a non-polar (lipophilic)- and a polar (hydrophilic)-formulation. Franz cell diffusion studies were executed over 12h and the optimised emulgel (2.578?g/cm(2)) had the highest median amount per area obtained. Tape stripping followed the diffusion studies and in the stratum corneum-epidermis, the hydrophilic emulgel (1.448?g/ml) contained the highest median pravastatin concentration and the epidermis-dermis the optimised emulgel (0.849?g/ml) depicted the highest pravastatin concentration. During this study, it was observed that when both emulgel and cream formulations were compared; the emulgels enhanced the delivery of pravastatin more than the creams. PMID:26505148

  14. Local drug delivery for enhancing fracture healing in osteoporotic bone.

    PubMed

    Kyllnen, Laura; D'Este, Matteo; Alini, Mauro; Eglin, David

    2015-01-01

    Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone. PMID:25218339

  15. Opening the Black Box: Exploring the Effect of Transformation on Online Service Delivery in Local Governments

    NASA Astrophysics Data System (ADS)

    van Veenstra, Anne Fleur; Zuurmond, Arre

    To enhance the quality of their online service delivery, many government organizations seek to transform their organization beyond merely setting up a front office. This transformation includes elements such as the formation of service delivery chains, the adoption of a management strategy supporting process orientation and the implementation of enterprise architecture. This paper explores whether undertaking this transformation has a positive effect on the quality of online service delivery, using data gathered from seventy local governments. We found that having an externally oriented management strategy in place, adopting enterprise architecture, aligning information systems to business and sharing activities between processes and departments are positively related to the quality of online service delivery. We recommend that further research should be carried out to find out whether dimensions of organizational development too have an effect on online service delivery in the long term.

  16. Volatiles Delivery to the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Marov, M. Ya.; Ipatov, S. I.

    2006-08-01

    Migration of small bodies and dust particles from the outer regions of the solar system is an important mechanism of the formation and evolution of atmospheres and hydrospheres of the terrestrial planets [1]. It is assumed that these bodies and particles could be responsible for the delivery of the original matter (mainly volatiles) and thus could give rise to the life origin. A fraction of dust particles migrated inward solar system is believed to be of interstellar origin embedded in presolar nebula and preserved for a long time at the fringe of the solar system. Our studies of volatiles delivery were based on results of numerical integration of the migration of small bodies and dust particles in the Solar System [2]. It was shown that the exogenous mechanism of heterogeneous accretion and the endogenous mechanism of the interior degassing may contribute to the formation of planetary atmospheres and hydrospheres at least comparably. If the total mass of planetesimals beyond Jupiter's orbit exceeded a hundred of Earth masses, then of the total mass of volatiles delivered to the Earth exceeded the amount of water in the Earth's oceans. The results of our studies of the migration of dust particles of various genesis lead to the conclusion that a portion of cometary and trans-Neptunian dust particles highly enriched by volatiles can be considerable among particles of other origin. Although it is difficult to obtain exact estimates of the dust influx to the Earth and neighboring planets, it was shown that, in comparison with small bodies, the dust contribution is 3-4 orders of magnitude smaller. However, dust particles could have been most efficient in the delivery of organic prebiogenic and, most likely, biogenic matter, because they are subjected to substantially weaker heating at the altitudes at which they enter the atmosphere and decelerate in it. This conclusion is confirmed by laboratory investigations into the probability of survival of bacteria and phages heated up to 200^o C and allows one to consider dust as a potential carrier of biogenic material from outer space. [1] Marov M. Ya. and Ipatov S.I., Solar System Research, 2005, 39, 374-380. [2] Ipatov S.I. and Mather J.C., Advances in Space Research, 2006, 37, 126-137.

  17. Responsive foams for nanoparticle delivery.

    PubMed

    Tang, Christina; Xiao, Edward; Sinko, Patrick J; Szekely, Zoltan; Prud'homme, Robert K

    2015-09-01

    We have developed responsive foam systems for nanoparticle delivery. The foams are easy to make, stable at room temperature, and can be engineered to break in response to temperature or moisture. Temperature-responsive foams are based on the phase transition of long chain alcohols and could be produced using medical grade nitrous oxide as a propellant. These temperature-sensitive foams could be used for polyacrylic acid (PAA)-based nanoparticle delivery. We also discuss moisture-responsive foams made with soap pump dispensers. Polyethylene glycol (PEG)-based nanoparticles or PMMA latex nanoparticles were loaded into Tween 20 foams and the particle size was not affected by the foam formulation or foam break. Using biocompatible detergents, we anticipate this will be a versatile and simple approach to producing foams for nanoparticle delivery with many potential pharmaceutical and personal care applications. PMID:26091943

  18. Ultrasonic drug delivery in Oncology.

    PubMed

    Udroiu, Ion

    2015-01-01

    Ultrasound-assisted drug delivery is an emerging technique that has the advantage of being non-invasive, efficiently and specifically targeted and controllable. While systemic drugs often show detrimental side effects, their ultrasound-triggered local release at the selected tissue may improve safety and specifity of therapy. An increasing amount of animal and preclinical studies demonstrates how ultrasound can also be used for increasing the efficacy of chemotherapeutic drug release to solid tumors. In particular, this technique may be functional to reach uniform delivery of chemotherapeutic agents throughout tumors, which is naturally restricted by their abnormal vascularization and interstitial pressure. This review deals with the physical mechanisms of ultrasound, the different kinds of drug carriers (microbubbles, liposomes and micelles) and the biological phenomena useful for cancer treatment (hyperthermia, sonoporation, enhanced extravasation, sonophoresis and blood-brain barrier disruption), showing how much ultrasonic drug delivery is a promising method in the oncological field. PMID:26011326

  19. Recent advances in vaccine delivery.

    PubMed

    Cordeiro, Ana S; Alonso, Mara J

    2016-01-01

    The field of vaccination is moving from the use of attenuated or inactivated pathogens to safer but less immunogenic protein and peptide antigens, which require stronger adjuvant compositions. Antigen delivery carriers appear to play an important role in vaccine development, providing not only antigen protection and controlled release but also an intrinsic adjuvant potential. Among them, carriers based on polymers and lipids are the most representative ones. Patent applications in this area have disclosed, either the design and preparation methods for new biocompatible antigen delivery systems or the application of the previously developed systems for the delivery of novel antigens. Some of them have also reported the use of these technologies for modern therapeutic vaccination approaches. PMID:26667309

  20. Functionalized organotin-chalcogenide complexes that exhibit defect heterocubane scaffolds: formation, synthesis, and characterization.

    PubMed

    Euner, Jens P; Barth, Beatrix E K; Leusmann, Eliza; You, Zhiliang; Rinn, Niklas; Dehnen, Stefanie

    2013-10-01

    The synthesis of new functionalized organotin-chalcogenide complexes was achieved by systematic optimization of the reaction conditions. The structures of compounds [(R(1,?2) Sn)3 S4 Cl] (1, 2), [((R(2) Sn)2 SnS4 )2 (?-S)2 ] (3), [(R(1,?2) Sn)3 Se4 ][SnCl3 ] (4, 5), and [Li(thf)n ][(R(3) Sn)(HR(3) Sn)2 Se4 Cl] (6), in which R(1) =CMe2 CH2 C(O)Me, R(2) =CMe2 CH2 C(NNH2 )Me, and R(3) =CH2 CH2 COO, are based on defect heterocubane scaffolds, as shown by X-ray diffraction, (119) Sn?NMR spectroscopy, and ESI mass spectrometry analyses. Compounds 4, 5, and 6 constitute the first examples of defect heterocubane-type metal-chalcogenide complexes that are comprised of selenide ligands. Comprehensive DFT calculations prompted us to search for the formal intermediates [(R(1) SnCl2 )2 (?-S)] (7) and [(R(1) SnCl)2 (?-S)2 ] (8), which were isolated and helped to understand the stepwise formation of compounds 1-6. PMID:23963989

  1. Management of Spontaneous Vaginal Delivery.

    PubMed

    Dresang, Lee T; Yonke, Nicole

    2015-08-01

    Most of the nearly 4 million births in the United States annually are normal spontaneous vaginal deliveries. In the first stage of labor, normal birth outcomes can be improved by encouraging the patient to walk and stay in upright positions, waiting until at least 6 cm dilation to diagnose active stage arrest, providing continuous labor support, using intermittent auscultation in low-risk deliveries, and following the Centers for Disease Control and Prevention guidelines for group B streptococcus prophylaxis. Most women with a low transverse uterine incision are candidates for a trial of labor after cesarean delivery and should be counseled accordingly. Pain management during labor includes complementary modalities and systemic opioids, epidural anesthesia, and pudendal block. Outcomes in the second stage of labor can be improved by using warm perineal compresses, allowing women more time to push before intervening, and offering labor support. Delayed pushing increases the length of the second stage of labor and does not affect the rate of spontaneous vaginal delivery. A tight nuchal cord can be clamped twice and cut before delivery of the shoulders, or the baby may be delivered using a somersault maneuver in which the cord is left nuchal and the distance from the cord to placenta minimized by pushing the head toward the maternal thigh. After delivery, skin-to-skin contact with the mother is recommended. Beyond 35 weeks' gestation, there is no benefit to bulb suctioning the nose and mouth. Postpartum maternal and neonatal outcomes can be improved through delayed cord clamping, active management to prevent postpartum hemorrhage, careful examination for external anal sphincter injuries, and use of absorbable synthetic suture for second-degree perineal laceration repair. Practices that will not improve outcomes and may result in negative outcomes include discontinuation of epidurals late in labor and routine episiotomy. PMID:26280140

  2. Cesarean delivery on maternal request.

    PubMed Central

    Viswanathan, Meera; Visco, Anthony G; Hartmann, Katherine; Wechter, Mary Ellen; Gartlehner, Gerald; Wu, Jennifer M; Palmieri, Rachel; Funk, Michele Jonsson; Lux, Linda; Swinson, Tammeka; Lohr, Kathleen N

    2006-01-01

    OBJECTIVES The RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center (RTI-UNC EPC) systematically reviewed the evidence on the trend and incidence of cesarean delivery (CD) in the United States and in other developed countries, maternal and infant outcomes of cesarean delivery on maternal request (CDMR) compared with planned vaginal delivery (PVD), factors affecting the magnitude of the benefits and harms of CDMR, and future research directions. DATA SOURCES We searched MEDLINE, Cochrane Collaboration resources, and Embase and identified 1,406 articles to examine against a priori inclusion criteria. We included studies published from 1990 to the present, written in English. Studies had to include comparison between the key reference group (CDMR or proxies) and PVD. REVIEW METHODS A primary reviewer abstracted detailed data on key variables from included articles; a second senior reviewer confirmed accuracy. RESULTS We identified 13 articles for trends and incidence of CD, 54 for maternal and infant outcomes, and 5 on modifiers of CDMR. The incidence of CDMR appears to be increasing. However, accurately assessing either its true incidence or trends over time is difficult because currently CDMR is neither a well-recognized clinical entity nor an accurately reported indication for diagnostic coding or reimbursement. Virtually no studies exist on CDMR, so the knowledge base rests chiefly on indirect evidence from proxies possessing unique and significant limitations. Furthermore, most studies compared outcomes by actual routes of delivery, resulting in great uncertainty as to their relevance to planned routes of delivery. Primary CDMR and planned vaginal delivery likely do differ with respect to individual outcomes for either mothers or infants. However, our comprehensive assessment, across many different outcomes, suggests that no major differences exist between primary CDMR and planned vaginal delivery, but the evidence is too weak to conclude definitively that differences are completely absent. Given the limited data available, we cannot draw definitive conclusions about factors that might influence outcomes of planned CDMR versus PVD. CONCLUSIONS The evidence is significantly limited by its minimal relevance to primary CDMR. Future research requires developing consensus about terminology for both delivery routes and outcomes; creating a minimum data set of information about CDMR; improving study design and statistical analyses; attending to major outcomes and their special measurement issues; assessing both short- and long-term outcomes with better measurement strategies; dealing better with confounders; and considering the value or utility of different outcomes. PMID:17627329

  3. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

    PubMed

    Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2015-02-01

    We present a novel process to encapsulate indocyanine green (ICG) in liposomal droplets at high concentration for potential applications in image-guided drug delivery. The microencapsulation process follows two consecutive steps of droplet formation by liquid-driven coaxial flow focusing (LDCFF) and solvent removal by oil phase dewetting. These biocompatible lipid vesicles may have important applications in drug delivery and fluorescence imaging. PMID:25450664

  4. Smart materials: in situ gel-forming systems for nasal delivery.

    PubMed

    Karavasili, Christina; Fatouros, Dimitrios G

    2016-01-01

    In the last decade in situ gelling systems have emerged as a novel approach in intranasal delivery of therapeutics, capturing the interest of scientific community. Considerable advances have been currently made in the development of novel formulations containing both natural and synthetic polymers. In this paper we present recent developments on in situ gelling systems for nasal delivery, highlighting the mechanisms that govern their formation. PMID:26563428

  5. TARGETED DELIVERY OF INHALED PROTEINS

    EPA Science Inventory

    ETD-02-047 (Martonen) GPRA # 10108

    TARGETED DELIVERY OF INHALED PROTEINS
    T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...

  6. Delivery System, 2003-2004.

    ERIC Educational Resources Information Center

    Office of Federal Student Aid (ED), Washington, DC.

    This workshop guide for financial aid administrators provides training in the federal student financial aid delivery system. An introduction enables the participant to share some information about his or her responsibilities and to reflect on the relevance of the training to the job. Session 1, "Application Systems," identifies methods of applying

  7. Document Delivery: Evaluating the Options.

    ERIC Educational Resources Information Center

    Ward, Suzanne M.

    1997-01-01

    Discusses options available to libraries for document delivery. Topics include users' needs; cost; copyright compliance; traditional interlibrary loan; types of suppliers; selection criteria, including customer service; new developments in interlibrary loan, including outsourcing arrangements; and the need to evaluate suppliers. (LRW)

  8. Decationized polyplexes for gene delivery.

    PubMed

    Novo, Lus; Mastrobattista, Enrico; van Nostrum, Cornelus F; Lammers, Twan; Hennink, Wim E

    2015-04-01

    Gene therapy has received much attention in the field of drug delivery. Synthetic, nonviral gene delivery systems have gained increasing attention as vectors for gene therapy mainly due to a favorable immunogenicity profile and ease of manufacturing as compared to viral vectors. The great majority of these formulations are based on polycationic structures, due to their ability to interact with negatively charged nucleic acids to spontaneously form nanoparticles. In recent years, several polycationic systems have demonstrated high transfection in vitro. However, progress toward clinical applications has been slow, mainly because the cationic nature of these systems leads to intolerable toxicity levels, inappropriate biodistribution and unsatisfactory efficiency in vivo, particularly after systemic administration. Decationized polyplexes are a new class of gene delivery systems that have been developed as an alternative for conventional polycation-based systems. The major innovation introduced by decationized polyplexes is that these systems are based on neutral polymers, without any detrimental effect on the physicochemical stability or encapsulation ability, due to the transient presence of cationic charge and disulfide cross-links between the polymer chains by which the nucleic acids are physically entrapped in the particles. This editorial summarizes the most important features of decationized polyplexes and discusses potential implications for the development of new safe and efficient gene delivery systems. PMID:25425332

  9. Optimizing gastrointestinal delivery of drugs.

    PubMed

    Wilding, I R; Davis, S S; O'Hagan, D T

    1994-06-01

    There is currently a great deal of effort being aimed at achieving effective delivery of novel therapeutic drugs, such as peptides, by the oral route. Opportunities have been identified which could lead to more convenient delivery systems for this class of drug. It is likely that a polypeptide given unprotected into the gastrointestinal environment will be degraded significantly. However, it is well known that small quantities of dietary proteins can be absorbed, even though these may have little or no physiological effect. It is felt that the colon may provide an advantageous absorption site for peptides. As a consequence there has been considerable interest, not only in the development of colonic delivery systems, but also in the establishment of strategies designed to maximize peptide absorption from the colon. Traditionally, vaccine research has been concerned with producing systemic immunity by parenteral immunization. However, the gradual acceptance of the importance of IgA in protecting mucosal surfaces against infection from numerous pathogenic organisms has led to an increased interest in oral immunization. Because of the existence of the CMIS, oral immunization induces secretory immunity in both the genital and respiratory tracts. Therefore, oral immunization offers the possibility for development of easily administered vaccines that will be effective in prevention against important respiratory and genital tract infections. The recent advances in recombinant DNA technology and the development of antigen delivery systems have given rise to optimism that several new and improved oral vaccines may be available by the next millennium. PMID:7949458

  10. Nanoparticles for DNA vaccine delivery.

    PubMed

    Shah, Muhammad Ali A; He, Nongyue; Li, Zhiyang; Ali, Zeeshan; Zhang, Liming

    2014-09-01

    Nanotechnology is the development of engineered devices or materials at the micro molecular level in the nanometer range. The properties of nanoparticles that these could be designed, manufactured and introduced into the human body, have led to its application in various fields of medicine. They are being used for construction of diagnostic devices, contrast agents, analytical tools, physical therapy, drug discovery and drug delivery vehicles. The DNA vaccines have been emerged as best remedy for problematic diseases being capable of producing humoral and cellular immune responses as well as the safest vaccines so far. There are a large number of infectious diseases against which traditional vaccines failed to respond effectively. Especially, viral diseases and cancer where DNA vaccines seem to be the better option. However, the magnitude of immune responses produced by them in primates is not sufficient to be used in human beings. There is an evidence that these immune responses can be augmented by using properly structured nano-sized particles that may avoid DNA degradation and facilitate targeted and controlled delivery to antigen presenting cells. Adsorption, formulation or encapsulation with particles has been found to stabilize DNA formulations. The use of nanoparticles for vaccine delivery is a platform technology and has been applied for delivery of a variety of existing and potential vaccines successfully. PMID:25992460

  11. Special Delivery Systems. Final Report.

    ERIC Educational Resources Information Center

    Molek, Carol

    The Special Delivery Systems project developed a curriculum for students with learning disabilities (LD) in an adult basic education program. The curriculum was designed to assist and motivate the students in the educational process. Fourteen students with LD were recruited and screened. The curriculum addressed varied learning styles combined

  12. Delivery System, 2003-2004.

    ERIC Educational Resources Information Center

    Office of Federal Student Aid (ED), Washington, DC.

    This workshop guide for financial aid administrators provides training in the federal student financial aid delivery system. An introduction enables the participant to share some information about his or her responsibilities and to reflect on the relevance of the training to the job. Session 1, "Application Systems," identifies methods of applying…

  13. Emergency cesarean delivery: special precautions.

    PubMed

    Tyner, Joey E; Rayburn, William F

    2013-03-01

    An emergent cesarean delivery is performed to immediately intervene to improve maternal or fetal outcome for such indications as fetal distress, prolapsed cord, maternal hemorrhage from previa or trauma, uterine rupture, and complete placental abruption. It is paramount to reduce morbidity and mortality by preparing health care providers for special precautions. PMID:23466135

  14. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  15. Special Delivery Systems. Final Report.

    ERIC Educational Resources Information Center

    Molek, Carol

    The Special Delivery Systems project developed a curriculum for students with learning disabilities (LD) in an adult basic education program. The curriculum was designed to assist and motivate the students in the educational process. Fourteen students with LD were recruited and screened. The curriculum addressed varied learning styles combined…

  16. Teleteach Expanded Delivery System: Evaluation.

    ERIC Educational Resources Information Center

    Christopher, G. Ronald; Milam, Alvin L.

    In order to meet the demand for Air Force Institute of Technology (AFIT) professional continuing education (PCE) courses within the School of Systems and Logistics and the School of Engineering, the Teleteach Expanded Delivery System (TEDS) for instruction of Air Force personnel at remote locations was developed and evaluated. TEDS uses a device…

  17. Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery

    PubMed Central

    Chang, Tsung-Yao; Shi, Peng; Steinmeyer, Joseph D.; Chatnuntawech, Itthi; Tillberg, Paul; Love, Kevin T.; Eimon, Peter M.; Anderson, Daniel G.; Yanik, Mehmet Fatih

    2014-01-01

    Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with nearly perfect repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure-activity relationship, which can potentially be applied to design novel delivery vehicles. PMID:25184623

  18. Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery.

    PubMed

    Chang, Tsung-Yao; Shi, Peng; Steinmeyer, Joseph D; Chatnuntawech, Itthi; Tillberg, Paul; Love, Kevin T; Eimon, Peter M; Anderson, Daniel G; Yanik, Mehmet Fatih

    2014-10-01

    Therapies based on biologics involving delivery of proteins, DNA, and RNA are currently among the most promising approaches. However, although large combinatorial libraries of biologics and delivery vehicles can be readily synthesized, there are currently no means to rapidly characterize them in vivo using animal models. Here, we demonstrate high-throughput in vivo screening of biologics and delivery vehicles by automated delivery into target tissues of small vertebrates with developed organs. Individual zebrafish larvae are automatically oriented and immobilized within hydrogel droplets in an array format using a microfluidic system, and delivery vehicles are automatically microinjected to target organs with high repeatability and precision. We screened a library of lipid-like delivery vehicles for their ability to facilitate the expression of protein-encoding RNAs in the central nervous system. We discovered delivery vehicles that are effective in both larval zebrafish and rats. Our results showed that the in vivo zebrafish model can be significantly more predictive of both false positives and false negatives in mammals than in vitro mammalian cell culture assays. Our screening results also suggest certain structure-activity relationships, which can potentially be applied to design novel delivery vehicles. PMID:25184623

  19. Waste feed delivery test and evaluation plan

    SciTech Connect

    O'TOOLE, S.M.

    1999-09-30

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach.

  20. The Cultural Geography of Health Care Delivery.

    ERIC Educational Resources Information Center

    Gesler, Wilbert M.

    1987-01-01

    This article shows how health care delivery is related to cultural or human geography. This is accomplished by describing health care delivery in terms of 12 popular themes of cultural geography. (JDH)

  1. Topical delivery system for tretinoin: research and clinical implications.

    PubMed

    Skov, M J; Quigley, J W; Bucks, D A

    1997-10-01

    A novel topical tretinoin gel formulation containing a patented TopiCare Delivery Compound, polyolprepolymer-2 (PP-2), was shown to significantly reduce local irritation relative to a marketed tretinoin gel preparation while maintaining clinical efficacy in the treatment of acne. Several in vitro percutaneous absorption studies were conducted with 0.025% tretinoin as a model compound to determine the possible mechanism of action of PP-2 on drug delivery into and through human cadaver skin. Results of these studies have repeatedly shown that a new topical gel formulation containing PP-2 significantly reduces tretinoin penetration while potentially enhancing epidermal deposition compared with a commercial topical gel preparation at the same tretinoin concentration. These studies further support a mechanism of action whereby PP-2 serves as a retentate for drug delivery by formation of a liquid reservoir of polymer and solubilized drug on the skin surface and in the upper layers of the skin, thereby modifying delivery of tretinoin into and through skin. This reservoir of drug and polymer was established within 15 min after topical application, and tretinoin was shown to be highly associated with PP-2. These in vitro findings provide a model by which a new tretinoin gel formulation containing PP-2 reduces irritation relative to a commercial tretinoin gel while maintaining clinical efficacy in the treatment of acne vulgaris. PMID:9344171

  2. Porous silicon microparticles for delivery of siRNA therapeutics.

    PubMed

    Shen, Jianliang; Wu, Xiaoyan; Lee, Yeonju; Wolfram, Joy; Yang, Zhizhou; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2015-01-01

    Small interfering RNA (siRNA) can be used to suppress gene expression, thereby providing a new avenue for the treatment of various diseases. However, the successful implementation of siRNA therapy requires the use of delivery platforms that can overcome the major challenges of siRNA delivery, such as enzymatic degradation, low intracellular uptake and lysosomal entrapment. Here, a protocol for the preparation and use of a biocompatible and effective siRNA delivery system is presented. This platform consists of polyethylenimine (PEI) and arginine (Arg)-grafted porous silicon microparticles, which can be loaded with siRNA by performing a simple mixing step. The silicon particles are gradually degraded over time, thereby triggering the formation of Arg-PEI/siRNA nanoparticles. This delivery vehicle provides a means for protecting and internalizing siRNA, without causing cytotoxicity. The major steps of polycation functionalization, particle characterization, and siRNA loading are outlined in detail. In addition, the procedures for determining particle uptake, cytotoxicity, and transfection efficacy are also described. PMID:25651103

  3. Delivery of Organic Material and Water through Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Frantseva, Kateryna; van der Tak, Floris; Helmich, Frank P.

    2014-11-01

    Meteorites, specifically carbonaceous chondrites, are frequently invoked as the primary source of Earth's water and organic materials, crucial ingredients for the formation of life. We have started developing a dynamical model of the delivery of their parent bodies, primitive low-albedo asteroids, from the asteroid main belt to Earth and to other planetary surfaces.Existing modeling work focuses on time-integrated delivery rates, which are dominated by the Solar System's turbulent youth. We, in turn, aim at calculating instantaneous delivery rates for comparison with instantaneous measurements. In doing so, we take direct account of the asteroid main belt's observed dynamical and physical structure. In particular, we use low albedo (as taken from the WISE catalog) as a proxy for primitive composition.Our first goal is for our model to reproduce the measured rate of micro-meteorite impacts on Earth. We will then calculate improved delivery rates to Mars and other planetary surfaces within the Solar System.Finally, we aim at applying our model to select exo-planetary systems. Far-IR observations of Vega and Fomalhaut reveal the presence of asteroid belts around these stars; dynamical calculations suggest that those are not a rare occurence but should occur rather generically around the location of the frost line. In such planetary systems, asteroids could deliver water and organics to the habitable region. In this sense, our model should lead to the definition of benchmark observables for exoplanet studies using upcoming/proposed IR facilities such as SPICA, METIS, and JWST.

  4. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery.

    PubMed

    Thukral, Dipti Kakkar; Dumoga, Shweta; Mishra, Anil K

    2014-01-01

    Development of colloidal delivery systems has opened new avenues/frontiers for improving drug delivery. Solid lipid nanoparticles have come up as the latest development in the arena of lipid based colloidal delivery systems after nanoemulsion and liposomes ever since their introduction in the early 1990s. In this review, the authors have made efforts to bring forth the essential and practically relevant aspects of SLNs. This review gives an overview of the preparation methods of solid lipid nanoparticles while mainly focussing on their biological applications including their projected applications in drug delivery. This review critically examines the influential factors governing the formation of SLNs and then discussing in detail the several techniques being utilized for their characterization. This review discusses the drug loading and drug release aspects of SLNs as these are useful biocompatible carriers of lipophilic and to a certain extent hydrophilic drugs. An updated list of drugs encapsulated into various lipids to prepare SLN formulations has been provided. Other relevant aspects pertaining to the clinical use of SLN formulations like their sterilization and storage stability have also been explained. A unique facet of this review is the discussion on the challenging issues of in vivo applications and recent progresses in overcoming these challenges which follows in the end. PMID:25469779

  5. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution. PMID:26692360

  6. Nonviral gene delivery methods in cardiovascular diseases.

    PubMed

    Ruponen, Marika; Hyvnen, Zanna; Urtti, Arto; Yl-Herttuala, Seppo

    2005-01-01

    Nonviral gene delivery methods with naked plasmids and various plasmid carrier complexes have been used for intravascular, intramuscular and periadventitial gene delivery to cardiovascular system. Efficacy, homogenity and quality of the nonviral gene delivery complexes can be significantly affected by the way they are produced. This chapter presents basic methods to produce nonviral gene delivery complexes and describes common models to test their properties in cardiovascular applications in vivo. PMID:16028692

  7. Recent Advances in Topical Ocular Drug Delivery.

    PubMed

    Yellepeddi, Venkata Kashyap; Palakurthi, Srinath

    2016-03-01

    Topical ocular drug delivery has been considered to be an ideal route of administration for treatment of ocular diseases related to the anterior segment of the eye. However, topical ocular delivery is a challenging task because of barriers such as nasolacrimal drainage, corneal epithelium, blood-ocular barriers, and metabolism in the eye. Approaches to improve ocular bioavailability include physical approaches such as formulations of drugs as solutions (Zymaxid(™)), suspensions (Zigran(®)), gels (Akten(®)) and chemical approaches such as prodrugs (Xalatan(™)), chemical delivery systems, and soft drugs. The purpose of this review article is to summarize recent advances in topical drug delivery to the anterior segment of the eye. Functional transporters in the corneal epithelium were also discussed as they provide prospects in topical ocular delivery. In addition to conventional delivery systems, novel delivery systems involving nanocarriers were also investigated for topical ocular delivery. Furthermore, due to increased interest, gene therapy applications of topical ocular delivery of genes to the anterior segment of the eye were also discussed. Research in topical ocular delivery is active for more than 50 years and proven to be advantageous for the treatment of many ocular diseases. However, there is scope for innovation in topical drug delivery to develop delivery systems with a high patient safety profile and compliance for effective clinical usefulness. PMID:26666398

  8. A vector-free microfluidic platform for intracellular delivery

    PubMed Central

    Sharei, Armon; Zoldan, Janet; Adamo, Andrea; Sim, Woo Young; Cho, Nahyun; Jackson, Emily; Mao, Shirley; Schneider, Sabine; Han, Min-Joon; Lytton-Jean, Abigail; Basto, Pamela A.; Jhunjhunwala, Siddharth; Lee, Jungmin; Heller, Daniel A.; Kang, Jeon Woong; Hartoularos, George C.; Kim, Kwang-Soo; Anderson, Daniel G.; Langer, Robert; Jensen, Klavs F.

    2013-01-01

    Intracellular delivery of macromolecules is a challenge in research and therapeutic applications. Existing vector-based and physical methods have limitations, including their reliance on exogenous materials or electrical fields, which can lead to toxicity or off-target effects. We describe a microfluidic approach to delivery in which cells are mechanically deformed as they pass through a constriction 3080% smaller than the cell diameter. The resulting controlled application of compression and shear forces results in the formation of transient holes that enable the diffusion of material from the surrounding buffer into the cytosol. The method has demonstrated the ability to deliver a range of material, such as carbon nanotubes, proteins, and siRNA, to 11 cell types, including embryonic stem cells and immune cells. When used for the delivery of transcription factors, the microfluidic devices produced a 10-fold improvement in colony formation relative to electroporation and cell-penetrating peptides. Indeed, its ability to deliver structurally diverse materials and its applicability to difficult-to-transfect primary cells indicate that this method could potentially enable many research and clinical applications. PMID:23341631

  9. Viral and nonviral delivery systems for gene delivery

    PubMed Central

    Nayerossadat, Nouri; Maedeh, Talebi; Ali, Palizban Abas

    2012-01-01

    Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, EpsteinBarr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed. PMID:23210086

  10. Viral and nonviral delivery systems for gene delivery.

    PubMed

    Nayerossadat, Nouri; Maedeh, Talebi; Ali, Palizban Abas

    2012-01-01

    Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed. PMID:23210086

  11. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems. Ultrasound parameters are optimized to achieve maximum cell internalization of molecules and increased nanoparticle delivery to a cell layer on a coverslip. In-vivo studies demonstrate the possibility of using a lower dose of paclitaxel to slow tumor growth rates, increase doxorubicin concentration in tumor tissue, and enhance tumor delivery of fluorescent molecules through treatments that combine nanoparticles with ultrasound and microbubbles.

  12. Quantitative evaluation of 3D dosimetry for stereotactic volumetric-modulated arc delivery using COMPASS.

    PubMed

    Vikraman, Subramani; Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria

    2015-01-01

    The purpose of this study was to evaluate quantitatively the patient-specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric-modulated arc delivery. Twenty-five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric-modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5-20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)-calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS-calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose-volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9% ± 1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient-specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high-dose modulated stereotactic delivery with very high precision on patient CT images. PMID:25679152

  13. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    NASA Astrophysics Data System (ADS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610°C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  14. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (?10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  15. The transdermal delivery of fentanyl.

    PubMed

    Lane, Majella E

    2013-08-01

    The fentanyl patch is one of the great commercial successes in transdermal drug delivery. The suitability of this molecule for delivery through skin had been identified in the 1970s, and subsequently, a number of transdermal formulations became available on the market. This article reviews the development of fentanyl patch technology with particular emphasis on the pharmacokinetics and disposition of the drug when delivered through the skin. The various patch designs are considered as well as the bioequivalence of the different designs. The influence of heat on fentanyl permeation is highlighted. Post-mortem redistribution of fentanyl is discussed in light of the reported discrepancies in serum levels reported in patients after death compared with therapeutic levels in living subjects. Finally, alternatives to patch technology are considered, and recent novel transdermal formulations are highlighted. PMID:23419814

  16. Nanoparticle-Mediated Gene Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Sha; Leach, John C.; Ye, Kaiming

    Nonviral gene delivery has been gaining considerable attention recently. Although the efficacy of DNA transfection, which is a major concern, is low in nonviral vector-mediated gene transfer compared with viral ones, nonviral vectors are relatively easy to prepare, less immunogenic and oncogenic, and have no potential of virus recombination and no limitation on the size of a transferred gene. The ability to incorporate genetic materials such as plasmid DNA, RNA, and siRNA into functionalized nanoparticles with little toxicity demonstrates a new era in pharmacotherapy for delivering genes selectively to tissues and cells. In this chapter, we highlight the basic concepts and applications of nonviral gene delivery using super paramagnetic iron oxide nanoparticles and functionalized silica nanoparticles. The experimental protocols related to these topics are described in the chapter.

  17. AWIPS II Extended - Data Delivery

    NASA Astrophysics Data System (ADS)

    Henry, R.; Schotz, S.; Calkins, J.; Gockel, B.; Ortiz, C.; Peter, R.

    2012-12-01

    AWIPS II Technology Infusion is a multiphase program. The first phase is the migration of the Weather Forecast Offices (WFOs) and River Forecast Centers (RFCs) AWIPS I capabilities into a Service Oriented Architecture (SOA), referred to as AWIPS II. AWIPS II is currently being deployed to Operational Test and Evaluation (OTE) and other select deployment sites. The subsequent phases of AWIPS Technology Infusion, known as AWIPS II Extended, include several projects that will improve technological capabilities of AWIPS II in order to enhance the NWS enterprise and improve services to partners. This paper summarizes AWIPS II Extended - Data Delivery project and reports on its status. Data Delivery enables AWIPS II users to discover, subscribe and access web-enabled data provider systems including the capability to subset datasets by space, time and parameter.

  18. Ultrasound-Targeted Retroviral Gene Delivery

    NASA Astrophysics Data System (ADS)

    Taylor, Sarah L.; Rahim, Ahad A.; Bush, Nigel L.; Bamber, Jeffrey C.; Porter, Colin D.

    2007-05-01

    This study demonstrates the ability of focused ultrasound to target retroviral gene delivery. Key to our experiments was the use of non-infectious virus particles lacking the envelope protein required for receptor-mediated entry. The novelty of our approach is that spatial control at a distance is exerted upon viral delivery by subsequent exposure to ultrasound, leading to stable gene delivery. The technology is ideally suited to controlling gene delivery in vivo following systemic vector administration. Our data provide a solution to the critical issue of obtaining tissue specificity with retroviral vectors and impart stability of expression to ultrasound-mediated gene delivery.

  19. Nanoparticle Delivery Enhancement With Acoustically Activated Microbubbles

    PubMed Central

    Mullin, Lee B; Phillips, Linsey C; Dayton, Paul A

    2013-01-01

    The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble-based approach to nanoparticle delivery are reviewed. PMID:23287914

  20. Biodegradable microspheres for parenteral delivery.

    PubMed

    Sinha, V R; Trehan, A

    2005-01-01

    Nowadays, emphasis is being laid to development of controlled release dosage forms. Interest in this technology has increased steadily over the past few years. Although oral administration of drugs is a widely accepted route of drug delivery, bioavailability of drug often varies as a result of gastrointestinal absorption, degradation by first-pass effect, and hostile environment of gastrointestinal tract. Transdermal administration for percutaneous absorption of drug is limited by the impermeable nature of the stratum corneum. Ocular and nasal delivery is also unfavorable because of degradation by enzymes present in eye tissues and nasal mucosa. Hence, the parenteral route is the most viable approach in such cases. Of the various ways of achieving long-term parenteral drug delivery, biodegradable microspheres are one of the better means of controlling the release of drug over a long time. Because of the lipidic nature of liposomes, problems such as limited physical stability and difficulty of freeze-drying are encountered. Similarly, for emulsions, stability on long-term basis and in suspensions, rheological changes during filling, injecting, and storage poses limitation. Also, in all these systems, the release rate cannot be tailored to the needs of the patient. Parenteral controlled-release formulations based on biodegradable microspheres can overcome these problems and can control the release of drug over a predetermined time span, usually in the order of days to weeks to months. Various FDA-approved controlled-release parenteral formulations based on these biodegradable microspheres are available on the market, including Lupron Depot Nutropin Depot and Zoladex. This review covers various molecules encapsulated in biodegradable microspheres for parenteral delivery. PMID:16566705