Science.gov

Sample records for cmos low-noise amplifier

  1. Low noise tuned amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1984-01-01

    A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.

  2. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.

    PubMed

    Wu, Chung-Yu; Chen, Wei-Ming; Kuo, Liang-Ting

    2013-04-01

    In this paper, a new current-mode front-end amplifier (CMFEA) for neural signal recording systems is proposed. In the proposed CMFEA, a current-mode preamplifier with an active feedback loop operated at very low frequency is designed as the first gain stage to bypass any dc offset current generated by the electrode-tissue interface and to achieve a low high-pass cutoff frequency below 0.5 Hz. No reset signal or ultra-large pseudo resistor is required. The current-mode preamplifier has low dc operation current to enhance low-noise performance and decrease power consumption. A programmable current gain stage is adopted to provide adjustable gain for adaptive signal scaling. A following current-mode filter is designed to adjust the low-pass cutoff frequency for different neural signals. The proposed CMFEA is designed and fabricated in 0.18-μm CMOS technology and the area of the core circuit is 0.076 mm(2). The measured high-pass cutoff frequency is as low as 0.3 Hz and the low-pass cutoff frequency is adjustable from 1 kHz to 10 kHz. The measured maximum current gain is 55.9 dB. The measured input-referred current noise density is 153 fA /√Hz , and the power consumption is 13 μW at 1-V power supply. The fabricated CMFEA has been successfully applied to the animal test for recording the seizure ECoG of Long-Evan rats. PMID:23853293

  3. Cryogenic MMIC Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Gaier, T.; Fernandez, J.; Erickson, N.; Wielgus, J.

    2000-01-01

    Monolithic (MMIC) and discrete transistor (MIC) low noise amplifiers are compared on the basis of performance, cost, and reliability. The need for cryogenic LNA's for future large microwave arrays for radio astronomy is briefly discussed and data is presented on a prototype LNA for the 1 to 10 GZH range along with a very wideband LNA for the 1 to 60 GHz range.

  4. Low-Noise Band-Pass Amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  5. SEMICONDUCTOR INTEGRATED CIRCUITS A 0.18 μm CMOS dual-band low power low noise amplifier for a global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Bing, Li; Yiqi, Zhuang; Zhenrong, Li; Gang, Jin

    2010-12-01

    This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 μm 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver.

  6. Cooled Low-Noise HEMT Microwave Amplifiers

    NASA Technical Reports Server (NTRS)

    Bautista, J. Javier; Ortiz, Gerardo G.; Duh, Kuanghann George

    1992-01-01

    Prototype cooled low-noise microwave amplifiers based on high-electron-mobility transistors (HEMT's) considered as replacements for cooled ruby masers used as low-noise receiver-front-end amplifiers in communications, radio science, radar systems, radio astronomy, and telemetry. HEMT amplifier operates at 12 K, requires less cooling power and operates at lower cost with simpler, more-reliable cooling system.

  7. Low-noise amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Whelehan, J.

    1984-02-01

    It is pointed out that over the past several years significant advances have been made in the overall capability of both microwave and mm-wave receivers. This is particularly apparent in the telecom market. Integral parts of advanced receiver technology are low-noise receivers. The advances currently being achieved in low-noise technology are partly based on developments in GaAs semiconductor technology. The development of high-cutoff-frequency beam lead mixer diodes has led to the development of mm-wave low-noise mixers with excellent low-noise capability. The advanced techniques are now being employed in field-deployable systems. Low noise is an important factor in satellite communications applications. Attention is given to C-band fixed satellite service, C-band parametric amplifiers, C-band FET, and X band, the Ku band, and the 30/20 GHz band.

  8. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  9. A Low-Noise Semiconductor Optical Amplifier

    SciTech Connect

    Ratowsky, R.P.; Dijaili, S.; Kallman, J.S.; Feit, M.D.; Walker, J.

    1999-03-23

    Optical amplifiers are essential devices for optical networks, optical systems, and computer communications. These amplifiers compensate for the inevitable optical loss in long-distance propagation (>50 km) or splitting (>10x). Fiber amplifiers such as the erbium-doped fiber amplifier have revolutionized the fiber-optics industry and are enjoying widespread use. Semiconductor optical amplifiers (SOAs) are an alternative technology that complements the fiber amplifiers in cost and performance. One obstacle to the widespread use of SOAs is the severity of the inevitable noise output resulting from amplified spontaneous emission (ASE). Spectral filtering is often used to reduce ASE noise, but this constrains the source spectrally, and improvement is typically limited to about 10 dB. The extra components also add cost and complexity to the final assembly. The goal of this project was to analyze, design, and take significant steps toward the realization of an innovative, low-noise SOA based on the concept of ''distributed spatial filtering'' (DSF). In DSF, we alternate active SOA segments with passive free-space diffraction regions. Since spontaneous emission radiates equally in all directions, the free-space region lengthens the amplifier for a given length of gain region, narrowing the solid angle into which the spontaneous emission is amplified [1,2]. Our innovation is to use spatial filtering in a differential manner across many segments, thereby enhancing the effect when wave-optical effects are included [3]. The structure quickly and effectively strips the ASE into the higher-order modes, quenching the ASE gain relative to the signal.

  10. Reflected-wave maser. [low noise amplifier

    NASA Technical Reports Server (NTRS)

    Clauss, R. C. (Inventor)

    1976-01-01

    A number of traveling-wave, slow-wave maser structures, containing active maser material but absent the typical ferrite isolators, are immersed in a nonuniform magnetic field. The microwave signal to be amplified is inserted at a circulator which directs the signal to a slow-wave structure. The signal travels through the slow-wave structure, being amplified according to the distance traveled. The end of the slow-wave structure farthest from the circulator is arranged to be a point of maximum reflection of the signal traveling through the slow-wave structure. As a consequence, the signal to be amplified traverses the slow-wave structure again, in the opposite direction (towards the circulator) experiencing amplification equivalent to that achieved by a conventional traveling-wave maser having twice the length. The circulator directs the amplified signal to following like stages of amplification. Isolators are used in between stages to prevent signals from traveling in the wrong direction, between the stages. Reduced signal loss is experienced at each stage. The high gain produced by each slow-wave structure is reduced to a moderate value by use of a nonuniform magnetic field which also broadens the line width of the maser material. The resulting bandwidth can be exceptionally wide. Cascaded stages provide high gain, exceptionally wide bandwith and very low noise temperature.

  11. 17 GHz low noise GaAs FET amplifier

    NASA Astrophysics Data System (ADS)

    Bharj, J. S.

    1984-10-01

    The considered amplifier is suitable for use as the first stage in a direct broadcast TV satellite receiver, and it was specifically designed for the Unisat spacecraft. Attention is given to RF device characterization, the design of the low-noise FET amplifier, the very significant dispersion effects at 17 GHz, the noise figure, and questions of DC bias. Balanced stages are used for low-noise and high-gain amplifiers to enhance the reliability. The noise figure of the amplifier is approximately 3.75 dB in the frequency band of interest. A low-noise microstrip GaAs FET amplifier circuit is shown.

  12. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range. PMID:19405681

  13. A Low Noise Amplifier for Neural Spike Recording Interfaces.

    PubMed

    Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel

    2015-01-01

    This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz-7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411

  14. A Low Noise Amplifier for Neural Spike Recording Interfaces

    PubMed Central

    Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel

    2015-01-01

    This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411

  15. External Peltier Cooler For Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Soper, Terry A.

    1990-01-01

    Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.

  16. Tailoring HEMTs for low-noise amplifier designs

    NASA Astrophysics Data System (ADS)

    Jabra, A. A.; Smith, P. M.; Chao, P. C.; Baccarini, M.

    1988-10-01

    A Ku-band low-noise amplifier (LNA) for use in a multiple-access communication network such as that required by the Space Station is described. The unit uses high-electron-mobility transistors (HEMTs) to achieve 1.5-dB noise figure and 30-dB gain over its 13.4-13.8 GHz design bandwidth. HEMT technology is discussed as well as Ku-band amplifier design and amplifier performance.

  17. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers. PMID:22047315

  18. A low noise CMOS RF front-end for UWB 6-9 GHz applications

    NASA Astrophysics Data System (ADS)

    Feng, Zhou; Ting, Gao; Fei, Lan; Wei, Li; Ning, Li; Junyan, Ren

    2010-11-01

    An integrated fully differential ultra-wideband CMOS RF front-end for 6-9 GHz is presented. A resistive feedback low noise amplifier and a gain controllable IQ merged folded quadrature mixer are integrated as the RF front-end. The ESD protected chip is fabricated in a TSMC 0.13 μm RF CMOS process and achieves a maximum voltage gain of 23-26 dB and a minimum voltage gain of 16-19 dB, an averaged total noise figure of 3.3-4.6 dB while operating in the high gain mode and an in-band IIP3 of -12.6 dBm while in the low gain mode. This RF front-end consumes 17 mA from a 1.2 V supply voltage.

  19. Design and implementation of a 1-V transformer magnetic feedback low-noise amplifier (LNA) at 5-6 GHz, in a 90 nm complementary metal-oxide-semiconductor (CMOS) process

    NASA Astrophysics Data System (ADS)

    Kytonaki, Eleni-Sotiria; Simitsakis, Paschalis; Bazigos, Antonios; Papananos, Yannis

    2011-02-01

    In this study, a low-noise amplifier (LNA) suitable for low-voltage operation is presented. The LNA operates at a frequency range between 5 and 6 GHz. Its topology exploits magnetic feedback to achieve high reverse isolation and low noise performance without a significant degradation of the gain and linearity of the circuit. The design has been fabricated, considering full electrostatic discharge protection, in a modern 90 nm complementary metal-oxide-semiconductor process. The measured performance, at 5.4 GHz, shows a reverse isolation of -17.3 dB, a gain of 10.4 dB, a noise figure of 0.98 dB and an input intercept point of 1.4 dBm. The circuit dissipates 12.5 mW from a 1 V supply, while it occupies 0.162 mm2 of the die area.

  20. A low-noise Peltier-cooled FET amplifier

    NASA Astrophysics Data System (ADS)

    Askew, R. E.; Wolkstein, H. J.

    1981-12-01

    A description is presented of a Peltier-cooled GaAs FET amplifier designed expressly to replace the complex and expensive parametric amplifier for satellite downlink receivers. The FET amplifier operates with an effective noise temperature (noise figure) at the terminal of less than 160 K (1.9 dB) and has an overall receiver gain of greater than 40 dB over the 7.25 to 7.75 GHz band. Attention is given to the developmental approach, aspects of electrical design, thermal considerations, packaging problems, the power supplies, and questions of cooler control. An investigation demonstrated the feasibility of replacing a parametric amplifier with a Peltier-cooled, low-noise FET amplifier for mast head operation in the 7.25-7.75 GHz band.

  1. X-Band Ultra-Low Noise Maser Amplifier Performance

    NASA Technical Reports Server (NTRS)

    Glass, G.; Johnson, D.; Ortiz, G.

    1993-01-01

    Noise temperature measurements of an 8440 MHz ultra-low noise maser amplifier (ULNA) have been performed at sub-atmospheric, liquid helium temperatures. The traveling wave maser operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.23 plus or minus 0.16 K at a physical temperature of 1.60 kelvin. At this physical temperature the observed gain per unit length of ruby was 4.6 dB/cm, and the amplifier had a 3 dB-bandwidth of 76 MHz.

  2. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, S.P.; Patterson, F.G.; Deri, R.J.

    1995-07-25

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier. 11 figs.

  3. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, Sol P.; Patterson, Frank G.; Deri, Robert J.

    1995-01-01

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier.

  4. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  5. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  6. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigtsen, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2011-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterised at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130 and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimetre wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  7. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterized at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130, and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimeter wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurements campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography alitmetery.

  8. A Dynamic Instrumentation Amplifier for Low-Power and Low-Noise Biopotential Acquisition

    PubMed Central

    Kim, Jongpal; Ko, Hyoungho

    2016-01-01

    A low-power and low-noise dynamic instrumentation amplifier (IA) for biopotential acquisition is presented. A dynamic IA that can reduce power consumption with a timely piecewise power-gating method, and noise level with an alternating input and chopper stabilization technique is fabricated with a 0.13-μm CMOS. Using the reconfigurable architecture of the IA, various combinations of the low-noise schemes are investigated. The combination of power gating and chopper stabilization shows a lower noise performance than the combination of power gating and alternating input switching scheme. This dynamic IA achieved a power reduction level of 50% from 10 µA to 5 µA and a noise reduction of 90% from 9.1 µVrms to 0.92 µVrms with the combination of the power gating and chopper stabilization scheme.

  9. Low Noise Amplifier Receivers from Millimeter Wave Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    We currently achieve 3.4 dB noise figure at 183GHz and 2.1 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  10. Thermal design of a thermoelectrically cooled low-noise amplifier

    NASA Astrophysics Data System (ADS)

    Hyman, N. L.; Hung, H.-L.

    1981-06-01

    The development of a thermoelectrically cooled low-noise amplifier is described in terms of thermal design concepts, optimization procedures, supporting analyses, and examples of measured performance. The design objectives achieved include a compact, low-cost small overall package size (19 x 19 x 28 cm) with a heat exchanger and fan capable of maintaining at room temperature ambient the preamplifier unit of an earth station low-noise amplifier at -90 C. The size of the unit measures 1.0 x 1.8 x 8.4 cm and has a heat dissipation of 150 mW. A low system component production cost was maintained, and a high reliability from a solid-state TEHP and a gas-filled hermetically sealed container guaranteed. An inexpensive and effective insulation system was developed, based on perlite powder-krypton gas and thermal shielding, and a flexible heat conductor for strain relief was built. It is concluded that the design principles are applicable to other electronic and optical components to maintain temperatures as low as -100 C.

  11. Low-Noise Amplifier for 100 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William

    2009-01-01

    A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.

  12. Low-noise CMOS preamplifier operating at 4.2 K

    NASA Astrophysics Data System (ADS)

    Kleine, U.; Bieger, J.; Seifert, H.

    1994-08-01

    A low-noise CMOS readout preamplifier operating at liquid helium temperatures is described. In conjunction with magnetic field sensors applying SQUIDS (Superconducting QUantum Interference Device) the preamplifier can be used to measure biomagnetic fields of human brain and heart noninvasively. The input of the folded cascode amplifier can be attached directly to a low impedance SQUID output. This way the commonly used discrete LC tank resonator circuit for impedance matching can be omitted. An equivalent noise voltage density of 0.3 nV/square root of Hz at 500 kHz has been measured. Despite the occurrence of the kink effect and other abnormalities in MOS transistor characteristics at 4.2 K, during the tests no abnormal operation has been observed. Such a preamplifier circuit is essential in simplifying the expensive shielding currently used in biomagnetic diagnosis systems.

  13. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  14. 160-190 GHz Monolithic Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Kok, Y. L.; Wang, H.; Huang, T. W.; Lai, R.; Chen, Y. C.; Sholley, M.; Block, T.; Streit, D. C.; Liu, P. H.; Allen, B. R.; Samoska, L.; Gaier, T.; Barsky, Mike

    1998-01-01

    This paper presents the results of two 160-190 GHz monolithic low noise amplifiers (LNAs) fabricated with 0.07-microns pseudomorphic (PM) InAlAs/InGaAs/InP HEMT technology using a reactive ion etch (RIE) via hole process. A peak small signal gain of 9 dB was measured at 188 GHz for the first LNA with a 3-dB bandwidth from 164 to 192 GHz while the second LNA has achieved over 6-dB gain from 142 to 180 GHz. The same design (second LNA) was also fabricated with 0.08-micron gate and a wet etch process, showing a small signal gain of 6 dB with noise figure 6 dB. All the measurement results were obtained via on-wafer probing. The LNA noise measurement at 170 GHz is also the first attempt at this frequency.

  15. Low noise and high CMRR front-end amplifier dedicated to portable EEG acquisition system.

    PubMed

    Chebli, Robert; Sawan, Mohamad

    2013-01-01

    This paper concerns the design and implementation of a fully integrated low noise and high CMRR rail-to-rail preamplifier dedicated to EEG acquisition channel. The preamplification technique is based on two complementary CMOS True Logarithmic Amplifier (TLA) stages connected in parallel. The TLA largely amplifies small amplitude of EEG signals, and moderately the large amplitude ones created during epileptic. A chopper stabilization technique is used to filter the 1/ƒ noise and the DC offset voltage of the input CMOS transistors and to increase the common-mode rejection ratio (CMRR). Due to the TLA structure, a high CMRR and high power supply rejection ratio are achieved and the signal-to-noise ratio (of the channel is better enhanced). To snugly fit the ADC input window to the EEG signal magnitude a new programming gain approach is implemented. Also, a chopper spike filter is used to cancel the spike voltages generated by the charge injections of modulator/demodulator switches. The proposed preamplifier is implemented in 0.18 µm CMOS technology. Post-layout simulation results exhibit 253 dB @50/60 Hz as CMRR, 500 nVrms @100 Hz as input-referred noise while consuming 55 µA from a 1.8 V supply. PMID:24110240

  16. Ultra-low noise miniaturized neural amplifier with hardware averaging

    NASA Astrophysics Data System (ADS)

    Dweiri, Yazan M.; Eggers, Thomas; McCallum, Grant; Durand, Dominique M.

    2015-08-01

    presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  17. Cryogenic ultra-low noise HEMT amplifiers board

    NASA Astrophysics Data System (ADS)

    de la Broïse, Xavier; Bounab, Ayoub

    2015-07-01

    High Electron Mobility Transistors (HEMTs), optimized by CNRS/LPN laboratory for ultra-low noise at a very low temperature, have demonstrated their capacity to be used in place of Si JFETs, when very high input impedance and working temperatures below 100 K are required. We have developed and tested simple amplifiers based only on this transistor technology, in order to work at a temperature as low as 1 K or less. They demonstrate at 4.2 K a typical noise of 1.6 nV/√{ Hz } at 100 Hz, 0.42 nV/√{ Hz } at 1 kHz and 0.32 nV/√{ Hz } at 10 kHz, with a gain of 50 and a power consumption of 1.4 mW per channel. Two boards have been designed for two different research applications: one for the readout of GMR magnetometers for medical and space applications, the other for search of weakly interacting massive particles (WIMPs) in Edelweiss experiment (HARD project).

  18. A low-noise 4.8 GHz amplifier for the Russian Radioastron VLBI satellite

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Wongsowijoto, Sam

    A low-noise 4.8 GHz amplifier has been designed for the Russian Radioastron satellite. The design, realization, and spaceflight testing of the amplifier are briefly described. The most important parameters of the prototype are given.

  19. A 2385 MHz, 2-stage low noise amplifier design

    NASA Technical Reports Server (NTRS)

    Sifri, Jack D.

    1986-01-01

    This article shows the design aspects of a 2.385 GHz low noise preamplifier with a .7 dB noise figure and 16.5 dB gain using the NE 67383 FET. The design uses a unique method in matching the input which achieves optimum noise figure and unconditional stability.

  20. W-band InP based HEMT MMIC low noise amplifiers

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Tang, Y. L.; Wang, H.; Gaier, T.; Gough, R. G.; Sinclair, M.

    2002-01-01

    This paper presents the designs and measurement results of a three-stage and a four-stage W-band monolithic microwave integrated circuits (MMIC) including a three-stage and a four-stage low noise amplifiers.

  1. Matching technique yields optimum LNA performance. [Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Sifri, J. D.

    1986-01-01

    The present article is concerned with a case in which an optimum noise figure and unconditional stability have been designed into a 2.385-GHz low-noise preamplifier via an unusual method for matching the input with a suspended line. The results obtained with several conventional line-matching techniques were not satisfactory. Attention is given to the minimization of thermal noise, the design procedure, requirements for a high-impedance line, a sampling of four matching networks, the noise figure of the single-line matching network as a function of frequency, and the approaches used to achieve unconditional stability.

  2. Thirty GHz low noise GaAs FET amplifiers

    NASA Astrophysics Data System (ADS)

    Oxley, C. H.; Arnold, J.

    1984-09-01

    Selection and characterization of transmission media, and characterization of a 0.3 micron gate length gallium arsenide MESFET usable to 30 GHz, was undertaken to provide a data base for the design of an integrated amplifier for satellite communications. An amplifier configuration was chosen to achieve the ESA specification, and single stage amplifier modules were designed and tested. Integration of these modules into a complete high gain amplifier with temperature compensation and operating between WG22 interfaces is achieved. Tests against the full performance specification were conducted.

  3. 32-GHz cryogenically cooled HEMT low-noise amplifiers

    NASA Technical Reports Server (NTRS)

    Duh, K. H. George; Kopp, William F.; Ho, Pin; Chao, Pane-Chane; Ko, Ming-Yih; Smith, Phillip M.; Ballingall, James M.; Bautista, J. Javier; Ortiz, Gerardo G.

    1989-01-01

    The cryogenic noise temperature performance of a two-stage and a three-stage 32 GHz high electron mobility transistor (HEMT) amplifier was evaluated. The amplifiers employ 0.25 micrometer conventional AlGaAs/GaAs HEMT devices, hybrid matching input and output microstrip circuits, and a cryogenically stable dc biasing network. The noise temperature measurements were performed in the frequency range of 31 to 33 GHz over a physical temperature range of 300 K down to 12 K. Across the measurement band, the amplifiers displayed a broadband response, and the noise temperature was observed to decrease by a factor of 10 in cooling from 300 to 15 K. The lowest noise temperature measured for the two-stage amplifier at 32 GHz was 35 K with an associated gain of 16.5 dB, while the three-stage amplifier measured 39 K with an associated gain of 26 dB. It was further observed that both amplifiers were insensitive to light.

  4. On 32-GHz cryogenically cooled HEMT low-noise amplifiers

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Ortiz, G. G.; Duh, K. H. G.; Kopp, W. F.; Ho, P.; Chao, P. C.; Kao, M. Y.; Smith, P. M.; Ballingall, J. M.

    1988-01-01

    The cryogenic noise temperature performance of a two-stage and a three-stage 32 GHz High Electron Mobility Transistor (HEMT) amplifier was evaluated. The amplifiers employ 0.25 micrometer conventional AlGaAs/GaAs HEMT devices, hybrid matching input and output microstrip circuits, and a cryogenically stable dc biasing network. The noise temperature measurements were performed in the frequency range of 31 to 33 GHz over a physical temperature range of 300 K down to 12 K. Across the measurement band, the amplifiers displayed a broadband response, and the noise temperature was observed to decrease by a factor of 10 in cooling from 300 K to 15 K. The lowest noise temperature measured for the two-stage amplifier at 32 GHz was 35 K with an associated gain of 16.5 dB, while the three-stage amplifier measured 39 K with an associated gain of 26 dB. It was further observed that both amplifiers were insensitive to light.

  5. Burnout studies of X-band radar negative resistance transistor low noise amplifiers

    NASA Astrophysics Data System (ADS)

    Paul, D. K.; Gardner, P.

    1992-03-01

    GaAs FETs and HEMTs can be configured to give low noise, negative resistance microwave amplification. Such low noise amplifiers have the advantage of an inherent bypass path after device burnout. This feature is potentially useful in radar receiver applications. Test results for prototype LNAs are described, showing burnout energies comparable to those of conventional transmission mode amplifiers using similar devices. Bypass path losses after burnout are around 4 dB, approximately 20 dB less than for a failed transmission mode amplifier.

  6. Problems of the design of low-noise input devices. [parametric amplifiers

    NASA Technical Reports Server (NTRS)

    Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.

    1974-01-01

    An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.

  7. Low Noise and Highly Linear Wideband CMOS RF Front-End for DVB-H Direct-Conversion Receiver

    NASA Astrophysics Data System (ADS)

    Nam, Ilku; Moon, Hyunwon; Woo, Doo Hyung

    In this paper, a wideband CMOS radio frequency (RF) front-end for digital video broadcasting-handheld (DVB-H) receiver is proposed. The RF front-end circuit is composed of a single-ended resistive feedback low noise amplifier (LNA), a single-to-differential amplifier, an I/Q down-conversion mixer with linearized transconductors employing third order intermodulation distortion cancellation, and a divide-by-two circuit with LO buffers. By employing a third order intermodulation (IMD3) cancellation technique and vertical NPN bipolar junction transistor (BJT) switching pair for an I/Q down-conversion mixer, the proposed RF front-end circuit has high linearity and low low-frequency noise performance. It is fabricated in a 0.18µm deep n-well CMOS technology and draws 12mA from a 1.8V supply voltage. It shows a voltage gain of 31dB, a noise figure (NF) lower than 2.6dB, and an IIP3 of -8dBm from 470MHz to 862MHz.

  8. Two-Stage, 90-GHz, Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing

    2010-01-01

    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  9. Miniature Ku-band low-noise amplifier using batch-process technology

    NASA Astrophysics Data System (ADS)

    Fathy, A.; Jozwiak, P.; Mykietyn, E.; Pendrick, V.; Brown, R.

    1986-12-01

    The steps in developing a low-noise three-stage miniature amplifier operating from 11.7 to 12.2 GHz are examined. The amplifier has an 18-dB gain over the band and a noise figure of 4 dB. An accurate network model, including a feedback loop, is presented for the design and optimization of the amplifier. The circuit realization and the measured performance in relation to VSWR, gain flatness, stability, and noise figure, are discussed.

  10. A 20-GHz low-noise HEMT amplifier for satellite communications

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Y.; Niori, M.; Saito, T.

    1984-03-01

    A description is given of a 20-Ghz low-noise amplifier that uses a new device, a low-noise high electron mobiity transistor (HEMT), developed for the receiver front-end in earth stations for 30/20-GHz satellite communications systems. The minimum noise figure of the HEMT is 3.1 dB, and the associated gain is 7.5 dB at 20 GHz. It is believed that before too long the HEMT will surpass the GaAs FET as a low-noise device. In the test amplifier at an operating frequency range from 17.6 GHz to 19.2 Ghz, the noise figure is 4.2 dB and the gain is 28.6 dB. The minimum noise figure is 3.9 dB. It is expected that cooling the amplifier will give a significant improvement in the noise figure.

  11. A Ka-band Four-stage Self-biased Monolithic Low Noise Amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Ziqiang; Yang, Tao; Liu, Yu

    2009-05-01

    A Ka-band four-stage self-biased monolithic low noise amplifier has been developed using a commercial 0.18-µm pseudomorphic high electron-mobility transistor (pHEMT) process. For the application of self-bias technique, the low noise amplifier (LNA) is biased from a single power supply rail. The LNA has achieved a broadband performance with a gain of more than 18 dB, a noise figure of less than 3.8 dB in the RF frequency of 26 to 40 GHz. The chip size is 3 × 1 mm2.

  12. Cryogenic Design of the Deep Space Network Large Array Low-Noise Amplifier System

    NASA Astrophysics Data System (ADS)

    Britcliffe, M. J.; Hanson, T. R.; Franco, M. M.

    2004-05-01

    This article describes the cryogenic design and performance of a prototype low-noise amplifier (LNA) system for the Deep Space Network (DSN) Large Array task. The system is used to cool a dual-frequency feed system equipped with high-electron mobility transistor (HEMT) low-noise amplifiers and the associated support electronics. The LNA/feed system operates at a temperature under 18 K. The system is designed to be manufactured at minimum cost. The design considerations, including the cryocooler to be used, vacuum system, microwave interconnects, mechanical components, and radiation shielding, are discussed.

  13. Low-noise CMOS SPAD arrays with in-pixel time-to-digital converters

    NASA Astrophysics Data System (ADS)

    Tosi, Alberto; Villa, Federica; Bronzi, Danilo; Zou, Yu; Lussana, Rudi; Tamborini, Davide; Tisa, Simone; Durini, Daniel; Weyers, Sascha; Pashen, Uwe; Brockherde, Werner; Zappa, Franco

    2014-05-01

    We present our latest results concerning CMOS Single-Photon Avalanche Diode (SPAD) arrays for high-throughput parallel single-photon counting. We exploited a high-voltage 0.35 μm CMOS technology in order to develop low-noise CMOS SPADs. The Dark Count Rate is 30 cps at room temperature for 30 μm devices, increases to 2 kcps for 100 μm SPADs and just to 100 kcps for 500 μm ones. Afterpulsing is less than 1% for hold-off time longer than 50 ns, thus allowing to reach high count rates. Photon Detection Efficiency is > 50% at 420 nm, > 40% below 500 nm and is still 5% at 850 nm. Timing jitter is less than 100 ps (FWHM) in SPADs with active area diameter up to 50 μm. We developed CMOS SPAD imagers with 150 μm pixel pitch and 30 μm SPADs. A 64×32 SPAD array is based on pixels including three 9-bit counters for smart phase-resolved photon counting up to 100 kfps. A 32x32 SPAD array includes 1024 10-bit Time-to-Digital Converters (TDC) with 300 ps resolution and 450 ps single-shot precision, for 3D ranging and FLIM. We developed also linear arrays with up to 60 pixels (with 100 μm SPAD, 150 μm pitch and in-pixel 250 ps TDC) for time-resolved parallel spectroscopy with high fill factor.

  14. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Bautista, J. J.

    1993-11-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  15. GaAs FET MMIC low-noise amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Hung, H.-L.; Enobakhare, E.; Abita, J.; McNally, P.; Mahle, C.

    1985-12-01

    One- and two-stage, X-band, low-noise, GaAs FET monolithic amplifier modules have been developed. These amplifier chips include all dc-blocking capacitors and bias networks. A cascaded, two-chip, two-stage amplifier module provides a noise figure of 4 dB and an associated gain of 30 dB from 9.5 to 11.7 GHz. A two-stage 15-dB gain block has also been developed for 9 to 13 GHz, with a chip size of 1.7 x 1.2 mm.

  16. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.

    1993-01-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  17. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    NASA Astrophysics Data System (ADS)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; Han, Mikyung; Ji, Rong; Li, Xiaoting; Mei, Yuan; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhou, Wei

    2016-02-01

    We report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a < 15e- analog noise and a 200e- minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.

  18. Novel low area CMOS readout circuit for uncooled microbolometers with low noise

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Jiang, Yadong; Zhou, Yun; Luo, Fengwu

    2009-05-01

    We propose a novel CMOS readout structure without sample and hold (SH) circuit for uncooled microbolometers. In this readout circuit, all the pixels in one row can be integrated simultaneously, and the readout integrated circuit (ROIC) area can be reduced by as much as 30%. Moreover, a single capacitor implementation of both capacitive transimpedance amplifier (CTIA) and correlated double sampling (CDS) is utilized to improve noise performance. An experimental 40x30 ROIC chip has been designed and fabricated with 0.5 μm CMOS technology. The test results show that the ROIC has good linearity with 260μV RMS total output noise voltage and 1800x650 μm2 total circuit area.

  19. A high-speed, low-noise CMOS 16-channel charge-sensitivepreamplifier ASIC for APD-based PET detectors

    SciTech Connect

    Weng, M.; Mandelli, E.; Moses, W.W.; Derenzo, S.E.

    2002-12-02

    A high-speed, low-noise 16-channel amplifier IC has beenfabricated in the HP 0.5 mm CMOS process. It is a prototype for use witha PET detector which uses a 4x4 avalanche photodiode (APD) array having 3pF of capacitance and 75 nA of leakage current per pixel. Thepreamplifier must have a fast rise time (a few ns) in order to generatean accurate timing signal, low noise in order to accurately measure theenergy of the incident gamma radiation, and high density in order to readout 2-D arrays of small (2 mm) pixels. A single channel consists of acharge-sensitive preamplifier followed by a pad-driving buffer. Thepreamplifier is reset by an NMOS transistor in the triode region which iscontrolled by an externally supplied current. The IC has 16 differentgain settings which range from 2.085 mV/fC to 10.695 mV/fC. The gain isdetermined by four switched capacitors in the feedback loop. The switchstate is set by two digital input lines which control a 64-bit shiftregister on the IC. A preamplifier 10-90 percent rise time as low as 2.7ns with no external input load and 3.6 ns with a load of 5.8 pF wasachieved. For the maximum gain setting and 5.8 pF of input load, theamplifier had 400 electrons of RMS noise at a peaking time of 0.7 us. TheIC is powered by a +3.3 V supply drawing 60 mA.

  20. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    NASA Technical Reports Server (NTRS)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  1. Design and measurement of an integrated wideband radio frequency low-noise amplifier for terrestrial digital television applications

    NASA Astrophysics Data System (ADS)

    Albasha, Lutfi

    2010-05-01

    In this article, the design and measurement details of a wideband low-noise amplifier (LNA) are presented. The LNA was successfully designed to operate over very high and ultra high frequency (VHF and UHF) ranges according to Digital TV (DVB-T) specifications. The novelty of the design lies in the achievement of low noise figure (NF) and high reverse isolation level across a wide bandwidth despite the resistive feedback topology. The latter was required in order to integrate the front-end block with a direct-conversion receiver. A measured large-signal compression point of P1dB = -10 dBm and a small-signal gain of 16 dB with gain flatness of <1 dB ripple, have all met commercial specifications tested over corners. The NF achieved was better than that specified and was less than 2 dB across the bandwidth. This front-end block was implemented in a commercial 0.25 μm Si BiCMOS process (f T = 20 GHz). The article discusses the measurement uncertainties imposed by the wide bandwidth, particularly in NF measurements, and the techniques adopted in this work to mitigate the errors imposed.

  2. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  3. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    PubMed

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-01-01

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz. PMID:26950131

  4. A microwave cryogenic low-noise amplifier based on sige heterostructures

    NASA Astrophysics Data System (ADS)

    Ivanov, B. I.; Grajcar, M.; Novikov, I. L.; Vostretsov, A. G.; Il'ichev, E.

    2016-04-01

    A low-noise cryogenic amplifier for the measurement of weak microwave signals at sub-Kelvin temperatures is constructed. The amplifier has five stages based on SiGe bipolar heterostructure transistors and has a gain factor of 35 dB in the frequency band from 100 MHz to 4 GHz at an operating temperature of 800 mK. The parameters of a superconducting quantum bit measured with this amplifier in the ultralow-power mode are presented as an application example. The amplitude-frequency response of the "supercon-ducting qubit-coplanar cavity" structure is demonstrated. The ground state of the qubit is characterized in the quasi-dispersive measurement mode.

  5. Using the SLUG as a First Stage, Low Noise Microwave Amplifier for Superconducting Qubit Readout

    NASA Astrophysics Data System (ADS)

    Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; McDermott, Robert

    2015-03-01

    The SLUG (Superconducting Low-inductance Undulatory Galvonometer) microwave amplifier is a large bandwidth, high saturation power, high gain, and low noise microwave element designed as a first stage cryogenic amplifier for dispersive readout of superconducting qubits. High forward gain is paired with simultaneous high reverse isolation such that bulky, expensive cryogenic circulators and isolators might be eliminated from the microwave readout chain. Here we present recent experimental data on SLUG gain, noise, and reverse isolation. We achieve gain over 10 dB at 7 GHz across a band of several hundred MHz, with system added noise of order one photon. For appropriate flux bias of the device, reverse isolation is better than -20 dB. These qualities make the SLUG a very desirable first stage amplifier for a scalable superconducting qubit readout.

  6. High-performance Ka-band and V-band HEMT low-noise amplifiers

    NASA Technical Reports Server (NTRS)

    Duh, K. H. George; Chao, Pane-Chane; Smith, Phillip M.; Lester, Luke F.; Lee, Benjamin R.

    1988-01-01

    Quarter-micron-gate-length high-electron-mobility transistors (HEMTs) have exhibited state-of-the-art low-noise performance at millimeter-wave frequencies, with minimum noise figures of 1.2 dB at 32 GHz and 1.8 dB at 60 GHz. At Ka-band, two-stage and three-stage HEMT low noise amplifiers have demonstrated noise figures of 1.7 and 1.9 dB, respectively, with associated gains of 17.0 and 24.0 dB at 32 GHz. At V-band, two stage and three-stage HEMT amplifiers yielded noise figures of 3.2 and 3.6 dB, respectively, with associated gains of 12.7 and 20.0 dB at 60 GHz. The 1-dB-gain compression point of all the amplifiers is greater than +6 dBm. The results clearly show the potential of short-gate-length HEMTs for high-performance millimeter-wave receiver applications.

  7. A 2.3-GHz low-noise cryo-FET amplifier

    NASA Technical Reports Server (NTRS)

    Loreman, J.

    1988-01-01

    A cryogenic cooled, low-noise Field Effect Transistor (FET) amplifier assembly for use at 2.2 to 2.3 GHz was developed for the DSN to meet the requirements of a Very Long Baseline Interferometry (VLBI) upgrade. An amplifier assembly was developed at JPL that uses a commercial closed-cycle helium refrigerator (CCR) to cool a FET amplifier to an operating temperature of 15 K. A cooled probe waveguide-to-coaxial transition similar to that used in the research and development Ultra-Low-Noise S-band Traveling Wave Maser (TWM) is used to minimize input line losses. Typical performance includes an input flange equivalent noise contribution of 14.5 K, a gain slope of less than 0.05 dB/MHz across a bandwidth of 2.2 to 2.3 GHz, an input VSWR of 1.5:1 at 2.25 GHz, and an insertion gain of 45 + or - 1 dB across the bandwidth of 2.2 to 2.3 GHz. Three 2.3 GHz FET/CCR assemblies were delivered to the DSN in the spring of 1987.

  8. Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard

    2009-01-01

    A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.

  9. A 4MP high-dynamic-range, low-noise CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang

    2015-03-01

    In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.

  10. Development of a cryogenic DC-low noise amplifier for SQuID-based readout electronics

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Torrioli, G.; Di Giorgio, A.; Spinoglio, L.; Piro, Luigi

    2014-07-01

    We present the preliminary results of the design and test activities for a DC cryogenic low noise amplifier for the SAFARI imaging spectrometer, planned to be onboard the SPICA mission, necessary not only to drive, as usual, the voltage signal produced by the SQuID but also to boost such signals over about 7 meter of path towards the warm feedback electronics. This development has been done in the framework of the mission preparation studies, within the European Consortium for the development of the SAFARI instrument. The actual configuration of the SAFARI focal plane assembly (FPA), indeed, foresees a long distance to the warm back end electronics. It is therefore mandatory to boost the faint electric signal coming from the SQuID device by keeping under control both power dissipation and noise: this is the main role of the designed Cryogenic Low Noise Amplifier (LNA). Working at 136K, it has a differential input gain-stage, and a differential balanced voltage buffer output stage, running at few mW target overall power. At present the design is based on the use of Heterojunction Si:Ge transistors, the required bandwidth is DC-4MHz and the required noise lower than 1 nV/rtHz.

  11. 50 W low noise dual-frequency laser fiber power amplifier.

    PubMed

    Kang, Ying; Cheng, Lijun; Yang, Suhui; Zhao, Changming; Zhang, Haiyang; He, Tao

    2016-05-01

    A three-stage dual-frequency laser signal amplification system is presented. An output from a narrow-linewidth Nd:YAG nonplanar ring-oscillator (NPRO) is split into two parts, one of them is frequency shifted by an acoustooptic modulator (AOM) then coupled into a single mode optical fiber. The other part is coupled into another single mode fiber then combined with the frequency-shifted beam with a 2 to 1 single mode fiber coupler. The combined beam has a power of 20 mW containing two frequency components with frequency separation of 150 ± 25 MHz. The dual-frequency signal is amplified via a three-stage Yb3+-doped diode pumped fiber power amplifier. The maximum amplified power is 50.3 W corresponding to a slope efficiency of 73.72% of the last stage. The modulation depth and signal to noise ratio (SNR) of the beat signal are well maintained in the amplifying process. The dual-frequency laser fiber power amplifier provides robust optical carried RF signal with high power and low noise. PMID:27137536

  12. Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials

    PubMed Central

    Mollazadeh, Mohsen; Murari, Kartikeya; Cauwenberghs, Gert; Thakor, Nitish

    2009-01-01

    Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 μm 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental ΔΣ analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 μVrms while drawing 12.2 μA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 μW power. Time-modulation feedback in the ADC offers programmable digital gain (1–4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject. PMID:20046962

  13. Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials.

    PubMed

    Mollazadeh, M; Murari, K; Cauwenberghs, G; Thakor, N

    2009-02-01

    Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 mum 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental DeltaSigma analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 muV rms while drawing 12.2 muA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 muW power. Time-modulation feedback in the ADC offers programmable digital gain (1-4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject. PMID:20046962

  14. Updated design for a low-noise, wideband transimpedance photodiode amplifier

    SciTech Connect

    Paul, S. F.; Marsala, R.

    2006-10-15

    The high-speed rotation diagnostic developed for Columbia's HBT-EP tokamak requires a high quantum efficiency, very low drift detector/amplifier combination. An updated version of the circuit developed originally for the beam emission spectroscopy experiment on TFTR is being used. A low dark current (2 nA at 15 V bias), low input source capacitance (2 pF) FFD-040 N-type Si photodiode is operated in photoconductive mode. It has a quantum efficiency of 40% at the 468.6 nm (He II line that is being observed). A low-noise field-effect transistor (InterFET IFN152 with e{sub Na}=1.2 nV/{radical}Hz) is used to reduce the noise in the transimpedance preamplifier (A250 AMPTEK op-amp) and a very high speed (unity-gain bandwidth=200 MHz) voltage feedback amplifier (LM7171) is used to restore the frequency response up to 100 kHz. This type of detector/amplifier is photon-noise limited at this bandwidth for incident light with a power of >{approx}2 nW. The circuit has been optimized using SIMETRIX 4.0 SPICE software and a prototype circuit has been tested successfully. Though photomultipliers and avalanche photodiodes can detect much lower light levels, for light levels >2 nW and a 10 kHz bandwidth, this detector/amplifier combination is more sensitive because of the absence of excess (internally generated) noise.

  15. Envelope tracking CMOS power amplifier with high-speed CMOS envelope amplifier for mobile handsets

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Sakai, Yasufumi; Oishi, Kazuaki; Yamazaki, Hiroshi; Mori, Toshihiko; Yamaura, Shinji; Suto, Kazuo; Tanaka, Tetsu

    2014-01-01

    A high-efficiency CMOS power amplifier (PA) based on envelope tracking (ET) has been reported for a wideband code division multiple access (W-CDMA) and long term evolution (LTE) application. By adopting a high-speed CMOS envelope amplifier with current direction sensing, a 5% improvement in total power-added efficiency (PAE) and a 11 dB decrease in adjacent channel leakage ratio (ACLR) are achieved with a W-CDMA signal. Moreover, the proposed PA achieves a PAE of 25.4% for a 10 MHz LTE signal at an output power (Pout) of 25.6 dBm and a gain of 24 dB.

  16. A 55 nm CMOS ΔΣ fractional-N frequency synthesizer for WLAN transceivers with low noise filters

    NASA Astrophysics Data System (ADS)

    Mingyi, Chen; Xiaojie, Chu; Peng, Yu; Jun, Yan; Yin, Shi

    2013-10-01

    A fully integrated ΔΣ fractional-N frequency synthesizer fabricated in a 55 nm CMOS technology is presented for the application of IEEE 802.11b/g wireless local area network (WLAN) transceivers. A low noise filter, occupying a small die area, whose power supply is given by a high PSRR and low noise LDO regulator, is integrated on chip. The proposed synthesizer needs no off-chip components and occupies an area of 0.72 mm2 excluding PAD. Measurement results show that in all channels, the phase noise of the synthesizer achieves -99 dBc/Hz and -119 dBc/Hz in band and out of band respectively with a reference frequency of 40 MHz and a loop bandwidth of 200 kHz. The integrated RMS phase error is no more than 0.6°. The proposed synthesizer consumes a total power of 15.6 mW.

  17. Validation of the ultrastable low-noise current amplifier as travelling standard for small direct currents

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Giblin, S. P.; Djordjevic, S.; Piquemal, F.; Séron, O.; Rengnez, F.; Götz, M.; Pesel, E.; Scherer, H.

    2015-12-01

    An interlaboratory comparison of small-current generation and measurement capability is presented with the ultrastable low-noise current amplifier (ULCA) acting as travelling standard. Various measurements at direct currents between 0.16 nA and 13 nA were performed to verify the degree of agreement between the three national metrology institutes involved in the study. Consistency well within one part per million (ppm) was found. Due to harsh environmental conditions during shipment, the ULCA’s transfer accuracy had been limited to about  ±0.4 ppm. Supplemental measurements performed at PTB indicate that further improvements in accuracy are possible. Relative uncertainties of 0.1 ppm are achieved by applying on-site calibration of the ULCA with a suitable cryogenic current comparator.

  18. A low-noise instrumentation amplifier with DC suppression for recording ENG signals.

    PubMed

    Paraskevopoulou, Sivylla E; Eftekhar, Amir; Kulasekeram, Nishanth; Toumazou, Christofer

    2015-08-01

    This paper presents an AC-coupled instrumentation amplifier for electroneurogram (ENG) activity recording. For this design, we evaluate gain and noise requirements based on interference sources (electrodes, power line, EMG). The circuit has been implemented in a commercially-available 0.35μm CMOS technology with total power consumption 460μW. The amplifier achieves CMRR 107 dB and integrated input referred noise 940 nV. The gain is 63 dB and the bandwidth is 0.5 Hz- 13 kHz. The chosen topology enables to minimise on-chip capacitance (only 27 pF), with a total chip area of 0.4mm2. PMID:26736847

  19. Wideband ultra-low noise cryogenic InP IF amplifiers for the Herschel mission radiometers

    NASA Astrophysics Data System (ADS)

    Lopez-Fernandez, Isaac; Gallego-Puyol, Juan D.; Diez, Carmen; Barcia, Alberto; Martin-Pintado, Jesus

    2003-02-01

    The sub-millimeter radiometers of the Herschel mission have very stringent requirements. The scientific goals require an instantaneous bandwidth of four GHz with very low noise, flat gain and low power dissipation. Short-term gain stability of the amplifier is important, because gain fluctuations could limit the sensitivity of the instrument. Besides, a highly reliable, low weight unit is required to be compatible with the space instrumentation standards. The amplifiers will be used in conjunction with HEB and SIS mixers in all 7 channels of the instrument. This paper describes the design, the special construction techniques and the results of the amplifiers built by Centro Astronómico de Yebes for the development model of the Herschel Heterodyne Instrument. The average noise temperature obtained in the 4-8 GHz band is 3.5 K, with a gain of 27 +/-1.1 dB at an ambient temperature of 15 K and keeping the total power dissipation below the allowed 4 mW. Normalized gain fluctuations were carefully measured, being lower than 1.5·10-4 Hz-1/2 @ 1 Hz. Space qualification of the design is in progress.

  20. Instrumental and Observational Studies in Radio Astronomy, Low Noise Amplifier Design and Methanol Maser Research

    NASA Astrophysics Data System (ADS)

    Minier, V.

    1998-10-01

    ``Radio astronomy is the study of the universe by observing electromagnetic radiation after it has been amplified. The use of amplifiers that preserve the oscillatory character of radiation - the phase information - is the mark of Radio astronomy.'' Thus, the development of low noise amplifiers for microwave and millimeter wavelengths is a major part of Radio astronomy as important as the observations themselves. This technical report involves those two aspects of Radio astronomy, the observational and technical aspects. In the first part, observations of methanol masers in massive star forming regions using Very Long Baseline Interferometry (VLBI) are presented. The second part concerns the realization of low noise amplifiers using in a radio camera. Recent observations have confirmed that the methanol masers are powerful tools for probing the regions of massive star formation. The methanol masers fall in two distinct classes related to their location in the star forming regions. Class I methanol masers are observed offset far away from the UC HII region emission peak. They are certainly collisionally pumped and may occur in the interface between high velocity gas outflows and the ambient molecular material. Class II methanol masers coincide with the UC HII region emission. They may be radiatively pumped by FIR radiation from the dust grains and reside either in spherical layers surrounding the UC HII regions or in circumstellar discs. The maser spots are usually compact (~1-10 AU) and lie in region of physical conditions n(H)~104-108 cm-3 and T=100-1000 K. CH3OH may be produced by hydrogenation of CO on the surface of the icy mantles of the dust grains . The methanol is then injected in the molecular gas by evaporation of the ice (n(H)=106 cm-3, T=100-300 K). In this report we present VLBI observations of 6.7 and 12.2 GHz methanol masers in the star forming regions NGC7538, W75N and S252. Our results show the existence of two groups of masers in NGC7538. The

  1. Simple nonlinearity evaluation and modeling of low-noise amplifiers with application to radio astronomy receivers.

    PubMed

    Casas, F J; Pascual, J P; de la Fuente, M L; Artal, E; Portilla, J

    2010-07-01

    This paper describes a comparative nonlinear analysis of low-noise amplifiers (LNAs) under different stimuli for use in astronomical applications. Wide-band Gaussian-noise input signals, together with the high values of gain required, make that figures of merit, such as the 1 dB compression (1 dBc) point of amplifiers, become crucial in the design process of radiometric receivers in order to guarantee the linearity in their nominal operation. The typical method to obtain the 1 dBc point is by using single-tone excitation signals to get the nonlinear amplitude to amplitude (AM-AM) characteristic but, as will be shown in the paper, in radiometers, the nature of the wide-band Gaussian-noise excitation signals makes the amplifiers present higher nonlinearity than when using single tone excitation signals. Therefore, in order to analyze the suitability of the LNA's nominal operation, the 1 dBc point has to be obtained, but using realistic excitation signals. In this work, an analytical study of compression effects in amplifiers due to excitation signals composed of several tones is reported. Moreover, LNA nonlinear characteristics, as AM-AM, total distortion, and power to distortion ratio, have been obtained by simulation and measurement with wide-band Gaussian-noise excitation signals. This kind of signal can be considered as a limit case of a multitone signal, when the number of tones is very high. The work is illustrated by means of the extraction of realistic nonlinear characteristics, through simulation and measurement, of a 31 GHz back-end module LNA used in the radiometer of the QUIJOTE (Q U I JOint TEnerife) CMB experiment. PMID:20687750

  2. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  3. Low-noise low-power readout electronics circuit development in standard CMOS technology for 4 K applications

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Souverijns, Tim; Putzeys, Jan; Creten, Ybe; Van Hoof, Chris

    2006-06-01

    In the framework of the Photodetector Array Camera and Spectrometer (PACS) project IMEC designed the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for this circuit were high linearity, low power consumption and low noise at an operating temperature of 4.2K. We have implemented this circuit in a standard CMOS technology which guarantees high yield and uniformity, and design portability. A drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K. These cryogenic phenomena disturb the normal functionality of commonly used circuits. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. We will present the design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance. We will show how the library that was developed for PACS served as a baseline for the designs used in the Darwin-far-infrared detector array, where a cryogenic 180 channel, 30μm pitch, Readout Integrated Circuit (ROIC) for flip-chip integration was developed. Other designs and topologies for low noise and low power applications will be equally presented.

  4. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter

    PubMed Central

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-01-01

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31×31 focal plane array has been fully integrated in a 0.13μm standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0.2μV RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0.6 nW at 270 GHz and 0.8 nW at 600 GHz. PMID:26950131

  5. A low-noise low-power readout electronics circuit at 4 K in standard CMOS technology for PACS/Herschel

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Creten, Ybe; Putzeys, Jan; Souverijns, Tim; Van Hoof, Chris

    2004-10-01

    IMEC has designed, in the framework of the PACS project (for the European Herschel Space Observatory) the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for the CRE were high linearity (3 %), low power consumption (80 μW for an 18 channel array), and very low noise (200 e-) at an operating temperature of 4.2 K (LHT - Liquid Helium Temperature). IMEC has implemented this circuit in a standard CMOS technology (AMIS 0.7 μm), which guarantees high production yield and uniformity, relatively easy availability of the technology and portability of the design. However, the drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K, known as kink and hysteresis effects and under certain conditions the presence of excess noise. These cryogenic phenomena disturb the normal functionality of commonly used circuits or building blocks like buffer amplifiers and opamps. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. These techniques have been validated in an automated cryogenic test set-ups developed at IMEC. We will present here in detail the full design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance and demonstrate that all major specifications at 4.2 K were met. Future designs and implementations will be equally presented.

  6. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    NASA Astrophysics Data System (ADS)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  7. Analysis and design of low noise column stage in CMOS ROIC for UV GaN focal plane array

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Yuan, Yonggang; Xie, Jing; Wang, Jiqiang; Ma, Ding; Wang, Ling; Li, Xiangyang

    2015-03-01

    A novel column-stage structure of readout integrated circuit (ROIC) for GaN ultraviolet (UV) focal plane array (FPA) working in "solar-blind" band is proposed. The column stage has better drive capability, higher dynamic range, stable bias current and low impedance. The noise voltage of the column readout stage is discussed, which has been reduced by small-current driving, column-stage sample and hold and the technology of divided-output-bus. This research on low-noise ROIC is designed for weak-current UV FPA. It is designed, simulated and laid out using the 0.35um 2P4M CMOS 5V process. The clock rate operates at 8MHz. The simulation input current sets 0.01nA. The output swing is 2.6V and power consumption is 40 mW according to the measurement results.

  8. A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications

    NASA Astrophysics Data System (ADS)

    Fowler, Boyd; Liu, Chiao; Mims, Steve; Balicki, Janusz; Li, Wang; Do, Hung; Appelbaum, Jeff; Vu, Paul

    2010-01-01

    In this paper we describe a 5.5Mpixel 100 frames/sec wide-dynamic-range low-noise CMOS image sensor (CIS) designed for scientific applications. The sensor has 6.5μm pitch 5T pixels with pinned photodiodes and integrated microlenses. The 5T pixel architecture enables low noise rolling and global shutter operation. The measured peak quantum efficiency of the sensor is greater than 55% at 550nm, the Nyquist MTF is greater than 0.4 at 550nm, and the linear full well capacity is greater than 35ke-. The measured rolling and global shutter readout noise are 1.28e- RMS and 2.54e- RMS respectively at 30 f/s and 20°C. The pinned photodiode dark current is less than 3.8pA/cm2 at 20°C. The sensor achieves an intra-scene linear dynamic range in rolling shutter operation of greater than 86dB (20000:1) at room temperature. In global shutter readout the shutter efficiency is greater than 1000:1 with 500nm illumination.

  9. A CMOS-Compatible, Low-Noise ISFET Based on High Efficiency Ion-Modulated Lateral-Bipolar Conduction

    PubMed Central

    Chang, Sheng-Ren; Chen, Hsin

    2009-01-01

    Ion-sensitive, field-effect transistors (ISFET) have been useful biosensors in many applications. However, the signal-to-noise ratio of the ISFET is limited by its intrinsic, low-frequency noise. This paper presents an ISFET capable of utilizing lateral-bipolar conduction to reduce low-frequency noise. With a particular layout design, the conduction efficiency is further enhanced. Moreover, the ISFET is compatible with the standard CMOS technology. All materials above the gate-oxide are removed by simple, die-level post-CMOS process, allowing ions to modulate the lateral-bipolar current directly. By varying the gate-to-bulk voltage, the operation mode of the ISFET is controlled effectively, so is the noise performance measured and compared. Finally, the biasing conditions preferable for different low-noise applications are identified. Under the identified biasing condition, the signal-to-noise ratio of the ISFET as a pH sensor is proved to be improved by more than five times. PMID:22408508

  10. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  11. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  12. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOEpatents

    DeGeronimo, Gianluigi

    2006-02-14

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  13. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into a hybrid circuit and characterized at liquid nitrogen temperatures. This superconducting/seismology circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  14. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into an active circuit and characterized at liquid nitrogen temperatures. This superconducting/semiconducting circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  15. A 3.5-4.5 GHz Complementary Metal-Oxide-Semiconductor Ultrawideband Receiver Frontend Low-Noise Amplifier with On-Chip Integrated Antenna for Interchip Communication

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kimoto, Kentaro; Sasaki, Nobuo; Kikkawa, Takamaro

    2010-04-01

    Chip-to-chip ultrawideband (UWB) wireless interconnections are essential for reducing resistance capacitance (RC) delay in wired interconnections and three-dimensional (3D) highly integrated packaging. In this study, we demonstrated a wireless interchip signal transmission between two on-chip meander antennas on printed circuit board (PCB) for 1 to 20 mm transmission distances where the low power gain of each antenna due to a lossy Si substrate has been amplified by a low-noise amplifier (LNA). The measured result shows that the LNA produces 26 dB of improvement in antenna power gain at 4.5 GHz on a lossy Si substrate. Moreover, a Gaussian monocycle pulse with a center frequency of 2.75 GHz was also received by an on-chip antenna and amplified by the LNA. The LNA was integrated with an on-chip antenna on a Si substrate with a resistivity of 10 Ω·cm using 180 nm complementary metal-oxide-semiconductor (CMOS) technology. The investigated system is required for future single chip transceiver front ends, integrated with an on-chip antenna for 3D mounting on a printed circuit (PC) board.

  16. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  17. Computer simulations of low noise states in a high-power crossed-field amplifier

    SciTech Connect

    Chernin, D.P.

    1996-11-01

    A large body of experimental data has been accumulated over the past 15 years or so on the remarkable ability of both magnetrons and CFA`s to operate under certain conditions at noise levels comparable to those achieved in linear beam tubes. The physical origins of these low noise states have been the subjects of considerable speculation, fueled at least in part by results from computer simulation. While computer models have long been able to predict basic operating parameters like gain, efficiency, and peak power dissipation on electrode surfaces with reasonable accuracy, it is only within the past few years that any success could be reported on the simulation of noise. SAIC`s MASK code, a 2{1/2}-D particle-in-cell code, has been able to compute total, integrated noise power to an accuracy of {+-} a few dB in a high-power CFA, operating with a typical intra-pulse spectral noise density of {approximately}47--50 dB/MHz. Under conditions that produced low noise ({approximately}60--100 dB/MHz) in laboratory experiments, the MASK code has been, until now, unable to reproduce similar results. The present paper reports the first successful production of a very low noise state in a CFA simulation using the MASK code. The onset of this low noise state is quite sudden, appearing abruptly as the current is raised to a point near which the cathode operates as nearly emission limited. This behavior is similar to that seen in an experimentally observed transition between low noise and high noise operation in the SFD-266, a Varian[CPI] low noise CFA. Some comments are made concerning the nature of the noise as observed in the simulation and in the laboratory.

  18. Recent Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For Astrophysical Observations

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Church, S.; Cleary, K.; Gaier, T.; Gawande, R.; Kangaslahti, P.; Lawrence, C.; Readhead, A.; Reeves, R.; Seiffert, M.; Sieth, M.; Varonen, M.; Voll, P.

    2012-05-01

    In this work, we discuss advances in high electron mobility transistor (HEMT) low noise amplifier (LNA) monolithic millimeter-wave integrated circuits (MMICs) for use as front end amplifiers in ultra-low noise receivers. Applications include focal plane arrays for studying the polarization of the cosmic microwave background radiation and foreground separation, receiver arrays for molecular spectroscopy, and high redshift CO surveys for probing the epoch of reionization. Recent results and a summary of best indium phosphide (InP) low noise amplifier data will be presented. Cryogenic MMIC LNAs using state-of-the-art InP technology have achieved record performance, and have advantages over other detectors in the 30-300 GHz range. InP MMIC LNAs operate at room temperature and may achieve near-optimum performance at 20K, a temperature readily achieved with modern cryo-coolers. In addition, wide-bandwidth LNAs are suitable for heterodyne applications as well as direct detector applications. Recent results include Ka-band MMICs with 15K noise temperature performance, and Q-Band MMICs with on-wafer measured cryogenic noise of 12K at 38 GHz. In addition, W-Band amplifiers with 25K noise temperature at 95 GHz will be presented, as well as wide-band LNAs with noise temperature below 45K up to 116 GHz. At higher frequencies, we will discuss progress on MMIC LNAs and receiver modules in G-Band (140-220 GHz), where our group has achieved less than 60K receiver noise temperature at 166 GHz. We will address extending the high performance of these MMIC LNAs to even higher frequencies for spectroscopic surveys, and make projections on future performance given current trends. These MMIC amplifiers can play a key role in future ground-based and space-based instruments for astrophysical observations.

  19. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

    NASA Astrophysics Data System (ADS)

    Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.

    2016-01-01

    We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.

  20. A two-step A/D conversion and column self-calibration technique for low noise CMOS image sensors.

    PubMed

    Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu

    2014-01-01

    In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB. PMID:24999716

  1. A Two-Step A/D Conversion and Column Self-Calibration Technique for Low Noise CMOS Image Sensors

    PubMed Central

    Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu

    2014-01-01

    In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB. PMID:24999716

  2. The present status and future development of low noise amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Akinaga, W.; Handa, K.; Fujiki, Y.; Fukuda, S.; Haga, I.

    The LNAs for use in satellite communications have made remarkable progress in recent years. This paper describes the present status and future prospects of the two principal LNA types, the parametric LNA and the GaAs FET LNA, operating in the 2 GHz band through millimetric wavelength range, as regards their noise temperature characteristics. In a few years to come, the parametric LNA and the GaAs FET LNA will be coexistent, but the former will be restricted to the cryogenically cooled and the super-low-noise thermoelectrically cooled type, while the latter will occupy the majority of the LNAs for satellite communications use.

  3. Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength

    NASA Technical Reports Server (NTRS)

    Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.

    1974-01-01

    The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.

  4. Performance of a wideband GaAs low-noise amplifier at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Toncich, S. S.; Bhasin, K. B.; Chen, T. K.; Claspy, P. C.

    1992-01-01

    The gain and noise figure performance of a GaAs amplifier at cryogenic temperatures has been studied. Results obtained indicate that a lower noise figure and a higher gain are induced by decreasing the temperature, while no significant change in the input 1-dB compression point is observed. Repeated temperature cycling had no adverse effect on the amplifier performance.

  5. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    SciTech Connect

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  6. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.

    PubMed

    Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors. PMID:25725866

  7. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  8. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design. PMID:25554310

  9. Low-noise Raman fiber amplifier pumped by semiconductor disk laser.

    PubMed

    Chamorovskiy, A; Rautiainen, J; Rantamäki, A; Okhotnikov, O G

    2011-03-28

    A 1.3 µm Raman fiber amplifier pumped by 1.22 µm semiconductor disk laser in co-propagation geometry is demonstrated. Measured relative intensity noise of -148 dB/Hz over frequency range up to 3.5 GHz was measured at 900 mW of pump power. 9 dB gain was achieved with co-propagating pumping geometry with less than 2 dB additional noise induced by amplifier to the signal. Nearly shot-noise-limited operation of semiconductor disk laser combined with the diffraction-limited beam allows for efficient core-pumping of the single-mode fiber Raman amplifiers and represents a highly practical approach which takes full advantage of co-propagating pumping. PMID:21451669

  10. Low-noise wide-band amplifiers for stochastic beam cooling experiments

    SciTech Connect

    Leskovar, B.; Lo, C.C.

    1982-09-05

    Noise characteristics of the continuous-wave wide-band amplifier systems for stochastic beam cooling experiments are presented. Also, the noise performance, bandwidth capability and gain stability of components used in these amplifiers are summarized and compared in the 100 MHz to 40 GHz frequency range. This includes bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser. Measurements of the noise characteristics and scattering parameters of variety GaAs FETs as a function of ambient temperature are also given. Performance data and design information are presented on a broadband 150-500 MHz preamplifier having noise temperature of approximately 35/sup 0/K at ambient temperature of 20/sup 0/K. An analysis of preamplifier stability based on scattering parameters concept is included.

  11. Low noise, tunable Ho:fiber soliton oscillator for Ho:YLF amplifier seeding

    NASA Astrophysics Data System (ADS)

    Li, Peng; Ruehl, Axel; Bransley, Colleen; Hartl, Ingmar

    2016-06-01

    We present a passively mode-locked, tunable soliton Ho:fiber ring oscillator, optimized for seeding of holmium-doped yttrium lithium flouride (Ho:YLF) amplifiers. The oscillator is independently tunable in central wavelength and spectral width from 2040 to 2070 nm and from 5 to 10 nm, respectively. At all settings the pulse energy within the soliton is around 800 pJ. The soliton oscillator was optimized to fully meet the spectral requirements for seeding Ho:YLF amplifiers. Its Kelly sidebands are located outside the amplifier gain spectrum, resulting in a train of about 1 ps long pedestal-free pulses with relative intensity noise of only 0.13% RMS when integrated from 1 Hz to Nyquist frequency.

  12. Comparison of cryogenic W band low noise amplifier based on different III-V HEMT foundry process and technologies

    NASA Astrophysics Data System (ADS)

    Valenziano, L.; Zannoni, M.; Mariotti, S.; Cremonini, A.; De Rosa, A.; Banfi, S.; Baó, A.; Gervasi, M.; Limiti, E.; Passerini, A.; Schiavone, F.

    2014-07-01

    We present the results of a development activity for cryogenic Low Noise Amplifiers based on HEMT technology for ground based and space-borne application. We have developed and realized two LNA design in W band, based on m-HEMT technology. MMIC chips have been manufactured by European laboratories and companies and assembled in test modules by our team. We compare performances with other technologies and manufacturers. LNA RF properties (noise figures, S-parameters) have been measured at room and cryogenic temperature and test results are reported in this paper. Performance are compared with those of state-of-the-art devices, as available in the literature. Strengths and improvements of this project are also discussed.

  13. FM notch filter in front - and - behind the low noise amplifier of a Callisto Radio Spectrometer in Gauribidanur, India

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2014-03-01

    In the framework of IHY2007 a Callisto spectrometer [Benz(2004)] was installed and set into operation at the location of the solar heliograph in Gauribidanur, India. At that time the level of radio frequency interference (RFI) was amazingly low. In recent years more and more FM broadcast transmitters were installed with high power compared to the requirements of radio astronomical observations. So, the spectral observations with Callisto experienced more and more interference by these FM transmitters. Recently an FM-notch filter was installed between the low noise amplifier and Callisto, but it did not work out. The notch filter was then moved to the input of the LNA and the result was much better, as expected from theoretical concepts.

  14. Aspects of the design of low noise, negative resistance, reflection mode transistor amplifiers

    NASA Astrophysics Data System (ADS)

    Gardner, Peter; Paul, Dipak K.

    1991-11-01

    The authors consider the use of microwave transistors in negative resistance reflection mode and present the conditions for optimum noise performance. Possible advantages include the possibility of higher gain in the millimeter-wave region, which can be achieved by absorbing the parasitic common lead inductance into the feedback circuit designed to generate the negative resistance, and the existence of a failsafe mode of operation, in that the failure of the active device or its power supply is likely to lead a low return loss, resulting in a small insertion loss through the amplifiers, which may permit continued, although degraded, system operation. The latter potential advantage has proved to be of interest to radar system designers.

  15. Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Petty, S. M.; Trowbridge, D. L.

    1983-01-01

    One of the great technical challenges facing the Deep Space Network is receiving signals from a severely weight limited spacecraft hundreds of thousands to billions of kilometers from Earth. This weight limitation has always imposed strict limitations on the size of the spacecraft antenna and the amount of transmitter power radiated. The communication burden is placed upon the ground systems of the Deep Space Network which must recover an extremely weak signal in the presence of nearly overwhelming amounts of noise. Two key parameters that determine the signal to noise ratio of a received signal using a deep space station are the collecting area and efficiency of the antenna, and the amount of noise which is generated in, as well as allowed to enter in, the antenna-mounted receiver. These parameters are used to describe the relative ability of a deep space station to receive weak signals. As spacecraft to Earth communication distances have increased, the Deep Space Network engages in a relentless effort to increase the figure of merit through larger and more efficient antennas, higher frequencies, and lower system noise temperature.

  16. Low noise amplifiers

    NASA Astrophysics Data System (ADS)

    Petty, S. M.; Trowbridge, D. L.

    1983-07-01

    One of the great technical challenges facing the Deep Space Network is receiving signals from a severely weight limited spacecraft hundreds of thousands to billions of kilometers from Earth. This weight limitation has always imposed strict limitations on the size of the spacecraft antenna and the amount of transmitter power radiated. The communication burden is placed upon the ground systems of the Deep Space Network which must recover an extremely weak signal in the presence of nearly overwhelming amounts of noise. Two key parameters that determine the signal to noise ratio of a received signal using a deep space station are the collecting area and efficiency of the antenna, and the amount of noise which is generated in, as well as allowed to enter in, the antenna-mounted receiver. These parameters are used to describe the relative ability of a deep space station to receive weak signals. As spacecraft to Earth communication distances have increased, the Deep Space Network engages in a relentless effort to increase the figure of merit through larger and more efficient antennas, higher frequencies, and lower system noise temperature.

  17. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect

    Haque, S; Frost, F Dion R.; Groulx, R; Holland, S E; Karcher, A; Kolbe, W F; Roe, N A; Wang, G; Yu, Y

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 μm × 2 μm are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup -} rms at 70 kpixels/sec.

  18. ALDO: A radiation-tolerant, low-noise, adjustable low drop-out linear regulator in 0.35 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-07-01

    In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.

  19. A low-noise transimpedance amplifier for the detection of “Violin-Mode” resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    SciTech Connect

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-15

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level “Violin-Mode” (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent “noise-gain peaking” arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes’ two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m{sup −1}(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  20. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations-this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m(-1)(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm. PMID:25430131

  1. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m-1(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  2. Development of a Low-Noise High Common-Mode-Rejection Instrumentation Amplifier. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rush, Kenneth; Blalock, T. V.; Kennedy, E. J.

    1975-01-01

    Several previously used instrumentation amplifier circuits were examined to find limitations and possibilities for improvement. One general configuration is analyzed in detail, and methods for improvement are enumerated. An improved amplifier circuit is described and analyzed with respect to common mode rejection and noise. Experimental data are presented showing good agreement between calculated and measured common mode rejection ratio and equivalent noise resistance. The amplifier is shown to be capable of common mode rejection in excess of 140 db for a trimmed circuit at frequencies below 100 Hz and equivalent white noise below 3.0 nv/square root of Hz above 1000 Hz.

  3. A 5.4-9.2 GHz 19.5 dB Complementary Metal-Oxide-Semiconductor Ultrawide-Band Receiver Front-End Low-Noise Amplifier

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kubota, Shinichi; Toya, Akihiro; Sasaki, Nobuo; Kikkawa, Takamaro

    2011-04-01

    In this work, we present an ultrawide-band (UWB) complementary metal-oxide-semiconductor (CMOS) low-noise amplifier (LNA) for wireless communication in the upper UWB band, that is, from 5.4-9.2 GHz bandwidth with a wide-band 50 Ω input matching network in front of the LNA. A three-stage cascode-topology-based LNA with high-transconductance MOS transistors, was employed to improve the voltage gain up to 23 dB at 7.5 GHz, with 4.5-9.2 GHz 3 dB bandwidth. The maximum output power S21 was 19.5 dB at 7.3 GHz, with 5.4-9.2 GHz 3 dB bandwidth. The input matching circuit was designed with a reduced number of passive elements, resulting in an input reflection coefficient S11 of less than -10 dB from 4.5-9.2 GHz. The noise figure of the LNA was as low as 3.5 dB and the input-referred third-order intercept point (IIP3) was -8 dBm. The LNA has output reflection coefficient S22 of less than -10 dB from 5-7 GHz and a good reverse isolation, that is, S12 of < -45 dB in the entire UWB, due to a cascode topology. The LNA was fabricated using 180 nm CMOS technology, which consumes 56 mW power at 1.8 V power supply. In this paper, we also demonstrate a wireless communication of 7 GHz Gaussian monocycle pulse (GMP) by horn antennas and the LNA from 20 cm transmission distance.

  4. Cryogenic 36-45 GHz InP Low-Noise Amplifier MMIC's with Improved Noise Temperature by Eliminating Parasitic Parallel-Plate Modes

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroshi; Shimizu, Takashi; Ohno, Takeshi; Hirachi, Yasutake; Kawaguchi, Noriyuki

    2012-08-01

    This paper describes cryogenic 36-45 GHz InP low-noise amplifier monolithic microwave integrated circuits (MMIC's) with an improved noise temperature by eliminating parasitic parallel-plate resonance modes. These MMIC's are used for a Radio Astronomical receiver, which needs the ultimate super low-noise and wide-band frequency characteristics, such as those in ALMA Band 1. The MMIC chips were designed in the coplanar waveguide (CPW), and mounted to the AlN substrate with a flip-chip assembly, which was promising compared to wire bonding. The flip-chip assemblies, however, are prone to cause the parasitic parallel plate resonance mode (PPM). The relationship between the S-parameters and the PPM was investigated by using a 3D-electromagnetic simulation of the simple transmission-line test-chip with the same chip size as that of the actual MMIC. In order to eliminate the PPM, additional bumps were mounted on the simple transmission-line test-chip, and the effect of these bumps was confirmed by the simulation. These results obtained from the simple transmission-line test-chip were applied to an actual MMIC chip assembly. The MMIC assembled with the additional bumps had no abnormality in the measured S-parameters, and the PPM had been eliminated up to 65 GHz. Moreover, the stability factor, K, became more than 2.4 over 36-45 GHz. This InP low-noise amplifier MMIC exhibited a gain of 15 dB and a noise temperature of 180-240 K at room temperature in the frequency range of 36-45 GHz. When cooled to 28 K, a gain of 17 dB and a noise temperature of 22-35 K were obtained at a power consumption of 4.7 mW over 36-45 GHz. A high-gain amplifier module consisting of two cascaded chips, exhibited a gain of 27-30 dB and a noise temperature of 25-30 K at the ambient temperature of 22 K in the frequency range of 41-45 GHz.

  5. Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier

    SciTech Connect

    Hiemstra, D.M.

    1999-12-01

    The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.

  6. Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation.

    PubMed

    Loh, William; Yegnanarayanan, Siva; Plant, Jason J; O'Donnell, Frederick J; Grein, Matthew E; Klamkin, Jonathan; Duff, Shannon M; Juodawlkis, Paul W

    2012-08-13

    We demonstrate a 10-GHz RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillator (SCOW-COEO) system operating with low phase-noise (<-115 dBc/Hz at 1 kHz offset) and large sidemode suppression (>70 dB measurement-limited). The optical pulses generated by the SCOW-COEO exhibit 26.8-ps pulse width (post compression) with a corresponding spectral bandwidth of 0.25 nm (1.8X transform-limited). We also investigate the mechanisms that limit the performance of the COEO. Our measurements indicate that degradation in the quality factor (Q) of the optical cavity significantly impacts COEO phase-noise through increases in the optical amplifier relative intensity noise (RIN). PMID:23038585

  7. Low noise gain-clamped L-band erbium-doped fiber amplifier by utilizing fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Guo, Yubin; Yan, Hongwei; Wang, Yuhang; Wang, Ke

    2006-11-01

    A novel gain-clamped long wavelength band (L-band) erbium-doped fiber amplifier (EDFA) is proposed and experimented by using a fiber Bragg grating (FBG) at the input end of the amplifier. This design provides a good gain clamping and decreases noise effectively. It uses two sections of erbium-doped fiber (EDF) pumped by a 1480-nm laser diode (LD) for higher efficiency and lower noise figure (NF). The gain is clamped at 23 dB with a variation of 0.5 dB from input signal power of -30 to -8 dBm for 1589 nm and NF below 5 dB is obtained. At the longer wavelength in L-band higher gain is also obtained and the gain is clamped at 16 dB for 1614 nm effectively. Because the FBG injects a portion of backward amplified spontaneous emission (ASE) back into the system, the gain enhances 5 dB with inputting small signal.

  8. Enhancing the noise performance of monolithic microwave integrated circuit-based low noise amplifiers through the use of a discrete preamplifying transistor

    NASA Astrophysics Data System (ADS)

    McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio

    2015-01-01

    An approach to enhancing the noise performance of an InP monolithic microwave integrated circuit (MMIC)-based low noise amplifiers (LNA) through the use of a discrete 100-nm gate length InP high electron mobility transistor is outlined. This LNA, known as a transistor in front of MMIC (T + MMIC) LNA, possesses a gain in excess of 40 dB and an average noise temperature of 9.4 K across the band 27 to 33 GHz at a physical temperature of 8 K. This compares favorably with 14.5 K for an LNA containing an equivalent MMIC. A simple advanced design system model offering further insights into the operation of the LNA is also presented and the LNA is compared with the current state-of-the-art Planck LFI LNAs.

  9. Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For CO Intensity Mapping and ALMA Band 2

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Cleary, Kieran; Church, Sarah E.; Cuadrado-Calle, David; Fung, Andy; gaier, todd; gawande, rohit; Kangaslahti, Pekka; Lai, Richard; Lawrence, Charles R.; Readhead, Anthony C. S.; Sarkozy, Stephen; Seiffert, Michael D.; Sieth, Matthew

    2016-01-01

    We will present results of the latest InP HEMT MMIC low noise amplifiers in the 30-300 GHz range, with emphasis on LNAs and mixers developed for CO intensity mapping in the 40-80 GHz range, as well as MMIC LNAs suitable for ALMA Band 2 (67-90 GHz). The LNAs have been developed together with NGC in a 35 nm InP HEMT MMIC process. Recent results and a summary of best InP low noise amplifier data will be presented. This work describes technologies related to the detection and study of highly redshifted spectral lines from the CO molecule, a key tracer for molecular hydrogen. One of the most promising techniques for observing the Cosmic Dawn is intensity mapping of spectral-spatial fluctuations of line emission from neutral hydrogen (H I), CO, and [C II]. The essential idea is that instead of trying to detect line emission from individual galaxies, one measures the total line emission from a number of galaxies within the volume defined by a spectral-spatial pixel. Fluctuations from pixel to pixel trace large scale structure, and the evolution with redshift is revealed as a function of receiver frequency. A special feature of CO is the existence of multiple lines with a well-defined frequency relationship from the rotational ladder, which allows the possibility of cleanly separating the signal from other lines or foreground structure at other redshifts. Making use of this feature (not available to either HI or [C II] measurements) requires observing multiple frequencies, including the range 40-80 GHz, much of which is inaccessible from the ground or balloons.Specifically, the J=1->0 transition frequency is 115 GHz; J=2->1 is 230 GHz; J=3->2 is 345 GHz, etc. At redshift 7, these lines would appear at 14.4, 28.8, and 43.2 GHz, accessible from the ground. Over a wider range of redshifts, from 3 to 7, these lines would appear at frequencies from 14 to 86 GHz. A ground-based CO Intensity mapping experiment, COMAP, will utilize InP-based HEMT MMIC amplifier front ends in the

  10. Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Chaujar, Rishu

    2016-08-01

    In this paper, we have investigated the small-signal behaviour and RF noise performance of gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) MOSFET, and the results so obtained are simultaneously compared with SiNW and conventional MOSFET at THz frequency range. This work examines reflection and transmission coefficients, noise conductance, minimum noise figure and cross-correlation factor. Results reveal significant reduction in input/output reflection coefficient and an increase in forward/reverse transmission coefficient owing to improved transconductance in GEWE-SiNW in comparison with conventional counterparts. It is also observed that minimum noise figure and noise conductance of GEWE-SiNW is reduced by 17.4 and 31.2 %, respectively, in comparison with SiNW, thus fortifying its potential application for low-noise amplifiers (LNAs) at radio frequencies. Moreover, the efficacy of gate metal workfunction engineering is also studied and the results validate that tuning of workfunction difference results further improvement in device small-signal behaviour and noise performance.

  11. 2.4 GHz CMOS power amplifier with mode-locking structure to enhance gain.

    PubMed

    Lee, Changhyun; Park, Changkun

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm(2). PMID:25045755

  12. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  13. Scalable, Low-Noise Architecture for Integrated Terahertz Imagers

    NASA Astrophysics Data System (ADS)

    Gergelyi, Domonkos; Földesy, Péter; Zarándy, Ákos

    2015-06-01

    We propose a scalable, low-noise imager architecture for terahertz recordings that helps to build large-scale integrated arrays from any field-effect transistor (FET)- or HEMT-based terahertz detector. It enhances the signal-to-noise ratio (SNR) by inherently enabling complex sampling schemes. The distinguishing feature of the architecture is the serially connected detectors with electronically controllable photoresponse. We show that this architecture facilitate room temperature imaging by decreasing the low-noise amplifier (LNA) noise to one-sixteenth of a non-serial sensor while also reducing the number of multiplexed signals in the same proportion. The serially coupled architecture can be combined with the existing read-out circuit organizations to create high-resolution, coarse-grain sensor arrays. Besides, it adds the capability to suppress overall noise with increasing array size. The theoretical considerations are proven on a 4 by 4 detector array manufactured on 180 nm feature sized standard CMOS technology. The detector array is integrated with a low-noise AC-coupled amplifier of 40 dB gain and has a resonant peak at 460 GHz with 200 kV/W overall sensitivity.

  14. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.

    PubMed

    Scarcella, Carmelo; Tosi, Alberto; Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-01

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm. PMID:24387425

  15. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect

    Scarcella, Carmelo; Tosi, Alberto Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  16. A high efficiency PWM CMOS class-D audio power amplifier

    NASA Astrophysics Data System (ADS)

    Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei

    2009-02-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  17. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    SciTech Connect

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R.; Palmer, R.L.; Moscone, C.G.; Jackson, R.G.

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  18. A low-noise readout circuit in 0.35-μm CMOS for low-cost uncooled FPA infrared network camera

    NASA Astrophysics Data System (ADS)

    Mesgarzadeh, Behzad; Sadeghifar, M. Reza; Fredriksson, Per; Jansson, Christer; Niklaus, Frank; Alvandpour, Atila

    2009-05-01

    This paper describes a differential readout circuit technique for uncooled Infrared Focal Plane Arrays (IRFPA) sensors. The differential operation allows an efficient rejection of the common-mode noise during the biasing and readout of the detectors. This has been enabled by utilizing a number of blind and thermally-isolated IR bolometers as reference detectors. In addition, a pixel-wise detector calibration capability has been provided in order to allow efficient error corrections using digital signal processing techniques. The readout circuit for a 64×64 test bolometer-array has been designed in a standard 0.35-μm CMOS process. Circuit simulations show that the analog readout at 60 frames/s consumes 30 mW from a 3.3-V supply and results in a noise equivalent temperature difference (NETD) of 125 mK for infrared optics.

  19. Low-noise cryogenic transmission line

    NASA Technical Reports Server (NTRS)

    Norris, D.

    1987-01-01

    New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.

  20. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  1. Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Rui, He; Jianfei, Xu; Na, Yan; Jie, Sun; Liqian, Bian; Hao, Min

    2014-10-01

    A high speed inductorless limiting amplifier (LA) in an optical communication receiver with the working speed up to 20 Gb/s is presented. The LA includes an input matching network, a four-stage 3rd order amplifier core, an output buffer for the test and a DC offset cancellation (DCOC). It uses the active interleaving feedback technique both to broaden the bandwidth and achieve the flatness response. Based on our careful analysis of the DCOC and stability, an error amplifier is added to the DCOC loop in order to keep the offset voltage reasonable. Fabricated in the 65 nm CMOS technology, the LA only occupies an area of 0.45 × 0.25 mm2 (without PAD). The measurement results show that the LA achieves a differential voltage gain of 37 dB, and a 3-dB bandwidth of 16.5 GHz. Up to 26.5 GHz, the Sdd11 and Sdd22 are less than -16 dB and -9 dB. The chip excluding buffer is supplied by 1.2 V VDD and draws a current of 50 mA.

  2. All CMOS Low-Power Wide-Gain Range Variable Gain Amplifiers

    NASA Astrophysics Data System (ADS)

    Duong, Quoc-Hoang; Kim, Chang-Wan; Lee, Sang-Gug

    Two variable gain amplifiers (VGAs) that adopt new approximated exponential equations are proposed in this paper. The dB-linear range of the proposed VGAs is extended more than what the approximated exponential equations predict by a bias circuit technique that adopts negative feedback. The proposed VGAs feature wide gain variation, low-power, high linearity, wide control signal range, and small chip size. One of the proposed VGAs is fabricated in 0.18μm CMOS technology and measurements show a gain variation of 83dB (-36-47dB) with a gain error of less than ±2dB, and P1dB/IIP3 from -55/8 to -20/20.5dBm, while consuming an average current of 3.4mA from a 1.8V supply; the chip occupies 0.4mm2. The other VGA is simulated in 0.18μm CMOS technology and simulations show a gain variation of 91dB (-41-50dB), and P1dB/IIP3 from -50/-25 to -33/0dBm, while consuming an average current of 1.5mA from a 1.8V supply.

  3. A fully integrated 3.5 GHz CMOS differential power amplifier driver

    NASA Astrophysics Data System (ADS)

    Xiaodong, Xu; Haigang, Yang; Tongqiang, Gao; Hongfeng, Zhang

    2013-07-01

    A fully integrated CMOS differential power amplifier driver (PAD) is proposed for WiMAX applications. In order to fulfill the differential application requirements, a transmission line transformer is used as the output matching network. A differential inductance constitutes an inter-stage matching network. Meanwhile, an on chip balun realizes input matching as well as single-end to differential conversion. The PAD is fabricated in a 0.13 μm RFCMOS process. The chip size is 1.1 × 1.1 mm2 with all of the matching network integrated on chip. The saturated power is around 10 dBm and power gain is about 12 dB.

  4. Transmission of wireless neural signals through a 0.18 µm CMOS low-power amplifier.

    PubMed

    Gazziro, M; Braga, C F R; Moreira, D A; Carvalho, A C P L F; Rodrigues, J F; Navarro, J S; Ardila, J C M; Mioni, D P; Pessatti, M; Fabbro, P; Freewin, C; Saddow, S E

    2015-01-01

    In the field of Brain Machine Interfaces (BMI) researchers still are not able to produce clinically viable solutions that meet the requirements of long-term operation without the use of wires or batteries. Another problem is neural compatibility with the electrode probes. One of the possible ways of approaching these problems is the use of semiconductor biocompatible materials (silicon carbide) combined with an integrated circuit designed to operate with low power consumption. This paper describes a low-power neural signal amplifier chip, named Cortex, fabricated using 0.18 μm CMOS process technology with all electronics integrated in an area of 0.40 mm(2). The chip has 4 channels, total power consumption of only 144 μW, and is impedance matched to silicon carbide biocompatible electrodes. PMID:26737437

  5. A low-power CMOS trans-impedance amplifier for FM/cw ladar imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Zhao, Yi-qiang; Sheng, Yun; Zhao, Hong-liang; Yu, Hai-xia

    2013-09-01

    A scannerless ladar imaging system based on a unique frequency modulation/continuous wave (FM/cw) technique is able to entirely capture the target environment, using a focal plane array to construct a 3D picture of the target. This paper presents a low power trans-impedance amplifier (TIA) designed and implemented by 0.18 μm CMOS technology, which is used in the FM/cw imaging ladar with a 64×64 metal-semiconductor-metal(MSM) self-mixing detector array. The input stage of the operational amplifier (op amp) in TIA is realized with folded cascade structure to achieve large open loop gain and low offset. The simulation and test results of TIA with MSM detectors indicate that the single-end trans-impedance gain is beyond 100 kΩ, and the -3 dB bandwidth of Op Amp is beyond 60 MHz. The input common mode voltage ranges from 0.2 V to 1.5 V, and the power dissipation is reduced to 1.8 mW with a supply voltage of 3.3 V. The performance test results show that the TIA is a candidate for preamplifier of the read-out integrated circuit (ROIC) in the FM/cw scannerless ladar imaging system.

  6. Self-amplified CMOS image sensor using a current-mode readout circuit

    NASA Astrophysics Data System (ADS)

    Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick

    2014-05-01

    The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.

  7. A 65-nm low-noise low-cost ΣΔ modulator for audio applications

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Lu, Liao; Hao, Luo; Xiaopeng, Liu; Xiaoxia, Han; Yan, Han

    2012-02-01

    This paper introduces a low-noise low-cost ΣΔ modulator for digital audio analog-to-digital conversion. By adopting a low-noise large-output swing operation amplifier, not only is the flicker noise greatly inhibited, but also the power consumption is reduced. Also the area cost is relatively small. The modulator was implemented in a SMIC standard 65-nm CMOS process. Measurement results show it can achieve 96 dB peak signal-to-noise plus distortion ratio (SNDR) and 105 dB dynamic range (DR) over the 22.05-kHz audio band and occupies 0.16 mm2. The power consumption of the proposed modulator is 4.9 mW from a 2.5 V power supply, which is suitable for high-performance, low-cost audio codec applications.

  8. Very Low Noise Multiplexing with SQUIDs and SiGe Heterojunction Bipolar Transistors for Readout of Large Superconducting Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Voisin, F.; Bréelle, E.; Piat, M.; Prêle, D.; Klisnick, G.; Sou, G.; Redon, M.

    2008-05-01

    This paper presents an ultra low noise instrumentation based on a standard BiCMOS SiGe 0.35 μm ASIC operating at cryogenic temperatures. The main functions of the electronic circuit are the readout and the multiplexing of SQUIDs/TES. We report the cryogenic operation of the ASIC dedicated to the readout of a 2×4 pixel demonstrator array. We particularly emphasize on the development and the test phases of an ultra low noise ( 0.2 nV/sqrt{Hz} ) cryogenic amplifier designed with two multiplexed inputs. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented.

  9. Very-low-noise multiplexing with SQUIDs and SiGe HBTs for readout of large superconducting bolometer arrays

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Klisnick, G.; Sou, G.; Redon, M.; Bréelle, E.; Voisin, F.; Piat, M.

    2007-08-01

    We present an ultra-low-noise instrumentation based on a standard BiCMOS SiGe 0.35 μm ASIC operating at cryogenic temperatures. The main functions of the electronic circuit are the readout and the multiplexing of SQUIDs/TES arrays. We report the cryogenic operation of the ASIC dedicated to the readout of a 2×4 pixel demonstrator array. We particularly emphasise on the development, and the test phases of an ultra-low-noise (0.2 nV/√Hz) cryogenic amplifier designed with two multiplexed input. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented.

  10. A 180-Vpp Integrated Linear Amplifier for Ultrasonic Imaging Applications in a High-Voltage CMOS SOI Technology

    PubMed Central

    Sun, Kexu; Gao, Zheng; Gui, Ping; Wang, Rui; Oguzman, Ismail; Xu, Xiaochen; Vasanth, Karthik; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This brief presents a monolithically integrated fully differential linear HV amplifier as the driver of an ultrasonic transducer. The linear amplifier is capable of transmitting HV arbitrary signals with a very low harmonic distortion, which is suitable for tissue harmonic imaging and other ultrasonic modes for enhanced imaging quality. The amplifier is designed and implemented using the 0.7-μm CMOS silicon-on-insulator process with 120-V devices. The amplifier, when driving a load of 300 pF in parallel with 100 Ω, is capable of transmitting a sine-wave signal with a frequency of up to 4.4 MHz, a maximum signal swing of 180 Vpp, and a second-order harmonic distortion (HD2) of −56 dBc but only dissipating an average power of 62 mW with a 0.1% duty cycle. PMID:25914609

  11. Digital Switching CMOS Power Amplifier for Multiband and Multimode Handset Applications

    NASA Astrophysics Data System (ADS)

    Nakatani, Toshifumi

    This thesis is directed towards the development of a digitally-assisted radio frequency power amplifier (RF PA) which is one of the potential solutions to realize a multiband and multimode transmitter with high efficiency for handset applications. To improve efficiency and linearity in multiple conditions, PA circuits and digital signal processing (DSP) algorithms are co-designed. In the dissertation, a proposed architecture employs a current-mode class-D (CMCD) configuration for high efficiency, and a polar modulation scheme driven by digital inputs. Detail design, fabrication and experimental results are given for circuit implementation and DSP of this architecture. First, a multiband watt-class complementary metal-oxide-semiconductor (CMOS) PA is demonstrated using 0.15 um CMOS integrated circuits (ICs), off-chip inductor and balun. To obtain high breakdown voltage, stacked field effect transistors (FETs) are used. The CMCD PA is tuned by band-switching capacitors, operating in the 0.7-1.8 GHz frequency band. The overall efficiencies of 27.1 / 25.6 % are achieved at 30.2 / 28.9 dBm CW output powers and 0.85 / 1.75 GHz carrier frequencies, respectively. Next, to achieve wide output power dynamic range, an architecture consisting of small segmented unti-cells is introduced into the PA, where multiple three-state unit-cells are used and the state of each unit-cell is controlled to provide a specific output power. The overall dynamic ranges are expanded to approximately 90 dB and 85 dB at and 0.85 / 1.75 GHz, respectively. The dissertation then presents digital modulation algorithms. The digital compensation techniques are developed to maintain linearity of an envelope modulator of the polar transmitter. A new digital pulse width modulation algorithm is also shown to partially suppress spurious signals associated with the digital input envelope signal. When wideband code-division multiple access (WCDMA) modulation is implemented, spur suppression of 9-10 dB is

  12. EHF low-noise FET receiver

    NASA Technical Reports Server (NTRS)

    Schellenberg, J. M.; Watkins, E. T.

    1983-01-01

    Extremely high frequency (EHF) receivers for military and NASA programs must be small, lightweight, and highly reliable. In connection with recent advances in the development of mm-wave FET devices and circuits, a basis has been obtained for the eventual replacement of diode mixer front-ends by FET preamplifiers in receivers up to 94 GHz. By placing a low noise amplifier in front of the mixer it is possible to achieve a lower system noise figure than that found in conventional mm-wave receivers. A broader bandwidth can also be provided. Attention is given to the receiver configuration, a low noise FET amplifier, an image rejection filter, a dual-gate FET mixer, a FET local oscillator, and a FET receiver.

  13. Ultra-low-noise microwave amplifiers

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Trowbridge, D.

    1980-01-01

    The highlights of 20 years of maser use and development are presented. Masers discussed include cavity, traveling wave, K band, and S band. Noise temperatures measured since 1960 are summarized. Use of masers in the Deep Space Network is presented. Costs associated with the construction of masers systems are given.

  14. 60 GHz low noise wideband receiver

    NASA Technical Reports Server (NTRS)

    Knust-Graichen, R. A.; Bui, L.

    1985-01-01

    The printed circuit and GaAs beam lead technology-based, low noise integrated receiver presented was developed for low cost space communications and operates in the 59-64 GHz range, using a phase-locked Gunn oscillator at 51.5 GHz. An IF output of 7.5-12.5 GHz is obtained. With the exception of the IF amplifier, and of the E-plane technology-based RF preselect filter, all circuits of the device employ suspended stripline construction.

  15. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  16. Studies of the LBL CMOS integrated amplifier/discriminator for randomly timed inputs from fixed target experiments

    SciTech Connect

    Russ, J.S.; Yarema, R.J.; Zimmerman, T.

    1988-12-01

    A group at Lawrence Berkeley Laboratory has reported an elegant CMOS VLSI circuit for amplifying, discriminating, and encoding the signals from highly-segmented charge output devices, e.g., silicon strip detectors or pad readout structures in gaseous detectors. The design exploits switched capacitor circuits and the well-known time structure of data acquisition in colliding beam accelerators to cancel leakage effects and switching noise. For random inputs, these methods are not directly applicable. However, the high speed of the reset switches makes possible a mode of operation for fixed target experiments that uses fast resets to erase unwanted data from random triggers. Data acquisition in this mode has been performed. Details of operation and measurements of noise and rate capability will be presented. 8 refs., 6 figs.

  17. A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier.

    PubMed

    Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2016-01-01

    A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10(-)⁵ is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed. PMID:27089339

  18. A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier

    PubMed Central

    Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2016-01-01

    A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10−5 is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed. PMID:27089339

  19. Variable-gain, low-noise amplification for sampling front ends.

    PubMed

    Rieger, R

    2011-06-01

    This paper presents a low-noise front-end amplifier with configurable gain, targeting the recording of small signals, such as the electrocardiogram (ECG) or electroneurogram (ENG). The circuit consists of a continuous-time input stage using lateral bipolar transistors realized in complementary metal-oxide semiconductor (CMOS) technology followed by a switched-capacitor integrating stage. The voltage gain is adjustable by varying the phase delay between two system clocks. Simulated and measured results for a chip fabricated in 0.35-μm CMOS technology are reported. The amplifier occupies an active area of 0.064 mm(2), yields a nominal gain of 630 V/V with more than a 50-dB tuning range, less than 16 nVrms/√Hz input noise and a common-mode rejection of more than 97 dB. Its power consumption is 280 μW with a ±1.5-V supply. PMID:23851476

  20. Digital standard cells and operational amplifiers for operation up to 250 degrees C using low-cost CMOS technology

    NASA Astrophysics Data System (ADS)

    Stemmer, Jens; Ackermann, Joerg; Uffmann, Dirk; Aderhold, Jochen

    1996-09-01

    There is an increasing demand from automotive, aircraft and space industry for reliable high temperature resistant electronics. Circuits with reliable functionality up to temperatures of 250 degree(s)C would be sufficient for most of these applications. Digital standard cells and operational amplifiers are the basic building blocks of these circuits. Commercially available digital standard cell libraries and operational amplifiers are normally specified for operation up to a maximum temperature of 125 degree(s)C. Hence, the purpose of this work was the design and characterization of digital standard cells and operational amplifiers for operation up to 250 degree(s)C using a low-cost 1.0 micrometers epi-CMOS process. Several design measures were applied to the cells in order to further improve latch-up resistivity and to limit leakage currents, respectively. The transfer curves of all digital cells for all input signal combinations have been recorded in the temperature range from 30 to 250 degree(s)C. Significant results are very low temperature shifts of the noise margins and of the switching point, respectively. Furthermore, the low (0 V) and high (5 V) levels are reached exactly over the entire temperature range. Outstanding characteristics of the operational amplifier comprise low open-loop gain temperature drift as well as low offset and offset temperature drift, respectively. The open-loop gain was greater than 83 dB at room temperature with a drift of less than 0.02 dB/ degree(s)C. The offset voltage amounted to -1 mV at room temperature and 1 mV at 250 degree(s)C, respectively. The long-term behavior of these cells is currently under investigation.

  1. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers

    NASA Astrophysics Data System (ADS)

    Wei, Zhu; Baoyong, Chi; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2014-10-01

    An inductorless wideband programmable-gain amplifier (PGA) for 60 GHz wireless transceivers is presented. To attain wideband characteristics, a modified Cherry—Hooper amplifier with a negative capacitive neutralization technique is employed as the gain cell while a novel circuit technique for gain adjustment is adopted; this technique can be universally applicable in wideband PGA design and greatly simplifying the design of wideband PGA. By cascading two gain cells and an output buffer stage, the PGA achieves the highest gain of 30 dB with the bandwidth much wider than 3 GHz. The PGA has been integrated into one whole 60 GHz wireless transceiver and implemented in the TSMC 65 nm CMOS process. The measurements on the receiver front-end show that the receiver front-end achieves an 18 dB variable gain range with a > 3 GHz bandwidth, which proves the proposed PGA achieves an 18 dB variable gain range with a bandwidth much wider than 3 GHz. The PGA consumes 10.7 mW of power from a 1.2-V supply voltage with a core area of only 0.025 mm2.

  2. A 0.5-V multi-channel low-noise readout front-end for portable EEG acquisition.

    PubMed

    Wen-Yen Huang; Yu-Wei Cheng; Kea-Tiong Tang

    2015-08-01

    This article presents a low-noise readout front-end suitable for Electroencephalogram (EEG) acquisition. The chip includes 8-channel fully-differential instrumentation amplifiers, utilizing chopper stabilization technique for reducing the flicker noise, each amplifier with a small Gm-C low-pass filter, a programmable gain amplifier, and a 10-bit successive approximation register (SAR) ADC with a detect logic for DAC switching. The chip is fabricated with the TSMC 90nm CMOS process. The low-noise readout front-end has simulated frequency response from 0.57 Hz to 213 Hz, programmable gain from 54.4 dB to 87.6 dB, integrated input-referred noise of 0.358 μVrms within EEG bandwidth, a noise efficiency factor (NEF) of 2.43, and a power efficiency factor (PEF) of 2.95. The overall system consumes 32.08 μW under 0.5-V supply. PMID:26736392

  3. Low-noise nozzle valve

    NASA Astrophysics Data System (ADS)

    Gwin, Hal S.; Aaron, James

    1990-09-01

    A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses.

  4. Low-noise nozzle valve

    NASA Technical Reports Server (NTRS)

    Gwin, Hal S. (Inventor); Aaron, James (Inventor)

    1990-01-01

    A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses.

  5. Analysis and design of a low-noise ROIC for hybrid InGaAs infrared FPA

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Huang, SongLei; Huang, ZhangCheng; Fang, Jiaxiong

    2011-08-01

    The noises of CMOS readout integrated circuit (ROIC) for hybrid focal plane array (FPA) may occupy a great part of total noise in conditions that a low resistance or large capacitor detector interfacing with CTIA input stage. A novel low noise low power preamplifier with shared current-mirrors bias is designed. It has a gain of more than 90dB, which makes enough inject efficiency and low detector bias offset. Besides, it has strong detector bias control, because the shared current-mirror copies the DC current of the amplifier and generates the bias control voltage. A pixel level Correlated Double Sample circuits is designed in order to suppress the reset KTC noise and 1/f noise from preamplifier. An experimental chip of 30μm pitch 32×32 array was fabricated in standard 0.5μm CMOS mixed signal process. A few experimental structures are designed to study the allocating of layout area for low noise designing. The ROIC is bonded to an existing back-illuminated 30μm pitch InGaAs photodiode array with indium bump fabrication. The test of both the ROIC chips and InGaAs focal plane array is shown in this paper, and the contrast of different structure is shown and analyzed.

  6. Ultra low-noise charge coupled device

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1993-01-01

    Special purpose CCD designed for ultra low-noise imaging and spectroscopy applications that require subelectron read noise floors, wherein a non-destructive output circuit operating near its 1/f noise regime is clocked in a special manner to read a single pixel multiple times. Off-chip electronics average the multiple values, reducing the random noise by the square-root of the number of samples taken. Noise floors below 0.5 electrons rms are possible in this manner. In a preferred embodiment of the invention, a three-phase CCD horizontal register is used to bring a pixel charge packet to an input gate adjacent a floating gate amplifier. The charge is then repeatedly clocked back and forth between the input gate and the floating gate. Each time the charge is injected into the potential well of the floating gate, it is sensed non-destructively. The floating gate amplifier is provided with a reference voltage of a fixed value and a pre-charge gate for resetting the amplifier between charge samples to a constant gain. After the charge is repeatedly sampled a selected number of times, it is transferred by means of output gates, back into the horizontal register, where it is clocked in a conventional manner to a diffusion MOSFET amplifier. It can then be either sampled (destructively) one more time or otherwise discarded.

  7. Support assembly for cryogenically coolable low-noise choke waveguide

    NASA Technical Reports Server (NTRS)

    Mccrea, F. E. (Inventor)

    1980-01-01

    A compact cryogenically coolable choked waveguide for low-noise input coupling into a cryogenically cooled device, such as a maser or parametric amplifier, utilizes coaxial stainless steel support tubes surrounding the waveguide and connected in cascade to provide a folded low thermal conduction path. The edges of the tubes connected are welded.

  8. A compact rail-to-rail CMOS buffer amplifier with very low quiescent current

    NASA Astrophysics Data System (ADS)

    Arslan, Emre; Yıldız, Merih; Minaei, Shahram

    2015-06-01

    In this work, a very compact, rail-to-rail, high-speed buffer amplifier for liquid crystal display (LCD) applications is proposed. Compared to other buffer amplifiers, the proposed circuit has a very simple architecture, occupies a small number of transistors and also has a large driving capacity with very low quiescent current. It is composed of two complementary differential input stages to provide rail-to-rail driving capacity. The push-pull transistors are directly connected to the differential input stage, and the output is taken from an inverter. The proposed buffer circuit is laid out using Mentor Graphics IC Station layout editor using AMS 0.35 μm process parameters. It is shown by post-layout simulations that the proposed buffer can drive a 1 nF capacitive load within a small settling time under a full voltage swing, while drawing only 1.6 μA quiescent current from a 3.3 V power supply.

  9. A High Speed CMOS Image Sensor with a Novel Digital Correlated Double Sampling and a Differential Difference Amplifier

    PubMed Central

    Kim, Daehyeok; Bae, Jaeyoung; Song, Minkyu

    2015-01-01

    In order to increase the operating speed of a CMOS image sensor (CIS), a new technique of digital correlated double sampling (CDS) is described. In general, the fixed pattern noise (FPN) of a CIS has been reduced with the subtraction algorithm between the reset signal and pixel signal. This is because a single-slope analog-to-digital converter (ADC) has been normally adopted in the conventional digital CDS with the reset ramp and signal ramp. Thus, the operating speed of a digital CDS is much slower than that of an analog CDS. In order to improve the operating speed, we propose a novel digital CDS based on a differential difference amplifier (DDA) that compares the reset signal and the pixel signal using only one ramp. The prototype CIS has been fabricated with 0.13 µm CIS technology and it has the VGA resolution of 640 × 480. The measured conversion time is 16 µs, and a high frame rate of 131 fps is achieved at the VGA resolution. PMID:25738765

  10. A high speed CMOS image sensor with a novel digital correlated double sampling and a differential difference amplifier.

    PubMed

    Kim, Daehyeok; Bae, Jaeyoung; Song, Minkyu

    2015-01-01

    In order to increase the operating speed of a CMOS image sensor (CIS), a new technique of digital correlated double sampling (CDS) is described. In general, the fixed pattern noise (FPN) of a CIS has been reduced with the subtraction algorithm between the reset signal and pixel signal. This is because a single-slope analog-to-digital converter (ADC) has been normally adopted in the conventional digital CDS with the reset ramp and signal ramp. Thus, the operating speed of a digital CDS is much slower than that of an analog CDS. In order to improve the operating speed, we propose a novel digital CDS based on a differential difference amplifier (DDA) that compares the reset signal and the pixel signal using only one ramp. The prototype CIS has been fabricated with 0.13 µm CIS technology and it has the VGA resolution of 640 × 480. The measured conversion time is 16 µs, and a high frame rate of 131 fps is achieved at the VGA resolution. PMID:25738765

  11. An approximate HSPICE model for orbit low noise analog bipolar NPN transistors

    SciTech Connect

    Zimmerman, T.

    1991-07-01

    Vertical bipolar NPN transistors can be fabricated cheaply through MOSIS by using the Orbit 2 um Low Noise Analog CMOS process. The collector is formed from an N-well, the base from a p-base diffusion, and the emitter from an N-diffusion. However, since this is a CMOS process there is no buried layer in the collector. Therefore the collector resistance is quite large. Also, the minimum emitter size is 8 um {times} 8 um, which is substantially larger than many fast bipolar processes. For certain applications, though, such as common base or emitter follower amplifiers, the performance of this transistor may be quite acceptable. However, no AC SPICE model is published for this device. This paper describes a simple approximate measurement method that was used at Fermilab to formulate an HSPICE model for these transistor. This method requires only a fast pulse generator and a good digitizing oscilloscope with an active FET probe for the AC measurements. Model parameters for two transistors of different size are then given. 1 ref., 1 fig.

  12. Low-voltage constant- g m rail-to-rail CMOS operational amplifier input stage

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yao, Ruo He

    2008-06-01

    This paper presents a rail-to-rail constant-gm operational amplifier input stage. The proposed circuit changes the tail current of the input differential pairs dynamically for a constant-gm by using dummy input differential pairs. The problem which causes total gm variation is input pairs and dummy input pairs can not take effect at the same time with the common-mode input voltage changes, because the tail current transistor of the input pairs are in triode region when the input pairs are turned off, the dummy input pairs will enter subthreshold region from cut-off region before the input pairs when common-mode voltage changes. The effect of this problem is more obviously in low supply voltage design. To solve this problem, compensate current sources is added to the tail current transistors of each dummy input differential pairs for lower gm variation. The gm of this Op Amp's input stage varies around ±2%.

  13. Analog CMOS design for optical coherence tomography signal detection and processing.

    PubMed

    Xu, Wei; Mathine, David L; Barton, Jennifer K

    2008-02-01

    A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented. PMID:18269983

  14. Design of matching networks for low noise preamplifiers.

    PubMed

    Reykowski, A; Wright, S M; Porter, J R

    1995-06-01

    This paper discusses matching networks that minimize inductive coupling between the antennas within an array while simultaneously insuring minimum noise contributions from preamplifiers. Typical low noise preamplifier designs require a strong mismatch between the source impedance and the amplifier input impedance (reflection coefficient close to one) to achieve optimal noise performance. This is in contrast to the familiar impedance match known from communication theory where input and source impedances have complex conjugate values for maximizing the power transfer from source to amplifier. The high input reflection coefficient of low noise amplifiers can be exploited to reduce antenna currents by using lossless impedance transformations to create a high impedance at the coil terminals while simultaneously maintaining a low noise figure for the amplifier. The networks presented here constitute an improvement over previous work because they give additional freedoms regarding the values of the network components and the amplifier input impedance. The technique has been formalized and coded in MathCad, making the design of realizable networks a simple process. PMID:7651124

  15. High-gain, high-bandwidth, rail-to-rail, constant-gm CMOS operational amplifier

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Wang, Bo-Ruei

    2013-01-01

    This study presents a high-gain, high-bandwidth, constant-gm , rail-to-rail operational amplifier (op-amp). The constant transconductance is improved with a source-to-bulk bias control of an input pair. A source degeneration scheme is also adapted to the output stage for receiving wide input range without degradation of the gain. Additionally, several compensation schemes are employed to enhance the stability. A test chip is fabricated in a 0.18 µm complementary metal-oxide semiconductor process. The active area of the op-amp is 181 × 173 µm2 and it consumes a power of 2.41 mW at a supply voltage of 1.8 V. The op-amp achieves a dc gain of 94.3 dB and a bandwidth of 45 MHz when the output capacitive load is connected to an effective load of 42.5 pF. A class-AB output stage combining a slew rate (SR) boost circuit provides a sinking current of 6 mA and an SR of 17 V/µs.

  16. The 30 GHz communications satellite low noise receiver

    NASA Astrophysics Data System (ADS)

    Steffek, L. J.; Smith, D. W.

    1983-10-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  17. The 30 GHz communications satellite low noise receiver

    NASA Technical Reports Server (NTRS)

    Steffek, L. J.; Smith, D. W.

    1983-01-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  18. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  19. Low noise lead screw positioner

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1986-01-01

    A very precise and low noise lead screw positioner, for positioning a retroreflector in an interferometer is described. A gas source supplies inert pressurized gas, that flows through narrow holes into the clearance space between a nut and the lead screw. The pressurized gas keeps the nut out of contact with the screw. The gas flows axially along the clearance space, into the environment. The small amount of inert gas flowing into the environment minimizes pollution. By allowing such flow into the environment, no seals are required between the end of the nut and the screw.

  20. Low noise charge ramp electrometer

    DOEpatents

    Morgan, J.P.; Piper, T.C.

    1992-10-06

    An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit. 2 figs.

  1. Low noise charge ramp electrometer

    DOEpatents

    Morgan, John P.; Piper, Thomas C.

    1992-01-01

    An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit.

  2. Low-noise pulse conditioner

    DOEpatents

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  3. 0.18μm CMOS inductorless AGC amplifier with 50dB input dynamic range for 10GBase-LX4 ethernet

    NASA Astrophysics Data System (ADS)

    Aznar, F.; Celma, S.; Calvo, B.; Aldea, C.

    2009-05-01

    This paper presents a new automatic gain control main amplifier for 10GBase-LX4 Ethernet realized in a 0.18 μm CMOS process. The proposed optical-fiber differential post-amplifier is based on a very compact inductorless design which comprises three main digitally programmable gain stages followed by a buffer. It is characterized by a -3 dB cutoff frequency above 3 GHz over a -3 to 33 dB linear-in-dB gain control. It includes a DC offset cancellation network and an automatic gain control loop which establishes a setting time below 1μs. Results show a sensitivity of 2.1 mV for BER = 10-12 and an input dynamic range above 50 dB. The power consumption is 58 mW at a single supply voltage of 1.8 V.

  4. A low-power 20 GSps track-and-hold amplifier in 0.18 μm SiGe BiCMOS technology

    NASA Astrophysics Data System (ADS)

    Kai, Tang; Qiao, Meng; Zhigong, Wang; Yi, Zhang; Kuai, Yin; Ting, Guo

    2013-09-01

    An open-loop 20 GSps track-and-hold amplifier (THA) using fully-differential architecture to mitigate common-mode noise and suppress even-order harmonics is presented. CMOS switch and dummy switches are adopted to achieve high speed and good linearity. A cross-coupled pair is used in the input buffer to suppress the charge injection and clock feedthrough. Both the input and output buffers use an active inductor load to achieve high signal bandwidth. The THA is realized with 0.18 μm SiGe BiCMOS technology using only CMOS devices at a 1.8 V voltage supply and with a core area of 0.024 mm2. The measurement results show that the SFDR is 32.4 dB with a 4 GHz sine wave input at a 20 GSps sampling rate, and the third harmonic distortion is -48 dBc. The effective resolution bandwidth of the THA is 12 GHz and the figure of merit is only 0.028 mW/GHz.

  5. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  6. Low noise multiwasher superconducting interferometer

    SciTech Connect

    Carelli, P.; Castellano, M.G.; Torrioli, G.; Leoni, R.

    1998-01-01

    The dc-superconducting quantum interference device (SQUID) is a low-noise converter from magnetic flux to voltage which can have, in principle, an energy sensitivity near the quantum limit of {h_bar}/2. A critical parameter for the ideal performance is the device inductance, which must be kept as small as possible. Minimizing the SQUID inductance, however, is a major concern for a practical device; this requirement implies a small SQUID ring and hence magnetic coupling with an external signal is more difficult to achieve. Here we present an original scheme (called multiwasher) to circumvent this problem, and its implementation in an all-refractory thin-film device. Our scheme not only provides good magnetic coupling with a large input coil (0.5 {mu}H) and very low SQUID inductance, but also shielding from outside uniform fields, such as those generated by ambient disturbances. The measured coupled spectral energy sensitivity in the white region at about 1 kHz is 28{h_bar} at 4.2 K and 5.5{h_bar} in a pumped helium bath at 0.9 K. The flux noise spectral density at 0.1 Hz and 0.9 K is {Phi}{sub n}=1{times}10{sup {minus}6}{Phi}{sub 0}/{radical} (Hz) . {copyright} {ital 1998 American Institute of Physics.}

  7. Low-Power SOI CMOS Transceiver

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Technical Monitor); Cheruiyot, K.; Cothern, J.; Huang, D.; Singh, S.; Zencir, E.; Dogan, N.

    2003-01-01

    The work aims at developing a low-power Silicon on Insulator Complementary Metal Oxide Semiconductor (SOI CMOS) Transceiver for deep-space communications. RF Receiver must accomplish the following tasks: (a) Select the desired radio channel and reject other radio signals, (b) Amplify the desired radio signal and translate them back to baseband, and (c) Detect and decode the information with Low BER. In order to minimize cost and achieve high level of integration, receiver architecture should use least number of external filters and passive components. It should also consume least amount of power to minimize battery cost, size, and weight. One of the most stringent requirements for deep-space communication is the low-power operation. Our study identified that two candidate architectures listed in the following meet these requirements: (1) Low-IF receiver, (2) Sub-sampling receiver. The low-IF receiver uses minimum number of external components. Compared to Zero-IF (Direct conversion) architecture, it has less severe offset and flicker noise problems. The Sub-sampling receiver amplifies the RF signal and samples it using track-and-hold Subsampling mixer. These architectures provide low-power solution for the short- range communications missions on Mars. Accomplishments to date include: (1) System-level design and simulation of a Double-Differential PSK receiver, (2) Implementation of Honeywell SOI CMOS process design kit (PDK) in Cadence design tools, (3) Design of test circuits to investigate relationships between layout techniques, geometry, and low-frequency noise in SOI CMOS, (4) Model development and verification of on-chip spiral inductors in SOI CMOS process, (5) Design/implementation of low-power low-noise amplifier (LNA) and mixer for low-IF receiver, and (6) Design/implementation of high-gain LNA for sub-sampling receiver. Our initial results show that substantial improvement in power consumption is achieved using SOI CMOS as compared to standard CMOS

  8. 25 Gb/s photoreceiver based on vertical-illumination type Ge-on-Si photodetector and CMOS amplifier circuit for optical interconnects

    NASA Astrophysics Data System (ADS)

    Joo, Jiho; Jang, Ki-Seok; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Kim, Gyungock; Jeong, Gyu-Seob; Chi, Hankyu; Jeong, Deog-Kyoon

    2015-02-01

    We report the silicon photonic receivers based on the hybrid-integrated vertical-illumination-type germanium-on-silicon photodetector and CMOS amplifier circuit, for optical interconnects. The high-speed vertical-illumination-type Ge-on-Si photodetector is defined on a bulk-silicon wafer, and the CMOS amplifier chip was designed with 65nm ground rule. The PCB-packaged 4 channel 25 Gb/s photoreceiver exhibits a resposivity of 0.68A/W. The sensitivity measured at a BER of 10-12 is -8.3 dBm and -2.4dBm for 25Gb/s and 32Gb/s, respectively. The energy efficiency is 2.19 pJ/bit at 25 Gb/s. The single-channel butterfly-packaged photoreceiver exhibits the sensitivity of -11dBm for 25 Gb/s at a BER of 10-12. The energy efficiency is 2.67 pJ/bit at 25 Gb/s.

  9. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    PubMed

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process. PMID:27337723

  10. The Alternative Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Jeracki, Robert J.; Moore, Royce D.; Parrott, Tony L.

    2000-01-01

    A 106 bladed fan with a design takeoff tip speed of 1100 ft/sec was hypothesized as reducing perceived noise because of the shift of the blade passing harmonics to frequencies beyond the perceived noise rating range. A 22 in. model of this Alternative Low Noise Fan, ALNF, was tested in the NASA Glenn 9x 15 Wind Tunnel. 'Me fan was tested with a 7 vane long chord stator assembly and a 70 vane conventional stator assembly in both hard and acoustically treated configurations. In addition a partially treated 7 vane configuration was tested wherein the acoustic material between the 7 long chord stators was made inactive. The noise data from the 106 bladed fan with 7 long chord stators in a hard configuration was shown to be around 4 EPNdB quieter than a low tip speed Allison fan at takeoff and around 5 EPNdB quieter at approach. Although the tone noise behaved as hypothesized, the majority of this noise reduction was from reduced broadband noise related to the large number of rotor blades. This 106 bladed ALNF is a research fan designed to push the technology limits and as such is probably not a practical device with present materials technology. However, a low tip speed fan with around 50 blades would be a practical device and calculations indicate that it could be 2 to 3 EPNdB quieter at takeoff and 3 to 4 EPNdB quieter at approach than the Allison fan. 7 vane data compared with 70 vane data indicated that the tone noise was controlled by rotor wake-stator interaction but that the broadband noise is probably controlled by the interaction of the rotor with incoming flows. A possible multiple pure tone noise reduction technique for a fan/acoustic treatment system was identified. The data from the fully treated configuration showed significant noise reductions over a large frequency range thereby providing a real tribute to this bulk absorber treatment design. The tone noise data with the partially treated 7 vane configuration indicated that acoustic material in the

  11. Note: Broadband low-noise photodetector for Pound-Drever-Hall laser stabilization

    NASA Astrophysics Data System (ADS)

    Potnis, Shreyas; Vutha, Amar C.

    2016-07-01

    The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain >105 V/A, and input current noise <4 pA/ √{ Hz } , allowing us to obtain shot-noise-limited performance with low optical power.

  12. A 3.125-Gb/s inductorless transimpedance amplifier for optical communication in 0.35 μm CMOS

    NASA Astrophysics Data System (ADS)

    Hui, Xu; Jun, Feng; Quan, Liu; Wei, Li

    2011-10-01

    A 3.125-Gb/s transimpedance amplifier (TIA) for an optical communication system is realized in 0.35 μm CMOS technology. The proposed TIA employs a regulated cascode configuration as the input stage, and adopts DC-cancellation techniques to stabilize the DC operating point. In addition, noise optimization is processed. The on-wafer measurement results show the transimpedance gain of 54.2 dBΩ and -3 dB bandwidth of 2.31 GHz. The measured average input referred noise current spectral density is about . The measured eye diagram is clear and symmetrical for 2.5-Gb/s and 3.125-Gb/s PRBS. Under a single 3.3-V supply voltage, the TIA consumes only 58.08 mW, including 20 mW from the output buffer. The whole die area is 465 × 435 μm2.

  13. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  14. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  15. MEDUSA-32: A low noise, low power silicon strip detector front-end electronics, for space applications

    NASA Astrophysics Data System (ADS)

    Cicuttin, Andres; Colavita, Alberto; Cerdeira, Alberto; Fratnik, Fabio; Vacchi, Andrea

    1997-02-01

    In this report we describe a mixed analog-digital integrated circuit (IC) designed as the front-end electronics for silicon strip-detectors for space applications. In space power consumption, compactness and robustness become critical constraints for a pre-amplifier design. The IC is a prototype with 32 complete channels, and it is intended for a large area particle tracker of a new generation of gamma ray telescopes. Each channel contains a charge sensitive amplifier, a pulse shaper, a discriminator and two digital buffers. The reference trip point of the discriminator is adjustable. This chip also has a custom PMOSFET transistor per channel, included in order to provide the high dynamic resistance needed to reverse-bias the strip diode. The digital part of the chip is used to store and serially shift out the state of the channels. There is also a storage buffer that allows the disabling of non-functioning channels if it is required by the data acquisition system. An input capacitance of 30 pF introduced at the input of the front-end produces less than 1000 electrons of RMS equivalent noise charge (ENC), for a total power dissipation of only 60 μW per channel. The chip was made using Orbit's 1.2 μm double poly, double metal n-well low noise CMOS process. The dimensions of the IC are 2400 μm × 8840 μm.

  16. Development of components and subsystems for low noise receivers at micro- and millimeter waves

    NASA Astrophysics Data System (ADS)

    Peltonen, Juhani K.

    1990-09-01

    The development of low noise receivers at micro- and millimeter wave frequencies mainly intended for radio astronomical studies and remote sensing applications are discussed. The work is divided into three parts: design and construction of cryogenic, low noise MESFET (Metal Semiconductor Field Effect Transistor) and HEMT (High Electron Mobility Transistor) amplifiers, studies on semiconductor local oscillators and phase locking of mm wave Gunn oscillators. The basic theory of low noise transistor amplifiers employing scattering and noise parameters of an active device is reviewed. Stability problems of amplifiers and noise measurement techniques especially applicable to cryogenic systems are discussed. Several low noise amplifiers were constructed for the frequency range of 1 to 22 GHz. As an example, a 4 GHz cryogenic MESFET IF amplifier with 20 K noise temperature was developed. A two stage coaxial HEMT amplifier with T(sub A) = 300 K at room temperature was constructed. Various designs of semiconductor local oscillators needed for mm wave receivers are reviewed. Experimental verification of the theoretical model for the waveguide mounting structure of Gunn diodes is given at frequencies of 35 to 53 GHz. Fundamental frequency local oscillators with an output power of approximately 50 mW and mechanical tuning range of 5 to 10 GHz (center frequency of 45 GHz) were constructed. Description of the phase locking scheme (exploiting bias tuning of Gunn oscillators) of the 72 to 115 GHz receiver is given. The additional factors needed in application of the basic phaselock theory to mm wave oscillators are discussed.

  17. Low-noise video amplifiers for imaging CCD's

    NASA Technical Reports Server (NTRS)

    Scinicariello, F.

    1976-01-01

    Various techniques were developed which enable the CCD (charge coupled device) imaging array user to obtain optimum performance from the device. A CCD video channel was described, and detector-preamplifier interface requirements were examined. A noise model for the system was discussed at length and laboratory data presented and compared to predicted results.

  18. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  19. Silicon on Insulator MESFETs for RF Amplifiers

    PubMed Central

    Balijepalli, Asha; Ervin, Joseph; Lepkowski, William; Thornton, Trevor J.

    2010-01-01

    CMOS compatible, high voltage SOI MESFETs have been fabricated using a standard 3.3V CMOS process without any changes to the process flow. A 0.6μm gate length device operates with a cut-off frequency of 7.3GHz and a maximum oscillation frequency of 21GHz. There is no degradation in device performance up to its breakdown voltage, which greatly exceeds that of CMOS devices on the same process. Other figures of merit of relevance to RF front-end design are presented, including the maximum stable gain and noise figure. An accurate representation of the device in SPICE has been developed using the commercially available TOM3 model. Using the SOI MESFET model, a source degenerated low noise RF amplifier targeting operation near 1GHz has been designed. The amplifier was fabricated on a PCB board and operates at 940MHz with a minimum NF of 3.8dB and RF gain of 9.9dB while only consuming 5mW of DC power. PMID:20657816

  20. Silicon on Insulator MESFETs for RF Amplifiers.

    PubMed

    Wilk, Seth J; Balijepalli, Asha; Ervin, Joseph; Lepkowski, William; Thornton, Trevor J

    2010-03-01

    CMOS compatible, high voltage SOI MESFETs have been fabricated using a standard 3.3V CMOS process without any changes to the process flow. A 0.6μm gate length device operates with a cut-off frequency of 7.3GHz and a maximum oscillation frequency of 21GHz. There is no degradation in device performance up to its breakdown voltage, which greatly exceeds that of CMOS devices on the same process. Other figures of merit of relevance to RF front-end design are presented, including the maximum stable gain and noise figure. An accurate representation of the device in SPICE has been developed using the commercially available TOM3 model. Using the SOI MESFET model, a source degenerated low noise RF amplifier targeting operation near 1GHz has been designed. The amplifier was fabricated on a PCB board and operates at 940MHz with a minimum NF of 3.8dB and RF gain of 9.9dB while only consuming 5mW of DC power. PMID:20657816

  1. Low-Noise Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Coy, John J.; Henry, Zachary; Thomas, John; Litvin, Faydor L.

    1994-01-01

    Modified spiral bevel gears that generate relatively little noise and vibration designed and fabricated for use in U.S. Army OH-58D helicopter. Noise reduced by 12 to 19 dB. Similar low-noise, low-vibration spiral bevel gears used in other helicopters, with consequent benefits in comfort and health of pilots and passengers, enhancement of pilots' performance and safety through reduction of audible distraction, and reduction in cost and weight of helicopters through reduction in amount of sound-proofing material. Low-noise, low-vibration spiral bevel gears also used in drive axles of cars and trucks for smoother, quieter rides.

  2. Nonlinearly stacked low noise turbofan stator

    NASA Technical Reports Server (NTRS)

    Schuster, William B. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  3. On-chip power-combining techniques for watt-level linear power amplifiers in 0.18 μm CMOS

    NASA Astrophysics Data System (ADS)

    Zhixiong, Ren; Kefeng, Zhang; Lanqi, Liu; Cong, Li; Xiaofei, Chen; Dongsheng, Liu; Zhenglin, Liu; Xuecheng, Zou

    2015-09-01

    Three linear CMOS power amplifiers (PAs) with high output power (more than watt-level output power) for high data-rate mobile applications are introduced. To realize watt-level output power, there are two 2.4 GHz PAs using an on-chip parallel combining transformer (PCT) and one 1.95 GHz PA using an on-chip series combining transformer (SCT) to combine output signals of multiple power stages. Furthermore, some linearization techniques including adaptive bias, diode linearizer, multi-gated transistors (MGTR) and the second harmonic control are applied in these PAs. Using the proposed power combiner, these three PAs are designed and fabricated in TSMC 0.18 μm RFCMOS process. According to the measurement results, the proposed two linear 2.4 GHz PAs achieve a gain of 33.2 dB and 34.3 dB, a maximum output power of 30.7 dBm and 29.4 dBm, with 29% and 31.3% of peak PAE, respectively. According to the simulation results, the presented linear 1.95 GHz PA achieves a gain of 37.5 dB, a maximum output power of 34.3 dBm with 36.3% of peak PAE. Project supported by the National Natural Science Foundation of China (No. 61076030).

  4. Nano watt power rail-to-rail CMOS amplifier with adaptive biasing circuits for ultralow-power analog LSIs

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshihiro; Hirose, Tetsuya; Tsubaki, Keishi; Kuroki, Nobutaka; Numa, Masahiro

    2015-04-01

    In this paper, we present a rail-to-rail folded-cascode amplifier (AMP) with adaptive biasing circuits (ABCs). The circuit uses a nano ampere current reference circuit to achieve ultralow-power and ABCs to achieve high-speed operation. The ABCs are based on conventional circuits and modified to be suitable for rail-to-rail operation. The measurement results demonstrated that the AMP with the proposed ABCs can operate with an ultralow-power of 384 nA when the input voltage was 0.9 V and achieve high speeds of 0.162 V/µs at the rise time and 0.233 V/µs at the fall time when the input pulse frequency and the amplitude were 10 kHz and 1.5 Vpp, respectively.

  5. A low noise high readout speed 512×128 ROIC for shortwave InGaAs FPA

    NASA Astrophysics Data System (ADS)

    Huang, SongLei; Huang, Zhangcheng; Chen, Yu; Tang, Hengjing; Fang, Jiaxiong

    2015-03-01

    A low noise high readout speed 512×128 readout Integrated circuit (ROIC) based on capacitance trans-impedance amplifier (CTIA) is designed in this paper. The ROIC is flip-chip bonded with Indium bumps to InGaAs detectors which cutoff wavelength is 1.7μm, as a hybrid structure (InGaAs FPA). The ROIC with 30μm pixel pitch and 50fF integrated capacitance, is fabricated in 0.5μm DPTM CMOS process. The results show that output noise is about 3.0E-4V which equivalent readout noise is 95e-, output voltage swing is better than 2.5V; the dynamic range of InGaAs FPA reaches 69.7dB@2ms, and the power dissipation is about 175mw. The peak detectivity of InGaAs FPA reaches 2E12cmHz1/2w-1 at 300K without TEC cooling.

  6. A low noise low power 512×256 ROIC for extended wavelength InGaAs FPA

    NASA Astrophysics Data System (ADS)

    Huang, Songlei; Huang, Zhangcheng; Chen, Yu; Li, Tao; Fang, Jiaxiong

    2015-05-01

    A low noise low power 512×256 readout integrated circuit (ROIC) based on Capacitance Trans-impedance Amplifier (CTIA) was designed in this paper. The ROIC with 30μm pixel-pitch and 70 fF integrated capacitance as normal structure and test structure capacitance from 5 to 60 fF, was fabricated in 0.5μm DPTM CMOS process. The results showed that output voltage was larger than 2.0V and power consumption was about 150mW, output ROIC noise was about 3.6E-4V which equivalent noise was 160e-, and the test structure noise was from 20e- to 140 e-. Compared the readout noises in Integration Then Readout (ITR) mode and Integration While Readout (IWR) mode, it indicated that in IWR mode, readout noise comes mainly from both integration capacitance and sampling capacitance, while in ITR mode, readout noise comes mostly from sampling capacitance. Finally the ROIC was flip-chip bonded with Indium bumps to extended wavelength InGaAs detectors with cutoff wavelength 2.5μm at 200K. The peak detectivity exceeded 5E11cmHz1/2/w with 70nA/cm2 dark current density at 200K.

  7. Low-noise macroscopic twin beams

    NASA Astrophysics Data System (ADS)

    Iskhakov, Timur Sh.; Usenko, Vladyslav C.; Filip, Radim; Chekhova, Maria V.; Leuchs, Gerd

    2016-04-01

    Applying a multiphoton-subtraction technique to the two-color macroscopic squeezed vacuum state of light generated via high-gain parametric down-conversion we conditionally prepare a different state of light: bright multimode low-noise twin beams. A lower noise in the sum of the photon numbers opens a possibility to encode information into this variable while keeping the nonclassical character of the state. The obtained results demonstrate up to eightfold suppression of noise in each beam while preserving and even moderately improving the nonclassical photon-number correlations between the beams. The prepared low-noise macroscopic state, containing up to 2000 photons per mode, is not among the Gaussian states achievable through nonlinear optical processes. Apart from that, we suggest a method for measuring quantum efficiency, which is based on the Fano factor measurement. The proposed technique substantially improves the usefulness of twin beams for quantum communication and metrology.

  8. A low noise 500 MHz frequency source

    NASA Astrophysics Data System (ADS)

    Vulcan, A.; Bloch, M.; Tanski, W.

    A low-noise signal source providing multiple 500 MHz and 400 MHz outputs is presented whose noise characteristics approach the thermal limit at frequencies spaced greater than 1 MHz from the carrier. The unit uses bulk and surface acoustic wave resonators to insure low phase noise and spurious outputs and is totally redundant for failsafe operation. The packaging concept minimizes subassembly interconnections and provides both physical and electrical independence of two redundant generators; package shielding insures minimum conducted and radiated susceptibility.

  9. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  10. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  11. The low noise limit in gene expression

    DOE PAGESBeta

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  12. Ultra-low-noise preamplifier for condenser microphones

    NASA Astrophysics Data System (ADS)

    Starecki, Tomasz

    2010-12-01

    The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments.

  13. Ultra-low-noise preamplifier for condenser microphones.

    PubMed

    Starecki, Tomasz

    2010-12-01

    The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments. PMID:21198039

  14. A battery-based, low-noise voltage source

    NASA Astrophysics Data System (ADS)

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/√Hz is achieved.

  15. A battery-based, low-noise voltage source.

    PubMed

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7 x 10(-7) over 6.5 h and a noise level equal or smaller than 30 nV/square root(Hz) is achieved. PMID:20590260

  16. Note: Broadband low-noise photodetector for Pound-Drever-Hall laser stabilization.

    PubMed

    Potnis, Shreyas; Vutha, Amar C

    2016-07-01

    The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain >10(5) V/A, and input current noise <4 pA/Hz, allowing us to obtain shot-noise-limited performance with low optical power. PMID:27475611

  17. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  18. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  19. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  20. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  1. A LOW NOISE RF SOURCE FOR RHIC.

    SciTech Connect

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  2. Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu

    2016-06-01

    In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e‑ at zero farad plus 8.2 e‑ per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).

  3. Evaluation of charge-integrating amplifier with silicon MOSFETs for cryogenic readout

    NASA Astrophysics Data System (ADS)

    Noda, Manabu; Shibai, Hiroshi; Watabe, Toyoki; Hirao, Takanori; Yoda, Hiroyuki; Nagata, Hirohisa; Nakagawa, Takao; Kawada, Mitsunobu

    1998-08-01

    Low-noise and low-power cryogenic readout electronics are developed for a focal plane instrument of the IR Imaging Surveyor. We measured the static characteristics and the noise spectra of several types of silicon MOSFETs at the cryogenic temperature where silicon JFETs do not work well due to the carrier freeze-out. The 'kink' behavior of n- channel MOSFETs was observed below the carrier freeze-out temperature, but it was not obvious for the p-channel MOSFET. It was demonstrated the p-channel MOSFETs can be used for the cryogenic readout electronics of the IRIS's far-IR array with an acceptable performance. The amplifier integrated with these MOSFETs showed low-noise at 2K under a low power consumption of 1 (mu) W per MOSFET. We now design and evaluate several circuits that are fabricated by the CMOS process for cryogenic readout.

  4. Amplifier arrays for CMB polarization

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Lawrence, Charles R.; Seiffert, Michael D.; Wells, Mary M.; Kangaslahti, Pekka; Dawson, Douglas

    2003-01-01

    Cryogenic low noise amplifier technology has been successfully used in the study of the cosmic microwave background (CMB). MMIC (Monolithic Millimeter wave Integrated Circuit) technology makes the mass production of coherent detection receivers feasible.

  5. A wideband RF amplifier for satellite tuners

    NASA Astrophysics Data System (ADS)

    Xueqing, Hu; Zheng, Gong; Yin, Shi; Foster, Dai Fa

    2011-11-01

    This paper presents the design and measured performance of a wideband amplifier for a direct conversion satellite tuner. It is composed of a wideband low noise amplifier (LNA) and a two-stage RF variable gain amplifier (VGA) with linear gain in dB and temperature compensation schemes. To meet the system linearity requirement, an improved distortion compensation technique and a bypass mode are applied on the LNA to deal with the large input signal. Wideband matching is achieved by resistive feedback and an off-chip LC-ladder matching network. A large gain control range (over 80 dB) is achieved by the VGA with process voltage and temperature compensation and dB linearization. In total, the amplifier consumes up to 26 mA current from a 3.3 V power supply. It is fabricated in a 0.35-μm SiGe BiCMOS technology and occupies a silicon area of 0.25 mm2.

  6. A 90dB 1.32mW 1.2V 0.13mm2 Two-Stage Variable Gain Amplifier in 0.18μm CMOS

    NASA Astrophysics Data System (ADS)

    Duong, Quoc-Hoang; Lee, Jeong-Seon; Min, Sang-Hyun; Kim, Joong-Jin; Lee, Sang-Gug

    An all CMOS variable gain amplifier (VGA) which features wide dB-linear gain range per stage (45dB), low power consumption (1.32mW), small chip size (0.13mm2), and low supply voltage (1.2V) is described. The dB-linear range is extended by reducing the supply voltage of the conventional V-to-I converter. The two-stage VGA implemented in 0.18μm CMOS offers 90dB of gain variation, 3dB bandwidth of greater than 21MHz, and max/min input IP3 and P1 dB, respectively, of -5/-42 and -12/-50 dBm.

  7. European low-noise MMIC technologies for cryogenic millimetre wave radio astronomical applications

    NASA Astrophysics Data System (ADS)

    Cremonini, Andrea; Mariotti, Sergio; Valenziano, Luca

    2012-09-01

    The Low Noise technology has a paramount relevance on radiotelescopes and radiometers performances. Its influence on sensitivity and temporal stability has a deep impact on obtainable scientific results. As well known, front end active part of scientific instruments are cryocooled in order to drastically reduce the intrinsic thermal noise generated by its electronic parts and consequently increase the sensitivity. In this paper we will describe the obtained results by an Italian Space Agency funded activity. The aim is to validate European MMIC Low Noise technologies and designs for cryogenic environments in the range of millimetre wave. As active device, HEMT (High Electron Mobility Transistor) are considered the best device for high frequency and low noise cryo applications. But not all the semiconductor foundry process are suitable for applications in such environment. Two European Foundries has been selected and two different HEMT based Low Noise Amplifiers have been designed and produced. The main goal of this activity is identify an European technology basement for space and ground based low noise cryogenic applications. Designs, layout, architectures, foundry processes and results will be compared.

  8. Design of 800×2 low-noise readout circuit for near-infrared InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Huang, Songlei; Fang, Jiaxiong

    2012-12-01

    InGaAs near-infrared (NIR) focal plane arrays (FPA) have important applications in space remote sensing. A design of 800×2 low-noise readout integrated circuit (T800 ROIC) with a pitch of 25 μm is presented for a dual-band monolithic InGaAs FPA. Mathematical analysis and transient noise simulations have been presented for predicting and lowering the noise in T800 ROIC. Thermal noise from input-stage amplifier which plays a dominant role in ROIC is reduced by increasing load capacitor under tradeoff and a low input offset voltage in the range of +/-5 mV is obtained by optimizing transistors in the input-stage amplifier. T800 ROIC has been fabricated with 0.5-μm 5V mixed signal CMOS process and interfaced with InGaAs detector arrays. Test results show that ROIC noise is around 90 μV and input offset voltage shows a good correspondence with simulation results. 800×2 InGaAs FPA has a peak detectivity (D*) of about 1.1×1012 cmHz1/2/ W, with dynamic range of above 80dB.

  9. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  10. A low-noise 64-channel front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Liu, H.; Hu, Y.

    2016-04-01

    In this paper, we report on the recent development of a 64-channel low-noise front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems. The readout channel is comprised of a charge sensitive amplifier, a leakage current compensation circuit, a CR-RC shaper, two S-K filters, an inverse proportional amplifier, a peak-detect-and-hold circuit, a discriminator and trigger logic, a time sequence control circuit and a driving buffer. The readout ASIC is implemented in TSMC 0.35 μm mixed-signal CMOS technology, the die size of the prototype chip is 2.7 mm×8.0 mm. The overall gain of the readout channel is 200 mV/fC, the power consumption is less than 8 mW/channel, the linearity error is less than 1%, the inconsistency among the channels is less than 2.86%, and the equivalent noise charge of a typical channel is 66 e- at zero farad plus 14 e- per picofarad. By connecting this readout ASIC to an 8×8 pixel CdZnTe detector, we obtained an energy spectrum, the energy resolution of which is 4.5% at the 59.5 keV line of 241Am source.

  11. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  12. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  13. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process

    NASA Astrophysics Data System (ADS)

    Uddin, A.; Yemenicioglu, S.; Chen, C.-H.; Corigliano, E.; Milaninia, K.; Theogarajan, L.

    2013-04-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  14. Low-noise fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Heidelberg, Laurence J. (Inventor); Envia, Edmane (Inventor)

    2008-01-01

    Low-noise fan exit guide vanes are disclosed. According to the present invention a fan exit guide vane has an outer shell substantially shaped as an airfoil and defining an interior cavity. A porous portion of the outer shell allows communication between the fluctuations in the air passing over the guide vane and the interior cavity. At least one acoustically resonant chamber is located within the interior cavity. The resonant chamber is in communication with the porous portion of the outer perimeter. The resonant chamber is configured to reduce the noise generated at a predetermined frequency. In various preferred embodiments, there is a plurality of acoustically resonant chambers located within the interior cavity. The resonant chambers can be separated by one or more partitions within the interior cavity. In these embodiments, the resonant chambers can be configured to reduce the noise generated over a range of predetermined frequencies.

  15. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  16. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  17. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    NASA Astrophysics Data System (ADS)

    Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye

    2015-10-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.

  18. Developing Low-Noise GaAs JFETs For Cryogenic Operation

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.

    1995-01-01

    Report discusses aspects of effort to develop low-noise, low-gate-leakage gallium arsenide-based junction field-effect transistors (JFETs) for operation at temperature of about 4 K as readout amplifiers and multiplexing devices for infrared-imaging devices. Transistors needed to replace silicon transistors, relatively noisy at 4 K. Report briefly discusses basic physical principles of JFETs and describes continuing process of optimization of designs of GaAs JFETs for cryogenic operation.

  19. Development of an ultra low noise, miniature signal conditioning device for vestibular evoked response recordings

    PubMed Central

    2014-01-01

    Background Inner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. Method A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. Results In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier. Conclusion This paper presents the design and evaluation of an ultra-low noise and miniaturized bio

  20. A gimbaled low noise momentum wheel

    NASA Technical Reports Server (NTRS)

    Bichler, U.; Eckardt, T.

    1993-01-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  1. A low-noise beta-radiometer

    SciTech Connect

    Antonenko, G.I.; Savina, V.I.

    1995-12-01

    The two-channel detector for a low-noise (down to 0.06 sec{sup -1}) beta-radiometer for measuring the mass concentration of {sup 90}Sr in the environment after the chemical extraction of strontium by the oxalate-nitrate method was certified at the D.I. Mendeleev Institute of Metrology (certificate No. 137/93). A detector unit using two end-window self-quenching counters with thin input windows (8 {mu}m thick and 60 mm in diameter) operating as a Geiger-Mueller counter and filled with a mixture of 90% helium (atomic gas) and 10% ethanol (organic molecules) can measure the beta-activity of two substrates concurrently. It is often used to detect the beta-radiation of {sup 90}Sr. This isotope produces particles with energies ranging from 180 to 1000 keV, and the detection efficiency is 50% at a level of 0.1 Bq after measuring for 20 min with an uncertainty of 25%.

  2. A gimbaled low noise momentum wheel

    NASA Astrophysics Data System (ADS)

    Bichler, U.; Eckardt, T.

    1993-05-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  3. Low Noise Exhaust Nozzle Technology Development

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Balan, C.; Mengle, V.; Brausch, J. F.; Shin, H.; Askew, J. W.

    2005-01-01

    NASA and the U.S. aerospace industry have been assessing the economic viability and environmental acceptability of a second-generation supersonic civil transport, or High Speed Civil Transport (HSCT). Development of a propulsion system that satisfies strict airport noise regulations and provides high levels of cruise and transonic performance with adequate takeoff performance, at an acceptable weight, is critical to the success of any HSCT program. The principal objectives were to: 1. Develop a preliminary design of an innovative 2-D exhaust nozzle with the goal of meeting FAR36 Stage III noise levels and providing high levels of cruise performance with a high specific thrust for Mach 2.4 HSCT with a range of 5000 nmi and a payload of 51,900 lbm, 2. Employ advanced acoustic and aerodynamic codes during preliminary design, 3. Develop a comprehensive acoustic and aerodynamic database through scale-model testing of low-noise, high-performance, 2-D nozzle configurations, based on the preliminary design, and 4. Verify acoustic and aerodynamic predictions by means of scale-model testing. The results were: 1. The preliminary design of a 2-D, convergent/divergent suppressor ejector nozzle for a variable-cycle engine powered, Mach 2.4 HSCT was evolved, 2. Noise goals were predicted to be achievable for three takeoff scenarios, and 3. Impact of noise suppression, nozzle aerodynamic performance, and nozzle weight on HSCT takeoff gross weight were assessed.

  4. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  5. A Low-Noise, Wideband Preamplifier for a Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Mathur, Raman; Knepper, Ronald W.; O'Connor, Peter B.

    2009-01-01

    FTMS performance parameters such as limits of detection, dynamic range, sensitivity, and even mass accuracy and resolution can be greatly improved by enhancing its detection circuit. An extended investigation of significant design considerations for optimal signal-to-noise ratio in an FTMS detection circuit are presented. A low noise amplifier for an FTMS is developed based on the discussed design rules. The amplifier has a gain of ≈ 3500 and a bandwidth of 10 kHz - 1 MHz corresponding to m/z range of 100 Da to 10 kDa (at 7 Tesla). The performance of the amplifier was tested on a MALDI-FTMS, and has demonstrated a 25-fold reduction in noise in a mass spectrum of C60 compared to that of a commercial amplifier. PMID:18029195

  6. Ultra-Low Noise HEMT Device Models: Application of On-Wafer Cryogenic Noise Analysis and Improved Parameter Extraction Techniques

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Hamai, M.; Nishimoto, M.; Laskar, J.; Szydlik, P.; Lai, R.

    1995-01-01

    Significant advances in the development of HEMT technology have resulted in high performance cryogenic low noise amplifiers whose noise temperatures are within an order of magnitude of the quantum noise limit. Key to the identification of optimum HEMT structures at cryogenic temperatures is the development of on-wafer noise and device parameter extraction techniques. Techniques and results are described.

  7. Low Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  8. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  9. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  10. Low-noise hybrid superconductor/semiconductor 7.4 GHz receiver downconverter for NASA space applications

    SciTech Connect

    Javadi, H.H.S.; Barner, J.B.; Bautista, J.J.

    1994-12-31

    A low-noise microwave receiver downconverter utilizing thin-film high-critical-temperature superconducting (HTS) passive circuitry and semiconductor active devices has been developed for use in space. It consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. The downconverter converts a 200 MHz wide band centered around 7.35 GHz to a band centered around 1.0 GHz. When cooled to 77 K, the downconverter plus cables inside a cryogenic refrigerator produced a noise temperature measured at the refrigerator port of approximately 50 K with conversion gain of 18 dB.

  11. Large area CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Guerrini, N.; Sedgwick, I.

    2011-01-01

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  12. The Speedster-EXD - A New Event-Triggered Hybrid CMOS X-ray Detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher; Falcone, Abe; Prieskorn, Zach; Burrows, David

    2015-04-01

    We present the characterization of a new event driven x-ray hybrid CMOS detector developed by Penn State University in collaboration with Teledyne Imaging Sensors. Hybrid CMOS detectors currently have many advantages over CCDs including lower susceptibility to radiation damage, lower power consumption, and faster read-out time to avoid pile-up. The Speedster-EXD hybrid CMOS detector has many new features that improve upon the previous generation of detectors including two new in-pixel features that reduce noise from known noise sources: (1) a low-noise, high-gain CTIA amplifier to eliminate interpixel capacitance crosstalk and (2) in-pixel CDS subtraction to reduce kTC noise. The most exciting new feature of the Speedster-EXD is an in-pixel comparator that enables read out of only the pixels which contain signal from an x-ray event. The comparator threshold can be set by the user so that only pixels with signal above the set threshold are read out. This comparator feature can increase effective frame rate by orders of magnitude. We present the read noise, dark current, interpixel capacitance, energy resolution, and gain variation measurements of two Speedster-EXD detectors.

  13. Low voltage surface transverse wave oscillators for the next generation CMOS technology.

    PubMed

    Avramov, Ivan D

    2005-08-01

    The design and performance of voltage controlled surface transverse wave oscillators (VCSTWO) in the lower gigahertz frequency range, operating on supply and tuning voltages in the 1.2 to 3.3 V range, and suitable for direct interfacing with the next generation CMOS circuits are presented. By applying the "boost" principle, as used in direct current (DC)-DC converters, to the design of the sustaining amplifier, the VCSTWO outputs are switched between 0 V and a positive peak value, exceeding the supply voltage Us, to provide safe CMOS-circuit switching while keeping the radio frequency (RF)/DC efficiency to a maximum for low DC power consumption. The investigated 1.0 and 2.5 GHz VCSTWO are varactor tuned feedback-loop oscillators stabilized with two-port surface transverse wave (STW) resonators. Each VCSTWO has a DC-coupled, high-impedance switched output to drive the CMOS circuit directly, and an additional sinusoidal 50 ohmz high-power reference output available for other low-noise system applications. Phase noise levels in the -103 to -115 dBc/Hz range at 1 kHz carrier offset are achieved with 1.0 GHz VCSTWO at a RF/DC efficiency in the 21 to 29% range. The 2.5 GHz prototypes demonstrate phase noise levels in the -97 to -102 dBc/Hz range at 1 kHz carrier offset, and efficiencies range between 8 and 15%. PMID:16245594

  14. The Speedster-EXD - A New Event-Triggered Hybrid CMOS X-ray Detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher; Falcone, Abraham; Prieskorn, Zachary; Burrows, David N.

    2014-08-01

    We present the characterization of a new event driven x-ray hybrid CMOS detector developed by Teledyne imaging Sensors in collaboration with Penn State University. Hybrid CMOS detectors currently have many advantages over CCD’s including lower susceptibility to radiation damage, lower power consumption, and faster read-out time to avoid pile-up. The Speedster-EXD includes an in-pixel comparator that enables read out of only the pixels with signal from an x-ray event. The comparator threshold can be set by the user and only pixels with signal above this threshold are read out. This event-driven readout feature can increase effective frame rates by orders of magnitude, enabling future x-ray missions. The Speedster-EXD hybrid CMOS detector also has additional features that improve upon our previous generation of detectors including: (1) a low-noise, high-gain CTIA amplifier to eliminate interpixel capacitance crosstalk, (2) four different gain modes to optimize either full well capacity or energy resolution, and (3) in-pixel CDS subtraction to reduce read noise. We present the read noise, dark current, interpixel capacitance, energy resolution, and gain variation measurements of the Speedster-EXD detector.

  15. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  16. High-performance VGA-resolution digital color CMOS imager

    NASA Astrophysics Data System (ADS)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  17. A Low-Noise Delta-Sigma Phase Modulator for Polar Transmitters

    PubMed Central

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μm CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of −104 dBc/Hz and −120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively. PMID:24719578

  18. A low-noise delta-sigma phase modulator for polar transmitters.

    PubMed

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively. PMID:24719578

  19. Compact low-noise preamplifier for noise spectroscopy with biased photodiodes in cargo inspection systems

    NASA Astrophysics Data System (ADS)

    Benetti, Bob; Langeveld, Willem G. J.

    2013-09-01

    Noise Spectroscopy, a.k.a. Z-determination by Statistical Count-rate ANalysis (Z-SCAN), is a statistical technique to determine a quantity called the "noise figure" from digitized waveforms of pulses of transmitted x-rays in cargo inspection systems. Depending only on quantities related to the x-ray energies, it measures a characteristic of the transmitted x-ray spectrum, which depends on the atomic number, Z, of the material penetrated. The noise figure can thus be used for material separation. In an 80-detector prototype, scintillators are used with large-area photodiodes biased at 80V and digitized using 50-MSPS 12-bit ADC boards. We present an ultra-compact low-noise preamplifier design, with one high-gain and one low-gain channel per detector for improved dynamic range. To achieve adequate detection sensitivity and spatial resolution each dual-gain preamplifier channel must fit within a 12.7 mm wide circuit board footprint and maintain adequate noise immunity to conducted and radiated interference from adjacent channels. The novel design included iterative SPICE analysis of transient response, dynamic range, frequency response, and noise analysis to optimize the selection and configuration of amplifiers and filter response. We discuss low-noise active and passive components and low-noise techniques for circuit board layout that are essential to achieving the design goals, and how the completed circuit board performed in comparison to the predicted responses.

  20. Low noise frequency synthesizer with self-calibrated voltage controlled oscillator and accurate AFC algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Qin; Jinbo, Li; Jian, Kang; Xiaoyong, Li; Jianjun, Zhou

    2014-09-01

    A low noise phase locked loop (PLL) frequency synthesizer implemented in 65 nm CMOS technology is introduced. A VCO noise reduction method suited for short channel design is proposed to minimize PLL output phase noise. A self-calibrated voltage controlled oscillator is proposed in cooperation with the automatic frequency calibration circuit, whose accurate binary search algorithm helps reduce the VCO tuning curve coverage, which reduces the VCO noise contribution at PLL output phase noise. A low noise, charge pump is also introduced to extend the tuning voltage range of the proposed VCO, which further reduces its phase noise contribution. The frequency synthesizer generates 9.75-11.5 GHz high frequency wide band local oscillator (LO) carriers. Tested 11.5 GHz LO bears a phase noise of-104 dBc/Hz at 1 MHz frequency offset. The total power dissipation of the proposed frequency synthesizer is 48 mW. The area of the proposed frequency synthesizer is 0.3 mm2, including bias circuits and buffers.

  1. 1.2 V constant-gm rail-to-rail CMOS Op-Amp input stage with new overlapped transition regions technique for ECG amplifier.

    PubMed

    Lee, Boram; Higman, Ted

    2013-01-01

    The conventional technique of overlapped transition regions for producing a constant transconductance rail to rail Op-Amp input stage can only tolerate a limited amount of voltage shifting. This is limited by the minimum Vgs required for active mode operation of transistors. In this paper, we present a novel overlapped transition regions technique that overcomes the limitation of the conventional technique. This new overlapped transition regions technique has no voltage shifting limit. For both N-type and P-type conventional complementary differential input pairs, one source follower and one MOSFET are added to control the saturation point of current of input pairs. For 1.2 V single supply voltage, simulation results demonstrate ±3.71% of overall transconductance variation. Cadence SPECTRE simulator and TSMC 0.25-µm CMOS technology are used to layout and simulate this work. PMID:24110471

  2. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  3. Low-cost uncooled infrared detector arrays in standard CMOS

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Tanrikulu, M. Y.; Akin, Tayfun

    2003-09-01

    This paper reports the development of a low-cost 128 x 128 uncooled infrared focal plane array (FPA) based on suspended and thermally isolated CMOS p+-active/n-well diodes. The FPA is fabricated using a standard 0.35 μm CMOS process followed by simple post-CMOS bulk micromachining that does not require any critical lithography or complicated deposition steps; and therefore, the cost of the uncooled FPA is almost equal to the cost of the CMOS chip. The post-CMOS fabrication steps include an RIE etching to reach the bulk silicon and an anisotropic silicon etching to obtain thermally isolated pixels. During the RIE etching, CMOS metal layers are used as masking layers, and therefore, narrow openings such as 2 μm can be defined between the support arms. This approach allows achieving small pixel size of 40 μm x 40 μm with a fill factor of 44%. The FPA is scanned at 30 fps by monolithically integrated multi-channel parallel readout circuitry which is composed of low-noise differential transconductance amplifiers, switched capacitor (SC) integrators, sample-and-hold circuits, and various other circuit blocks for reducing the effects of variations in detector voltage and operating temperature. The fabricated detector has a temperature coefficient of -2 mV/K, a thermal conductance value of 1.8 x 10-7 W/K, and a thermal time constant value of 36 msec, providing a measured DC responsivity (R) of 4970 V/W under continuous bias. Measured detector noise is 0.69 μV in 8 kHz bandwidth at 30 fps scanning rate, resulting a measured detectivity (D*) of 9.7 x 108 cm√HzW. Contribution of the 1/f noise component is found to be negligible due to the single crystal nature of the silicon n-well and its low value at low bias levels. The noise of the readout circuit is measured as 0.76 μV, resulting in an expected NETD value of 1 K when scanned at 30 fps using f=1 optics. This NETD value can be decreased below 350 mK by decreasing the electrical bandwidth with the help of increased

  4. An energy-efficient micropower neural recording amplifier.

    PubMed

    Wattanapanitch, W; Fee, M; Sarpeshkar, R

    2007-06-01

    This paper describes an ultralow-power neural recording amplifier. The amplifier appears to be the lowest power and most energy-efficient neural recording amplifier reported to date. We describe low-noise design techniques that help the neural amplifier achieve input-referred noise that is near the theoretical limit of any amplifier using a differential pair as an input stage. Since neural amplifiers must include differential input pairs in practice to allow robust rejection of common-mode and power supply noise, our design appears to be near the optimum allowed by theory. The bandwidth of the amplifier can be adjusted for recording either neural spikes or local field potentials (LFPs). When configured for recording neural spikes, the amplifier yielded a midband gain of 40.8 dB and a -3-dB bandwidth from 45 Hz to 5.32 kHz; the amplifier's input-referred noise was measured to be 3.06 muVrms while consuming 7.56 muW of power from a 2.8-V supply corresponding to a noise efficiency factor (NEF) of 2.67 with the theoretical limit being 2.02. When configured for recording LFPs, the amplifier achieved a midband gain of 40.9 dB and a -3-dB bandwidth from 392 mHz to 295 Hz; the input-referred noise was 1.66 muVrms while consuming 2.08 muW from a 2.8-V supply corresponding to an NEF of 3.21. The amplifier was fabricated in AMI's 0.5-mum CMOS process and occupies 0.16 mm(2) of chip area. We obtained successful recordings of action potentials from the robust nucleus of the arcopallium (RA) of an anesthesized zebra finch brain with the amplifier. Our experimental measurements of the amplifier's performance including its noise were in good accord with theory and circuit simulations. PMID:23851668

  5. Low-noise preamplifier based on PMT and its signal processing

    NASA Astrophysics Data System (ADS)

    Ye, Li-hua; Wang, Hai-yang; Wang, Wen-xuan; Cui, Yi-ping; Hang, Jian-jun; Sha, Tao

    2013-09-01

    Through the establishment of the noise model for photomultiplier, estimate the signal-to-noise ratio of the photomultiplier tube, using the principle of photoelectric detection technology, combined with the needs of practical applications; select the appropriate photoelectric multiplier tube, from the two aspects of the dynamic design and static design to ensure the correct output signal of the photomultiplier tube. The low noise preamplifier will amplify the output signal of photomultiplier tube without noise as soon as possible. This article describes the design principles of the photomultiplier tube selection and application. From the op-amp selection, multistage amplifier circuit design, circuit noise estimation, PCB board layout line and shielding, proposed a practical circuit design of 10MHz band width; and matters needing attention and its signal processing method. The simulation results show that the signal amplifying circuit designed, this circuit design can be very well amplifying and processing the output signal of the photomultiplier tube. To verify the theory of articles derived from circuit simulation to the actual test. Simulation results show that the signal amplifying circuit design, this form of circuit design can be very good enlarged and processing the output signal of the photomultiplier tube. From the actual test, the test results show that the accuracy and practicality of the simulation results.

  6. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    NASA Astrophysics Data System (ADS)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of

  7. A programmable ultra-low noise X-band exciter.

    PubMed

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry. PMID:11477765

  8. On the design and test of a low noise propeller

    NASA Technical Reports Server (NTRS)

    Succi, G. P.

    1981-01-01

    An extensive review of noise and performance of general aviation propellers was performed. Research was done in three areas: The acoustic and aerodynamic theory of general aviation propellers, wind tunnel tests of three one-quarter scale models of general aviation propellers, and flight test of two low noise propellers. The design and testing of the second propeller is reviewed. The general aerodynamic considerations needed to design a new propeller are described. The design point analysis of low noise propellers is reviewed. The predicted and measured noise levels are compared.

  9. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  10. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  11. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chant, M.; Leduc, H. G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    The design and performance are described of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz the receiver has a double-sideband noise temperature of about 172 K. By using embedded magnetic-field concentrators Josephson pair tunneling is effectively suppressed. Techniques for improving receiver performance are discussed.

  12. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chan, M.; Leduc, Henry G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    We discuss the design and performance of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz, the receiver has a double sideband noise temperature of approx. 172 K. By using embedded magnetic field concentrators, we are able to effectively suppress Josephson pair tunneling. Techniques for improving receiver performance are discussed.

  13. Optical Techniques for Low Noise Microwave Frequency Sources

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    Optical techniques and mathematical models are described for low noise microwave frequency sources. The contents include: 1) Why Optical Techniques; 2) Wavemixing: Advantages and Disadvantages; 3) Wavemixing with Feedback: The OEO; 4) Feedback in both loops: COEO; and 5) State of the Art and Future Prospects.

  14. Electrometer Amplifier With Overload Protection

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Alexander, R.

    1986-01-01

    Circuit features low noise, input offset, and high linearity. Input preamplifier includes input-overload protection and nulling circuit to subtract dc offset from output. Prototype dc amplifier designed for use with ion detector has features desirable in general laboratory and field instrumentation.

  15. A 700mV low power low noise implantable neural recording system design.

    PubMed

    An, Guanglei; Hutchens, Chriswell; Rennaker, Robert L

    2014-01-01

    A low power, low noise implantable neural recording interface for use in a Radio-Frequency Identification (RFID) is presented in this paper. A two stage neural amplifier and 8 bit Pipelined Analog to Digital Converter (ADC) are integrated in this system. The optimized number of amplifier stages demonstrates the minimum power and area consumption; The ADC utilizes a novel offset cancellation technique robust to device leakage to reduce the input offset voltage. The neural amplifier and ADC both utilize 700mV power supply. The midband gain of neural amplifier is 58.4dB with a 3dB bandwidth from 0.71 to 8.26 kHz. Measured input-referred noise and total power consumption are 20.7μVrms and 1.90 respectively. The ADC achieves 8 bit accuracy at 16Ksps with an input voltage of ±400mV. Combined simulation and measurement results demonstrate the neural recording interface's suitability for in situ neutral activity recording. PMID:25571498

  16. A saw-less direct conversion long term evolution receiver with 25% duty-cycle LO in 130 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Siyuan, He; Changhong, Zhang; Liang, Tao; Weifeng, Zhang; Longyue, Zeng; Wei, Lü; Haijun, Wu

    2013-03-01

    A CMOS long-term evolution (LTE) direct convert receiver that eliminates the interstage SAW filter is presented. The receiver consists of a low noise variable gain transconductance amplifier (TCA), a quadrature passive current commutating mixer with a 25% duty-cycle LO, a trans-impedance amplifier (TIA), a 7th-order Chebyshev filter and programmable gain amplifiers (PGAs). A wide dynamic gain range is allocated in the RF and analog parts. A current commutating passive mixer with a 25% duty-cycle LO improves gain, noise, and linearity. An LPF based on a Tow-Thomas biquad suppresses out-of-band interference. Fabricated in a 0.13 μm CMOS process, the receiver chain achieves a 107 dB maximum voltage gain, 2.7 dB DSB NF (from PAD port), -11 dBm IIP3, and > +65 dBm IIP2 after calibration, 96 dB dynamic control range with 1 dB steps, less than 2% error vector magnitude (EVM) from 2.3 to 2.7 GHz. The total receiver (total I Q path) draws 89 mA from a 1.2-V LDO on chip supply.

  17. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  18. An Integrated CMOS Front-End Receiver with a Frequency Tripler for V-Band Applications

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hung; Chen, Min-Chiao; Ko, Chun-Lin; Wu, Chung-Yu

    A direct-conversion receiver integrated with the CMOS subharmonic frequency tripler (SFT) for V-band applications is designed, fabricated and measured using 0.13-µm CMOS technology. The receiver consists of a low-noise amplifier, a down-conversion mixer, an output buffer, and an SFT. A fully differential SFT is introduced to relax the requirements on the design of the frequency synthesizer. Thus, the operational frequency of the frequency synthesizer in the proposed receiver is only 20GHz. The fabricated receiver has a maximum conversion gain of 19.4dB, a minimum single-side band noise figure of 10.2dB, the input-referred 1-dB compression point of -20dBm and the input third order inter-modulation intercept point of -8.3dB. It draws only 15.8mA from a 1.2-V power supply with a total chip area of 0.794mm × 0.794mm. As a result, it is feasible to apply the proposed receiver in low-power wireless transceiver in the V-band applications.

  19. A 3.1-4.8 GHz CMOS receiver for MB-OFDM UWB

    NASA Astrophysics Data System (ADS)

    Guang, Yang; Wang, Yao; Jiangwei, Yin; Renliang, Zheng; Wei, Li; Ning, Li; Junyan, Ren

    2009-01-01

    An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 μm RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band IIP3 of -5.1 dBm. The receiver occupies 2.3 mm2 and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.

  20. Ultra-high amplified strain on 200 mm optical Germanium-On-Insulator (GeOI) substrates: towards CMOS compatible Ge lasers

    NASA Astrophysics Data System (ADS)

    Reboud, V.; Gassenq, A.; Guilloy, K.; Osvaldo Dias, G.; Escalante, J. M.; Tardif, S.; Pauc, N.; Hartmann, J. M.; Widiez, J.; Gomez, E.; Bellet Amalric, E.; Fowler, D.; Rouchon, D.; Duchemin, I.; Niquet, Y. M.; Rieutord, F.; Faist, J.; Geiger, R.; Zabel, T.; Marin, E.; Sigg, H.; Chelnokov, A.; Calvo, V.

    2016-03-01

    Currently, one of the main challenges in the field of silicon photonics is the fabrication of efficient laser sources compatible with the microelectronic fabrication technology. An alternative to the complexity of integration of group III-V laser compounds is advancing from high tensile strains applied to germanium leading to improved emission properties by transforming the material from an indirect to a direct bandgap semiconductor. Theory predicts this transformation occurs at around 4.7% uniaxial tensile strain or 2.0% bi-axial tensile strain. Here, we report on ultrahigh strains obtained by amplifying the residual strain from novel optical Germanium-On-Insulator (GeOI) substrates fabricated by Smart CutTM technology and patterned with micro-bridges and micro-crosses. The high crystalline quality of the GeOI layers dramatically declined the mechanical failure limits when liberating the Ge microbridges. Record level Raman shift of 8.1 cm-1 for biaxial (micro-crosses) and 8.7 cm-1 for uniaxial stress (micro-bridges) were reached by carefully designing the geometry of the micro-structures. The photoluminescence (PL) evolution is compared to theoretical calculations based on the tight-binding model revealing a detailed understanding of the influence of strain on the germanium optical properties.

  1. Low Noise Performance Perspectives Of Wideband Aperture Phased Arrays

    NASA Astrophysics Data System (ADS)

    Woestenburg, E. E. M.; Kuenen, J. C.

    2004-06-01

    A general analysis of phased array noise properties and measurements, applied to one square meter tiles of the Thousand Element Array (THEA), has resulted in a procedure to define the noise budget for a THEA-tile (Woestenburg and Dijkstra, 2003). The THEA system temperature includes LNA and receiver noise, antenna connecting loss, noise coupling between antenna elements and other possible contributions. This paper discusses the various noise contributions to the THEA system temperature and identifies the areas where improvement can be realized. We will present better understanding of the individual noise contributions using measurements and analysis of single antenna/receiver elements. An improved design for a 1-m2 Low Noise Tile (LNT) will be discussed and optimized low noise performance for the LNT is presented. We will also give future perspectives of the noise performance for such tiles, in relation to the requirements for SKA in the 1 GHz frequency range.

  2. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser

    NASA Astrophysics Data System (ADS)

    Yang, Changsheng; Xu, Shanhui; Chen, Dan; Zhang, Yuanfei; Zhao, Qilai; Li, Can; Zhou, Kaijun; Feng, Zhouming; Gan, Jiulin; Yang, Zhongmin

    2016-05-01

    An all-fiber Yb-doped kHz-linewidth low-noise linearly polarized single-frequency master-oscillator power-amplifier (MOPA) laser with a stable CW output power of >52 W is demonstrated. By suppressing the intensity noise of the DBR phosphate fiber oscillator, the linewidth of MOPA laser is not noticeably broadened, and an ultra-narrow linewidth of <3 kHz is obtained. Furthermore, the low-noise behavior of MOPA lasers is investigated. A measured relative intensity noise of < -130 dB Hz-1 at frequencies of over 2 MHz, a phase noise above 1 kHz of <5 μrad/Hz1/2, and a signal-to-noise ratio of >63 dB are achieved.

  3. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  4. On-wafer, cryogenic characterization of ultra-low noise HEMT devices

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Laskar, J.; Szydlik, P.

    1995-01-01

    Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.

  5. Low-noise analog readout channel for SDD in X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Gusev, A.; Krivchenko, A.; Levin, V.; Malankin, E.; Normanov, D.; Rotin, A.; Sagdiev, I.; Samsonov, V.

    2016-01-01

    A low-noise analog readout channel optimized for operation with the Silicon Drift Detectors (SDDs) with built-in JFET is presented. The Charge Sensitive Amplifier (CSA) operates in a pulse reset mode using the reset diode built-in the SDD detector. The shaper is a 6th order semi-Gaussian filter with switchable discrete shaping times. The readout channel provides the Equivalent Noise Charge (ENC) of 12e- (simulation) and input dynamic range of 30 keV . The measured energy resolution at the 5,89 keV line of a 55Fe X-ray source is 336 eV (FWHM). The channel was prototyped via Europractice in the AMS 350 nm process as miniASIC. The simulation and first measurement results are presented in the paper.

  6. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy.

    PubMed

    Gawande, R; Bradley, R; Langston, G

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented. PMID:25362437

  7. A low power low noise analog front end for portable healthcare system

    NASA Astrophysics Data System (ADS)

    Yanchao, Wang; Keren, Ke; Wenhui, Qin; Yajie, Qin; Ting, Yi; Zhiliang, Hong

    2015-10-01

    The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5-100 Hz) and the achieved noise efficient factor is 6.48. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 13511501100), the State Key Laboratory Project of China (No. 11MS002), and the State Key Laboratory of ASIC & System, Fudan University.

  8. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  9. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  10. Development of low noise CCD readout front-end

    NASA Astrophysics Data System (ADS)

    JamroŻy, M.; Kasprowicz, G.; Romaniuk, R.; Poźniak, K.

    2015-09-01

    This paper describes development of low noise readout subsystem for digital camera dedicated for astronomical observations. Main aim of the study is noise reduction in regard of sensor's output signal and noise added by the analogue electronics. Basic concept and simulation results of analogue front-end are presented. Various Digital Signal Processing schemes are considered in order to increase Signal to Noise ratio. Another step of development are design of the prototype PCB board and implementation of selected processing techniques in to the structure of a FPGA device.

  11. Low Noise 1.2 THz SIS Receiver

    NASA Technical Reports Server (NTRS)

    Karpov, A.; Miller, D.; Rice, F.; Zmuidzinas, J.; Stern, J. A.; Bumble, B.; LeDuc, H. G.

    2001-01-01

    We present the development of a low noise superconductor insulator superconductor (SIS) mixer for the 1.1 - 1.25 THz heterodyne receiver of FIRST space radiotelescope. The quasi-optical SIS mixer has two NbTiN/AlN/Nb junctions with critical current density 30 kA/sq cm. The individual junction area is close to 0.65 square micrometers. The SIS junctions are coupled to the optical input beam through a planar double slot antenna and a Si hyperhemispherical lens. The minimum DSB receiver noise temperature is 650 K, about 12 hv/k.

  12. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    PubMed Central

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  13. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  14. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  15. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  16. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  17. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  18. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  19. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  20. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  1. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a) The Administrator will, within ninety (90)...

  2. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a) Data relied upon by the Administrator...

  3. Design and Evaluation of a Low-Noise Helicopter Blade

    NASA Astrophysics Data System (ADS)

    Kondo, Natsuki; Tsujiuchi, Tomoka; Murashige, Atsushi; Nishimura, Hiroki; Aoki, Makoto; Tsuchihashi, Akihiko; Yamakawa, Eiichi; Aoyama, Takashi; Saito, Shigeru

    A low-noise helicopter blade, AT1, was designed with the concept of reducing noise without the drop of rotor performance. In the concept, High-Speed Impulsive (HSI) noise is reduced by applying a thin airfoil in the tip region and a dog-tooth like extension in the leading-edge of the tip region. Blade-Vortex Interaction (BVI) noise is reduced by applying the extension and a strong taper near the tip end. The stall angle of the blade is increased by the effect of the vortex generated from the leading-edge extension. As a result, the drop of rotor performance caused by the thin airfoil and the reduction of rotor rotational speed is recovered. The low-noise characteristics and the performance of AT1 were evaluated by a model rotor test conducted at Deutsch Niederländischer Windkanal (DNW). It is shown that AT1 reduces HSI noise and BVI noise and has good performance in forward flight conditions. However, the improvement of performance in high-lift conditions still remains as a future problem.

  4. Low-noise readout circuit for uncooled infrared FPA

    NASA Astrophysics Data System (ADS)

    Tanaka, Akio; Chiba, Kazuhiro; Endoh, Tsutomu; Okuyama, Kuniyuki; Kawahara, Akihiro; Iida, Kiyoshi; Tsukamoto, Nanao

    2000-12-01

    A low-noise architecture for uncooled microbolometer focal plane arrays is described. The on-chip readout circuit contains an integration circuit in which the bolometer current is directly injected into a capacitor, and exhibits extremely low noise with no decrease in signal. The simple configuration of the integration circuit makes it possible to operate more circuits in parallel, and increases the integration time and number of pixels. The bias circuit for the integration circuit is formed on the chip to reduce the effect of changes in the substrate temperature. The equivalent input noise, in which all readout noise is converted into that at the bolometer node, was 6.2(mu) V rms. A noise at this level is so low that can loosen the required TCR in the bolometer material. A 37-micrometers -pitch 320 x 240 ROIC was fabricated, and its expected NETD was 67-34 mK at a TCR of 1-2%/K. This architecture makes it possible to produce low-cost miniature cameras.

  5. Recent progress and development of a speedster-EXD: a new event-triggered hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2015-08-01

    We present the characterization of a new event-driven X-ray hybrid CMOS detector developed by Penn State University in collaboration with Teledyne Imaging Sensors. Along with its low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up, the Speedster-EXD has been designed with the capability to limit its readout to only those pixels containing charge, thus enabling even faster effective frame rates. The threshold for the comparator in each pixel can be set by the user so that only pixels with signal above the set threshold are read out. The Speedster-EXD hybrid CMOS detector also has two new in-pixel features that reduce noise from known noise sources: (1) a low-noise, high-gain CTIA amplifier to eliminate crosstalk from interpixel capacitance (IPC) and (2) in-pixel CDS subtraction to reduce kTC noise. We present the read noise, dark current, IPC, energy resolution, and gain variation measurements of one Speedster-EXD detector.

  6. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Hu, Y.

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  7. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  8. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  9. Multidisciplinary design optimization of low-noise transport aircraft

    NASA Astrophysics Data System (ADS)

    Leifsson, Leifur Thor

    The objective of this research is to examine how to design low-noise transport aircraft using Multidisciplinary Design Optimization (MDO). The subject is approached by designing for low-noise both implicitly and explicitly. The explicit design approach involves optimizing an aircraft while explicitly constraining the noise level. An MDO framework capable of optimizing both a cantilever wing and a Strut-Braced-Wing (SBW) aircraft was developed. The objective is to design aircraft for low-airframe-noise at the approach conditions and quantify the change in weight and performance with respect to a traditionally designed aircraft. The results show that reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large performance and weight penalty. Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction. Another study showed that the trailing-edge flap can be eliminated, as well as all the noise associated with that device, without incurring a significant weight and performance penalty. Lastly, an airframe noise analysis showed that a SBW aircraft with short fuselage-mounted landing gear could have a similar or potentially a lower airframe noise level than a comparable cantilever wing aircraft. The implicit design approach involves selecting a configuration that supports a low-noise operation, and optimizing for performance. In this study a Blended-Wing-Body (BWB) transport aircraft, with a conventional and a distributed propulsion system, was optimized for minimum take-off gross weight. The effects of distributed propulsion were studied using an MDO framework previously developed at Virginia Tech. The results show that more than two thirds of the theoretical savings of distributed propulsion are required for the BWB designs with a distributed propulsion system to have comparable gross weight as those with a conventional propulsion system. Therefore

  10. Ultra-Low-Noise W-Band MMIC Detector Modules

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Van Vinkle, Dan; Tantawi, Sami; Fox, John; Church, Sarah E.; Lau, Jusy M.; Sieth, Matthew M.; Voll, Patricia E.; Bryerton, Eric

    2010-01-01

    A monolithic microwave integrated circuit (MMIC) receiver can be used as a building block for next-generation radio astronomy instruments that are scalable to hundreds or thousands of pixels. W-band (75-110 GHz) low-noise receivers are needed for radio astronomy interferometers and spectrometers, and can be used in missile radar and security imagers. These receivers need to be designed to be mass-producible to increase the sensitivity of the instrument. This innovation is a prototyped single-sideband MMIC receiver that has all the receiver front-end functionality in one small and planar module. The planar module is easy to assemble in volume and does not require tuning of individual receivers. This makes this design low-cost in large volumes.

  11. XV-15 Low-Noise Terminal Area Operations Testing

    NASA Technical Reports Server (NTRS)

    Edwards, B. D.

    1998-01-01

    Test procedures related to XV-15 noise tests conducted by NASA-Langley and Bell Helicopter Textron, Inc. are discussed. The tests. which took place during October and November 1995, near Waxahachie, Texas, documented the noise signature of the XV-15 tilt-rotor aircraft at a wide variety of flight conditions. The stated objectives were to: -provide a comprehensive acoustic database for NASA and U.S. Industry -validate noise prediction methodologies, and -develop and demonstrate low-noise flight profiles. The test consisted of two distinct phases. Phase 1 provided an acoustic database for validating analytical noise prediction techniques; Phase 2 directly measured noise contour information at a broad range of operating profiles, with emphasis on minimizing 'approach' noise. This report is limited to a documentation of the test procedures, flight conditions, microphone locations, meteorological conditions, and test personnel used in the test. The acoustic results are not included.

  12. A HIGH STABILITY, LOW NOISE RF DISTRIBUTION SYSTEM

    SciTech Connect

    Bernstein, Dorel

    2002-08-20

    Next generation linear colliders require high stability, low noise distribution of RF phase and timing signals. We describe a fiber-optics system that transmits phase at 357MHz, at a 1500nm wavelength, over a distance of 15 kilometers. Phase length errors in the transmission fiber are measured using the phase of the signal reflected from the fiber end. Corrections are performed by controlling the temperature of a 6-kilometer fiber spool placed in series with the main transmission fiber. This system has demonstrated a phase stability better than 10 femtoseconds per degree C, per kilometer, an improvement of a factor of >2000 relative to un-stabilized fiber. This system uses standard low cost telecom fiber and components.

  13. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  14. A multi-mode multi-band RF receiver front-end for a TD-SCDMA/LTE/LTE-advanced in 0.18-μm CMOS process

    NASA Astrophysics Data System (ADS)

    Rui, Guo; Haiying, Zhang

    2012-09-01

    A fully integrated multi-mode multi-band directed-conversion radio frequency (RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented. The front-end employs direct-conversion design, and consists of two differential tunable low noise amplifiers (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The two independent tunable LNAs are used to cover all the four frequency bands, achieving sufficient low noise and high gain performance with low power consumption. Switched capacitor arrays perform a resonant frequency point calibration for the LNAs. The two LNAs are combined at the driver stage of the mixer, which employs a folded double balanced Gilbert structure, and utilizes PMOS transistors as local oscillator (LO) switches to reduce flicker noise. The front-end has three gain modes to obtain a higher dynamic range. Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface (SPI) module. The front-end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm2. The measured double-sideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply.

  15. Ultra-low noise mechanically cooled germanium detector

    NASA Astrophysics Data System (ADS)

    Barton, P.; Amman, M.; Martin, R.; Vetter, K.

    2016-03-01

    Low capacitance, large volume, high purity germanium (HPGe) radiation detectors have been successfully employed in low-background physics experiments. However, some physical processes may not be detectable with existing detectors whose energy thresholds are limited by electronic noise. In this paper, methods are presented which can lower the electronic noise of these detectors. Through ultra-low vibration mechanical cooling and wire bonding of a CMOS charge sensitive preamplifier to a sub-pF p-type point contact HPGe detector, we demonstrate electronic noise levels below 40 eV-FWHM.

  16. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    PubMed Central

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin

    2015-01-01

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105

  17. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    PubMed

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-01-01

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105

  18. A low-noise 15-μm pixel-pitch 640×512 hybrid InGaAs image sensor for night vision

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Dubois, Sébastien; de Borniol, Eric; Castelein, Pierre; Martin, Sébastien; Guiguet, Romain; Tchagaspanian, Micha"l.; Rouvié, Anne; Bois, Philippe

    2012-03-01

    Hybrid InGaAs focal plane arrays are very interesting for night vision because they can benefit from the nightglow emission in the Short Wave Infrared band. Through a collaboration between III-V Lab and CEA-Léti, a 640x512 InGaAs image sensor with 15μm pixel pitch has been developed. The good crystalline quality of the InGaAs detectors opens the door to low dark current (around 20nA/cm2 at room temperature and -0.1V bias) as required for low light level imaging. In addition, the InP substrate can be removed to extend the detection range towards the visible spectrum. A custom readout IC (ROIC) has been designed in a standard CMOS 0.18μm technology. The pixel circuit is based on a capacitive transimpedance amplifier (CTIA) with two selectable charge-to-voltage conversion gains. Relying on a thorough noise analysis, this input stage has been optimized to deliver low-noise performance in high-gain mode with a reasonable concession on dynamic range. The exposure time can be maximized up to the frame period thanks to a rolling shutter approach. The frame rate can be up to 120fps or 60fps if the Correlated Double Sampling (CDS) capability of the circuit is enabled. The first results show that the CDS is effective at removing the very low frequency noise present on the reference voltage in our test setup. In this way, the measured total dark noise is around 90 electrons in high-gain mode for 8.3ms exposure time. It is mainly dominated by the dark shot noise for a detector temperature settling around 30°C when not cooled. The readout noise measured with shorter exposure time is around 30 electrons for a dynamic range of 71dB in high-gain mode and 108 electrons for 79dB in low-gain mode.

  19. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  20. Low noise omnidirectional optical receiver for the mobile FSO networks

    NASA Astrophysics Data System (ADS)

    Witas, Karel; Hejduk, Stanislav; Vasinek, Vladimir; Vitasek, Jan; Latal, Jan

    2013-05-01

    A high sensitive optical receiver design for the mobile free space optical (FSO) networks is presented. There is an array of photo-detectors and preamplifiers working into same load. It is the second stage sum amplifier getting all signals together. This topology creates a parallel amplifier with an excellent signal to noise ratio (SNR). An automatic gain control (AGC) feature is included also. As a result, the effective noise suppression at the receiver side increases optical signal coverage even with the transmitter power being constant. The design has been verified on the model car which was able to respond beyond the line of sight (LOS).

  1. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  2. Design of a 0.18 μm CMOS multi-band compatible low power GNSS receiver RF frontend

    NASA Astrophysics Data System (ADS)

    Bing, Li; Yiqi, Zhuang; Qiang, Long; Zhao, Jin; Zhenrong, Li; Gang, Jin

    2011-03-01

    This paper presents the design and implementation of a fully integrated multi-band RF receiver frontend for GNSS applications on L-band. A single RF signal channel with a low-IF architecture is adopted for multi-band operation on the RF section, which mainly consists of a low noise amplifier (LNA), a down-converter, polyphase filters and summing circuits. An improved cascode source degenerated LNA with a multi-band shared off-chip matching network and band switches is implemented in the first amplifying stage. Also, a re-designed wideband double balance mixer is implemented in the down conversion stage, which provides better gain, noise figure and linearity performances. Using a TSMC 0.18 μm 1P4M RF CMOS process, a compact 1.27 GHz/1.575 GHz dual-band GNSS frontend is realized in the proposed low-IF topology. The measurements exhibit the gains of 45 dB and 43 dB, and noise figures are controlled at 3.35 dB and 3.9 dB of the two frequency bands, respectively. The frontend model consumes about 11.8-13.5 mA current on a 1.8 V power supply. The core occupies 1.91 × 0.53 mm2 while the total die area with ESD is 2.45 × 2.36 mm2.

  3. CMOS Monolithic Active Pixel Sensors (MAPS): Developments and future outlook

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Fant, A.; Gasiorek, P.; Esbrand, C.; Griffiths, J. A.; Metaxas, M. G.; Royle, G. J.; Speller, R.; Venanzi, C.; van der Stelt, P. F.; Verheij, H.; Li, G.; Theodoridis, S.; Georgiou, H.; Cavouras, D.; Hall, G.; Noy, M.; Jones, J.; Leaver, J.; Machin, D.; Greenwood, S.; Khaleeq, M.; Schulerud, H.; Østby, J. M.; Triantis, F.; Asimidis, A.; Bolanakis, D.; Manthos, N.; Longo, R.; Bergamaschi, A.

    2007-12-01

    Re-invented in the early 1990s, on both sides of the Atlantic, Monolithic Active Pixel Sensors (MAPS) in a CMOS technology are today the most sold solid-state imaging devices, overtaking the traditional technology of Charge-Coupled Devices (CCD). The slow uptake of CMOS MAPS started with low-end applications, for example web-cams, and is slowly pervading the high-end applications, for example in prosumer digital cameras. Higher specifications are required for scientific applications: very low noise, high speed, high dynamic range, large format and radiation hardness are some of these requirements. This paper will present a brief overview of the CMOS Image Sensor technology and of the requirements for scientific applications. As an example, a sensor for X-ray imaging will be presented. This sensor was developed within a European FP6 Consortium, intelligent imaging sensors (I-ImaS).

  4. Development of a low noise MREIT current source

    NASA Astrophysics Data System (ADS)

    Kim, Young Tae; Yoo, Pil Joong; In Oh, Tong; Woo, Eung Je

    2010-04-01

    In MREIT conductivity imaging experiments of animal and human subjects, we should minimize the noise level in measured magnetic flux density data induced by injection currents with low amplitude. Since noise and artifact from an MREIT current source directly affect the quality of the data, a low-noise current source is desirable. In order to be compatible with various MREIT pulse sequences, it should be also programmable. We have developed a new MREIT current source, which is controlled by a PC program for flexibility. We designed it in such a way that it is located inside the shield room of an MRI system. To minimize noise and artifact, we adopted an optical link for the connection to the PC outside the shield room. The enclosure of the new current source provides a magnetic as well as electric shielding to prevent high frequency switching noise of the current source from interfering with the scanner. It is powered by a rechargeable battery so that the entire current source is isolated from the ground. Equipped with automatic lead switching capability, it simplifies and automates MREIT imaging experiments. Our experimental results show that its performance is superior to the previous version, which is located outside the shield room.

  5. A compact, multichannel, and low noise arbitrary waveform generator.

    PubMed

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation. PMID:24880390

  6. A compact, multichannel, and low noise arbitrary waveform generator

    SciTech Connect

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  7. A low noise exchange gate in double quantum dots

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Carroll, Malcolm; Muller, Richard

    2010-03-01

    Minimizing the effects of noise is a central challenge to the creation of solid-state singlet-triplet double quantum dot (DQD) quantum bits (qubits). Charge noise, electronics error or inhomogeneous fields have all separately been addressed with different approaches. The demand for qubit operations robust to the combination of all noise sources places simultaneous requirements, however, that are not clearly compatible. We investigate the feasibility of achieving an exchange gate in a DQD system that is more robust to multiple sources of noise such as slight error around the applied bias point due to electronics or charge noise combined with external inhomogeneous B-field effects, addressed with dynamically coupled gates. A full configuration interaction (CI) method is used to compute the exchange energy as a function of dot shape and detuning voltage in order to identify the more robust operations. In particular the CI calculation provides significantly better accuracy for the (2,0) configuration of the DQD system, which is a potentially important low noise operating regime. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  8. A compact, multichannel, and low noise arbitrary waveform generator

    NASA Astrophysics Data System (ADS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  9. Follow-on Low Noise Fan Aerodynamic Study

    NASA Technical Reports Server (NTRS)

    Heidegger, Nathan J.; Hall, Edward J.; Delaney, Robert A.

    1999-01-01

    The focus of the project was to investigate the effects of turbulence models on the prediction of rotor wake structures. The Advanced Ducted Propfan Analysis (ADPAC) code was modified through the incorporation of the Spalart-Allmaras one-equation turbulence model. Suitable test cases were solved numerically using ADPAC employing the Spalart-Allmaras turbulence model and another prediction code for comparison. A near-wall spacing study was also completed to determine the adequate spacing of the first computational cell off the wall. Solutions were also collected using two versions of the algebraic Baldwin-Lomax turbulence model in ADPAC. The effects of the turbulence model on the rotor wake definition was examined by obtaining ADPAC solutions for the Low Noise Fan rotor-only steady-flow case using the standard algebraic Baldwin-Lomax turbulence model, a modified version of the Baldwin-Lomax turbulence model and the one-equation Spalart-Allmaras turbulence model. The results from the three different turbulence modeling techniques were compared with each other and the available experimental data. These results include overall rotor performance, spanwise exit profiles, and contours of axial velocity taken along constant axial locations and along blade-to-blade surfaces. Wake characterizations were also performed on the experimental and ADPAC predicted results including the definition of a wake correlation function. Correlations were evaluated for wake width and wake depth. Similarity profiles of the wake shape were also compared between all numerical solutions and experimental data.

  10. A 512×512 CMOS Monolithic Active Pixel Sensor with integrated ADCs for space science

    NASA Astrophysics Data System (ADS)

    Prydderch, M. L.; Waltham, N. J.; Turchetta, R.; French, M. J.; Holt, R.; Marshall, A.; Burt, D.; Bell, R.; Pool, P.; Eyles, C.; Mapson-Menard, H.

    2003-10-01

    In the last few years, CMOS sensors have become widely used for consumer applications, but little has been done for scientific instruments. In this paper we present the design and experimental characterisation of a Monolithic Active Pixel Sensor (MAPS) intended for a space science application. The sensor incorporates a 525×525 array of pixels on a 25 μm pitch. Each pixel contains a detector together with three transistors that are used for pixel reset, pixel selection and charge-to-voltage conversion. The detector consists of four n-well/p-substrate diodes combining optimum charge collection and low noise performance. The array readout is column-parallel with adjustable gain column amplifiers and a 10-bit single slope ADC. Data conversion takes place simultaneously for all the 525 pixels in one row. The ADC slope can be adjusted in order to give the best dynamic range for a given brightness of a scene. The digitised data are output on a 10-bit bus at 3 MHz. An on-chip state machine generates all of the control signals needed for the readout. All of the bias currents and voltages are generated on chip by a DAC that is programmable through an I 2C compatible interface. The sensor was designed and fabricated on a standard 0.5 μm CMOS technology. The overall die size is 16.7 mm×19.9 mm including the associated readout electronics and bond pads. Preliminary test results show that the full-scale design works well, meeting the Star Tracker requirements with less than 1-bit noise, good linearity and good optical performance.

  11. The speedster-EXD: a new event-triggered hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2014-07-01

    We present preliminary characterization of the Speedster-EXD, a new event driven hybrid CMOS detector (HCD) developed in collaboration with Penn State University and Teledyne Imaging Systems. HCDs have advantages over CCDs including lower susceptibility to radiation damage, lower power consumption, and faster read-out time to avoid pile-up. They are deeply depleted and able to detect x-rays down to approximately 0.1 keV. The Speedster-EXD has additional in-pixel features compared to previously published HCDs including: (1) an in-pixel comparator that enables read out of only the pixels with signal from an x-ray event, (2) four different gain modes to optimize either full well capacity or energy resolution, (3) in-pixel CDS subtraction to reduce read noise, and (4) a low-noise, high-gain CTIA amplifier to eliminate interpixel capacitance crosstalk. When using the comparator feature, the user can set a comparator threshold and only pixels above the threshold will be read out. This feature can be run in two modes including single pixel readout in which only pixels above the threshold are read out and 3x3 readout where a 3×3 region centered on the central pixel of the X-ray event is read out. The comparator feature of the Speedster-EXD increases the detector array effective frame rate by orders of magnitude. The new features of the Speedster-EXD hybrid CMOS x-ray detector are particularly relevant to future high throughput x-ray missions requiring large-format silicon imagers.

  12. Towards on-chip integration of brain imaging photodetectors using standard CMOS process.

    PubMed

    Kamrani, Ehsan; Lesage, Frederic; Sawan, Mohamad

    2013-01-01

    The main effects of on-chip integration on the performance and efficiency of silicon avalanche photodiode (SiAPD) and photodetector front-end is addressed in this paper based on the simulation and fabrication experiments. Two different silicon APDs are fabricated separately and also integrated with a transimpedance amplifier (TIA) front-end using standard CMOS technology. SiAPDs are designed in p+/n-well structure with guard rings realized in different shapes. The TIA front-end has been designed using distributed-gain concept combined with resistive-feedback and common-gate topology to reach low-noise and high gain-bandwidth product (GBW) characteristics. The integrated SiAPDs show higher signal-to-noise ratio (SNR), sensitivity and detection efficiency comparing to the separate SiAPDs. The integration does not show a significant effect on the gain and preserves the low power consumption. Using APDs with p-well guard-ring is preferred due to the higher observed efficiency after integration. PMID:24110276

  13. An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.

    PubMed

    Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A

    2016-06-01

    The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works. PMID:26812734

  14. The Speedster-EXD- A New Event-Driven Hybrid CMOS X-ray Detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2016-01-01

    The Speedster-EXD is a new 64×64 pixel, 40-μm pixel pitch, 100-μm depletion depth hybrid CMOS x-ray detector with the capability of reading out only those pixels containing event charge, thus enabling fast effective frame rates. A global charge threshold can be specified, and pixels containing charge above this threshold are flagged and read out. The Speedster detector has also been designed with other advanced in-pixel features to improve performance, including a low-noise, high-gain capacitive transimpedance amplifier that eliminates interpixel capacitance crosstalk (IPC), and in-pixel correlated double sampling subtraction to reduce reset noise. We measure the best energy resolution on the Speedster-EXD detector to be 206 eV (3.5%) at 5.89 keV and 172 eV (10.0%) at 1.49 keV. The average IPC to the four adjacent pixels is measured to be 0.25%±0.2% (i.e., consistent with zero). The pixel-to-pixel gain variation is measured to be 0.80%±0.03%, and a Monte Carlo simulation is applied to better characterize the contributions to the energy resolution.

  15. High-dynamic-range 4-Mpixel CMOS image sensor for scientific applications

    NASA Astrophysics Data System (ADS)

    Vu, Paul; Fowler, Boyd; Liu, Chiao; Mims, Steve; Bartkovjak, Peter; Do, Hung; Li, Wang; Appelbaum, Jeff; Lopez, Angel

    2012-03-01

    As bio-technology transitions from research and development to high volume production, dramatic improvements in image sensor performance will be required to support the throughput and cost requirements of this market. This includes higher resolution, higher frame rates, higher quantum efficiencies, increased system integration, lower read-noise, and lower device costs. We present the performance of a recently developed low noise 2048(H) x 2048(V) CMOS image sensor optimized for scientific applications such as life science imaging, microscopy, as well as industrial inspection applications. The sensor architecture consists of two identical halves which can be operated independently and the imaging array consists of 4T pixels with pinned photodiodes on a 6.5μm pitch with integrated micro-lens. The operation of the sensor is programmable through a SPI interface. The measured peak quantum efficiency of the sensor is 73% at 600nm, and the read noise is about 1.1e- RMS at 100 fps data rate. The sensor features dual gain column parallel ouput amplifiers with 11-bit single slope ADCs. The full well capacity is greater than 36ke-, the dark current is less than 7pA/cm2 at 20°C. The sensor achieves an intra-scene linear dynamic range of greater than 91dB (36000:1) at room temperature.

  16. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4x2x1 cu cm. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10

  17. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4 2 1 cm3. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds

  18. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2015-12-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} W/√{Hz}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu m) and narrower ({<}1 \\upmu m) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu m), narrow (0.5-0.7 \\upmu m), and long (340-460 \\upmu m) SiN legs and show Tc of {˜ }93 mK and Rn of ˜158 m Ω. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} W/√{Hz} with a reasonable response speed (<1 ms), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher NEP_{el} ({˜ }5 × 10^{-19} W/√{Hz} ) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  19. High grain, low noise organic and nanoelectronic photodetectors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong

    2015-08-01

    The dramatically reduction of cost of photodetectors without comprising their performance will enable new applications in many fields. In this talk, I will brief our progress in the development of sensitive photodetectors/photon counters using low-cost solution processable organic and nano-electronic materials. Four types of device structures will be compared in terms of device gain, noise, sensitivity, response speed and linear dynamic range: 1) traditional diode structure, 2) a structure combine the photodiode and photoconductor through the interface trap triggered secondary charge injection, 3) an organic phototransistor that has combined photoconductive gain and photovoltaic gain, and 4) quantum dots modulated transistor channel conductance. Broad response spectrum from UV to NIR will be demonstrated, and active material limited performance will be discussed. Solution-Processed Nanoparticle Super-Float-Gated Organic Field-Effect Transistor as Un-cooled Ultraviolet and Infrared Photon Counter Yongbo Yuan, Qingfeng Dong, Bin Yang, Fawen Guo, Qi Zhang, Ming Han, and Jinsong Huang*, Scientific Reports, 3, 2707 (2013) A nanocomposite ultraviolet photodetector enabled by interfacial trap-controlled charge injection Fawen Guo, Bin Yang, Yongbo Yuan, Zhengguo Xiao, Qingfeng Dong, Yu Bi, and Jinsong Huang*, Nature Nanotechnology, 7, 798-802, (2012) Large Gain, Low Noise Nanocomposite Ultraviolet Photodetectors with a Linear Dynamic Range of 120 dB Yanjun Fang, Fawen Guo,Zhengguo Xiao, Jinsong Huang*, Advanced Optical Materials, 348-353 (2014) High Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites Rui Dong, Yanjun Fang, Jungseok Chae, Jun Dai, Zhengguo Xiao, Qingfeng Dong,Yongbo Yuan, Andrea Centrone,Xiao Cheng Zeng , Jinsong Huang*. ,Advanced Materials, 2015

  20. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 μm) and narrower (<1 μm) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 μm), narrow (0.5-0.7 μm), and long (340-460 μm) SiN legs and show Tc of {˜ }93 {mK} and Rn of {˜ }158 {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher {NEP}_{el} ({˜ }5 × 10^{-19} {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  1. Low Noise, High Detectivity Photodetectors based on Organic Materials

    NASA Astrophysics Data System (ADS)

    Guo, Fawen

    Organic photodetectors (OPDs) are potentially useful in many applications because of their light weight, flexibility and good form factors. Despite the high detectivities that have been frequently reported for OPDs recently, the application of these OPDs for weak light detection has been rarely demonstrated. In this thesis, low noise, high gain photodetectors based on organic and ZnO nanoparticles were proposed and demonstrated for highly sensitive UV light detection. The nanocomposite photodetector works in a hybrid mode of photodiode and photoconductor with the transition controlled by the UV light illumination. The nanocomposite detector shows two orders of magnitude higher sensitivity than silicon detectors in the UV range, which is the first time an organic, solution-processed detector has been shown to significantly outperform the inorganic photonic devices. In the fullerene-based photodetector, the dark-current has been successfully reduced by a cross-linked TPD (C-TPD) buffer layer. The high detectivity of 3.6 x 1011 cm Hz½ W-1 (Jones) at 370 nm and the wide Linear dynamic range (LDR) of 90 dB, along with a response speed faster than 20 kHz, suggests that the fullerene-based organic photodetectors proposed here can open the way for many potential applications. The ZnO nanoparticles have been introduced into the C-TPD buffer layer of the fullerene-based photodetector to increase the photoconductive gain and reduce the noise current. The peak external quantum efficiency (EQE) value of approximately 400% and the peak specific detectivity of 6.5 x 10 12 Jones at the wavelength of 390 nm, along with the record high LDR of 120 dB, enable the photodetector to be used in wide range of applications such as imaging, communication, and defense. The extremely high sensitivity of the photodetector also makes it particularly attractive for very weak light detection.

  2. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} hbox {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu hbox {m}) and narrower ({<}1 \\upmu hbox {m}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu hbox {m}), narrow (0.5-0.7 \\upmu hbox {m}), and long (340-460 \\upmu hbox {m}) SiN legs and show Tc of {˜ }93 hbox {mK} and Rn of {˜ }158 hbox {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} hbox {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 hbox {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher hbox {NEP}_{el} ({˜ }5 × 10^{-19} hbox {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  3. Evaluation of a Low-Noise Formate Spiral-Bevel Gear Set

    NASA Technical Reports Server (NTRS)

    Lewicki, David g.; Woods, Ron L.; Litvin, Faydor L.; Fuentes, Alfonso

    2007-01-01

    Studies to evaluate low-noise Formate spiral-bevel gears were performed. Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand. Low-noise Formate spiral-bevel gears were compared to the baseline OH-58D spiral-bevel gear design, a high-strength design, and previously tested low-noise designs (including an original low-noise design and an improved-bearing-contact low-noise design). Noise, vibration, and tooth strain tests were performed. The Formate design showed a decrease in noise and vibration compared to the baseline OH-58D design, and was similar to that of the previously tested improved-bearing contact low-noise design. The pinion tooth stresses for the Formate design significantly decreased in comparison to the baseline OH-58D design. Also similar to that of the improved bearing-contact low-noise design, the maximum stresses of the Formate design shifted toward the heel, compared to the center of the face width for the baseline, high-strength, and previously tested low-noise designs.

  4. Flutter Stability of the Efficient Low Noise Fan Calculated

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2004-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the Efficient Low Noise Fan (ELNF), which is also referred to as the trailing-edge blowing fan. The ELNF is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn's 9-by-15-Foot Low-Speed Wind Tunnel. In the ELNF, air can be blown out of slots near the trailing edges of the fan blades to fill in the wakes downstream of the rotating blades. This filling of the wakes leads to a reduction of the rotor-stator interaction (tone) noise that results from the interaction of wakes with the downstream stators. The ELNF will demonstrate a 1.6-EPNdB1 reduction in tone noise through wake filling, without increasing the broadband noise. Furthermore, the reduced blade row interaction will decrease the possibility of forced response and enable closer spacing of blade rows, thus reducing engine length and weight. During the design of the ELNF, the rotor blades were checked for flutter stability using the detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBOAE code. The aeroelastic calculations were preceded by steady calculations in which the blades were not allowed to vibrate. For each rotational speed, as the back-pressure was increased, the mass flow rate decreased, and the operating point moved along the constant speed characteristic (speed-line) from choke to stall as shown on the fan map. The TURBO-AE aeroelastic analyses were performed separately for the first two vibration modes (bending and torsion) and covered the complete range of interblade phase angles or nodal diameters at which flutter can occur. The results indicated that the ELNF blades would not encounter flutter at takeoff conditions. The calculations were then repeated for a part-speed condition (70-percent rotational speed), and the results again showed no flutter in the operating region. On the fan map (shown), the predicted flutter point

  5. CMOS front end electronics for the ATLAS muon detector

    SciTech Connect

    Huth, J.; Oliver, J.; Hazen, E.; Shank, J.

    1997-12-31

    An all-CMOS design for an integrated ASD (Amplifier-Shaper-Discriminator) chip for readout of the ATLAS Monitored Drift Tubes (MDTs) is presented. Eight channels of charge-sensitive preamp, two-stage pole/zero shaper, Wilkinson ADC and discriminator with programmable hysteresis are integrated on a single IC. Key elements have been prototyped in 1.2 and 0.5 micron CMOS operating at 5V and 3.3V respectively.

  6. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    NASA Astrophysics Data System (ADS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn

    2016-09-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  7. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    SciTech Connect

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-05-15

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers.

  8. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature

  9. MEMS-based redundancy ring for low-noise millimeter-wave front-end

    NASA Astrophysics Data System (ADS)

    Pons, Patrick; Dubuc, David; Flourens, Federic; Saddaoui, Mohammad; Melle, Samuel; Tackacs, Alex; Tao, Junwu; Aubert, Herve; Boukabache, Ali; Paillot, T.; Blondy, Pierre; Vendier, Olivier; Grenier, Katia M.; Plana, Robert

    2004-08-01

    This paper reports on the investigation of the potentialities of the MEMS technologies to develop innovative microsystem for millimetre wave communication essentially for space applications. One main issue deals with the robustness and the reliability of the equipment as it may difficult to replace or to repair them when a satellite has been launched. One solution deals with the development of redundancy rings that are making the front end more robust. Usually, the architecture of such system involves waveguide or diode technologies, which present severe limitations in term of weight, volume and insertion loss. The concept considered in this paper is to replace some key elements of such system by MEMS based devices (Micromachined transmission lines, switches) in order to optimize both the weight and the microwave performance of the module. A specific technological process has been developed consisting in the fabrication of the devices on a dielectric membrane on air suspended in order to improve the insertion loss and the isolation. To prove the concept, building blocks have been already fabricated and measured (i.e micromachined transmission and filter featuring very low insertion loss, single pole double through circuits to address the appropriate path of the redundancy ring). We have to outline that MEMS technology have allowed a simplification of the architecture and a different system partitioning which gives more degree of freedom for the system designer. Furthermore, it has been conducted an exhaustive reliability study in order to identify the failure mechanisms. Again, from the results obtained, we have proposed an original topology for the SPDT circuit that takes into account the reliability behaviour of the MEMS devices and that allow to prevent most of the failure mechanisms reported so far (mainly related to the dielectric charging effect). Finally, the active device (millimetre wave low noise amplifier) will be reported on the MEMS based chip using

  10. A high-efficiency, low-noise power solution for a dual-channel GNSS RF receiver

    NASA Astrophysics Data System (ADS)

    Jian, Shi; Taishan, Mo; Jianlian, Le; Yebing, Gan; Chengyan, Ma; Tianchun, Ye

    2012-08-01

    A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC—DC buck converter and a followed low-dropout regulator (LDO). The pulse-width-modulation (PWM) control method is adopted for better noise performance. An improved low-power high-frequency PWM control circuit is proposed, which halves the average quiescent current of the buck converter to 80 μA by periodically shutting down the OTA. The size of the output stage has also been optimized to achieve high efficiency under a light load condition. In addition, a novel soft-start circuit based on a current limiter has been implemented to avoid inrush current. Fabricated with commercial 180-nm CMOS technology, the DC—DC converter achieves a peak efficiency of 93.1% under a 2 MHz working frequency. The whole receiver consumes only 20.2 mA from a 3.3 V power supply and has a noise figure of 2.5 dB.

  11. On noise in time-delay integration CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Levski, Deyan; Choubey, Bhaskar

    2016-05-01

    Time delay integration sensors are of increasing interest in CMOS processes owing to their low cost, power and ability to integrate with other circuit readout blocks. This paper presents an analysis of the noise contributors in current day CMOS Time-Delay-Integration image sensors with various readout architectures. An analysis of charge versus voltage domain readout modes is presented, followed by a noise classification of the existing Analog Accumulator Readout (AAR) and Digital Accumulator Readout (DAR) schemes for TDI imaging. The analysis and classification of existing readout schemes include, pipelined charge transfer, buffered direct injection, voltage as well as current-mode analog accumulators and all-digital accumulator techniques. Time-Delay-Integration imaging modes in CMOS processes typically use an N-number of readout steps, equivalent to the number of TDI pixel stages. In CMOS TDI sensors, where voltage domain readout is used, the requirements over speed and noise of the ADC readout chain are increased due to accumulation of the dominant voltage readout and ADC noise with every stage N. Until this day, the latter is the primary reason for a leap-back of CMOS TDI sensors as compared to their CCD counterparts. Moreover, most commercial CMOS TDI implementations are still based on a charge-domain readout, mimicking a CCD-like operation mode. Thus, having a good understanding of each noise contributor in the signal chain, as well as its magnitude in different readout architectures, is vital for the design of future generation low-noise CMOS TDI image sensors based on a voltage domain readout. This paper gives a quantitative classification of all major noise sources for all popular implementations in the literature.

  12. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  13. High- Tc dc SQUID readout electronics with low noise and high bandwidth

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-10-01

    Using AD797 low noise op amps and 2SA1048 low noise transistors, we have developed a composite preamplifier for use in dc SQUID readout electronics. This preamplifier has a small dc drift and super low noise at high frequencies. The equivalent input voltage noise of the preamplifier is about 0.35 nV/√Hz from 100 kHz to 10 MHz. Using this preamplifier, we developed dc SQUID readout electronics having low noise and high bandwidth. Used with a 3 mm2 high-Tc dc SQUID, the white flux noise was about 18 μΦ0/√Hz above 100 kHz and the FLL bandwidth was about 2 MHz. This readout electronics can be used for the applications of SQUID-based NDE and SQUID-based NQR.

  14. NASA ultra low noise X-band microwave feeds for deep space communication

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    2004-01-01

    This paper describes the configuration, detail design, and final performance of a new ultra low noise diplexed X-band microwave feed system, called X/X diplexing feed, for the Deep Space Network (DSN) 70-m antennas.

  15. The 8.4-GHz low-noise maser pump source assembly

    NASA Technical Reports Server (NTRS)

    Cardenas, R.

    1987-01-01

    Improved pump source assemblies and new 8.4-GHz low noise traveling-wave masers (TWMs) were installed at the same time at Deep Space Stations 14 and 43 as part of the Mark IVA DSCC Antenna Microwave Subsystems upgrade. The pump source assemblies are part of the new 8.4-GHz TWMs, which are identified as Block IIA Low-Noise TWMs. Improved reliability of the pump source assemblies was required to meet stress analysis criteria.

  16. Development of a low-noise 10 K J-T refrigeration system. Technical progress report

    SciTech Connect

    Paugh, R.L.

    1989-09-15

    The purpose of this contract extension is the continuation of the development of a compact, microminiature, low-noise, closed-cycle, Joule-Thomson refrigeration system for 10K operation for use in infrared sensing, low noise microwave signal detection and high speed superconducting electronic data processing. Work is continuing in the following areas: (a) Ongoing refrigerator design and development; (b) Compressor assembly and test, (c) Implementation of gas cleansing techniques, and (d) System integration.

  17. mm-wave solid state amplifiers

    NASA Astrophysics Data System (ADS)

    Wolfert, P. H.; Crowley, J. D.; Fank, F. B.

    The development of mm-wave amplifiers using InP Gunn diodes is reviewed including a low-noise eight-stage amplifier for replacement of a Ka-band TWTA and a three-stage amplifier for the 42.5 to 44.5 range with an output power of 100 mW and 20 dB associated gain. A detailed description of a three-stage amplifier for the 54 to 58 GHz range is given with 100 mW output power and 15 dB associated gain, a small signal gain of 30 dB and an N.F. of 15.5 to 16.5 dB. The design of a broad band, low-loss V-band circulator, which was used in the amplifier, is described.

  18. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.

    PubMed

    Fedele, T; Scheer, H J; Burghoff, M; Curio, G; Körber, R

    2015-02-01

    Non-invasive EEG detection of very high frequency somatosensory evoked potentials featuring frequencies up to and above 1 kHz has been recently reported. Here, we establish the detectability of such components by combined low-noise EEG/MEG. We recorded SEP/SEF simultaneously using median nerve stimulation in five healthy human subjects inside an electromagnetically shielded room, combining a low-noise EEG custom-made amplifier (4.7 nV/√Hz) and a custom-made single-channel low-noise MEG (0.5 fT/√Hz @ 1 kHz). Both, low-noise EEG and MEG revealed three spectrally distinct and temporally overlapping evoked components: N20 (<100 Hz), sigma-burst (450-750 Hz), and kappa-burst (850-1200 Hz). The two recording modalities showed similar relative scaling of signal amplitude in all three frequencies domains (EEG [10 nV] ≅ MEG [1 fT]). Pronounced waveform (peak-by-peak) overlap of EEG and MEG signals is observed in the sigma band, whereas in the kappa band overlap was only partial. A decreasing signal-to-noise ratio (SNR; calculated for n = 12.000 averages) from sigma to kappa components characterizes both, electric and magnetic field recordings: Sigma-band SNR was 12.9  ±  5.5/19.8  ±  12.6 for EEG/MEG, and kappa-band SNR at 3.77  ±  0.8/4.5  ±  2.9. High-frequency performance of a tailor-made MEG matches closely with simultaneously recorded low-noise EEG for the non-invasive detection of somatosensory evoked activity at and above 1 kHz. Thus, future multi-channel dual-mode low-noise technology could offer complementary views for source reconstruction of the neural generators underlying such high-frequency responses, and render neural high-frequency processes related to multi-unit spike discharges accessible in non-invasive recordings. PMID:25612926

  19. Monolithic CMOS-MEMS integration for high-g accelerometers

    NASA Astrophysics Data System (ADS)

    Narasimhan, Vinayak; Li, Holden; Tan, Chuan Seng

    2014-10-01

    This paper highlights work-in-progress towards the conceptualization, simulation, fabrication and initial testing of a silicon-germanium (SiGe) integrated CMOS-MEMS high-g accelerometer for military, munition, fuze and shock measurement applications. Developed on IMEC's SiGe MEMS platform, the MEMS offers a dynamic range of 5,000 g and a bandwidth of 12 kHz. The low noise readout circuit adopts a chopper-stabilization technique implementing the CMOS through the TSMC 0.18 µm process. The device structure employs a fully differential split comb-drive set up with two sets of stators and a rotor all driven separately. Dummy structures acting as protective over-range stops were designed to protect the active components when under impacts well above the designed dynamic range.

  20. Inertia Wheel on Low-Noise Active Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the

  1. A 90 GHz Amplifier Assembled Using Flip-Chip Technology

    NASA Technical Reports Server (NTRS)

    Samoska, L.; Pinsukanjana, P.; Gaier, T.; Smith, R.; Ksendzov, A.; Fitzsimmons, M.; Martin, S.; Lai, R.

    1999-01-01

    This letter reports the performance of a novel single-stage W-band amplifier fabricated utilizing flip-chip bump-bonding. We have bump-bonded a high-speed, low-noise InP high electron mobility transistor (HEMT) device onto a separately fabricated passive circuit having a GaAs substrate.

  2. An amplifier for VUV photomultiplier operating in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Dahal, S.; Di Giovanni, A.; d`Inzeo, M.; Franchi, G.; Pazos Clemens, L.

    2016-07-01

    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  3. A travelling-wave parametric amplifier utilizing Josephson junctions

    SciTech Connect

    Sweeny, M.; Mahler, R.

    1985-03-01

    Josephson junction parametric amplifiers of travelling-wave design have been designed for use as low-noise millimeter wave amplifiers. These devices have non-reciprocal gain, very wide bandwidths, power dissipations of a few tens of nanowatts, and an input impedance that can be as high as 50 ohms. The design is described and performance estimates, based on a small-signal model, are summarized.

  4. Yb:YAG single crystal fiber image amplifier

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian; Yang, Lih-Mei; Bai, Shuang

    2014-02-01

    In the paper, a Yb:YAG single crystal fiber is used for the first time to amplify week image signal. It was longitudinally pumped by a fiber-coupled laser diode with a maximum power of 150W at 940 nm. The image amplifier provided low noise and high gain amplification. A spatially uniform amplification gain of up to 10.2 dB at wavelength of 1030 nm was obtained.

  5. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  6. Design of low noise wind turbine blades using Betz and Joukowski concepts

    NASA Astrophysics Data System (ADS)

    Shen, W. Z.; Hrgovan, I.; Okulov, V.; Zhu, W. J.; Madsen, J.

    2014-06-01

    This paper presents the aerodynamic design of low noise wind turbine blades using Betz and Joukowski concepts. The aerodynamic model is based on Blade Element Momentum theory whereas the aeroacoustic prediction model is based on the BPM model. The investigation is started with a 3MW baseline/reference turbine rotor with a diameter of 80 m. To reduce the noise emission from the baseline rotor, the rotor is reconstructed with the low noise CQU-DTU-LN1 series of airfoils which has been tested in the acoustic wind tunnel located at Virginia Tech. Finally, 3MW low noise turbine rotors are designed using the concepts of Betz and Joukowski, and the CQU-DTU-LN1 series of airfoils. Performance analysis shows that the newly designed turbine rotors can achieve an overall noise reduction of 6 dB and 1.5 dB(A) with a similar power output as compared to the reference rotor.

  7. Advanced Concepts in Josephson Junction Reflection Amplifiers

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti

    2014-06-01

    Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.

  8. Reducing Printed Circuit Board Emissions with Low-Noise Design Practices

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Fowler, Jennifer; Yavoich, Brian J.; Jennings, Stephen A.

    2012-01-01

    This paper presents the results of an experiment designed to determine the effectiveness of adopting several low-noise printed circuit board (PCB) design practices. Two boards were designed and fabricated, each consisting of identical mixed signal circuitry. Several important differences were introduced between the board layouts: one board was constructed using recommended low-noise practices and the other constructed without such attention. The emissions from the two boards were then measured and compared, demonstrating an improvement in radiated emissions of up to 22 dB.

  9. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  10. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  11. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  12. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    PubMed

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications

  13. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. PMID:27250444

  14. Recent Design Development in Molecular Imaging for Breast Cancer Detection Using Nanometer CMOS Based Sensors

    PubMed Central

    Nguyen, Dung C.; Ma, Dongsheng (Brian); Roveda, Janet M. W.

    2012-01-01

    As one of the key clinical imaging methods, the computed X-ray tomography can be further improved using new nanometer CMOS sensors. This will enhance the current technique's ability in terms of cancer detection size, position, and detection accuracy on the anatomical structures. The current paper reviewed designs of SOI-based CMOS sensors and their architectural design in mammography systems. Based on the existing experimental results, using the SOI technology can provide a low-noise (SNR around 87.8 db) and high-gain (30 v/v) CMOS imager. It is also expected that, together with the fast data acquisition designs, the new type of imagers may play important roles in the near-future high-dimensional images in additional to today's 2D imagers. PMID:23319947

  15. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  16. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  17. CMOS-sensors for energy-resolved X-ray imaging

    NASA Astrophysics Data System (ADS)

    Doering, D.; Amar-Youcef, S.; Baudot, J.; Deveaux, M.; Dulinski, W.; Kachel, M.; Linnik, B.; Müntz, C.; Stroth, Joachim

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ``color sensitive" X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors.

  18. Two stage dual gate MESFET monolithic gain control amplifier for Ka-band

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Contolatis, A.

    1987-01-01

    A monolithic two stage gain control amplifier has been developed using submicron gate length dual gate MESFETs fabricated on ion implanted material. The amplifier has a gain of 12 dB at 30 GHz with a gain control range of over 30 dB. This ion implanted monolithic IC is readily integrable with other phased array receiver functions such as low noise amplifiers and phase shifters.

  19. 4 GHz band FET amplifier with the noise temperature of 55K at -50 deg C

    NASA Astrophysics Data System (ADS)

    Nakazawa, T.; Ogiso, K.; Takeda, F.; Miyazaki, S.; Nara, A.

    A thermoelectrically cooled 4 GHz band FET amplifier with a noise temperature of 55K developed as a low noise amplifier for satellite communications earth stations is described. It is pointed out that the method of broadband noise matching is used in the design. The difference between the maximum and minimum noise temperature within the frequency band of the amplifier is 3 K, a value consistent with the theoretical value.

  20. Gyromagnetron amplifier

    SciTech Connect

    Lau, Y.-Y.; Barnett, L. R.

    1985-10-29

    A gyromagnetron amplifier for radiation at millimeter wavelengths comprising a tapered waveguide tube with longitudinally running vanes in the walls of the tube with the number of vanes chosen to coincide with a desired cyclotron harmonic frequency to be amplified. A beam of spiralling mildly relativistic electrons with an energy of 100 keV or less is directed into the small end of the tapered waveguide tube. A tapered axial magnetic field is set up within the waveguide tube with a low value appropriate to the amplification of a cyclotron harmonic frequency. An electromagnetic wave to be amplified is launched into the waveguide tube to co-propagate and be amplified by the spiralling electron beam. This device is characterized by a wide bandwidth, a low operating magnetic field, a relatively low operating beam voltage, with high power, and the capability of continuous wave operation.

  1. Jet Propulsion Laboratory/NASA Lewis Research Center space qualified hybrid high temperature superconducting/semiconducting 7.4 GHz low-noise downconverter for NRL HTSSE-II program

    SciTech Connect

    Javadi, H.H.S.; Bowen, J.G.; Rascoe, D.L.; Romanofsky, R.R.; Bhasin, K.B.; Chorey, C.M.

    1996-07-01

    A deep space satellite downconverter receiver was proposed by Jet Propulsion Laboratory (JPL) and NASA Lewis Research Center (LeRC) for the Naval Research Laboratory`s (NRL) high temperature superconductivity space experiment, phase-II (HTSSE-II) program. Space qualified low-noise cryogenic downconverter receivers utilizing thin-film high temperature superconducting (HTS) passive circuitry and semiconductor active devices were developed and delivered to NRL. The downconverter consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. HTS components were inserted as the front-end filter and the local oscillator resonator for their superior 77 K performance over the conventional components. The semiconducting low noise amplifier also benefited from cooling to 77 K. The mixer was designed specifically for cryogenic applications and provided low conversion loss and low power consumption. In addition to an engineering model, two space qualified units (qualification, flight) were built and delivered to NRL. Manufacturing, integration and test of the space qualified downconverters adhered to the requirements of JPL class-D space instruments and partially to MIL-STD-883D specifications. The qualification unit has {approximately}50 K system noise temperature which is a factor of three better than a conventional downconverter at room temperature.

  2. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  3. Miniature Low-Noise G-Band I-Q Receiver

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Pukala, David M.; Gaier, Todd C.; Tanner, Alan B.; O'Dwyer, Ian J.; Lambrigtsen, Bjom H.; Soria, Mary M.; Owen, Heather R.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    Weather forecasting, hurricane tracking, and atmospheric science applications depend on humidity sounding of atmosphere. Current instruments provide these measurements from groundbased, airborne, and low Earth orbit (LEO) satellites by measuring radiometric temperature on the flanks of the 183-GHz water vapor line. Miniature, low-noise receivers have been designed that will enable these measurements from a geostationary, thinned array sounder, which is based on hundreds of low-noise receivers that convert the 180-GHz signal directly to baseband in-phase and in-quadrature signals for digitization and correlation. The developed receivers provide a noise temperature of 450 K from 165 to 183 GHz (NF = 4.1 dB), and have a mass of 3 g while consuming 24 mW of power. These are the most sensitive broadband I-Q receivers at this frequency range that operate at room temperature, and are significantly lower in mass and power consumption than previously reported receivers.

  4. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  5. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  6. Ultra-low noise charge sensitive preamplifier for scintillation detection with avalanche photodiodes in PET applications

    SciTech Connect

    Schmitt, D.; Lecomte, R.; Lapointe, M.; Martel, G.; Carrier, C.; Karuta, B.; Duval, F.

    1987-02-01

    The need for compact, fast, low-noise front-end electronics in high resolution positron emission tomography (PET) has prompted this effort to design a preamplifier suitable for avalanche photodiode-based scintillation detectors. Due to the small signals from the detectors (< .03 rhoC/meV), a preamplifier with ultra-low noise performance in the 5 to 20 MHz range is essential to achieve the timing resolution required by the PET application. Out of many available technologies, a new third generation MOSFET was selected and implemented as input transistor in an original charge sensitive (CSP) design. Performance among the best reported to date are obtained. The new design was implemented as a dual-channel preamplifier in high density hybrid (thick film) technology.

  7. Low noise InGaAs/InP single-photon detector for singlet oxygen detection

    NASA Astrophysics Data System (ADS)

    Boso, Gianluca; Korzh, Boris; Lunghi, Tommaso; Sanguinetti, Bruno; Zbinden, Hugo

    2015-01-01

    Single-photon detectors are the best option for applications where low noise measurements and/or high timing resolution are required. At wavelengths between 900 nm and 1700 nm, however, low noise detectors have typically been based on cryogenic superconducting technology, precluding their extended use in industrial or clinical applications. Here we present a practical (i.e. compact, reliable and affordable) detector, based on a negative feedback InGaAs/InP avalanche photodiode and exhibiting dark counts < 1 count-per-second at 10% efficiency, and with efficiencies of up to 27%. We show how this detector enables novel applications such as singlet-oxygen luminescence detection for Photo Dynamic Therapy (PDT) but can be an enabling technology also for a diverse set of applications in both quantum communication (e.g. long-distance quantum key distribution) and biomedical imaging.

  8. A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea

    PubMed Central

    Miles, R. N.; Su, Q.; Cui, W.; Shetye, M.; Degertekin, F. L.; Bicen, B.; Garcia, C.; Jones, S.; Hall, N.

    2009-01-01

    A miniature differential microphone is described having a low-noise floor. The sensitivity of a differential microphone suffers as the distance between the two pressure sensing locations decreases, resulting in an increase in the input sound pressure-referred noise floor. In the microphone described here, both the diaphragm thermal noise and the electronic noise are minimized by a combination of novel diaphragm design and the use of low-noise optical sensing that has been integrated into the microphone package. The differential microphone diaphragm measures 1×2 mm2 and is fabricated out of polycrystalline silicon. The diaphragm design is based on the coupled directionally sensitive ears of the fly Ormia ochracea. The sound pressure input-referred noise floor of this miniature differential microphone has been measured to be less than 36 dBA. PMID:19354377

  9. Development of a low-noise 10K J-T refrigeration system. Technical progress report

    SciTech Connect

    Little, W.A.; Edman, H.; Stewart, M.; DuBois, M.; Nasg, A.

    1986-08-15

    This report summarizes the work done to date, in the first 30 days on the development of a low-noise, Joule-Thomson, microminiature refrigeration system designed for 10K operation. The plan of attack for the present contract has three major parts to it: first, the development of the three-stage refrigerator; second, the development of a suitable compressor to provide the gases, and thirdly, the development of an effective gas-cleansing system.

  10. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  11. An Extremely Wide Bandwidth, Low Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    Our group has designed a heterodyne submillimeter receiver that offers a very wide IF bandwidth of 12 GHz, while still maintaining a low noise temperature. The 180-300 GHz double-sideband design uses a single SI5 device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz. providing an instantaneous RF bandwidth of 24 GHz (double-sideband). Intensive simulations predict that the junction will achieve a conversion loss better than 1-2 dB and a mixer noise temperature of less than 20 K across the band (twice the quantum limit). The single sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical and environmental observations beyond the capabilities of current instruments. Lab testing of the receiver will begin this summer, and first light on the CSO should be in the Spring of 2003. At the CSO, we plan to use receiver with WASP2, a wideband spectrometer, to search for spectral lines from SCUBA sources. This approach should allow us to rapidly develop a catalog of redshifts for these objects.

  12. AC Bias Characterization of Low Noise Bolometers for SAFARI Using an Open-Loop Frequency Domain SQUID-based Multiplexer Operating Between 1 and 5 MHz

    NASA Astrophysics Data System (ADS)

    Gottardi, L.; Bruijn, M.; Gao, J.-R.; Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; Korte, P.; Kuur, J.; Lindeman, M.; Ridder, M.

    2012-05-01

    SRON is developing the Frequency Domain Multiplexing (FDM) readout and the ultra low NEP TES bolometers array for the infrared spectrometer SAFARI on board of the Japanese space mission SPICA. The FDM prototype of the instrument requires critical and complex optimizations. For single pixel characterization under AC bias we are developing a simple FDM system working in the frequency range from 1 to 5 MHz, based on the open loop read-out of a linearized two-stage SQUID amplifier and high Q lithographic LC resonators. We describe the details of the experimental set-up required to achieve low power loading (< 1 fW) and low noise (NEP $\\sim 10^{-19} W/Hz^{1/2}$) in the TES bolometers. We conclude the paper by comparing the performance of a $4 \\cdot 10^{-19} W/Hz^{1/2}$ TES bolometer measured under DC and AC bias.

  13. LOGARITHMIC AMPLIFIER

    DOEpatents

    Wade, E.J.; Stone, R.S.

    1959-03-10

    Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.

  14. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  15. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  16. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  17. Amplified Policymaking

    ERIC Educational Resources Information Center

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  18. A compact, narrow-band, and low-noise 800-mW laser source at 980 nm

    NASA Astrophysics Data System (ADS)

    Pliska, Tomas; Matuschek, Nicolai; Troger, Joerg; Schmidt, Berthold; Mohrdiek, Stefan; Harder, Christoph

    2005-04-01

    We report on the development of a new cost-effective, small form-factor laser source at a wavelength of 980 nm. The laser module is based on proven technology commonly used for pump laser modules deployed in fiber amplifiers of telecommunication networks. The package uses a state-of-the-art 14-pin butterfly housing with a footprint of 30x15 mm2 with a Fabry-Perot AlGaAs-InGaAs pump laser diode mounted inside having an anti-reflection coating on its front facet. The light is coupled into a single-mode polarization-maintaining fiber with a mode-field diameter of 6.6 micrometer. The spectral properties of the source are defined by a fiber Bragg grating (FBG) that provides feedback in a narrow reflection band. The laser back facet and the FBG form a long resonant cavity of 1.7 m length in which laser light with a low coherence length of a few cm is generated. This configuration with the laser being operated in the coherence-collapse regime has the advantage of being robust against variations in the optical path, thus enabling stable and mode-hop free emission. The laser module has the following properties: a continuous-wave fiber output power exceeding 800 mW, a spectral bandwidth of less than 50 pm, a root-mean square power variation of less than 0.2 % from DC to 2 MHz over the entire power operating range, and a polarization extinction ratio of more than 20 dB. This is a compact, low noise, high power source for frequency conversion with nonlinear optical materials, such as blue light generation.

  19. CCD and CMOS sensors

    NASA Astrophysics Data System (ADS)

    Waltham, Nick

    The charge-coupled device (CCD) has been developed primarily as a compact image sensor for consumer and industrial markets, but is now also the preeminent visible and ultraviolet wavelength image sensor in many fields of scientific research including space-science and both Earth and planetary remote sensing. Today"s scientific or science-grade CCD will strive to maximise pixel count, focal plane coverage, photon detection efficiency over the broadest spectral range and signal dynamic range whilst maintaining the lowest possible readout noise. The relatively recent emergence of complementary metal oxide semiconductor (CMOS) image sensor technology is arguably the most important development in solid-state imaging since the invention of the CCD. CMOS technology enables the integration on a single silicon chip of a large array of photodiode pixels alongside all of the ancillary electronics needed to address the array and digitise the resulting analogue video signal. Compared to the CCD, CMOS promises a more compact, lower mass, lower power and potentially more radiation tolerant camera.

  20. Low-power low-noise analog circuits for on-focal-plane signal processing of infrared sensors

    NASA Astrophysics Data System (ADS)

    Pain, Bedabrata; Mendis, Sunetra K.; Schober, Robert C.; Nixon, Robert H.; Fossum, Eric R.

    1993-10-01

    On-focal-plane signal processing circuits for enhancement of IR imager performance are presented. To enable the detection of high background IR images, an in-pixel current-mode background suppression scheme is presented. The background suppression circuit consists of a current memory placed in the feedback loop of a CTIA and is designed for a thousand-fold suppression of the background flux, thereby easing circuit design constraints, and assuring BLIP operation even with detectors having large response non-uniformities. For improving the performance of low-background IR imagers, an on-chip column-parallel analog-to-digital converter (ADC) is presented. The design of a 10-bit ADC with 50 micrometers pitch and based on sigma-delta ((Sigma) -(Delta) ) modulation is presented. A novel IR imager readout technique featuring photoelectron counting in the unit cell is presented for ultra-low background applications. The output of the unit cell is a digital word corresponding to the incident flux density and the readout is noise free. The design of low-power (< 5 (mu) W), sub-electron input-referred noise, high-gain (> 100,000), small real estate (60 micrometers pitch) self-biased CMOS amplifiers required for photon counting are presented.

  1. Low-noise, low-power HgCdTe/Al2O3 1024 x 1024 FPAs

    NASA Astrophysics Data System (ADS)

    Kozlowski, Lester J.; Vural, Kadri; Cooper, Donald E.; Chen, C. Y.; Stephenson, D. M.; Cabelli, Scott A.

    1996-10-01

    We have developed two high performance 1024 multiplied by 1024 focal plane arrays for astronomy, spectroscopy, surveillance and conventional imaging. Each hybrid consists of a photovoltaic HgCdTe detector array, fabricated on Al2O3 substrate and having photoresponse cutoff wavelength optimized for each specific application, mated to a CMOS silicon readout via indium column interconnects. In addition to updating the performance of our 1024 multiplied by 1024 FPA for astronomy developed in 1994, we introduce a second 1024 multiplied by 1024 having capability for operation at TV-type frame rates. The latter device also has low read noise but at much higher bandwidth by virtue of its capacitive transimpedance amplifier input and pipelined readout architecture. Both devices have been shown capable of consistently achieving background-limited sensitivity at very low infrared backgrounds (less than or equal to 109 photons/cm2-sec) by their low read noise, low dark current including negligible MOSFET self-emission, and high quantum efficiency. FPA pixel operability as high as 99.94% with mean peak D* of 1014 cm-Hz1/2/W has been demonstrated. Proprietary hybridization and mounting techniques are being used to insure hybrid reliability after many thermal cycles. The hybrid methodology has been modeled using finite element modeling to understand the limiting mechanisms; very good agreement has been achieved with the measured reliability.

  2. A broadband 47-67 GHz LNA with 17.3 dB gain in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Chong, Wang; Zhiqun, Li; Qin, Li; Yang, Liu; Zhigong, Wang

    2015-10-01

    A broadband 47-67 GHz low noise amplifier (LNA) with 17.3 dB gain in 65-nm CMOS technology is proposed. The features of millimeter wave circuits are illustrated first and design methodologies are discussed. The wideband input matching of the LNA was achieved by source inductive degeneration, which is narrowband in the low-GHz range but wideband at millimeter-wave frequencies due to the existence of gate-drain capacitance, Cgd. In order to minimize the noise figure (NF), the LNA used a common-source (CS) structure rather than cascode in the first stage, and the noise matching principle is explored. The last two stages of the LNA used a cascode structure to increase the power gain. Analysis of the gain boost effect of the gate inductor at the common-gate (CG) transistor is also performed. T-shape matching networks between stages are intended to enlarge the bandwidth. All on-chip inductors and transmission lines are modeled and simulated with a 3-dimensional electromagnetic (EM) simulation tool to guarantee the success of the design. Measurement results show that the LNA achieves a maximum gain of 17.3 dB at 60 GHz, while the 3-dB bandwidth is 20 GHz (47-67 GHz), including the interested band of 59-64 GHz, and the minimum noise figure is 4.9 dB at 62 GHz. The LNA absorbs a current of 19 mA from a 1.2 V supply and the chip occupies an area of 900 × 550 μm2 including pads. Project supported by the National High Technology Research and Development Program of China (No. 2011AA010202).

  3. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e(-) RMS at room temperature. PMID:24187382

  4. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-01-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event’s time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e− RMS at room temperature. PMID:24187382

  5. Low-noise reset technique of an asynchronous charge-pulse-detecting pixel for single-photon X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sik; Han, Kwan-Young

    2016-02-01

    This paper presents a low-noise reset technique of an asynchronous charge-pulse-detecting pixel for single-photon X-ray imaging. The proposed slow-slope ramp (S2R) reset scheme provides a reset-noise-discharging loop circuit and effectively eliminates the residual noise charge stored on the sampling capacitor by extending the falling transition time of the reset signal. In addition, the presented S2R reset signal generation circuit accurately and effectively controls the optimum switching voltage and the falling transition time of the reset signal. The prototype detector chip was implemented by using a 130-nm complementary metal-oxide semiconductor (CMOS) process. With the quantitative analysis and the measurement results, we were able to verify that the reset noise was reduced exponentially, corresponding to the falling transition time of the reset signal. Based on the chip measurement results, the reset-noise level could be decreased by more than seven-fold by virtue of the proposed reset technique.

  6. Test Of A Microwave Amplifier With Superconductive Filter

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1995-01-01

    Report describes design and low-temperature tests of low-noise GaAs microwave amplifier combined with microstrip band-pass filter. Two versions of microstrip filter used in alternate tests; in one version, microstrips formed as films of high-transition-temperature superconductor Y/Ba/Cu/O on lanthanum aluminate substrate with gold film as ground plane. Other version identical except microstrips as well as ground plane made of gold, normally conductive.

  7. Ionization Readout of CDMS Detectors with Low Power, Low Noise HEMTs

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Jin, Y.; Sadoulet, B.

    2014-08-01

    We have measured the ionization performance of a CDMS II detector using CNRS/LPN HEMTs as opposed to Si JFETs in the front end electronics. We find no significant difference in ionization resolution when using HEMTs compared to Si JFETs indicating the CNRS/LPN HEMTs can act as a low power, low noise replacement for Si JFETs in cryogenic applications. We present the HEMT DC/AC properties, measured noise in both low impedance and high impedance closed-loop configurations using CDMS electronics, and performance with a CDMS detector exposed to a Am source.

  8. Test results of a 20 GHz, low noise downconverter for USAT applications

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Svoboda, James S.

    1995-01-01

    A key component in the development of the Advanced Communications Technology Satellite (ACTS) ultra small aperture terminal (USAT) earth station is the low noise downconverter (NLD). NASA Lewis Research Center (LeRC) has tested a version of an LND designed by Electrodyne Systems Corporation. A number of tests were conducted to characterize the radio frequency performance of the LND over temperature. The test results presented in this paper are frequency response, noise figure, gain, group delay, power transfer characteristics, image rejection, and spurious product suppression. The LND was one of several critical microwave subsystems developed and tested for the ACTS USAT earth stations.

  9. Low noise wing slat system with rigid cove-filled slat

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin (Inventor); Yadlin, Yoram (Inventor)

    2013-01-01

    Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.

  10. Low noise 22 GHz receiver for the radioastron satellite. Part 1: Requirements, design and reliability analysis

    NASA Astrophysics Data System (ADS)

    Piironen, P.; Mallat, J.; Raeisaenen, A.

    1994-03-01

    Radioastron project, initiated in 1985, is an international collaborative mission to launch a space research satellite carrying a radio telescope to an elliptical orbit around the Earth. The telescope comprises a 10 meter antenna and four two-channel VLBI (very long baseline interferometry) receivers at different frequencies built by project participants. This report presents principles of interferometry, VLBI system requirements, receiver requirements, principles and solutions for space qualified design and a reliability analysis for the cooled zz GHz receiver. The most important receiver design objectives have been low noise, good phase stability and high reliability.

  11. V-band low-noise integrated circuit receiver. [for space communication systems

    NASA Technical Reports Server (NTRS)

    Chang, K.; Louie, K.; Grote, A. J.; Tahim, R. S.; Mlinar, M. J.; Hayashibara, G. M.; Sun, C.

    1983-01-01

    A compact low-noise V-band integrated circuit receiver has been developed for space communication systems. The receiver accepts an RF input of 60-63 GHz and generates an IF output of 3-6 GHz. A Gunn oscillator at 57 GHz is phaselocked to a low-frequency reference source to achieve high stability and low FM noise. The receiver has an overall single sideband noise figure of less than 10.5 dB and an RF to IF gain of 40 dB over a 3-GHz RF bandwidth. All RF circuits are fabricated in integrated circuits on a Duroid substrate.

  12. A 20 GHz low noise, low cost receiver for digital satellite communication system, ground terminal applications

    NASA Technical Reports Server (NTRS)

    Allen, Glen

    1988-01-01

    A 45 month effort for the development of a 20 GHz, low-noise, low-cost receiver for digital, satellite communication system, ground terminal applications is discussed. Six proof-of-concept receivers were built in two lots of three each. Performance was generally consistent between the two lots. Except for overall noise figure, parameters were within or very close to specification. While noise figure was specified as 3.5 dB, typical performance was measured at 3.0 to 5.5 dB, over the full temperature range of minus 30 C to plus 75 C.

  13. Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Schuck, C.; Pernice, W. H. P.; Ma, X.; Tang, H. X.

    2013-05-01

    We demonstrate optical time domain reflectometry over 200 km of optical fiber using low-noise NbTiN superconducting single-photon detectors integrated with Si3N4 waveguides. Our small detector footprint enables high timing resolution of 50 ps and a dark count rate of 3 Hz with unshielded fibers, allowing for identification of defects along the fiber over a dynamic range of 37.4 dB. Photons scattered and reflected back from the fiber under test can be detected in free-running mode without showing dead zones or other impairments often encountered in semiconductor photon-counting optical time domain reflectometers.

  14. Air backed mandrel type fiber optic hydrophone with low noise floor

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; V, Sreehari C.; N, Praveen Kumar; Awasthi, R. L.; K, Vivek; B, Vishnu M.; Santhanakrishnan, T.; Moosad, K. P. B.; Mathew, Basil

    2014-10-01

    Low noise fiber optic hydrophone based on optical fiber coil wound on air-backed mandrel was developed. The sensor can be effectively used for underwater acoustic sensing. The design and characterization of the hydrophone is illustrated in this paper. A fiber Mach-Zehnder Interferometer (MZI) was developed and coupled with a Distributed Feedback (DFB) fiber laser source and an optical phase demodulation system, with an active modulation in one of the arms. The sensor head design was optimized to achieve noise spectral density <10 μrad/√Hz, for yielding sufficient sensitivity to sense acoustic pressure close to Deep Sea Sate Zero (DSS0).

  15. Non-destructive single-pass low-noise detection of ions in a beamline.

    PubMed

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar(13+)) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections. PMID:26628124

  16. Non-destructive single-pass low-noise detection of ions in a beamline

    SciTech Connect

    Schmidt, Stefan; Murböck, Tobias; Birkl, Gerhard; Andelkovic, Zoran; Vogel, Manuel; Nörtershäuser, Wilfried; Stahl, Stefan

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  17. A Low Noise, High QE, Large Format CCD Camera System for the NASA MIGHTI Instrument

    NASA Astrophysics Data System (ADS)

    Hancock, J. J.; Cardon, J.; Watson, M.; Cook, J.; Whiteley, M.; Beukers, J.; Englert, C. R.; Brown, C. M.; Harlander, J.

    2015-12-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument is part of the NASA Ionspheric Connection Explorer (ICON) mission designed to uncover the mysteries of the extreme variability of the Earth's ionosphere. MIGHTI consists of two identical units positioned to observe the Earth's low latitude thermosphere from perpendicular viewing directions. The MIGHTI instrument is a spatial heterodyne spectrometer and requires a low noise, high QE, large format camera system to detect slight phase changes in the fringe patterns which reveal the neutral wind velocity. The MIGHTI camera system uses a single control electronics box to operate two identical CCD camera heads and communicate with the ICON payload electronics. The control electronics are carefully designed for a low noise implementation of CCD biases, clocking, and CCD output digitization. The camera heads consist of a 2k by 2K, back-illuminated, frame transfer CCD provided by e2v. The CCD's are both TEC cooled and have butcher-block filters mounted in close proximity of the active area. The CCDs are nominally operated in binned mode, the control electronics register settings provide flexibility for binning and gain control. An engineering model of the camera system has been assembled and tested. The EM camera system characterization meets all performance requirements. Performance highlights include a measured read noise of 5.7 electrons and dark current of 0.01 electronics/pixel/second. The camera system design and characterization results will be presented.

  18. Scalp EEG acquisition in a low-noise environment: a quantitative assessment.

    PubMed

    Zandi, Ali Shahidi; Dumont, Guy A; Yedlin, Matthew J; Lapeyrie, Philippe; Sudre, Christophe; Gaffet, Stéphane

    2011-08-01

    This pilot study investigates effects of an ultra shielded capsule at the low-noise underground laboratory (LSBB), Rustrel, France, when used to acquire scalp electroencephalogram (EEG). Analysis of EEG recordings from three volunteers confirms that clean EEG signals can be acquired in the LSBB capsule without the need for notch filtering. In addition, using different setups for acquiring EEG in the capsule, statistical analysis of power spectral densities based on a geodesic distance measure reveals that the laptop computer and patient module do not introduce any noise on recorded signals. Moreover, the current study shows that the backward counting task as a mental activity can be better detected using the EEG acquired in the capsule due to the higher level of â-band activities. The counting-relaxed â-band energy ratio is calculated using the S transform and compared between the hospital and capsule, revealing significantly higher values in the capsule (p < 0.05). Exploring the relative â-band energy (ratio of â-band energy to that of 0-12 Hz in counting state) reveals that the average of this measure is higher in the capsule for all subjects. Those results demonstrate the potential of the LSBB capsule for novel EEG studies, including establishing novel low-noise EEG benchmarks. PMID:21652283

  19. An Extremely Wide Bandwidth, Low-Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas

    2002-01-01

    Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.

  20. A Wide-Bandwidth, Low-Noise SIS Receiver Design for Millimeter and Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; LeDuc, Henry G.; Miller, David; Rice, Frank; Weinreb, Sander; Zmuidzinas, Jonas

    2004-01-01

    In principle, millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We are applying modem design tools, such as 3D electromagnetic simulators and Caltech's SuperMix SIS analysis package, to develop a new generation of waveguide SIS mixers with very broad RF and IF bandwidths. Our initial design consists of a double-sideband mixer targeted for the 180- 300 GHz band that uses a single SIS junction excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output band, limited by the MMIC low-noise IF preamplifier, is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss is predicted to be no more than 1-2 dB (single-sideband) with mixer noise temperatures across the band within 10 Kelvin of the quantum limit. The single-sideband receiver noise temperature goal is 70 Kelvin. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and a demonstration on the CSO should occur in the spring of 2003.

  1. Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.

    2007-01-01

    The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.

  2. Development of an ultralow current amplifier for scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Carlà, M.; Lanzi, L.; Pallecchi, E.; Aloisi, G.

    2004-02-01

    A transimpedance amplifier for ultralow current scanning tunneling microscopy has been developed. Conditions for maximum signal-to-noise ratio have been explored, showing that best results can be obtained with a simple circuital arrangement. The amplifier associates a very high amplification factor (0.5 V/pA) to a sufficiently wide bandwith (1.6 kHz) and very low noise current (49 fA). Those features enable microscopy studies on an almost insulating surface, such as a freshly cleaved mica surface.

  3. Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, Jonas

    2002-01-01

    The goal of this project is to develop and demonstrate a new generation of superconducting tunnel junction (SIS) receivers with extremely wide instantaneous (intermediate-frequency, or IF) bandwidths, of order 12 GHz. Such mixers would allow rapid submillimeter wavelength spectral line surveys to be carried out with SOFIA, and could potentially be used for future submillimeter space missions such as SAFIR. There are two major components which are being developed: (1) SIS mixers with broad (12 GHz) IF bandwidths; and (2) low-noise, broadband microwave, (6-18 GHz) amplifiers, which amplify the IF output from the SIS mixer. The work on these components is discussed in two sections

  4. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  5. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC

    NASA Astrophysics Data System (ADS)

    Min, Chen; Yuntao, Liu; Jingbo, Xiao; Jie, Chen

    2016-06-01

    This paper presents a low noise complimentary metal–oxide-semiconductor (CMOS) detection chip for amperometric electrochemical sensors. In order to effectively remove the input offset of the cascaded integrators and the low frequency noise in the modulator, a novel offset cancellation chopping scheme was proposed in the Incremental ΔΣ analog to digital converter (IADC). A novel low power potentiostat was employed in this chip to provide the biasing voltage for the sensor while mirroring the sensor current out for detection. The chip communicates with FPGA through standard built in I2C interface and SPI bus. Fabricated in 0.18-μm CMOS process, this chip detects current signal with high accuracy and high linearity. A prototype microsystem was produced to verify the detection chip performance with current input as well as micro-sensors. Project supported by the State Key Development Program for Basic Research of China (No. 2015CB352100).

  6. IR CMOS: the digital nightvision solution to sub-1 mLux imaging

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Vineis, C.; Palsule, C.; Jiang, J.; Joy, T.

    2015-05-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux at 60 FPS with a 720P CMOS image sensor in a compact, low latency camera. The camera contains a 1 inch (16 mm) optical format sensor and streams uncompressed video over CameraLink with row wise image latency below 1 msec. Sub mLux imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancement is achieved by utilizing SiOnyx's proprietary ultrafast laser semiconductor processing technology that enhances the absorption of light within a thin pixel layer. Our technology demonstrates a 10 fold improvement in infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see-spot.

  7. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  8. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  9. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  10. CMOS image sensor with contour enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui

    2010-10-01

    Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.

  11. Monolithically fabricated germanium-on-SOI photodetector and Si CMOS circuit for integrated photonic applications

    NASA Astrophysics Data System (ADS)

    Ang, Kah-Wee; Liow, Tsung-Yang; Yu, Ming-Bin; Fang, Qing; Song, Junfeng; Lo, Guo Q.; Kwong, Dim-Lee

    2010-05-01

    In this paper, we report our design and fabrication approach towards realizing a monolithic integration of Ge photodetector and Si CMOS circuits on common SOI platform for integrated photonic applications. The approach, based on the Ge-on-SOI technology, enables the realization of high sensitivity and low noise photodetector that is capable of performing efficient optical-to-electrical encoding in the near-infrared wavelengths regime. When operated at a bias of -1.0V, a vertical PIN detector achieved a lower Idark of ~0.57μA as compared to a lateral PIN detector, a value that is below the typical ~1μA upper limit acceptable for high speed receiver design. Very high responsivity of ~0.92A/W was obtained in both detector designs for a wavelength of 1550nm, which corresponds to a quantum efficiency of ~73%. Impulse response measurements showed that a vertical PIN photodetector gives rise to a smaller FWHM of ~24.4ps, which corresponds to a -3dB bandwidth of ~11.3GHz where RC time delay is known to be the dominant factor limiting the speed performance. Eye patterns (PRBS 27-1) measurement further confirms the achievement of high speed and low noise photodetection at a bit-rate of 8.5Gb/s. In addition, we evaluate the DC characteristics of the monolithically fabricated Si CMOS inverter circuit. Excellent transfer and output characteristics were achieved by the integrated CMOS inverter circuits in addition to the well behaved logic functions. We also assess the impact of the additional thermal budget introduced by the Ge epitaxy growth on the threshold voltage variation of the short channel CMOS transistors and discuss the issues and potential for the seamless integration of electronic and photonic integrated circuits.

  12. Analysis of a dc SQUID readout scheme with voltage feedback circuit and low-noise preamplifier

    NASA Astrophysics Data System (ADS)

    Zeng, Jia; Zhang, Yi; Schmelz, Matthias; Mück, Michael; Krause, Hans-Joachim; Braginski, Alex I.; Lee, Yong-Ho; Stolz, Ronny; Kong, Xiangyan; Xie, Xiaoming; Meyer, Hans-Georg; Offenhäusser, Andreas; Jiang, Mianheng

    2014-08-01

    We analyzed the dc SQUID with voltage feedback circuit (VFC) and a low-noise room-temperature preamplifier to evaluate the feasibility of a low-noise SQUID direct-coupled readout scheme (DRS), possibly eliminating the need for a two-stage scheme employing a SQUID preamplifier. The passive VFC, connected in parallel to the SQUID, consists of a resistor Rs in series with an inductor L s. This inductor is coupled to the SQUID by a mutual inductance Ms. The purpose of the VFC is to increase the SQUID’s flux-to-voltage transfer coefficient ∂V/∂Φ, thus reducing the preamplifier noise contribution δΦpreamp. However, at the same time, VFC introduces the thermal noise of Rs, δΦR, which may not be negligible. Generally, the noise of the readout scheme, δΦreadout, may thus include both δΦpreamp and δΦR, i.e., δΦreadout2 = δΦpreamp2 + δΦR2. To characterize the SQUID operation with VFC we introduced two dimensionless parameters, r = Rs/Rd and Δ = (M s/Mdyn) - (Rs/R d), where Rd and Mdyn = 1/(∂i/∂Φ) are dynamic properties of the SQUID itself. For assumed intrinsic SQUID parameters, we then numerically analyzed the dependence of δΦreadout noise components on r and Δ to determine their suitable ranges and the minimum of δΦreadout. To verify our analysis, we experimentally characterized, in liquid helium, three niobium SQUIDs with VFC, having suitably chosen r and Δ. The measured SQUID system flux noise was on the order of 1 μΦ0/√Hz, comparable to the intrinsic noise of the SQUID itself. The deduced equivalent voltage noise was comparable to that of a SQUID preamplifier in the two-stage readout. Simple single-stage ultra-low-noise SQUID DRS readout was thus demonstrated.

  13. Analysis of pixel circuits in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Mei, Zou; Chen, Nan; Yao, Li-bin

    2015-04-01

    CMOS image sensors (CIS) have lower power consumption, lower cost and smaller size than CCD image sensors. However, generally CCDs have higher performance than CIS mainly due to lower noise. The pixel circuit used in CIS is the first part of the signal processing circuit and connected to photodiode directly, so its performance will greatly affect the CIS or even the whole imaging system. To achieve high performance, CMOS image sensors need advanced pixel circuits. There are many pixel circuits used in CIS, such as passive pixel sensor (PPS), 3T and 4T active pixel sensor (APS), capacitive transimpedance amplifier (CTIA), and passive pixel sensor (PPS). At first, the main performance parameters of each pixel structure including the noise, injection efficiency, sensitivity, power consumption, and stability of bias voltage are analyzed. Through the theoretical analysis of those pixel circuits, it is concluded that CTIA pixel circuit has good noise performance, high injection efficiency, stable photodiode bias, and high sensitivity with small integrator capacitor. Furthermore, the APS and CTIA pixel circuits are simulated in a standard 0.18-μm CMOS process and using a n-well/p-sub photodiode by SPICE and the simulation result confirms the theoretical analysis result. It shows the possibility that CMOS image sensors can be extended to a wide range of applications requiring high performance.

  14. A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita

    2016-02-01

    We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 \\upmu m. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.

  15. A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita

    2016-07-01

    We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 μm. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.

  16. A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Nagase, Koichi; Wada, Takehiko; Ikeda, Hirokazu; Arai, Yasuo; Ohno, Morifumi; Hanaoka, Misaki; Kanada, Hidehiro; Oyabu, Shinki; Hattori, Yasuki; Ukai, Sota; Suzuki, Toyoaki; Watanabe, Kentaroh; Baba, Shunsuke; Kochi, Chihiro; Yamamoto, Keita

    2016-07-01

    We are developing a fully depleted silicon-on-insulator (FD-SOI) CMOS readout integrated circuit (ROIC) operated at temperatures below ˜ 4 K. Its application is planned for the readout circuit of high-impedance far-infrared detectors for astronomical observations. We designed a trans-impedance amplifier (TIA) using a CMOS operational amplifier (OPAMP) with FD-SOI technique. The TIA is optimized to readout signals from a germanium blocked impurity band (Ge BIB) detector which is highly sensitive to wavelengths of up to ˜ 200 \\upmu m. For the first time, we demonstrated the FD-SOI CMOS OPAMP combined with the Ge BIB detector at 4.5 K. The result promises to solve issues faced by conventional cryogenic ROICs.

  17. NV-CMOS HD camera for day/night imaging

    NASA Astrophysics Data System (ADS)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  18. Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.

    2015-12-01

    Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 \\upmu m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.

  19. Low-noise multiple watermarks technology based on complex double random phase encoding method

    NASA Astrophysics Data System (ADS)

    Zheng, Jihong; Lu, Rongwen; Sun, Liujie; Zhuang, Songlin

    2010-11-01

    Based on double random phase encoding method (DRPE), watermarking technology may provide a stable and robust method to protect the copyright of the printing. However, due to its linear character, DRPE exist the serious safety risk when it is attacked. In this paper, a complex coding method, which means adding the chaotic encryption based on logistic mapping before the DRPE coding, is provided and simulated. The results testify the complex method will provide better security protection for the watermarking. Furthermore, a low-noise multiple watermarking is studied, which means embedding multiple watermarks into one host printing and decrypt them with corresponding phase keys individually. The Digital simulation and mathematic analysis show that with the same total embedding weight factor, multiply watermarking will improve signal noise ratio (SNR) of the output printing image significantly. The complex multiply watermark method may provide a robust, stability, reliability copyright protection with higher quality printing image.

  20. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    SciTech Connect

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  1. Low-noise pseudomorphic dual-gate cascode HEMT's with extremely high gain

    NASA Astrophysics Data System (ADS)

    Wenger, J.; Narozny, P.; Daembkes, H.; Splettstoesser, J.; Werres, C.

    1992-02-01

    Quarter-micron InGaAs-GaAs dual-gate HEMTs connected as a cascode MMIC in a compact manner have been fabricated and investigated. The devices show a high output impedance and a very low feedback capacitance, resulting in a high-voltage gain factor gm/gd of 125 and a Cgs/Cgd ratio of 45. The current gain cutoff frequency fT is 45 GHz and the maximum stable gain is 23.5 dB at 10 GHz and 19 dB at 20 GHz. The pseudomorphic cascode HEMTs show a low-noise figure of 1.1 dB with an associated gain of 22 dB at 10 GHz, at 18 GHz the minimum noise figure is 1.9 dB with 16-dB gain.

  2. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes

    NASA Astrophysics Data System (ADS)

    Pullia, A.; Sanvito, T.; Potenza, M. A.; Zocca, F.

    2012-10-01

    An original low-noise large dynamic-range readout system for optical light spectroscopy with PIN diodes is presented. The front-end circuit is equipped with a smart device for automatic cancellation of the large dc offset brought about by the photodiode current. This device sinks away the exact amount of dc current from the preamplifier input, yielding auto zeroing of the output-voltage offset, while introducing the minimum electronic noise possible. As a result the measurement dynamic-range is maximized. Moreover, an auxiliary inspection point is provided which precisely tracks the dc component of the photodiode current. This output allows for precise beam alignment and may also be used for diagnostic purposes. The excellent gain stability and linearity make the circuit perfectly suited for optical-light pulse spectroscopy. Applications include particle sizing in the 100 nm range, two-dimensional characterization of semiconductor detectors, ultra-precise characterization of laser beam stability, confocal microscopy.

  3. Rapid single-flux-quantum circuits for low noise mK operation

    NASA Astrophysics Data System (ADS)

    Intiso, Samuel; Pekola, Jukka; Savin, Alexander; Devyatov, Ygor; Kidiyarova-Shevchenko, Anna

    2006-05-01

    Rapid single-flux-quantum (RSFQ) technology has been proposed as control electronics for superconducting quantum bits because of the material and working temperature compatibility. In this work, we consider practical aspects of RSFQ circuit design for low noise low power operation. At the working temperature of 20 mK and operational frequency of 2 GHz, dissipated power per junction is reduced to 25 pW by using 6 µA critical current junctions available at the Hypres and VTT low Jc fabrication process. To limit phonon temperature to 30 mK, a maximum of 40 junctions can be placed on a 5 mm × 5 mm chip. Electron temperature in resistive shunts of Josephson junctions is minimized by use of cooling fins, giving minimum electron temperatures of about 150 mK for the Hypres process and 70 mK for the VTT process.

  4. Review of the latest developments in fast low noise detectors for wavefront sensing in the visible

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.

    2014-08-01

    In this paper we describe the development of fast low noise detectors intended primarily for use in Shack Hartmann wavefront sensors for natural and laser guide star wavefront sensing in the future adaptive optics systems of the Thirty Meter Telescope Project and the Next Generation Adaptive Optics system at the W. M. Keck Observatory. This work results from collaboration among the W. M. Keck Observatory, the Thirty Meter Telescope Project, the Lincoln Laboratory of the Massachusetts Institute of Technology, and the Starfire Optical Range of the Air Force Research Laboratory. Testing of backside thinned, packaged detectors has been completed and performance results including read noise, readout speed, charge diffusion, dark current, and quantum efficiency will be reported. Proposed developments of readout systems to compliment this detector will be described, and performance compared to alternative detector solutions.

  5. Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.

    2016-07-01

    Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 {\\upmu } m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.

  6. Quantum witness of high-speed low-noise single-photon detection.

    PubMed

    Zhao, Lin; Huang, Kun; Liang, Yan; Chen, Jie; Shi, Xueshun; Wu, E; Zeng, Heping

    2015-12-14

    We demonstrate high-speed and low-noise near-infrared single-photon detection by using a capacitance balancing circuit to achieve a high spike noise suppression for an InGaAs/InP avalanche photodiode. The single-photon detector could operate at a tunable gate repetition rate from 10 to 60 MHz. A peak detection efficiency of 34% has been achieved with a dark count rate of 9 × 10⁻³ per gate when the detection window was set to 1 ns. Additionally, quantum detector tomography has also been performed at 60 MHz of repetition rate and for the detection window of 1 ns, enabling to witness the quantum features of the detector with the help of a negative Wigner function. By varying the bias voltage of the detector, we further demonstrated a transition from the full-quantum to semi-classical regime. PMID:26698977

  7. An ultrahigh stability, low-noise laser current driver with digital control

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Van Zijll, Marshall; Doermann, Greg; Durfee, Dallin S.

    2008-07-01

    We present a low-noise, high modulation-bandwidth design for a laser current driver with excellent long-term stability. The driver improves upon the commonly used Hall-Libbrecht design. The current driver can be operated remotely by way of a microprocessing unit, which controls the current set point digitally. This allows precise repeatability and improved accuracy and stability. It also allows the driver to be placed near the laser for reduced noise and for lower phase lag when using the modulation input. We present the theory of operation for our driver in detail, and give a thorough characterization of its stability, noise, set-point accuracy and repeatability, temperature dependence, transient response, and modulation bandwidth.

  8. Low-noise magnetic observatory variometer with race-track sensors

    NASA Astrophysics Data System (ADS)

    Janošek, M.; Petrucha, V.; Vlk, M.

    2016-03-01

    We present a low-noise, high-stability observatory magnetometer with race-track sensors, as developed by the Czech Technical University in Prague for National Observatory of Athens. As opposed to the standard instruments, we used our novel race-track fluxgate sensors with planar oval core which were cut by state-of-the art pico-second UV-laser. The noise performance of the complete electronics and sensor chain is below 6 pT/√Hz @ 1 Hz. The electronics uses 24-bit 200-Hz A/D converter with simultaneous sampling and all digital processing is done in FPGA. The variometer with the sensors mounted on a MACOR cube has been successfully calibrated by scalar method.

  9. Computerized Design and Generation of Low-noise Helical Gears with Modified Surface Topology

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Chen, N. X.; Lu, J.; Handschuh, R. F.

    1994-01-01

    An approach for design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.

  10. All-solid-state low noise Yb:YAG/LBO green laser at 515 nm

    NASA Astrophysics Data System (ADS)

    Liu, Qianqian; Yang, Min; Yao, Yi; Zhao, Ling; Li, Bin; Qu, Dapeng; Zheng, Quan

    2013-07-01

    We report the efficient compact green laser at 515 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode-pumped Yb:YAG laser on the transition at 1030 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation (SHG) of the laser. With the incident pump power of 10 W, 270 mW of CW output power at 515 nm is achieved with 15-mm-long LBO. The optical-to-optical conversion efficiency is 2.7%, and the power stability in 8 h is better than 2.36% with low noise.

  11. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy.

    PubMed

    Gaponenko, I; Gamperle, L; Herberg, K; Muller, S C; Paruch, P

    2016-06-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown. PMID:27370461

  12. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gaponenko, I.; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P.

    2016-06-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  13. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  14. Ultra-low-noise microwave extraction from fiber-based optical frequency comb.

    PubMed

    Millo, J; Boudot, R; Lours, M; Bourgeois, P Y; Luiten, A N; Le Coq, Y; Kersalé, Y; Santarelli, G

    2009-12-01

    In this Letter we report on an all-optical-fiber approach to the generation of ultra-low-noise microwave signals. We make use of two erbium fiber mode-locked lasers phase locked to a common ultrastable laser source to generate an 11.55 GHz signal with an unprecedented relative phase noise of -111 dBc/Hz at 1 Hz from the carrier. The residual frequency instability of the microwave signals derived from the two optical frequency combs is below 2.3x10(-16) at 1 s and about 4x10(-19) at 6.5x10(4) s (in 5 Hz bandwidth, three days of continuous operation). PMID:19953169

  15. Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Fuentes, Alfonso; Mullins, Baxter R.; Woods, Ron

    2002-01-01

    An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact has been developed. The computation procedure is an iterative process, requiring four separate steps that provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis permits the contact and bending stresses to be determined and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require an intermediate CAD computer program. A commercially available finite element analysis computer program with contact capability was used to conduct the stress analysis. The theory developed is illustrated with numerical examples.

  16. Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Fuentes, A.; Litvin, F. L.; Mullins, B. R.; Woods, R.; Handschuh, R. F.; Lewicki, David G.

    2002-01-01

    An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact is proposed. The procedure of computations is an iterative process that requires four separate procedures and provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment on noise and vibration, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis enables us to determine the contact and bending stresses and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require intermediate CAD computer programs for application of general purpose computer program for finite element analysis.

  17. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    PubMed Central

    Liu, Xiaomin; Villanueva, Guillermo E.; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength 600 nm, based on an Yb-fiber laser and a highly nonlinear photonic crystal fiber. A relative intensity noise as low as 103 dBc/Hz, corresponding to 2.48% pulse-to-pulse fluctuation in energy, is observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ-pulse energy. This pulse-to-pulse fluctuation is at least 10.6-dB lower compared to spectrally sliced supercontinuum sources traditionally used for ultrafast fiber-based generation at visible wavelengths. Low noise makes all-fiber Cherenkov sources promising for biophotonics applications such as multiphoton microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum. PMID:24532961

  18. Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers

    NASA Astrophysics Data System (ADS)

    Kawamura, Jonathan; Chen, Jian; Miller, David; Kooi, Jacob; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    1999-12-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor quasiparticle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of TRX=260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high-gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2Δ/h˜1.2 THz.

  19. Low-Noise Submillimeter-Wave NbTiN Superconducting Tunnel Junction Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, J.; Chen, J.; Miller, D.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1999-01-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor (SIS) quasi-particle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of T(sub RX) = 260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2(delta)/h is approximately 1.2THz.

  20. A low noise and high precision linear power supply with thermal foldback protection

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50 nV / √{ Hz } at 1 Hz and 20 nV / √{ Hz } white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/∘C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.

  1. The high speed low noise multi-data processing signal process circuit research of remote sensing

    NASA Astrophysics Data System (ADS)

    Su, Lei; Jiang, Haibin; Dong, Wang

    2013-08-01

    The high speed, low noise and integration characteristic are the main technology and the main development directions on the signal process circuit of the image sensor, especially in high resolution remote sensing. With these developments, the high noise limiting circuits, high speed data transfer system and the integrated design of the signal process circuit become more and more important. Therefore the requirement of the circuit system simulation is more and more important during the system design and PCB board design process. A CCD signal process circuit system which has the high speed, low noise and several selectable operate modes function was designed and certificated in this paper, during the CCD signal process circuit system design, simulation was made which include the signal integrity and the power integrity. The important devices such as FPGA and the DDR2 device were simulated, using the power integrity simulation the sensitive power planes of the FPGA on the PCB was modified to make the circuit operate more stabilize on a higher frequency. The main clock path and the high speed data path of the PCB board were simulated with the signal integrity. All the simulation works make the signal process circuit system's image's SNR value get higher and make the circuit system could operate well on higher frequency. In the board testing process, the PCB time diagrams were listed on the testing chapter and the wave's parameter meets the request. The real time diagram and the simulated result of the PCB board was listed respectively. The CCD signal process circuit system's images' SNR (Signal Noise Ratio) value, the 14bit AFE slew rate and the data transfer frequency is listed in the paper respective.

  2. A low noise and high precision linear power supply with thermal foldback protection.

    PubMed

    Carniti, P; Cassina, L; Gotti, C; Maino, M; Pessina, G

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50nV/Hz at 1 Hz and 20nV/Hz white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/(∘)C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus. PMID:27250450

  3. Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T

    NASA Astrophysics Data System (ADS)

    Resmer, Frank; Seton, Hugh C.; Hutchison, James M. S.

    2010-03-01

    We have investigated the design and construction of liquid nitrogen cooled surface coils made from stranded (litz) copper wire for low field MRI applications. If designed correctly, cooled litz coils can provide a competitive alternative to high temperature superconducting (HTS) coils without the complications associated with flux trapping. Litz coils can also be produced with a wider range of shapes and sizes, and at lower cost. Existing models were verified experimentally for flat spiral coils wound from solid and litz wires, operated at room temperature and 77 K, and then used to design and optimise a cooled receive coil for MRI at 0.01 T (425 kHz). The Q-factor reached 1022 when the coil was cooled to 77 K, giving a bandwidth of just 0.42 kHz, so a low noise JFET preamplifier was developed to provide active damping of the coil resonance and thus minimise image intensity artefacts. The noise contribution of the preamplifier was determined using a method based on resistive sources and image noise analysis. The voltage and current noise were measured to be 1.25 nV/ Hz 1/2 and 51 fA/ Hz 1/2, respectively, and these values were used to estimate a noise figure of 0.32 dB at the resonant frequency of the cooled coil. The coil was used to acquire 0.01 T spin echo images, first at room temperature and then cooled to 77 K in a low noise liquid nitrogen cryostat. The measured SNR improvement on cooling, by a factor of 3.0, was found to correspond well with theoretical predictions.

  4. The use of quartz patch pipettes for low noise single channel recording.

    PubMed Central

    Levis, R A; Rae, J L

    1993-01-01

    Quartz has a dissipation factor of approximately 10(-4), which is an order of magnitude less than that of the best glasses previously used to fabricate patch pipettes; it's dielectric constant of 3.8 is also lower than that of other glasses. On the basis of these electrical characteristics it is expected that patch pipettes pulled from quartz tubing will produce significantly less noise than pipettes made from other glasses. Our work confirms these expectations and we describe theoretical and practical aspects of the use of quartz pipettes for single channel patch voltage clamp measurements. Methods for pulling quartz pipettes with a laser-based puller and coating them with low-loss elastomers are discussed, as are precautions that are necessary to achieve low noise recordings. We have shown that quartz pipettes can be pulled from tubing with outer diameter to inner diameter ratios as large as 3 and a method of applying heavy elastomer coatings all the way to the tip of pipettes is presented. Noise sources arising from the pipette and its holder are described theoretically, and it is shown that measured noise is in good agreement with such predictions. With low noise capacitive feedback electronics, small geometry holders, and thick-walled quartz pipettes coated with low-loss elastomers we have been routinely able to achieve noise of 100 fA rms or less in a 5-kHz bandwidth with real cell patches and a pipette immersion depth of approximately 2 mm. On occasion we have achieved noise as low as 60 fA rms in this bandwidth. Images FIGURE 1 FIGURE 2 PMID:7506069

  5. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.

    PubMed

    Schwarz, Tobias; Nagel, Joachim; Wölbing, Roman; Kemmler, Matthias; Kleiner, Reinhold; Koelle, Dieter

    2013-01-22

    Superconductivity in the cuprate YBa(2)Cu(3)O(7) (YBCO) persists up to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct current (dc) superconducting quantum interference devices (SQUIDs) can be realized in epitaxially grown YBCO films by using grain boundary Josephson junctions (GBJs). Here we present the realization of high-quality YBCO nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-noise performance of such a SQUID up to B = 1 T applied parallel to the plane of the SQUID loop at the temperature T = 4.2 K. The GBJs are shunted by a thin Au layer to provide nonhysteretic current voltage characteristics, and the SQUID incorporates a 90 nm wide constriction which is used for on-chip modulation of the magnetic flux through the SQUID loop. The white flux noise of the device increases only slightly from 1.3 μΦ(0)/(Hz)(1/2) at B = 0 to 2.3 μΦ(0)/(Hz))(1/2) at 1 T. Assuming that a point-like magnetic particle with magnetization in the plane of the SQUID loop is placed directly on top of the constriction and taking into account the geometry of the SQUID, we calculate a spin sensitivity S(μ)(1/2) = 62 μ(B)/(Hz))(1/2) at B = 0 and 110 μ(B)/(Hz))(1/2) at 1 T. The demonstration of low noise of such a SQUID in Tesla fields is a decisive step toward utilizing the full potential of ultrasensitive nanoSQUIDs for direct measurements of magnetic hysteresis curves of magnetic nanoparticles and molecular magnets. PMID:23252846

  6. A CMOS image sensor dedicated to medical gamma camera application

    NASA Astrophysics Data System (ADS)

    Salahuddin, Nur S.; Paindavoine, Michel; Ginhac, Dominique; Parmentier, Michel; Tamda, Najia

    2005-03-01

    Generally, medical Gamma Camera are based on the Anger principle. These cameras use a scintillator block coupled to a bulky array of photomultiplier tube (PMT). To simplify this, we designed a new integrated CMOS image sensor in order to replace bulky PMT photodetetors. We studied several photodiodes sensors including current mirror amplifiers. These photodiodes have been fabricated using a CMOS 0.6 micrometers process from Austria Mikro Systeme (AMS). Each sensor pixel in the array occupies respectively, 1mm x 1mm area, 0.5mm x 0.5mm area and 0.2mm 0.2mm area with fill factor 98 % and total chip area is 2 square millimeters. The sensor pixels show a logarithmic response in illumination and are capable of detecting very low green light emitting diode (less than 0.5 lux) . These results allow to use our sensor in new Gamma Camera solid-state concept.

  7. A CMOS integrated timing discriminator circuit for fast scintillation counters

    SciTech Connect

    Jochmann, M.W.

    1998-06-01

    Based on a zero-crossing discriminator using a CR differentiation network for pulse shaping, a new CMOS integrated timing discriminator circuit is proposed for fast (t{sub r} {ge} 2 ns) scintillation counters at the cooler synchrotron COSY-Juelich. By eliminating the input signal`s amplitude information by means of an analog continuous-time divider, a normalized pulse shape at the zero-crossing point is gained over a wide dynamic input amplitude range. In combination with an arming comparator and a monostable multivibrator this yields in a highly precise timing discriminator circuit, that is expected to be useful in different time measurement applications. First measurement results of a CMOS integrated logarithmic amplifier, which is part of the analog continuous-time divider, agree well with the corresponding simulations. Moreover, SPICE simulations of the integrated discriminator circuit promise a time walk well below 200 ps (FWHM) over a 40 dB input amplitude dynamic range.

  8. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    NASA Technical Reports Server (NTRS)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  9. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    PubMed

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055

  10. Implantable neurotechnologies: a review of integrated circuit neural amplifiers

    PubMed Central

    Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V.

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055

  11. CMOS mm-wave transceivers for Gbps wireless communication

    NASA Astrophysics Data System (ADS)

    Baoyong, Chi; Zheng, Song; Lixue, Kuang; Haikun, Jia; Xiangyu, Meng; Zhihua, Wang

    2016-07-01

    The challenges in the design of CMOS millimeter-wave (mm-wave) transceiver for Gbps wireless communication are discussed. To support the Gbps data rate, the link bandwidth of the receiver/transmitter must be wide enough, which puts a lot of pressure on the mm-wave front-end as well as on the baseband circuit. This paper discusses the effects of the limited link bandwidth on the transceiver system performance and overviews the bandwidth expansion techniques for mm-wave amplifiers and IF programmable gain amplifier. Furthermore, dual-mode power amplifier (PA) and self-healing technique are introduced to improve the PA's average efficiency and to deal with the process, voltage, and temperature variation issue, respectively. Several fully-integrated CMOS mm-wave transceivers are also presented to give a short overview on the state-of-the-art mm-wave transceivers. Project supported in part by the National Natural Science Foundation of China (No. 61331003).

  12. III-V HEMTs: low-noise devices for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Mateos, Javier

    2003-05-01

    With the recent development of broadband and satellite communications, one of the main engines for the advance of modern Microelectronics is the fabrication of devices with increasing cutoff frequency and lowest possible level of noise. Even if heterojunction bipolar devices (HBTs) have reached a good frequency performance, the top end of high frequency low-noise applications is monopolized by unipolar devices, mainly HEMTs (High Electron Mobility Transistors). In particular, within the vast family of heterojunction devices, the best results ever reported in the W-band have been obtained with InP based HEMTs using the AlInAs/InGaAs material system, improving those of usual GaAs based pseudomorphic HEMTs. In field effect devices, the reduction of the gate length (Lg) up to the technological limit is the main way to achieve the maximum performances. But the design of the devices is not so simple, when reducing the gate length it is convenient to keep constant the aspect ratio (gate length over gate-to-channel distance) in order to limit short channel effects. This operation can lead to the appearance of other unwanted effects, like the depletion of the channel due to the surface potential or the tunneling of electrons from the channel to the gate. Therefore, in order to optimize the high frequency or the low-noise behavior of the devices (that usually can not be reached together) not only the gate-to-channel distance must be chosen carefully, but also many other technological parameters (both geometrical and electrical): composition of materials, width of the device, length, depth and position of the recess, thickness and doping of the different layers, etc. Historically, these parameters have been optimized by classical simulation techniques or, when such simulations are not physically applicable, by the expensive 'test and error' procedure. With the use of computer simulation, the design optimization can be made in a short time and with no money spent. However

  13. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  14. Novel low-voltage low-power Gb/s transimpedance amplifier architecture

    NASA Astrophysics Data System (ADS)

    Guckenberger, Drew; Kornegay, Kevin

    2003-04-01

    A novel current-mode transimpedance amplifier (TIA) architecture is proposed for optical receivers. This new architecture, based around the use of a uniquely biased common-base current buffer stage, allows stable, DC coupled TIAs to be designed in bipolar or CMOS processes operating from extremely low supply voltages and using very low levels of power. Noise performance is comparable to that of higher power designs that operate from higher supply rails. Simulation results have been obtained for a 47GHz fT SiGe BiCMOS process and also 0.25μm CMOS.

  15. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics

    NASA Astrophysics Data System (ADS)

    Li, Qing; Davanço, Marcelo; Srinivasan, Kartik

    2016-06-01

    Optical frequency conversion has applications ranging from tunable light sources to telecommunications-band interfaces for quantum information science. Here, we demonstrate efficient, low-noise frequency conversion on a nanophotonic chip through four-wave-mixing Bragg scattering in compact (footprint <0.5 × 10–4 cm2) Si3N4 microring resonators. We investigate three frequency conversion configurations: spectral translation over a few nanometres within the 980 nm band; upconversion from 1,550 nm to 980 nm and downconversion from 980 nm to 1,550 nm. With conversion efficiencies ranging from 25% for the first process to >60% for the last two processes, a signal conversion bandwidth of >1 GHz, a required continuous-wave pump power of <60 mW and background noise levels between a few femtowatts and a few picowatts, these devices are suitable for quantum frequency conversion of single-photon states from InAs/GaAs quantum dots. Simulations based on coupled mode equations and the Lugiato–Lefever equation are used to model device performance, and show quantitative agreement with measurements.

  16. The Majorana Low-noise Low-background Front-end Electronics

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low- background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the MAJORANA DEMONSTRATOR. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.

  17. Seismoelectric and seismomagnetic measurements: original experiments within the Low Noise Underground Laboratory of Rustrel (France) (Invited)

    NASA Astrophysics Data System (ADS)

    Bordes, C.; Jouniaux, L.; Garambois, S.; Dietrich, M.

    2009-12-01

    Seismic wave propagation in fluid-filled porous materials induces electromagnetic effects due to relative pore-fluid motions. We present the original experimental apparatus built within the ultra-shielded chamber of the Low Noise Underground Laboratory of Rustrel (France) in order to detect the seismomagnetic couplings theoretically predicted by Pride (1994). This experiment included accelerometers, electric dipoles and induction magnetometers to characterize the seismo-electromagnetic propagation phenomena. Extra care has been taken to ensure the mechanical decoupling between the sand column and the magnetometers to avoid spurious vibrations of the magnetometers and misinterpretations of the recorded signals. Our results confirm that seismoelectric and seismomagnetic signals are associated with different wave propagation modes. Combined experimental and analytical approaches lead us to the conclusion that the measured seismo-magnetic field is probably about 0.35 nT for a 10m.s-2 seismic source acceleration (1 g). A better understanding of the physical processes and a reliable quantification of the conversion between seismic and electric energy are necessary. In this communication we compare frequency content and spectral ratios for seismic and seismoelectromagnetic signals, by analyzing transfert functions. Measured amplitudes are discussed in light of theoretical predictions taking into account the porous media properties.

  18. An ultra-low noise optical head for liquid environment atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Schlesinger, I.; Kuchuk, K.; Sivan, U.

    2015-08-01

    The design considerations and eventual performance of a new, ultra-low noise optical head for dynamic atomic force microscopy (AFM) are presented. The head, designed specifically for the study of hydration layers and ion organization next to solid surfaces and biomolecules, displays an integrated tip-sample distance noise below 3 pm. The sensitivity of the optical beam deflection sensor, operating at frequencies up to 8.6 MHz (3 dB roll-off), is typically below 10 fm / √{ Hz } , enabling utilization of high frequency cantilevers of low thermal noise for fundamental and higher mode imaging. Exceptional signal stability and low optical noise are achieved by replacing the commonly used laser diode with a helium-neon laser. An integral photothermal excitation of the cantilever produces pure harmonic oscillations, minimizing the generation of higher cantilever modes and deleterious sound waves characterizing the commonly used excitation by a piezoelectric crystal. The optical head is designed to fit on top of the widespread Multimode® (Bruker) piezo-tube and accommodate its commercial liquid cell. The performance of the new AFM head is demonstrated by atomic resolution imaging of a muscovite mica surface in aqueous solution.

  19. An ultra-low noise optical head for liquid environment atomic force microscopy.

    PubMed

    Schlesinger, I; Kuchuk, K; Sivan, U

    2015-08-01

    The design considerations and eventual performance of a new, ultra-low noise optical head for dynamic atomic force microscopy (AFM) are presented. The head, designed specifically for the study of hydration layers and ion organization next to solid surfaces and biomolecules, displays an integrated tip-sample distance noise below 3 pm. The sensitivity of the optical beam deflection sensor, operating at frequencies up to 8.6 MHz (3 dB roll-off), is typically below 10 fm/√Hz, enabling utilization of high frequency cantilevers of low thermal noise for fundamental and higher mode imaging. Exceptional signal stability and low optical noise are achieved by replacing the commonly used laser diode with a helium-neon laser. An integral photothermal excitation of the cantilever produces pure harmonic oscillations, minimizing the generation of higher cantilever modes and deleterious sound waves characterizing the commonly used excitation by a piezoelectric crystal. The optical head is designed to fit on top of the widespread Multimode(®) (Bruker) piezo-tube and accommodate its commercial liquid cell. The performance of the new AFM head is demonstrated by atomic resolution imaging of a muscovite mica surface in aqueous solution. PMID:26329201

  20. The Majorana low-noise low-background front-end electronics

    DOE PAGESBeta

    Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; et al

    2015-03-24

    The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope ⁷⁶Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the ⁷⁶Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolutionmore » performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.« less

  1. NASA/ARMY/BELL XV-15 Tiltrotor Low Noise Terminal Area Operations Flight Research Program

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Edwards, Bryan D.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.

    2000-01-01

    A series of three XV-15 acoustic flight tests have been conducted over a five year period by a NASA/Army/Bell Helicopter team to evaluate the noise reduction potential for tiltrotor aircraft during terminal area operations. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the phase 1 test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase 1 results were used to design low noise approach profiles that were tested during the phase 2 and phase 3 tests, which used large area microphone arrays to directly measure the ground noise footprints. Approach profile designs emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented documenting the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt.

  2. NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.

    2001-01-01

    To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.

  3. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing

    PubMed Central

    Bafna, Jayesh A.; Soni, Gautam V.

    2016-01-01

    We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM) of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform. PMID:27285088

  4. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems

    DOEpatents

    Rosenberg, Louis B.

    1998-01-01

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  5. A Low-Noise Solid-State Nanopore Platform Based on a Highly Insulating Substrate

    PubMed Central

    Lee, Min-Hyun; Kumar, Ashvani; Park, Kyeong-Beom; Cho, Seong-Yong; Kim, Hyun-Mi; Lim, Min-Cheol; Kim, Young-Rok; Kim, Ki-Bum

    2014-01-01

    A solid-state nanopore platform with a low noise level and sufficient sensitivity to discriminate single-strand DNA (ssDNA) homopolymers of poly-A40 and poly-T40 using ionic current blockade sensing is proposed and demonstrated. The key features of this platform are (a) highly insulating dielectric substrates that are used to mitigate the effect of parasitic capacitance elements, which decrease the ionic current RMS noise level to sub-10 pA and (b) ultra-thin silicon nitride membranes with a physical thickness of 5 nm (an effective thickness of 2.4 nm estimated from the ionic current) are used to maximize the signal-to-noise ratio and the spatial depth resolution. The utilization of an ultra-thin membrane and a nanopore diameter as small as 1.5 nm allow the successful discrimination of 40 nucleotide ssDNA poly-A40 and poly-T40. Overall, we demonstrate that this platform overcomes several critical limitations of solid-state nanopores and opens the door to a wide range of applications in single-molecule-based detection and analysis. PMID:25502421

  6. The Majorana low background low noise front-end electronics

    NASA Astrophysics Data System (ADS)

    Abgrall, Nicolas

    2014-03-01

    The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ (0 ν)) of 76Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ (0 ν)-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the experiment is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ (0 ν)-decay. Such a requirement on the background level in conjunction with the best possible energy resolution to increase the signal-to-noise ratio in the ROI significantly constrain the readout electronics. We present here the low background low noise front-end electronics developed for the low-capacitance P-type point-contact (PPC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioactivity-assayed fused silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the stray capacitance between circuit Au traces.

  7. The Majorana low-noise low-background front-end electronics

    SciTech Connect

    Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, II, D. G.; Poon, A. W.P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G.H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.

    2015-03-24

    The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope ⁷⁶Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the ⁷⁶Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.

  8. An 8.4-GHz cryogenically cooled HEMT amplifier for DSS 13

    NASA Technical Reports Server (NTRS)

    Tanida, L.

    1988-01-01

    A prototype 8.4 GHz (X-band) high electron mobility transistor (HEMT) amplifier/closed cycle refrigerator system was installed in the Deep Space Station 13 feedcone in August 1987. The amplifier is cryogenically cooled to a physical temperature of 12 K and provides 31 K antenna noise temperature (zenith) and 35 dB of gain at a frequency of 8.2 to 8.6 GHz. Antenna system noise temperature is less than 50 K from 7.2 to 9.4 MHz. The low noise HEMT amplifier system is intended for use as a radio astronomy or space communications receiver front end.

  9. A low noise clock generator for high-resolution time-to-digital convertors

    NASA Astrophysics Data System (ADS)

    Prinzie, J.; Christiaensen, J.; Moreira, P.; Steyaert, M.; Leroux, P.

    2016-02-01

    A robust PLL clock generator has been designed for the harsh environment in high-energy physics applications. The PLL operates with a reference clock frequency of 40 MHz to 50 MHz and performs a multiplication by 64. An LC tank VCO with low internal phase noise can generate a frequency from 2.2 GHz up to 3.2 GHz with internal discrete bank switching. The PLL includes an automatic bank selection algorithm to correctly select the correct range of the oscillator. The PLL has been fabricated in a 65 nm CMOS technology and consumes less than 30 mW. The additive jitter of the PLL has been measured to be less than 400 fs RMS.

  10. Low noise HgCdTe 128 x 128 SWIR FPA for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Blessinger, Michael; Vural, Kadri; Kleinhans, William; Rieke, Marcia J.; Thompson, Rodger; Rasche, Robert

    1989-01-01

    Large area focal plane arrays of unprecedented performance were developed for use in Near Infrared Camera and Multi-Object Spectrometer (NICMOS), a proposed Hubble Space Telescope refurbishment instrument. These FPAs are 128x128-element, HgCdTe hybrid arrays with a cutoff wavelength of 2.5 microns. The multiplexer consists of a CMOS field effect transistor switch array with a typical mean readout noise of less than 30 electrons. The detectors typically have a mean dark current of less than 10 electrons/s at 77 K, with currents below 2 electrons measured at 60 K (both at 0.5 V reverse bias). The mean quantum efficiency is 40 to 60 percent at 77 K for 1.0 to 2.4 microns. Functional pixel yield is typically greater than 99 percent, and the power consumption is approximately 0.2 mW (during readout only).

  11. A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays.

    PubMed

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs. PMID:25977683

  12. A Low-Noise, Modular, and Versatile Analog Front-End Intended for Processing In Vitro Neuronal Signals Detected by Microelectrode Arrays

    PubMed Central

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs. PMID:25977683

  13. Characterization and comparison of lateral amorphous semiconductors with embedded Frisch grid detectors on 0.18μm CMOS processed substrate for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Hristovski, Christos; Goldan, Amir; Majid, Shaikh Hasibul; Wang, Kai; Shafique, Umar; Karim, Karim

    2011-03-01

    An indirect digital x-ray detector is designed, fabricated, and tested. The detector integrates a high speed, low noise CMOS substrate with two types of amorphous semiconductors on the circuit surface. Using a laterally oriented layout a-Si:H or a-Se can be used to coat the CMOS circuit and provide high speed photoresponse to complement the high speed circuits possible on CMOS technology. The circuit also aims to reduce the effect of slow carriers by integrated a Frisch style grid on the photoconductive layer to screen for the slow carriers. Simulations show a uniform photoresponse for photons absorbed on the top layer and an enhanced response when using a Frisch grid. EQE and noise results are presented. Finally, possible applications and improvements to the area of indirect x-ray imaging that are capable of easily being implemented on the substrate are suggested.

  14. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, Claude; Martinis, John M.; Clarke, John

    1986-01-01

    A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

  15. Improved Signal Chains for Readout of CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Cunningham, Thomas

    2009-01-01

    An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.

  16. Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Koshino, K.; Nakamura, Y.

    While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.

  17. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  18. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  19. Design and performance of the Majorana low-noise low-background front-end electronics

    NASA Astrophysics Data System (ADS)

    Abgrall, Nicolas; Majorana Collaboration

    2014-09-01

    The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ (0 ν)) of the isotope 76Ge. In view of the next generation of tonne-scale germanium-based ββ (0 ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ (0 ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics which is further driven by noise performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance P-type point-contact (PPC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioactivity-assayed fused silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between circuit Au traces. Performance studies of the front-end and associated back-end electronics in single and multi-detector systems, as well as on-site performances are reported. The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ (0 ν)) of the isotope 76Ge. In view of the next generation of tonne-scale germanium-based ββ (0 ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ (0 ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics which is further driven by noise performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance P-type point-contact (PPC) germanium detectors of the Majorana

  20. Optimization of a low noise detection circuit for probing the structure of damage cascades with IBIC

    SciTech Connect

    Auden, Elizabeth C.; Doyle, Barney L.; Bielejec, Edward; Vizkelethy, Gyorgy; Wampler, William R.

    2015-06-18

    Optimal detector / pre-amplifier combinations have been identified for the use of light ion IBIC (ion beam induced charge) to probe the physical structure of electrically active defects in damage cascades caused by heavy ion implantation. The ideal detector must have a sufficiently thin dead layer that incident ions will produce the majority of damage cascades in the depletion region of the detector rather than the dead layer. Detector and circuit noise must be low enough to detect the implantation of a single heavy ion as well as the decrease in the light ion IBIC signal caused by Shockley-Read-Hall recombination when the beam scans regions of the detector damaged by the heavy ion. The IBIC signals from three detectors irradiated with 750 keV He⁺ ions are measured with commercial and bespoke charge sensitive pre-amplifiers to identify the combination with the lowest noise.