Science.gov

Sample records for cmp-sialic acid synthetase

  1. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  2. Identification of the nuclear export signals that regulate the intracellular localization of the mouse CMP-sialic acid synthetase

    SciTech Connect

    Fujita, Akiko; Sato, Chihiro; Kitajima, Ken. E-mail: kitajima@agr.nagoya-u.ac.jp

    2007-03-30

    The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.

  3. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

    PubMed

    Gulati, Sunita; Schoenhofen, Ian C; Whitfield, Dennis M; Cox, Andrew D; Li, Jianjun; St Michael, Frank; Vinogradov, Evgeny V; Stupak, Jacek; Zheng, Bo; Ohnishi, Makoto; Unemo, Magnus; Lewis, Lisa A; Taylor, Rachel E; Landig, Corinna S; Diaz, Sandra; Reed, George W; Varki, Ajit; Rice, Peter A; Ram, Sanjay

    2015-12-01

    Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP

  4. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics

    PubMed Central

    Gulati, Sunita; Schoenhofen, Ian C.; Whitfield, Dennis M.; Cox, Andrew D.; Li, Jianjun; St. Michael, Frank; Vinogradov, Evgeny V.; Stupak, Jacek; Zheng, Bo; Ohnishi, Makoto; Unemo, Magnus; Lewis, Lisa A.; Taylor, Rachel E.; Landig, Corinna S.; Diaz, Sandra; Reed, George W.; Varki, Ajit; Rice, Peter A.; Ram, Sanjay

    2015-01-01

    Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5’-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation (“serum-resistance”). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from

  5. Chemoenzymatic synthesis of CMP-N-acetyl-7-fluoro-7-deoxy-neuraminic acid.

    PubMed

    Hartlieb, Sina; Günzel, Almut; Gerardy-Schahn, Rita; Münster-Kühnel, Anja K; Kirschning, Andreas; Dräger, Gerald

    2008-08-11

    7-Fluoro sialic acid was prepared and activated as cytidine monophosphate (CMP) ester. The synthesis started with d-glucose, which was efficiently converted into N-acetyl-4-fluoro-4-deoxy-d-mannosamine. Aldolase catalyzed transformation yielded the corresponding fluorinated sialic acid which was activated as CMP ester using three different synthetases in the presence as well as in the absence of pyrophosphatase which possesses inhibitory properties. Finally, conditions were optimized to perform a one-pot reaction starting from fluorinated mannosamine, which yielded the 7-fluoro-7-deoxy-CMP-sialic acid by incubation with three enzymes. PMID:18353292

  6. DOES IRON OR HEME CONTROL RAT HEPATIC DELTA-AMINOLEVULINIC ACID SYNTHETASE ACTIVITY

    EPA Science Inventory

    Disodium ethylenediamine tetraacetic acid and/or allylisopropylacetamide administration to rat pups did not evoke a premature induction of hepatic d-aminolevulinic acid synthetase. Administration of iron to adult rats did not alter d-aminolevulinic acid synthetase activity and ha...

  7. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Echerichia coli by pseudomonic acid

    PubMed Central

    Hughes, Julia; Mellows, Graham

    1978-01-01

    The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA synthesis in vivo. Pseudomonic acid had little effect on RNA synthesis in a regulatory mutant, E. coli B AS19 RCrel, whereas protein synthesis was strongly inhibited. In pseudomonic acid-treated cells, increased concentrations of ppGpp, pppGpp and ATP were observed, but the GTP pool size decreased, suggesting that inhibition of RNA synthesis is a consequence of the stringent control mechanism imposed by pseudomonic acid-induced deprivation of an amino acid. Of the 20 common amino acids, only isoleucine reversed the inhibitory effect in vivo. The antibiotic was found to be a powerful inhibitor of isoleucyl-tRNA synthetase both in vivo and in vitro. Of seven other tRNA synthetases assayed, only a weak inhibitory effect on phenylalanyl-tRNA synthetase was observed; this presumably accounted for the weak effect on polyphenylalanine formation in a ribosomal preparation. Pseudomonic acid also significantly de-repressed threonine deaminase and transaminase B activity, but not dihydroxyacid dehydratase (isoleucine-biosynthetic enzymes) by decreasing the supply of aminoacylated tRNAIle. Pseudomonic acid is the second naturally occurring inhibitor of bacterial isoleucyl-tRNA synthetase to be discovered, furanomycin being the first. PMID:365175

  8. Properties and substrate specificities of the phenylalanyl-transfer-ribonucleic acid synthetases of Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Phenylalanyl-tRNA synthetases have been partially purified from cotyledons of seeds of Aesculus californica, which contains 2-amino-4-methylhex-4-enoic acid, and from four other species of Aesculus that do not contain this amino acid. The A. californica preparation was free from other aminoacyl-tRNA synthetases, and the contaminating synthetase activity in preparations from A. hippocastanum was decreased to acceptable limits by conducting assays of pyrophosphate exchange activity in 0.5m-potassium chloride. 2. The phenylalanyl-tRNA synthetase from each species activated 2-amino-4-methylhex-4-enoic acid with Km 30–40 times that for phenylalanine. The maximum velocity for 2-amino-4-methylhex-4-enoic acid was only 30% of that for phenylalanine with the A. californica enzyme, but the maximum velocities for the two substrates were identical for the other four species. 3. 2-Amino-4-methylhex-4-enoic acid was not found in the protein of A. californica, so discrimination against this amino acid probably occurs in the step of transfer to tRNA, though subcellular localization, or subsequent steps of protein synthesis could be involved. 4. Crotylglycine, methallylglycine, ethallylglycine, 2-aminohex-4,5-dienoic acid, 2-amino-5-methylhex-4-enoic acid, 2-amino-4-methylhex-4-enoic acid, β-(thien-2-yl)alanine, β-(pyrazol-1-yl)alanine, phenylserine and m-fluorophenylalanine were substrates for pyrophosphate exchange catalysed by the phenylalanyl-tRNA synthetases of A. californica or A. hippocastanum. Allylglycine, phenylglycine and 2-amino-4-phenylbutyric acid were inactive. PMID:5493504

  9. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  10. Derepression of Synthesis of the Aminoacyl-Transfer Ribonucleic Acid Synthetases for the Branched-Chain Amino Acids of Escherichia coli

    PubMed Central

    McGinnis, Etheleen; Williams, Ann C.; Williams, L. S.

    1974-01-01

    The kinetics of derepression of valyl-, isoleucyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined during valine-, isoleucine-, and leucine-limited growth. When valine was limiting growth, valyl-tRNA synthetase formation was maximally derepressed within 5 min, whereas the rates of synthesis of isoleucyl-, and leucyl-tRNA synthetases were unchanged. Isoleucine-restricted growth caused a maximal derepression of isoleucyl-tRNA synthetase formation in 5 min and derepression of valyl-tRNA synthetase formation in 15 min with no effect on leucyl-tRNA synthetase formation. When leucine was limiting growth, leucyl-tRNA synthetase formation was immediately derepressed, whereas valyl- and isoleucyl-tRNA synthetase formation was unaffected by manipulation of the leucine supply to the cells. These results support our previous findings that valyl-tRNA synthetase formation is subject to multivalent repression control by both isoleucine and valine. In contrast, repression control of iso-leucyl- and leucyl-tRNA synthetase formation is specifically mediated by the supply of the cognate amino acid. PMID:4604302

  11. Mutants of Salmonella typhimurium with an Altered Leucyl-Transfer Ribonucleic Acid Synthetase

    PubMed Central

    Alexander, Renee R.; Calvo, J. M.; Freundlich, M.

    1971-01-01

    Two trifluoroleucine-resistant mutants of Salmonella typhimurium, strains CV69 and CV117, had an altered leucyl-transfer ribonucleic acid (tRNA) synthetase. The mutant enzymes had higher apparent Km values for leucine (ca. 10-fold) and lower specific activities (ca. twofold) than the parent enzyme when tested in crude extracts. Preparations of synthetase purified ca. 60-fold from the parent and strain CV117 differed sixfold in their leucine Km values. In addition, the mutant enzyme was inactivated faster than the parent enzyme at 50 C. The growth rates of strains CV69 and CV117 at 37 C were not significantly different from that of the parent, whereas at 42 C strain CV69 grew more slowly than the parent. Leucine-, valine-, and isoleucine-forming enzymes were partially derepressed when the mutants were grown in minimal medium; the addition of leucine repressed these enzymes to wild-type levels. During growth in minimal medium, the proportion of leucine tRNA that was charged in the mutants was about 75% of that in the parent. The properties of strain CV117 were shown to result from a single mutation located near gal at minute 18 on the genetic map. These studies suggest that leucyl-tRNA synthetase is involved in repression of the enzymes required for the synthesis of branched-chain amino acids. PMID:4928008

  12. Four Trypanosoma brucei fatty acyl-CoA synthetases: fatty acid specificity of the recombinant proteins.

    PubMed Central

    Jiang, D W; Englund, P T

    2001-01-01

    As part of our investigation of fatty acid metabolism in Trypanosoma brucei, we have expressed four acyl-CoA synthetase (TbACS) genes in Esherichia coli. The recombinant proteins, with His-tags on their C-termini, were purified to near homogeneity using nickel-chelate affinity chromatography. Although these enzymes are highly homologous, they have distinct specificities for fatty acid chain length. TbACS1 prefers saturated fatty acids in the range C(11:0) to C(14:0) and TbACS2 prefers shorter fatty acids, mainly C(10:0). TbACS3 and 4, which have 95% sequence identity, have similar specificities, favouring fatty acids between C(14:0) and C(17:0). In addition, TbACS1, 3 and 4 function well with a variety of unsaturated fatty acids. PMID:11535136

  13. Control of the Synthesis of Fatty-Acid Synthetase in Rat Liver by Insulin, Glucagon, and Adenosine 3′:5′ Cyclic Monophosphate

    PubMed Central

    Lakshmanan, M. R.; Nepokroeff, Carl M.; Porter, John W.

    1972-01-01

    The usual increase in the activity of liver fatty-acid synthetase that occurs on refeeding of a fat-free diet to previously fasted rats is abolished in diabetic animals. Insulin specifically restores this increase by enhancement of the rate of synthesis of fatty-acid synthetase. However, glucagon and cyclic AMP inhibit the increase in the activity of fatty-acid synthetase. Therefore, the concentration of fatty-acid synthetase in rat liver is under the control of the relative concentrations of insulin and glucagon. PMID:4345502

  14. Isolation and Partial Characterization of Temperature-Sensitive Escherichia coli Mutants with Altered Leucyl- and Seryl-Transfer Ribonucleic Acid Synthetases

    PubMed Central

    Low, B.; Gates, F.; Goldstein, T.; Söll, D.

    1971-01-01

    Two temperature-sensitive mutants of Escherichia coli have been found in which the conditional growth is a result of a thermosensitive leucyl-transfer ribonucleic acid (tRNA) synthetase and seryl-tRNA synthetase, respectively. The corresponding genetic loci, leuS and serS, cotransduce with lip and serC, respectively. As a result of the mutationally altered leucyl-tRNA synthetase, some leucine-, valine-, and isoleucine-forming enzymes were derepressed. Thus, leucyl-tRNA synthetase is involved in the repression of the enzymes needed for the synthesis of branched-chain amino acids. PMID:4942762

  15. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    PubMed

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds. PMID:27235647

  16. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  17. REGULATION OF RAT HEPATIC DELTA-AMINOLEVULINIC ACID SYNTHETASE AND HEME OXYGENASE ACTIVITIES: EVIDENCE FOR CONTROL BY HEME AND AGAINST MEDIATION BY PROSTHETIC IRON

    EPA Science Inventory

    The effects of in vivo administration of 6 compounds on the activity of delta-aminolevulinic acid (ALA) synthetase and heme oxygenase were determined. The order of decreasing potency in reducing ALA synthetase activity was heme, bilirubin, protoporphyrin IX, bilirubin dimethyl es...

  18. The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds1

    PubMed Central

    Ke, Jinshan; Behal, Robert H.; Back, Stephanie L.; Nikolau, Basil J.; Wurtele, Eve Syrkin; Oliver, David J.

    2000-01-01

    Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds. PMID:10859180

  19. Fatty Acid Elongation Is Independent of Acyl-Coenzyme A Synthetase Activities in Leek and Brassica napus1

    PubMed Central

    Hlousek-Radojcic, Alenka; Evenson, Kimberly J.; Jaworski, Jan G.; Post-Beittenmiller, Dusty

    1998-01-01

    In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.

  20. Identification of a Long-Chain Polyunsaturated Fatty Acid Acyl-Coenzyme A Synthetase from the Diatom Thalassiosira pseudonana1

    PubMed Central

    Tonon, Thierry; Qing, Renwei; Harvey, David; Li, Yi; Larson, Tony Robert; Graham, Ian Alexander

    2005-01-01

    The draft genome of the diatom Thalassiosira pseudonana was searched for DNA sequences showing homology with long-chain acyl-coenzyme A synthetases (LACSs), since the corresponding enzyme may play a key role in the accumulation of health-beneficial polyunsaturated fatty acids (PUFAs) in triacylglycerol. Among the candidate genes identified, an open reading frame named TplacsA was found to be full length and constitutively expressed during cell cultivation. The predicted amino acid sequence of the corresponding protein, TpLACSA, exhibited typical features of acyl-coenzyme A (acyl-CoA) synthetases involved in the activation of long-chain fatty acids. Feeding experiments carried out in yeast (Saccharomyces cerevisiae) transformed with the algal gene showed that TpLACSA was able to activate a number of PUFAs, including eicosapentaenoic acid and docosahexaenoic acid (DHA). Determination of acyl-CoA synthetase activities by direct measurement of acyl-CoAs produced in the presence of different PUFA substrates showed that TpLACSA was most active toward DHA. Heterologous expression also revealed that TplacsA transformants were able to incorporate more DHA in triacylglycerols than the control yeast. PMID:15821149

  1. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    PubMed Central

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A.; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M.J.; Flors, Victor; Ton, Jurriaan

    2014-01-01

    Specific chemicals can prime the plant immune system for augmented defence. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defence activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but hypersensitive to BABA-induced growth repression. IBI encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of R-BABA to IBI1 primed the protein for non-canonical defence signalling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity, but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth. PMID:24776930

  2. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase.

    PubMed

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M J; Flors, Victor; Ton, Jurriaan

    2014-06-01

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth. PMID:24776930

  3. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    PubMed

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  4. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind.

    PubMed

    Klaus, Christina; Jeon, Min Kyung; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-14

    The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5). It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development. PMID:24259967

  5. CMP-N-acetylneuraminic acid synthetase interacts with fragile X related protein 1

    PubMed Central

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-01-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P-interacting proteins and determine the biological effect of the interaction. The current study identified CMP-N-acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two-hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β-galactosidase assay and growth studies with selective media. Furthermore, co-immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue-specific regulator of GM1 levels in SH-SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS. PMID:27357083

  6. Regulation of the Tyrosine Biosynthetic Enzymes in Salmonella typhimurium: Analysis of the Involvement of Tyrosyl-Transfer Ribonucleic Acid and Tyrosyl-Transfer Ribonucleic Acid Synthetase1

    PubMed Central

    Heinonen, J.; Artz, S. W.; Zalkin, H.

    1972-01-01

    Mutants of Salmonella typhimurium were isolated that require tyrosine for growth because of an altered tyrosyl-transfer ribonucleic acid (tRNA) synthetase. Extracts of one strain (JK10) contain a labile enzyme with decreased ability to transfer tyrosine to tRNATyr and a higher Km for tyrosine than the wild-type enzyme. Strain JK10 maintains repressed levels of the tyrosine biosynthetic enzymes when the growth rate is restricted due to limitation of charged tRNATyr. Several second-site revertants of strain JK10 exhibit temperature-sensitive growth due to partially repaired, heat-labile tyrosyl-tRNA synthetase. The tyrosine biosynthetic enzymes are not derepressed in thermosensitive strains grown at the restrictive temperature. A class of tyrosine regulatory mutants, designated tyrR, contains normal levels of tyrosyl-tRNA synthetase and tRNATyr. These results suggest that charging of tRNATyr is not necessary for repression. This conclusion is substantiated by the finding that 4-aminophenylalanine, a tyrosine analogue which causes repression of the tyrosine biosynthetic enzymes, is not attached to tRNATyr in vivo, nor does it inhibit the attachment reaction in vitro. A combined regulatory effect due to the simultaneous presence of tyrS and tyrR mutations in the same strain was detected. The possibility of direct participation of tyrosyl-tRNA synthetase in tyrosine regulation is discussed. PMID:4404819

  7. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized

  8. Cloning and Expression of the γ-Polyglutamic Acid Synthetase Gene pgsBCA in Bacillus subtilis WB600

    PubMed Central

    Lin, Biaosheng; Li, Zhijuan; Zhang, Huixia; Wu, Jiangwen; Luo, Maochun

    2016-01-01

    To clone and express the γ-polyglutamic acid (γ-PGA) synthetase gene pgsBCA in Bacillus subtilis, a pWB980 plasmid was used to construct and transfect the recombinant expression vector pWB980-pgsBCA into Bacillus subtilis WB600. PgsBCA was expressed under the action of a P43 promoter in the pWB980 plasmid. Our results showed that the recombinant bacteria had the capacity to synthesize γ-PGA. The expression product was secreted extracellularly into the fermentation broth, with a product yield of 1.74 g/L or higher. γ-PGA samples from the fermentation broth were purified and characterized. Hydrolysates of γ-PGA presented in single form, constituting simple glutamic acid only, which matched the characteristics of the infrared spectra of the γ-PGA standard, and presented as multimolecular aggregates with a molecular weight within the range of 500–600 kDa. Expressing the γ-PGA synthetase gene pgsBCA in B. subtilis system has potential industrial applications. PMID:27073802

  9. Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotin amide nucleotides into fatty acids with the Escherichia coli fatty acid synthetase system.

    PubMed

    Saito, K; Kawaguchi, A; Okuda, S; Seyama, Y; Yamakawa, T

    1980-05-28

    The mechanism of hydrogen incorporation into fatty acids was investigated with intact Escherichia coli cells, a crude enzyme preparation and purified reductases of fatty acid synthetase system. The distributions of deuterium atoms incorporated into fatty acids from 2H2O and stereospecifically deuterium-labeled NADPH or NADH were determined by mass spectrometry. When E. coli was grown in 2H2O, almost every hydrogen atom of cellular fatty acids was incorporated from the medium. When fatty acids were synthesized from acetyl-CoA, malonyl-CoA and NADPH in the presence of a crude enzyme preparation of either E. coli or Bacillus subtilis, almost every hydrogen atom was also incorporated from the medium. In contrast to these results, purified beta-ketoacyl acyl carrier reductase directly transferred the HB hydrogen of NADPH to beta-ketoacyl acyl carrier protein, and purified enoyl acyl carrier protein reductase also transferred the HB hydrogen of NADPH and NADH directly to enoyl acyl carrier protein. In the crude enzyme preparation of E. coli, we found high activities which exchanged the HB hydrogen of NADPH with the deuterium of 2h2o. the conflicting results of the origin of hydrogen atoms of fatty acids mentioned above are explained by the presence of enzymes, which catalyzed the rapid exchange of NADPH with the deterium of 2H2O prior to the reaction of fatty acid synthetase. PMID:6990992

  10. Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1990-01-01

    By screening of an Escherichia coli plasmidic library using antibodies against aspartyl-tRNA synthetase (AspRS) several clones were obtained containing aspS, the gene coding for AspRS. We report here the nucleotide sequence of aspS and the corresponding primary structure of the aspartyl-tRNA synthetase, a protein of 590 amino acid residues with a Mr 65,913, a value in close agreement with that observed for the purified protein. Primer extension analysis of the aspS mRNA using reverse transcriptase located its 5'-end at 94 nucleotides upstream of the translation initiation AUG; nuclease S1 analysis located the 3'-end at 126 nucleotides downstream of the stop codon UGA. Comparison of the DNA-derived protein sequence with known aminoacyl-tRNA sequences revealed important homologies with asparaginyl- and lysyl-tRNA synthetases from E.coli; more than 25% of their amino acid residues are identical, the homologies being distributed preferencially in the first part and the carboxy-terminal end of the molecule. Mutagenesis directed towards a consensus tetrapeptide (Gly-Leu-Asp-Arg) and the carboxy-terminal end showed that both domains could be implicated in catalysis as well as in ATP binding. Images PMID:2129559

  11. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.

    PubMed Central

    Burbaum, J. J.; Schimmel, P.

    1992-01-01

    Although partial or complete three-dimensional structures are known for three Class I aminoacyl-tRNA synthetases, the amino acid-binding sites in these proteins remain poorly characterized. To explore the methionine binding site of Escherichia coli methionyl-tRNA synthetase, we chose to study a specific, randomly generated methionine auxotroph that contains a mutant methionyl-tRNA synthetase whose defect is manifested in an elevated Km for methionine (Barker, D.G., Ebel, J.-P., Jakes, R.C., & Bruton, C.J., 1982, Eur. J. Biochem. 127, 449-457), and employed the polymerase chain reaction to sequence this mutant synthetase directly. We identified a Pro 14 to Ser replacement (P14S), which accounts for a greater than 300-fold elevation in Km for methionine and has little effect on either the Km for ATP or the kcat of the amino acid activation reaction. This mutation destabilizes the protein in vivo, which may partly account for the observed auxotrophy. The altered proline is found in the "signature sequence" of the Class I synthetases and is conserved. This sequence motif is 1 of 2 found in the 10 Class I aminoacyl-tRNA synthetases and, in the known structures, it is in the nucleotide-binding fold as part of a loop between the end of a beta-strand and the start of an alpha-helix. The phenotype of the mutant and the stability and affinity for methionine of the wild-type and mutant enzymes are influenced by the amino acid that is 25 residues beyond the C-terminus of the signature sequence.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304356

  12. DISTINCT TRANSCRIPTIONAL REGULATION OF LONG-CHAIN ACYL-COA SYNTHETASE ISOFORMS AND CYTOSOLIC THIOESTERASE 1 IN THE RODENT HEART BY FATTY ACIDS AND INSULIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanism(s) responsible for channeling long-chain fatty acids (LCFAs) into oxidative versus nonoxidative pathways is (are) poorly understood in the heart. Intracellular LCFAs are converted to long-chain fatty acyl-CoAs (LCFA-CoAs) by a family of long-chain acyl-CoA synthetases (ACSLs)...

  13. Substrate-Assisted and Enzymatic Pretransfer Editing of Nonstandard Amino Acids by Methionyl-tRNA Synthetase.

    PubMed

    Fortowsky, Grant B; Simard, Daniel J; Aboelnga, Mohamed M; Gauld, James W

    2015-09-22

    Aminoacyl-tRNA synthetases (aaRSs) are central to a number of physiological processes, including protein biosynthesis. In particular, they activate and then transfer their corresponding amino acid to the cognate tRNA. This is achieved with a generally remarkably high fidelity by editing against incorrect standard and nonstandard amino acids. Using docking, molecular dynamics (MD), and hybrid quantum mechanical/molecular mechanics methods, we have investigated mechanisms by which methionyl-tRNA synthetase (MetRS) may edit against the highly toxic, noncognate, amino acids homocysteine (Hcy) and its oxygen analogue, homoserine (Hse). Substrate-assisted editing of Hcy-AMP in which its own phosphate acts as the mechanistic base occurs with a rate-limiting barrier of 98.2 kJ mol(-1). This step corresponds to nucleophilic attack of the Hcy side-chain sulfur at its own carbonyl carbon (CCarb). In contrast, a new possible editing mechanism is identified in which an active site aspartate (Asp259) acts as the base. The rate-limiting step is now rotation about the substrate's aminoacyl Cβ-Cγ bond with a barrier of 27.5 kJ mol(-1), while for Hse-AMP, the rate-limiting step is cleavage of the CCarb-OP bond with a barrier of 30.9 kJ mol(-1). A similarly positioned aspartate or glutamate also occurs in the homologous enzymes LeuRS, IleRS, and ValRS, which also discriminate against Hcy. Docking and MD studies suggest that at least in the case of LeuRS and ValRS, a similar editing mechanism may be possible. PMID:26322377

  14. Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling

    PubMed Central

    Yoon, Mee-Sup; Son, Kook; Arauz, Edwin; Han, Jung Min; Kim, Sunghoon; Chen, Jie

    2016-01-01

    SUMMARY Amino acid availability activates signaling by the mammalian target of rapamycin (mTOR) complex 1, mTORC1, a master regulator of cell growth. The class III PI-3-kinase Vps34 mediates amino acid signaling to mTORC1 by regulating lysosomal translocation and activation of the phospholipase PLD1. Here we identify leucyl-tRNA synthetase (LRS) as a leucine sensor for the activation of Vps34-PLD1 upstream of mTORC1. LRS is necessary for amino acid-induced Vps34 activation, cellular PI(3)P level increase, PLD1 activation, and PLD1 lysosomal translocation. Leucine binding but not tRNA charging activity of LRS is required for this regulation. Moreover, LRS physically interacts with Vps34 in amino acid-stimulatable non-autophagic complexes. Finally, purified LRS protein activates Vps34 kinase in vitro in a leucine-dependent manner. Collectively, our findings provide compelling evidence for a direct role of LRS in amino acid activation of Vps34 via a non-canonical mechanism, and fill a gap in the amino acid-sensing mTORC1 signaling network. PMID:27477288

  15. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Truong, Tan M.; Ai, Hui-Wang

    2015-07-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.

  16. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: An update

    PubMed Central

    Yan, Sheng; Yang, Xue-Feng; Liu, Hao-Lei; Fu, Nian; Ouyang, Yan; Qing, Kai

    2015-01-01

    Long-chain acyl-CoA synthetase (ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer membrance catalyze fatty acids with chain lengths from 12 to 20 carbon atoms to form acyl-CoAs, which are lipid metabolic intermediates and involved in fatty acid metabolism, membrane modifications and various physiological processes. Gain- or loss-of-function studies have shown that the expression of individual ACSL isoforms can alter the distribution and amount of intracellular fatty acids. Changes in the types and amounts of fatty acids, in turn, can alter the expression of intracellular ACSLs. ACSL family members affect not only the proliferation of normal cells, but the proliferation of malignant tumor cells. They also regulate cell apoptosis through different signaling pathways and molecular mechanisms. ACSL members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to liver diseases and metabolic diseases, such as fatty liver disease, obesity, atherosclerosis and diabetes. They are also linked to neurological disorders and other diseases. However, the mechanisms are unclear. This review addresses new findings in the classification and properties of ACSLs and the fatty acid metabolism-associated effects of ACSLs in diseases. PMID:25834313

  17. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    PubMed Central

    Ren, Wei; Truong, Tan M.; Ai, Hui-wang

    2015-01-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs. PMID:26220470

  18. Fatty Acid Export from the Chloroplast. Molecular Characterization of a Major Plastidial Acyl-Coenzyme A Synthetase from Arabidopsis1

    PubMed Central

    Schnurr, Judy A.; Shockey, Jay M.; de Boer, Gert-Jan; Browse, John A.

    2002-01-01

    Acyl-coenzyme A (CoA) synthetases (ACSs, EC 6.2.1.3) catalyze the formation of fatty acyl-CoAs from free fatty acid, ATP, and CoA. Essentially all de novo fatty acid synthesis occurs in the plastid. Fatty acids destined for membrane glycerolipid and triacylglycerol synthesis in the endoplasmic reticulum must be first activated to acyl-CoAs via an ACS. Within a family of nine ACS genes from Arabidopsis, we identified a chloroplast isoform, LACS9. LACS9 is highly expressed in developing seeds and young rosette leaves. Both in vitro chloroplast import assays and transient expression of a green fluorescent protein fusion indicated that the LACS9 protein is localized in the plastid envelope. A T-DNA knockout mutant (lacs9-1) was identified by reverse genetics and these mutant plants were indistinguishable from wild type in growth and appearance. Analysis of leaf lipids provided no evidence for compromised export of acyl groups from chloroplasts. However, direct assays demonstrated that lacs9-1 plants contained only 10% of the chloroplast long-chain ACS activity found for wild type. The residual long-chain ACS activity in mutant chloroplasts was comparable with calculated rates of fatty acid synthesis. Although another isozyme contributes to the activation of fatty acids during their export from the chloroplast, LACS9 is a major chloroplast ACS. PMID:12177483

  19. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways.

    PubMed

    Bu, So Young; Mashek, Douglas G

    2010-11-01

    Long-chain acyl-CoA synthetases (ACSLs) and fatty acid transport proteins (FATPs) activate fatty acids (FAs) to acyl-CoAs prior to their downstream metabolism. Of numerous ACSL and FATP isoforms, ACSL5 is expressed predominantly in tissues with high rates of triacylglycerol (TAG) synthesis, suggesting it may have an anabolic role in lipid metabolism. To characterize the role of ACSL5 in hepatic energy metabolism, we used small interference RNA (siRNA) to knock down ACSL5 in rat primary hepatocytes. Compared with cells transfected with control siRNA, suppression of ACSL5 expression significantly decreased FA-induced lipid droplet formation. These findings were further extended with metabolic labeling studies showing that ACSL5 knockdown resulted in decreased [1-(14)C]oleic acid or acetic acid incorporation into intracellular TAG, phospholipids, and cholesterol esters without altering FA uptake or lipogenic gene expression. ACSL5 knockdown also decreased hepatic TAG secretion proportionate to the observed decrease in neutral lipid synthesis. ACSL5 knockdown did not alter lipid turnover or mediate the effects of insulin on lipid metabolism. Hepatocytes treated with ACSL5 siRNA had increased rates of FA oxidation without changing PPAR-α activity and target gene expression. These results suggest that ACSL5 activates and channels FAs toward anabolic pathways and, therefore, is an important branch point in hepatic FA metabolism. PMID:20798351

  20. Mammalian ACSF3 Protein Is a Malonyl-CoA Synthetase That Supplies the Chain Extender Units for Mitochondrial Fatty Acid Synthesis*

    PubMed Central

    Witkowski, Andrzej; Thweatt, Jennifer; Smith, Stuart

    2011-01-01

    The objective of this study was to identify a source of intramitochondrial malonyl-CoA that could be used for de novo fatty acid synthesis in mammalian mitochondria. Because mammalian mitochondria lack an acetyl-CoA carboxylase capable of generating malonyl-CoA inside mitochondria, the possibility that malonate could act as a precursor was investigated. Although malonyl-CoA synthetases have not been identified previously in animals, interrogation of animal protein sequence databases identified candidates that exhibited sequence similarity to known prokaryotic forms. The human candidate protein ACSF3, which has a predicted N-terminal mitochondrial targeting sequence, was cloned, expressed, and characterized as a 65-kDa acyl-CoA synthetase with extremely high specificity for malonate and methylmalonate. An arginine residue implicated in malonate binding by prokaryotic malonyl-CoA synthetases was found to be positionally conserved in animal ACSF3 enzymes and essential for activity. Subcellular fractionation experiments with HEK293T cells confirmed that human ACSF3 is located exclusively in mitochondria, and RNA interference experiments verified that this enzyme is responsible for most, if not all, of the malonyl-CoA synthetase activity in the mitochondria of these cells. In conclusion, unlike fungi, which have an intramitochondrial acetyl-CoA carboxylase, animals require an alternative source of mitochondrial malonyl-CoA; the mitochondrial ACSF3 enzyme is capable of filling this role by utilizing free malonic acid as substrate. PMID:21846720

  1. Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa.

    PubMed

    Reimmann, C; Serino, L; Beyeler, M; Haas, D

    1998-11-01

    The siderophore pyochelin of Pseudomonas aeruginosa is derived from one molecule of salicylate and two molecules of cysteine. Two cotranscribed genes, pchEF, encoding peptide synthetases have been identified and characterized. pchE was required for the conversion of salicylate to dihydroaeruginoate (Dha), the condensation product of salicylate and one cysteine residue and pchF was essential for the synthesis of pyochelin from Dha. The deduced PchE (156 kDa) and PchF (197 kDa) proteins had adenylation, thiolation and condensation/cyclization motifs arranged as modules which are typical of those peptide synthetases forming thiazoline rings. The pchEF genes were coregulated with the pchDCBA operon, which provides enzymes for the synthesis (PchBA) and activation (PchD) of salicylate as well as a putative thioesterase (PchC). Expression of a translational pchE'-'lacZ fusion was strictly dependent on the PchR regulator and was induced by extracellular pyochelin, the end product of the pathway. Iron replete conditions led to Fur (ferric uptake regulator)-dependent repression of the pchE'-'lacZ fusion. A translational pchD'-'lacZ fusion was also positively regulated by PchR and pyochelin and repressed by Fur and iron. Thus, autoinduction by pyochelin (or ferric pyochelin) and repression by iron ensure a sensitive control of the pyochelin pathway in P. aeruginosa. PMID:9846750

  2. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase.

    PubMed

    Sasaki, Hiroshi M; Sekine, Shun-ichi; Sengoku, Toru; Fukunaga, Ryuya; Hattori, Motoyuki; Utsunomiya, Yukiko; Kuroishi, Chizu; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-10-01

    To achieve accurate aminoacylation of tRNAs with their cognate amino acids, errors in aminoacylation are corrected by the "editing" mechanism in several aminoacyl-tRNA synthetases. Phenylalanyl-tRNA synthetase (PheRS) hydrolyzes, or edits, misformed tyrosyl-tRNA with its editing domain in the beta subunit. We report the crystal structure of an N-terminal fragment of the PheRS beta subunit (PheRS-beta(N)) from the archaeon, Pyrococcus horikoshii, at 1.94-A resolution. PheRS-beta(N) includes the editing domain B3/4, which has archaea/eukarya-specific insertions/deletions and adopts a different orientation relative to other domains, as compared with that of bacterial PheRS. Surprisingly, most residues constituting the editing active-site pocket were substituted between the archaeal/eukaryal and bacterial PheRSs. We prepared Ala-substituted mutants of P. horikoshii PheRS for 16 editing-pocket residues, of which 12 are archaea/eukarya-specific and four are more widely conserved. On the basis of their activities, Tyr-adenosine was modeled on the B3/4-domain structure. First, the mutations of Leu-202, Ser-211, Asp-234, and Thr-236 made the PheRS incorrectly hydrolyze the cognate Phe-tRNA(Phe), indicating that these residues participate in the Tyr hydroxy group recognition and are responsible for discrimination against Phe. Second, the mutations of Leu-168 and Arg-223, which could interact with the tRNA 3'-terminal adenosine, reduced Tyr-tRNA(Phe) deacylation activity. Third, the mutations of archaea/eukarya-specific Gln-126, Glu-127, Arg-137, and Asn-217, which are proximal to the ester bond to be cleaved, also reduced Tyr-tRNA(Phe) deacylation activity. In particular, the replacement of Asn-217 abolished the activity, revealing its absolute requirement for the catalysis. PMID:17003130

  3. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase

    PubMed Central

    Sasaki, Hiroshi M.; Sekine, Shun-ichi; Sengoku, Toru; Fukunaga, Ryuya; Hattori, Motoyuki; Utsunomiya, Yukiko; Kuroishi, Chizu; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-01-01

    To achieve accurate aminoacylation of tRNAs with their cognate amino acids, errors in aminoacylation are corrected by the “editing” mechanism in several aminoacyl-tRNA synthetases. Phenylalanyl-tRNA synthetase (PheRS) hydrolyzes, or edits, misformed tyrosyl-tRNA with its editing domain in the β subunit. We report the crystal structure of an N-terminal fragment of the PheRS β subunit (PheRS-βN) from the archaeon, Pyrococcus horikoshii, at 1.94-Å resolution. PheRS-βN includes the editing domain B3/4, which has archaea/eukarya-specific insertions/deletions and adopts a different orientation relative to other domains, as compared with that of bacterial PheRS. Surprisingly, most residues constituting the editing active-site pocket were substituted between the archaeal/eukaryal and bacterial PheRSs. We prepared Ala-substituted mutants of P. horikoshii PheRS for 16 editing-pocket residues, of which 12 are archaea/eukarya-specific and four are more widely conserved. On the basis of their activities, Tyr-adenosine was modeled on the B3/4-domain structure. First, the mutations of Leu-202, Ser-211, Asp-234, and Thr-236 made the PheRS incorrectly hydrolyze the cognate Phe-tRNAPhe, indicating that these residues participate in the Tyr hydroxy group recognition and are responsible for discrimination against Phe. Second, the mutations of Leu-168 and Arg-223, which could interact with the tRNA 3′-terminal adenosine, reduced Tyr-tRNAPhe deacylation activity. Third, the mutations of archaea/eukarya-specific Gln-126, Glu-127, Arg-137, and Asn-217, which are proximal to the ester bond to be cleaved, also reduced Tyr-tRNAPhe deacylation activity. In particular, the replacement of Asn-217 abolished the activity, revealing its absolute requirement for the catalysis. PMID:17003130

  4. Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis.

    PubMed

    Padanad, Mahesh S; Konstantinidou, Georgia; Venkateswaran, Niranjan; Melegari, Margherita; Rindhe, Smita; Mitsche, Matthew; Yang, Chendong; Batten, Kimberly; Huffman, Kenneth E; Liu, Jingwen; Tang, Ximing; Rodriguez-Canales, Jaime; Kalhor, Neda; Shay, Jerry W; Minna, John D; McDonald, Jeffrey; Wistuba, Ignacio I; DeBerardinis, Ralph J; Scaglioni, Pier Paolo

    2016-08-01

    KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and β-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and β-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain. PMID:27477280

  5. Purification and properties of the fatty acids synthetase complex from Neurospora crassa, and the nature of the fas-mutation.

    PubMed Central

    Elovson, J

    1975-01-01

    A procedure is described for the purification of the fatty acid synthetase complex (FAS) from Neurospora crassa. The enzyme complex has a molecular weight of 2.3 times 10(6), contains 6 mol of 4'-phosphopantetheine per mol, and on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gives a single band, or a closely spaced doublet, which comigrates with standard myosin (molecular weight, 2 times 10(5)). Since the slightly retarded component in the doublet accounts for all protein-bound 4'-phosphopantetheine, the complex appears to be made up of 11 to 12 equally sized subunits, 6 of which carry the acyl carrier protein function. In this unusual arrangement, notably the lack of the low-molecular-weight acyl carrier protein component seen in other FAS systems, as well as in its enzymatic properties, the Neurospora FAS complex is quite similar to the yeast enzyme. The FAS complex of a saturated fatty acid-requiring mutant, previously disignated cel-, contains less than 2% of the 4'-phosphopantetheine prosthetic groups found in the wild-type complex. The leaky phenotype of this mutant, here designated fas-, is accounted for by a residual fatty acid synthesizing activity in its FAS complex, which is several-fold higher than expected from its residual content of 4'-phosphopanthetheine. Images PMID:126228

  6. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    PubMed

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb. PMID:20565114

  7. [Cephalosporin-Acid Synthetase of Escherichia coli Strain VKPM B-10182: Genomic Context, Gene Identification, Producer Strain Production].

    PubMed

    Eldarov M, A; Sklyarenko, A V; Mardanov, A V; Beletsky, A V; Zhgun, A A; Dumina, M V; Medvedeva, N V; Satarova, D E; Ravin, N V; Yarockii, S V

    2015-01-01

    An enzyme of cephalosporin-acid synthetase produced by the E. coli strain VKPM B-10182 has specificity for the synthesis of β-lactam antibiotics of the cephalosporin acids class (cefazolin, cefalotin, cefezole etc.). A comparison of the previously determined genomic sequence of E. coli VKPM B-10182 with a genome of the parent E. coli strain ATCC 9637 was performed. Multiple mutations indicating the long selection history of the strain were detected, including mutations in the genes of RNase and β-lactamases that could enhance the level of enzyme synthesis and reduce the degree of degradation of the synthesized cephalosporin acids. The CASA gene--a direct homolog of the penicillin G-acylase gene--was identified by bioinformatics methods. The homology of the gene was confirmed by gene cloning and the expression and determination of its enzymatic activity in the reaction of cefazolin synthesis. The CASA gene was isolated and cloned into the original expression vector, resulting in an effective E. coli BL2l(DE3) pMD0107 strain producing CASA. PMID:26596082

  8. Nitric oxide (NO), citrulline-NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid-mediated excitotoxicity in rat brain.

    PubMed

    Swamy, Mummedy; Sirajudeen, Kuttulebbai N S; Chandran, Govindasamy

    2009-01-01

    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity. PMID:19793024

  9. Expression of Vibrio harveyi Acyl-ACP Synthetase Allows Efficient Entry of Exogenous Fatty Acids into the Escherichia coli Fatty Acid and Lipid A Synthetic Pathways

    PubMed Central

    Jiang, Yanfang; Morgan-Kiss, Rachael M.; Campbell, John W.; Chan, Chi Ho; Cronan, John E.

    2010-01-01

    Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously-supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function. PMID:20028080

  10. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Leucyl- and threonyl-tRNA synthetases were partially purified up to 100-fold and 30-fold respectively from cotyledons of Aesculus hippocastanum and were largely separated from the other aminoacyl-tRNA synthetases. Valyl-tRNA synthetase was purified 25-fold from cotyledons of Aesculus californica. 2. Some properties are reported for the three enzymes when assayed by the [32P]pyrophosphate-ATP exchange technique. 3. β-(Methylenecyclopropyl)alanine, isoleucine, azaleucine, norleucine and γ-hydroxynorvaline acted as alternative substrates for the leucyl-tRNA synthetase; the enzyme's affinity for β-(methylenecyclopropyl)-alanine and for isoleucine was about 80-fold less than that exhibited for leucine. 4. α-Cyclopropylglycine and α-cyclobutylglycine acted as alternative substrates for the valyl-tRNA synthetase. PMID:5493505

  11. Neurospora crassa glutamine synthetase. Translation of specific messenger ribonucleic acid in a cell-free system derived from rabbit reticulocytes.

    PubMed

    Palacios, R; Campomanes, M; Quinto, C

    1977-05-10

    The total reticulocyte lysate cell-free protein-synthesizing system was incubated in the presence of Neurospora crassa RNA. With the aid of an antibody directed against purified N. crassa glutamine synthetase, the synthesis of a specific protein was detected. This protein precipitates with antiglutamine synthetase using both direct and indirect procedures, migrates with the same molecular weight as the monomer of N. crassa glutamine synthetase when subjected to acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and chromatographs as N. crassa glutamine synthetase on anthranilate-bound Sepharose. These data indicate the translation of the mRNA that codes for N. crassa glutamine synthetase. This RNA behaves as poly(A)-containing material when fractionated on oly(U)-Sepha-rose. PMID:16013

  12. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase

    SciTech Connect

    Wells, P.G.; Zubovits, J.T.; Wong, S.T.; Molinari, L.M.; Ali, S.

    1989-02-01

    Teratogenicity of the anticonvulsant drug phenytoin is thought to involve its bioactivation by cytochromes P-450 to a reactive arene oxide intermediate. We hypothesized that phenytoin also may be bioactivated to a teratogenic free radical intermediate by another enzymatic system, prostaglandin synthetase. To evaluate the teratogenic contribution of this latter pathway, an irreversible inhibitor of prostaglandin synthetase, acetylsalicylic acid (ASA), 10 mg/kg intraperitoneally (ip), was administered to pregnant CD-1 mice at 9:00 AM on Gestational Days 12 and 13, 2 hr before phenytoin, 65 mg/kg ip. Other groups were pretreated 2 hr prior to phenytoin administration with either the antioxidant caffeic acid or the free radical spin trapping agent alpha-phenyl-N-t-butylnitrone (PBN). Caffeic acid and PBN were given ip in doses that respectively were up to 1.0 to 0.05 molar equivalents to the dose of phenytoin. Dams were killed on Day 19 and the fetuses were assessed for teratologic anomalies. A similar study evaluated the effect of ASA on the in vivo covalent binding of radiolabeled phenytoin administered on Day 12, in which case dams were killed 24 hr later on Day 13. ASA pretreatment produced a 50% reduction in the incidence of fetal cleft palates induced by phenytoin (p less than 0.05), without significantly altering the incidence of resorptions or mean fetal body weight. Pretreatment with either caffeic acid or PBN resulted in dose-related decreases in the incidence of fetal cleft palates produced by phenytoin, with maximal respective reductions of 71 and 82% at the highest doses of caffeic acid and PBN (p less than 0.05).

  13. AAE13 encodes a dual-localized malonyl-CoA synthetase that is crucial for mitochondrial fatty acid biosynthesis.

    PubMed

    Guan, Xin; Nikolau, Basil J

    2016-03-01

    Malonyl-CoA is a key intermediate in a number of metabolic processes associated with its role as a substrate in acylation and condensation reactions. These types of reactions occur in plastids, the cytosol and mitochondria, and although carboxylation of acetyl-CoA is the known mechanism for generating the distinct plastidial and cytosolic pools, the metabolic origin of the mitochondrial malonyl-CoA pool is still unclear. In this study we demonstrate that malonyl-CoA synthetase encoded by the Arabidopsis AAE13 (AT3G16170) gene is localized in both the cytosol and the mitochondria. These isoforms are translated from two types of transcripts, one that contains and one that does not contain a mitochondrial-targeting pre-sequence. Whereas the cytosolic AAE13 protein is not essential, due to the presence of a redundant malonyl-CoA generating system provided by a cytosolic acetyl-CoA carboxylase, the mitochondrial AAE13 protein is essential for plant growth. Phenotypes of the aae13-1 mutant are transgenically reversed only if the mitochondrial pre-sequence is present in the ectopically expressed AAE13 proteins. The aae13-1 mutant exhibits typical metabolic phenotypes associated with a deficiency in the mitochondrial fatty acid synthase system, namely depleted lipoylation of the H subunit of the photorespiratory enzyme glycine decarboxylase, increased accumulation of glycine and glycolate and reduced levels of sucrose. Most of these metabolic alterations, and associated morphological changes, are reversed when the aae13-1 mutant is grown in a non-photorespiratory condition (i.e. a 1% CO2 atmosphere), demonstrating that they are a consequence of the deficiency in photorespiration due to the inability to generate lipoic acid from mitochondrially synthesized fatty acids. PMID:26836315

  14. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.

    PubMed

    Ibba, M; Hong, K W; Sherman, J M; Sever, S; Söll, D

    1996-07-01

    Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases. PMID:8692925

  15. A core of three amino acids at the carboxyl-terminal region of glutamine synthetase defines its regulation in cyanobacteria.

    PubMed

    Saelices, Lorena; Robles-Rengel, Rocío; Florencio, Francisco J; Muro-Pastor, M Isabel

    2015-05-01

    Glutamine synthetase (GS) type I is a key enzyme in nitrogen metabolism, and its activity is finely controlled by cellular carbon/nitrogen balance. In cyanobacteria, a reversible process that involves protein-protein interaction with two proteins, the inactivating factors IF7 and IF17, regulates GS. Previously, we showed that three arginine residues of IFs are critical for binding and inhibition of GS. In this work, taking advantage of the specificity of GS/IFs interaction in the model cyanobacteria Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, we have constructed a different chimeric GSs from these two cyanobacteria. Analysis of these proteins, together with a site-directed mutagenesis approach, indicates that a core of three residues (E419, N456 and R459) is essential for the inactivation process. The three residues belong to the last 56 amino acids of the C-terminus of Synechocystis GS. A protein-protein docking modeling of Synechocystis GS in complex with IF7 supports the role of the identified core for GS/IF interaction. PMID:25626767

  16. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation[S

    PubMed Central

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Stafforini, Diana M.; Azhar, Salman; Liu, Jingwen

    2014-01-01

    ACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells. AA treatment decreased the half-life of ACSL4 protein in HepG2 cells by approximately 4-fold (from 17.3 ± 1.8 h to 4.2 ± 0.4 h) without causing apoptosis. The inhibitory action of AA on ACSL4 protein stability could not be prevented by rosiglitazone or inhibitors that interfere with the cellular pathways involved in AA metabolism to biologically active compounds. In contrast, treatment of cells with inhibitors specific for the proteasomal degradation pathway largely prevented the AA-induced ACSL4 degradation. We further show that ACSL4 is intrinsically ubiquitinated and that AA treatment can enhance its ubiquitination. Collectively, our studies have identified a novel substrate-induced posttranslational regulatory mechanism by which AA downregulates ACSL4 protein expression in hepatic cells. PMID:24879802

  17. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues.

    PubMed

    Zarzycki-Siek, Jan; Norris, Michael H; Kang, Yun; Sun, Zhenxin; Bluhm, Andrew P; McMillan, Ian A; Hoang, Tung T

    2013-01-01

    The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h. PMID:23737986

  18. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases.

    PubMed

    Tong, Fumin; Black, Paul N; Coleman, Rosalind A; DiRusso, Concetta C

    2006-03-01

    Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation. PMID:16466685

  19. Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells.

    PubMed

    Mashek, Douglas G; McKenzie, Michelle A; Van Horn, Cynthia G; Coleman, Rosalind A

    2006-01-13

    Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage. PMID:16263710

  20. Complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase from rat mammary gland

    SciTech Connect

    Randhawa, Z.I.; Smith, S.

    1987-03-10

    The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of (/sup 14/C)-labelled peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated M/sub r/ of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.

  1. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay.

    PubMed

    Kugimiya, Akimitsu; Konishi, Hidenori; Fukada, Rie

    2016-03-01

    Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0). PMID:26554858

  2. Endothelial Acyl-CoA Synthetase 1 is not Required for Inflammatory and Apoptotic Effects of a Saturated Fatty Acid-Rich Environment

    PubMed Central

    Li, Xin; Gonzalez, Oscar; Shen, Xia; Barnhart, Shelley; Kramer, Farah; Kanter, Jenny E.; Vivekanandan-Giri, Anuradha; Tsuchiya, Kyoichiro; Handa, Priya; Pennathur, Subramaniam; Kim, Francis; Coleman, Rosalind A.; Schaffer, Jean E.; Bornfeldt, Karin E.

    2013-01-01

    Objective Saturated fatty acids, such as palmitic and stearic acid, cause detrimental effects in endothelial cells (ECs) and have been suggested to contribute to macrophage accumulation in adipose tissue and the vascular wall in states of obesity and insulin resistance. Long-chain fatty acids are believed to require conversion into acyl-CoA derivatives to exert most of their detrimental effects, a reaction catalyzed by acyl-CoA synthetases (ACSL). The objective of this study was to investigate the role of ACSL1, an ACSL isoform previously shown to mediate inflammatory effects in myeloid cells, in regulating EC responses to a saturated fatty acid-rich environment in vitro and in vivo. Methods and Results Saturated fatty acids caused increased inflammatory activation, ER stress, and apoptosis in mouse microvascular ECs. Forced ACSL1 overexpression exacerbated the effects of saturated fatty acids on apoptosis and ER stress. However, endothelial ACSL1-deficiency did not protect against the effects of saturated fatty acids in vitro, nor did it protect insulin resistant mice fed a saturated fatty acid-rich diet from macrophage adipose tissue accumulation or increased aortic adhesion molecule expression. Conclusion Endothelial ACSL1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment. PMID:23241406

  3. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica.

    PubMed

    Tenagy; Park, Jun Seok; Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-06-01

    Here, we investigated the roles of YAL1 (FAA1) and FAT1 encoding acyl-CoA synthetases (ACSs) and three additional orthologs of ACS genes FAT2-FAT4 of the yeast Yarrowia lipolytica in the assimilation or utilization of n-alkanes and fatty acids. ACS deletion mutants were generated to characterize their function. The FAT1 deletion mutant exhibited decreased growth on n-alkanes of 10-18 carbons, whereas the FAA1 mutant showed growth reduction on n-alkane of 16 carbons. However, FAT2-FAT4 deletion mutants did not show any growth defects, suggesting that FAT1 and FAA1 are involved in the activation of fatty acids produced during the metabolism of n-alkanes. In contrast, deletions of FAA1 and FAT1-FAT4 conferred no defect in growth on fatty acids. The wild-type strain grew in the presence of cerulenin, an inhibitor of fatty acid synthesis, by utilizing exogenously added fatty acid or fatty acid derived from n-alkane when oleic acid or n-alkane of 18 carbons was supplemented. However, the FAA1 deletion mutant did not grow, indicating a critical role for FAA1 in the utilization of fatty acids. Fluorescent microscopic observation and biochemical analyses suggested that Fat1p is present in the peroxisome and Faa1p is localized in the cytosol and to membranes. PMID:26019148

  4. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen

    1987-01-01

    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  5. Initiation of Protein Synthesis by Folate-Sufficient and Folate-Deficient Streptococcus faecalis R: Partial Purification and Properties of Methionyl-Transfer Ribonucleic Acid Synthetase and Methionyl-Transfer Ribonucleic Acid Formyltransferase

    PubMed Central

    Samuel, Charles E.; Rabinowitz, Jesse C.

    1974-01-01

    RNAfMet are competitive inhibitors of both plus- and minus-folate S. faecalis formyltransferase; folic acid, pteroic acid, aminopterin, and Met-tRNAmMet are not inhibitory. These results indicate that the presence or absence of folic acid in the culture medium of S. faecalis has no apparent effect on either methionyl-tRNA synthetase or methionyl-tRNA formyltransferase, the two enzymes directly involved in the formation of formylmethionyl-tRNAfMet. Therefóre, the lack of N-formylation of Met-tRNAfMet in minus-folate S. faecalis is due to the absence of the formyl donor, a 10-formyl-tetrahydropteroyl derivative. Although the general properties of S. faecalis methionyl-tRNA synthetase are similar to those of other aminoacyl-tRNA synthetases, S. faecalis methionyl-tRNA formyltransferase differs from other previously described transformylases in certain kinetic parameters. PMID:4206871

  6. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  7. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; Klett, Eric L; De Paula, Iron F; Ramos, Isabela B; Coleman, Rosalind A; Gondim, Katia C

    2016-07-01

    Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction. PMID:27091636

  8. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  9. Organisation and sequence determination of glutamine-dependent carbamoyl phosphate synthetase II in Toxoplasma gondii.

    PubMed

    Fox, Barbara A; Bzik, David J

    2003-01-01

    Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase. PMID:12547350

  10. Characterization of Cereulide Synthetase, a Toxin-Producing Macromolecular Machine

    PubMed Central

    Alonzo, Diego A.; Magarvey, Nathan A.; Schmeing, T. Martin

    2015-01-01

    Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride. PMID:26042597

  11. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  12. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  13. The effects of alpha-lipoic acid on nitric oxide synthetase dispersion in penile function in streptozotocin-induced diabetic rats.

    PubMed

    Hurdag, C; Ozkara, H; Citci, S; Uyaner, I; Demirci, C

    2005-01-01

    Diabetes-induced erectile dysfunction is one of the most prevalent complications of diabetes in males. alpha-Lipoic acid (ALA) and its reduced form, dihydrolipoic acid, are powerful antioxidants. Data strongly suggest that, because of its antioxidant properties, ALA is particularly suited to the prevention and/or treatment of diabetic complications that arise from overproduction of reactive oxygen and nitrogen. The aim of this study was to investigate the localization of nitric oxide synthetase (NOS) in normal and diabetic rat cavernous smooth muscles and to examine the effects of ALA on them. Rats were divided into four groups: control, diabetic, diabetic plus ALA, and ALA only. Penile tissues were taken 15 days after drug application and examined histochemically and immunohistochemically. Comparison of the control and diabetic groups revealed that the axons of nerve cells were not identified with Masson trichrome in the diabetic group, whereas in the control group NOS localization and immunostaining (endothelial NOS [eNOS]) were normal. Diabetic rats administered ALA showed improvement in Masson trichrome, nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and eNOS localization compared with untreated diabetic rats. Although there was no difference between the control group and the group administered ALA only, we observed an increase in NADPH-d and eNOS. In erection, eNOS and neuronal NOS (nNOS) may have a significant role. In pathologic conditions, erectile dysfunction may occur as a result of an increase in inducible macrophage-type NOS (iNOS). ALA plays an important role in treatment of erectile dysfunction by decreasing iNOS and increasing other isoforms of NOS. PMID:16372481

  14. A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the β-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum

    PubMed Central

    Mareš, Jan; Hájek, Jan; Urajová, Petra; Kopecký, Jiří; Hrouzek, Pavel

    2014-01-01

    A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa) or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea). Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln) show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides. PMID:25369527

  15. Crystal Structure of Tryptophanyl-tRNA Synthetase Complexed with Adenosine-5′ Tetraphosphate: Evidence for Distributed Use of Catalytic Binding Energy in Amino Acid Activation by Class I Aminoacyl-tRNA Synthetases

    PubMed Central

    Retailleau, Pascal; Weinreb, Violetta; Hu, Mei; Carter, Charles W.

    2009-01-01

    Tryptophanyl-tRNA synthetase (TrpRS) is a functionally dimeric ligase, which specifically couples hydrolysis of ATP to AMP and pyrophosphate to the formation of an ester bond between tryptophan and the cognate tRNA. TrpRS from Bacillus stearothermophilus binds the ATP analogue, adenosine-5′ tetraphosphate, AQP, competitively with ATP during pyrophosphate exchange. Estimates of binding affinity from this competitive inhibition and from isothermal titration calorimetry show that AQP binds 200 times more tightly than ATP both under conditions of induced-fit, where binding is coupled to an unfavourable conformational change, and under exchange conditions, where there is no conformational change. These binding data provide an indirect experimental measurement of +3.0 kcal/mole for the conformational free energy change associated with induced-fit assembly of the active site. Thermodynamic parameters derived from the calorimetry reveal very modest enthalpic changes, consistent with binding driven largely by a favorable entropy change. The 2.5 Å structure of the TrpRS:AQP complex, determined de novo by X-ray crystallography, resembles that of the previously described, pre-transition state TrpRS:ATP complexes. The anticodon-binding domain untwists relative to the Rossmann-fold domain by 20% of the way toward the orientation observed for the Products complex. An unexpected tetraphosphate conformation allows the γ̃ and δ̃ phosphate groups to occupy positions equivalent to those occupied by the β̃ and γ̃ phosphates of ATP. The β-phosphate effects a 1.11 Å extension that relocates the α-phosphate toward the tryptophan carboxylate while the PPi mimic moves deeper into the KMSKS loop. This configuration improves interactions between enzyme and nucleotide significantly and uniformly in the adenosine and PPi binding subsites. A new hydrogen bond forms between S194 from the class I KMSKS signature sequence and the PPi mimic. These complementary thermodynamic and

  16. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  17. Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin.

    PubMed

    Durgan, David J; Smith, Justin K; Hotze, Margaret A; Egbejimi, Oluwaseun; Cuthbert, Karalyn D; Zaha, Vlad G; Dyck, Jason R B; Abel, E Dale; Young, Martin E

    2006-06-01

    The molecular mechanism(s) responsible for channeling long-chain fatty acids (LCFAs) into oxidative versus nonoxidative pathways is (are) poorly understood in the heart. Intracellular LCFAs are converted to long-chain fatty acyl-CoAs (LCFA-CoAs) by a family of long-chain acyl-CoA synthetases (ACSLs). Cytosolic thioesterase 1 (CTE1) hydrolyzes cytosolic LCFA-CoAs to LCFAs, generating a potential futile cycle at the expense of ATP utilization. We hypothesized that ACSL isoforms and CTE1 are differentially regulated in the heart during physiological and pathophysiological conditions. Using quantitative RT-PCR, we report that the five known acsl isoforms (acsl1, acsl3, acsl4, acsl5, and acsl6) and cte1 are expressed in whole rat and mouse hearts, as well as adult rat cardiomyocytes (ARCs). Streptozotocin-induced insulin-dependent diabetes (4 wk) and fasting (

  18. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain.

    PubMed

    Kasuya, Fumiyo; Kazuhiro, Misumi; Tatsuya, Hasegawa; Nakamoto, Kazuo; Tokuyama, Shogo; Masuyama, Teiichi

    2013-02-01

    Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC(50) = 78.7 and 64.7 µM) and but also for palmitic acid (IC(50) = 236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC(50) = 411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC(50) = 57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver. PMID:22299587

  19. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Swetha, Rayapadi G.; Anbarasu, Anand; Ramaiah, Sudha; Sambandamurthy, Vasan K.

    2016-01-01

    Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis. PMID:26794499

  20. cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains required for general amino acid control.

    PubMed

    Sattlegger, E; Hinnebusch, A G; Barthelmess, I B

    1998-08-01

    Based on characteristic amino acid sequences of kinases that phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha kinases), degenerate oligonucleotide primers were constructed and used to polymerase chain reaction-amplify from genomic DNA of Neurospora crassa a sequence encoding part of a putative protein kinase. With this sequence an open reading frame was identified encoding a predicted polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains. The 1646 amino acid sequence of this gene, called cpc-3, showed 35% positional identity over almost the entire sequence with GCN2 of yeast, which stimulates translation of the transcriptional activator of amino acid biosynthetic genes encoded by GCN4. Strains disrupted for cpc-3 were unable to induce increased transcription and derepression of amino acid biosynthetic enzymes in amino acid-deprived cells. The cpc-3 mutation did not affect the ability to up-regulate mRNA levels of cpc-1, encoding the GCN4 homologue and transcriptional activator of amino acid biosynthetic genes in N. crassa, but the mutation abolished the dramatic increase of CPC1 protein level in response to amino acid deprivation. These findings suggest that cpc-3 is the functional homologue of GCN2, being required for increased translation of cpc-1 mRNA in amino acid-starved cells. PMID:9685394

  1. Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation.

    PubMed

    Lindsey, S; Harwood, H J

    1995-04-21

    Squalene synthetase (SQS, EC 2.5.1.21) catalyzes the first committed step in the formation of cholesterol and thus represents an ideal site for selectively inhibiting sterol formation. Previous studies have demonstrated that the fungal metabolite, zaragozic acid A (ZGA-A), inhibits SQS activity by mimicking the substrate farnesyl pyrophosphate, the reaction intermediate presqualene pyrophosphate, or both, through a process that confers increased apparent potency in the presence of reduced enzyme concentrations, an observation consistent with either tight binding reversible competitive inhibition or mechanism-based irreversible inactivation. The studies outlined in this report provide multiple lines of evidence indicating that ZGA-A acts as a mechanism-based irreversible inactivator of SQS. 1) Inhibition of SQS by ZGA-A is dependent on the [SQS] present in the incubation reaction, and this inhibition is time-dependent and follows pseudo-first order reaction kinetics, exhibiting kobs values that range between 2 x 10(-4)/s and 23 x 10(-4)/s for [ZGA-A] within the log-linear range of the inhibition curve, and a bimolecular rate constant of 2.3 x 10(5) M-1s-1.2) SQS activity is titratable by ZGA-A, such that for each [ZGA-A] evaluated, inactivation exhibits a threshold [SQS] whereby enzyme activity at lower [SQS] is totally inhibited. 3) Time-dependent inactivation exhibits saturation kinetics with a Km for the process of 2.5 nM, which is approximately equal to the IC50 for SQS inhibition under these conditions, suggesting that inactivation results from selective modification of a functional group of the enzyme active center rather than from a nonspecific bimolecular reaction mechanism and that most, if not all of the inhibition results from irreversible inactivation. 4) Saturable, time-dependent inactivation occurs with similar inactivation kinetics for both the microsomal and trypsin-solubilized forms of the enzyme, indicating that irreversible inactivation by ZGA

  2. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    SciTech Connect

    Pendergast, A.M.; Traugh, J.A.

    1986-05-01

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with /sup 32/P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with /sup 32/P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C.

  3. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  4. The microsomal dicarboxylyl-CoA synthetase.

    PubMed Central

    Vamecq, J; de Hoffmann, E; Van Hoof, F

    1985-01-01

    Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo. PMID:4062873

  5. Novel Reaction of Succinyl Coenzyme A (Succinyl-CoA) Synthetase: Activation of 3-Sulfinopropionate to 3-Sulfinopropionyl-CoA in Advenella mimigardefordensis Strain DPN7T during Degradation of 3,3′-Dithiodipropionic Acid ▿ †

    PubMed Central

    Schürmann, Marc; Wübbeler, Jan Hendrik; Grote, Jessica; Steinbüchel, Alexander

    2011-01-01

    The sucCD gene of Advenella mimigardefordensis strain DPN7T encodes a succinyl coenzyme A (succinyl-CoA) synthetase homologue (EC 6.2.1.4 or EC 6.2.1.5) that recognizes, in addition to succinate, the structural analogues 3-sulfinopropionate (3SP) and itaconate as substrates. Accumulation of 3SP during 3,3′-dithiodipropionic acid (DTDP) degradation was observed in Tn5::mob-induced mutants of A. mimigardefordensis strain DPN7T disrupted in sucCD and in the defined deletion mutant A. mimigardefordensis ΔsucCD. These mutants were impaired in growth with DTDP and 3SP as the sole carbon source. Hence, it was proposed that the succinyl-CoA synthetase homologue in A. mimigardefordensis strain DPN7T activates 3SP to the corresponding CoA-thioester (3SP-CoA). The putative genes coding for A. mimigardefordensis succinyl-CoA synthetase (SucCDAm) were cloned and heterologously expressed in Escherichia coli BL21(DE3)/pLysS. Purification and characterization of the enzyme confirmed its involvement during degradation of DTDP. 3SP, the cleavage product of DTDP, was converted into 3SP-CoA by the purified enzyme, as demonstrated by in vitro enzyme assays. The structure of 3SP-CoA was verified by using liquid chromatography-electrospray ionization-mass spectrometry. SucCDAm is Mg2+ or Mn2+ dependent and unspecific regarding ATP or GTP. In kinetic studies the enzyme showed highest enzyme activity and substrate affinity with succinate (Vmax = 9.85 ± 0.14 μmol min−1 mg−1, Km = 0.143 ± 0.001 mM). In comparison to succinate, activity with 3SP was only ca. 1.2% (Vmax = 0.12 ± 0.01 μmol min−1 mg−1) and the affinity was 6-fold lower (Km = 0.818 ± 0.046 mM). Based on the present results, we conclude that SucCDAm is physiologically associated with the citric acid cycle but is mandatory for the catabolic pathway of DTDP and its degradation intermediate 3SP. PMID:21515777

  6. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  7. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  8. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  9. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2010-05-11

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  10. Fatty acid induced glioma cell growth is mediated by the acyl-CoA synthetase 5 gene located on chromosome 10q25.1-q25.2, a region frequently deleted in malignant gliomas.

    PubMed

    Yamashita, Y; Kumabe, T; Cho, Y Y; Watanabe, M; Kawagishi, J; Yoshimoto, T; Fujino, T; Kang, M J; Yamamoto, T T

    2000-11-30

    Acyl-CoA synthetase (ACS) ligates fatty acid and CoA to produce acyl-CoA, an essential molecule in fatty acid metabolism and cell proliferation. ACS5 is a recently characterized ACS isozyme highly expressed in proliferating 3T3-L1 cells. Molecular characterization of the human ACS5 gene revealed that the gene is located on chromosome 10q25.1-q25.2, spans approximately 46 kb, comprises 21 exons and 22 introns, and encodes a 683 amino acid protein. Two major ACS5 transcripts of 2.5- and 3.7-kb are distributed in a wide range of tissues with the highest expression in uterus and spleen. Markedly increased levels of ACS5 transcripts were detected in a glioma line, A172 cells, and primary gliomas of grade IV malignancy, while ACS5 expression was found to be low in normal brain. Immunohistochemical analysis also revealed strong immunostaining with an anti-ACS5 antibody in glioblastomas. U87MG glioma cells infected with an adenovirus encoding ACS5 displayed induced cell growth on exposure to palmitate. Consistent with the induction of cell growth, the virus infected cells displayed induced uptake of palmitate. These results demonstrate a novel fatty acid-induced glioma cell growth mediated by ACS5. PMID:11127823

  11. Enhanced amino acid selection in fully evolved tryptophanyl-tRNA synthetase, relative to its urzyme, requires domain motion sensed by the D1 switch, a remote dynamic packing motif.

    PubMed

    Weinreb, Violetta; Li, Li; Chandrasekaran, Srinivas Niranj; Koehl, Patrice; Delarue, Marc; Carter, Charles W

    2014-02-14

    We previously showed (Li, L., and Carter, C. W., Jr. (2013) J. Biol. Chem. 288, 34736-34745) that increased specificity for tryptophan versus tyrosine by contemporary Bacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS) over that of TrpRS Urzyme results entirely from coupling between the anticodon-binding domain and an insertion into the Rossmann-fold known as Connecting Peptide 1. We show that this effect is closely related to a long range catalytic effect, in which side chain repacking in a region called the D1 Switch, accounts fully for the entire catalytic contribution of the catalytic Mg(2+) ion. We report intrinsic and higher order interaction effects on the specificity ratio, (kcat/Km)Trp/(kcat/Km)Tyr, of 15 combinatorial mutants from a previous study (Weinreb, V., Li, L., and Carter, C. W., Jr. (2012) Structure 20, 128-138) of the catalytic role of the D1 Switch. Unexpectedly, the same four-way interaction both activates catalytic assist by Mg(2+) ion and contributes -4.4 kcal/mol to the free energy of the specificity ratio. A minimum action path computed for the induced-fit and catalytic conformation changes shows that repacking of the four residues precedes a decrease in the volume of the tryptophan-binding pocket. We suggest that previous efforts to alter amino acid specificities of TrpRS and glutaminyl-tRNA synthetase (GlnRS) by mutagenesis without extensive, modular substitution failed because mutations were incompatible with interdomain motions required for catalysis. PMID:24394410

  12. tRNA synthetase: tRNA Aminoacylation and beyond

    PubMed Central

    Pang, Yan Ling Joy; Poruri, Kiranmai; Martinis, Susan A.

    2014-01-01

    The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases have also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases. PMID:24706556

  13. Assignment of the cysteinyl-tRNA synthetase gene (CARS) to 11p15. 5

    SciTech Connect

    Cruzen, M.E.; Bengtsson, U.; McMahon, J.; Wasmuth, J.J.; Arfin, S.M. )

    1993-03-01

    The attachment of each of the 20 naturally occurring amino acids to their cognate tRNA isoaccepting families is catalyzed by a specific aminoacyl-tRNA synthetase. The structural genes encoding 10 of these enzymes have been assigned to specific human chromosomes. The HARS, LARS, RARS, and TARS genes, encoding histidyl-, leucyl-, arginyl-, and threonyl-tRNA synthetases, respectively, are all located on chromosome 5( 1, 5, 7, 9, 14). The MARS (methionyl-tRNA synthetase), NARS (asparaginyl-tRNA synthetase), VARS (valyl-tRNA synthetase), and WARS (tryptophanyl-tRNA synthetase) genes have been assigned to chromosomes 12, 18, 6, and 14, respectively (3, 4, 6, 8). A gene originally identified as encoding glutaminyl-tRNA synthetase was mapped to chromosome 1q32-q42 (10). However, a recent study suggests that the product of this gene is, in fact, a multifunctional enzyme with both glutamyl- and prolyl-tRNA synthetase activities (2). The fact that 4 of the 10 aminoacyl-tRNA synthetase genes already mapped are located on chromosome 5 may be fortuitous but might also indicate an evolutionary or regulatory relatedness. It is therefore, of interest to map genes encoding other aminoacyl-tRNA synthetases to determine if additional examples of synteny exist. The recent isolation of cDNA and genomic DNA clones for human cysteinyl-tRNA synthetase has now enabled us to map the CARS gene to segment p15.5 on chromosome 11 by fluorescence in situ hybridization.

  14. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi

    PubMed Central

    Ibba, Michael; Bono, James L.; Rosa, Patricia A.; Söll, Dieter

    1997-01-01

    Lysyl-tRNAs are essential for protein biosynthesis by ribosomal mRNA translation in all organisms. They are synthesized by lysyl-tRNA synthetases (EC 6.1.1.6), a group of enzymes composed of two unrelated families. In bacteria and eukarya, all known lysyl-tRNA synthetases are subclass IIc-type aminoacyl-tRNA synthetases, whereas some archaea have been shown to contain an unrelated class I-type lysyl-tRNA synthetase. Examination of the preliminary genomic sequence of the bacterial pathogen Borrelia burgdorferi, the causative agent of Lyme disease, indicated the presence of an open reading frame with over 55% similarity at the amino acid level to archaeal class I-type lysyl-tRNA synthetases. In contrast, no coding region with significant similarity to any class II-type lysyl-tRNA synthetase could be detected. Heterologous expression of this open reading frame in Escherichia coli led to the production of a protein with canonical lysyl-tRNA synthetase activity in vitro. Analysis of B. burgdorferi mRNA showed that the lysyl-tRNA synthetase-encoding gene is highly expressed, confirming that B. burgdorferi contains a functional class I-type lysyl-tRNA synthetase. The detection of an archaeal-type lysyl-tRNA synthetase in B. burgdorferi and other pathogenic spirochetes, but not to date elsewhere in bacteria or eukarya, indicates that the gene that encodes this enzyme has a common origin with its orthologue from the archaeal kingdom. This difference between the lysyl-tRNA synthetases of spirochetes and their hosts may be readily exploitable for the development of anti-spirochete therapeutics. PMID:9405621

  15. Diminished acyl-CoA synthetase isoform 4 activity in INS 832/13 cells reduces cellular epoxyeicosatrienoic acid levels and results in impaired glucose-stimulated insulin secretion.

    PubMed

    Klett, Eric L; Chen, Shufen; Edin, Matthew L; Li, Lei O; Ilkayeva, Olga; Zeldin, Darryl C; Newgard, Christopher B; Coleman, Rosalind A

    2013-07-26

    Glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells is potentiated by fatty acids (FA). The initial step in the metabolism of intracellular FA is the conversion to acyl-CoA by long chain acyl-CoA synthetases (Acsls). Because the predominantly expressed Acsl isoforms in INS 832/13 cells are Acsl4 and -5, we characterized the role of these Acsls in beta-cell function by using siRNA to knock down Acsl4 or Acsl5. Compared with control cells, an 80% suppression of Acsl4 decreased GSIS and FA-potentiated GSIS by 32 and 54%, respectively. Knockdown of Acsl5 did not alter GSIS. Acsl4 knockdown did not alter FA oxidation or long chain acyl-CoA levels. With Acsl4 knockdown, incubation with 17 mm glucose increased media epoxyeicosatrienoic acids (EETs) and reduced cell membrane levels of EETs. Further, exogenous EETs reduced GSIS in INS 832/13 cells, and in Acsl4 knockdown cells, an EET receptor antagonist partially rescued GSIS. These results strongly suggest that Acsl4 activates EETs to form EET-CoAs that are incorporated into glycerophospholipids, thereby sequestering EETs. Exposing INS 832/13 cells to arachidonate or linoleate reduced Acsl4 mRNA and protein expression and reduced GSIS. These data indicate that Acsl4 modulates GSIS by regulating the levels of unesterified EETs and that arachidonate controls the expression of its activator Acsl4. PMID:23766516

  16. The evolution of Class II Aminoacyl-tRNA synthetases and the first code.

    PubMed

    Smith, Temple F; Hartman, Hyman

    2015-11-30

    Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and "Lysine"/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. PMID:26472323

  17. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. PMID:27581854

  18. Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes.

    PubMed

    Ueda, H; Yoshihara, Y; Fukushima, N; Shiomi, H; Nakamura, A; Takagi, H

    1987-06-15

    Kyotorphin (Tyr-Arg) is a unique neuropeptide which produces analgesia by releasing Met-enkephalin from slices of the brain and spinal cord. Recent studies revealed that kyotorphin possesses the properties of neurotransmitter/neuroregulator. In the present study, we identified a kyotorphin synthetase in the soluble fraction of rat brain synaptosomes (synaptosol) and characterized it. The enzyme partially purified with Sephacryl S-300 showed an absolute requirement for ATP, MgCl2, tyrosine, and arginine. The optimal pH was 7.5-9.0 and the pI was determined to be 6.1-6.2 by isoelectric focusing. The Km was 25.6 microM for tyrosine, 926 microM for arginine, 294 microM for ATP, and 442 microM for MgCl2. The Vmax was 34.0 pmol/mg of protein/h. The apparent molecular size of this "kyotorphin synthetase" further purified by the DE52 column was 240,000-245,000 daltons, estimated using TSKgel G4000SW column chromatography. The enzyme reaction is represented by the following equation: Tyr + Arg + ATP + MgCl2 + kyotorphin synthetase----Tyr-Arg (kyotorphin) + AMP + PPi + MgCl2 + kyotorphin synthetase. The regional distribution and subcellular localization of the synthetase showed a close correlation to that of kyotorphin levels in the rat brain. The amounts of kyotorphin formed from amino acids by the synthetase in the dialyzed synaptosol was 3.0-4.0 times higher than that from precursor proteins by processing enzymes within the 30 min incubation. PMID:3597366

  19. Activation of the Nrf2 pathway, but decreased {gamma}-glutamylcysteine synthetase heavy subunit chain levels and caspase-3-dependent apoptosis during exposure of primary mouse hepatocytes to diphenylarsinic acid

    SciTech Connect

    Sumi, Daigo; Manji, Aiko; Shinkai, Yasuhiro; Toyama, Takashi; Kumagai, Yoshito

    2007-09-15

    Diphenylarsinic acid (DPAsV) is a degradation product of chemical warfare agents, over which there has been a public outcry in the Kamisu Area of Ibaraki Prefecture in Japan. In this study, we investigated the cytotoxicity of and cellular response to DPAsV in primary mouse hepatocytes. Exposure of the hepatocytes to DPAsV resulted in cell damage accompanied by cellular accumulation of DPAsV in a time-dependent manner. The cell death caused by DPAsV was attributable to apoptosis. DPAsV activated a basic leucine-zipper transcription factor Nrf2 as determined by the nuclear translocation of Nrf2, anti-oxidant response element (ARE)-dependent luciferase activity, and upregulation of downstream gene products. However, {gamma}-glutamylcysteine synthetase heavy subunit chain ({gamma}-GCS{sub H}), which is regulated by Nrf2, underwent cleavage by activated caspase-3 to a 17 kDa fragment, leading to a minimal level of constitutive {gamma}-GCS{sub H} expression 72 h following the exposure (25 {mu}M). Experiments with cycloheximide revealed that the DPAsV-mediated reduction in {gamma}-GCS{sub H} was due to a post-translational modification. The results suggest that DPAsV causes caspase-3-dependent cleavage of {gamma}-GCS{sub H} regardless of Nrf2 activation in primary mouse hepatocytes.

  20. Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: Identification of amino acid residues labeled by periodate-oxidized tRNA sup fMet molecules having modified lengths at the 3 prime -acceptor end

    SciTech Connect

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S. )

    1990-09-04

    Initiator tRNA molecules modified at the 3{prime}-end and lacking either A{sub 76} (tRNA-C{sub 75}), the C{sub 75}-A{sub 76} (tRNA-C{sub 74}), the C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 73}), or the A{sub 73}-C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 72}) nucleotides were prepared stepwise by repeated periodate, lysine, and alkaline phosphatase treatments. When incubated with trypsin-modified methionyl-tRNA synthetase (MTS{sub T}), excess amounts of the dialdehyde derivative of each of these shortened tRNAs (tRNA-C{sub 75}ox, tRNA-A{sub 73}ox, and tRNA-A{sub 72}ox) abolished both the isotopic ({sup 32}P)PP{sub i}ATP exchange and the tRNA aminoacylation activities of the enzyme. In the presence of limiting concentrations of the various tRNAox species, the relative extents of inactivation of the enzyme were consistent with the formation of 1:1 complexes of the reacting tRNAs with the monomeric modified synthetase. Specificity of the labeling was further established by demonstrating that tRNA-C{sub 75}ox binds the enzyme with an equilibrium constant and stoichiometry values in good agreement with those for the binding of nonoxidized tRNA-C{sub 75}. The peptides of MTS{sub T} labeled with either tRNA-C{sub 75}ox or tRNA-C{sub 74}ox were identified. In a previous work all these peptides but one (peptide D) had been already found labeled upon MTS{sub T} incubation with ({sup 14}C)tRNA-A{sub 76}ox. According to the crystallographic structure of MTS{sub T}, the labeled residues K335, K61, K142, K147, and K149 are within a sphere of about 5.5-{angstrom} radius. The present results therefore argue for a marked flexibility of the 3{prime}-end of the enzyme-bound tRNA, enabling it to contact any of the identified reacting residues. Such a cluster of basic amino acids may reflect ionic requirements in the guiding of the negatively charged CCA arm of tRNA toward enzyme-bound methionyl-adenylate.

  1. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  2. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  3. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.

    PubMed Central

    Cusack, S; Härtlein, M; Leberman, R

    1991-01-01

    Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain. Images PMID:1852601

  4. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    SciTech Connect

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  5. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  6. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  7. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.

    PubMed

    Richardson, Charles J; First, Eric A

    2016-03-15

    Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine. PMID:26890980

  8. Inhibitory effect of quinolone antimicrobial and nonsteroidal anti-inflammatory drugs on a medium chain acyl-CoA synthetase.

    PubMed

    Kasuya, F; Hiasa, M; Kawai, Y; Igarashi, K; Fukui, M

    2001-08-01

    The inhibitory effects of quinolone antimicrobial agents and nonsteroidal anti-inflammatory drugs on purified mouse liver mitochondrial medium chain acyl-CoA synthetase catalyzing the first reaction of glycine conjugation were examined, using hexanoic acid as a substrate. Enoxacin, ofloxacin, nalidixic acid, diflunisal, salicylic acid, 2-hydroxynaphthoic acid, and 2-hydroxydodecanoic acid, which do not act as substrates, were potent inhibitors. Diflunisal, nalidixic acid, salicylic acid, 2-hydroxynaphthoic acid, and 2-hydroxydodecanoic acid inhibited competitively this medium chain acyl-CoA synthetase with K(i) values of 0.6, 12.4, 19.6, 13.4, and 15.0 microM, respectively. Enoxacin and ofloxacin inhibited this medium chain acyl-CoA synthetase in a mixed-type manner with K(i) values of 23.7 and 38.2 microM, respectively. Felbinac, which is a substrate, inhibited the activity of this medium chain acyl-CoA synthetase for hexanoic acid (IC50 = 25 microM). The concomitant presence of enoxacin and felbinac strongly inhibited this medium chain acyl-CoA synthetase. These findings indicate that medium chain acyl-CoA synthetases may be influenced by quinolone antimicrobial and nonsteroidal anti-inflammatory drugs. PMID:11434910

  9. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  10. Regulation of β-Glucan Synthetase Activity by Auxin in Pea Stem Tissue

    PubMed Central

    Ray, Peter M.

    1973-01-01

    Treatment of pea stem segments with indoleacetic acid (IAA) causes within 1 hour a 2- to 4-fold increase in activity of particulate uridine diphosphoglucose-dependent β-glucan synthetase obtainable from the tissue. The IAA effect is observable in tissue from all parts of the elongation zone of the pea stem, and also in older tissue that is not capable of a cell enlargement response to IAA. A large increase in activity is caused by IAA only if synthetase activity in the isolated tissue has first been allowed to fall substantially below the intact plant level, and only if sucrose is supplied along with IAA. Treatment of tissue with sucrose alone after a period of sugar starvation causes a transient rise of synthetase activity. The decline in synthetase activity in absence of IAA, the rise caused by IAA, and the transient rise caused by sucrose are all strongly temperature-dependent. IAA and sucrose do not affect the activity of isolated synthetase particles. Synthetase activity in vivo is sensitive to as low as 0.1 μm IAA and is increased by IAA analogues that are active as auxins on elongation but not by nonauxin analogues. Activity begins to rise 10 to 15 minutes after exposure to IAA, which places this among the most rapid enzyme effects of a plant growth regulator heretofore demonstrated, and among the most rapid known metabolic effects of auxins. The effect is seen also with polysaccharide synthetase activity using uridine diphosphate-galactose or uridine diphosphate-xylose as substrates, and to a lesser extent with guanosine diphosphoglucose-dependent glucan synthetase activity. Glucan synthetase from IAA-treated tissue appears to have a higher affinity for uridine diphosphate-glucose than the control. PMID:16658379

  11. Post-transcriptional regulation of S-adenosylmethionine synthetase from its stored mRNA in germinated wheat embryos.

    PubMed

    Mathur, M; Saluja, D; Sachar, R C

    1991-06-24

    About 2-3-fold stimulation of S-adenosylmethionine synthetase was witnessed in germinated wheat embryos (48 h). The enhancement of enzyme activity was significantly inhibited by cycloheximide and amino acid analogues. Simultaneous addition of corresponding amino acids alleviated the inhibitory effect of amino acid analogues. Conclusive proof for the de novo synthesis of S-adenosylmethionine synthetase was obtained by labelling this enzyme with [35SO4]2- in vivo. Thus de novo enzyme synthesis seemed necessary for the rise in activity of AdoMet synthetase in wheat embryos. Curiously, blocking of transcription with cordycepin failed to repress the de novo synthesis of AdoMet synthetase in germinated wheat embryos. We envisage the presence of stored mRNA for AdoMet synthetase in wheat embryos. Thus the regulation of this enzyme occurs at the post-transcriptional level. L-Methionine, which is one of the substrates of AdoMet synthetase, stimulated the enzyme activity (2-2.4-fold) over that observed in control germinated embryos. L-Methionine promotes increased de novo synthesis of AdoMet synthetase. Preincubation of enzyme fraction with L-Methionine failed to activate or stabilize the activity of AdoMet synthetase. Three isozymes of AdoMet synthetase were physically separated by DE-52 ion-exchange chromatography. One of the isozymes of AdoMet synthetase has been purified (1529-fold) to electrophoretic homogeneity by resorting to phenyl Sepharose and ATP Sepharose affinity chromatography. The purified enzyme catalyzed the synthesis of S-adenosylmethionine and also exhibited tripolyphosphatase activity. The reaction product of the purified enzyme was chemically and enzymatically characterized as S-adenosylmethionine. The molecular weight of the native enzyme is 174,000 and that of its subunit is 84,000 as determined on SDS-PAGE. Thus the native enzyme seems to be dimeric in nature. PMID:1648405

  12. Molecular definition of bovine argininosuccinate synthetase deficiency.

    PubMed Central

    Dennis, J A; Healy, P J; Beaudet, A L; O'Brien, W E

    1989-01-01

    Citrullinemia is an inborn error of metabolism due to deficiency of the urea cycle enzyme, argininosuccinate synthetase [L-citrulline:L-aspartate ligase (AMP-forming), EC 6.3.4.5]. The disease was first described in humans but was recently reported in dairy cattle in Australia. Here we report the nucleotide sequence of the normal bovine cDNA for argininosuccinate synthetase and the mutation present in animals with citrullinemia. Analysis of DNA from affected animals by Southern blotting did not readily identify the mutation in the bovine gene. RNA (Northern) blotting revealed a major reduction in the steady-state amount of mRNA in the liver of affected animals to less than 5% of controls. The bovine cDNA was cloned and sequenced and revealed 96% identity with the deduced human sequence at the amino acid level. Starting with mutant bovine liver, the mRNA was reverse-transcribed; the cDNA product was amplified with the polymerase chain reaction, cloned, and sequenced. The sequence revealed a C----T transition converting arginine-86 (CGA) to a nonsense codon (TGA). A second C----T transition represented a polymorphism in proline-175 (CCC----CCT). The mutation and the polymorphism were confirmed by amplification of genomic DNA and demonstration with restriction endonuclease enzymes of both the loss of an Ava II site in DNA from mutant animals at codon 86 and the presence or absence of a Dde I site at codon 175. The loss of the Ava II site can be used for rapid, economical, nonradioactive detection of heterozygotes for bovine citrullinemia. Images PMID:2813370

  13. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    PubMed

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes. PMID:25437123

  14. Aminoacyl-tRNA Synthetase Complexes in Evolution

    PubMed Central

    Havrylenko, Svitlana; Mirande, Marc

    2015-01-01

    Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis. PMID:25807264

  15. Structural plasticity of an aminoacyl-tRNA synthetase active site

    PubMed Central

    Turner, James M.; Graziano, James; Spraggon, Glen; Schultz, Peter G.

    2006-01-01

    Recently, tRNA aminoacyl-tRNA synthetase pairs have been evolved that allow one to genetically encode a large array of unnatural amino acids in both prokaryotic and eukaryotic organisms. We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine (NpAla). A comparison of these structures with the substrate-bound WT synthetase, as well as a mutant synthetase that charges p-acetylphenylalanine, shows that altered specificity is due to both side-chain and backbone rearrangements within the active site that modify hydrogen bonds and packing interactions with substrate, as well as disrupt the α8-helix, which spans the WT active site. The high degree of structural plasticity that is observed in these aminoacyl-tRNA synthetases is rarely found in other mutant enzymes with altered specificities and provides an explanation for the surprising adaptability of the genetic code to novel amino acids. PMID:16618920

  16. Neurospora crassa mutants deficient in asparagine synthetase.

    PubMed Central

    MacPhee, K G; Nelson, R E; Schuster, S M

    1983-01-01

    Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase. PMID:6137480

  17. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1991-01-01

    The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close agreement with that observed for the purified protein, which behaves as a monomer. The sequence of CysRS bears the canonical His-Ile- Gly -His (HIGH) and Lys-Met-Ser-Lys-Ser (KMSKS) motifs characteristic of the group of enzymes containing a Rossmann fold; furthermore, it shows striking homologies with MetRS (an homodimer of 677 residues) and to a lesser extent with Ile-, Leu-, and ValRS (monomers of 939, 860, and 951 residues respectively). With its monomeric state and smaller size, CysRS is probably more closely related to the primordial aminoacyl-tRNA synthetase from which all have diverged. Images PMID:2014166

  18. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  19. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.

    PubMed

    Chen, Wei-Hung; Li, Kunhua; Guntaka, Naga Sandhya; Bruner, Steven D

    2016-08-19

    Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules. PMID:27294598

  20. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase.

    PubMed Central

    Cerini, C; Kerjan, P; Astier, M; Gratecos, D; Mirande, M; Sémériva, M

    1991-01-01

    In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed. Images PMID:1756734

  1. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  2. Isolation of the facA (acetyl-CoA synthetase) gene of Phycomyces blakesleeanus.

    PubMed

    Garre, V; Murillo, F J; Torres-Martínez, S

    1994-08-01

    A 5.6 kb DNA fragment from the fungus Phycomyces blakesleeanus has been cloned and sequenced. The fragment contains a gene that probably codes for the enzyme acetyl-coenzyme A synthetase (facA). The amino acid sequence deduced for the P. blakesleeanus protein is highly homologous to those of acetyl-coA-synthetases from other organisms. When placed under the control of a constitutive promoter from Aspergillus nidulans, the cloned gene complemented a facA- mutation of this organism. In P. blakesleeanus, the expression of facA is induced by acetate. PMID:7914670

  3. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  4. Proteomic identification of glutamine synthetase as a differential marker for oligodendrogliomas and astrocytomas

    PubMed Central

    Zhuang, Zhengping; Qi, Meng; Li, Jie; Okamoto, Hiroaki; Xu, David S.; Iyer, Rajiv R.; Lu, Jie; Yang, Chunzhang; Weil, Robert J.; Vortmeyer, Alexander; Lonser, Russell R.

    2016-01-01

    Object Astrocytomas and oligodendrogliomas are primary CNS tumors that remain a challenge to differentiate histologically because of their morphological variability and because there is a lack of reliable differential diagnostic markers. To identify proteins that are differentially expressed between astrocytomas and oligodendrogliomas, the authors analyzed the proteomic expression patterns and identified uniquely expressed proteins in these neoplasms. Methods Proteomes of astrocytomas and oligodendrogliomas were analyzed using 2D gel electrophoresis and subsequent computerized gel analysis to detect differentially expressed proteins. The proteins were identified using high-performance liquid chromatography accompanied by tandem mass spectrometry. To determine the role of the differentially expressed proteins in astrocytes, undifferentiated glial cell cultures were treated with dibutyryl–cyclic adenosine monophosphate (cAMP). Results Two-dimensional gel electrophoresis revealed that glutamine synthetase was differentially expressed in astrocytomas and oligodendrogliomas. Western blot and immunohistochemical analyses confirmed the increased expression of glutamine synthetase in astrocytomas compared with oligodendrogliomas. Whereas glutamine synthetase expression was demonstrated across all grades of astrocytomas (Grade II–IV [15 tumors]) and oligoastrocytomas (4 tumors), it was expressed in only 1 oligodendroglioma (6% [16 tumors]). Treatment of undifferentiated glial cell cultures with dibutyryl-cAMP resulted in astrocyte differentiation that was associated with increased levels of glial fibrillary acidic protein and glutamine synthetase. Conclusions These data indicate that glutamine synthetase expression can be used to distinguish astrocytic from oligodendroglial tumors and may play a role in the pathogenesis of astrocytomas. PMID:21682567

  5. Inactivation and covalent modification of CTP synthetase by thiourea dioxide.

    PubMed

    Robertson, J G; Sparvero, L J; Villafranca, J J

    1992-10-01

    Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues. PMID:1303749

  6. Inactivation and covalent modification of CTP synthetase by thiourea dioxide.

    PubMed Central

    Robertson, J. G.; Sparvero, L. J.; Villafranca, J. J.

    1992-01-01

    Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues. PMID:1303749

  7. Nineteen-year follow-up of a patient with severe glutathione synthetase deficiency.

    PubMed

    Atwal, Paldeep S; Medina, Casey R; Burrage, Lindsay C; Sutton, V Reid

    2016-07-01

    Glutathione synthetase deficiency is a rare autosomal recessive disorder resulting in low levels of glutathione and an increased susceptibility to oxidative stress. Patients with glutathione synthetase deficiency typically present in the neonatal period with hemolytic anemia, metabolic acidosis and neurological impairment. Lifelong treatment with antioxidants has been recommended in an attempt to prevent morbidity and mortality associated with the disorder. Here, we present a 19-year-old female who was diagnosed with glutathione synthetase deficiency shortly after birth and who has been closely followed in our metabolic clinic. Despite an initial severe presentation, she has had normal intellectual development and few complications of her disorder with a treatment regimen that includes polycitra (citric acid, potassium citrate and sodium citrate), vitamin C, vitamin E and selenium. PMID:26984560

  8. Molecular characterization of N-acetylaspartylglutamate synthetase.

    PubMed

    Becker, Ivonne; Lodder, Julia; Gieselmann, Volkmar; Eckhardt, Matthias

    2010-09-17

    The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system. PMID:20643647

  9. Novel Insights into Regulation of Asparagine Synthetase in Conifers

    PubMed Central

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M.

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed. PMID:22654888

  10. Holocarboxylase synthetase deficiency pre and post newborn screening

    PubMed Central

    Donti, Taraka R.; Blackburn, Patrick R.; Atwal, Paldeep S.

    2016-01-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  11. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  12. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.

    PubMed

    Brevet, Annie; Chen, Josiane; Commans, Stéphane; Lazennec, Christine; Blanquet, Sylvain; Plateau, Pierre

    2003-08-15

    The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases. PMID:12766171

  13. Lincosamide synthetase--a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism.

    PubMed

    Janata, Jiri; Kadlcik, Stanislav; Koberska, Marketa; Ulanova, Dana; Kamenik, Zdenek; Novak, Petr; Kopecky, Jan; Novotna, Jitka; Radojevic, Bojana; Plhackova, Kamila; Gazak, Radek; Najmanova, Lucie

    2015-01-01

    In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system

  14. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  16. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Structure of Pyrrolysyl-tRNA Synthetase, an Archaeal Enzyme for Genetic Code Innovation

    SciTech Connect

    Kavran,J.; Gundllapalli, S.; O'Donoghue, P.; Englert, M.; Soll, D.; Steitz, T.

    2007-01-01

    Pyrrolysine (Pyl), the 22nd natural amino acid and genetically encoded by UAG, becomes attached to its cognate tRNA by pyrrolysyl-tRNA synthetase (PylRS). We have determined three crystal structures of the Methanosarcina mazei PylRS complexed with either AMP-PNP, Pyl-AMP plus pyrophosphate, or the Pyl analogue N-e-[(cylopentyloxy)carbonyl]-l-lysine plus ATP. The structures reveal that PylRS utilizes a deep hydrophobic pocket for recognition of the Pyl side chain. A comparison of these structures with previously determined class II tRNA synthetase complexes illustrates that different substrate specificities derive from changes in a small number of residues that form the substrate side-chain-binding pocket. The knowledge of these structures allowed the placement of PylRS in the aminoacyl-tRNA synthetase (aaRS) tree as the last known synthetase that evolved for genetic code expansion, as well as the finding that Pyl arose before the last universal common ancestral state. The PylRS structure provides an excellent framework for designing new aaRSs with altered amino acid specificity.

  18. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  19. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  20. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed

    PubMed Central

    Hausmann, Corinne D.; Ibba, Michael

    2008-01-01

    The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis. PMID:18522650

  1. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    PubMed

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  2. One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities

    PubMed Central

    Yu, Hai; Chokhawala, Harshal; Huang, Shengshu; Chen, Xi

    2008-01-01

    Chemoenzymatic synthesis, which combines the flexibility of chemical synthesis and the highly selectivity of enzymatic synthesis, is a powerful approach to obtain complex carbohydrates. It is a preferred method for synthesizing sialic acid-containing structures, including those with diverse naturally occurring and non-natural sialic acid forms, different sialyl linkages, and different glycans that link to the sialic acid. Starting from N-acetylmannosamine, mannose, or their chemically or enzymatically modified derivatives, sialic acid aldolase-catalyzed condensation reaction leads to the formation of sialic acids and their derivatives. These compounds are subsequently activated by a CMP-sialic acid synthetase and transferred to a wide range of suitable acceptors by a suitable sialyltransferase for the formation of sialosides containing natural and non-natural functionalities. The three-enzyme coupled synthesis of sialosides can be carried out in one pot without the isolation of intermediates. The time for synthesis is 4–18 h. Purification and characterization of the product can be completed in 2–3 d. PMID:17406495

  3. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  4. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-01-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia. PMID:7486915

  5. Management of a patient with holocarboxylase synthetase deficiency.

    PubMed

    Van Hove, Johan L K; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A; Thuy, Le Phuc; Barshop, Bruce A; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2008-12-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3' of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid (CSF), corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required. PMID:18974016

  6. MANAGEMENT OF A PATIENT WITH HOLOCARBOXYLASE SYNTHETASE DEFICIENCY

    PubMed Central

    Van Hove, Johan LK; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A.; Thuy, Le Phuc; Barshop, Bruce A.; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2009-01-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3′ of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100 mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid, corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required. PMID:18974016

  7. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    SciTech Connect

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.

  8. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... important for the effective use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in ...

  9. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... PubMed Njålsson R. Glutathione synthetase deficiency. Cell Mol Life Sci. 2005 Sep;62(17):1938-45. Review. Citation on PubMed Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar 30;2:16. Review. Citation on PubMed or ...

  10. Recoding Aminoacyl-tRNA Synthetases for Synthetic Biology by Rational Protein-RNA Engineering

    PubMed Central

    2015-01-01

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl–tRNA pairing specificities of bacterial glutaminyl–tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNAGln by over 105-fold compared to the wild-type enzyme. Better optimized designs of the protein–RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl–tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology. PMID:25310879

  11. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains.

    PubMed Central

    Gutiérrez, S; Díez, B; Montenegro, E; Martín, J F

    1991-01-01

    A 24-kb region of Cephalosporium acremonium C10 DNA was cloned by hybridization with the pcbAB and pcbC genes of Penicillium chrysogenum. A 3.2-kb BamHI fragment of this region complemented the mutation in the structural pcbC gene of the C. acremonium N2 mutant, resulting in cephalosporin production. A functional alpha-aminoadipyl-cysteinyl-valine (ACV) synthetase was encoded by a 15.6-kb EcoRI-BamHI DNA fragment, as shown by complementation of an ACV synthetase-deficient mutant of P. chrysogenum. Two transcripts of 1.15 and 11.4 kb were found by Northern (RNA blot) hybridization with probes internal to the pcbC and pcbAB genes, respectively. An open reading frame of 11,136 bp was located upstream of the pcbC gene that matched the 11.4-kb transcript initiation and termination regions. It encoded a protein of 3,712 amino acids with a deduced Mr of 414,791. The nucleotide sequence of the gene showed 62.9% similarity to the pcbAB gene encoding the ACV synthetase of P. chrysogenum; 54.9% of the amino acids were identical in both ACV synthetases. Three highly repetitive regions occur in the deduced amino acid sequence of C. acremonium ACV synthetase. Each is similar to the three repetitive domains in the deduced sequence of P. chrysogenum ACV synthetase and also to the amino acid sequence of gramicidin synthetase I and tyrocidine synthetase I of Bacillus brevis. These regions probably correspond to amino acid activating domains in the ACV synthetase protein. In addition, a thioesterase domain was present in the ACV synthetases of both fungi. A similarity has been found between the domains existing in multienzyme nonribosomal peptide synthetases and polyketide and fatty acid synthetases. The pcbAB gene is linked to the pcbC gene, forming a cluster of early cephalosporin-biosynthetic genes. Images PMID:1706706

  12. Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts.

    PubMed

    Freedman, R; Gibson, B; Donovan, D; Biemann, K; Eisenbeis, S; Parker, J; Schimmel, P

    1985-08-25

    Histidine-tRNA synthetase is one of the smallest bacterial aminoacyl-tRNA synthetases. It is less than one-half the size of the largest aminoacyl-tRNA synthetases. The entire nucleotide sequence of the Escherichia coli hisS locus was determined. The coding region is comprised of 424 codons, and the sequence was determined for 200 nucleotides on the 5'- and 3'-sides of the coding region. The translated nucleotide sequence was confirmed extensively by independent amino acid sequence information obtained by Edman degradations of purified peptides and by measurements of peptide masses by fast atom bombardment mass spectrometry. A significant sequence alignment of four bacterial aminoacyl-tRNA synthetases was reported recently (Webster, T., Tsai, H., Kula, M., Mackie, G., and Schimmel, P. (1984) Science 226, 1315-1317). Although the four enzymes vary considerably in length, this match occurs within the first 100 amino acids of each of the four enzymes and is in the segment believed to be part of the catalytic core. But no strong alignment could be found of the histidine sequence with these four tRNA synthetase sequences. This enzyme may be derived, therefore, from a different progenitor. Previous work suggested that three places in the hisS 5'-noncoding sequence could be promoter sites for RNA polymerase (Eisenbeis, S. J., and Parker, J. (1982) Gene 18, 107-114). We detected a 1400-nucleotide RNA species by RNA blot analysis with a hisS-specific probe. S1 nuclease mapping demonstrated a 5'-end to the RNA species occurs at -67 +/- 1, relative to the first nucleotide of the coding region. This position coincides with the predicted start site for transcription from one of the previously proposed promoter sites. PMID:2991272

  13. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases.

    PubMed

    Drake, Eric J; Miller, Bradley R; Shi, Ce; Tarrasch, Jeffrey T; Sundlov, Jesse A; Allen, C Leigh; Skiniotis, Georgios; Aldrich, Courtney C; Gulick, Andrew M

    2016-01-14

    Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases. PMID:26762461

  14. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  15. Helicobacter pylori Glutamine Synthetase Lacks Features Associated with Transcriptional and Posttranslational Regulation

    PubMed Central

    Garner, Rachel M.; Fulkerson, John; Mobley, Harry L. T.

    1998-01-01

    Helicobacter pylori urease, produced in abundance, is indispensable for the survival of H. pylori in animal hosts. Urea is hydrolyzed by the enzyme, resulting in the liberation of excess ammonia, some of which neutralizes gastric acid. The remaining ammonia is assimilated into protein by glutamine synthetase (EC 6.3.1.2), which catalyzes the reaction: NH3 + glutamate + ATP→glutamine + ADP + Pi. We hypothesized that glutamine synthetase plays an unusually critical role in nitrogen assimilation by H. pylori. We developed a phenotypic screen to isolate genes that contribute to the synthesis of a catalytically active urease. Escherichia coli SE5000 transformed with plasmid pHP808 containing the entire H. pylori urease gene cluster was cotransformed with a pBluescript plasmid library of the H. pylori ATCC 43504 genome. A weakly urease-positive 9.4-kb clone, pUEF728, was subjected to nucleotide sequencing. Among other genes, the gene for glutamine synthetase was identified. The complete 1,443-bp glnA gene predicts a polypeptide of 481 amino acid residues with a molecular weight of 54,317; this was supported by maxicell analysis of cloned glnA expressed in E. coli. The top 10 homologs were all bacterial glutamine synthetases, including Salmonella typhimurium glnA. The ATP-binding motif GDNGSG (residues 272 to 277) of H. pylori GlnA exactly matched and aligned with the sequence in 8 of the 10 homologs. The adenylation site found in the top 10 homologs (consensus sequence, NLYDLP) is replaced in H. pylori by NLFKLT (residues 405 to 410). Since the Tyr (Y) residue is the target of adenylation and since the H. pylori glutamine synthetase lacks that residue in four strains examined, we conclude that no adenylation occurs within this motif. Cloned H. pylori glnA complemented a glnA mutation in E. coli, and GlnA enzyme activity could be measured spectrophotometrically. In an attempt to produce a GlnA-deficient mutant of H. pylori, a kanamycin resistance cassette was cloned

  16. Neural control of glutamine synthetase activity in rat skeletal muscles.

    PubMed

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  17. Purification and characterization of fatty acyl-acyl carrier protein synthetase from Vibrio harveyi.

    PubMed Central

    Fice, D; Shen, Z; Byers, D M

    1993-01-01

    A Vibrio harveyi enzyme which catalyzes the ATP-dependent ligation of fatty acids to acyl carrier protein (ACP) has been purified 6,000-fold to apparent homogeneity by anion-exchange, gel filtration, and ACP-Sepharose affinity chromatography. Purified acyl-ACP synthetase migrated as a single 62-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as an 80-kDa protein by gel filtration under reducing conditions. Activity of the purified enzyme was lost within hours in the absence of glycerol and low concentrations of Triton X-100. Acyl-ACP synthetase exhibited Kms for myristic acid, ACP, and ATP of 7 microM, 18 microM, and 0.3 mM, respectively. The enzyme was specific for adenine-containing nucleotides, and AMP was the product of the reaction. No covalent acyl-enzyme intermediate was observed. Enzyme activity was stimulated up to 50% by iodoacetamide but inhibited > 80% by N-ethylmaleimide: inhibition by the latter was prevented by ATP and ACP but not myristic acid. Dithiothreitol and sulfhydryl-directed reagents also influenced enzyme size, activity, and elution pattern on anion-exchange resins. The function of acyl-ACP synthetase has not been established, but it may be related to the capacity of V. harveyi to elongate exogenous fatty acids by an ACP-dependent mechanism. Images PMID:8384617

  18. Properties of Kaurene Synthetase from Marah macrocarpus1

    PubMed Central

    Frost, Russell G.; West, Charles A.

    1977-01-01

    synthetase activity A. Acetylcholine chloride and 2-chloroethyl-trimethylammonium chloride were effective inhibitors of activity A only at concentrations of 5 mm or greater. Abscisic acid, indole-3-acetate, gibberellin A1, gibberellin A3, a mixture of gibberellins A4 and A7, gibberellin A13, and N,N-dimethylaminosuccinamic acid (B995) were not inhibitory at any of the levels tested. None of these compounds was an effective inhibitor of activity B at concentrations less than 0.5 mm. PMID:16659781

  19. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation.

    PubMed Central

    Francklyn, Christopher; Perona, John J; Puetz, Joern; Hou, Ya-Ming

    2002-01-01

    Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code. PMID:12458790

  20. Primary structure of the Saccharomyces cerevisiae gene for methionyl-tRNA synthetase.

    PubMed Central

    Walter, P; Gangloff, J; Bonnet, J; Boulanger, Y; Ebel, J P; Fasiolo, F

    1983-01-01

    The sequence of a 5-kilobase DNA insert containing the structural gene for yeast cytoplasmic methionyl-tRNA synthetase has been determined and a unique open reading frame of 2,253 nucleotides encoding a polypeptide chain of 751 amino acids (Mr, 85,500) has been characterized. The data obtained on the purified enzyme (subunit size, amino acid composition, and COOH-terminal sequence) are consistent with the gene structure. The protein sequence deduced from the nucleotide sequence reveals no obvious internal repeats. This protein sequence shows a high degree of homology with that of Escherichia coli methionyl-tRNA synthetase within a region that forms the putative methionyl adenylate binding site. This strongly suggests that both proteins derive from a common ancestor. PMID:6341994

  1. Conservation of structure in the human gene encoding argininosuccinate synthetase and the argG genes of the archaebacteria Methanosarcina barkeri MS and Methanococcus vannielii

    SciTech Connect

    Morris, C.J.; Reeve, J.N.

    1988-07-01

    The DNA sequences of the argG genes of Methanosarcina barkeri MS and Methanococcus vannielii were determined. The polypeptide products of these methanogen genes have amino acid sequences which are 50% identical to each other and 38% identical to the amino acid sequence encoded by the exons of the human argininosuccinate synthetase gene. Introns in the human chromosomal gene separate regions which encode amino acids conserved in both the archaebacterial and human gene products. An open reading frame immediately upstream of argG in Methanosarcina barkeri MS codes for an amino acid sequence which is 45 and 31% identical to the sequences of the large subunits of carbamyl phosphate synthetase in Escherichia coli and Saccharomyces cerevisiae, respectively. If this gene encodes carbamyl phosphate synthetase in Methanosarcina barkeri, this is the first example, in an archaebacterium, of physical linkage of genes that encode enzymes which catalyze reactions in the same amino acid biosynthetic pathway.

  2. Aromatase inhibitors and anti-synthetase syndrome.

    PubMed

    Mascella, Fabio; Gianni, Lorenzo; Affatato, Alessandra; Fantini, Manuela

    2016-09-01

    Adjuvant therapy in postmenopausal women with endocrine-responsive breast cancer (BC) is actually centered on the use of anti-aromatase inhibitors (AI). Several reports, however, are emerging in literature associating the use of this drugs to rheumatic disorders. This case report describes the first case of anti-synthetase syndrome diagnosis after treatment with anti-estrogen agents in a patient with pre-existing rheumatoid arthritis. PMID:27225465

  3. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  4. Nodule-Specific Modulation of Glutamine Synthetase in Transgenic Medicago truncatula Leads to Inverse Alterations in Asparagine Synthetase Expression1

    PubMed Central

    Carvalho, Helena G.; Lopes-Cardoso, Inês A.; Lima, Ligia M.; Melo, Paula M.; Cullimore, Julie V.

    2003-01-01

    Transgenic Medicago truncatula plants were produced harboring chimeric gene constructs of the glutamine synthetase (GS) cDNA clones (MtGS1a or MtGS1b) fused in sense or antisense orientation to the nodule-specific leghemoglobin promoter Mtlb1. A series of transgenic plants were obtained showing a 2- to 4-fold alteration in nodule GS activity when compared with control plants. Western and northern analyses revealed that the increased or decreased levels of GS activity correlate with the amount of cytosolic GS polypeptides and transcripts present in the nodule extracts. An analysis of the isoenzyme composition showed that the increased or decreased levels of GS activity were attributable to major changes in the homo-octameric isoenzyme GS1a. Nodules of plants transformed with antisense GS constructs showed an increase in the levels of both asparagine synthetase (AS) polypeptides and transcripts when compared with untransformed control plants, whereas the sense GS transformants showed decreased AS transcript levels but polypeptide levels similar to control plants. The polypeptide abundance of other nitrogen metabolic enzymes NADH-glutamic acid synthase and aspartic acid amino-transferase as well as those of major carbon metabolic enzymes phosphoenolpyruvate carboxylase, carbonic anhydrase, and sucrose synthase were not affected by the GS-gene manipulations. Increased levels of AS polypeptides and transcripts were also transiently observed in nodules by inhibiting GS activity with phosphinothricin. Taken together, the results presented here suggest that GS activity negatively regulates the level of AS in root nodules of M. truncatula. The potential role of AS in assimilating ammonium when GS becomes limiting is discussed. PMID:12970490

  5. Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression.

    PubMed

    Carvalho, Helena G; Lopes-Cardoso, Inês A; Lima, Ligia M; Melo, Paula M; Cullimore, Julie V

    2003-09-01

    Transgenic Medicago truncatula plants were produced harboring chimeric gene constructs of the glutamine synthetase (GS) cDNA clones (MtGS1a or MtGS1b) fused in sense or antisense orientation to the nodule-specific leghemoglobin promoter Mtlb1. A series of transgenic plants were obtained showing a 2- to 4-fold alteration in nodule GS activity when compared with control plants. Western and northern analyses revealed that the increased or decreased levels of GS activity correlate with the amount of cytosolic GS polypeptides and transcripts present in the nodule extracts. An analysis of the isoenzyme composition showed that the increased or decreased levels of GS activity were attributable to major changes in the homo-octameric isoenzyme GS1a. Nodules of plants transformed with antisense GS constructs showed an increase in the levels of both asparagine synthetase (AS) polypeptides and transcripts when compared with untransformed control plants, whereas the sense GS transformants showed decreased AS transcript levels but polypeptide levels similar to control plants. The polypeptide abundance of other nitrogen metabolic enzymes NADH-glutamic acid synthase and aspartic acid amino-transferase as well as those of major carbon metabolic enzymes phosphoenolpyruvate carboxylase, carbonic anhydrase, and sucrose synthase were not affected by the GS-gene manipulations. Increased levels of AS polypeptides and transcripts were also transiently observed in nodules by inhibiting GS activity with phosphinothricin. Taken together, the results presented here suggest that GS activity negatively regulates the level of AS in root nodules of M. truncatula. The potential role of AS in assimilating ammonium when GS becomes limiting is discussed. PMID:12970490

  6. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate. PMID:27487822

  7. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  8. Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene.

    PubMed Central

    Luo, D; Leautey, J; Grunberg-Manago, M; Putzer, H

    1997-01-01

    We have sequenced the valyl-tRNA synthetase gene (valS) of Bacillus subtilis and found an open reading frame coding for a protein of 880 amino acids with a molar mass of 101,749. The predicted amino acid sequence shares strong similarity with the valyl-tRNA synthetases from Bacillus stearothermophilus, Lactobacillus casei, and Escherichia coli. Extracts of B. subtilis strains overexpressing the valS gene on a plasmid have increased valyl-tRNA aminoacylation activity. Northern analysis shows that valS is cotranscribed with the folC gene (encoding folyl-polyglutamate synthetase) lying downstream. The 300-bp 5' noncoding region of the gene contains the characteristic regulatory elements, T box, "specifier codon" (GUC), and rho-independant transcription terminator of a gene family in gram-positive bacteria that encodes many aminoacyl-tRNA synthetases and some amino acid biosynthetic enzymes and that is regulated by tRNA-mediated antitermination. We have shown that valS expression is induced by valine limitation and that the specificity of induction can be switched to threonine by changing the GUC (Val) specifier triplet to ACC (Thr). Overexpression of valS from a recombinant plasmid leads to autorepression of a valS-lacZ transcriptional fusion. Like induction by valine starvation, autoregulation of valS depends on the presence of the GUC specifier codon. Disruption of the valS gene was not lethal, suggesting the existence of a second gene, as is the case for both the thrS and the tyrS genes. PMID:9098041

  9. S-adenosylmethionine synthetase in bloodstream Trypanosoma brucei.

    PubMed

    Yarlett, N; Garofalo, J; Goldberg, B; Ciminelli, M A; Ruggiero, V; Sufrin, J R; Bacchi, C J

    1993-03-24

    S-adenosylmethionine synthetase was studied from bloodstream forms of Trypanosoma brucei brucei, the agent of African sleeping sickness. Two isoforms of the enzyme were evident from Eadie Hofstee and Hanes-Woolf plots of varying ATP or methionine concentrations. In the range 10-250 microM the Km for methionine was 20 microM, and this changed to 200 microM for the range 0.5-5.0 mM. In the range 10-250 microM the Km for ATP was 53 microM, and this changed to 1.75 mM for the range 0.5-5.0 mM. The trypanosome enzyme had a molecular weight of 145 kDa determined by agarose gel filtration. Methionine analogs including selenomethionine, L-2-amino-4-methoxy-cis but-3-enoic acid and ethionine acted as competitive inhibitors of methionine and as weak substrates when tested in the absence of methionine with [14C]ATP. The enzyme was not inducible in procyclic trypomastigotes in vitro, and the enzyme half-life was > 6 h. T. b. brucei AdoMet synthetase was inhibited by AdoMet (Ki 240 microM). The relative insensitivity of the trypanosome enzyme to control by product inhibition indicates it is markedly different from mammalian isoforms of the enzyme which are highly sensitive to AdoMet. Since trypanosomes treated with the ornithine decarboxylase antagonist DL-alpha-difluoromethylornithine accumulate AdoMet and dcAdoMet (final concentration approximately 5 mM), this enzyme may be the critical drug target linking inhibition of polyamine synthesis to disruption of AdoMet metabolism. PMID:8457607

  10. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase

    PubMed Central

    Keller, Tracy L.; Zocco, Davide; Sundrud, Mark S.; Hendrick, Margaret; Edenius, Maja; Yum, Jina; Kim, Yeon-Jin; Lee, Hak-kyo; Cortese, Joseph F.; Wirth, Dyann; Dignam, John David; Rao, Anjana; Yeo, Chang-Yeol; Mazitschek, Ralph; Whitman, Malcolm

    2011-01-01

    Febrifugine, one of the fifty fundamental herbs of traditional Chinese medicine, has been characterized for its therapeutic activity whilst its molecular target has remained unknown. Febrifugine derivatives have been used to treat malaria, cancer, fibrosis, and inflammatory disease. We recently demonstrated that halofuginone (HF), a widely studied derivative of febrifugine, inhibits the development of Th17-driven autoimmunity in a mouse model of multiple sclerosis by activating the amino acid response pathway (AAR). Here we show that HF binds glutamyl-prolyl-tRNA synthetase (EPRS) inhibiting prolyl-tRNA synthetase activity; this inhibition is reversed by the addition of exogenous proline or EPRS. We further show that inhibition of EPRS underlies the broad bioactivities of this family of natural products. This work both explains the molecular mechanism of a promising family of therapeutics, and highlights the AAR pathway as an important drug target for promoting inflammatory resolution. PMID:22327401

  11. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs.

    PubMed Central

    Zhang, Y; Meshnick, S R

    1991-01-01

    The Michaelis-Menten inhibitory constants (Kis) and the concentrations required for 50% inhibition of the Plasmodium falciparum dihydropteroate synthetase were determined for six sulfa drugs. These drugs inhibited the in vitro growth of P. falciparum (50% lethal concentration) at concentrations of 30 to 500 nM; these concentrations were 100 to 1,000 times lower than the concentrations required for 50% inhibition and Kis (6 to 500 microM). The uptake of p-aminobenzoic acid was not inhibited by the sulfa drugs. However, infected erythrocytes took up more labeled sulfamethoxazole than did uninfected erythrocytes. Thus, the concentration of sulfa drugs by malaria parasites may explain how sulfa drugs inhibit in vitro growth of parasites through the inhibition of dihydropteroate synthetase. PMID:2024960

  12. An Acyl-CoA Synthetase in Mycobacterium tuberculosis Involved in Triacylglycerol Accumulation during Dormancy

    PubMed Central

    Daniel, Jaiyanth; Sirakova, Tatiana; Kolattukudy, Pappachan

    2014-01-01

    Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids. PMID:25490545

  13. Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis.

    PubMed

    Niva, Cintia Carla; Lee, Jae Min; Myohara, Maroko

    2008-01-01

    Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4-5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61-71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion

  14. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity.

    PubMed Central

    Borel, F; Vincent, C; Leberman, R; Härtlein, M

    1994-01-01

    Escherichia coli seryl-tRNA synthetase (SerRS) a dimeric class II aminoacyl-tRNA synthetase with two structural domains charges specifically the five iso-acceptor tRNA(ser) as well as the tRNA(sec) (selC product) of E. coli. The N-terminal domain is a 60 A long arm-like coiled coil structure built of 2 long antiparallel a-h helices, whereas the C-terminal domain is a alpha-beta structure. A deletion of the N-terminal arm of the enzyme does not affect the amino acid activation step of the reaction, but reduces dramatically amino-acylation activity. The Kcat/Km value for the mutant enzyme is reduced by more than 4 orders of magnitude, with a nearly 30 fold increased Km value for tRNA(ser). An only slightly truncated mutant form (16 amino acids of the tip of the arm replaced by a glycine) has an intermediate aminoacylation activity. Both mutant synthetases have lost their specificity for tRNA(ser) and charge also non-cognate type 1 tRNA(s). Our results support the hypothesis that class II synthetases have evolved from an ancestral catalytic core enzyme by adding non-catalytic N-terminal or C-terminal tRNA binding (specificity) domains which act as determinants for cognate and anti-determinants for non-cognate tRNAs. Images PMID:8065908

  15. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  16. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  1. Cloning of the glutamine synthetase gene from group B streptococci.

    PubMed

    Suvorov, A N; Flores, A E; Ferrieri, P

    1997-01-01

    The glnA gene from the human pathogen Streptococcus agalactiae was cloned from a genomic library prepared with the lambda phage vector lambdaDASHII. A 4.6-kb DNA fragment of one of the recombinant phages was subcloned in pUC18. This Escherichia coli clone expressed a 52-kDa protein encoded by a 1,341-bp open reading frame. The nucleotide sequence of the open reading frame and the deduced amino acid sequence shared a significant degree of homology with the sequences of other glutamine synthetases (GS). The highest homology was between our deduced protein and GS of gram-positive bacteria such as Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus. Plasmids with the cloned streptococcal glnA were able to complement E. coli glnA mutants grown on minimal media. Rabbit antisera to streptococcal GS recombinant protein recognized not only the recombinant protein but also a similar-sized band in mutanolysin extracts of all group B streptococcal strains tested, regardless of polysaccharide type or surface protein profile. The amino acid sequence of the deduced protein had similarities to other streptococcal cell-surface-bound proteins. The possible functional role of the immunological features of streptococcal GS is discussed. PMID:8975911

  2. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder. PMID:25896882

  3. Comparative Biochemical and Immunological Studies of Bacterial Glutamine Synthetases

    PubMed Central

    Tronick, Steven R.; Ciardi, Joseph E.; Stadtman, E. R.

    1973-01-01

    Antisera prepared against adenylylated and unadenylylated Escherichia coli glutamine synthetase cross-reacted with the glutamine synthetases from a number of gram-negative bacteria and one gram-variable species as demonstrated by immunodiffusion and inhibition of enzyme activity. In contrast, the antisera did not cross-react with the glutamine synthetases from gram-positive bacteria (with one exception) nor with the synthetases of higher organisms. Modification of the various glutamine synthetases by covalent attachment of adenosine 5′-monophosphate (or other nucleotides) was tested for by determining whether or not snake venom phosphodiesterase altered catalytic activity in a manner similar to its effect on adenylylated E. coli glutamine synthetase. Only the activity of the glutamine synthetases from gram-negative bacteria grown with specific levels of nitrogen sources could be altered by snake venom phosphodiesterase. In addition, a relative order of antigenic homology between cross-reacting enzymes was suggested based on the patterns of spur formation in the immunodiffusion assay. Images PMID:4125585

  4. Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase

    PubMed Central

    Felden, Brice; Giegé, Richard

    1998-01-01

    Duplexes constituted by closed or open RNA circles paired to single-stranded oligonucleotides terminating with 3′-CCAOH form resected pseudoknots that are substrates of yeast histidyl-tRNA synthetase. Design of this RNA fold is linked to the mimicry of the pseudoknotted amino acid accepting branch of the tRNA-like domain from brome mosaic virus, known to be charged by tyrosyl-tRNA synthetases, with RNA minihelices recapitulating accepting branches of canonical tRNAs. Prediction of the histidylation function of the new family of minimalist tRNA-like structures relates to the geometry of resected pseudoknots that allows proper presentation to histidyl-tRNA synthetase of analogues of the histidine identity determinants N-1 and N73 present in tRNAs. This geometry is such that the analogue of the major N-1 histidine determinant in the RNA circles faces the analogue of the discriminator N73 nucleotide in the accepting oligonucleotides. The combination of identity elements found in tRNAHis species from archaea, eubacteria, and organelles (G-1/C73) is the most efficient for determining histidylation of the duplexes. The inverse combination (C-1/G73) leads to the worst histidine acceptors with charging efficiencies reduced by 2–3 orders of magnitude. Altogether, these findings open new perspectives for understanding evolution of tRNA identity and serendipitous RNA functions. PMID:9724720

  5. Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase.

    PubMed

    Felden, B; Giegé, R

    1998-09-01

    Duplexes constituted by closed or open RNA circles paired to single-stranded oligonucleotides terminating with 3'-CCAOH form resected pseudoknots that are substrates of yeast histidyl-tRNA synthetase. Design of this RNA fold is linked to the mimicry of the pseudoknotted amino acid accepting branch of the tRNA-like domain from brome mosaic virus, known to be charged by tyrosyl-tRNA synthetases, with RNA minihelices recapitulating accepting branches of canonical tRNAs. Prediction of the histidylation function of the new family of minimalist tRNA-like structures relates to the geometry of resected pseudoknots that allows proper presentation to histidyl-tRNA synthetase of analogues of the histidine identity determinants N-1 and N73 present in tRNAs. This geometry is such that the analogue of the major N-1 histidine determinant in the RNA circles faces the analogue of the discriminator N73 nucleotide in the accepting oligonucleotides. The combination of identity elements found in tRNAHis species from archaea, eubacteria, and organelles (G-1/C73) is the most efficient for determining histidylation of the duplexes. The inverse combination (C-1/G73) leads to the worst histidine acceptors with charging efficiencies reduced by 2-3 orders of magnitude. Altogether, these findings open new perspectives for understanding evolution of tRNA identity and serendipitous RNA functions. PMID:9724720

  6. Food safety: Structure and expression of the asparagine synthetase gene family of wheat

    PubMed Central

    Gao, Runhong; Curtis, Tanya Y.; Powers, Stephen J.; Xu, Hongwei; Huang, Jianhua; Halford, Nigel G.

    2016-01-01

    Asparagine is an important nitrogen storage and transport molecule, but its accumulation as a free amino acid in crops has implications for food safety because free asparagine is a precursor for acrylamide formation during cooking and processing. Asparagine synthesis occurs by the amidation of aspartate, catalysed by asparagine synthetase, and this study concerned the expression of asparagine synthetase (TaASN) genes in wheat. The expression of three genes, TaASN1-3, was studied in different tissues and in response to nitrogen and sulphur supply. The expression of TaASN2 in the embryo and endosperm during mid to late grain development was the highest of any of the genes in any tissue. Both TaASN1 and TaASN2 increased in expression through grain development, and in the grain of field-grown plants during mid-development in response to sulphur deprivation. However, only TaASN1 was affected by nitrogen or sulphur supply in pot-based experiments, showing complex tissue-specific and developmentally-changing responses. A putative N-motif or GCN4-like regulatory motif was found in the promoter of TaASN1 genes from several cereal species. As the study was completed, a fourth gene, TaASN4, was identified from recently available genome data. Phylogenetic analysis showed that other cereal species have similar asparagine synthetase gene families to wheat. PMID:27110058

  7. Mis-regulation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase does not account for growth inhibition by phenylalanine in Agmenellum quadruplicatum.

    PubMed

    Jensen, R A; Stenmark-Cox, S; Ingram, L O

    1974-12-01

    The growth of the blue-green bacterium, Agmenellum quadruplicatum, is inhibited in the presence of l-phenylalanine. This species has a single, constitutively synthesized 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. l-Phenylalanine inhibits DAHP synthetase non-competitively with respect to both substrate reactants. Other aromatic amino acids do not inhibit the activity of DAHP synthetase. A common expectation for branch-point enzymes such as DAHP synthetase is a balanced pattern of feedback control by all of the ultimate end products. It seemed likely that growth inhibition might equate with defective regulation within the branched aromatic pathway. Accordingly, the possibility was examined that mis-regulation of DAHP synthetase by l-phenylalanine in wild-type cells causes starvation for precursors of the other aromatic end products. However, the molecular basis for growth inhibition cannot be attributed to l-phenylalanine inhibition of DAHP synthetase for the following reasons: (i) DAHP synthetase enzymes from l-phenylalanine-resistant mutants are more, rather than less, sensitive to feedback inhibition by l-phenylalanine. (ii) Shikimate not only fails to antagonize inhibition, but is itself inhibitory. (iii) Neither the sensitivity nor the completeness of l-phenylalanine inhibition of the wild-type enzyme in vitro appears sufficient to account for the potent inhibition of growth in vivo by l-phenylalanine. The dominating effect of l-phenylalanine in the control of DAHP synthetase appears to reflect a mechanism that prevents rather than causes growth inhibition by l-phenylalanine. The alteration of the control of DAHP synthetase in mutants selected for resistance to growth inhibition by l-phenylalanine did indicate that the cause for this metabolite vulnerability can be localized within the aromatic amino acid pathway. Apparently, an aromatic intermediate (between shikimate and the end products) accumulates in the presence of l

  8. Functional Characterization of PyrG, an Unusual Nonribosomal Peptide Synthetase Module from the Pyridomycin Biosynthetic Pathway.

    PubMed

    Huang, Tingting; Li, Lili; Brock, Nelson L; Deng, Zixin; Lin, Shuangjun

    2016-08-01

    Pyridomycin is an antimycobacterial cyclodepsipeptide assembled by a nonribosomal peptide synthetase/polyketide synthase hybrid system. Analysis of its cluster revealed a nonribosomal peptide synthetase (NRPS) module, PyrG, that contains two tandem adenylation domains and a PKS-type ketoreductase domain. In this study, we biochemically validated that the second A domain recognizes and activates α-keto-β-methylvaleric acid (2-KVC) as the native substrate; the first A domain was not functional but might play a structural role. The KR domain catalyzed the reduction of the 2-KVC tethered to the peptidyl carrier protein of PyrG in the presence of the MbtH family protein, PyrH. PyrG was demonstrated to recognize many amino acids. This substrate promiscuity provides the potential to generate pyridomycin analogues with various enolic acids moiety; this is important for binding InhA, a critical enzyme for cell-wall biosynthesis in Mycobacterium tuberculosis. PMID:27197800

  9. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity.

    PubMed Central

    Lloyd, A J; Thomann, H U; Ibba, M; Söll, D

    1995-01-01

    We describe a convenient, simple and novel continuous spectrophotometric method for the determination of aminoacyl-tRNA synthetase activity. The assay relies upon the measurement of inorganic pyrophosphate generated in the first step of the aminoacylation of a tRNA. Pyrophosphate release is coupled to inorganic pyrophosphatase, to generate phosphate, which in turn is used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methylpurine ribonucleoside. Of the reaction products, ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360 nm relative to the nucleoside and hence provides a spectrophotometric signal that can be continuously followed. The non-destructive nature of the spectrophotometric assay allowed the re-use of the tRNAs in question in successive experiments. The usefulness of this method was demonstrated for glutaminyl-tRNA synthetase (GlnRS) and tryptophanyl-tRNA synthetase. Initial velocities measured using this assay correlate closely with those assayed by quantitation of [3H]Gln-tRNA or [14C]Trp-tRNA formation respectively. In both cases amino acid transfer from the aminoacyl adenylate to the tRNA represents the rate determining step. In addition, aminoacyl adenylate formation by aspartyl-tRNA synthetase was followed and provided a more sensitive means of active site titration than existing techniques. Finally, this novel method was used to provide direct evidence for the cooperativity of tRNA and ATP binding to GlnRS. PMID:7659511

  10. Measurement of Long-Chain Fatty Acyl-CoA Synthetase Activity.

    PubMed

    Füllekrug, Joachim; Poppelreuther, Margarete

    2016-01-01

    Long-chain fatty acyl-CoA synthetases (ACS) are a family of essential enzymes of lipid metabolism, activating fatty acids by thioesterification with coenzyme A. Fatty acyl-CoA molecules are then readily utilized for the biosynthesis of storage and membrane lipids, or for the generation of energy by ß-oxidation. Acyl-CoAs also function as transcriptional activators, allosteric inhibitors, or precursors for inflammatory mediators. Recent work suggests that ACS enzymes may drive cellular fatty acid uptake by metabolic trapping, and may also regulate the channeling of fatty acids towards specific metabolic pathways. The implication of ACS enzymes in widespread lipid associated diseases like type 2 diabetes has rekindled interest in this protein family. Here, we describe in detail how to measure long-chain fatty acyl-CoA synthetase activity by a straightforward radiometric assay. Cell lysates are incubated with ATP, coenzyme A, Mg(2+), and radiolabeled fatty acid bound to BSA. Differential phase partitioning of fatty acids and acyl-CoAs is exploited to quantify the amount of generated acyl-CoA by scintillation counting. The high sensitivity of this assay also allows the analysis of small samples like patient biopsies. PMID:26552674

  11. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    PubMed

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales. PMID:24163338

  12. Energetics of S-adenosylmethionine synthetase catalysis.

    PubMed

    McQueney, M S; Anderson, K S; Markham, G D

    2000-04-18

    S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) catalyzes the only known route of biosynthesis of the primary biological alkylating agent. The internal thermodynamics of the Escherichia coli S-adenosylmethionine (AdoMet) synthetase catalyzed formation of AdoMet, pyrophosphate (PP(i)), and phosphate (P(i)) from ATP, methionine, and water have been determined by a combination of pre-steady-state kinetics, solvent isotope incorporation, and equilibrium binding measurements in conjunction with computer modeling. These studies provided the rate constants for substrate binding, the two chemical interconversion steps [AdoMet formation and subsequent tripolyphosphate (PPP(i)) hydrolysis], and product release. The data demonstrate the presence of a kinetically significant isomerization of the E.AdoMet.PP(i).P(i) complex before product release. The free energy profile for the enzyme-catalyzed reaction under physiological conditions has been constructed using these experimental values and in vivo concentrations of substrates and products. The free energy profile reveals that the AdoMet formation reaction, which has an equilibrium constant of 10(4), does not have well-balanced transition state and ground state energies. In contrast, the subsequent PPP(i) hydrolytic reaction is energetically better balanced. The thermodynamic profile indicates the use of binding energies for catalysis of AdoMet formation and the necessity for subsequent PPP(i) hydrolysis to allow enzyme turnover. Crystallographic studies have shown that a mobile protein loop gates access to the active site. The present kinetic studies indicate that this loop movement is rapid with respect to k(cat) and with respect to substrate binding at physiological concentrations. The uniformly slow binding rates of 10(4)-10(5) M(-)(1) s(-)(1) for ligands with different structures suggest that loop movement may be an intrinsic property of the protein rather than being ligand induced. PMID:10757994

  13. Sequence comparisons in the aminoacyl-tRNA synthetases with emphasis on regions of likely homology with sequences in the Rossmann fold in the methionyl and tyrosyl enzymes.

    PubMed

    Walker, E J; Jeffrey, P D

    1988-02-01

    Amino acid sequences of aminoacyl-tRNA synthetases specific for 12 different amino acids have now been published. Differences in origin at the species and organelle level result in 20 distinct sequences being available for comparison. Some of these were compared in small groups as they were determined and, although some homologies were detected, it was generally concluded that there was surprisingly little sequence homology in this functionally related group of enzymes. We have made comparisons of all of the available sequences by using a combination of computer and manual alignment methods and knowledge of the sequences in the Rossmann fold region of methionyl-tRNA synthetase from E. coli and tyrosyl-tRNA synthetase from B. stearothermophilus, enzymes whose three-dimensional structures have been described. It emerges that all of the aminoacyl-tRNA synthetase sequences thus examined show considerable homology with each other over at least parts of this region, some over virtually all of it. We conclude that a great deal more similarity than had previously been suspected exists in these proteins. In particular, the alignments we have made strongly imply the existence of a mononucleotide binding site of the Rossmann fold configuration in all of the synthetases compared. PMID:3283733

  14. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions carbamoyl phosphate synthetase I deficiency ...

  15. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    SciTech Connect

    Schultz, Peter G.; Xie, Jianming; Zeng, Huaqiang

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate unnatural amino acids into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  16. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    SciTech Connect

    Schultz, Peter G.; Alfonta, Lital; Chittuluru, Johnathan R.; Deiters, Alexander; Groff, Dan; Summerer, Daniel; Tsao, Meng -Lin; Wang, Jiangyun; Wu, Ning; Xie, Jianming; Zeng, Huaqiang; Seyedsayamdost, Mohammad; Turner, James

    2015-08-11

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate unnatural amino acid into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  17. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    PubMed Central

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  18. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii.

    PubMed

    Chen, Q; Silflow, C D

    1996-11-01

    To elucidate the role of glutamine synthetase (GS) in nitrogen assimilation in the green alga Chlamydomonas reinhardtii we used maize GS1 (the cytosolic form) and GS2 (the chloroplastic form) cDNAs as hybridization probes to isolate C. reinhardtii cDNA clones. The amino acid sequences derived from the C. reinhardtii clones have extensive homology with GS enzymes from higher plants. A putative amino-terminal transit peptide encoded by the GS2 cDNA suggests that the protein localizes to the chloroplast. Genomic DNA blot analysis indicated that GS1 is encoded by a single gene, whereas two genomic fragments hybridized to the GS2 cDNA probe. All GS2 cDNA clones corresponded to only one of the two GS2 genomic sequences. We provide evidence that ammonium, nitrate, and light regulate GS transcript accumulation in green algae. Our results indicate that the level of GS1 transcripts is repressed by ammonium but induced by nitrate. The level of GS2 transcripts is not affected by ammonium or nitrate. Expression of both GS1 and GS2 genes is regulated by light, but perhaps through different mechanisms. Unlike in higher plants, no decreased level of GS2 transcripts was detected when cells were grown under conditions that repress photorespiration. Analysis of GS transcript levels in mutants with defects in the nitrate assimilation pathway show that nitrate assimilation and ammonium assimilation are regulated independently. PMID:8938407

  19. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    PubMed

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  20. Nucleotide triphosphate promiscuity in Mycobacterium tuberculosis dethiobiotin synthetase.

    PubMed

    Salaemae, Wanisa; Yap, Min Y; Wegener, Kate L; Booker, Grant W; Wilce, Matthew C J; Polyak, Steven W

    2015-05-01

    Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue. PMID:25801336

  1. Continuous spectrophotometric assay for aminoacyl-tRNA synthetases.

    PubMed

    Chang, G G; Pan, F; Lin, Y H; Wang, H Y

    1984-11-01

    A simple, continuous assay for aminoacyl-tRNA synthetases utilizing a commercially available pyrophosphate assay reagent kit was demonstrated. The method coupled aminoacyl-tRNA synthetase activity with pyrophosphate-dependent fructose-6-phosphate kinase, aldolase, triosephosphate isomerase, and glycerophosphate dehydrogenase. PPi formation was correlated with the oxidation of NADH, and was monitored continuously by the decrease of absorbance at 340 nm. PMID:6099060

  2. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.

    PubMed

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G; Grøtli, Morten; Torres-Larios, Alfredo

    2016-07-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  3. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  4. Purification and Characterization of Two Forms of Glutamine Synthetase from the Pedicel Region of Maize (Zea mays L.) Kernels

    PubMed Central

    Muhitch, Michael J.

    1989-01-01

    Maize (Zea mays L.) kernel pedicels, including vascular tissues, pedicel parenchyma, placento-chalazal tissue, and the surrounding pericarp, contained two forms of glutamine synthetase (EC 6.3.1.2), separable by anion exchange chromatography under mildly acidic conditions. The earlier-eluting activity (GSp1), but not the later-eluting activity (GSp2), was chromatographically distinct from the maize leaf and root glutamine synthetases. The level of GSp1 activity changed in a developmentally dependent manner while GSp2 activity was constitutive. GSp1 and GSp2 exhibited distinct ratios of transferase to hydroxylamine-dependent synthetase activities (5 and 23, respectively), which did not change with kernel age. Purified pedicel glutamine synthetases had native relative molecular masses of 340,000, while the subunit relative molecular masses differed slightly at 38,900 and 40,500 for GSp1 and GSp2, respectively. Both GS forms required free Mg2+ with apparent Kms = 2.0 and 0.19 millimolar for GSp1 and GSp2, respectively. GSp1 had an apparent Km for glutamate of 35 millimolar and exhibited substrate inhibition at glutamate concentrations greater than 90 millimolar. In contrast, GSp2 exhibited simple Michaelis-Menten kinetics for glutamate with a Km value of 3.4 millimolar. Both isozymes exhibited positive cooperativity for ammonia, with S0.5 values of 100 and 45 micromolar, respectively. GSp1 appears to be a unique, kernel-specific form of plant glutamine synthetase. Possible functions for the pedicel GS isozymes in kernel nitrogen metabolism are discussed. Images Figure 4 PMID:16667150

  5. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  6. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  7. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  8. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase.

    PubMed

    Haese, A; Pieper, R; von Ostrowski, T; Zocher, R

    1994-10-14

    Enniatin synthetase catalyzes the biosynthesis of N-methylated cyclohexadepsipeptides. The 347 kDa enzyme is encoded by the esyn1 gene of Fusarium scirpi and contains two domains (EA and EB) homologous to each other and to regions of other microbial peptide synthetases. Parts of the esyn1 gene were subcloned in frame to a small lacZ gene portion of Escherichia coli expression vectors. Overproduced recombinant proteins showed a high tendency towards inclusion body formation and could be only partially dissolved in 8 M urea or 6 M guanidine hydrochloride. After renaturation, a 121 kDa recombinant protein representing the N-terminal conserved domain EA of enniatin synthetase was shown to activate D-hydroxyisolvaleric acid via adenylation. Similarly, a 158 kDa recombinant protein comprising the C-terminal conserved domain EB catalyzed the activation of the substrate amino acid (e.g. L-valine). Moreover, this protein could be photolabeled with S-[methyl-14C]adenosyl-L-methionine, (AdoMet) indicating the presence of the methyltransferase. Both functions, L-valine activation and AdoMet binding, could be assigned to a 108 kDa recombinant protein encompassing the A and the M segment of domain EB. The fact that a 65 kDa recombinant protein representing the M portion could be photolabeled, indicated the localization of the methyltransferase in this region. Three deletion mutants of the 65 kDa protein were shown to be inactive with respect to UV-induced AdoMet labeling. PMID:7932733

  9. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  10. Regulation of Glutamine Synthetase V. Partial Purification and Properties of Glutamine Synthetase from Bacillus licheniformis

    PubMed Central

    Hubbard, Jerry S.; Stadtman, E. R.

    1967-01-01

    The glutamine synthetase of Bacillus licheniformis has been obtained at about 15% purity. Sucrose gradient centrifugation gave a molecular weight value of approximately 612,000. Both l- and d-glutamate can be utilized as substrates in the biosynthetic reaction, although the l isomer was five times more active. The requirement for adenosine triphosphate (ATP) can be partially replaced by guanosine or inosine triphosphates, but not by cytidine or uridine triphosphates. The Mn++ was required for activity, and the requirement cannot be satisfied with Mg++. Maximal activity of the biosynthetic reaction was observed when ATP and Mn++ were present in equimolar amounts. An excess of either reactant gave less activity. However, other purine and pyrimidine nucleotides, when added in combination with ATP, can partially substitute for ATP in attaining the equimolar ratio of nucleotide to Mn++. A complex of ATP and Mn++ is the preferred form of substrate. The B. licheniformis enzyme catalyzes the glutamyl transfer reaction but at a much slower rate than the Escherichia coli glutamine synthetase. Either adenosine diphosphate (ADP) or ATP can activate the glutamotransferase, although ADP is more active. PMID:6051339

  11. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  14. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  15. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  16. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  17. Nitric oxide (no), citrulline - no cycle enzymes, glutamine synthetase and oxidative stress in anoxia (hypobaric hypoxia) and reperfusion in rat brain.

    PubMed

    Swamy, M; Salleh, Mohd Jamsani Mat; Sirajudeen, K N S; Yusof, Wan Roslina Wan; Chandran, G

    2010-01-01

    Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia) and reperfusion (reoxygenation), the nitric oxide synthase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase and arginase activities along with the concentration of nitrate /nitrite, thiobarbituric acid reactive substances and total antioxidant status were estimated in cerebral cortex, cerebellum and brain stem of rats subjected to anoxia and reperfusion. The results of this study clearly demonstrated the increased production of nitric oxide by increased activity of nitric oxide synthase. The increased activities of argininosuccinate synthetase and argininosuccinate lyase suggest the increased and effective recycling of citrulline to arginine in anoxia, making nitric oxide production more effective and contributing to its toxic effects. The decreased activity of glutamine synthetase may favor the prolonged availability of glutamic acid causing excitotoxicity leading to neuronal damage in anoxia. The increased formation of thiobarbituric acid reactive substances and decreased total antioxidant status indicate the presence of oxidative stress in anoxia and reperfusion. The increased arginase and sustained decrease of GS activity in reperfusion group likely to be protective. PMID:20567615

  18. Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase chromosomes.

    PubMed

    Yamauchi, M; Yamauchi, N; Meuth, M

    1990-07-01

    Successive rounds of chromosome-mediated gene transfer were used to complement a hamster cytidine auxotroph deficient in CTP synthetase activity and eventually to clone human genomic and cDNA fragments coding for the structural gene. Our approach was to isolate human Alu+ fragments from a tertiary transfectant and to utilize these fragments to screen a panel of primary transfectants. In this manner two DNA fragments, both mapping within the structural gene, were identified and used to clone a partial length cDNA. The remaining portion of the open reading frame was obtained through the RACE polymerase chain reaction technique. The open reading frame encodes 591 amino acids having a striking degree of similarity to the Escherichia coli structural gene (48% identical amino acids with 76% overall similarity including conservative substitutions) with the glutamine amide transfer domain being particularly conserved. As regulatory mutations of CTP synthetase confer both multi-drug resistance to agents widely used in cancer chemotherapy and a mutator phenotype, the cloning of the structural gene will be important in assessing the relevance of such phenotypes to the development of cellular drug resistance. PMID:2113467

  19. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase.

    PubMed

    Wu, Jiang; Fan, Yongqiang; Ling, Jiqiang

    2014-06-01

    Aminoacyl-tRNA synthetases maintain the fidelity during protein synthesis by selective activation of cognate amino acids at the aminoacylation site and hydrolysis of misformed aminoacyl-tRNAs at the editing site. Threonyl-tRNA synthetase (ThrRS) misactivates serine and utilizes an editing site cysteine (C182 in Escherichia coli) to hydrolyze Ser-tRNA(Thr). Hydrogen peroxide oxidizes C182, leading to Ser-tRNA(Thr) production and mistranslation of threonine codons as serine. The mechanism of C182 oxidation remains unclear. Here we used a chemical probe to demonstrate that C182 was oxidized to sulfenic acid by air, hydrogen peroxide and hypochlorite. Aminoacylation experiments in vitro showed that air oxidation increased the Ser-tRNA(Thr) level in the presence of elongation factor Tu. C182 forms a putative metal binding site with three conserved histidine residues (H73, H77 and H186). We showed that H73 and H186, but not H77, were critical for activating C182 for oxidation. Addition of zinc or nickel ions inhibited C182 oxidation by hydrogen peroxide. These results led us to propose a model for C182 oxidation, which could serve as a paradigm for the poorly understood activation mechanisms of protein cysteine residues. Our work also suggests that bacteria may use ThrRS editing to sense the oxidant levels in the environment. PMID:24744241

  20. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    NASA Technical Reports Server (NTRS)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  1. Preparation of fatty-acylated derivatives of acyl carrier protein using Vibrio harveyi acyl-ACP synthetase.

    PubMed

    Shen, Z; Fice, D; Byers, D M

    1992-07-01

    A simple two-step purification of Vibrio harveyi fatty acyl-acyl carrier protein (acyl-ACP) synthetase, which is useful for the quantitative preparation and analysis of fatty-acylated derivatives of ACP, is described. Acyl-ACP synthetase can be partially purified from extracts of this bioluminescent bacterium by Cibacron blue chromatography and Sephacryl S-300 gel filtration and is stable for months at -20 degrees C in the presence of glycerol. Incubation of ACP from Escherichia coli with ATP and radiolabeled fatty acids (6 to 16 carbons in length) in the presence of the enzyme resulted in quantitative conversion to biologically active acylated derivatives. The enzyme reaction can be monitored by a filter disk assay to quantitate levels of ACP or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography to detect ACP in cell extracts. With its broad fatty acid chain length specificity and optimal activity in mild nondenaturing buffers, the soluble V. harveyi acyl-ACP synthetase provides an attractive alternative to current chemical and enzymatic methods of acyl-ACP preparation and analysis. PMID:1514693

  2. Neurodegenerative disease-associated mutants of a human mitochondrial aminoacyl-tRNA synthetase present individual molecular signatures

    PubMed Central

    Sauter, Claude; Lorber, Bernard; Gaudry, Agnès; Karim, Loukmane; Schwenzer, Hagen; Wien, Frank; Roblin, Pierre; Florentz, Catherine; Sissler, Marie

    2015-01-01

    Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation. PMID:26620921

  3. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  4. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    PubMed

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  5. Further characterization of Escherichia coli alanyl-tRNA synthetase.

    PubMed

    Sood, S M; Slattery, C W; Filley, S J; Wu, M X; Hill, K A

    1996-04-15

    Selected physical and thermodynamic parameters for Escherichia coli alanyl-tRNA synthetase (AlaRS) have been determined primarily to assess the quaternary structure of this enzyme. The extinction coefficient (epsilon) at 280 nm was determined experimentally to be 0.71 ml mg-1 cm-1, and the partial specific volume (nu) was calculated from the amino acid composition to be 0.73 ml g-1. From viscosity experiments the intrinsic viscosity (eta) of AlaRS was extrapolated to be 3.4 ml g-1 and the degree of hydration (delta 1) estimated to be 0.67 gH2O g(-1)(AlaRS). Laser light-scattering studies indicated some heterogeneity; a radius of 6.3 nm was calculated for the major fraction with a diffusion coefficient (D20,W) of 3.89 x 10(-7) cm2 s-1. In 50 mM Hepes, pH 7.5, 20 mM KCl, 2 mM 2-mercaptoethanol and at a protein concentration of 4.2 mg ml-1 the sedimentation coefficient (S20,W) was 6.36 S; this value increased slightly when the protein concentration was decreased. The combination of S20,W and D20,W under these conditions yielded a molecular weight of approximately 186,000 Da, corresponding to a dimer. The S20,W was virtually independent of temperature in the range of 10-37 degrees C, while an Arrhenius plot of aminoacylation activity was biphasic. The isoelectric point was determined experimentally to be 4.9. Sedimentation equilibrium data were best fit to a decamer association complex in which dimeric AlaRS is the predominant species at 25 degrees C. PMID:8645007

  6. [Thromboxane A2 synthetase inhibitor in asthma therapy].

    PubMed

    Machida, K; Takagi, K; Horiba, M

    1996-11-01

    Thromboxane A2(TXA2), a platelet aggregator and vasoconstricter, has been implicated as a potential mediator of bronchial asthma. TXA2 induces potent contraction of airway smooth muscles and airway hyperresponsiveness. OKY-046 (ozagrel hydrochloride) is a specific inhibitor of TXA2 synthetase and a new antiasthmatic agent. In a phase III study ozagrel has shown significantly higher effect in ameliorating the asthma symptoms and reduced the dose of concomitant steroid therapy compared to azelastine hydrochloride. Both basical and clinical studies showed that TXA2 synthetase inhibitor is effective on airway hyperresponsiveness. In this review the role of TXA2 synthetase inhibitor in current asthma therapy, which is based on the Japanese guideline of allergic disorders, was discussed. PMID:8950950

  7. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater

    PubMed Central

    Hoff-Risseti, Caroline; Dörr, Felipe Augusto; Schaker, Patricia Dayane Carvalho; Pinto, Ernani; Werner, Vera Regina; Fiore, Marli Fatima

    2013-01-01

    The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins. PMID:24015317

  8. L-arginine recognition by yeast arginyl-tRNA synthetase.

    PubMed Central

    Cavarelli, J; Delagoutte, B; Eriani, G; Gangloff, J; Moras, D

    1998-01-01

    The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs. PMID:9736621

  9. The McbB component of microcin B17 synthetase is a zinc metalloprotein.

    PubMed

    Zamble, D B; McClure, C P; Penner-Hahn, J E; Walsh, C T

    2000-12-26

    The microcin B17 synthetase converts glycine, serine, and cysteine residues in a polypeptide precursor into oxazoles and thiazoles during the maturation of the Escherichia coli antibiotic Microcin B17. This multimeric enzyme is composed of three subunits (McbB, McbC, and McbD), and it employs both ATP and FMN as cofactors. The McbB subunit was purified as a fusion with the maltose-binding protein (MBP), and metal analysis revealed that this protein binds 0.91+/-0.17 zinc atoms. Upon incubation of MBP-McbB with excess zinc, the stoichiometry increased to two atoms of zinc bound, but metal binding to the second site resulted in a decrease in the heterocyclization activity when MBP-McbB was reconstituted with the other components of the synthetase. Apo-protein was prepared by using p-hydroxymercuriphenylsulfonic acid (PMPS), and loss of the metal caused a severe reduction in enzymatic activity. However, if dithiothreitol was added to the PMPS reactions within a few minutes, enzymatic activity was retained and MBP-McbB could be reconstituted with zinc. Spectroscopic analysis of the cobalt-containing protein and extended X-ray absorption fine structure analysis of the zinc-containing protein both provide evidence for a tetrathiolate coordination sphere. Site-directed mutants of MBP-McbB as well as the synthetase tagged with the calmodulin-binding peptide were constructed. Activity assays and metal analysis were used to determine which of the six cysteines in McbB are metal ligands. These results suggest that the zinc cofactor in McbB plays a structural role. PMID:11123948

  10. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: A fluorine-19 NMR study

    SciTech Connect

    Chu, Wenchy; Horowitz, J. )

    1991-02-12

    Interactions of 5-fluorouracil-substituted Escherichia coli tRNA{sup Val} with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene. Apparent K{sub M} and V{sub max} values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNA{sup Val}. Binding of VRS to (FUra)tRNA{sup Val} induces structural perturbations that are reflected in selective changes in the {sup 19}F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNA{sup Val} along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNA{sup Val}, suggesting conformational changes in this part of the molecule. No {sup 19}F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNA{sup Val} that has been proposed as a common intermediate in the aminoacylation reaction.

  11. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    PubMed

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  12. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.

    PubMed

    Ingram-Smith, Cheryl; Woods, Barrett I; Smith, Kerry S

    2006-09-26

    AMP-forming acetyl-CoA synthetase [ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1] catalyzes the activation of acetate to acetyl-CoA in a two-step reaction. This enzyme is a member of the adenylate-forming enzyme superfamily that includes firefly luciferase, nonribosomal peptide synthetases, and acyl- and aryl-CoA synthetases/ligases. Although the structures of several superfamily members demonstrate that these enzymes have a similar fold and domain structure, the low sequence conservation and diversity of the substrates utilized have limited the utility of these structures in understanding substrate binding in more distantly related enzymes in this superfamily. The crystal structures of the Salmonella enterica ACS and Saccharomyces cerevisiae ACS1 have allowed a directed approach to investigating substrate binding and catalysis in ACS. In the S. enterica ACS structure, the propyl group of adenosine 5'-propylphosphate, which mimics the acyl-adenylate intermediate, lies in a hydrophobic pocket. Modeling of the Methanothermobacter thermautotrophicus Z245 ACS (MT-ACS1) on the S. cerevisiae ACS structure showed similar active site architecture, and alignment of the amino acid sequences of proven ACSs indicates that the four residues that compose the putative acetate binding pocket are well conserved. These four residues, Ile312, Thr313, Val388, and Trp416 of MT-ACS1, were targeted for alteration, and our results support that they do indeed form the acetate binding pocket and that alterations at these positions significantly alter the enzyme's affinity for acetate as well as the range of acyl substrates that can be utilized. In particular, Trp416 appears to be the primary determinant for acyl chain length that can be accommodated in the binding site. PMID:16981708

  13. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana.

    PubMed

    Ding, Chenchen; Chen, Tao; Yang, Yu; Liu, Sha; Yan, Kan; Yue, Xiule; Zhang, Hua; Xiang, Yun; An, Lizhe; Chen, Shuyan

    2015-11-10

    S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) which is a molecule essential for polyamines and ethylene biosynthesis, methylation modifications of protein, DNA and lipids. SAMS also plays an important role in abiotic stress response. Chorispora bungeana (C. bungeana) is an alpine subnival plant species which possesses strong tolerance to cold stress. Here, we cloned and characterized an S-adenosylmethionine synthetase gene, CbSAMS (C. bungeana S-adenosylmethionine synthetase), from C. bungeana, which encodes a protein of 393 amino acids containing a methionine binding motif GHPDK, an ATP binding motif GAGDQG and a phosphate binding motif GGGAFSGDK. Furthermore, an NES (nuclear export signal) peptide was identified through bioinformatics analysis. To explore the CbSAMS gene expression regulation, we isolated the promoter region of CbSAMS gene 1919bp upstream the ATG start codon, CbSAMSp, and analyzed its cis-acting elements by bioinformatics method. It was revealed that a transcription start site located at 320 bp upstream the ATG start codon and cis-acting elements related to light, ABA, auxin, ethylene, MeJA, low temperature and drought had been found in the CbSAMSp sequence. The gene expression pattern of CbSAMS was then analyzed by TR-qPCR and GUS assay method. The result showed that CbSAMS is expressed in all examined tissues including callus, roots, petioles, leaves, and flowers with a significant higher expression level in roots and flowers. Furthermore, the expression level of CbSAMS was induced by low temperature, ethylene and NaCl. Subcellular localization revealed that CbSAMS was located in the cytoplasm and nucleus but has a significant higher level in the nucleus. These results indicated a potential role of CbSAMS in abiotic stresses and plant growth in C. bungeana. PMID:26205258

  14. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction.

    PubMed Central

    Cavarelli, J; Eriani, G; Rees, B; Ruff, M; Boeglin, M; Mitschler, A; Martin, F; Gangloff, J; Thierry, J C; Moras, D

    1994-01-01

    The crystal structures of the various complexes formed by yeast aspartyl-tRNA synthetase (AspRS) and its substrates provide snapshots of the active site corresponding to different steps of the aminoacylation reaction. Native crystals of the binary complex tRNA-AspRS were soaked in solutions containing the two other substrates, ATP (or its analog AMPPcP) and aspartic acid. When all substrates are present in the crystal, this leads to the formation of the aspartyl-adenylate and/or the aspartyl-tRNA. A class II-specific pathway for the aminoacylation reaction is proposed which explains the known functional differences between the two classes while preserving a common framework. Extended signature sequences characteristic of class II aaRS (motifs 2 and 3) constitute the basic functional unit. The ATP molecule adopts a bent conformation, stabilized by the invariant Arg531 of motif 3 and a magnesium ion coordinated to the pyrophosphate group and to two class-invariant acidic residues. The aspartic acid substrate is positioned by a class II invariant acidic residue, Asp342, interacting with the amino group and by amino acids conserved in the aspartyl synthetase family. The amino acids in contact with the substrates have been probed by site-directed mutagenesis for their functional implication. Images PMID:8313877

  15. GSH2, a gene encoding gamma-glutamylcysteine synthetase in the methylotrophic yeast Hansenula polymorpha.

    PubMed

    Ubiyvovk, Vira M; Nazarko, Taras Y; Stasyk, Olena G; Sohn, Min Jeong; Kang, Hyun Ah; Sibirny, Andrei A

    2002-08-01

    The GSH2 gene, encoding Hansenula polymorpha gamma-glutamylcysteine synthetase, was cloned by functional complementation of a glutathione (GSH)-deficient gsh2 mutant of H. polymorpha. The gene was isolated as a 4.3-kb XbaI fragment that was capable of restoring GSH synthesis, heavy-metal resistance and cell proliferation when introduced into gsh2 mutant cells. It possesses 53% identical and 69% similar amino acids compared with the Candida albicans homologue (Gcs1p). In comparison to the Saccharomyces cerevisiae homologue (Gsh1p), it possesses 47% identical and 61% similar amino acids. The GSH2 sequence appears in the GenBank database under accession No. AF435121. PMID:12702282

  16. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    PubMed Central

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  17. Impaired expression of acyl-CoA-synthetase 5 in epithelial tumors of the small intestine.

    PubMed

    Gassler, Nikolaus; Schneider, Armin; Kopitz, Jürgen; Schnölzer, Martina; Obermüller, Nicholas; Kartenbeck, Jürgen; Otto, Herwart F; Autschbach, Frank

    2003-10-01

    Fatty acids are implicated in tumorigenesis, but data are limited concerning endogenous fatty acid metabolism of tumor cells in adenomas and adenocarcinomas of the small intestine. The recently cloned human acyl-CoA-synthetase 5 (ACS5) is predominantly found in the small intestine and represents a key enzyme in providing cytosolic acyl-CoA thioesters. Protein synthesis and mRNA expression of ACS5 were studied in human intestinal tissues using different methods, including a newly established monoclonal antibody. In the healthy small intestine, expression of ACS5 was restricted to the villus surface epithelium but was not detectable in enterocytes lining crypts. ACS5 protein and mRNA were progressively diminished in epithelial cells of adenomas and adenocarcinomas of the small intestine. In conclusion, altered expression of ACS5 is probably related to the adenoma-carcinoma sequence of small intestinal epithelial tumors due to an impaired acyl-CoA thioester synthesis. PMID:14608540

  18. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs.

    PubMed

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-04-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  19. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs

    PubMed Central

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J.; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  20. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress.

    PubMed

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio

    2015-11-16

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  1. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress

    PubMed Central

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A. G.; Santamaría-Gómez, Javier; Patterson, Carl J.; Foster, Andrew W.; Bru-Martínez, Roque; Robinson, Nigel J.; Luque, Ignacio

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  2. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis

    PubMed Central

    Gaudelli, Nicole M.; Long, Darcie H.; Townsend, Craig A.

    2014-01-01

    Non-ribosomal peptide synthetases (NRPSs) are giant enzymes comprised of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks.1 The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Although penicillins and cephalosporins are synthesised from a classically derived NRPS tripeptide (from ACVS, δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine synthetase)2, we now report an unprecedented NRPS activity to both assemble a serine-containing peptide and mediate its cyclisation to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation (C) domain, which typically carries out peptide bond formation during product assembly, was found to also synthesise the embedded 4-membered ring. Here, a mechanism is proposed and supporting experiments are described, which is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.3,4 PMID:25624104

  3. MIST, a Novel Approach to Reveal Hidden Substrate Specificity in Aminoacyl-tRNA Synthetases

    PubMed Central

    Eriani, Gilbert; Karam, Joseph; Jacinto, Jomel; Morris Richard, Erin; Geslain, Renaud

    2015-01-01

    Aminoacyl-tRNA synthetases (AARSs) constitute a family of RNA-binding proteins, that participate in the translation of the genetic code, by covalently linking amino acids to appropriate tRNAs. Due to their fundamental importance for cell life, AARSs are likely to be one of the most ancient families of enzymes and have therefore been characterized extensively. Paradoxically, little is known about their capacity to discriminate tRNAs mainly because of the practical challenges that represent precise and systematic tRNA identification. This work describes a new technical and conceptual approach named MIST (Microarray Identification of Shifted tRNAs) designed to study the formation of tRNA/AARS complexes independently from the aminoacylation reaction. MIST combines electrophoretic mobility shift assays with microarray analyses. Although MIST is a non-cellular assay, it fully integrates the notion of tRNA competition. In this study we focus on yeast cytoplasmic Arginyl-tRNA synthetase (yArgRS) and investigate in depth its ability to discriminate cellular tRNAs. We report that yArgRS in submicromolar concentrations binds cognate and non-cognate tRNAs with a wide range of apparent affinities. In particular, we demonstrate that yArgRS binds preferentially to type II tRNAs but does not support their misaminoacylation. Our results reveal important new trends in tRNA/AARS complex formation and potential deep physiological implications. PMID:26067673

  4. Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus?1

    PubMed Central

    Harrison, Judith; Pou de Crescenzo, Marie-Anne; Sené, Olivier; Hirel, Bertrand

    2003-01-01

    A cDNA encoding cytosolic glutamine synthetase (GS) from Lotus japonicus was fused in the antisense orientation relative to the nodule-specific LBC3 promoter of soybean (Glycine max) and introduced into L. japonicus via transformation with Agrobacterium tumefaciens. Among the 12 independent transformed lines into which the construct was introduced, some of them showed diminished levels of GS1 mRNA and lower levels of GS activity. Three of these lines were selected and their T1 progeny was further analyzed both for plant biomass production and carbon and nitrogen (N) metabolites content under symbiotic N-fixing conditions. Analysis of these plants revealed an increase in fresh weight in nodules, roots and shoots. The reduction in GS activity was found to correlate with an increase in amino acid content of the nodules, which was primarily due to an increase in asparagine content. Thus, this study supports the hypothesis that when GS becomes limiting, other enzymes (e.g. asparagine synthetase) that have the capacity to assimilate ammonium may be important in controlling the flux of reduced N in temperate legumes such as L. japonicus. Whether these alternative metabolic pathways are important in the control of plant biomass production still remains to be fully elucidated. PMID:12970491

  5. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate.

    PubMed

    Lodder-Gadaczek, Julia; Becker, Ivonne; Gieselmann, Volkmar; Wang-Eckhardt, Lihua; Eckhardt, Matthias

    2011-05-13

    N-Acetylaspartylglutamate (NAAG) is found at high concentrations in the vertebrate nervous system. NAAG is an agonist at group II metabotropic glutamate receptors. In addition to its role as a neuropeptide, a number of functions have been proposed for NAAG, including a role as a non-excitotoxic transport form of glutamate and a molecular water pump. We recently identified a NAAG synthetase (now renamed NAAG synthetase I, NAAGS-I), encoded by the ribosomal modification protein rimK-like family member B (Rimklb) gene, as a member of the ATP-grasp protein family. We show here that a structurally related protein, encoded by the ribosomal modification protein rimK-like family member A (Rimkla) gene, is another NAAG synthetase (NAAGS-II), which in addition, synthesizes the N-acetylated tripeptide N-acetylaspartylglutamylglutamate (NAAG(2)). In contrast, NAAG(2) synthetase activity was undetectable in cells expressing NAAGS-I. Furthermore, we demonstrate by mass spectrometry the presence of NAAG(2) in murine brain tissue and sciatic nerves. The highest concentrations of both, NAAG(2) and NAAG, were found in sciatic nerves, spinal cord, and the brain stem, in accordance with the expression level of NAAGS-II. To our knowledge the presence of NAAG(2) in the vertebrate nervous system has not been described before. The physiological role of NAAG(2), e.g. whether it acts as a neurotransmitter, remains to be determined. PMID:21454531

  6. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  7. Toward understanding phosphoseryl-tRNACys formation: The crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase

    PubMed Central

    Kamtekar, Satwik; Hohn, Michael J.; Park, Hee-Sung; Schnitzbauer, Michael; Sauerwald, Anselm; Söll, Dieter; Steitz, Thomas A.

    2007-01-01

    A number of archaeal organisms generate Cys-tRNACys in a two-step pathway, first charging phosphoserine (Sep) onto tRNACys and subsequently converting it to Cys-tRNACys. We have determined, at 3.2-Å resolution, the structure of the Methanococcus maripaludis phosphoseryl-tRNA synthetase (SepRS), which catalyzes the first step of this pathway. The structure shows that SepRS is a class II, α4 synthetase whose quaternary structure arrangement of subunits closely resembles that of the heterotetrameric (αβ)2 phenylalanyl-tRNA synthetase (PheRS). Homology modeling of a tRNA complex indicates that, in contrast to PheRS, a single monomer in the SepRS tetramer may recognize both the acceptor terminus and anticodon of a tRNA substrate. Using a complex with tungstate as a marker for the position of the phosphate moiety of Sep, we suggest that SepRS and PheRS bind their respective amino acid substrates in dissimilar orientations by using different residues. PMID:17301225

  8. p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish.

    PubMed

    Song, Youngzee; Shi, Yi; Carland, Tristan M; Lian, Shanshan; Sasaki, Tomoyuki; Schork, Nicholas J; Head, Steven R; Kishi, Shuji; Schimmel, Paul

    2016-07-26

    Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small amounts of mistranslation of components of the replication apparatus, we investigated the sensitivity to editing of the vertebrate genome. We show here that in zebrafish embryos, transient overexpression of editing-defective valyl-tRNA synthetase (ValRS(ED)) activated DNA break-responsive H2AX and p53-responsive downstream proteins, such as cyclin-dependent kinase (CDK) inhibitor p21, which promotes cell-cycle arrest at DNA damage checkpoints, and Gadd45 and p53R2, with pivotal roles in DNA repair. In contrast, the response of these proteins to expression of ValRS(ED) was abolished in p53-deficient fish. The p53-activated downstream signaling events correlated with suppression of abnormal morphological changes caused by the editing defect and, in adults, reversed a shortened life span (followed for 2 y). Conversely, with normal editing activities, p53-deficient fish have a normal life span and few morphological changes. Whole-fish deep sequencing showed genomic mutations associated with the editing defect. We suggest that the sensitivity of p53 to expression of an editing-defective tRNA synthetase has a critical role in promoting genome integrity and organismal homeostasis. PMID:27402763

  9. Decreased glutamine synthetase, increased citrulline-nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model.

    PubMed

    Swamy, Mummedy; Yusof, Wan Roslina Wan; Sirajudeen, K N S; Mustapha, Zulkarnain; Govindasamy, Chandran

    2011-03-01

    To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy. PMID:20960085

  10. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.