Science.gov

Sample records for cns play functional

  1. Field Effects in the CNS Play Functional Roles

    PubMed Central

    Weiss, Shennan A.; Faber, Donald S.

    2010-01-01

    An endogenous electrical field effect, i.e., ephaptic transmission, occurs when an electric field associated with activity occurring in one neuron polarizes the membrane of another neuron. It is well established that field effects occur during pathological conditions, such as epilepsy, but less clear if they play a functional role in the healthy brain. Here, we describe the principles of field effect interactions, discuss identified field effects in diverse brain structures from the teleost Mauthner cell to the mammalian cortex, and speculate on the function of these interactions. Recent evidence supports that relatively weak endogenous and exogenous field effects in laminar structures reach significance because they are amplified by network interactions. Such interactions may be important in rhythmogenesis for the cortical slow wave and hippocampal sharp wave–ripple, and also during transcranial stimulation. PMID:20508749

  2. Ontogeny and functions of CNS macrophages

    PubMed Central

    Katsumoto, Atsuko; Lu, Haiyan; Miranda, Aline S.; Ransohoff, Richard M.

    2014-01-01

    Microglia, the only non-neuroepithelial cells found in the parenchyma of the central nervous system (CNS), originate during embryogenesis from the yolk sac and enter the CNS quite early (embryonic day 9.5-10 in mice). Thereafter, microglia are maintained independently of any input from the blood and in particular do not require hematopoietic stem cells as a source of replacement for senescent cells. Monocytes are hematopoietic cells, derived from bone marrow. The ontogeny of microglia and monocytes is important for understanding CNS pathologies. Microglial functions are distinct from those of blood-derived monocytes, which invade the CNS only under pathological conditions. Recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis and synaptic interactions. Here we discuss physiology of microglia and the functions of monocytes in CNS pathology. We address the roles of microglia and monocytes in neurodegenerative diseases as an example of CNS pathology. PMID:25193935

  3. CNS Myelination Requires Cytoplasmic Dynein Function

    PubMed Central

    Yang, Michele L.; Shin, Jimann; Kearns, Christina A.; Langworthy, Melissa M.; Snell, Heather; Walker, Macie B.; Appel, Bruce

    2014-01-01

    Background Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. Results We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. Conclusions In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination. PMID:25488883

  4. slc7a6os Gene Plays a Critical Role in Defined Areas of the Developing CNS in Zebrafish

    PubMed Central

    Benini, Anna; Cignarella, Francesca; Calvarini, Laura; Mantovanelli, Silvia; Giacopuzzi, Edoardo; Zizioli, Daniela; Borsani, Giuseppe

    2015-01-01

    The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes. PMID:25803583

  5. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    PubMed Central

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  6. Anaerobic function of CNS white matter declines with age.

    PubMed

    Hamner, Margaret A; Möller, Thomas; Ransom, Bruce R

    2011-04-01

    The mammalian central nervous system (CNS) is generally believed to be completely dependent on the presence of oxygen (O(2)) to maintain energy levels necessary for excitability. However, previous studies on CNS white matter (WM) have shown that a large subset of CNS-myelinated axons of mice aged 4 to 6 weeks remains excitable in the absence of O(2). We investigated whether this surprising WM tolerance to anoxia varied with age. Acutely isolated mouse optic nerve (MON), a purely myelinated WM tract, was studied electrophysiologically. Excitability in the MONs from 1-month-, 4-month-, and 8-month-old mice was assessed quantitatively as the area under the supramaximal compound action potential (CAP). Anoxia-resistant WM function declined with age. After 60  minutes of anoxia, ∼23% of the CAP remained in 1-month-old mice, 8% in 4-month-old mice, and ∼0 in the 8-month-old group. Our results indicated that although some CNS axons function anaerobically in young adult animals, they lose this ability in later adulthood. This finding may help explain the clinical impression that favorable outcome after stroke and other brain injuries declines with age. PMID:21179073

  7. Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration

    PubMed Central

    Diekmann, Heike; Kalbhen, Pascal; Fischer, Dietmar

    2015-01-01

    The developmental decrease of the intrinsic regenerative ability of the mammalian central nervous system (CNS) is associated with reduced activity of mechanistic target of rapamycin (mTOR) in mature neurons such as retinal ganglion cells (RGCs). While mTOR activity is further decreased upon axonal injury, maintenance of its pre-injury level, for instance by genetic deletion of the phosphatase and tensin homolog (PTEN), markedly promotes axon regeneration in mammals. The current study now addressed the question whether active mTOR might generally play a central role in axon regeneration by analyzing its requirement in regeneration-competent zebrafish. Remarkably, regulation of mTOR activity after optic nerve injury in zebrafish is fundamentally different compared to mammals. Hardly any activity was detected in naïve RGCs, whereas it was markedly increased upon axotomy in vivo as well as in dissociated cell cultures. After a short burst, mTOR activity was quickly attenuated, which is contrary to the requirements for axon regeneration in mammals. Surprisingly, mTOR activity was not essential for axonal growth per se, but correlated with cytokine- and PTEN inhibitor-induced neurite extension in vitro. Moreover, inhibition of mTOR using rapamycin significantly reduced axon regeneration in vivo and compromised functional recovery after optic nerve injury. Therefore, axotomy-induced mTOR activity is involved in CNS axon regeneration in zebrafish similar to mammals, although it plays an ancillary rather than essential role in this regeneration-competent species. PMID:26217179

  8. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  9. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  10. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles

    PubMed Central

    Hu, Xiaoming; Liou, Anthony K.F.; Leak, Rehana K.; Xu, Mingyue; An, Chengrui; Suenaga, Jun; Shi, Yejie; Gao, Yanqin; Zheng, Ping; Chen, Jun

    2014-01-01

    Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial ‘On’ or ‘Off’ responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made towards deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, ‘On’ and ‘Off’ receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries. PMID:24923657

  11. Selective Actions of Novel Allosteric Modulators Reveal Functional Heteromers of Metabotropic Glutamate Receptors in the CNS

    PubMed Central

    Yin, Shen; Noetzel, Meredith J.; Johnson, Kari A.; Zamorano, Rocio; Jalan-Sakrikar, Nidhi; Gregory, Karen J.; Conn, P. Jeffrey

    2014-01-01

    Metabotropic glutamate (mGlu) receptors play important roles in regulating CNS function and are known to function as obligatory dimers. Although recent studies have suggested heterodimeric assembly of mGlu receptors in vitro, the demonstration that distinct mGlu receptor proteins can form heterodimers or hetero-complexes with other mGlu subunits in native tissues, such as neurons, has not been shown. Using biochemical and pharmacological approaches, we demonstrate here that mGlu2 and mGlu4 form a hetero-complex in native rat and mouse tissues which exhibits a distinct pharmacological profile. These data greatly extend our current understanding of mGlu receptor interaction and function and provide compelling evidence that mGlu receptors can function as heteromers in intact brain circuits. PMID:24381270

  12. [MicroRNAs in microglia polarization and CNS diseases: mechanism and functions].

    PubMed

    Fang, Xue; Tan, Wei-Xing; He, Cheng; Cao, Li

    2015-02-25

    Microglia are resident macrophages of central nervous system (CNS), and thus act as the crucial stuff of immune response and play very important roles in the progress of various CNS diseases. There are two different polarization statuses of activated microglia, M1 and M2 phenotypes. M1 polarized microglia are important for eradicating bacterial and promoting inflammation, whereas M2 cells are characterized by anti-inflammation and tissue remodeling. Recently, more and more evidence indicated that different polarized microglia showed diverse microRNA (miRNA) expression profiles. MiRNAs regulate microglia polarization, and thus affect the progress of CNS diseases. Fully exploring the polarization status of microglia during CNS diseases and the role of miRNAs in microglia polarization will be very helpful for a deep understanding of the roles of microglia in immunopathologic mechanism of different CNS diseases and offer the theoretical foundation of searching more effective therapies for these disorders. PMID:25672624

  13. Solitary Play: Some Functional Reconsiderations

    ERIC Educational Resources Information Center

    Moore, Nancy V.; And Others

    1974-01-01

    Solitary play in six kindergarten children was observed and coded for frequency and type in order to resolve iscrepancies in a Sex Birth Order interaction. Several facts concerning solitary play as indicative of independence and maturity are noted. (Author/ED)

  14. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    were complex and suggested continuous remodeling of the brain for up to 6 months. Thus we demonstrated a suite of CNS structural and functional changes after proton and iron ion exposure in the low dose regime. Based on these findings we will now test whether oxidative stress mediates the reactions of CNS to radiation exposure and what role radiation quality and dose rate play in the responses. We will use cultured neural precursor cells (mouse human) to detect changes in oxidative status and differentiation as functions of charged particle charge and velocity. These results will inform the selection of particles for many in vivo measurements that will compare wild type mice to a transgenic strain that over-expresses a human catalase gene (which inactivates hydrogen peroxide) in the mitochondrial compartment. This will explicitly test the role of reactive oxygen species in mediating the mechanisms underlying the CNS endpoints that we will measure. We will extend the electrophysiological measurements on individual nerves in hippocampal slices to characterize both inhibitory and excitatory synapses. Further, multi-electrode arrays will be used to follow correlated electrical activity in different hippocampal regions in order to understand network-level function as well as synaptic efficacy and plasticity. Controlled oxidative stress on irradiated samples will explore whether response mechanisms are shared. To link alterations in neurogenesis to performance we will explore behavioral changes mediated by the hippocampus simultaneously with measures of expression of the Arc gene in newly-born neurons. This will test whether decrements in performance correlate with loss of new cells and whether behavior properly stimulates functional integration of the new cells; the behavioral paradigm will be contextual fear conditioning. We will develop mathematical frameworks for CNS responses to radiation in order to inform risk estimates. Finally, we will couple a high

  15. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    were complex and suggested continuous remodeling of the brain for up to 6 months. Thus we demonstrated a suite of CNS structural and functional changes after proton and iron ion exposure in the low dose regime. Based on these findings we will now test whether oxidative stress mediates the reactions of CNS to radiation exposure and what role radiation quality and dose rate play in the responses. We will use cultured neural precursor cells (mouse human) to detect changes in oxidative status and differentiation as functions of charged particle charge and velocity. These results will inform the selection of particles for many in vivo measurements that will compare wild type mice to a transgenic strain that over-expresses a human catalase gene (which inactivates hydrogen peroxide) in the mitochondrial compartment. This will explicitly test the role of reactive oxygen species in mediating the mechanisms underlying the CNS endpoints that we will measure. We will extend the electrophysiological measurements on individual nerves in hippocampal slices to characterize both inhibitory and excitatory synapses. Further, multi-electrode arrays will be used to follow correlated electrical activity in different hippocampal regions in order to understand network-level function as well as synaptic efficacy and plasticity. Controlled oxidative stress on irradiated samples will explore whether response mechanisms are shared. To link alterations in neurogenesis to performance we will explore behavioral changes mediated by the hippocampus simultaneously with measures of expression of the Arc gene in newly-born neurons. This will test whether decrements in performance correlate with loss of new cells and whether behavior properly stimulates functional integration of the new cells; the behavioral paradigm will be contextual fear conditioning. We will develop mathematical frameworks for CNS responses to radiation in order to inform risk estimates. Finally, we will couple a high

  16. TDP-43 in CNS development and function: clues to TDP-43-associated neurodegeneration

    PubMed Central

    Sephton, Chantelle F.; Cenik, Basar; Cenik, Bercin Kutluk; Herz, Joachim; Yu, Gang

    2012-01-01

    From the earliest stages of embryogenesis and throughout life, transcriptional regulation is carefully orchestrated in order to generate, shape, and reshape the central nervous system (CNS). TAR DNA-binding protein 43 (TDP-43), is identified as a regulator of essential transcriptional events in the CNS. Evidence for its importance comes from the identification of TDP-43 protein aggregates and genetic mutations in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Efforts are being made to learn more about the biological function of TDP-43 and gain a better understanding of its role in neurodegeneration. TDP-43 RNA targets and protein interactions have now been identified and in vivo evidence shows that TDP-43 is essential in CNS development and function. This review will highlight aspects of these findings. PMID:22944662

  17. Executive Functions Development and Playing Games

    ERIC Educational Resources Information Center

    Petty, Ana Lucia; de Souza, Maria Thereza C. Coelho

    2012-01-01

    The aim of this paper is to discuss executive functions and playing games, considering Piaget's work (1967) and the neuropsychological framework (Barkley, 1997, 2000; Cypel, 2007). Two questions guide the discussion: What are the intersections between playing games and the development of executive functions? Can we stimulate children with learning…

  18. Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery?

    PubMed Central

    Borsook, David; Hargreaves, Richard; Becerra, Lino

    2011-01-01

    Introduction The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a ‘language of translation’ affords the opportunity to improve the objectivity of decision-making. Areas Covered This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. Expert opinion The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification. PMID:21765857

  19. The effects of gut microbiota on CNS function in humans

    PubMed Central

    Tillisch, Kirsten

    2014-01-01

    The role of the gastrointestinal microbiota in human brain development and function is an area of increasing interest and research. Preclinical models suggest a role for the microbiota in broad aspects of human health, including mood, cognition, and chronic pain. Early human studies suggest that altering the microbiota with beneficial bacteria, or probiotics, can lead to changes in brain function, as well as subjective reports of mood. As the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat disease. PMID:24838095

  20. The effects of gut microbiota on CNS function in humans.

    PubMed

    Tillisch, Kirsten

    2014-01-01

    The role of the gastrointestinal microbiota in human brain development and function is an area of increasing interest and research. Preclinical models suggest a role for the microbiota in broad aspects of human health, including mood, cognition, and chronic pain. Early human studies suggest that altering the microbiota with beneficial bacteria, or probiotics, can lead to changes in brain function, as well as subjective reports of mood. As the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat disease. PMID:24838095

  1. Peripheral monocytes are functionally altered and invade the CNS in ALS patients.

    PubMed

    Zondler, Lisa; Müller, Kathrin; Khalaji, Samira; Bliederhäuser, Corinna; Ruf, Wolfgang P; Grozdanov, Veselin; Thiemann, Meinolf; Fundel-Clemes, Katrin; Freischmidt, Axel; Holzmann, Karlheinz; Strobel, Benjamin; Weydt, Patrick; Witting, Anke; Thal, Dietmar R; Helferich, Anika M; Hengerer, Bastian; Gottschalk, Kay-Eberhard; Hill, Oliver; Kluge, Michael; Ludolph, Albert C; Danzer, Karin M; Weishaupt, Jochen H

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials. PMID:26910103

  2. Use of functional imaging across clinical phases in CNS drug development

    PubMed Central

    Borsook, D; Becerra, L; Fava, M

    2013-01-01

    The use of novel brain biomarkers using nuclear magnetic resonance imaging holds potential of making central nervous system (CNS) drug development more efficient. By evaluating changes in brain function in the disease state or drug effects on brain function, the technology opens up the possibility of obtaining objective data on drug effects in the living awake brain. By providing objective data, imaging may improve the probability of success of identifying useful drugs to treat CNS diseases across all clinical phases (I–IV) of drug development. The evolution of functional imaging and the promise it holds to contribute to drug development will require the development of standards (including good imaging practice), but, if well integrated into drug development, functional imaging can define markers of CNS penetration, drug dosing and target engagement (even for drugs that are not amenable to positron emission tomography imaging) in phase I; differentiate objective measures of efficacy and side effects and responders vs non-responders in phase II, evaluate differences between placebo and drug in phase III trials and provide insights into disease modification in phase IV trials. PMID:23860483

  3. The role of the NG2 proteoglycan in OPC and CNS network function.

    PubMed

    Sakry, Dominik; Trotter, Jacqueline

    2016-05-01

    In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane protein, exerting multiple roles in the CNS including intracellular signaling within the OPC, with effects on migration, cytoskeleton interaction and target gene regulation. It has been recently shown that the extracellular region of NG2, in addition to an adhesive function, acts as a soluble ECM component with the capacity to alter defined neuronal network properties. This region of NG2 is thus endowed with neuromodulatory properties. In order to generate biologically active fragments yielding these properties, the sequential cleavage of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments which all have been associated with distinct biological functions. Here we summarize these functions, focusing on recent discoveries and their implications for the CNS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). PMID:26100334

  4. Host microbiota constantly control maturation and function of microglia in the CNS.

    PubMed

    Erny, Daniel; Hrabě de Angelis, Anna Lena; Jaitin, Diego; Wieghofer, Peter; Staszewski, Ori; David, Eyal; Keren-Shaul, Hadas; Mahlakoiv, Tanel; Jakobshagen, Kristin; Buch, Thorsten; Schwierzeck, Vera; Utermöhlen, Olaf; Chun, Eunyoung; Garrett, Wendy S; McCoy, Kathy D; Diefenbach, Andreas; Staeheli, Peter; Stecher, Bärbel; Amit, Ido; Prinz, Marco

    2015-07-01

    As the tissue macrophages of the CNS, microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. We observed substantial contributions of the host microbiota to microglia homeostasis, as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype, leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulated microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings suggest that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be rectified to some extent by complex microbiota. PMID:26030851

  5. CNS Adverse Effects: From Functional Observation Battery/Irwin Tests to Electrophysiology.

    PubMed

    Fonck, Carlos; Easter, Alison; Pietras, Mark R; Bialecki, Russell A

    2015-01-01

    This chapter describes various approaches for the preclinical assessment of drug-induced central nervous system (CNS) adverse effects. Traditionally, methods to evaluate CNS effects have consisted of observing and scoring behavioral responses of animals after drug is administered. Among several behavioral testing paradigms, the Irwin and the functional observational battery (FOB) are the most commonly used assays for the assessment of CNS effects. The Irwin and FOB are considered good first-tier assays to satisfy the ICH S7A guidance for the preclinical evaluation of new chemical entities (NCE) intended for humans. However, experts have expressed concern about the subjectivity and lack of quantitation that is derived from behavioral testing. More importantly, it is difficult to gain insight into potential mechanisms of toxicity by assessing behavioral outcomes. As a complement to behavioral testing, we propose using electrophysiology-based assays, both in vivo and in vitro, such as electroencephalograms and brain slice field-potential recordings. To better illustrate these approaches, we discuss the implementation of electrophysiology-based techniques in drug-induced assessment of seizure risk, sleep disruption, and cognitive impairment. PMID:26091637

  6. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    PubMed Central

    McCoy, Melissa K; Tansey, Malú G

    2008-01-01

    The role of tumor necrosis factor (TNF) as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1) is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF) or transmembrane TNF (tmTNF), with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD), Parkinson's (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS. PMID:18925972

  7. The regulation of exosome function in the CNS: implications for neurodegeneration.

    PubMed

    Properzi, Francesca; Ferroni, Elena; Poleggi, Anna; Vinci, Ramona

    2015-01-01

    Exosomes are nanovesicles, generally 50 to 90 nm in diameter, that correspond to the intraluminal vesicles of the endosomal multivesicular bodies and are secreted upon fusion of multivesicular bodies with the plasma membrane. Their molecular content is highly selected and includes not only specific proteins and lipids, but also RNA species, such as messenger RNAs (mRNAs) and microRNAs (miRNAs), which are delivered and active in target cells. As they are released in body fluids, exosomes can shuttle molecules for long distances. In the CNS they have been shown to regulate neuronal development and regeneration, and to modulate synaptic functions. In neurodegenerative diseases, they have an important role in propagating neurotoxic misfolded protein from one cell to another and, as recent data show, possibly other molecules contributing to neurotoxicity. Some exosomal lipids such as gangliosides GM1 and GM3 enhance the aggregation of alpha-synuclein, and RNA exosomal cargo is also altered during pathologies such as Alzheimer's disease, prion diseases and amyotrophic lateral sclerosis. The aim of this review is to focus on the regulation of CNS exosomal function and highlight pathways that might have a role in the neurodegenerative process. The identification of the novel exosomal molecules involved in neurodegenerative diseases could provide important insights into the pathogenesis and contribute to the finding of novel diagnostic biomarkers and therapeutic approaches. PMID:26561744

  8. Functional conservation of atonal and Math1 in the CNS and PNS

    NASA Technical Reports Server (NTRS)

    Ben-Arie, N.; Hassan, B. A.; Bermingham, N. A.; Malicki, D. M.; Armstrong, D.; Matzuk, M.; Bellen, H. J.; Zoghbi, H. Y.

    2000-01-01

    To determine the extent to which atonal and its mouse homolog Math1 exhibit functional conservation, we inserted (beta)-galactosidase (lacZ) into the Math1 locus and analyzed its expression, evaluated consequences of loss of Math1 function, and expressed Math1 in atonal mutant flies. lacZ under the control of Math1 regulatory elements duplicated the previously known expression pattern of Math1 in the CNS (i.e., the neural tube, dorsal spinal cord, brainstem, and cerebellar external granule neurons) but also revealed new sites of expression: PNS mechanoreceptors (inner ear hair cells and Merkel cells) and articular chondrocytes. Expressing Math1 induced ectopic chordotonal organs (CHOs) in wild-type flies and partially rescued CHO loss in atonal mutant embryos. These data demonstrate that both the mouse and fly homologs encode lineage identity information and, more interestingly, that some of the cells dependent on this information serve similar mechanoreceptor functions.

  9. Roles and functions of HIV-1 Tat protein in the CNS: an overview

    PubMed Central

    2013-01-01

    Nearly 50% of HIV-infected individuals suffer from some form of HIV-associated neurocognitive disorders (HAND). HIV-1 Tat (a key HIV transactivator of transcription) protein is one of the first HIV proteins to be expressed after infection occurs and is absolutely required for the initiation of the HIV genome transcription. In addition to its canonical functions, various studies have shown the deleterious role of HIV-1 Tat in the development and progression of HAND. Within the CNS, only specific cell types can support productive viral replication (astrocytes and microglia), however Tat protein can be released form infected cells to affects HIV non-permissive cells such as neurons. Therefore, in this review, we will summarize the functions of HIV-1 Tat proteins in neural cells and its ability to promote HAND. PMID:24359561

  10. Imaginary Play Companions: Characteristics and Functions.

    ERIC Educational Resources Information Center

    Kalyan-Masih, V.

    1986-01-01

    Investigates some of the following characteristics associated with young children playing with imaginary play companions (IPCs): intelligence, parental and socioeconomic and educational background, family size, and birth order. Compares these children to those without IPCs. (HOD)

  11. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair

    PubMed Central

    London, Anat; Cohen, Merav; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair. PMID:23596391

  12. DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development

    PubMed Central

    Nwaobi, Sinifunanya E; Lin, Erica; Peramsetty, Sasank R; Olsen, Michelle L

    2014-01-01

    Kir4.1, a glial-specific K+ channel, is critical for normal CNS development. Studies utilizing both global and glial-specific knockout of Kir4.1 reveal abnormal CNS development with the loss of the channel. Specifically, Kir4.1 knockout animals are characterized by ataxia, severe hypomyelination, and early postnatal death. Additionally, Kir4.1 has emerged as a key player in several CNS diseases. Notably, decreased Kir4.1 protein expression occurs in several human CNS pathologies including CNS ischemic injury, spinal cord injury, epilepsy, ALS, and Alzheimer’s disease. Despite the emerging significance of Kir4.1 in normal and pathological conditions, its mechanisms of regulation are unknown. Here we report the first epigenetic regulation of a K+ channel in the CNS. Robust developmental upregulation of Kir4.1 expression in rats is coincident with reductions in DNA methylation of the Kir4.1 gene, KCNJ10. Chromatin immunoprecipitation reveals a dynamic interaction between KCNJ10 and DNA methyltransferase 1 during development. Finally, demethylation of the KCNJ10 promoter is necessary for transcription. These findings indicate DNA methylation is a key regulator of Kir4.1 transcription. Given the essential role of Kir4.1 in normal CNS development, understanding the regulation of this K+ channel is critical to understanding normal glial biology. PMID:24415225

  13. Immediate and Ultimate Functions of Physical Activity Play.

    ERIC Educational Resources Information Center

    McCune, Lorraine

    1998-01-01

    Play has been difficult to define because it is an aspect of many activities rather than of just a specific kind of activity. Classic theorists such as Piaget and Vygotsky emphasized representational play as play in its purist form, but both immediate and ultimate functions of play can be discerned in simple physical activity play. (Author)

  14. Preschoolers' Free Play--Connections with Emotional and Social Functioning

    ERIC Educational Resources Information Center

    Veiga, Guida; Neto, Carlos; Rieffe, Carolien

    2016-01-01

    Play has an important role in various aspects of children's development. However, time for free play has declined substantially over the last decades. To date, few studies have focused on the relationship between opportunities for free play and children's social functioning. The aims of this study are to examine whether children´s free play is…

  15. Forms and Functions of Intimate Play in Personal Relationships.

    ERIC Educational Resources Information Center

    Baxter, Leslie A.

    1992-01-01

    Investigates intimate play in college students' same-sex friendships and opposite-sex romantic relationships. Derives a typology of eight play forms, and finds playfulness a strong correlate of relationship closeness. Finds differences among the eight play forms on the functions of indexing intimacy, lessening interpersonal risk, distancing self…

  16. Play.

    ERIC Educational Resources Information Center

    Rogers, Fred; Sharapan, Hedda

    1993-01-01

    Contends that, in childhood, work and play seem to come together. Says that for young children their play is their work, and the more adults encourage children to play, the more they emphasize important lifelong resource. Examines some uses of children's play, making and building, artwork, dramatic play, monsters and superheroes, gun play, and…

  17. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth.

    PubMed

    Gallant, Pamela; Malutan, Tabita; McLean, Heather; Verellen, LouAnn; Caveney, Stanley; Donly, Cam

    2003-02-01

    A cDNA was cloned from the cabbage looper Trichoplusia ni based on similarity to other cloned dopamine transporters (DATs). The total nucleotide sequence is 3.8 kb in length and contains an open reading frame for a protein of 612 amino acids. The predicted moth DAT protein (TrnDAT) has greatest amino acid sequence identity with Drosophila melanogasterDAT (73%) and Caenorhabditis elegansDAT (51%). TrnDAT shares only 45% amino acid sequence identity with an octopamine transporter (TrnOAT) cloned recently from this moth. The functional properties of TrnDAT and TrnOAT were compared through transient heterologous expression in Sf9 cells. Both transporters have similar transport affinities for DA (Km 2.43 and 2.16 micro m, respectively). However, the competitive substrates octopamine and tyramine are more potent blockers of [3H]dopamine (DA) uptake by TrnOAT than by TrnDAT. D-Amphetamine is a strong inhibitor and l-norepinephrine a weak inhibitor of both transporters. TrnDAT-mediated DA uptake is approximately 100-fold more sensitive to selective blockers of vertebrate transporters of dopamine and norepinephrine, such as nisoxetine, nomifensine and dibenzazepine antidepressants, than TrnOAT-mediated DA uptake. TrnOAT is 10-fold less sensitive to cocaine than TrnDAT. None of the 15 monoamine uptake blockers tested was TrnOAT-selective. In situ hybridization shows that TrnDAT and TrnOAT transcripts are expressed by different sets of neurons in caterpillar brain and ventral nerve cord. These results show that the caterpillar CNS contains both a phenolamine transporter and a catecholamine transporter whereas in the three invertebrates whose genomes have been completely sequenced only a dopamine-selective transporter is found. PMID:12581206

  18. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  19. The Interplay between Synaptic Activity and Neuroligin Function in the CNS

    PubMed Central

    Hu, Xiaoge; Luo, Jian-hong

    2015-01-01

    Neuroligins (NLs) are postsynaptic transmembrane cell-adhesion proteins that play a key role in the regulation of excitatory and inhibitory synapses. Previous in vitro and in vivo studies have suggested that NLs contribute to synapse formation and synaptic transmission. Consistent with their localization, NL1 and NL3 selectively affect excitatory synapses, whereas NL2 specifically affects inhibitory synapses. Deletions or mutations in NL genes have been found in patients with autism spectrum disorders or mental retardations, and mice harboring the reported NL deletions or mutations exhibit autism-related behaviors and synapse dysfunction. Conversely, synaptic activity can regulate the phosphorylation, expression, and cleavage of NLs, which, in turn, can influence synaptic activity. Thus, in clinical research, identifying the relationship between NLs and synapse function is critical. In this review, we primarily discuss how NLs and synaptic activity influence each other. PMID:25839034

  20. The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases.

    PubMed

    Wright, John W; Harding, Joseph W

    2013-01-01

    The classic renin-angiotensin system (RAS) was initially described as a hormone system designed to mediate cardiovascular and body water regulation, with angiotensin II as its major effector. The discovery of an independent local brain RAS composed of the necessary functional components (angiotensinogen, peptidases, angiotensins, and specific receptor proteins) significantly expanded the possible physiological and pharmacological functions of this system. This review first describes the enzymatic pathways resulting in active angiotensin ligands and their interaction with AT(1), AT(2), and AT(4) receptor subtypes. Next, we discuss the classic physiologies and behaviors controlled by the RAS including cardiovascular, thirst, and sodium appetite. A final section summarizes non-classic functions and clinical conditions mediated by the brain RAS with focus on memory and Alzheimer's disease. There is no doubt that the brain RAS is an important component in the development of dementia. It also appears to play a role in normal memory consolidation and retrieval. The presently available anti-dementia drugs are proving to be reasonably ineffective, thus alternative treatment approaches must be developed. At the same time, presently available drugs must be tested for their efficacy to treat newly identified syndromes and diseases connected with the RAS. The list of non-classic physiologies and behaviors is ever increasing in both number and scope, attesting to the multidimensional influences of the RAS. Such diversity in function presents a dilemma for both researchers and clinicians. Namely, the blunting of RAS subsystems in the hopes of combating one constellation of underlying causes and disease symptoms may be counter-balanced by unanticipated and unwanted consequences to another RAS subsystem. For example, the use of angiotensin-converting enzyme inhibitors and AT(1) and/or AT(2) receptor blockers have shown great promise in the treatment of cardiovascular related

  1. Anti-inflammatory Therapy With Simvastatin Improves Neuroinflammation and CNS Function in a Mouse Model of Metachromatic Leukodystrophy.

    PubMed

    Stein, Axel; Stroobants, Stijn; Gieselmann, Volkmar; D'Hooge, Rudi; Matzner, Ulrich

    2015-07-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency of the lysosomal enzyme arylsulfatase A. The prevailing late-infantile variant of MLD is characterized by widespread and progressive demyelination of the central nervous system (CNS) causing death during childhood. In order to gain insight into the pathomechanism of the disease and to identify novel therapeutic targets, we analyzed neuroinflammation in two mouse models reproducing a mild, nondemyelinating, and a more severe, demyelinating, variant of MLD, respectively. Microgliosis and upregulation of cytokine/chemokine levels were clearly more pronounced in the demyelinating model. The analysis of the temporal cytokine/chemokine profiles revealed that the onset of demyelination is preceded by a sustained elevation of the macrophage inflammatory protein (MIP)-1α followed by an upregulation of MIP-1β, monocyte chemotactic protein (MCP)-1, and several interleukins. The tumor necrosis factor (TNF)-α remains unchanged. Treatment of the demyelinating mouse model with the nonsteroidal anti-inflammatory drug simvastatin reduced neuroinflammation, improved the swimming performance and ataxic gait, and retarded demyelination of the spinal cord. Our data suggest that neuroinflammation is causative for demyelination in MLD mice and that anti-inflammatory treatment might be a novel therapeutic option to improve the CNS function of MLD patients. PMID:25896249

  2. Play

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    Designing a game with a serious purpose involves considering the worlds of Reality and Meaning yet it is undeniably impossible to create a game without a third world, one that is specifically concerned with what makes a game a game: the play elements. This third world, the world of people like designers and artists, and disciplines as computer science and game design, I call the world of Play and this level is devoted to it. The level starts off with some of the misperceptions people have of play. Unlike some may think, we play all the time, even when we grow old—this was also very noticeable in designing the game Levee Patroller as the team exhibited very playful behavior at many occasions. From there, I go into the aspects that characterize this world. The first concerns the goal of the game. This relates to the objectives people have to achieve within the game. This is constituted by the second aspect: the gameplay. Taking actions and facing challenges is subsequently constituted by a gameworld, which concerns the third aspect. And all of it is not possible without the fourth and final aspect, the type of technology that creates and facilitates the game. The four aspects together make up a “game concept” and from this world such a concept can be judged on the basis of three closely interrelated criteria: engagement, immersion, and fun.

  3. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  4. Scientific basis for learning transfer from movements to urinary bladder functions for bladder repair in human patients with CNS injury.

    PubMed

    Schalow, G

    2010-01-01

    Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can

  5. Analysis of neurocognitive function and CNS endpoints in the PROTEA trial: darunavir/ritonavir with or without nucleoside analogues

    PubMed Central

    Clarke, Amanda; Johanssen, Veronika; Gerstoft, Jan; Clotet, Bonaventura; Ripamonti, Diego; Murungi, Andrew; Bicer, Ceyhun; Blanca Hadacek, Maria; Moecklinghoff, Christiane

    2014-01-01

    Introduction During treatment with protease inhibitor monotherapy, the number of antiretrovirals with therapeutic concentrations in the cerebrospinal fluid (CSF) is lower, compared to standard triple therapy. However, the clinical consequences are unclear. Methods A total of 273 patients with HIV RNA <50 copies/mL for over 24 weeks on current antiretrovirals randomized to darunavir/ritonavir (DRV/r) 800/100 mg once-daily, either as monotherapy (n=137) or with 2NRTIs (n=136). Neurocognitive function was evaluated in all patients by the Hopkins Verbal Learning Tests, the Colour Trail Tests and the Grooved Pegboard Test at screening, baseline and at Week 48. A global neurocognitive score (NPZ-5) was derived by averaging the standardized results of the five domains. In a central nervous system (CNS) sub-study (n=70), HIV RNA levels in the CNS were evaluated at baseline and Week 48. Clinical adverse events related to the CNS were collected at each visit. Results Patients were 83% male and 88% White, with median age 43 years. There were more patients with nadir CD4 count below 200 cells/µL in the DRV/r monotherapy arm (41/137, 30%) than the triple therapy arm (30/136, 22%). At Week 48, there was no difference between the treatment arms for the five combined domains of the neurocognitive score. At Week 48, the percentage of patients with an abnormal neurocognitive score among the five domains was 12.2% for DRV/r monotherapy and 14.9% for triple therapy. However, one patient on DRV/r monotherapy with a CD4 nadir of 17 cells/µL was hospitalized with HIV encephalomyelitis at Week 24, with HIV RNA 2500 copies/mL in the CSF and 125 copies/mL in the plasma. Symptoms resolved after intensification with high dose zidovudine. A second patient on DRV/r monotherapy with CD4 nadir of 166 cells/µL had a rise in HIV RNA in CSF from <40 copies/mL at baseline to 654 copies/mL at Week 48, with concurrent plasma HIV RNA of 77 copies/mL. Conclusions In this study for patients with HIV

  6. Study of Functional Status of CNS in Human-Operator in Conditions of Imitation Deep Spase Exploration

    NASA Astrophysics Data System (ADS)

    Marina, Skedina; Michael, Potapov; Anna, Kovaleva

    Functional status (FS) of CNS may influence human’s behavior and his professional activity. The purpose of study - analysis of FS CNS of human-operator in conditions of long-term isolation. The studies were conducted within the framework of the project «Mars-500» which simulates of interplanetary flight isolation conditions of different durations. We examined nine people aged from 26 to 40 years. Synchronous registration of classical bioelectric activity of brain (EEG) and a cerebral power exchange (a level of constant brain potential (LCP)) was carried out for study of functional status of CNS using the hardware-software complex «Neuro-KM - Omega-Neyroanalizator» (Ltd. «Statokin», Russia). The synchronical registration was performed in seven unipolar leads on a «10-20» (Fp1, Fp2, T3, T4, O1, O2, Cz) combined with the placement of reference electrode on the earlobe and «biological zero» electrode - on the wrist. During 105-days isolation with 3 volunteers on day 52 the following was observed: simultaneous displacement of α-rhythm localization, increase of its frequency by 10% with a decrease in the index and disorganization of α-activity, emergence of asymmetry. Appearance of LCP asymmetry for more than 5 mV (in one case - with a strong dominance of the left hemisphere) was registered with the overall reduction of the amplitude, indicating a stress reaction in isolation. Before 520-days isolation (6 volunteers) 3 from them had signs of stress reaction in accordance to EEG with: displacement of α-rhythm localization, increase of its frequency by 1-2 Hz and increase level LCP. During isolation before «exit on a surface of Mars» individual fluctuations of EEG and LCP were observed depending on the specifics of the crew activities. Directly «exit on a surface of Mars» for 2 volunteers of «crew of Mars» the increase in power of α-rhythm was observed. Other members of crew showed decrease power of α-rhythm. At various stages of experiment in 35

  7. Toll-Like Receptors and Dectin-1, a C-Type Lectin Receptor, Trigger Divergent Functions in CNS Macrophages

    PubMed Central

    Wang, Yan; Guan, Zhen; Beckwith, Kyle A.; Braun, Kaitlyn J.; Wei, Ping; McTigue, Dana M.

    2015-01-01

    Spinal cord injury (SCI) activates macrophages, endowing them with both reparative and pathological functions. The mechanisms responsible for these divergent functions are unknown but are likely controlled through stochastic activation of different macrophage receptor subtypes. Various danger-associated molecular patterns released from dying cells in the injured spinal cord likely activate distinct subtypes of macrophage pattern recognition receptors, including bacterial toll-like receptors (TLRs) and fungal C-type lectin receptors (e.g., dectin-1). To determine the in vivo consequences of activating these receptors, ligands specific for TLR2 or dectin-1 were microinjected, alone or in combination, into intact spinal cord. Both ligands elicit a florid macrophage reaction; however, only dectin-1 activation causes macrophage-mediated demyelination and axonal injury. Coactivating TLR2 reduced the injurious effects of dectin-1 activation. When injected into traumatically injured spinal cord, TLR2 agonists enhance the endogenous macrophage reaction while conferring neuroprotection. Indeed, dieback of axons was reduced, leading to smaller lesion volumes at the peak of the macrophage response. Moreover, the density of NG2+ cells expressing vimentin increased in and near lesions that were enriched with TLR2-activated macrophages. In dectin-1-null mutant (knock-out) mice, dieback of corticospinal tract axons also is reduced after SCI. Collectively, these data support the hypothesis that the ability of macrophages to create an axon growth-permissive microenvironment or cause neurotoxicity is receptor dependent and it may be possible to exploit this functional dichotomy to enhance CNS repair. SIGNIFICANCE STATEMENT There is a growing appreciation that macrophages exert diverse functions in the injured and diseased CNS. Indeed, both macrophage-mediated repair and macrophage-mediated injury occur, and often these effector functions are elicited simultaneously. Understanding the

  8. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective.

    PubMed

    Llinás, Rodolfo R

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  9. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B-Cell Functions in CNS Autoimmune Diseases.

    PubMed

    Egwuagu, Charles E; Yu, Cheng-Rong

    2015-01-01

    Neuroinflammation contributes to neuronal deficits in neurodegenerative CNS (central nervous system) autoimmune diseases, such as multiple sclerosis and uveitis. The major goal of most treatment modalities for CNS autoimmune diseases is to limit inflammatory responses in the CNS; immune-suppressive drugs are the therapy of choice. However, lifelong immunosuppression increases the occurrence of infections, nephrotoxicity, malignancies, cataractogenesis, and glaucoma, which can greatly impair quality of life for the patient. Biologics that target pathogenic T cells is an alternative approach that is gaining wide acceptance as indicated by the popularity of a variety of Food and Drug Administration (FDA)-approved anti-inflammatory compounds and humanized antibodies such as Zenapax, Etanercept, Remicade, anti-ICAM, rapamycin, or tacrolimus. B cells are also potential therapeutic targets because they provide costimulatory signals that activate pathogenic T cells and secrete cytokines that promote autoimmune pathology. B cells also produce autoreactive antibodies implicated in several organ-specific and systemic autoimmune diseases including lupus erythematosus, Graves' disease, and Hashimoto's thyroiditis. On the other hand, recent studies have led to the discovery of several regulatory B-cell (Breg) populations that suppress immune responses and autoimmune diseases. In this review, we present a brief overview of Breg phenotypes and in particular, the newly discovered IL35-producing regulatory B cell (i35-Breg). We discuss the critical roles played by i35-Bregs in regulating autoimmune diseases and the potential use of adoptive Breg therapy in CNS autoimmune diseases. PMID:25746047

  10. The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration.

    PubMed

    Yang, Liu; Miao, Linqing; Liang, Feisi; Huang, Haoliang; Teng, Xiuyin; Li, Shaohua; Nuriddinov, Jaloliddin; Selzer, Michael E; Hu, Yang

    2014-01-01

    Using mouse optic nerve (ON) crush as a CNS injury model, we and others have found that activation of the mammalian target of rapamycin complex 1 (mTORC1) in mature retinal ganglion cells by deletion of the negative regulators, phosphatase and tensin homologue (PTEN), and tuberous sclerosis 1 promotes ON regeneration. mTORC1 activation inhibits eukaryotic translation initiation factor 4E-binding protein (4E-BP) and activates ribosomal protein S6 kinase 1 (S6K1), both of which stimulate translation. We reasoned that mTORC1's regeneration-promoting effects might be separable from its deleterious effects by differential manipulation of its downstream effectors. Here we show that S6K1 activation, but not 4E-BP inhibition, is sufficient to promote axon regeneration. However, inhibition of 4E-BP is required for PTEN deletion-induced axon regeneration. Both activation and inhibition of S6K1 decrease the effect of PTEN deletion on axon regeneration, implicating a dual role of S6K1 in regulating axon growth. PMID:25382660

  11. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii

    PubMed Central

    David, Clément N.; Frias, Elma S.; Szu, Jenny I.; Vieira, Philip A.; Hubbard, Jacqueline A.; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E.; Ethell, Iryna M.; Stanley, B. Glenn; Korzus, Edward; Fiacco, Todd A.; Binder, Devin K.; Wilson, Emma H.

    2016-01-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  12. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii.

    PubMed

    David, Clément N; Frias, Elma S; Szu, Jenny I; Vieira, Philip A; Hubbard, Jacqueline A; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E; Ethell, Iryna M; Stanley, B Glenn; Korzus, Edward; Fiacco, Todd A; Binder, Devin K; Wilson, Emma H

    2016-06-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  13. BMP3 expression in the adult rat CNS.

    PubMed

    Yamashita, Kanna; Mikawa, Sumiko; Sato, Kohji

    2016-07-15

    Bone morphogenetic protein-3 (BMP3) is a very unique member of the TGF-β superfamily, because it functions as an antagonist to both the canonical BMP and activin pathways and plays important roles in multiple biological events. Although BMP3 expression has been described in the early development of the kidney, intestine and bone, little information is available for BMP3 expression in the central nervous system (CNS). We, thus, investigated BMP3 expression in the adult rat CNS using immunohistochemistry. BMP3 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP3 protein. These data indicate that BMP3 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that BMP3 plays important roles in the adult brain. PMID:27130896

  14. Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS

    PubMed Central

    Papavasiliou, F. Nina; Chung, Young Cheul; Gagnidze, Khatuna; Hajdarovic, Kaitlyn H.; Cole, Dan C.; Bulloch, Karen

    2016-01-01

    Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in the populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain-resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease. PMID:26834738

  15. Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica

    PubMed Central

    Verkman, Alan S; Ratelade, Julien; Rossi, Andrea; Zhang, Hua; Tradtrantip, Lukmanee

    2011-01-01

    Aquaporin-4 (AQP4) is a water-selective transporter expressed in astrocytes throughout the central nervous system, as well as in kidney, lung, stomach and skeletal muscle. The two AQP4 isoforms produced by alternative spicing, M1 and M23 AQP4, form heterotetramers that assemble in cell plasma membranes in supramolecular structures called orthogonal arrays of particles (OAPs). Phenotype analysis of AQP4-null mice indicates the involvement of AQP4 in brain and spinal cord water balance, astrocyte migration, neural signal transduction and neuroinflammation. AQP4-null mice manifest reduced brain swelling in cytotoxic cerebral edema, but increased brain swelling in vasogenic edema and hydrocephalus. AQP4 deficiency also increases seizure duration, impairs glial scarring, and reduces the severity of autoimmune neuroinflammation. Each of these phenotypes is likely explicable on the basis of reduced astrocyte water permeability in AQP4 deficiency. AQP4 is also involved in the neuroinflammatory demyelinating disease neuromyelitis optica (NMO), where autoantibodies (NMO-IgG) targeting AQP4 produce astrocyte damage and inflammation. Mice administered NMO-IgG and human complement by intracerebral injection develop characteristic NMO lesions with neuroinflammation, demyelination, perivascular complement deposition and loss of glial fibrillary acidic protein and AQP4 immunoreactivity. Our findings suggest the potential utility of AQP4-based therapeutics, including small-molecule modulators of AQP4 water transport function for therapy of brain swelling, injury and epilepsy, as well as small-molecule or monoclonal antibody blockers of NMO-IgG binding to AQP4 for therapy of NMO. PMID:21552296

  16. The Meaning and Function of Early Childhood Play.

    ERIC Educational Resources Information Center

    McNamee, Gillian Dowley

    This paper discusses the meaning and formation of children's play in order to (1) deepen understanding and respect for what play is, (2) demonstrate how young children cannot thrive or survive without play, and (3) give a common framework for interpreting and deriving meaning from the play behavior that occurs in the daily lives of young children.…

  17. CNS: sex steroids and SERMs.

    PubMed

    Bernardi, F; Pluchino, N; Stomati, M; Pieri, M; Genazzani, A R

    2003-11-01

    The central nervous system (CNS) is one of the main target tissues for sex steroid hormones, which act both through genomic mechanisms, modulating synthesis, release, and metabolism of many neuropeptides and neurotransmitters, and through nongenomic mechanisms, influencing electrical excitability, synaptic function, and morphological features. The identification of the brain as a de novo source of neurosteroids modulating cerebral function, suggests that the modifications in mood and cognitive performances occurring in postmenopausal women could also be related to a modification in the levels of neurosteroids, particularly allopregnanolone and DHEA, GABA-A agonist, and antagonist, respectively. The selective estrogen receptor modulators (SERMs) are compounds that activate the estrogen receptors with different estrogenic and antiestrogenic tissue-specific effects. In addition to the effects of the classic steroid hormones on the CNS, the study of selective estrogen receptor modulators impact on the neuroendocrine system has recently provided encouraging results, indicating that raloxifene analog LY 117018 and the new generation SERM EM-652 have an estrogen-like action on beta-endorphin and on allopregnanolone in ovariectomized rats, while they exert an anti-estrogenic effect in fertile rats and in ovariectomized rats treated with estrogens. In addition, raloxifene administration in postmenopausal women plays an estrogen-like effect on circulating beta-EP and allopregnanolone levels, and it restores the response of beta-EP and allopregnanolone to neuroendocrine tests. In conclusion, the positive effects of HRT on mood and cognition in postmenopausal women occur via the modulation of neuroendocrine pathways and probably also of neurosteroidogenesis. The effects of raloxifene on mood and cognition encourage the efforts in the research of an ideal estrogen replacement therapy, showing all the positive effects of estrogens and fewer side effects. PMID:14644845

  18. Change as a Function of Play: Toot! Toot!

    ERIC Educational Resources Information Center

    Bishop, Jay K.

    Following the work of Vygotsky, this paper explores three dimensions of change in play therapy: linear, additive, and emergent pivotal structures. In therapeutic play, the child expresses actions and initiates movements, sounds, and gestures. Then, seemingly "out of the blue," the child shifts such gestures to an episode containing unrelated…

  19. Investigating the function of play bows in adult pet dogs (Canis lupus familiaris).

    PubMed

    Byosiere, Sarah-Elizabeth; Espinosa, Julia; Smuts, Barbara

    2016-04-01

    Play bows are a common, highly stereotyped canine behavior widely considered to be a 'play signal,' but only one study has researched their function. Bekoff (1995) found that play bows function as behavioral modifiers to help clarify playful intent before or after easily misinterpretable behaviors, such as bite-shakes. To further examine the function of play bows, the current study analyzed five types of behaviors displayed by the bower and the partner immediately before and after a play bow during dyadic play. We found that play bows most often occurred after a brief pause in play. Synchronous behaviors by the bower and the partner, or vulnerable/escape behaviors by the bower (such as running away) and complementary offensive behaviors by the partner (such as chasing) occurred most often after the play bow. These results indicate that during adult dog dyadic play, play bows function to reinitiate play after a pause rather than to mediate offensive or ambiguous actions. PMID:26923096

  20. Histamine and Immune Biomarkers in CNS Disorders

    PubMed Central

    Cacabelos, Ramón; Torrellas, Clara; Fernández-Novoa, Lucía; López-Muñoz, Francisco

    2016-01-01

    Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death. PMID:27190492

  1. B4GALT6 regulates astrocyte activation during CNS inflammation

    PubMed Central

    Mayo, Lior; Trauger, Sunia A.; Blain, Manon; Nadeau, Meghan; Patel, Bonny; Alvarez, Jorge I.; Mascanfroni, Ivan D.; Yeste, Ada; Kivisäkk, Pia; Kallas, Keith; Ellezam, Benjamin; Bakshi, Rohit; Prat, Alexandre; Antel, Jack P.; Weiner, Howard L.; Quintana, Francisco J.

    2014-01-01

    Astrocytes play complex roles in the response to trauma, infection or inflammation in the central nervous system (CNS). Thus, it is important to characterize the mechanisms regulating astrocyte function, as well as potential targets for the therapeutic modulation of astrocyte activity. Here we report that lactosylceramide (LacCer) levels are up-regulated in the CNS during chronic experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). We found that LacCer synthesized by β-1,4-galactosyltransferase 6 (B4GALT6) in astrocytes acts in an autocrine manner to trigger transcriptional programs that promote the recruitment and activation of CNS-infiltrating monocytes and microglia, and neurodegeneration. We also detected increased B4GALT6 expression and LacCer levels in CNS MS lesions. Finally, the inhibition of LacCer synthesis suppressed local CNS innate immunity and neurodegeneration in EAE, and interfered with the activation of human astrocytes in vitro. Thus, B4GALT6 is a potential therapeutic target for MS and other neuroinflammatory disorders. PMID:25216636

  2. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    PubMed

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos. PMID:23345245

  3. The role of the blood-CNS barrier in CNS disorders and their treatment.

    PubMed

    Palmer, Alan M

    2010-01-01

    The physical barrier between blood and the CNS (the blood-brain barrier, the blood-spinal cord barrier and the blood-CSF barrier) protects the CNS from both toxic and pathogenic agents in the blood. It is now clear that disruption of the blood-CNS barrier plays a key role in a number of CNS disorders, particularly those associated with neurodegeneration. Such disruption is inevitably accompanied by inflammatory change, as immune cells and immune mediators gain access to the brain or spinal cord. The blood-CNS barrier also presents a major obstacle for potential CNS medicines. Robust methods to assess CNS permeation are therefore essential for CNS drug discovery, particularly when brain pharmacokinetics are taken into account and especially when such measures are linked to neurochemical, physiological, behavioural or neuroimaging readouts of drug action. Drug candidates can be successfully designed to cross the blood-CNS barrier, but for those that can't there is the possibility of entry with a delivery system that facilitates the movement of drug candidate across the blood-CNS barrier. PMID:19664711

  4. TOPP in the CNS

    NASA Astrophysics Data System (ADS)

    Smart, R. L.; Lattanzi, M. G.; Jahreiss, H.; Bucciarelli, B.; Massone, G.

    2006-08-01

    Introduction: We present the Torino Observatory Parallax Program (TOPP) results for 22 candidates for the Catalog of Nearby Stars (CNS). Methods: Observations were made with the Torino OTAP 1.05m telescope over the period 1996-2001. Results: For the 22 objects examined 12 are within the CNS limit. Discussion: We discuss at length the objects out side the CNS limits which are either misclassified or objects with incorrect trigonometric parallaxes.

  5. Revisiting the Mechanisms of CNS Immune Privilege.

    PubMed

    Louveau, Antoine; Harris, Tajie H; Kipnis, Jonathan

    2015-10-01

    Whereas the study of the interactions between the immune system and the central nervous system (CNS) has often focused on pathological conditions, the importance of neuroimmune communication in CNS homeostasis and function has become clear over that last two decades. Here we discuss the progression of our understanding of the interaction between the peripheral immune system and the CNS. We examine the notion of immune privilege of the CNS in light of both earlier findings and recent studies revealing a functional meningeal lymphatic system that drains cerebrospinal fluid (CSF) to the deep cervical lymph nodes, and consider the implications of a revised perspective on the immune privilege of the CNS on the etiology and pathology of different neurological disorders. PMID:26431936

  6. Thalamus plays a central role in ongoing cortical functioning.

    PubMed

    Sherman, S Murray

    2016-04-01

    Several challenges to current views of thalamocortical processing are offered here. Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver and modulator. We suggest that driver inputs are the main conduits of information and that modulator inputs modify how driver inputs are processed. Different driver sources reveal two types of thalamic relays: first order relays receive subcortical driver input (for example, retinal input to the lateral geniculate nucleus), whereas higher order relays (for example, pulvinar) receive driver input from layer 5 of cortex and participate in cortico-thalamo-cortical (or transthalamic) circuits. These transthalamic circuits represent an unappreciated aspect of cortical functioning, which I discuss here. Direct corticocortical connections are often paralleled by transthalamic ones. Furthermore, driver inputs to thalamus, both first and higher order, typically arrive via branching axons, and the transthalamic branch often innervates subcortical motor centers, leading to the suggestion that these inputs to thalamus serve as efference copies. PMID:27021938

  7. Characterization and immune function of two intracellular sensors, HmTLR1 and HmNLR, in the injured CNS of an invertebrate.

    PubMed

    Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Slomianny, Christian; Salzet, Michel; Tasiemski, Aurélie

    2011-02-01

    Unlike mammals, the CNS of the medicinal leech can regenerate damaged neurites, thus restoring neural functions. Our group recently demonstrated that the injured leech nerve cord is able to mount an immune response, which promotes the regenerative processes. This defense mechanism is microorganism-specific, suggesting that the leech CNS is able to discriminate among microbial components. We report here the characterization of two receptors potentially implicated in this detection: HmTLR1 and HmNLR. Interestingly, HmTLR1 presents an endosomal distribution in neurons and appears as a chimera combining the mammalian intraendosomal domain of TLR3 and the cytoplasmic section of TLR13, while HmNLR is cytosolic and has the highest homology to NLRC3 receptors. Both receptors show patterns of induction upon stimulation that suggest their involvement in the leech neuroimmune response. This work constitutes the first demonstration in an invertebrate of (i) an intracellular TLR and (ii) a cytosolic PRR related to the NLR family. PMID:20920526

  8. CNS disease triggering Takotsubo stress cardiomyopathy.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-12-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS disorders are epilepsy, stroke, infectious or immunological encephalitis/meningitis, migraine, and traumatic brain injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest not only as arrhythmias, myocardial infarction, autonomic impairment, systolic dysfunction/heart failure, arterial hypertension, or pulmonary hypertension, but also as stress cardiomyopathy (Takotsubo syndrome, TTS). CNS disease triggering TTS includes subarachnoid bleeding, epilepsy, ischemic stroke, intracerebral bleeding, migraine, encephalitis, traumatic brain injury, PRES syndrome, or ALS. Usually, TTS is acutely precipitated by stress triggered by various different events. TTS is one of the cardiac abnormalities most frequently induced by CNS disorders. Appropriate management of TTS from CNS disorders is essential to improve the outcome of affected patients. PMID:25213573

  9. Review of Interventions to Increase Functional and Symbolic Play in Children with Autism

    ERIC Educational Resources Information Center

    Lang, Russell; Machalicek, Wendy; O'Reilly, Mark; Sigafoos, Jeff; Rispoli, Mandy; Shogren, Karrie; Regester, April

    2009-01-01

    Play is widely acknowledged to be an integral part of human development and children with autism often experience substantial delays in the development of play behaviors. This review updates older reviews by covering the last 10 years of research targeting functional and symbolic play in children with autism. The review differs from other reviews…

  10. Evolutionary Functions of Social Play: Life Histories, Sex Differences, and Emotion Regulation

    ERIC Educational Resources Information Center

    LaFreniere, Peter

    2011-01-01

    Many research findings about animal play apply to children's play, revealing structural and functional similarities with mammals in general and primates in particular. After an introduction to life-history theory, and before turning to humans, the author reviews research about the two mammals in which play has been studied the most extensively:…

  11. Neurotrauma and Inflammation: CNS and PNS Responses

    PubMed Central

    Mietto, Bruno Siqueira; Mostacada, Klauss; Martinez, Ana Maria Blanco

    2015-01-01

    Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity. PMID:25918475

  12. The Role of High Level Play as a Predictor Social Functioning in Autism

    ERIC Educational Resources Information Center

    Manning, Margaret M.; Wainwright, Laurel D.

    2010-01-01

    Play and social abilities of a group of children diagnosed with high functioning autism were compared to a second group diagnosed with a variety of developmental language disorders (DLD). The children with autism engaged in fewer acts of high level play. The children with autism also had significantly lower social functioning than the DLD group…

  13. Brief Functional Analysis and Intervention Evaluation for Treatment of Saliva-Play

    ERIC Educational Resources Information Center

    Luiselli, James K.; Ricciardi, Joseph N.; Schmidt, Sarah; Tarr, Melissa

    2004-01-01

    We conducted a brief (8 days) functional analysis to identify sources of control over persistent saliva-play displayed by a 6-year old child with autism in a school setting. The functional analysis suggested that saliva-play was maintained by automatic reinforcement, leading to an intervention evaluation (3 days) that compared two methods of…

  14. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  15. Staging Primary CNS Lymphoma

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  16. Chondroitin sulfate glycosaminoglycans for CNS homeostasis-implications for material design.

    PubMed

    Karumbaiah, Lohitash; Saxena, Tarun; Betancur, Martha; Bellamkonda, Ravi V

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are complex biomolecules that are known to facilitate patterning of axonal direction and cell migration during the early growth and development phase of the mammalian central nervous system (CNS). In adults, they continue to control neuronal plasticity as major constituents of the "peri-neuronal nets" (PNNs) that surround adult CNS neurons. CSPGs are also barrier-forming molecules that are selectively upregulated by invading reactive astroglia after injury to the CNS, and are responsible for the active repulsion of regenerating neurons post-injury. Recent evidence however suggests that the diverse sulfated glycosaminoglycan (GAG) side chains attached to CSPGs are key components that play paradoxical roles in influencing nerve regeneration post-injury to the CNS. Sulfated GAG repeats attached to the CSPG core protein help mediate cell migration, neuritogenesis, axonal pathfinding, and axonal repulsion by directly trapping and presenting a whole host of growth factors to cells locally, or by binding to specific membrane bound proteins on the cell surface to influence cellular function. In this review, we will present the current gamut of interventional strategies used to bridge CNS deficits, and discuss the potential advantages of using sulfated GAG based biomaterials to facilitate the repair and regeneration of the injured CNS. PMID:25139544

  17. Dynamics and mechanisms of CNS myelination.

    PubMed

    Bercury, Kathryn K; Macklin, Wendy B

    2015-02-23

    Vertebrate myelination is an evolutionary advancement essential for motor, sensory, and higher-order cognitive function. CNS myelin, a multilamellar differentiation of the oligodendrocyte plasma membrane, ensheaths axons to facilitate electrical conduction. Myelination is one of the most pivotal cell-cell interactions for normal brain development, involving extensive information exchange between differentiating oligodendrocytes and axons. The molecular mechanisms of myelination are discussed, along with new perspectives on oligodendrocyte plasticity and myelin remodeling of the developing and adult CNS. PMID:25710531

  18. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila.

    PubMed

    Becker, Henrike; Renner, Simone; Technau, Gerhard M; Berger, Christian

    2016-03-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  19. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila

    PubMed Central

    Becker, Henrike; Renner, Simone; Technau, Gerhard M.; Berger, Christian

    2016-01-01

    During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental

  20. Pomalidomide Shows Significant Therapeutic Activity against CNS Lymphoma with a Major Impact on the Tumor Microenvironment in Murine Models

    PubMed Central

    Li, Zhimin; Qiu, Yushi; Personett, David; Huang, Peng; Edenfield, Brandy; Katz, Jason; Babusis, Darius; Tang, Yang; Shirely, Michael A.; Moghaddam, Mehran F.; Copland, John A.; Tun, Han W.

    2013-01-01

    Primary CNS lymphoma carries a poor prognosis. Novel therapeutic agents are urgently needed. Pomalidomide (POM) is a novel immunomodulatory drug with anti-lymphoma activity. CNS pharmacokinetic analysis was performed in rats to assess the CNS penetration of POM. Preclinical evaluation of POM was performed in two murine models to assess its therapeutic activity against CNS lymphoma. The impact of POM on the CNS lymphoma immune microenvironment was evaluated by immunohistochemistry and immunofluorescence. In vitro cell culture experiments were carried out to further investigate the impact of POM on the biology of macrophages. POM crosses the blood brain barrier with CNS penetration of ~ 39%. Preclinical evaluations showed that it had significant therapeutic activity against CNS lymphoma with significant reduction in tumor growth rate and prolongation of survival, that it had a major impact on the tumor microenvironment with an increase in macrophages and natural killer cells, and that it decreased M2-polarized tumor-associated macrophages and increased M1-polarized macrophages when macrophages were evaluated based on polarization status. In vitro studies using various macrophage models showed that POM converted the polarization status of IL4-stimulated macrophages from M2 to M1, that M2 to M1 conversion by POM in the polarization status of lymphoma-associated macrophages is dependent on the presence of NK cells, that POM induced M2 to M1 conversion in the polarization of macrophages by inactivating STAT6 signaling and activating STAT1 signaling, and that POM functionally increased the phagocytic activity of macrophages. Based on our findings, POM is a promising therapeutic agent for CNS lymphoma with excellent CNS penetration, significant preclinical therapeutic activity, and a major impact on the tumor microenvironment. It can induce significant biological changes in tumor-associated macrophages, which likely play a major role in its therapeutic activity against CNS

  1. Fact or fiction? A longitudinal study of play and the development of reflective functioning.

    PubMed

    Tessier, V P; Normandin, L; Ensink, K; Fonagy, P

    2016-01-01

    In Fonagy and Target's (1996, 2000) developmental model of mentalization, play is theorized as a precursor of later mentalization and reflective function (RF); however, the relationship between play and later mentalization and RF has yet to be empirically tested. These processes are particularly important in the context of trauma, but an empirical model of the relationships among mentalization, play, and trauma is currently lacking. The aim of this longitudinal study was to examine whether children's capacity to engage in pretend play, to symbolize, and to make play narratives was associated with later RF in those children. Thirty-nine sexually abused children and 21 nonabused children (aged 3 to 8) participated in the study. The Children's Play Therapy Instrument was used to assess children's free play. Three years after the play assessment, children's RF was assessed using the Child Attachment Interview, coded with the Child and Adolescent Reflective Functioning Scale. Pretend play completion was associated with later other-understanding. Play was also found to mediate the relationship between sexual abuse and children's later mentalization regarding others. These findings are consistent with Fonagy and Target's emphasis on the role of pretend play in the development of a nuanced sense of the qualities of the mind and reality. In sum, the findings lend support to Fonagy and Target's account of playing with reality, and the development of mentalization suggests that it may be more than "fiction." Furthermore, these results suggest that children's ability to create meaningful and coherent play sequences after sexual abuse is associated with the development of a better understanding of their relationships with others. Clinical implications and future directions are discussed. PMID:27028339

  2. A Functional, Holistic Approach to Developmental Assessment through Play: The Transdisciplinary Play-Based Assessment, Second Edition

    ERIC Educational Resources Information Center

    Linder, Toni; Linas, Keri

    2009-01-01

    Early intervention and early childhood special education professionals espouse the need for authentic assessment and meaningful family involvement, as well as relationship-based and routines-based intervention. This article explores a play-based approach to assessment that reflects these values by using the Transdisciplinary Play-Based Assessment,…

  3. Relationships between electronic game play, obesity, and psychosocial functioning in young men.

    PubMed

    Wack, Elizabeth; Tantleff-Dunn, Stacey

    2009-04-01

    Most estimates suggest that American youth are spending a large amount of time playing video and computer games, spurring researchers to examine the impact this media has on various aspects of health and psychosocial functioning. The current study investigated relationships between frequency of electronic game play and obesity, the social/emotional context of electronic game play, and academic performance among 219 college-aged males. Current game players reported a weekly average of 9.73 hours of game play, with almost 10% of current players reporting an average of 35 hours of play per week. Results indicated that frequency of play was not significantly related to body mass index or grade point average. However, there was a significant positive correlation between frequency of play and self-reported frequency of playing when bored, lonely, or stressed. As opposed to the general conception of electronic gaming as detrimental to functioning, the results suggest that gaming among college-aged men may provide a healthy source of socialization, relaxation, and coping. PMID:19006465

  4. Evaluation of Mitochondrial Function in the CNS of Rodent Models of Alzheimer's Disease - High Resolution Respirometry Applied to Acute Hippocampal Slices.

    PubMed

    Dias, Candida; Barbosa, Rui M; Laranjinha, Joao; Ledo, Ana

    2014-10-01

    Alzheimer's disease (AD) is a multifactorial disease characterized by extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles. These hallmark alterations are preceded by synaptic deterioration, changes in neuromolecular plasticity phenomena, mitochondrial dysfunction, increase in oxidative damage to cellular constituents and decreased energy metabolism. The hippocampus is a structure of the temporal medial lobe implicated in specific forms of memory processes. It is also one of the first and most affected regions of the CNS in AD. Here we present a novel approach to the study if mitochondrial function/disfunction in 2 rodent models of AD: an acute rat model obtained by intracerebroventricular injection of the toxin streptozotocin (STZ) and a progressive triple transgenic mouse model (3TgAD) harboring PS1M146V, APPSwe, and tauP301L transgenes. Mitochondrial dysfunction has classically been assessed in such models by isolating mitochondria, synaptossoms or working with cell cultures. Anyone of these approaches destroys the intricate intercellular connectivity and cytoarchitecture of neuronal tissue. We used acute hippocampal slices obtained from the 2 models of AD and evaluated changes in mitochondrial function as a function of disease and/or age. Mitochondrial stress test were performed on the high resolution respirometry (Oroboros 2K Oxymeter). Upon analysis of oxygen consumption rates (OCR) we observed significant decreases in basal OCR, maximal respiratory capacity, ATP turnover and a tendency for decrease in sparing capacity in the STZ rat model compared to shame injected animals. Regarding the 3TgAD model we observed an age-dependent decrease in all parameters evaluated in the mitochondrial stress test, in both 3TgAD and NTg animals. However, although a tendency towards decreased OCR was observed when comparing 3TgAD and age-matched NTg animals, no statistically significant difference was observed. PMID:26461355

  5. CNS myelin induces regulatory functions of DC-SIGN-expressing, antigen-presenting cells via cognate interaction with MOG.

    PubMed

    García-Vallejo, J J; Ilarregui, J M; Kalay, H; Chamorro, S; Koning, N; Unger, W W; Ambrosini, M; Montserrat, V; Fernandes, R J; Bruijns, S C M; van Weering, J R T; Paauw, N J; O'Toole, T; van Horssen, J; van der Valk, P; Nazmi, K; Bolscher, J G M; Bajramovic, J; Dijkstra, C D; 't Hart, B A; van Kooyk, Y

    2014-06-30

    Myelin oligodendrocyte glycoprotein (MOG), a constituent of central nervous system myelin, is an important autoantigen in the neuroinflammatory disease multiple sclerosis (MS). However, its function remains unknown. Here, we show that, in healthy human myelin, MOG is decorated with fucosylated N-glycans that support recognition by the C-type lectin receptor (CLR) DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) on microglia and DCs. The interaction of MOG with DC-SIGN in the context of simultaneous TLR4 activation resulted in enhanced IL-10 secretion and decreased T cell proliferation in a DC-SIGN-, glycosylation-, and Raf1-dependent manner. Exposure of oligodendrocytes to proinflammatory factors resulted in the down-regulation of fucosyltransferase expression, reflected by altered glycosylation at the MS lesion site. Indeed, removal of fucose on myelin reduced DC-SIGN-dependent homeostatic control, and resulted in inflammasome activation, increased T cell proliferation, and differentiation toward a Th17-prone phenotype. These data demonstrate a new role for myelin glycosylation in the control of immune homeostasis in the healthy human brain through the MOG-DC-SIGN homeostatic regulatory axis, which is comprised by inflammatory insults that affect glycosylation. This phenomenon should be considered as a basis to restore immune tolerance in MS. PMID:24935259

  6. Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity.

    PubMed

    Payne, Natalie L; Sun, Guizhi; McDonald, Courtney; Moussa, Leon; Emerson-Webber, Ashley; Loisel-Meyer, Séverine; Medin, Jeffrey A; Siatskas, Christopher; Bernard, Claude C A

    2013-05-01

    Interleukin (IL)-10 is an important immunoregulatory cytokine shown to impact inflammatory processes as manifested in patients with multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). Several lines of evidence indicate that the effectiveness of IL-10-based therapies may be dependent on the timing and mode of delivery. In the present study we engineered the expression of IL-10 in human adipose-derived mesenchymal stem cells (Adi-IL-10-MSCs) and transplanted these cells early in the disease course to mice with EAE. Adi-IL-10-MSCs transplanted via the intraperitoneal route prevented or delayed the development of EAE. This protective effect was associated with several anti-inflammatory response mechanisms, including a reduction in peripheral T-cell proliferative responses, a decrease in pro-inflammatory cytokine secretion as well as a preferential inhibition of Th17-mediated neuroinflammation. In vitro analyses revealed that Adi-IL-10-MSCs inhibited the phenotypic maturation, cytokine production and antigen presenting capacity of bone marrow-derived myeloid dendritic cells, suggesting that the mechanism of action may involve an indirect effect on pathogenic T-cells via the modulation of antigen presenting cell function. Collectively, these results suggest that early intervention with gene modified Adi-MSCs may be beneficial for the treatment of autoimmune diseases such as MS. PMID:23369732

  7. The effects of fantastical pretend-play on the development of executive functions: An intervention study.

    PubMed

    Thibodeau, Rachel B; Gilpin, Ansley T; Brown, Melissa M; Meyer, Brooke A

    2016-05-01

    Although recent correlational studies have found a relationship between fantasy orientation (FO; i.e., a child's propensity to play in a fantastical realm) and higher order cognitive skills called executive functions (EFs), no work has addressed the causality and directionality of this relationship. The current study experimentally examined the directionality of the observed relationship between FO and EF development in preschool-aged children through an innovative play intervention employing a randomized controlled design. A sample of 110 children between the ages of 3 and 5years were randomly assigned to one of three conditions: fantastical pretend-play intervention, non-imaginative play intervention, or business-as-usual control. Results revealed that children who participated in a 5-week fantastical pretend-play intervention showed improvements in EFs, whereas children in the other two conditions did not. Within the fantastical pretend-play condition, children who were highly engaged in the play and those who were highly fantastical demonstrated the greatest gains in EFs. These data provide evidence for the equifinal relationship between fantasy-oriented play and EF development, such that engaging in fantasy-oriented play may be one of many ways to directly enhance EF development. PMID:26835841

  8. Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing.

    PubMed

    Gong, Diankun; He, Hui; Liu, Dongbo; Ma, Weiyi; Dong, Li; Luo, Cheng; Yao, Dezhong

    2015-01-01

    Research has shown that distinct insular subregions are associated with particular neural networks (e.g., attentional and sensorimotor networks). Based on the evidence that playing action video games (AVGs) facilitates attentional and sensorimotor functions, this study examined the relation between AVG experience and the plasticity of insular subregions and the functional networks therein that are related to attentional and sensorimotor functions. By comparing AVG experts and amateurs, we found that AVG experts had enhanced functional connectivity and grey matter volume in insular subregions. Furthermore, AVG experts exhibited increased functional connectivity between the attentional and sensorimotor networks, and the experience-related enhancement was predominantly evident in the left insula, an understudied brain area. Thus, AVG playing may enhance functional integration of insular subregions and the pertinent networks therein. PMID:25880157

  9. Functional integrity of the habenula is necessary for social play behaviour in rats

    PubMed Central

    van Kerkhof, Linda W. M.; Damsteegt, Ruth; Trezza, Viviana; Voorn, Pieter; Vanderschuren, Louk J. M. J.

    2013-01-01

    During post-weaning development, a marked increase in peer–peer interactions is observed in all mammals, including humans, which is signified by the abundance of social play behaviour. Social play is highly rewarding, and known to be modulated through monoaminergic neurotransmission. Recently, the habenula has received widespread attention because of its role in the regulation of monoaminergic neurotransmission as well as in a variety of emotional and cognitive functions. Therefore, in the present study, we investigated the involvement of the habenula in social play behaviour. Using the neuronal activity maker c-fos, we showed that the habenula was activated after 24 h of social isolation in adolescent rats, and that a subsequent social play interaction reduced c-fos activity in the medial part of the lateral habenula. This suggested that habenula activity modulated the aversive properties of social isolation, which was alleviated by the positive effects of social play. Furthermore, after functional inactivation of the habenula, using a mixture of the GABA receptor agonists baclofen and muscimol, social play behaviour was markedly reduced, whereby responsiveness to play solicitation was more sensitive to habenula inactivation than play solicitation itself. Together, our data indicated an important role for the habenula in the processing of positive (i.e. social play behaviour) and negative (i.e. social isolation) social information in adolescent rats. Altered habenula function might therefore be related to the social impairments in childhood and adolescent psychiatric disorders such as autism, attention deficit/hyperactivity disorder and early-onset schizophrenia. PMID:24103016

  10. Dual function of Ccr5 during Langat virus encephalitis - Reduction of neutrophil-mediated CNS inflammation and increase in T cell-mediated viral clearance

    PubMed Central

    Michlmayr, Daniela; Bardina, Susana V.; Rodriguez, Carlos A.; Pletnev, Alexander G.; Lim, Jean K.

    2016-01-01

    Tick-borne encephalitis virus (TBEV) is a vector-transmitted flavivirus that causes potentially fatal neurological infection. There are thousands of cases reported annually, and despite the availability of an effective vaccine, the incidence of TBEV is increasing worldwide. Importantly, up to thirty percent of affected individuals will develop long-term neurologic sequelae. We investigated the role of chemokine receptor Ccr5 in a mouse model of TBEV infection using the naturally attenuated tick-borne flavivirus, Langat virus (LGTV). Ccr5-deficient mice presented with an increase in viral replication within the CNS and decreased survival during LGTV encephalitis when compared to wild type (WT) controls. This enhanced susceptibility was due to the temporal lag in lymphocyte migration into the CNS. Adoptive transfer of WT T cells, but not Ccr5-deficient T cells, was able to significantly improve survival outcome in LGTV-infected Ccr5-deficient mice. Concomitantly, a significant increase in neutrophil migration into the CNS in LGTV-infected Ccr5−/− mice was documented at the late stage of infection. Antibody-mediated depletion of neutrophils in Ccr5−/− mice resulted in a significant improvement in mortality, a decrease in viral load, and a decrease in overall tissue damage in the CNS when compared to isotype control-treated mice. Ccr5 is crucial in not only directing T cells towards the LGTV-infected brain, but also in suppressing neutrophil-mediated inflammation within the CNS. PMID:27183602

  11. A case of functional urinary retention: the use of family play therapy.

    PubMed

    Stoddard, F R; Wilberger, M S; Olafson, E

    1993-09-01

    This case presents a technique for doing family therapy in families with young children. In family play therapy, the entire family plays together, allowing full participation of even the youngest children in the therapeutic process. Standard family therapy interventions in the latter part of each session make use of family interaction patterns and unconscious processes revealed during the earlier play. In the case presented here, the technique was successfully applied to a family with a 3-year-old son who had functional urinary retention. This case also provided an opportunity for interdisciplinary collaboration between the separate Child and Family Services at a major teaching hospital. PMID:8243618

  12. Eos is redundant for T regulatory cell function, but plays an important role in IL-2 and Th17 production by CD4+ T conventional cells

    PubMed Central

    Rieder, Sadiye Amcaoglu; Metidji, Amina; Glass, Deborah Dacek; Thornton, Angela M.; Ikeda, Tohru; Morgan, Bruce A.; Shevach, Ethan M.

    2015-01-01

    Eos is a transcription factor that belongs to the Ikaros family of transcription factors. Eos has been reported to be a T regulatory cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We have utilized mice with a global deficiency of Eos to re-examine the role of Eos expression in both Treg and T conventional (Tconv) cells. Treg from Eos deficient (Eos−/−) mice developed normally, displayed a normal Treg phenotype, and exhibited normal suppressor function in vitro. Eos−/− Treg were as effective as Treg from wild type (WT) mice in suppression of inflammation in a model of inflammatory bowel disease. Bone marrow (BM) from Eos−/− mice was as effective as BM from WT mice in controlling T cell activation when used to reconstitute immunodeficient mice in the presence of Scurfy fetal liver cells. Surprisingly, Eos was expressed in activated Tconv cells and was required for IL-2 production, CD25 expression and proliferation in vitro by CD4+ Tconv cells. Eos−/− mice developed more severe Experimental Autoimmune Encephalomyelitis than WT mice, displayed increased numbers of effector T cells in the periphery and CNS, and amplified IL-17 production. In conclusion, our studies are not consistent with a role for Eos in Treg development and function, but demonstrate that Eos plays an important role in the activation and differentiation of Tconv cells. PMID:26062998

  13. Solitary-Functional Play and Solitary-Pretend Play: Another Look at the Construct of Solitary-Active Behavior Using Playground Observations

    ERIC Educational Resources Information Center

    Nelson, Larry J.; Hart, Craig H.; Evans, Cortney A.

    2008-01-01

    Although the construct of solitary-active behavior calls for the aggregation of solitary-functional play and solitary-pretend play, there is little empirical support for combining them into one construct. Furthermore, little work has been done in early childhood to examine these behaviors on the playground. The purpose of this study was to observe…

  14. Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease.

    PubMed

    Greenhalgh, Andrew D; Passos Dos Santos, Rosmarini; Zarruk, Juan Guillermo; Salmon, Christopher K; Kroner, Antje; David, Samuel

    2016-08-01

    Resident microglia and infiltrating myeloid cells play important roles in the onset, propagation, and resolution of inflammation in central nervous system (CNS) injury and disease. Identifying cell type-specific mechanisms will help to appropriately target interventions for tissue repair. Arginase-1 (Arg-1) is a well characterised modulator of tissue repair and its expression correlates with recovery after CNS injury. Here we assessed the cellular localisation of Arg-1 in two models of CNS damage. Using microglia specific antibodies, P2ry12 and Fc receptor-like S (FCRLS), we show the LysM-EGFP reporter mouse is an excellent model to distinguish infiltrating myeloid cells from resident microglia. We show that Arg-1 is expressed exclusively in infiltrating myeloid cells but not microglia in models of spinal cord injury (SCI) and experimental autoimmune encephalomyelitis (EAE). Our in vitro studies suggest that factors in the CNS environment prevent expression of Arg-1 in microglia in vivo. This work suggests different functional roles for these cells in CNS injury and repair and shows that such repair pathways can be switched on in infiltrating myeloid cells in pro-inflammatory environments. PMID:27126514

  15. Functional Play at 2 Years of Age: Effects of Prenatal Maternal Stress

    ERIC Educational Resources Information Center

    Laplante, David P.; Zelazo, Philip R.; Brunet, Alain; King, Suzanne

    2007-01-01

    Toddler toy play evolves in a predictable manner and provides a valid, nonverbal measure of cognitive function unbiased by social behaviors. Research on prenatal maternal stress (PNMS) indicates that exposure to stress in utero results in developmental deficits. We hypothesized that children exposed to high objective PNMS from a natural disaster…

  16. CNS Diseases and Uveitis

    PubMed Central

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo

    2011-01-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751

  17. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). PMID:27528753

  18. CNS diseases and uveitis.

    PubMed

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P; Murialdo, Ugo

    2011-10-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist's perspective thereby neurologic involvement is stressed. PMID:22454751

  19. [The influence of playing the clarinet on the dentomaxillofacial morphology and function].

    PubMed

    Ogino, H

    1990-07-01

    The purpose of this experiment is to understand the influence of playing the clarinet on the dentomaxillofacial morphology and function. The 12 subjects, selected at random (all adults, 4 men and 8 women) had played the clarinet for more than 10 years. The subjects had anamnesis, oral photo pictures, facial photo pictures, cast model, lateral cephalograms (lateral cephalo) and frontal cephalograms (frontal cephalo) taken when they were in centric occlusion and playing the clarinet. The results were as follows: 1. The facial profile and occlusal relation depend on the subjects. (2 mandibular retrognathism. 4 prognathism and 6 crowding.) 2. No characteristic skeletal pattern was found compared with controls in angle measurement but subjects had a tendency to have large facial height in linear measurement of lateral cephalo. And in denture pattern the lower incisors were linguoclination. 3. Concerning the lateral cephalo, we noticed that the angle of the clarinet in relation to the body axis increased in accordance with the prognathism and decreased with the retrognathism. 4. The subjects don't have identical midline, comparing lower midline to dentofacial midline, when playing, the angle of clarinet to the body was eccentric according to maxillary incisors in frontal cephalo. 5. Anterial and posterial length was short in mandibular arch, analyzing the cast model. 6. The pressure on mouthpiece increased in accordance with the prognathism and decreased with retrognathism. 7. The results of the EMG analysis indicated that the muscle activity of oral sphincter was described as 1). upper lip, 2). lower lip, 3). commisure of lips and differences were found depending on the parts being studied and the sound played on the clarinet. In conclusion, the skeletal and denture problem influence the holding position of the clarinet, embouchure and the way of playing it. In case of mandibular prognathism, when playing, the subjects pressed on their teeth with the clarinet. So B

  20. CNS Multiparameter Optimization Approach: Is it in Accordance with Occam's Razor Principle?

    PubMed

    Raevsky, Oleg A

    2016-04-01

    A detailed analysis of the possibility of using the Multiparameter Optimization approach (MPO) for CNS/non-CNS classification of drugs was carried out. This work has shown that MPO descriptors are able to describe only part of chemical transport in the CNS connected with transmembrane diffusion. Hence the "intuitive" CNS MPO approach with arbitrary selection of descriptors and calculations of score functions, search of thresholds of classification, and absence of any chemometric procedures, leads to rather modest accuracy of CNS/non-CNS classification models. PMID:27491918

  1. Microbial Induction of Vascular Pathology in the CNS

    PubMed Central

    Kang, Silvia S.

    2016-01-01

    The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe. PMID:20401700

  2. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  3. The Efficacy of Exergames Played Proximally and over the Internet on Cognitive Functioning for Online Physical Education

    ERIC Educational Resources Information Center

    Kooiman, Brian J.; Sheehan, Dwayne P.

    2014-01-01

    Exergames (active video games that require kinesthetic movement) played in proximity to other players or against a gaming machine have been linked to positive increases in cognitive functioning. This study tested to see if remote exergame play over the Internet had an impact similar to exergames that are played in proximity. The study shows that…

  4. The Function of Play in the Development of the Social Brain

    ERIC Educational Resources Information Center

    Pellis, Sergio M.; Pellis, Vivien C.; Bell, Heather C.

    2010-01-01

    Rough-and-tumble play, or play fighting, is common in the young of many mammals. Research on play fighting among rats shows that there are many levels of neural control over this behavior: subcortical mechanisms mediate the motivation and behavior of such play, and the cortex provides mechanisms by which the play changes with age and context. The…

  5. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases.

    PubMed

    Bar-Or, Amit; Hintzen, Rogier Q; Dale, Russell C; Rostasy, Kevin; Brück, Wolfgang; Chitnis, Tanuja

    2016-08-30

    Elucidating pathophysiologic mechanisms underlying the spectrum of pediatric-onset CNS demyelinating diseases, particularly those that may distinguish multiple sclerosis (MS) from other entities, promises to both improve diagnostics and guide more-informed therapeutic decisions. Observations that pediatric- and adult-onset MS share the same genetic and environmental risk factors support the view that these conditions represent essentially the same illness manifesting at different ages. Nonetheless, special consideration must be given when CNS inflammation manifests in early life, at a time when multiple organs (including immune and nervous systems) are actively maturing. CSF analysis in pediatric-onset MS points to chronic CNS inflammation, supported by observations from limited pathologic material available for study. Emerging results implicate abnormalities in both effector and regulatory T cell subsets, and potentially immune senescence, in children with MS. Although CNS-directed antibodies (including antibodies recognizing myelin antigens; Kir4.1) can be documented in pediatric-onset MS, their pathophysiologic significance (as in adults) remains unclear. This is in contrast to the presence of serum and/or CSF antibodies recognizing aquaporin-4, which, when measured using validated cell-based assays, supports the diagnosis of a neuromyelitis optica spectrum disorder, distinct from MS. Presence of anti-myelin oligodendrocyte glycoprotein antibodies documented with similar cell-based assays may also be associated with pathophysiologically distinct disease phenotypes in children. The substantial impact of pediatric-onset MS on normal brain development and function underscores the importance of elucidating both the immunobiology and neurobiology of disease. Ongoing efforts are aimed at developing and validating biological measures that define pathophysiologically distinct monophasic and chronic forms of pediatric CNS demyelination. PMID:27572856

  6. Domain II plays a crucial role in the function of ribosome recycling factor

    PubMed Central

    2005-01-01

    RRF (ribosome recycling factor) consists of two domains, and in concert with EF-G (elongation factor-G), triggers dissociation of the post-termination ribosomal complex. However, the function of the individual domains of RRF remains unclear. To clarify this, two RRF chimaeras, EcoDI/TteDII and TteDI/EcoDII, were created by domain swaps between the proteins from Escherichia coli and Thermoanaerobacter tengcongensis. The ribosome recycling activity of the RRF chimaeras was compared with their wild-type RRFs by using in vivo and in vitro activity assays. Like wild-type TteRRF (T. tengcongensis RRF), the EcoDI/TteDII chimaera is non-functional in E. coli, but both wild-type TteRRF, and EcoDI/TteDII can be activated by coexpression of T. tengcongensis EF-G in E. coli. By contrast, like wild-type E. coli RRF (EcoRRF), TteDI/EcoDII is fully functional in E. coli. These findings suggest that domain II of RRF plays a crucial role in the concerted action of RRF and EF-G for the post-termination complex disassembly, and the specific interaction between RRF and EF-G on ribosomes mainly depends on the interaction between domain II of RRF and EF-G. This study provides direct genetic and biochemical evidence for the function of the individual domains of RRF. PMID:16262604

  7. Playing Piano Can Improve Upper Extremity Function after Stroke: Case Studies

    PubMed Central

    Villeneuve, Myriam; Lamontagne, Anouk

    2013-01-01

    Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3), prior to (week6) and after the intervention (week9), and at 3-week follow-up (week12). Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test) and gross (box and block test) manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test). Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke. PMID:23533954

  8. Playing piano can improve upper extremity function after stroke: case studies.

    PubMed

    Villeneuve, Myriam; Lamontagne, Anouk

    2013-01-01

    Music-supported therapy (MST) is an innovative approach that was shown to improve manual dexterity in acute stroke survivors. The feasibility of such intervention in chronic stroke survivors and its longer-term benefits, however, remain unknown. The objective of this pilot study was to estimate the short- and long-term effects of a 3-week piano training program on upper extremity function in persons with chronic stroke. A multiple pre-post sequential design was used, with measurements taken at baseline (week0, week3), prior to (week6) and after the intervention (week9), and at 3-week follow-up (week12). Three persons with stroke participated in the 3-week piano training program that combined structured piano lessons to home practice program. The songs, played on an electronic keyboard, involved all 5 digits of the affected hand and were displayed using a user-friendly MIDI program. After intervention, all the three participants showed improvements in their fine (nine hole peg test) and gross (box and block test) manual dexterity, as well as in the functional use of the upper extremity (Jebsen hand function test). Improvements were maintained at follow-up. These preliminary results support the feasibility of using an MST approach that combines structured lessons to home practice to improve upper extremity function in chronic stroke. PMID:23533954

  9. CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation

    PubMed Central

    Bertaux-Skeirik, Nina; Feng, Rui; Schumacher, Michael A.; Li, Jing; Mahe, Maxime M.; Engevik, Amy C.; Javier, Jose E.; Peek Jr, Richard M.; Ottemann, Karen; Orian-Rousseau, Veronique; Boivin, Gregory P.; Helmrath, Michael A.; Zavros, Yana

    2015-01-01

    The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylorithat was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H

  10. The Processing of Airspace Concept Evaluations Using FASTE-CNS as a Pre- or Post-Simulation CNS Analysis Tool

    NASA Technical Reports Server (NTRS)

    Mainger, Steve

    2004-01-01

    As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing

  11. Preverbal Functional Communication and the Role of Object Play in Children with Cerebral Palsy.

    ERIC Educational Resources Information Center

    Olswang, Lesley B.; Pinder, Gay Lloyd

    1995-01-01

    Object play and communication development were studied with four infants with cerebral palsy, involving time spent with objects, types of object play, and object selection. As coordinated looking between object and adult emerged, children demonstrated increased interest in objects and sophistication in their play behaviors. (SW)

  12. The T. brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function

    PubMed Central

    Paris, Zdeněk; Horáková, Eva; Rubio, Mary Anne T.; Sample, Paul; Fleming, Ian M.C.; Armocida, Stephanie; Lukeš, Julius; Alfonzo, Juan D.

    2013-01-01

    All tRNAs undergo post-transcriptional chemical modifications as part of their natural maturation pathway. Some modifications, especially those in the anticodon loop, play important functions in translational efficiency and fidelity. Among these, 1-methylguanosine, at position 37 (m1G37) of the anticodon loop in several tRNAs, is evolutionarily conserved and participates in translational reading frame maintenance. In eukaryotes, the tRNA methyltransferase TRM5 is responsible for m1G formation in nucleus-encoded as well as mitochondria-encoded tRNAs, reflecting the universal importance of this modification for protein synthesis. However, it is not clear what role, if any, mitochondrial TRM5 serves in organisms that do not encode tRNAs in their mitochondrial genomes. These organisms may easily satisfy the m1G37 requirement through their robust mitochondrial tRNA import mechanisms. We have explored this possibility in the parasitic protist Trypanosoma brucei and show that down-regulation of TRM5 by RNAi leads to the expected disappearance of m1G37, but with surprisingly little effect on cytoplasmic translation. On the contrary, lack of TRM5 causes a marked growth phenotype and a significant decrease in mitochondrial functions, including protein synthesis. These results suggest mitochondrial TRM5 may be needed to mature unmethylated tRNAs that reach the mitochondria and that could pose a problem for translational fidelity. This study also reveals an unexpected lack of import specificity between some fully matured and potentially defective tRNA species. PMID:23520175

  13. Pushing Forward: Remyelination as the New Frontier in CNS Diseases.

    PubMed

    Kremer, David; Göttle, Peter; Hartung, Hans-Peter; Küry, Patrick

    2016-04-01

    The evolutionary acquisition of myelin sheaths around large caliber axons in the central nervous system (CNS) represented a milestone in the development of vertebrate higher brain function. Myelin ensheathment of axons enabled saltatory conduction and thus accelerated information processing. However, a number of CNS diseases harm or destroy myelin and oligodendrocytes (myelin-producing cells), ultimately resulting in demyelination. In the adult CNS, new oligodendrocytes can be generated from a quiescent pool of precursor cells, which - upon differentiation - can replace lost myelin sheaths. The efficiency of this spontaneous regeneration is limited, which leads to incomplete remyelination and residual clinical symptoms. Here, we discuss CNS pathologies characterized by white matter degeneration and regeneration and highlight drugs that could potentially serve as remyelination therapies. PMID:26964504

  14. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  15. Insights into the physiological role of CNS regeneration inhibitors

    PubMed Central

    Baldwin, Katherine T.; Giger, Roman J.

    2015-01-01

    The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health. PMID:26113809

  16. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    SciTech Connect

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan; Tiollais, Pierre; Li, Tsaiping; Zhao, Mujun

    2011-06-03

    Highlights: {yields} LIS1 mRNA and protein levels are decreased in 70% HCC tissues. {yields} Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. {yields} LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. {yields} Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. {yields} Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the

  17. Young Mothers' Play with Their Toddlers: Individual Variability as a Function of Psychosocial Factors

    ERIC Educational Resources Information Center

    Driscoll, Joan Riley; Easterbrooks, M. Ann

    2007-01-01

    There is no one style of parenting which characterizes young mothers as a group. In addition, life circumstances play an important role in shaping maternal behaviour. The aim of this study was to identify patterns of maternal play behaviour and contextual (social and personal) factors associated with these different patterns. In this study, 107…

  18. Student Musicians' Ear-Playing Ability as a Function of Vernacular Music Experiences

    ERIC Educational Resources Information Center

    Woody, Robert H.; Lehmann, Andreas C.

    2010-01-01

    This study explored the differences in ear-playing ability between formal "classical" musicians and those with vernacular music experience (N = 24). Participants heard melodies and performed them back, either by singing or playing on their instruments. The authors tracked the number of times through the listen-then-perform cycle that each…

  19. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: boosting autoimmunity to fight-off chronic neuroinflammation.

    PubMed

    Schwartz, Michal; Baruch, Kuti

    2014-11-01

    Immune cell infiltration to the brain's territory was considered for decades to reflect a pathological process in which immune cells attack the central nervous system (CNS); such a process is observed in the inflammatory autoimmune disease, multiple sclerosis (MS). As neuroinflammatory processes within the CNS parenchyma are also common to other CNS pathologies, regardless of their etiology, including neurodegenerative disorders such as Alzheimer's disease (AD) and Amyotrophic lateral sclerosis (ALS), these pathologies have often been compared to MS, a disease that benefits from immunosuppressive therapy. Yet, over the last decade, it became clear that autoimmunity has a bright side, and that it plays a pivotal role in CNS repair following damage. Specifically, autoimmune T cells were found to facilitate CNS healing processes, such as in the case of sterile mechanical injuries to the brain or the spinal cord, mental stress, or biochemical insults. Even more intriguingly, autoimmune T cells were found to be involved in supporting fundamental processes of brain functional integrity, such as in the maintenance of life-long brain plasticity, including spatial learning and memory, and neurogenesis. Importantly, autoimmune T cells are part of a cellular network which, to operate efficiently and safely, requires tight regulation by other immune cell populations, such as regulatory T cells, which are indispensable for maintenance of immunological self-tolerance and homeostasis. Here, we suggest that dysregulation of the balance between peripheral immune suppression, on one hand, and protective autoimmunity, on the other, is an underlying mechanism in the emergence and progression of the neuroinflammatory response associated with chronic neurodegenerative diseases and brain aging. Mitigating chronic neuroinflammation under these conditions necessitates activation, rather than suppression, of the peripheral immune response directed against self. Accordingly, we propose that

  20. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease.

    PubMed

    Sun, Lin; He, Chang; Nair, Lekha; Yeung, Justine; Egwuagu, Charles E

    2015-10-01

    Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis. PMID:25796985

  1. ALDH3A1 Plays a Functional Role in Maintenance of Corneal Epithelial Homeostasis

    PubMed Central

    Mehta, Gaurav; Orlicky, David J.; Thompson, David C.; Jester, James V.; Vasiliou, Vasilis

    2016-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1) and ALDH3A1 are corneal crystallins. They protect inner ocular tissues from ultraviolet radiation (UVR)-induced oxidative damage through catalytic and non-catalytic mechanisms. Additionally, ALDH3A1 has been postulated to play a regulatory role in the corneal epithelium based on several studies that report an inverse association between ALDH3A1 expression and corneal cell proliferation. The underlying molecular mechanisms and the physiological significance of such association remain poorly understood. In the current study, we established Tet-On human corneal epithelial cell (hTCEpi) lines, which express tetracycline-inducible wild-type (wt) or catalytically-inactive (mu) ALDH3A1. Utilizing this cellular model system, we confirmed that human ALDH3A1 decreases corneal cell proliferation; importantly, this effect appears to be partially mediated by its enzymatic activity. Mechanistically, wt-ALDH3A1, but not mu-ALDH3A1, promotes sequestering of tumor suppressor p53 in the nucleus. In the mouse cornea, however, augmented cell proliferation is noted only in Aldh1a1-/-/3a1-/- double knockout (DKO) mice, indicating in vivo the anti-proliferation effect of ALDH3A1 can be rescued by the presence of ALDH1A1. Interestingly, the hyper-proliferative epithelium of the DKO corneas display nearly complete loss of p53 expression, implying that p53 may be involved in ALDH3A1/1A1-mediated effect. In hTCEpi cells grown in high calcium concentration, mRNA levels of a panel of corneal differentiation markers were altered by ALDH3A1 expression and modulated by its enzyme activity. In conclusion, we show for the first time that: (i) ALDH3A1 decreases corneal epithelial proliferation through both non-enzymatic and enzymatic properties; (ii) ALDH1A1 contributes to the regulation of corneal cellular proliferation in vivo; and (iii) ALDH3A1 modulates corneal epithelial differentiation. Collectively, our studies indicate a functional role of ALDH3A1 in the

  2. In vivo kinetic approach reveals slow SOD1 turnover in the CNS

    PubMed Central

    Crisp, Matthew J.; Mawuenyega, Kwasi G.; Patterson, Bruce W.; Reddy, Naveen C.; Chott, Robert; Self, Wade K.; Weihl, Conrad C.; Jockel-Balsarotti, Jennifer; Varadhachary, Arun S.; Bucelli, Robert C.; Yarasheski, Kevin E.; Bateman, Randall J.; Miller, Timothy M.

    2015-01-01

    Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins. PMID:26075819

  3. Bovine-associated CNS species resist phagocytosis differently

    PubMed Central

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  4. Play Styles in Early Childhood: Continuity and Change as a Function of Sex.

    ERIC Educational Resources Information Center

    Fagot, Beverly I.

    The continuity of play styles of preschool children over a 1-year period was observed and related to teacher and peer reinforcement patterns influenced by sex stereotypes. Sixty-seven children, aged 18 months to 58 months, were observed in a natural setting using a behavior checklist consisting of 33 child behavior categories and 15 teacher- and…

  5. Play with online virtual pets as a method to improve mirror neuron and real world functioning in autistic children.

    PubMed

    Altschuler, Eric Lewin

    2008-01-01

    Autism is a severe disease with no known cause and no cure or treatment. Recently, ourselves and subsequently others found that so-called "mirror neurons" - neurons that respond not only when a person moves, but upon observation of movement in another - are dysfunctional in autistic children. Here I suggest an easy, simple, inexpensive and fun method to improve mirror neuron functioning in autistic children, increase appreciation in autistic children for the theory of mind and thinking of others, and most importantly hopefully to improve real world functioning: play with virtual online pets that are the "embodiment" of a stuffed animal the child has. Adoption and then care and play with online pets forces, in a fun way, one to think about the world through the eyes and needs of the pet. A simple method to test this play with online virtual pet therapy is described. PMID:17826922

  6. Histamine pharmacology and new CNS drug targets.

    PubMed

    Tiligada, Ekaterini; Kyriakidis, Konstantinos; Chazot, Paul L; Passani, M Beatrice

    2011-12-01

    During the last decade, the identification of a number of novel drug targets led to the development of promising new compounds which are currently under evaluation for their therapeutic prospective in CNS related disorders. Besides the established pleiotropic regulatory functions in the periphery, the interest in the potential homeostatic role of histamine in the brain was revived following the identification of H(3) and H(4) receptors some years ago. Complementing classical CNS pharmacology, the development of selective histamine receptor agonists, antagonists, and inverse agonists provides the lead for the potential exploitation of the histaminergic system in the treatment of brain pathologies. Although no CNS disease entity has been associated directly to brain histamine dysfunction until now, the H(3) receptor is recognized as a drug target for neuropathic pain, sleep-wake disorders, including narcolepsy, and cognitive impairment associated with attention deficit hyperactivity disorder, schizophrenia, Alzheimer's, or Parkinson's disease, while the first H(3) receptor ligands have already entered phase I-III clinical trials. Interestingly, the localization of the immunomodulatory H(4) receptor in the nervous system exposes attractive perspectives for the therapeutic exploitation of this new drug target in neuroimmunopharmacology. This review focuses on a concise presentation of the current "translational research" approach that exploits the latest advances in histamine pharmacology for the development of beneficial drug targets for the treatment of neuronal disorders, such as neuropathic pain, cognitive, and sleep-wake pathologies. Furthermore, the role of the brain histaminergic system(s) in neuroprotection and neuroimmunology/inflammation remains a challenging research area that is currently under consideration. PMID:22070192

  7. Engineering the CNS stem cell microenvironment

    PubMed Central

    Williams, Cicely A; Lavik, Erin B

    2010-01-01

    The loss of neural tissue underlies the symptomatology of several neurological insults of disparate etiology, including trauma, cerebrovascular insult and neurodegenerative disease. Restoration of damaged neural tissue through the use of exogenous or endogenous neural stem or progenitor cells is an enticing therapeutic option provided one can control their proliferation, migration and differentiation. Initial attempts at CNS tissue engineering relied on the intrinsic cellular properties of progenitor cells; however, it is now appreciated that the microenvironment surrounding the cells plays an indispensible role in regulating stem cell behavior. This article focuses on attempts to engineer the neural stem cell microenvironment by utilizing the major cellular components of the niche (endothelial cells, astrocytes and ependymal cells) and the extracellular matrix in which they are embedded. PMID:19903005

  8. CNS active O-linked glycopeptides

    PubMed Central

    Jones, Evan M.; Polt, Robin

    2015-01-01

    Naturally occurring glycopeptides and glycoproteins play important roles in biological processes. Glycosylation is one of the most common post-translational modifications in vivo. Glycopeptides are involved in cell signaling and sorting, providing cell surface markers for recognition. From the drug design and synthesis perspective, modification of a peptide through glycosylation results in increased bioavailability and bioactivity of glycopeptides in living systems with negligible toxicity of degradation products. Glycopeptide synthesis can be accomplished through incorporation of a glycosylated amino acid in solid phase peptide synthesis (SPPS) to form the desired peptide, or via incorporation of sugar-amino acid moieties. Additionally, research indicates that glycosylation increases penetration of the blood-brain barrier (BBB) by peptides, which may lead to novel therapeutics for neurological disorders. Recent applications of glycopeptides have focused on the in vivo central nervous system (CNS) effects after peripheral administration of centrally active peptides modified with various carbohydrates. PMID:26157795

  9. Two is Better than One, but Mine is Better than Ours: Preschoolers' Executive Function during Co-Play

    ERIC Educational Resources Information Center

    Qu, Li

    2011-01-01

    The current study investigated how playing with another individual may influence 3- and 4-year-olds' executive function in the Less-Is-More (LIM) task, where children point to the tray with the smaller amount of treats so as to obtain the larger amount of treats in the other tray. In Experiment 1, 35 Singaporean children were tested with a self…

  10. Mothers' Reports of Play Dates and Observation of School Playground Behavior of Children Having High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Frankel, Frederick D.; Gorospe, Clarissa M.; Chang, Ya-Chih; Sugar, Catherine A.

    2011-01-01

    Background: Children with high-functioning autism spectrum disorders (ASD) are generally included with typically developing peers at school. They have difficulties interacting with peers on the school playground. Previous literature suggests that having play dates in the home may be related to better peer acceptance at school. Methods: This study…

  11. The Role of Make-Believe Play in the Development of Executive Function: Status of Research and Future Directions

    ERIC Educational Resources Information Center

    Berk, Laura E.; Meyers, Adena B.

    2013-01-01

    The authors discuss the association between make-believe play and the development of executive-function (EF) skills in young children. Some forty years ago, Lev S. Vygotsky first proposed that make-believe fosters the development of symbolic thought and self-regulation. Since then, a small body of research has produced evidence of an association…

  12. Triptans and CNS side-effects: pharmacokinetic and metabolic mechanisms.

    PubMed

    Dodick, D W; Martin, V

    2004-06-01

    Triptans are the treatment of choice for acute migraine. While seemingly a homogenous group of drugs, results from a meta-analysis reveal significant differences in efficacy and tolerability among oral triptans. The incidence of drug-related central nervous system (CNS) side-effects with some triptans is as high as 15% and may be associated with functional impairment and reduced productivity. The occurrence of adverse events associated with triptans in general, and CNS side-effects in particular, may lead to a delay in initiating or even avoidance of an otherwise effective treatment. Potential explanations for differences among triptans in the incidence of CNS side-effects may relate to pharmacological and pharmacokinetic differences, including receptor binding, lipophilicity, and the presence of active metabolites. Of the triptans reviewed, at clinically relevant doses, almotriptan 12.5 mg, naratriptan 2.5 mg and sumatriptan 50 mg had the lowest incidence of CNS side-effects, while eletriptan 40 and 80 mg, rizatriptan 10 mg and zolmitriptan 2.5 and 5 mg had the highest incidence. The most likely explanations for the differences in CNS side-effects among triptans are the presence of active metabolites and high lipophilicity of the parent compound and active metabolites. Eletriptan, rizatriptan and zolmitriptan have active metabolites, while lipophilicity is lowest for almotriptan and sumatriptan. If CNS side-effects are a clinically relevant concern in the individual patient, use of a triptan with a low incidence of CNS side-effects may offer the potential for earlier initiation of treatment and more effective outcomes. PMID:15154851

  13. Two is better than one, but mine is better than ours: preschoolers' executive function during co-play.

    PubMed

    Qu, Li

    2011-03-01

    The current study investigated how playing with another individual may influence 3- and 4-year-olds' executive function in the Less-Is-More (LIM) task, where children point to the tray with the smaller amount of treats so as to obtain the larger amount of treats in the other tray. In Experiment 1, 35 Singaporean children were tested with a self version and a co-player-split version of the LIM task. Results showed that children appeared to be less impulsive when playing with a co-player than when playing individually. Experiment 2 further investigated how the intention of the co-player, collective profit oriented versus individual profit oriented, may influence children's executive function. In total, 96 children were tested with a self version, a co-player-share version, and a co-player-opponent version. Results showed that the co-playing facilitation effect appeared in only the co-player-opponent version. Together, the results of the current study showed that when preschoolers play with an individual who shares a common goal with them, they may become more efficient in executive control. PMID:20875646

  14. Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS

    PubMed Central

    Miwa, Hideki; Fukaya, Masahiro; Watabe, Ayako M; Watanabe, Masahiko; Manabe, Toshiya

    2008-01-01

    The NMDA-type glutamate receptor is a heteromeric complex composed of the NR1 and at least one of the NR2 subunits. Switching from the NR2B to the NR2A subunit is thought to underlie functional alteration of the NMDA receptor during synaptic maturation, and it is generally believed that it results in preferential localization of NR2A subunits on the synaptic site and that of NR2B subunits on the extracellular site in the mature brain. It has also been proposed that activation of the NR2A and NR2B subunits results in long-term potentiation (LTP) and long-term depression (LTD), respectively. Furthermore, recent reports suggest that synaptic and extrasynaptic receptors may have distinct roles in synaptic plasticity as well as in gene expression associated with neuronal death. Here, we have investigated whether NR2B subunit-containing receptors are present and functional at mature synapses in the lateral nucleus of the amygdala (LA) and the CA1 region of the hippocampus, comparing their properties between the two brain regions. We have found, in contrast to the above hypotheses, that the NR2B subunit significantly contributes to synaptic transmission as well as LTP induction. Furthermore, its contribution is greater in the LA than in the CA1 region, and biophysical properties of NMDA receptors and the NR2B/NR2A ratio are different between the two brain regions. These results indicate that NR2B subunit-containing NMDA receptors accumulate on the synaptic site and are responsible for the unique properties of synaptic function and plasticity in the amygdala. PMID:18372311

  15. Neurofibromatosis Type 1: Modeling CNS Dysfunction

    PubMed Central

    Gutmann, David H.; Parada, Luis F.; Silva, Alcino J.; Ratner, Nancy

    2012-01-01

    Neurofibromatosis type 1 (NF1) is the most common monogenic disorder in which individuals manifest central nervous system (CNS) abnormalities. Affected individuals develop glial neoplasms (optic gliomas, malignant astrocytomas) and neuronal dysfunction (learning disabilities, attention deficits). Nf1 genetically-engineered mouse models have revealed the molecular and cellular underpinnings of gliomagenesis, attention deficit, and learning problems with relevance to basic neurobiology. Using NF1 as a model system, these studies have revealed critical roles for the NF1 gene in non-neoplastic cells in the tumor microenvironment, the importance of brain region heterogeneity, novel mechanisms of glial growth regulation, the neurochemical bases for attention deficit and learning abnormalities, and new insights into neural stem cell function. Here we review recent studies, presented at a symposium at the 2012 Society for Neuroscience annual meeting, that highlight unexpected cell biology insights into RAS and cyclic AMP pathway effects on neural progenitor signaling, neuronal function, and oligodendrocyte lineage differentiation. PMID:23055477

  16. Myelin-Associated Inhibitors in Axonal Growth After CNS Injury

    PubMed Central

    Geoffroy, Cédric G.; Zheng, Binhai

    2014-01-01

    There are multiple barriers to axonal growth after CNS injury. Myelin-associated inhibitors represent one group of barriers extrinsic to the injured neurons. Nogo, MAG and OMgp are three prototypical myelin inhibitors that signal through multiple neuronal receptors to exert growth inhibition. Targeting myelin inhibition alone modulates the compensatory sprouting of uninjured axons but the effect on the regeneration of injured axons is limited. Meanwhile, modulating sprouting, a naturally occurring repair mechanism, may be a more attainable therapeutic goal for promoting functional repair after CNS injury in the near term. PMID:24608164

  17. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination.

    PubMed

    Keirstead, H S; Blakemore, W F

    1999-01-01

    remyelination found in Multiple Sclerosis (MS) lesions, evidenced by a rim of thin myelin sheaths around the edges of a lesion, or, in a minority of acute foci, throughout the entire lesion (Prineas et al., 1989; Raine et al., 1981). It must be said, however, that although remyelination is clearly a prerequisite to sustained functional recovery, other factors such as the state of the inflammatory response and degree of axonal survival within the demyelinated region contribute to the extent of functional recovery that may be possible following therapeutic intervention aimed at halting disease progression. It is not yet clear whether the progression of functional deficits in MS is primarily the result of an increasing load of demyelination, or axon loss, or a combination of the two processes. However, given the increasing recognition that myelin sheaths play a role in protecting axons from degeneration, the success or failure of remyelination has functional consequences for the patient. To understand why remyelination should fail in demyelinating disease and develop strategies to enhance remyelination requires an understanding of the biology of successful remyelination. Firstly, what is the origin of the remyelinating cell population in the adult CNS? Secondly, what are the dynamics of the cellular response of this population during demyelination and remyelination? And thirdly, what are the consequences to the tissue of an episode of demyelination? This review will focus on studies that address these issues, and discuss the implications of the results of these experiments for our understanding of MS and the development of therapeutic interventions aimed at enhancing remyelination. PMID:10635029

  18. Conditional Disruption of Calpain in the CNS Alters Dendrite Morphology, Impairs LTP, and Promotes Neuronal Survival following Injury

    PubMed Central

    Amini, Mandana; Ma, Chun-lei; Farazifard, Rasoul; Zhu, Guoqi; Zhang, Yi; Vanderluit, Jacqueline; Zoltewicz, Joanna Susie; Hage, Fadi; Savitt, Joseph M.; Lagace, Diane C.; Slack, Ruth S.; Beique, Jean-Claude; Baudry, Michel; Greer, Peter A.; Bergeron, Richard; Park, David S.

    2014-01-01

    Ubiquitous classical (typical) calpains, calpain-1 and calpain-2, are Ca+2-dependent cysteine proteases, which have been associated with numerous physiological and pathological cellular functions. However, a clear understanding of the role of calpains in the CNS has been hampered by the lack of appropriate deletion paradigms in the brain. In this study, we describe a unique model of conditional deletion of both calpain-1 and calpain-2 activities in mouse brain, which more definitively assesses the role of these ubiquitous proteases in brain development/function and pathology. Surprisingly, we show that these calpains are not critical for gross CNS development. However, calpain-1/calpain-2 loss leads to reduced dendritic branching complexity and spine density deficits associated with major deterioration in hippocampal long-term potentiation and spatial memory. Moreover, calpain-1/calpain-2-deficient neurons were significantly resistant to injury induced by excitotoxic stress or mitochondrial toxicity. Examination of downstream target showed that the conversion of the Cdk5 activator, p35, to pathogenic p25 form, occurred only in the presence of calpain and that it played a major role in calpain-mediated neuronal death. These findings unequivocally establish two central roles of calpain-1/calpain-2 in CNS function in plasticity and neuronal death. PMID:23536090

  19. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function.

    PubMed

    Lowery, Jason; Kuczmarski, Edward R; Herrmann, Harald; Goldman, Robert D

    2015-07-10

    Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. PMID:25957409

  20. Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function*

    PubMed Central

    Lowery, Jason; Kuczmarski, Edward R.; Herrmann, Harald; Goldman, Robert D.

    2015-01-01

    Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. PMID:25957409

  1. Dietary constituents are able to play a beneficial role in canine epidermal barrier function.

    PubMed

    Watson, Adrian L; Fray, Tim R; Bailey, Julie; Baker, Claire B; Beyer, Sally A; Markwell, Peter J

    2006-01-01

    Epidermal barrier function is a critical attribute of mammalian skin. The barrier is responsible for preventing skin-associated pathologies through controlling egress of water and preventing ingress of environmental agents. Maintaining the quality and integrity of the epidermal barrier is therefore of considerable importance. Structurally, the barrier is composed of two main parts, the corneocytes and the intercellular lamellar lipid. The epidermal lamellar lipid comprises mainly ceramides, sterols and fatty acids. Twenty-seven nutritional components were screened for their ability to upregulate epidermal lipid synthesis. Seven of the 27 nutritional components (pantothenate, choline, nicotinamide, histidine, proline, pyridoxine and inositol) were subsequently retested using an in vitro transepidermal diffusion experimental model, providing a functional assessment of barrier properties. Ultimately, the best performing five nutrients were fed to dogs at supplemented concentrations in a 12-week feeding study. Barrier function was measured using transepidermal water loss (TEWL). It was found that a combination of pantothenate, choline, nicotinamide, histidine and inositol, when fed at supplemented concentrations, was able to significantly reduce TEWL in dogs after 9 weeks. PMID:16364034

  2. Neural control of playing a reversed piano: empirical evidence for an unusual cortical organization of musical functions.

    PubMed

    Jäncke, Lutz; Baumann, Simon; Koeneke, Susan; Meyer, Martin; Laeng, Bruno; Peters, Michael; Lutz, Kai

    2006-03-20

    Using functional magnetic imaging techniques and neuropsychological tests, we studied a young male musician (C.S.) who performs at a professional level both on a regular piano keyboard and on a reverse keyboard (reversed right to left). The participant was left-handed, had left dominance for language but, remarkably, right dominance for the control of piano playing on both keyboards. With respect to music perception, C.S. showed left-sided activation dominance within the left superior temporal sulcus, which is normally associated with higher order auditory processing and right-sided activations in the secondary sensory cortex extending into the supramarginal gyrus. We suggest that C.S.'s pattern of functional asymmetry, characterized by audio-motor control using a right-sided network, could be a factor in his exceptional piano-playing ability on both the standard and reversed keyboard. PMID:16514374

  3. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    SciTech Connect

    Lu, Ying; Liu, Jin; Liu, Yang; Qin, Yaru; Luo, Qun; Wang, Quanli; Duan, Haifeng

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed that TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.

  4. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic.

    PubMed

    Vuillemenot, Brian R; Korte, Sven; Wright, Teresa L; Adams, Eric L; Boyd, Robert B; Butt, Mark T

    2016-07-01

    Many central nervous system (CNS) diseases are inadequately treated by systemically administered therapies due to the blood brain barrier (BBB), which prevents achieving adequate drug concentrations at sites of action. Due to the increasing prevalence of neurodegenerative diseases and the inability of most systemically administered therapies to cross the BBB, direct CNS delivery will likely play an increasing role in treatment. Administration of large molecules, cells, viral vectors, oligonucleotides, and other novel therapies directly to the CNS via the subarachnoid space, ventricular system, or parenchyma overcomes this obstacle. Clinical experience with direct CNS administration of small molecule therapies suggests that this approach may be efficacious for the treatment of neurodegenerative disorders using biological therapies. Risks of administration into the brain tissue or cerebrospinal fluid include local damage from implantation of the delivery system and/or administration of the therapeutic and reactions affecting the CNS. Preclinical safety studies on CNS administered compounds must differentiate between the effects of the test article, the delivery device, and/or the vehicle, and assess exacerbations of reactions due to combinations of effects. Animal models characterized for safety assessment of CNS administered therapeutics have enabled human trials, but interpretation can be challenging. This manuscript outlines the challenges of preclinical intrathecal/intracerebroventricular/intraparenchymal studies, evaluation of results, considerations for special endpoints, and translation of preclinical findings to enable first-in-human trials. Recommendations will be made based on the authors' collective experience with conducting these studies to enable clinical development of CNS-administered biologics. PMID:27354708

  5. Animal models of CNS disorders.

    PubMed

    McGonigle, Paul

    2014-01-01

    There is intense interest in the development and application of animal models of CNS disorders to explore pathology and molecular mechanisms, identify potential biomarkers, and to assess the therapeutic utility, estimate safety margins and establish pharmacodynamic and pharmacokinetic parameters of new chemical entities (NCEs). This is a daunting undertaking, due to the complex and heterogeneous nature of these disorders, the subjective and sometimes contradictory nature of the clinical endpoints and the paucity of information regarding underlying molecular mechanisms. Historically, these models have been invaluable in the discovery of therapeutics for a range of disorders including anxiety, depression, schizophrenia, and Parkinson's disease. Recently, however, they have been increasingly criticized in the wake of numerous clinical trial failures of NCEs with promising preclinical profiles. These failures have resulted from a number of factors including inherent limitations of the models, over-interpretation of preclinical results and the complex nature of clinical trials for CNS disorders. This review discusses the rationale, strengths, weaknesses and predictive validity of the most commonly used models for psychiatric, neurodegenerative and neurological disorders as well as critical factors that affect the variability and reproducibility of these models. It also addresses how progress in molecular genetics and the development of transgenic animals has fundamentally changed the approach to neurodegenerative disorder research. To date, transgenic animal models\\have not been the panacea for drug discovery that many had hoped for. However continual refinement of these models is leading to steady progress with the promise of eventual therapeutic breakthroughs. PMID:23811310

  6. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis

    PubMed Central

    Schuck, Theresa; Wheeler, Jeanna M.; Robinson, Linda C.; Trojanowski, John Q.; Lee, Virginia M. Y.; Schellenberg, Gerard D.

    2010-01-01

    Abnormal TDP-43 aggregation is a prominent feature in the neuropathology of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Mutations in TARDBP, the gene encoding TDP-43, cause some cases of ALS. The normal function of TDP-43 remains incompletely understood. To better understand TDP-43 biology, we generated mutant mice carrying a genetrap disruption of Tardbp. Mice homozygous for loss of TDP-43 are not viable. TDP-43 deficient embryos die about day 7.5 of embryonic development thereby demonstrating that TDP-43 protein is essential for normal prenatal development and survival. However, heterozygous Tardbp mutant mice exhibit signs of motor disturbance and muscle weakness. Compared with wild type control littermates, Tardbp+/− animals have significantly decreased forelimb grip strength and display deficits in a standard inverted grid test despite no evidence of pathologic changes in motor neurons. Thus, TDP-43 is essential for viability, and mild reduction in TDP-43 function is sufficient to cause motor deficits without degeneration of motor neurons. PMID:20198480

  7. AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations.

    PubMed

    Basco, Davide; Blaauw, Bert; Pisani, Francesco; Sparaneo, Angelo; Nicchia, Grazia Paola; Mola, Maria Grazia; Reggiani, Carlo; Svelto, Maria; Frigeri, Antonio

    2013-01-01

    In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise. PMID:23520529

  8. Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA.

    PubMed

    Pennella, Mario A; Arunkumar, Alphonse I; Giedroc, David P

    2006-03-10

    Recent studies on metalloregulatory proteins suggest that coordination number/geometry and metal ion availability in a host cytosol are key determinants for biological specificity. Here, we investigate the contribution that individual metal ligands of the alpha5 sensing site of Staphylococcus aureus CzrA (Asp84, His86, His97', and His100') make to in vitro metal ion binding affinity, coordination geometry, and allosteric negative regulation of DNA operator/promoter region binding. All ligand substitution mutants exhibit significantly reduced metal ion binding affinity (K(Me)) by > or =10(3) M(-1). Substitutions of Asp84 and His97 give rise to non-native coordination geometries upon metal binding and are non-functional in allosteric coupling of metal and DNA binding (DeltaG(coupling) approximately 0 kcal mol(-1)). In contrast, His86 and His100 could be readily substituted with potentially liganding (Asp, Glu) and poorly liganding (Asn, Gln) residues with significant native-like tetrahedral metal coordination geometry retained in these mutants, leading to strong functional coupling (DeltaG(coupling) > or = +3.0 kcal mol(-1)). 1H-(15)N heteronuclear single quantum coherence (HSQC) spectra of wild-type and mutant CzrAs reveal that all H86 and H100 substitution mutants undergo 4 degrees structural switching on binding Zn(II), while D84N, H97N and H97D CzrAs do not. Thus, only those variant CzrAs that retain some tetrahedral coordination geometry characteristic of wild-type CzrA upon metal binding are capable of driving 4 degrees structural conformational changes linked to allosteric regulation of DNA binding in vitro, irrespective of the magnitude of K(Me). PMID:16406068

  9. Dissection of larval CNS in Drosophila melanogaster.

    PubMed

    Hafer, Nathaniel; Schedl, Paul

    2006-12-01

    The central nervous system (CNS) of Drosophila larvae is complex and poorly understood. One way to investigate the CNS is to use immunohistochemistry to examine the expression of various novel and marker proteins. Staining of whole larvae is impractical because the tough cuticle prevents antibodies from penetrating inside the body cavity. In order to stain these tissues it is necessary to dissect the animal prior to fixing and staining. In this article we demonstrate how to dissect Drosophila larvae without damaging the CNS. Begin by tearing the larva in half with a pair of fine forceps, and then turn the cuticle "inside-out" to expose the CNS. If the dissection is performed carefully the CNS will remain attached to the cuticle. We usually keep the CNS attached to the cuticle throughout the fixation and staining steps, and only completely remove the CNS from the cuticle just prior to mounting the samples on glass slides. We also show some representative images of a larval CNS stained with Eve, a transcription factor expressed in a subset of neurons in the CNS. The article concludes with a discussion of some of the practical uses of this technique and the potential difficulties that may arise. PMID:18704179

  10. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM

    PubMed Central

    Zhu, Yuwen; Yao, Sheng; Augustine, Mathew M.; Xu, Haiying; Wang, Jun; Sun, Jingwei; Broadwater, Megan; Ruff, William; Luo, Liqun; Zhu, Gefeng; Tamada, Koji; Chen, Lieping

    2016-01-01

    The central nervous system (CNS) is an immune-privileged organ with the capacity to prevent excessive inflammation. Aside from the blood-brain barrier, active immunosuppressive mechanisms remain largely unknown. We report that a neuron-specific molecule, synaptic adhesion-like molecule 5 (SALM5), is a crucial contributor to CNS immune privilege. We found that SALM5 suppressed lipopolysaccharide-induced inflammatory responses in the CNS and that a SALM-specific monoclonal antibody promoted inflammation in the CNS, and thereby aggravated clinical symptoms of mouse experimental autoimmune encephalomyelitis. In addition, we identified herpes virus entry mediator as a functional receptor that mediates SALM5’s suppressive function. Our findings reveal a molecular link between the neuronal system and the immune system, and provide potential therapeutic targets for the control of CNS diseases. PMID:27152329

  11. E2F3 plays an essential role in cardiac development and function

    PubMed Central

    King, Jennifer C.; Moskowitz, Ivan P. G.; Burgon, Patrick G.; Ahmad, Ferhaan; Stone, James R.; Seidman, Jonathan G.; Lees, Jacqueline A.

    2009-01-01

    The E2F transcription factors are key downstream targets of the retinoblastoma protein tumor suppressor. They are known to regulate the expression of genes that control fundamental biological processes including cellular proliferation, apoptosis and differentiation. However, considerable questions remain about the precise roles of the individual E2F family members. This study shows that E2F3 is essential for normal cardiac development. E2F3-loss impairs the proliferative capacity of the embryonic myocardium and most E2f3−/− mice die in utero or perinatally with hypoplastic ventricular walls and/or severe atrial and ventricular septal defects. A small fraction of the E2f3−/− neonates have hearts that appear grossly normal and they initially survive. However, these animals develop ultrastructural defects in the cardiac muscle and ultimately die as a result of congestive heart failure. These data demonstrate a clear link between E2F3’s role in the proliferative capacity of the myocardium and cardiac function during both development and adulthood. PMID:19029823

  12. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies. PMID:25311587

  13. Expression of the small heat shock protein family in the mouse CNS: differential anatomical and biochemical compartmentalization.

    PubMed

    Quraishe, S; Asuni, A; Boelens, W C; O'Connor, V; Wyttenbach, A

    2008-05-01

    The small heat shock proteins (sHsps) are a family of molecular chaperones defined by an alpha-crystallin domain that is important for sHsps oligomerization and chaperone activity. sHsps perform many physiological functions including the maintenance of the cellular cytoskeleton, the regulation of protein aggregation and modulate cell survival in a number of cell types including glial and neuronal cells. Many of these functions have been implicated in disease processes in the CNS and indeed sHsps are considered targets for disease therapy. Despite this, there is no study that systematically and comparatively characterized sHsps expression in the CNS. In the present study we have analyzed the expression of this gene family in the mouse brain by reverse-transcriptase polymerase chain reaction (RT-PCR), in situ hybridization and Western blotting. Gene expression analysis of the 10 known members of mammalian sHsps confirms the presence of 5 sHsps in the CNS. A distinct white matter specific expression pattern for HspB5 and overlapping expression of HspB1 and HspB8 in the lateral and dorsal ventricles of the brain is observed. We confirm protein expression of HspB1, HspB5, HspB6 and HspB8 in the brain. Further subcellular fractionation of brain and synaptosomes details a distinct subcompartment-specific association and detergent solubility of sHsps. This biochemical signature is indicative of an association with synaptic and other neural specializations. This observation will help one understand the functional role played by sHsps during physiology and pathology in the CNS. PMID:18384969

  14. Functional Connectivity Is Altered in Concussed Adolescent Athletes Despite Medical Clearance to Return to Play: A Preliminary Report.

    PubMed

    Newsome, Mary R; Li, Xiaoqi; Lin, Xiaodi; Wilde, Elisabeth A; Ott, Summer; Biekman, Brian; Hunter, Jill V; Dash, Pramod K; Taylor, Brian A; Levin, Harvey S

    2016-01-01

    Recovery following sports-related concussion (SRC) is slower and often more complicated in young adolescent athletes than in collegiate players. Further, the clinical decision to return to play is currently based on symptoms and cognitive performance without direct knowledge of brain function. We tested the hypothesis that brain functional connectivity (FC) would be aberrant in recently concussed, asymptomatic athletes who had been cleared to return to play. A seed-based FC analysis measured the FC of the default mode network (DMN) (seeds = anterior cingulate cortex, posterior cingulate cortex (PCC), right lateral parietal cortex, and left lateral parietal cortex) 30 days after SRC in asymptomatic high school athletes cleared to return to play (n = 13) and was compared to the FC of high school athletes with orthopedic injury (OI) (n = 13). The SRC group demonstrated greater FC than the OI group between the PCC and the ventral lateral prefrontal cortex, as well as between the right lateral parietal cortex and lateral temporal cortex (with regions both outside of and within the DMN). Additionally, the OI group demonstrated greater FC than the SRC group between right lateral parietal cortex and supramarginal gyrus. When relating the FC results to verbal memory performance approximately 1 week and 1 month after injury, significantly different between-group relations were found for the posterior cingulate and right lateral parietal cortex seeds. However, the groups did not differ in verbal memory at 1 month. We suggest that changes in FC are apparent 1-month post-SRC despite resolution of post-concussion symptoms and recovery of cognitive performance in adolescent athletes cleared to return to play. PMID:27504104

  15. Functional Connectivity Is Altered in Concussed Adolescent Athletes Despite Medical Clearance to Return to Play: A Preliminary Report

    PubMed Central

    Newsome, Mary R.; Li, Xiaoqi; Lin, Xiaodi; Wilde, Elisabeth A.; Ott, Summer; Biekman, Brian; Hunter, Jill V.; Dash, Pramod K.; Taylor, Brian A.; Levin, Harvey S.

    2016-01-01

    Recovery following sports-related concussion (SRC) is slower and often more complicated in young adolescent athletes than in collegiate players. Further, the clinical decision to return to play is currently based on symptoms and cognitive performance without direct knowledge of brain function. We tested the hypothesis that brain functional connectivity (FC) would be aberrant in recently concussed, asymptomatic athletes who had been cleared to return to play. A seed-based FC analysis measured the FC of the default mode network (DMN) (seeds = anterior cingulate cortex, posterior cingulate cortex (PCC), right lateral parietal cortex, and left lateral parietal cortex) 30 days after SRC in asymptomatic high school athletes cleared to return to play (n = 13) and was compared to the FC of high school athletes with orthopedic injury (OI) (n = 13). The SRC group demonstrated greater FC than the OI group between the PCC and the ventral lateral prefrontal cortex, as well as between the right lateral parietal cortex and lateral temporal cortex (with regions both outside of and within the DMN). Additionally, the OI group demonstrated greater FC than the SRC group between right lateral parietal cortex and supramarginal gyrus. When relating the FC results to verbal memory performance approximately 1 week and 1 month after injury, significantly different between-group relations were found for the posterior cingulate and right lateral parietal cortex seeds. However, the groups did not differ in verbal memory at 1 month. We suggest that changes in FC are apparent 1-month post-SRC despite resolution of post-concussion symptoms and recovery of cognitive performance in adolescent athletes cleared to return to play. PMID:27504104

  16. Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity

    PubMed Central

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders. PMID:22828751

  17. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  18. CNS myelination and PLP gene dosage.

    PubMed

    Woodward, K; Malcolm, S

    2001-08-01

    The phenomenon of gene dosage effects demonstrates that the mechanisms of some genetic diseases are best recognised at the genomic level. Classical gene mutation screening approaches utilising PCR are unsuccessful in unravelling the basis of disease because the gene sequence is unaltered and only the copy number is different. Techniques for detecting DNA dosage are required. Examples of haploinsufficiency and gene deletions are well documented, but increased gene dosage is also an important genetic mechanism in disorders involving myelin proteins in the central (CNS) and peripheral nervous system (PNS). Here we review the dosage effects and mutations of the proteolipid protein (PLP) gene that causes Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia Type 2 (SPG2) disorders of CNS myelination. Similarities are drawn with the peripheral neuropathies Charcot-Marie-Tooth disease Type 1 (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) that are also caused by dosage effects and mutations in a single myelin protein gene (peripheral myelin protein 22, PMP-22). We compare the different mutational mechanisms in man and analogous mouse models that suggest a function for PLP beyond its structural role in myelin. We focus on the increased dosage of the PLP gene that is the major cause of PMD and results from a submicroscopic duplication of Xq22. Other clinical phenotypes may arise from gene dosage imbalance with the potential effect of submicroscopic duplications and deletions of the genome being underestimated. Genome sequencing may identify intrinsic structural properties of the DNA with greater susceptibility to these rearrangements and thereby reflect structural changes in the genome. PMID:11535114

  19. Metformin Plays a Dual Role in MIN6 Pancreatic β Cell Function through AMPK-dependent Autophagy

    PubMed Central

    Jiang, Yingling; Huang, Wei; Wang, Jing; Xu, Zhipeng; He, Jieyu; Lin, Xiaohong; Zhou, Zhiguang; Zhang, Jingjing

    2014-01-01

    Metformin improves insulin sensitivity in insulin sensitive tissues such as liver, muscle and fat. However, the functional roles and the underlying mechanism of metformin action in pancreatic β cells remain elusive. Here we show that, under normal growth condition, metformin suppresses MIN6 β cell proliferation and promotes apoptosis via an AMPK-dependent and autophagy-mediated mechanism. On the other hand, metformin protects MIN6 cells against palmitic acid (PA)-induced apoptosis. Our findings indicate that metformin plays a dual role in β cell survival and overdose of this anti-diabetic drug itself may lead to potential β cell toxicity. PMID:24644425

  20. Current approaches to enhance CNS delivery of drugs across the brain barriers

    PubMed Central

    Lu, Cui-Tao; Zhao, Ying-Zheng; Wong, Ho Lun; Cai, Jun; Peng, Lei; Tian, Xin-Qiao

    2014-01-01

    Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. PMID:24872687

  1. Outdoor Play and Play Equipment.

    ERIC Educational Resources Information Center

    Naylor, Heather

    1985-01-01

    Discusses aspects of the play environment and its effect on children's play behavior. Indoor and outdoor play spaces are considered along with factors affecting the use of outdoor environments for play. Children's preferences for different outdoor play environments and for various play structures are explored. Guides for choosing play equipment…

  2. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4.

    PubMed

    Walsh, James T; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-02-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  3. CaMKIIβ regulates oligodendrocyte maturation and CNS myelination.

    PubMed

    Waggener, Christopher T; Dupree, Jeffrey L; Elgersma, Ype; Fuss, Babette

    2013-06-19

    CNS myelination and the maturation of the myelinating cells of the CNS, namely oligodendrocytes, are thought to be regulated by molecular mechanisms controlling the actin cytoskeleton. However, the exact nature of these mechanisms is currently only poorly understood. Here we assessed the role of calcium/calmodulin-dependent kinase type II (CaMKII), in particular CaMKIIβ, in oligodendrocyte maturation and CNS myelination. Using in vitro culture studies, our data demonstrate that CaMKIIβ is critical for the proper morphological maturation of differentiating oligodendrocytes, an aspect of oligodendrocyte maturation that is mediated to a large extent by changes in the cellular cytoskeleton. Furthermore, our data provide evidence for an actin-cytoskeleton-stabilizing role of CaMKIIβ in differentiating oligodendrocytes. Using Camk2b knock-out and Camk2b(A303R) mutant mice, our data revealed an in vivo functional role of CaMKIIβ in regulating myelin thickness that may be mediated by a non-kinase-catalytic activity. Our data point toward a critical role of CaMKIIβ in regulating oligodendrocyte maturation and CNS myelination via an actin-cytoskeleton-regulatory mechanism. PMID:23785157

  4. CNS development under altered gravity

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, E.

    The future of space exploration depends on a solid understanding of the developmental process under microgravity. In furtherance of this goal, the present studies assessed the impact of altered gravity on the developing rat cerebellum. Specifically, the expression of selected cerebellar proteins and corresponding genes was compared in rat neonates exposed to hypergravity (1.5G) from embryonic day (E) 11 to postnatal day (P) 6 and P9 against their expression in rat neonates developing under normal gravity. Cerebellar proteins were analyzed by quantitative western blots of cerebellar homogenates; RNA analysis was performed in the same samples using ribonuclease protection assay (RPA). Densitometric analysis of western blots suggested 21% to 31% reduction in neuronal cell adhesion molecule (NCAM) and 31% to 45% reduction in glial acidic protein (GFAP). RPA results suggested a small reduction (<10%) in NCAM mRNA and a moderate reduction (<25%) in GFAP mRNA. These data indicate that the expression of selected cerebellar proteins may be affected at both the transcriptional and translational/postranslational level. Furthermore, these results suggest that changes in expression of selected genes may underlie hypergravity's effect on the developing CNS. (Supported by NASA grant NCC2-1042 and BWH Psychiatry Fund).

  5. Clitoria ternatea and the CNS.

    PubMed

    Jain, Neeti N; Ohal, C C; Shroff, S K; Bhutada, R H; Somani, R S; Kasture, V S; Kasture, S B

    2003-06-01

    The present investigation was aimed at determining the spectrum of activity of the methanolic extract of Clitoria ternatea (CT) on the CNS. The CT was studied for its effect on cognitive behavior, anxiety, depression, stress and convulsions induced by pentylenetetrazol (PTZ) and maximum electroshock (MES). To explain these effects, the effect of CT was also studied on behavior mediated by dopamine (DA), noradrenaline, serotonin and acetylcholine. The extract decreased time required to occupy the central platform (transfer latency, TL) in the elevated plus maze (EPM) and increased discrimination index in the object recognition test, indicating nootropic activity. The extract was more active in the object recognition test than in the EPM. The extract increased occupancy in the open arm of EPM by 160% and in the lit box of the light/dark exploration test by 157%, indicating its anxiolytic activity. It decreased the duration of immobility in tail suspension test (suggesting its antidepressant activity), reduced stress-induced ulcers and reduced the convulsing action of PTZ and MES. The extract exhibited tendency to reduce the intensity of behavior mediated via serotonin and acetylcholine. The effect on DA- and noradrenaline-mediated behavior was not significant. In conclusion, the extract was found to possess nootropic, anxiolytic, antidepressant, anticonvulsant and antistress activity. Further studies are necessary to isolate the active principle responsible for the activities and to understand its mode of action. PMID:12895670

  6. The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis.

    PubMed Central

    Parisi, M; Lin, H

    1999-01-01

    The pumilio (pum) gene plays an essential role in embryonic patterning and germline stem cell (GSC) maintenance during oogenesis in Drosophila. Here we report on a phenotypic analysis using pum(ovarette) mutations, which reveals multiple functions of pum in primordial germ cell proliferation, larval ovary formation, GSC division, and subsequent oogenic processes, as well as in oviposition. Specifically, by inducing pum(-) GSC clones at the onset of oogenesis, we show that pum is directly involved in GSC division, a function that is distinct from its requirement in primordial germ cells. Furthermore, we show that pum encodes 156- and 130-kD proteins, both of which are functional isoforms. Among pum(ovarette) mutations, pum(1688) specifically eliminates the 156-kD isoform but not the 130-kD isoform, while pum(2003) and pum(4277) specifically affect the 130-kD isoform but not the 156-kD isoform. Normal doses of both isoforms are required for the zygotic function of pum, yet either isoform alone at a normal dose is sufficient for the maternal effect function of pum. A pum cDNA transgene that contains the known open reading frame encodes only the 156-kD isoform and rescues the phenotype of both pum(1688) and pum(2003) mutants. These observations suggest that the 156- and 130-kD isoforms can compensate for each other's function in a dosage-dependent manner. Finally, we present molecular evidence suggesting that the two PUM isoforms share some of their primary structures. PMID:10471709

  7. Astrocytic TIMP-1 Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination

    PubMed Central

    Moore, Craig S.; Milner, Richard; Nishiyama, Akiko; Frausto, Ricardo F.; Serwanski, David R.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Miller, Robert H.; Crocker, Stephen J.

    2011-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an extracellular protein and endogenous regulator of matrix metalloproteinases (MMPs) secreted by astrocytes in response to CNS myelin injury. We have previously reported that adult TIMP-1KO mice exhibit poor myelin repair following demyelinating injury. This observation led us to hypothesize a role for TIMP-1 in oligodendrogenesis and CNS myelination. Herein, we demonstrate that compact myelin formation is significantly delayed in TIMP-1KO mice which coincided with dramatically reduced numbers of white matter astrocytes in the developing CNS. Analysis of differentiation in CNS progenitor cells (neurosphere) cultures from TIMP-1KO mice revealed a specific deficit of NG2+ oligodendrocyte progenitor cells. Application of rmTIMP-1 to TIMP-1KO neurosphere cultures evoked a dose-dependent increase in NG2+ cell numbers, while treatment with GM6001, a potent broad spectrum MMP inhibitor did not. Similarly, administration of recombinant murine TIMP-1 (rmTIMP-1) to A2B5+ immunopanned oligodendrocyte progenitors significantly increased the number of differentiated O1+ oligodendrocytes, while antisera to TIMP-1 reduced oligodendrocyte numbers. We also determined that A2B5+ oligodendrocyte progenitors grown in conditioned media derived from TIMP-1KO primary glial cultures resulted in reduced differentiation of mature O1+ oligodendrocytes. Finally, we report that addition of rmTIMP-1 to primary glial cultures resulted in a dose-dependent proliferative response of astrocytes. Together, these findings describe a previously uncharacterized role for TIMP-1 in the regulation of oligodendrocytes and astrocytes during development and provide a novel function for TIMP-1 on myelination in the developing CNS. PMID:21508247

  8. Playful Gaming.

    ERIC Educational Resources Information Center

    Makedon, Alexander

    A philosophical analysis of play and games is undertaken in this paper. Playful gaming, which is shown to be a synthesis of play and games, is utilized as a category for undertaking the examination of play and games. The significance of playful gaming to education is demonstrated through analyses of Plato's, Dewey's, Sartre's, and Marcuse's…

  9. New Play.

    ERIC Educational Resources Information Center

    Lersten, Kenneth C.

    There have been many theories and hypotheses about play, one of which is the equation of play with "transcendence." Play may have the ingredients to allow us to transcend and, for a moment, remythologize life. There have been recent authors who have given play the status of theology, indicating that play contains elements also found in religion.…

  10. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  11. Adjacent proline residues in the inhibitory domain of the Oct-2 transcription factor play distinct functional roles.

    PubMed Central

    Liu, Y Z; Lee, I K; Locke, I; Dawson, S J; Latchman, D S

    1998-01-01

    A 40 amino acid region of Oct-2 from amino acids 142 to 181 functions as an active repressor domain capable of inhibiting both basal activity and activation of promoters containing a TATA box, but not of those that contain an initiator element. Based on our observation that the equivalent region of the closely related Oct-1 factor does not act as an inhibitory domain, we have mutated specific residues in the Oct-2 domain in an attempt to probe their importance in repressor domain function. Although mutations of several residues have no or minimal effect, mutation of proline 175 to arginine abolishes the ability to inhibit both basal and activated transcription. In contrast, mutation of proline 174 to arginine confers upon the domain the ability to repress activation of an initiator-containing promoter by acidic activation domains, and also suppresses the effect of the proline 175 mutation. Hence, adjacent proline residues play key roles in the functioning of the inhibitory domain and in limiting its specificity to TATA-box-containing promoters. PMID:9580701

  12. The influence of playing a non-reward game on motor ability and executive function in Parkinson's disease.

    PubMed

    Araújo Lima, Alisson Menezes; Cordeiro Hirata, Fabiana de Campos; Sales de Bruin, Gabriela; Salani Mota, Rosa Maria; Bruin, Veralice Meireles Sales de

    2012-01-01

    The aim of this study is to evaluate the acute effect of playing games on executive function and motor ability in Parkinson's disease (PD). Consecutive cases with PD were studied with the Unified Parkinson Disease Rating Scale (UPDRS), Mini-Mental State examination (MMSE), Beck Depression Inventory (BDI), Stroop test, finger tapping and 14-meter walk test. After randomization, patients performed a game of dominoes and were tested before and after experiment being further categorized as control, winners or non-winners. Forty patients, 27 male (67.5%), aged 48 to 84 years (63.2 ± 8.5), Hoehn & Yahr I to III were included. Twenty-eight (70%) presented depressive symptoms (BDI > 10). Groups (Control N = 13; Winners = 14 and Non-winners = 13) were not different regarding age, disease duration, age at onset, BMI, MMSE scores, depressive symptoms, levodopa dose, and previous practice of games. Winners presented significantly better results on executive function (Stroop test, p = 0.002) and on motor activity (Finger tapping, p = 0.01). Non-winners showed a trend of better performance in the 14-meter-walk test. This study shows that the practice of a non-reward game acutely improved memory and motor skills in PD. Our results suggest a role for the reward system in the modulation of the dopaminergic function of the basal ganglia in these patients. PMID:22530266

  13. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    SciTech Connect

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  14. Treatment Option Overview (Primary CNS Lymphoma)

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  15. Treatment Options for Primary CNS Lymphoma

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  16. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  17. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    PubMed Central

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187

  18. CNS toxoplasmosis in an immunocompetent individual

    PubMed Central

    Ramachandran, Rajoo; Radhan, Prabhu; Anand, Rajamani; Subramanian, Ilanchezhian; Santosham, Roy; Sai, Venakata

    2015-01-01

    Toxoplasmosis is a serious and life-threatening disease in humans with a high prevalence in immunocompromised persons. The disease has a wide spectrum, depending on the immune status of the person. A CNS manifestation of toxoplasmosis in an immunocompetent person is very rare and often undetected. Our case of CNS toxoplasmosis in an immunocompetent person emphasizes the radiological diagnosis, which was further confirmed by advanced microbiology technique. PMID:27141248

  19. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery.

    PubMed

    Ghose, Arup K; Herbertz, Torsten; Hudkins, Robert L; Dorsey, Bruce D; Mallamo, John P

    2012-01-18

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  20. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery

    PubMed Central

    2011-01-01

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  1. PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53

    PubMed Central

    Yoon, Cheol-Hee; Lee, Eun-Soo; Lim, Dae-Seog; Bae, Yong-Soo

    2009-01-01

    Type I IFN-induced expression of dsRNA-activated protein kinase (PKR) during viral infection is a well-established antiviral mechanism. However, little is known about the expression of PKR in the context of p53 and about PKR involvement in p53-mediated tumor suppression. Here, we report that PKR is a p53 target gene and plays an important role in the tumor-suppressor function of p53. Activation of p53 by genotoxic stress induces a significant level of PKR expression by acting on the newly identified cis-acting element (ISRE), which is separated from the IFN-stimulated responsive element on the PKR promoter, resulting in translational inhibition and cell apoptosis. The genotoxin-mediated inhibition of translation is associated with the p53/PKR/elF2a (eukaryotic initiation factor-2α) pathway. To some extent, p53 activation induced by DNA damage facilitates cell apoptosis by activating PKR. PKR-knockdown human colon cancer cells grew rapidly in nude mice and proved resistant to anti-cancer drugs. These data indicate that p53-mediated tumor suppression can be attributed at least in part to the biological functions of PKR induced by p53 in genotoxic conditions. PMID:19416861

  2. Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses.

    PubMed

    Nagai, Jun; Owada, Kazuki; Kitamura, Yoshiteru; Goshima, Yoshio; Ohshima, Toshio

    2016-03-01

    Central nervous system (CNS) regeneration is restricted by both the lack of neurotrophic responses and the presence of inhibitory factors. As of yet, a common mediator of these two pathways has not been identified. Microtubule dynamics is responsible for several key processes after CNS injuries: intracellular trafficking of receptors for neurotrophic factors, axonal retraction by inhibitory factors, and secondary tissue damages by inflammation and scarring. Kinases regulating microtubule organization, such as Cdk5 or GSK3β, may play pivotal roles during CNS recovery, but the molecular mechanisms remain to be elucidated. Collapsin response mediator protein 2 (CRMP2) stabilizes cytoskeletal polymerization, while CRMP2 phosphorylation by Cdk5 and GSK3β loses its affinity for cytoskeleton proteins, leading to the inhibition of axonal growth. Here, we characterized CRMP2 phosphorylation as the first crucial factor regulating neurotrophic and inhibitory responses after spinal cord injury (SCI). We found that pharmacological inhibition of GSK3β enhanced brain-derived neurotrophic factor (BDNF)-induced axonal growth response in cultured dorsal root ganglion (DRG) neurons. DRG neurons from CRMP2 knock-in (Crmp2KI/KI) mice, where CRMP2 phosphorylation was eliminated, showed elevated sensitivity to BDNF as well. Additionally, cultured Crmp2KI/KI neurons exhibited suppressed axonal growth inhibition by chondroitin sulfate proteoglycan (CSPG). These data suggest a couple of new molecular insights: the BDNF/GSK3β/CRMP2 and CSPG/GSK3β/CRMP2 pathways. Next, we tested the significance of CRMP2 phosphorylation after CNS injury in vivo. The phosphorylation level of CRMP2 was enhanced in the injured spinal cord. Crmp2KI/KI mice exhibited prominent recovery of locomotive and nociceptive functions after SCI, which correlated with the enhanced axonal growth of the motor and sensory neurons. Neuroprotective effects against SCI, such as microtubule stabilization, reduced inflammation

  3. A Philosophy for CNS Radiotracer Design

    PubMed Central

    2015-01-01

    Conspectus Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods

  4. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.

    PubMed

    Li, Hedong; Chen, Gong

    2016-08-17

    Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair. PMID:27537482

  5. Clinical Potential of Neurosteroids for CNS Disorders.

    PubMed

    Reddy, Doodipala Samba; Estes, William A

    2016-07-01

    Neurosteroids are key endogenous molecules in the brain that affect many neural functions. We describe here recent advances in US National Institutes of Health (NIH)-sponsored and other clinical studies of neurosteroids for CNS disorders. The neuronal GABA-A receptor chloride channel is one of the prime molecular targets of neurosteroids. Allopregnanolone-like neurosteroids are potent allosteric agonists as well as direct activators of both synaptic and extrasynaptic GABA-A receptors. Hence, neurosteroids can maximally enhance synaptic phasic and extrasynaptic tonic inhibition. The resulting chloride current conductance generates a form of shunting inhibition that controls network excitability, seizures, and behavior. Such mechanisms of neurosteroids are providing innovative therapies for epilepsy, status epilepticus (SE), traumatic brain injury (TBI), fragile X syndrome (FXS), and chemical neurotoxicity. The neurosteroid field has entered a new era, and many compounds have reached advanced clinical trials. Synthetic analogs have several advantages over natural neurosteroids for clinical use because of their superior bioavailability and safety trends. PMID:27156439

  6. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

    SciTech Connect

    Shaffer, M.M.; Moody, T.W.

    1986-03-01

    Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

  7. Differential Stability of PNS and CNS Nodal Complexes When Neuronal Neurofascin Is Lost

    PubMed Central

    Desmazieres, Anne; Zonta, Barbara; Zhang, Ao; Wu, Lai-Man N.; Sherman, Diane L.

    2014-01-01

    Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. βIV Spectrin, ankyrin G, and, to a lesser extent, the β1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node. PMID:24719087

  8. Differential stability of PNS and CNS nodal complexes when neuronal neurofascin is lost.

    PubMed

    Desmazieres, Anne; Zonta, Barbara; Zhang, Ao; Wu, Lai-Man N; Sherman, Diane L; Brophy, Peter J

    2014-04-01

    Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. βIV Spectrin, ankyrin G, and, to a lesser extent, the β1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node. PMID:24719087

  9. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease

    PubMed Central

    2014-01-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases. PMID:25558415

  10. Nitric oxide plays a role in the regulation of adrenal blood flow and adrenocorticomedullary functions in the llama fetus

    PubMed Central

    Riquelme, Raquel A; Sánchez, Gina; Liberona, Leonel; Sanhueza, Emilia M; Giussani, Dino A; Blanco, Carlos E; Hanson, Mark A; Llanos, Aníbal J

    2002-01-01

    The hypothesis that nitric oxide plays a key role in the regulation of adrenal blood flow and plasma concentrations of cortisol and catecholamines under basal and hypoxaemic conditions in the llama fetus was tested. At 0.6-0.8 of gestation, 11 llama fetuses were surgically prepared for long-term recording under anaesthesia with vascular and amniotic catheters. Following recovery all fetuses underwent an experimental protocol based on 1 h of normoxaemia, 1 h of hypoxaemia and 1 h of recovery. In nine fetuses, the protocol occurred during fetal i.v. infusion with saline and in five fetuses during fetal i.v. treatment with the nitric oxide synthase inhibitor l-NAME. Adrenal blood flow was determined by the radiolabelled microsphere method during each of the experimental periods during saline infusion and treatment with l-NAME. Treatment with l-NAME during normoxaemia led to a marked fall in adrenal blood flow and a pronounced increase in plasma catecholamine concentrations, but it did not affect plasma ACTH or cortisol levels. In saline-infused fetuses, acute hypoxaemia elicited an increase in adrenal blood flow and in plasma ACTH, cortisol, adrenaline and noradrenaline concentrations. Treatment with l-NAME did not affect the increase in fetal plasma ACTH, but prevented the increments in adrenal blood flow and in plasma cortisol and adrenaline concentrations during hypoxaemia in the llama fetus. In contrast, l-NAME further enhanced the increase in fetal plasma noradrenaline. These data support the hypothesis that nitric oxide has important roles in the regulation of adrenal blood flow and adrenal corticomedullary functions during normoxaemia and hypoxaemia functions in the late gestation llama fetus. PMID:12356897

  11. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder.

    PubMed

    Miyata, Shingo; Hattori, Tsuyoshi; Shimizu, Shoko; Ito, Akira; Tohyama, Masaya

    2015-01-01

    The major psychiatric disorders such as schizophrenia (SZ) and major depressive disorder (MDD) are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1) and DISC1 binding zinc finger (DBZ) might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1) mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD. PMID:25705664

  12. Uterine autonomic nerve innervation plays a crucial role in regulating rat uterine mast cell functions during embryo implantation.

    PubMed

    Yuan, Xue-Jun; Huang, Li-Bo; Qiao, Hui-Li; Deng, Ze-Pei; Fa, Jing-Jing

    2009-12-01

    To explore the potential mechanism of how uterine innervations would affect the uterine mast cell (MC) population and functions during the periimplantation. We herein first examined the consequence of uterine neurectomy on embryo implantation events. We observed that amputation of autonomic nerves innervating the uterus led to on-time implantation failure in rats. Exploiting MC culture and ELISA approaches, we then further analyzed the effect of neurectomy on cellular histamine levels and its release from uterine MCs, to elucidate the relation of the autonomic nerves and local cellular immunity in the uterine during early pregnancy. We observed that disconnection of autonomic nerve innervation significantly increased the population of uterine MCs. Most interestingly, these increased number of uterine MCs in neuroectomized rats contained a much reduced cellular level of histamine. Our subsequent challenge experiments revealed that uterine MCs in nerve amputated rats exhibited enhanced histamine releasing rate in response to substance P and antiIgE, suggesting loss of nerve innervation in the uterus not only increases the population of uterine MCs, but also facilitates the release of histamine from MCs, thus subsequently interfere with the normal implantation process. Collectively, our findings provide a new line of evidence supporting the concept that immune-neuro-endocrine network plays important role during pregnancy establishment and maintenance. PMID:19765668

  13. Hemp, an mbt domain-containing protein, plays essential roles in hematopoietic stem cell function and skeletal formation

    PubMed Central

    Honda, Hiroaki; Takubo, Keiyo; Oda, Hideaki; Kosaki, Kenjiro; Tazaki, Tatsuya; Yamasaki, Norimasa; Miyazaki, Kazuko; Moore, Kateri A.; Honda, Zen-ichiro; Suda, Toshio; Lemischka, Ihor R.

    2011-01-01

    To clarify the molecular pathways governing hematopoietic stem cell (HSC) development, we screened a fetal liver (FL) HSC cDNA library and identified a unique gene, hematopoietic expressed mammalian polycomb (hemp), encoding a protein with a zinc-finger domain and four malignant brain tumor (mbt) repeats. To investigate its biological role, we generated mice lacking Hemp (hemp−/−). Hemp−/− mice exhibited a variety of skeletal malformations and died soon after birth. In the FL, hemp was preferentially expressed in the HSC and early progenitor cell fractions, and analyses of fetal hematopoiesis revealed that the number of FL mononuclear cells, including HSCs, was reduced markedly in hemp−/− embryos, especially during early development. In addition, colony-forming and competitive repopulation assays demonstrated that the proliferative and reconstitution abilities of hemp−/− FL HSCs were significantly impaired. Microarray analysis revealed alterations in the expression levels of several genes implicated in hematopoietic development and differentiation in hemp−/− FL HSCs. These results demonstrate that Hemp, an mbt-containing protein, plays essential roles in HSC function and skeletal formation. It is also hypothesized that Hemp might be involved in certain congenital diseases, such as Klippel-Feil anomaly. PMID:21252303

  14. Adult Play.

    ERIC Educational Resources Information Center

    Charles, John M.

    In its broadest context, play can be interpreted as any pleasurable use of discretionary time. Playfulness is an intrinsic feature of being human, and should be viewed in the light of a total lifestyle, not as an occurrence in an isolated time of life. Adult play appears to be an indefinable and controversial concept. A holistic approach should be…

  15. Wanna Play?

    ERIC Educational Resources Information Center

    Chenfeld, Mimi Brodsky

    2006-01-01

    In this article, the author talks about the importance of play in the lives of children and describes how games and imaginative play contribute to the development of children. From her decades-old collection of countless incidents demonstrating children's love for self-directed, informal, imaginative play, the author shares three incidents that…

  16. City Play.

    ERIC Educational Resources Information Center

    Dargan, Amanda; Zeitlin, Steve

    2000-01-01

    Today, fewer city blocks preserve the confidence of lifestyle and urban geography that sustain traditional games and outdoor play. Large groups of children choosing sides and organizing Red Rover games are no longer commonplace. Teachers must encourage free play; urban planners must build cities that are safe play havens. (MLH)

  17. Risk of CNS dissemination in extranodal lymphomas.

    PubMed

    Ferreri, Andrés J M

    2014-04-01

    Extranodal lymphomas constitute a heterogeneous group of malignancies, accounting for roughly 60% of all non-Hodgkin lymphomas. The extranodal organ where lymphomas arise is an important determining factor of biological, molecular, and aetio-pathogenic features, and of presentation, dissemination pattern, and outcome. An increased risk of CNS involvement, an uncommon but lethal event, has been suggested in some extranodal lymphomas, but the absolute risk is still debatable for most of these malignancies. This debate is because of the presence of selection biases and other confounding factors in related literature, which inevitably has led to conflicting recommendations. The identification of extranodal lymphomas at increased risk of CNS dissemination is an important unmet clinical need; affected patients could benefit from early CNS assessment by neuroimaging and cerebrospinal fluid analysis and adequate CNS prophylaxis, avoiding unnecessary prophylaxis and related toxicity in low-risk patients. This Review discusses relevant confounding factors and identifies high-risk extranodal lymphomas analysing histopathological category, involved organ, and other specific risk factors, which could be helpful for result interpretation and patient stratification in future clinical trials. Finally, a recommendation is provided for CNS-directed management of high-risk extranodal lymphoma patients in daily practice. PMID:24694639

  18. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  19. Nanotechnology for CNS delivery of bio-therapeutic agents.

    PubMed

    Shah, Lipa; Yadav, Sunita; Amiji, Mansoor

    2013-08-01

    The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain. PMID:23894728

  20. Nanotechnology for CNS Delivery of Bio-Therapeutic Agents

    PubMed Central

    Shah, Lipa; Yadav, Sunita; Amiji, Mansoor

    2013-01-01

    The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain. PMID:23894728

  1. Immunosuppressive Mechanisms of Malignant Gliomas: Parallels at Non-CNS Sites

    PubMed Central

    Perng, Powell; Lim, Michael

    2015-01-01

    The central nervous system (CNS) possesses powerful local and global immunosuppressive capabilities that modulate unwanted inflammatory reactions in nervous tissue. These same immune-modulatory mechanisms are also co-opted by malignant brain tumors and pose a formidable challenge to brain tumor immunotherapy. Routes by which malignant gliomas coordinate immunosuppression include the mechanical and functional barriers of the CNS; immunosuppressive cytokines and catabolites; immune checkpoint molecules; tumor-infiltrating immune cells; and suppressor immune cells. The challenges to overcoming tumor-induced immunosuppression, however, are not unique to the brain, and several analogous immunosuppressive mechanisms also exist for primary tumors outside of the CNS. Ultimately, the immune responses in the CNS are linked and complementary to immune processes in the periphery, and advances in tumor immunotherapy in peripheral sites may therefore illuminate novel approaches to brain tumor immunotherapy, and vice versa. PMID:26217588

  2. Dealing with Danger in the CNS: The Response of the Immune System to Injury

    PubMed Central

    Gadani, Sachin P.; Walsh, James T.; Lukens, John R.; Kipnis, Jonathan

    2015-01-01

    Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account. PMID:26139369

  3. Pannexin 2 protein expression is not restricted to the CNS

    PubMed Central

    Le Vasseur, Maxence; Lelowski, Jonathan; Bechberger, John F.; Sin, Wun-Chey; Naus, Christian C.

    2014-01-01

    Pannexins (Panx) are proteins homologous to the invertebrate gap junction proteins called innexins (Inx) and are traditionally described as transmembrane channels connecting the intracellular and extracellular compartments. Three distinct Panx paralogs (Panx1, Panx2 and Panx3) have been identified in vertebrates but previous reports on Panx expression and functionality focused primarily on Panx1 and Panx3 proteins. Several gene expression studies reported that Panx2 transcript is largely restricted to the central nervous system (CNS) hence suggesting that Panx2 might serve an important role in the CNS. However, the lack of suitable antibodies prevented the creation of a comprehensive map of Panx2 protein expression and Panx2 protein localization profile is currently mostly inferred from the distribution of its transcript. In this study, we characterized novel commercial monoclonal antibodies and surveyed Panx2 expression and distribution at the mRNA and protein level by real-time qPCR, Western blotting and immunofluorescence. Panx2 protein levels were readily detected in every tissue examined, even when transcriptional analysis predicted very low Panx2 protein expression. Furthermore, our results indicate that Panx2 transcriptional activity is a poor predictor of Panx2 protein abundance and does not correlate with Panx2 protein levels. Despite showing disproportionately high transcript levels, the CNS expressed less Panx2 protein than any other tissues analyzed. Additionally, we showed that Panx2 protein does not localize at the plasma membrane like other gap junction proteins but remains confined within cytoplasmic compartments. Overall, our results demonstrate that the endogenous expression of Panx2 protein is not restricted to the CNS and is more ubiquitous than initially predicted. PMID:25505382

  4. Hyperactivated Stat3 boosts axon regeneration in the CNS.

    PubMed

    Mehta, Saloni T; Luo, Xueting; Park, Kevin K; Bixby, John L; Lemmon, Vance P

    2016-06-01

    Axonal regeneration after spinal cord injury (SCI) is intrinsically and extrinsically inhibited by multiple factors. One major factor contributing to intrinsic regeneration failure is the inability of mature neurons in the central nervous system (CNS) to activate regeneration-associated transcription factors (TFs) post-injury. A prior study identified TFs overexpressed in neurons of the peripheral nervous system (PNS) compared to the CNS; some of these could be involved in the ability of PNS neurons to regenerate. Of these, signal transducer and activator of transcription 3 (STAT3), as well its downstream regeneration-associated targets, showed a significant upregulation in PNS neurons relative to CNS neurons, and a constitutively active variant of Stat3 (Stat3CA) promoted neurite growth when expressed in cerebellar neurons (Lerch et al., 2012; Smith et al., 2011). To further enhance STAT3's neurite outgrowth enhancing activity, Stat3CA was fused with a viral activation domain (VP16). VP16 hyperactivates TFs by recruiting transcriptional co-factors to the DNA binding domain (Hirai et al., 2010). Overexpression of this VP16-Stat3CA chimera in primary cortical neurons led to a significant increase of neurite outgrowth as well as Stat3 transcriptional activity in vitro. Furthermore, in vivo transduction of retinal ganglion cells (RGCs) with AAV constructs expressing VP16-Stat3CA resulted in regeneration of optic nerve axons after injury, to a greater degree than for those expressing Stat3CA alone. These findings confirm and extend the concept that overexpression of hyperactivated transcription factors identified as functioning in PNS regeneration can promote axon regeneration in the CNS. PMID:27060489

  5. Competitive versus cooperative exergame play for African American adolescents' executive function skills: short-term effects in a long-term training intervention.

    PubMed

    Staiano, Amanda E; Abraham, Anisha A; Calvert, Sandra L

    2012-03-01

    Exergames are videogames that require gross motor activity, thereby combining gaming with physical activity. This study examined the role of competitive versus cooperative exergame play on short-term changes in executive function skills, following a 10-week exergame training intervention. Fifty-four low-income overweight and obese African American adolescents were randomly assigned to a competitive exergame condition, a cooperative exergame condition, or a no-play control group. Youths in the competitive exergame condition improved in executive function skills more than did those in the cooperative exergame condition and the no-play control group. Weight loss during the intervention was also significantly positively correlated with improved executive function skills. The findings link competitive exergame play to beneficial cognitive outcomes for at-risk ethnic minority adolescents. PMID:22369339

  6. Competitive Versus Cooperative Exergame Play for African American Adolescents’ Executive Function Skills: Short-Term Effects in a Long-Term Training Intervention

    PubMed Central

    Staiano, Amanda E.; Abraham, Anisha A.; Calvert, Sandra L.

    2014-01-01

    Exergames are videogames that require gross motor activity, thereby combining gaming with physical activity. This study examined the role of competitive versus cooperative exergame play on short-term changes in executive function skills, following a 10-week exergame training intervention. Fifty-four low-income overweight and obese African American adolescents were randomly assigned to a competitive exergame condition, a cooperative exergame condition, or a no-play control group. Youths in the competitive exergame condition improved in executive function skills more than did those in the cooperative exergame condition and the no-play control group. Weight loss during the intervention was also significantly positively correlated with improved executive function skills. The findings link competitive exergame play to beneficial cognitive outcomes for at-risk ethnic minority adolescents. PMID:22369339

  7. MicroRNA (miRNA): sequence and stability, viroid-like properties, and disease association in the CNS.

    PubMed

    Pogue, Aileen I; Hill, James M; Lukiw, Walter J

    2014-10-10

    MicroRNAs (miRNAs) constitute a relatively recently-discovered class of small non-coding RNAs (sncRNAs) that are gaining considerable attention in the molecular-genetic regulatory mechanisms that contribute to human health and disease. As highly soluble and mobile entities, emerging evidence indicates that miRNAs posess a highly selected ribonucleotide sequence structure, are part of an evolutionary ancient genetic signaling system, resemble the plant pathogens known as viroids in their structure, mode of generation and function, and are very abundant in the physiological fluids that surround cells and tissues. Persistence and altered abundance of miRNAs in the extracellular fluid (ECF) or cerebrospinal fluid (CSF) may play a role in the intercellular spreading of disease systemically, and throughout functionally-linked cellular and tissue systems such as the central nervous system (CNS). This short communication will review some of the more fascinating features of these highly structured single stranded RNAs (ssRNAs) with emphasis on their presence and function in the human CNS, with particular reference to Alzheimer׳s disease (AD) wherever possible. PMID:24709119

  8. Pretend play.

    PubMed

    Weisberg, Deena Skolnick

    2015-01-01

    Pretend play is a form of playful behavior that involves nonliteral action. Although on the surface this activity appears to be merely for fun, recent research has discovered that children's pretend play has connections to important cognitive and social skills, such as symbolic thinking, theory of mind, and counterfactual reasoning. The current article first defines pretend play and then reviews the arguments and evidence for these three connections. Pretend play has a nonliteral correspondence to reality, hence pretending may provide children with practice with navigating symbolic relationships, which may strengthen their language skills. Pretend play and theory of mind reasoning share a focus on others' mental states in order to correctly interpret their behavior, hence pretending and theory of mind may be mutually supportive in development. Pretend play and counterfactual reasoning both involve representing nonreal states of affairs, hence pretending may facilitate children's counterfactual abilities. These connections make pretend play an important phenomenon in cognitive science: Studying children's pretend play can provide insight into these other abilities and their developmental trajectories, and thereby into human cognitive architecture and its development. PMID:26263228

  9. Immunohistological localization of 5-HT in the CNS and feeding system of the Stable Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5-HT immunoreactive neurons were detected in the CNS of the stable fly. The finding of strong innervations of the cibarial pump muscles and the foregut by 5-HT IR neurons in the feeding-related systems suggests that 5-HT may play a crucial role in the control of the feeding behavior in both the larv...

  10. CNS involvement in small noncleaved-cell lymphoma: is CNS disease per se a poor prognostic sign?

    PubMed

    Haddy, T B; Adde, M A; Magrath, I T

    1991-11-01

    Of 120 patients with small noncleaved-cell lymphoma who were entered sequentially on four National Cancer Institute (NCI) protocols, 29 (24%) had CNS involvement at some time in their clinical course. Seventeen had initial CNS involvement, and 12 developed CNS involvement at the time of first relapse. All 29 patients had extensive disease at presentation. The median serum lactate dehydrogenase (LDH) levels at presentation were 1,150 IU/L for patients with initial CNS involvement and 1,083 IU/L for patients with CNS involvement at relapse. CNS disease was significantly associated with serum LDH levels (P less than .0001), bone marrow involvement (P less than .0001), and jaw involvement (P = .018), but not involvement of the abdomen. There were nine long-term survivors among the 29 patients (31%). CNS disease did not appear to confer a worse prognosis on these patients than on patients without CNS involvement who had similar degrees of serum LDH elevation or who had bone marrow involvement, suggesting that extensive disease rather than CNS involvement was responsible for the poor prognosis. Event-free survival for patients with serum LDH levels above 500 IU/L was not different whether CNS disease was present or not (P = .29), nor was event-free survival different for patients with stage IV disease, whether CNS disease was present or not (P = .92). Although some patients had CNS radiation, there was no evidence that this was of therapeutic benefit. Intrathecal (IT) chemoprophylaxis effectively prevented spread to the CNS in patients without initial CNS involvement. Five of 18 patients (28%) who received no IT prophylaxis had CNS relapse (four isolated to the CNS), but only seven of the 85 patients (8%) who received IT prophylaxis had CNS relapse (two isolated to the CNS). The differences in overall and isolated CNS relapse rates were statistically significant (P = .034 and P = .008, respectively). PMID:1941056

  11. Neurosteroid regulation of CNS development

    PubMed Central

    Mellon, Synthia H.

    2007-01-01

    Neurosteroids are a relatively new class of neuroactive compounds, brought to prominence in the past two decades. Despite knowing of their presence in the nervous system of various species for over twenty years and knowing of their functions as GABAA and NMDA ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of four distinct neurosteroids – pregnenolone, progesterone, allopregnanolone and dehydroepiandrosterone. PMID:17651807

  12. Environmental Enrichment Stimulates Immune Cell Secretion of Exosomes that Promote CNS Myelination and May Regulate Inflammation.

    PubMed

    Pusic, Kae M; Pusic, Aya D; Kraig, Richard P

    2016-04-01

    Environmental enrichment (EE) consists of increased physical, intellectual, and social activity, and has wide-ranging effects, including enhancing cognition, learning and memory, and motor coordination. Animal studies have demonstrated that EE improves outcome of brain trauma and neurodegenerative disorders, including demyelinating diseases like multiple sclerosis, making it a promising therapeutic option. However, the complexity of applying a robust EE paradigm makes clinical use difficult. A better understanding of the signaling involved in EE-based neuroprotection may allow for development of effective mimetics as an alternative. In prior work, we found that exosomes isolated from the serum of rats exposed to EE impact CNS myelination. Exosomes are naturally occurring nanovesicles containing mRNA, miRNA, and protein, which play important roles in cell function, disease, and immunomodulation. When applied to hippocampal slice cultures or nasally administered to naïve rats, EE-serum exosomes significantly increase myelin content, oligodendrocyte precursor (OPC) and neural stem cell levels, and reduce oxidative stress (OS). We found that rat EE exosomes were enriched in miR-219, which is necessary and sufficient for OPC differentiation into myelinating cells. Thus, peripherally produced exosomes may be a useful therapy for remyelination. Here, we aim to better characterize the impact of EE on CNS health and to determine the cellular source of nutritive exosomes found in serum. We found that exosomes isolated from various circulating immune cell types all increased slice culture myelin content, contained miR-219, and reduced OS, suggesting that EE globally alters immune function in a way that supports brain health. PMID:26993508

  13. Shadow Play

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Hilson, Margilee P.

    2012-01-01

    A bunny rabbit playfully hops across the wall. Then hands realign and fingers shift to make a hawk soar toward the ceiling. Most children have enjoyed the delightful experience of playing with shadow puppets. The authors build on this natural curiosity to help students link shadows to complex astronomical concepts such as seasons. The…

  14. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  15. Disruption of the blood-brain barrier exacerbates spreading depression in the locust CNS.

    PubMed

    Spong, Kristin E; Rochon-Terry, Geneviève; Money, Tomas G A; Robertson, R Meldrum

    2014-07-01

    In response to cellular stress in the nervous system of the locust (Locusta migratoria) neural function is interrupted in association with ionic disturbances propagating throughout nervous tissue (Spreading depression; SD). The insect blood-brain barrier (BBB) plays a critical role in the regulation of ion levels within the CNS. We investigated how a disruption in barrier function by transient exposure to 3M urea affects locusts' vulnerability to disturbances in ion levels. Repetitive SD was induced by bath application of ouabain and the extracellular potassium concentration ([K(+)]o) within the metathoracic ganglion (MTG) was monitored. Urea treatment increased the susceptibility to ouabain and caused a progressive impairment in the ability to maintain baseline [K(+)]o levels during episodes of repetitive SD. Additionally, using a within animal protocol we demonstrate that waves of SD, induced by high K(+), propagate throughout the MTG faster following disruption of the BBB. Lastly, we show that targeting the BBB of intact animals reduces their ability to sustain neural function during anoxic conditions. Our findings indicate that locust's ability to withstand stress is diminished following a reduction in barrier function likely due to an impairment of the ability of neural tissue to maintain ionic gradients. PMID:24837786

  16. Promotion of Pretend Play for Children with High-Functioning Autism through the Use of Circumscribed Interests

    ERIC Educational Resources Information Center

    Porter, Noriko

    2012-01-01

    The purpose of this paper is to describe effective methods of developing pretend play that is intrinsically motivating for young children with autism spectrum disorder (ASD) using the topic of circumscribed interests. Children with ASD often develop very specialized interests, known as Circumscribed Interests (CI). However, their limited and…

  17. Feeding, Fussing and Play: Parent-Infant Interaction in the First Year as a Function of Early Medical Problems.

    ERIC Educational Resources Information Center

    Goldberg, Susan; And Others

    This longitudinal study investigated the relationship of stress arising from medical problems of newborns to parent-infant interaction through the infant's first year. Significant interactive differences between full term and premature infants were found in feeding situations during the neonatal period and in floor play at eight months. The sample…

  18. Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins.

    PubMed

    Montesinos-Rongen, Manuel; Purschke, Frauke G; Brunn, Anna; May, Caroline; Nordhoff, Eckhard; Marcus, Katrin; Deckert, Martina

    2015-08-01

    Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS. PMID:26116512

  19. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787. PMID:27219534

  20. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered. PMID:17275978

  1. Competitive versus Cooperative Exergame Play for African American Adolescents' Executive Function Skills: Short-Term Effects in a Long-Term Training Intervention

    ERIC Educational Resources Information Center

    Staiano, Amanda E.; Abraham, Anisha A.; Calvert, Sandra L.

    2012-01-01

    Exergames are videogames that require gross motor activity, thereby combining gaming with physical activity. This study examined the role of competitive versus cooperative exergame play on short-term changes in executive function skills, following a 10-week exergame training intervention. Fifty-four low-income overweight and obese African American…

  2. Experimental Study of Stellar Reactions at CNS

    SciTech Connect

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.

    2006-11-02

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O({alpha},p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  3. Experimental Study of Stellar Reactions at CNS

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.; Pearson, J.

    2006-11-01

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O(α,p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  4. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  5. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  6. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  7. Playing Teacher.

    ERIC Educational Resources Information Center

    Gilbert, Juan E.

    The acceptance of animation technologies is increasing. Video games, such as Sony PlayStation (SONY, 2002), have become part of the culture for young people from kindergarten through undergraduate school. Animation technologies have been implemented into educational systems in the form of animated pedagogical agents (Johnson, 2000). The research…

  8. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  9. Game playing.

    PubMed

    Rosin, Christopher D

    2014-03-01

    Game playing has been a core domain of artificial intelligence research since the beginnings of the field. Game playing provides clearly defined arenas within which computational approaches can be readily compared to human expertise through head-to-head competition and other benchmarks. Game playing research has identified several simple core algorithms that provide successful foundations, with development focused on the challenges of defeating human experts in specific games. Key developments include minimax search in chess, machine learning from self-play in backgammon, and Monte Carlo tree search in Go. These approaches have generalized successfully to additional games. While computers have surpassed human expertise in a wide variety of games, open challenges remain and research focuses on identifying and developing new successful algorithmic foundations. WIREs Cogn Sci 2014, 5:193-205. doi: 10.1002/wcs.1278 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304308

  10. Sweet Play

    ERIC Educational Resources Information Center

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  11. Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease

    PubMed Central

    Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; Johnson, M.; Gilson, R.; Anderson, J.; Easterbrook, P.; Bansi, L.; Orkin, C.; Ainsworth, J.; Palfreeman, A.; Gompels, M.; Phillips, A.N.; Sabin, C.A.

    2011-01-01

    Objective: The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Methods: Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. Results: The median (interquartile range) CPE score for initial cART regimen increased from 7 (5–8) in 1996–1997 to 9 (8–10) in 2000–2001 and subsequently declined to 6 (7–8) in 2006–2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤4, and less frequently in those with scores ≥10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤4 were independently associated with increased risk of death. Conclusion: Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses. PMID:21339496

  12. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  13. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  14. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  15. New perspectives on using brain imaging to study CNS stimulants.

    PubMed

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'. PMID:25080072

  16. Inhibition of C5a receptor alleviates experimental CNS lupus

    PubMed Central

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R.; Quigg, Richard J.; Alexander, Jessy J.

    2010-01-01

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-α and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus. PMID:20207017

  17. Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms

    PubMed Central

    Weber, Christoph; Hartig, Andreas; Hartmann, Roland K.; Rossmanith, Walter

    2014-01-01

    The RNase P family is a diverse group of endonucleases responsible for the removal of 5′ extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility. PMID:25101763

  18. Play Theories: A Contemporary Review.

    ERIC Educational Resources Information Center

    Mellou, Eleni

    1994-01-01

    Reviews two sets of play theories, classical and modern, noting that the reason and purpose for play are explained by classical theories; the role of play in child development, determined by modern theories. States that process of play has dual functions of personal expression and social adaptation. Examines the relationship between play and…

  19. Identification of Ind transcription activation and repression domains required for dorsoventral patterning of the CNS.

    PubMed

    Von Ohlen, Tonia L; Moses, Cade

    2009-07-01

    Specification of cell fates across the dorsoventral axis of the central nervous system in Drosophila involves the subdivision of the neuroectoderm into three domains that give rise to three columns of neural precursor cells called neuroblasts. Ventral nervous system defective (Vnd), intermediate neuroblasts defective (Ind) and muscle segment homeobox (Msh) are expressed in the three columns from ventral to dorsal, respectively. The products of these genes play multiple important roles in formation and specification of the embryonic nervous system. Ind, for example, is known to play roles in two important processes. First, Ind is essential for formation of neuroblasts conjunction with SoxB class transcription factors. Sox class transcription factors are known to specify neural stem cells in vertebrates. Second, Ind plays an important role in patterning the CNS in conjunction with, vnd and msh, which is also similar to how vertebrates pattern their neural tube. This work focuses two important aspects of Ind function. First, we used multiple approaches to identify and characterize specific domains within the protein that confer repressor or activator ability. Currently, little is known about the presence of activation or repression domains within Ind. Here, we show that transcriptional repression by Ind requires multiple conserved domains within the protein, and that Ind has a transcriptional activation domain. Specifically, we have identified a novel domain, the Pst domain, that has transcriptional repression ability and appears to act independent of interaction with the co-repressor Groucho. This domain is highly conserved among insect species, but is not found in vertebrate Gsh class homeodomain proteins. Second, we show that Ind can and does repress vnd expression, but does so in a stage specific manner. We conclude from this that the function of Ind in regulating vnd expression is one of refinement and maintenance of the dorsal border. PMID:19348939

  20. Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed

    Ge, Ning; Muise, Chantal N; Gong, Xiandi; Linsdell, Paul

    2004-12-31

    The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, little is known about the relative functional contribution of different TM regions to the pore. We have used patch clamp recording to investigate the functional consequences of point mutations throughout the six transmembrane regions in the N-terminal part of the CFTR protein (TM1-TM6). A range of specific functional assays compared the single channel conductance, anion binding, and anion selectivity properties of different channel variants. Overall, our results suggest that TM1 and -6 play dominant roles in forming the channel pore and determining its functional properties, with TM5 perhaps playing a lesser role. In contrast, TM2, -3, and -4 appear to play only minor supporting roles. These results define transmembrane regions 1 and 6 as major contributors to the CFTR channel pore and have strong implications for emerging structural models of CFTR and related ATP-binding cassette proteins. PMID:15504721

  1. Stress-induced HSP70 from Musca domestica plays a functionally significant role in the immune system.

    PubMed

    Tang, Ting; Wu, Chen; Li, Jigang; Ren, Guodong; Huang, Dawei; Liu, Fengsong

    2012-09-01

    As important molecular chaperones, members of the 70kDa heat shock protein (HSP70) family play essential roles in stress tolerance and innate immunity in organisms. The full-length complementary DNA (cDNA) of a novel inducible HSP70, named as MdHSP70, was isolated from Musca domestica. The cDNA clone consisted of 2411 bp with a 1956 bp open reading frame which encodes 651 amino acids. Using real-time quantitative polymerase chain reaction (qPCR), we investigated the transcriptional profile of the gene under heat shock, cadmium stress and in response to bacteria. Increased expression of MdHSP70 was observed in response to both heat shock and Cd stress. The expression of MdHSP70 was significantly induced by Escherichia coli or Staphylococcus aureus stimulation. Larvae were fed bacteria expressing dsRNA targeting the MdHSP70 gene. Our results showed high mortality in larvae treated with dsRNA of MdHSP70 at heat shock, Cd stress and bacterial invasion, suggesting that MdHSP70 is potentially involved in the stress and immune responses of the house fly and perhaps contributes to protection against cellular injury. PMID:22750549

  2. Unique N-terminal Arm of Mycobacterium tuberculosis PhoP Protein Plays an Unusual Role in Its Regulatory Function*

    PubMed Central

    Das, Arijit Kumar; Kumar, Vijjamarri Anil; Sevalkar, Ritesh Rajesh; Bansal, Roohi; Sarkar, Dibyendu

    2013-01-01

    Mycobacterium tuberculosis PhoP, a master regulator involved in complex lipid biosynthesis and expression of unknown virulence determinants, is composed of an N-terminal receiver domain and a C-terminal effector domain. The two experimentally characterized PhoP orthologs, from Escherichia coli and Salmonella enterica, display vastly different regulatory capabilities. Here, we demonstrate that the 20-residue-long N-terminal arm unique to M. tuberculosis PhoP plays an essential role in the expanded regulatory capabilities of this important regulator. Although the arm is not required for overall structural stability and/or phosphorylation of the PhoP N-domain, strikingly it is essential for phosphorylation-coupled transcription regulation of target genes. Consistent with this view, arm truncation of PhoP is accompanied by a conformational change of the effector domain, presenting a block in activation subsequent to phosphorylation. These results suggest that presence of the arm, unique to this regulator that shares an otherwise highly conserved domain structure with members of the protein family, contributes to the mechanism of inter-domain interactions. Thus, we propose that the N-terminal arm is an adaptable structural feature of M. tuberculosis PhoP, which evolved to fine-tune regulatory capabilities of the transcription factor in response to the changing physiology of the bacilli within its host. PMID:23963455

  3. mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related functions

    NASA Astrophysics Data System (ADS)

    Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin

    2013-11-01

    Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.

  4. Verruculogen: a new substance for decreasing of GABA levels in CNS.

    PubMed

    Hotujac, L; Muftić, R H; Filipović, N

    1976-01-01

    In our previous work we examined the mechanism of action of the new tremorogenic substance verruculogen isolated by Cole and coworkers. Examining the effect of various substances with known mechanisms of action on verruculogen-induced tremor, we concluded that this tremor was probably related to decrease of GABA levels in CNS. In order to further define the mechanisms of action of verruculogen, we determined brain GABA levels in animals in which tremor was produced by verruculogen administration. Verruculogen administration produced a decrease in GABA levels in mouse CNS. This finding substantiates our earlier suggestion that verruculogen-induced tremor is mediated by a loss of inhibitory GABA function. PMID:935244

  5. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    PubMed

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair. PMID:24589584

  6. To what extent do joint attention, imitation, and object play behaviors in infancy predict later communication and intellectual functioning in ASD?

    PubMed Central

    Poon, Kenneth K.; Watson, Linda R.; Baranek, Grace T.; Poe, Michele D.

    2012-01-01

    The extent to which early social communication behaviors predict later communication and intellectual outcomes was investigated via retrospective video analysis. Joint attention, imitation, and complex object play behaviors were coded from edited home videos featuring scenes of 29 children with ASD at 9–12 and/or 15–18 months. A quantitative interval recording of behavior and a qualitative rating of the developmental level were applied. Social communication behaviors increased between 9–12 and 15–18 months. Their mean level during infancy, but not the rate of change, predicted both Vineland Communication scores and intellectual functioning at 3–7 years. The two methods of measurement yielded similar results. Thus, early social communicative behaviors may play pivotal roles in the development of subsequent communication and intellectual functioning. PMID:21858585

  7. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance.

    PubMed

    Fini, Alessio; Loreto, Francesco; Tattini, Massimiliano; Giordano, Cristiana; Ferrini, Francesco; Brunetti, Cecilia; Centritto, Mauro

    2016-05-01

    The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm ) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA ). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted. PMID:26537749

  8. Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction

    PubMed Central

    Watterson, D. Martin; Grum-Tokars, Valerie L.; Roy, Saktimayee M.; Schavocky, James P.; Bradaric, Brinda Desai; Bachstetter, Adam D.; Xing, Bin; Dimayuga, Edgardo; Saeed, Faisal; Zhang, Hong; Staniszewski, Agnieszka; Pelletier, Jeffrey C.; Minasov, George; Anderson, Wayne F.; Arancio, Ottavio; Van Eldik, Linda J.

    2013-01-01

    Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will

  9. A PP1-binding motif present in BRCA1 plays a role in its DNA repair function

    PubMed Central

    Yu, Young-Mi; Pace, Serena M.; Allen, Susan R.; Deng, Chu-Xia; Hsu, Lih-Ching

    2008-01-01

    Protein phosphatase 1α (PP1α) regulates phosphorylation of BRCA1, which contains a PP1-binding motif 898KVTF901. Mutation of this motif greatly reduces the interaction between BRCA1 and PP1α. Here we show that mutation of the PP1-binding motif abolishes the ability of BRCA1 to enhance survival of Brca1-deficient mouse mammary tumor cells after DNA damage. The Rad51 focus formation and comet assays revealed that the DNA repair function of BRCA1 was impaired when the PP1-binding motif was mutated. Analysis of subnuclear localization of GFP-tagged BRCA1 demonstrated that mutation of the PP1-binding motif affected BRCA1 redistribution in response to DNA damage. BRCA1 is required for the formation of Rad51 subnuclear foci after DNA damage. Mutation of the PP1-binding motif in BRCA1 also affected recruitment of Rad51 to sites of DNA damage. Consistent with these findings, knockdown of PP1α in BRCA1-proficient cells by small interfering RNA also significantly reduced Rad51 focus formation induced by DNA damage. Further analysis indicated that mutation of the PP1-binding motif compromised BRCA1 activities in homologous recombination. Altogether, our data implicate that interaction with PP1α is important for BRCA1 function in DNA repair. PMID:18953404

  10. The Disequilibrium of Nucleosomes Distribution along Chromosomes Plays a Functional and Evolutionarily Role in Regulating Gene Expression

    PubMed Central

    Zhang, Lingfang; Ding, Feng; Xin, Chengqi; Zhang, Daoyong; Sun, Fanglin; Hu, Songnian; Yu, Jun

    2011-01-01

    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues—cerebrum, testis, and ESCs—and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types. PMID:21886783