Science.gov

Sample records for co2 emission reduction

  1. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  2. Potential CO2 Emission Reduction by Development of Non-Grain-Based Bioethanol in China

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Wang, Limao; Shen, Lei

    2010-10-01

    Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China’s greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

  3. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  4. Sharing global CO2 emission reductions among one billion high emitters

    PubMed Central

    Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo

    2009-01-01

    We present a framework for allocating a global carbon reduction target among nations, in which the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we build up a global CO2 distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO2-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by “Business as Usual” projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO2 would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO2 emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled. PMID:19581586

  5. Potential of Reduction in CO2 Emission by Biomass Power Generation with Thinning Residues

    NASA Astrophysics Data System (ADS)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    In Japan, forest thinning residues as woody biomass have potential to increase domestic primary energy supply, because there still remain many conifer plantations where thinning is not carried out. However, taking the reduction in carbon stock in forests into account, the additional thinning for energy supply may not contribute to the reduction in CO2 emission. Considering the change in the carbon stock in forests, this paper discusses the potential of reduction in CO2 emission by biomass power generation with thinning residues. As power generation systems with thinning residues, co-firing with coal in a utility's power station and a molten carbonate fuel cell (MCFC) with gasification system are taken into account. The results suggest that the co-firing of woody biomass supplied by the additional thinning at utilities' coal-fired power stations has a potential for reducing overall CO2 emission.

  6. Reduction of CO2 and orbital debris: can CO2 emission trading principles be applied to debris reduction?

    NASA Astrophysics Data System (ADS)

    Orlando, Giovanni; Kinnersley, Mark; Starke, Juergen; Hugel, Sebastian; Hartner, Gloria; Singh, Sanjay; Loubiere, Vincent; Staebler, Dominik-Markus; O'Brien-Organ, Christopher; Schwindt, Stefan; Serreau, Francois; Sharma, Mohit

    In the past years global pollution and the specific situation of global warming changes have been strongly influencing public opinion and thus obliged politicians to initiate/ negotiate in-ternational agreements to control, avoid or at least reduce the impact of CO2 emissions e.g. The Kyoto Protocol (1997) and the International Copenhagen conference on Climate Change (2009). In the orbital debris area the collision between the Iridium33 and Cosmos 2251 satel-lites in 2009 has again pushed to the forefront the discussion of the space pollution by space debris and the increasing risk of critical and catastrophic events during the nominal life time of space objects. It is shown by simulations that for Low Earth Orbits the critical debris situation is already achieved and the existing space objects will probably produce sufficient space debris elements -big enough -to support the cascade effect (Kessler Syndrome). In anal-ogy with CO2 emissions, potential recommendations / regulations to reduce the production of Space Debris or its permanence in orbit, are likely to open new markets involving Miti-gation and Removal of Space Debris. The principle approach for the CO2 emission trading model will be investigated and the applicability for the global space debris handling will be analysed. The major differences of the two markets will be derived and the consequences in-dicated. Potential alternative solutions will be proposed and discussed. For the example of the CO2 emission trading principles within EU and worldwide legal conditions for space debris (national / international laws and recommendations) will be considered as well as the commer-cial approach from the controlled situation of dedicated orders to a free / competitive market in steps. It is of interest to consider forms of potential industrial organisations and interna-tional co-operations to react on a similar architecture for the debris removal trading including incentives and penalties for the different

  7. REDUCTION OF CO2 EMISSIONS FROM MOBILE SOURCES BY ALTERNATIVE FUELS DERIVED FROM BIOMASS

    EPA Science Inventory

    The paper discusses process options for utilizing biomass to obtain greatest reduction of carbon dioxide (CO2) emissions from motor vehicles at least cost. (NOTE: The Energy Policy Act of 1992 seeks to displace 30% of the U.S. petroleum requirement by the year 2010 with an altern...

  8. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.

    PubMed

    Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L

    2011-09-01

    This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. PMID:21719072

  9. Energy conservation and CO2 emission reductions due to recycling in Brazil.

    PubMed

    Pimenteira, C A P; Pereira, A S; Oliveira, L B; Rosa, L P; Reis, M M; Henriques, R M

    2004-01-01

    The present paper aims to make the energy saving potential provided by waste recycling in Brazil evident by pointing out more specifically the benefits regarding climate change mitigation. In this case, based on the energy saved due to the recycling process of an exogenous amount of waste, we have built two scenarios in order to show the potential for indirectly avoiding CO2 emissions in the country as a result of the recycling process. According to the scenario, 1 Mt and 3.5 Mt of CO2, respectively, would be avoided per year due to solid waste recycling. The international context for greenhouse gas emissions reduction, such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol has been taken into account. PMID:15504666

  10. Willingness to engage in energy conservation and CO2 emissions reduction: An empirical investigation

    NASA Astrophysics Data System (ADS)

    Eluwa, S. E.; Siong, H. C.

    2014-02-01

    Africa's response to climate change has largely been focused on adaptation rather than mitigation. The reason for this is based on the fact that the continent contributes very little to global CO2 emission. Again, mitigation policies like carbon tax as being practised in developed countries may be costly and difficult to implement in a continent where most economies are fragile. Using behavioural change as an adaptation approach, we examined the opinion of Ibadan city residents towards energy conservation and CO2 emissions reduction. A total of 822 respondents were sampled across the three residential neighbourhoods of the city. Results from the study showed that female and male respondents differed in their opinion towards energy conservation. However, the female respondents tended to record higher mean scores on majority of the items used to capture energy conservation behaviour than their male counterparts. Also, those with higher level of education seemed to be more conscious of the environmental consequences arising from energy use at home than those with lower educational background. However, very slight variations were recorded in the mean value score across the different age groups, those respondents above 50 years scored a bit higher than other age groups.

  11. A Consideration on Service Business Model for Saving Energy and Reduction of CO2 Emissions Using Inverters

    NASA Astrophysics Data System (ADS)

    Kosaka, Michitaka; Yabutani, Takashi

    This paper considers the effectiveness of service business approach for reducing CO2 emission. “HDRIVE” is a service business using inverters to reduce energy consumption of motor drive. The business model of this service is changed for finding new opportunities of CO2 emission reduction by combining various factors such as financial service or long-term service contract. Risk analysis of this business model is very important for giving stable services to users for long term. HDRIVE business model is found to be suitable for this objective. This service can be applied to the industries such as chemical or steel industry effectively, where CO2 emission is very large, and has the possibility of creating new business considering CDM or trading CO2 emission right. The effectiveness of this approach is demonstrated through several examples in real business.

  12. U.S. onroad transportation CO2 emissions analysis comparing highly resolved CO2 emissions and a national average approach : mitigation options and uncertainty reductions

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Gurney, K. R.

    2011-12-01

    The transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Within the transportation sector, the largest component (80%) is made up of onroad emissions. In order to accurately quantify future emissions and evaluate emissions regulation strategies, analysis must account for spatially-explicit fleet distribution, driving patterns, and mitigation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. We compare a high resolution onroad emissions data product (Vulcan) to a national averaging of the Vulcan result. This comparison is performed in four groupings: light duty (LD) and heavy duty (HD) vehicle classes, and rural and urban road classes. Two different bias metrics are studied: 1) the state-specific, group-specific bias and 2) the same bias when weighted by the state share of the national group-specific emissions. In the first metric, we find a spread of positive and negative biases for the LD and HD vehicle groupings and these biases are driven by states having a greater/lesser proportion of LD/HD vehicles within their total state fleet than found from a national average. The standard deviation of these biases is 2.01% and 0.75% for the LD and HD groupings, respectively. These biases correlate with the road type present in a state, so that biases found in the urban and LD groups are both positive or both negative, with a similar relationship found between biases of the rural and HD groups. Additionally, the road group bias is driven by the distribution of VMT on individual road classes within the road groupings. When normalized by national totals, the state-level group-specific biases reflect states with large amounts of onroad travel that deviate

  13. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material.

    PubMed

    González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E

    2016-09-15

    The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. PMID:27233044

  14. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction

    NASA Astrophysics Data System (ADS)

    Cai, Yongyang; Lenton, Timothy M.; Lontzek, Thomas S.

    2016-05-01

    Evidence suggests that several elements of the climate system could be tipped into a different state by global warming, causing irreversible economic damages. To address their policy implications, we incorporated five interacting climate tipping points into a stochastic-dynamic integrated assessment model, calibrating their likelihoods and interactions on results from an existing expert elicitation. Here we show that combining realistic assumptions about policymakers’ preferences under uncertainty, with the prospect of multiple future interacting climate tipping points, increases the present social cost of carbon in the model nearly eightfold from US$15 per tCO2 to US$116 per tCO2. Furthermore, passing some tipping points increases the likelihood of other tipping points occurring to such an extent that it abruptly increases the social cost of carbon. The corresponding optimal policy involves an immediate, massive effort to control CO2 emissions, which are stopped by mid-century, leading to climate stabilization at <1.5 °C above pre-industrial levels.

  15. EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Zhu, Rong; Ma, Guo-hong

    2016-02-01

    As a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

  16. Update on CO2 emissions

    SciTech Connect

    Friedingstein, P.; Houghton, R.A.; Marland, Gregg; Hackler, J.; Boden, Thomas A; Conway, T.J.; Canadell, J.G.; Raupach, Mike; Ciais, Philippe; Le Quere, Corrine

    2010-12-01

    Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

  17. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  18. Increased Use of Natural Gas for Power Generation in the U.S. and the Resulting Reductions in Emissions of CO2, NOx and SO2

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; Parrish, D. D.; Trainer, M.

    2013-12-01

    Over the past decades, natural gas has increasingly replaced coal as a fuel for electrical power generation in the U.S. As a result, there have been significant reductions in the emissions of carbon dioxide (CO2), nitrogen oxides (NOx) and sulfur dioxide (SO2). Power plant emissions are continuously measured at the stack using continuous emissions monitoring systems (CEMS) required by the EPA. Previous studies using airborne measurements have shown these CEMS measurements to be accurate. Here, we use annual emissions since 1995 from all point sources included in the CEMS database to quantify the changes in CO2, NOx and SO2 emissions that have resulted from the changing use of fuels and technologies for power generation. In 1997, 83% of electrical power in the CEMS database was generated from coal-fired power plants. In 2012, the contribution from coal had decreased to 59%, and natural gas contributed 34% of the electrical power. Natural gas-fired power plants, in particular those equipped with combined cycle technology, emit less than 50% of CO2 per kWh produced compared to coal-fired plants. As a result of the increased use of natural gas, total CO2 emissions from U.S. power plants have decreased since 2008. In addition, natural gas-fired power plants emit less NOx and far less SO2 per kWh produced than coal-fired power plants. The increased use of natural gas has therefore led to significant emissions reductions of NOx and SO2 in addition to those obtained from the implementation of emissions control systems on coal-fired power plants. The increased use of natural gas for power generation has led to significant reductions in CO2 emissions as well as improvements in U.S. air quality. We will illustrate these points with examples from airborne measurements made using the NOAA WP-3D aircraft in the Southeastern U.S. in 2013 as part of the NOAA Southeast Nexus (SENEX) study. The emissions reductions from U.S. power plants due to the increased use of natural gas will

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-05-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

  5. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  6. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  7. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  13. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-01-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  14. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2004-10-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  15. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman

    2004-07-01

    The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  16. CO2 reduction using adsorption followed by nonthermal plasma treatment

    NASA Astrophysics Data System (ADS)

    Nakajima, Kenji; Takahashi, Kazuya; Tanaka, Masanari; Kuroki, Tomoyuki; Okubo, Masaaki

    2015-10-01

    Carbon dioxide (CO2) is one of the main substances linked to global warming, and its emission should be reduced. In this study, a CO2 reduction treatment using an adsorbent and a nonthermal plasma flow is investigated. This treatment comprises a physical adsorption process and nitrogen (N2) plasma reduction process. In the physical adsorption process, CO2 is adsorbed by the adsorbent. In the N2 plasma reduction process, the adsorbed CO2 is reduced to CO by a nonthermal plasma flow that is generated by a plasma reactor with a circulating N2 plasma flow. The generated CO can be reused as a fuel. We estimate this experimental results by calculating conversion efficiency of CO2 to CO. In the N2 plasma reduction process, the CO concentration reaches approximately 1%, regardless of the number of experiments, and conversion efficiency reaches at most 5.3%.

  17. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

    2005-07-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

  18. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-04-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  19. Global CO2 Emission from Volcanic Lakes

    NASA Astrophysics Data System (ADS)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  20. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  1. Advanced CO2 Removal and Reduction System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.

    2011-01-01

    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)

    SciTech Connect

    Lantz, E.; Tegen, S.

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)

    SciTech Connect

    Lantz, E.; Tegen, S.

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

  5. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  6. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

  7. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

  12. A human development framework for CO2 reductions.

    PubMed

    Costa, Luís; Rybski, Diego; Kropp, Jürgen P

    2011-01-01

    Although developing countries are called to participate in CO(2) emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO(2) emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO(2) emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300 Gt of cumulative CO(2) emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO(2) budgets limiting global warming to 2 °C. These constraints and results are incorporated into a CO(2) reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2 °C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO(2). These values are within the uncertainty range of emissions to limit global temperatures to 2 °C. PMID:22216227

  13. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  14. Strategic responses to CO2 emission reduction targets drive shift in U.S. electric sector water use

    EPA Science Inventory

    The reliance of the U.S. electric sector on water makes this sector vulnerable to climate change and variability. We use the EPAUS9r MARKAL model to investigate changes in U.S. electric sector water withdrawal and consumption through 2055 under alternative energy system-wide CO2...

  15. Bosch CO2 Reduction System Development

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; King, C. D.; Keller, E. E.

    1976-01-01

    Development of a Bosch process CO2 reduction unit was continued, and, by means of hardware modifications, the performance was substantially improved. Benefits of the hardware upgrading were demonstrated by extensive unit operation and data acquisition in the laboratory. This work was accomplished on a cold seal configuration of the Bosch unit.

  16. The supply chain of CO2 emissions

    PubMed Central

    Davis, Steven J.; Peters, Glen P.; Caldeira, Ken

    2011-01-01

    CO2 emissions from the burning of fossil fuels are conventionally attributed to the country where the emissions are produced (i.e., where the fuels are burned). However, these production-based accounts represent a single point in the value chain of fossil fuels, which may have been extracted elsewhere and may be used to provide goods or services to consumers elsewhere. We present a consistent set of carbon inventories that spans the full supply chain of global CO2 emissions, finding that 10.2 billion tons CO2 or 37% of global emissions are from fossil fuels traded internationally and an additional 6.4 billion tons CO2 or 23% of global emissions are embodied in traded goods. Our results reveal vulnerabilities and benefits related to current patterns of energy use that are relevant to climate and energy policy. In particular, if a consistent and unavoidable price were imposed on CO2 emissions somewhere along the supply chain, then all of the parties along the supply chain would seek to impose that price to generate revenue from taxes collected or permits sold. The geographical concentration of carbon-based fuels and relatively small number of parties involved in extracting and refining those fuels suggest that regulation at the wellhead, mine mouth, or refinery might minimize transaction costs as well as opportunities for leakage. PMID:22006314

  17. An Evaluation Study of the Reduction Effects of the CO2 Emission Quantity and the Primary Energy in the Residential PEFC Co-generation System

    NASA Astrophysics Data System (ADS)

    Maeda, Kazushige; Yonemori, Hideto; Yasaka, Yasuyoshi

    This paper deals with the introduction effects on the basis of the comparative study of residential PEFC (polymer electrolyte fuel cell) co-generation systems and conventional systems that consist of a conventional gas boiler or a condensing gas boiler or a CO2 heat pump and the thermal power plant, by using the computer simulation. The target systems for estimation conform to real systems in the market and the energy demand data acquired from the past field tests was applied. As a result, it becomes clear that the residential PEFC co-generation systems have high performance in the energy saving and the CO2 reduction, from a comparison study with conventional systems and CO2 heat pump system. Concretely to say, the average energy saving rate that the residential PEFC co-generation system provides is 13.9% and the average CO2 reduction rate is 16.5% using quantity of reduction of CO2 as estimate function. Otherwise, the average energy saving rate that the CO2 heat pump system provides is 13.7% and the average CO2 reduction rate is 10.0%. Furthermore, we have proved the effectiveness a radiator in the residential PEFC co-generation system.

  18. Costs of mitigating CO2 emissions from passenger aircraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  19. CO2 emission benefit of diesel (versus gasoline) powered vehicles.

    PubMed

    Sullivan, J L; Baker, R E; Boyer, B A; Hammerle, R H; Kenney, T E; Muniz, L; Wallington, T J

    2004-06-15

    Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015. PMID:15260316

  20. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2008-11-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 TgC y-1 for the period 2000 2005. These emissions resulted from the combustion of fossil fuels (260 TgC y-1) and land use change (240 TgC y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 TgC accounting for 3.7% of the global emissions. The 2000 2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 tC y-1 compared to the global average of 1.2 tC y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US of Gross Domestic Product (GDP) in Africa in 2005 was 187 gC/, close to the world average of 199 gC/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  1. Anthropogenic CO2 emissions in Africa

    NASA Astrophysics Data System (ADS)

    Canadell, J. G.; Raupach, M. R.; Houghton, R. A.

    2009-03-01

    An understanding of the regional contributions and trends of anthropogenic carbon dioxide (CO2) emissions is critical to design mitigation strategies aimed at stabilizing atmospheric greenhouse gases. Here we report CO2 emissions from the combustion of fossil fuels and land use change in Africa for various time periods. Africa was responsible for an average of 500 Tg C y-1 for the period 2000-2005. These emissions resulted from the combustion of fossil fuels (260 Tg C y-1) and land use change (240 Tg C y-1). Over this period, the African share of global emissions from land use change was 17%. For 2005, the last year reported in this study, African fossil fuel emissions were 285 Tg C accounting for 3.7% of the global emissions. The 2000-2005 growth rate in African fossil fuel emissions was 3.2% y-1, very close to the global average. Fossil fuel emissions per capita in Africa are among the lowest in the world, at 0.32 t C y-1 compared to the global average of 1.2 t C y-1. The average amount of carbon (C) emitted as CO2 to produce 1 US{} of Gross Domestic Product (GDP) in Africa was 187 g C/ in 2005, close to the world average of 199 g C/. With the fastest population growth in the world and rising per capita GDP, Africa is likely to increase its share of global emissions over the coming decades although emissions from Africa will remain low compared to other continents.

  2. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  3. Uncertainty in gridded CO2 emissions estimates

    NASA Astrophysics Data System (ADS)

    Hogue, Susannah; Marland, Eric; Andres, Robert J.; Marland, Gregg; Woodard, Dawn

    2016-05-01

    We are interested in the spatial distribution of fossil-fuel-related emissions of CO2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from the use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. Uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.

  4. Bosch CO2 Reduction System Development

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; King, C. D.; Keller, E. E.

    1975-01-01

    Refinements in the design of a Bosch CO2 reduction unit for spacecraft O2 production are described. Sealing of the vacuum insulation jacket was simplified so that high vacuum and high insulation performance are easily maintained. The device includes a relatively simple concentric shell recuperative heat exchanger which operates at approximately 95% temperature effectiveness and helps lower power consumption. The influence of reactor temperature, pressure, and recycle gas composition on power consumption was investigated. In general, precise control is not required since power consumption is not very sensitive to moderate variations of these parameters near their optimum values. There are two process rate control modes which match flow rate to process demand. Catalyst conditioning, support, and packing pattern developments assure consistent starts, reduced energy consumption, and extended cartridge life. Operation levels for four or five men were maintained with overall power input values of 50 to 60 watts per man.

  5. Projecting Human Development and CO2 emissions employing correlations

    NASA Astrophysics Data System (ADS)

    Rybski, D.; Costa, L.; Kropp, J. P.

    2012-04-01

    We find positive and time dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Based on this empirical relation, extrapolated HDI, and three population scenarios extracted from the Millennium Ecosystem Assessment report, we estimate future cumulative CO2 emissions. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8) as defined in the United Nations Human Development Report 2009. In particular, we estimate that at least 300Gt of cumulative CO2 emissions between 2000 and 2050 are necessary for the development of developing countries in the year 2000. This value represents 30% of a previously calculated CO2 budget yielding a 75% probability of limiting global warming to 2°C. Since human development has been proved to be time and country dependent, we plead for future climate negotiations to consider a differentiated CO2 emissions reduction scheme for developing countries based on the achievement of concrete development goals.

  6. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    EPA Science Inventory

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  7. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Zickfeld, Kirsten; MacDougall, Andrew H.; Damon Matthews, H.

    2016-05-01

    Recent research has demonstrated that global mean surface air warming is approximately proportional to cumulative CO2 emissions. This proportional relationship has received considerable attention, as it allows one to calculate the cumulative CO2 emissions (‘carbon budget’) compatible with temperature targets and is a useful measure for model inter-comparison. Here we use an Earth system model to explore whether this relationship persists during periods of net negative CO2 emissions. Negative CO2 emissions are required in the majority of emissions scenarios limiting global warming to 2 °C above pre-industrial, with emissions becoming net negative in the second half of this century in several scenarios. We find that for model simulations with a symmetric 1% per year increase and decrease in atmospheric CO2, the temperature change (ΔT) versus cumulative CO2 emissions (CE) relationship is nonlinear during periods of net negative emissions, owing to the lagged response of the deep ocean to previously increasing atmospheric CO2. When corrected for this lagged response, or if the CO2 decline is applied after the system has equilibrated with the previous CO2 increase, the ΔT versus CE relationship is close to linear during periods of net negative CO2 emissions. A proportionality constant—the transient climate response to cumulative carbon emissions (TCRE)‑ can therefore be calculated for both positive and net negative CO2 emission periods. We find that in simulations with a symmetric 1% per year increase and decrease in atmospheric CO2 the TCRE is larger on the upward than on the downward CO2 trajectory, suggesting that positive CO2 emissions are more effective at warming than negative emissions are at subsequently cooling. We also find that the cooling effectiveness of negative CO2 emissions decreases if applied at higher atmospheric CO2 concentrations.

  8. Proposal of a Method to Calculate Room Temperature in Multi-Room Buildingsby an Improved Matrix Computing and its Application to Evaluate CO2 ReductionUtilizing High Light-Reflective and High Heat-Emissive Paint

    NASA Astrophysics Data System (ADS)

    Ihara, Tomohiko; Handa, Takashi; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Ishitani, Hisashi

    In this paper, we proposed a procedure for calculation of room temperature in multi-room building using the backward-difference method. Based on this procedure and using our simulation program, we evaluated CO2 reduction by installating high light-reflective and high heat-emissive paint in buildings. Heat balance equations on each heat point in each room or wall in the building were deduced from one-dimensional heat-conduction equation and converted to the matrix equation. We improved matrix computing and developed a different procedure from conventional methods. Because this procedure is simple, we consider that this is applicable to estimation of most building’s technologies. As its application, the effects of high light-reflective and high heat-emissive paint was evaluated. Although the paint increases heating load, it can reduce cooling load. We thus conclude that the paint is effective for CO2 reduction.

  9. Drivers of the US CO2 emissions 1997-2013

    NASA Astrophysics Data System (ADS)

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Hubacek, Klaus

    2015-07-01

    Fossil fuel CO2 emissions in the United States decreased by ~11% between 2007 and 2013, from 6,023 to 5,377 Mt. This decline has been widely attributed to a shift from the use of coal to natural gas in US electricity production. However, the factors driving the decline have not been quantitatively evaluated; the role of natural gas in the decline therefore remains speculative. Here we analyse the factors affecting US emissions from 1997 to 2013. Before 2007, rising emissions were primarily driven by economic growth. After 2007, decreasing emissions were largely a result of economic recession with changes in fuel mix (for example, substitution of natural gas for coal) playing a comparatively minor role. Energy-climate policies may, therefore, be necessary to lock-in the recent emissions reductions and drive further decarbonization of the energy system as the US economy recovers and grows.

  10. Drivers of the US CO2 emissions 1997–2013

    PubMed Central

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Hubacek, Klaus

    2015-01-01

    Fossil fuel CO2 emissions in the United States decreased by ∼11% between 2007 and 2013, from 6,023 to 5,377 Mt. This decline has been widely attributed to a shift from the use of coal to natural gas in US electricity production. However, the factors driving the decline have not been quantitatively evaluated; the role of natural gas in the decline therefore remains speculative. Here we analyse the factors affecting US emissions from 1997 to 2013. Before 2007, rising emissions were primarily driven by economic growth. After 2007, decreasing emissions were largely a result of economic recession with changes in fuel mix (for example, substitution of natural gas for coal) playing a comparatively minor role. Energy–climate policies may, therefore, be necessary to lock-in the recent emissions reductions and drive further decarbonization of the energy system as the US economy recovers and grows. PMID:26197104

  11. CO2 electrochemical reduction via adsorbed halide anions

    NASA Astrophysics Data System (ADS)

    Ogura, Kotaro; Salazar-Villalpando, Maria D.

    2011-01-01

    The electrochemical reduction of CO2 was studied utilizing halide ions as electrolytes, specifically, aqueous solutions of KCl, KBr, KI. Electrochemical experiments were carried out in a laboratory-made, divided H-type cell. The working electrode was a copper mesh, while the counter and reference electrodes were a Pt wire and an Ag/AgCl electrode, respectively. The results of our work suggest a reaction mechanism for the electrochemical reduction of CO2 where the presence of Cu-X as the catalytic layer facilitates the electron transfer from the electrode to CO2. Electron-transfer to CO2 may occur via the X- ad(Br-, Cl-, I-)-C bond, which is formed by the electron flow from the specifically adsorbed halide anion to the vacant orbital of CO2. The stronger the adsorption of the halide anion to the electrode, the more strongly CO2 is restrained, resulting in higher CO2 reduction current. Furthermore, it is suggested that specifically adsorbed halide anions could suppress the adsorption of protons; leading to a higher hydrogen overvoltage. These effects may synergistically mitigate the over potential necessary for CO2 reduction, and thus increase the rate of electrochemical CO2 reduction.

  12. Reducing CO2 Emissions through Lightweight Design and Manufacturing

    NASA Astrophysics Data System (ADS)

    Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.

    2011-05-01

    To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.

  13. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  14. Global spatially explicit CO2 emission metrics for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; van Zelm, Rosalie; van der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-02-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2-1 for GTP, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  15. Low CO2 Prevents Nitrate Reduction in Leaves 1

    PubMed Central

    Kaiser, Werner M.; Förster, Jutta

    1989-01-01

    The correlation between CO2 assimilation and nitrate reduction in detached spinach (Spinacia oleracea L.) leaves was examined by measuring light-dependent changes in leaf nitrate levels in response to mild water stress and to artificially imposed CO2 deficiency. The level of extractable nitrate reductase (NR) activity was also measured. The results are: (a) In the light, detached turgid spinach leaves reduced nitrate stored in the vacuoles of mesophyll cells at rates between 3 and 10 micromoles per milligram of chlorophyll per hour. Nitrate fed through the petiole was reduced at similar rates as storage nitrate. Nitrate reduction was accompanied by malate accumulation. (b) Under mild water stress which caused stomatal closure, nitrate reduction was prevented. The inhibition of nitrate reduction observed in water stressed leaves was reversed by external CO2 concentrations (10-15%) high enough to overcome stomatal resistance. (c) Nitrate reduction was also inhibited when turgid leaves were kept in CO2-free air or at the CO2-compensation point or in nitrogen. (d) When leaves were illuminated in CO2-free air, activity of NR decreased rapidly. It increased again, when CO2 was added back to the system. The half-time for a 50% change in activity was about 30 min. It thus appears that there is a rapid inactivation/activation mechanism of NR in leaves which couples nitrate reductase to net photosynthesis. PMID:16667163

  16. Integration of the electrochemical depolorized CO2 concentrator with the Bosch CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.

    1976-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).

  17. Consumption-based accounting of CO2 emissions

    PubMed Central

    Davis, Steven J.; Caldeira, Ken

    2010-01-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with the consumption of goods and services in each country. Consumption-based accounting of CO2 emissions differs from traditional, production-based inventories because of imports and exports of goods and services that, either directly or indirectly, involve CO2 emissions. Here, using the latest available data, we present a global consumption-based CO2 emissions inventory and calculations of associated consumption-based energy and carbon intensities. We find that, in 2004, 23% of global CO2 emissions, or 6.2 gigatonnes CO2, were traded internationally, primarily as exports from China and other emerging markets to consumers in developed countries. In some wealthy countries, including Switzerland, Sweden, Austria, the United Kingdom, and France, >30% of consumption-based emissions were imported, with net imports to many Europeans of >4 tons CO2 per person in 2004. Net import of emissions to the United States in the same year was somewhat less: 10.8% of total consumption-based emissions and 2.4 tons CO2 per person. In contrast, 22.5% of the emissions produced in China in 2004 were exported, on net, to consumers elsewhere. Consumption-based accounting of CO2 emissions demonstrates the potential for international carbon leakage. Sharing responsibility for emissions among producers and consumers could facilitate international agreement on global climate policy that is now hindered by concerns over the regional and historical inequity of emissions. PMID:20212122

  18. China's provincial CO2 emissions embodied in trade with implications for regional climate policy

    NASA Astrophysics Data System (ADS)

    Zhong, Zhangqi; Huang, Rui; Tang, Qinneng; Cong, Xiaonan; Wang, Zheng

    2015-03-01

    CO2 emissions embodied in trade have an important and far-reaching impact on CO2 emissions reduction obligations. Based on a multi-regional input-output analysis, this paper calculates China's provincial CO2 emissions embodied in trade and analyzes CO2 emissions embodied in trade per unit of value of trade in 30 Chinese provinces. Several climate policy options that potentially reduce the impact of trade on individual provinces are discussed. One finding from this study is that provincial CO2 emissions embodied in trade accounted for approximately 60.02% of China's CO2 emissions in 2007. The CO2 emissions embodied in imports and exports for 30 Chinese provinces differ widely, and remarkable differences in the CO2 emissions embodied in trade per unit of value of trade exist. Another important finding is that if provinces take binding commitments as a part of a coalition, instead of as individual provinces, then the impacts of trade can be reduced. Notably, however, the extent of reduction in a coalition varies in different provinces.

  19. CO2 Emissions Measurements at Kilauea Volcano, Hawaii USA

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Elias, T.

    2012-12-01

    The importance of volcanic CO2 release in Hawaii has been recognized for at least 100 years. The early gas collections of Jaggar, Shepherd, and Day showed that CO2 was the second most prevalent gas, next to water, in Kilauea's eruptive emissions. As one of Earth's few long-lived, effusive eruptions that have been closely monitored, Kilauea's measured CO2 emissions have served as a global benchmark. At Kilauea in the mid-1980's, conventional airborne, in-plume profiling measurements of CO2 underestimated emissions, due to plume geometry. Remotely-Piloted Aircraft (RPA) and vehicle-based measurements made a decade later showed that at Kilauea, CO2 concentrations were highest near ground level. Methods for quantifying emission rates of CO2 have since been improved via vehicle-based measurements of the ground-hugging plume. Gerlach and others, 2002, used the integrated CO2/SO2 molecular ratio and SO2 emission rate to derive the CO2 emission rate. Their results established a long-term characteristic CO2 emission rate for the summit of Kilauea of 8,500 t/d. This rate was based on several nearly equal measurements spanning a 4 year period, along with an independently reported, steady magma supply rate. Gerlach and others (1998) estimated a contemporaneous east rift CO2 emission rate of 300 t/d. From 2004 to mid-2007, summit CO2 emissions from Kilauea increased twofold on average, and then declined as a surge in magma supply eventually resulted in the forceful opening of a new vent within Halema`uma`u crater at Kilauea's summit in 2008. The elevated summit activity has provided opportunities to test other methods for measuring CO2 abundance in Kilauea's poorly mixed summit plume. Closed space continuous CO2 concentration monitoring within a subsurface vault, recorded transient (minutes-to-days) ambient fluctuations of thousands of parts per million, atop an overall slowly-varying (weeks to months) increase that led up to the 2008 summit eruption. Fumarole gas molecular CO2

  20. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  1. Chemical reactions occurring during direct solar reduction of CO2.

    PubMed

    Lyma, J L; Jensen, R J

    2001-09-28

    At high temperatures carbon dioxide may absorb solar radiation and react to form carbon monoxide and molecular oxygen. The CO, so produced, may be converted by well-established means to a combustible fuel, such as methanol. We intend to make a future demonstration of the solar reduction of CO2 based on these processes. This paper, however, addresses only the problem of preserving, or even enhancing, the initial photolytic CO by quenching the hot gas with colder H2O or CO2. We present model calculations with a reaction mechanism used extensively in other calculations. If a CO2 gas stream is heated and photolyzed by intense solar radiation and then allowed to cool slowly, it will react back to the initial CO2 by a series of elementary chemical reactions. The back reaction to CO2 can be terminated with the rapid addition of CO2, water, or a mixture. Calculations show that a three-fold quench with pure CO2 will stop the reactions and preserve over 90% of the initial photolytic CO. We find that water has one of two effects. It can either increase the CO level, or it can catalyze the recombination of O and CO to CO2. The gas temperature is the determining factor. If the quench gas is not sufficient to keep the temperature below approximately 1100 K, a chain-branching reaction dominates and the reaction to CO2 occurs. If the temperature stays below that level a chain terminating reaction dominates and the CO is increased. The former case occurs below approximately a fourfold quench with a water/CO2 mixture. The later case occurs when the quench is greater than fourfold. We conclude that CO2, H2O, or a mixture may quench the hot gas stream photolyzed by solar radiation and preserve the photolytic CO. PMID:11589409

  2. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  3. Linearity between temperature peak and bioenergy CO2 emission rates

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Gasser, Thomas; Bright, Ryan M.; Ciais, Philippe; Strømman, Anders H.

    2014-11-01

    Many future energy and emission scenarios envisage an increase of bioenergy in the global primary energy mix. In most climate impact assessment models and policies, bioenergy systems are assumed to be carbon neutral, thus ignoring the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation. Here, we show that the temperature peak caused by CO2 emissions from bioenergy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR; ref. ) to fossil fuel emissions is approximately constant, the CCR to bioenergy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bioenergy CO2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO2 emissions from bioenergy matters. Under the international agreement to limit global warming to 2 °C by 2100, early emissions from bioenergy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bioenergy is sourced from biomass with medium (50-60 years) or long turnover times (100 years).

  4. Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul

    This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.

  5. Global spatially explicit CO2 emission metrics for forest bioenergy.

    PubMed

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-01-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2(-1) (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2(-1) for GTP, and 2.14·10(-14) ± 0.11·10(-14) °C (kg yr(-1))(-1) for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales. PMID:26830755

  6. Global spatially explicit CO2 emission metrics for forest bioenergy

    PubMed Central

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-01-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2−1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2−1 for GTP, and 2.14·10−14 ± 0.11·10−14 °C (kg yr−1)−1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales. PMID:26830755

  7. Geothermal Electrical Production CO2 Emissions Study

    SciTech Connect

    Bloomfield, Kevin Kit; Moore, J. N.

    1999-10-01

    Emission of “greenhouse gases” into the environment has become an increasing concern. Deregulation of the electrical market will allow consumers to select power suppliers that utilize “green power.” Geothermal power is classed as “green power” and has power emissions of carbon dioxide per kilowatt-hour of electricity than even the cleanest of fossil fuels, natural gas. However, previously published estimates of carbon dioxide emissions are relatively old and need revision. This study estimates that the average carbon dioxide emissions from geothermal and fossil fuel power plants are: geothermal 0.18 , coal 2.13, petroleum 1.56 , and natural gas 1.03 pounds of carbon dioxide per kilowatt-hour respectively.

  8. Geothermal Electrical Production CO2 Emissions Study

    SciTech Connect

    K. K. Bloomfield; J. N. Moore

    1999-10-01

    Emission of �greenhouse gases� into the environment has become an increasing concern. Deregulation of the electrical market will allow consumers to select power suppliers that utilize �green power.� Geothermal power is classed as �green power� and has lower emissions of carbon dioxide per kilowatt-hour of electricity than even the cleanest of fossil fuels, natural gas. However, previously published estimates of carbon dioxide emissions are relatively old and need revision. This study estimates that the average carbon dioxide emissions from geothermal and fossil fuel power plants are: geothermal 0.18 , coal 2.13, petroleum 1.56 , and natural gas 1.03 pounds of carbon dioxide per kilowatt-hour respectively.

  9. Reducing CO2-Emission by using Eco-Cements

    NASA Astrophysics Data System (ADS)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  10. Energy Recovery from End-of-Life Tyres: Untapped Possibility to Reduce CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Dzene, Ilze; Rochas, Claudio; Blumberga, Dagnija; Rosa, Marika; Erdmanis, Andris

    2010-01-01

    In this paper the possibility to reduce CO2 emissions by energy recovery from waste tyres is discussed. The objective of the study is to analyze the end-of-life tyre market in Latvia, to assess the amount of used tyres available and to calculate the potential reduction of CO2 emissions by energy recovery from tyres in mineral products industry. Calculation results show that an improved collection and combustion of end-of-life tyres in the cement industry can save up to 17% of the present CO2 emissions in the mineral products industry.

  11. Throwing new light on the reduction of CO2.

    PubMed

    Ozin, Geoffrey A

    2015-03-18

    While the chemical energy in fossil fuels has enabled the rapid rise of modern civilization, their utilization and accompanying anthropogenic CO2 emissions is occurring at a rate that is outpacing nature's carbon cycle. Its effect is now considered to be irreversible and this could lead to the demise of human society. This is a complex issue without a single solution, yet from the burgeoning global research activity and development in the field of CO2 capture and utilization, there is light at the end of the tunnel. In this article a couple of recent advances are illuminated. Attention is focused on the discovery of gas-phase, light-assisted heterogeneous catalytic materials and processes for CO2 photoreduction that operate at sufficiently high rates and conversion efficiencies, and under mild conditions, to open a new pathway for an energy transition from today's "fossil fuel economy" to a new and sustainable "CO2 economy". Whichever of the competing CO2 capture and utilization approaches proves to be the best way forward for the development of a future CO2-based solar fuels economy, hopefully this can occur in a period short enough to circumvent the predicted adverse consequences of greenhouse gas climate change. PMID:25656300

  12. Systematic Risk Reduction: Chances and Risks of Geological Storage of CO2

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Wuerdemann, H.

    2010-12-01

    A profound risk assessment should be the basis of any underground activity such as the geological storage of CO2. The risks and benefits should be weighted, whereas the risks need to be systematically reduced. Even after some decades of geological storage of CO2 (as part of a carbon capture and storage CCS), only a few projects are based on an independent risk assessment. In some cases, a risk assessment was performed after the start of storage operation. Chances: - Are there alternatives to CCS with lower risk? - Is a significant CO2 reduction possible without CCS? - If we accept that CO2 emissions are responsible for climate change having a severe economical impact, we need to substantially reduce CO2 emissions. As long as economic growth is directly related to CO2 emissions, we need to decouple the two. - CCS is one of the few options - may be a necessity, if the energy market is not only dependent on demand. Risks: Beside the risk not to develop and implement CCS, the following risks need to be addressed, ideally in a multi independent risk assessment. - Personal Interests - Acceptance - Political interests - Company interests - HSE (Health Safety Environment) - Risk for Climate and ETS - Operational Risks If a multi independent risk assessment is performed and the risks are addressed in a proper way, a significant and systematic risk reduction can be achieved. Some examples will be given, based on real case studies, such as CO2SINK at Ketzin.

  13. CO2 reduction catalyzed by mercaptopteridine on glassy carbon.

    PubMed

    Xiang, Dongmei; Magana, Donny; Dyer, R Brian

    2014-10-01

    The catalytic reduction of CO2 is of great current interest because of its role in climate change and the energy cycle. We report a pterin electrocatalyst, 6,7-dimethyl-4-hydroxy-2-mercaptopteridine (PTE), that catalyzes the reduction of CO2 and formic acid on a glassy carbon electrode. Pterins are natural cofactors for a wide range of enzymes, functioning as redox mediators and C1 carriers, but they have not been exploited as electrocatalysts. Bulk electrolysis of a saturated CO2 solution in the presence of the PTE catalyst produces methanol, as confirmed by gas chromatography and (13)C NMR spectroscopy, with a Faradaic efficiency of 10-23%. FTIR spectroelectrochemistry detected a progression of two-electron reduction products during bulk electrolysis, including formate, aqueous formaldehyde, and methanol. A transient intermediate was also detected by FTIR and tentatively assigned as a PTE carbamate. The results demonstrate that PTE catalyzes the reduction of CO2 at low overpotential and without the involvement of any metal. PMID:25259884

  14. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions

    NASA Astrophysics Data System (ADS)

    Liska, Adam J.; Yang, Haishun; Milner, Maribeth; Goddard, Steve; Blanco-Canqui, Humberto; Pelton, Matthew P.; Fang, Xiao X.; Zhu, Haitao; Suyker, Andrew E.

    2014-05-01

    Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs , ) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs , , ). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha-1 yr-1 over five to ten years could decrease regional net SOC by an average of 0.47-0.66 Mg C ha-1 yr-1. These emissions add an average of 50-70 g CO2 per megajoule of biofuel (range 30-90) and are insensitive to the fraction of residue removed. Unless lost C is replaced, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

  15. Reduction of CO2 to C1 products and fuel

    USGS Publications Warehouse

    Mill, T.; Ross, D.

    2002-01-01

    Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.

  16. Dynamic of diffuse CO2 emission from Decepcion volcano, Antartica

    NASA Astrophysics Data System (ADS)

    Nolasco, D.; Padron, E.; Hernandez Perez, P. A.; Christian, F.; Kusakabe, M.; Wakita, H.

    2010-12-01

    Deception Island is a volcanic island located at the South Shetland Island off the Antartic Peninsula. It constitutes a back-arc stratovolcano with a basal diameter of ~ 30 Km, the volcano rises ~ 1400 m from the seafloor to the maximum height, Mt. Pond of 540 m above sea level and over half the island is covered by glaciers. This island has a horse-shoe shape with a large flooded caldera with a diameter of about 6x10 km and a maximum depth of 190 m. This caldera is open to the sea through a narrow channel of 500 m at Neptunes Bellows. Deception Island shows the most recent active volcanism, evidence of several eruptions since the late 18th century, and well-known eruptions in 1967, 1969 and 1970 caused serious damage to local scientific stations. The aim of this study is to estimate the CO2 emissions from the Deception volcano bay. In-situ measurements of CO2 efflux from the surface environment of Deception Bay were performed by means of a portable Non Dispersive Infrared spectrophotometer (NDIR) model LICOR Li800, following the accumulation chamber method coupled with a floating device. A total of 244 CO2 efflux measurements were performed in Deception bay in November and December, 2009. CO2 efflux values ranged from non-detectable up to 119,9 g m-2 d-1. To quantify the total CO2 emission from Deception Bay, a CO2 efflux map was constructed using sequential Gaussian simulations (sGs). Most of the studied area showed background levels of CO2 efflux (~4 g m-2 d-1), while peak levels (>20 g m-2 d-1) were mainly identified inside the Fumarole Bay, Telefon Bay and Pendulum Cove areas. The total CO2 emission from Deception Bay was estimated about 191 ± 9 t/d To study the temporal evolution of the CO2 efflux values at Fumarole bay, a two month time series of CO2 diffuse emission values was recorded by an automatic geochemical station, which was installed on December 8, 2009, which measured also soil temperature and humidity and meteorological parameters. CO2 values

  17. Correlations between Human Development and CO2 emissions: projections and implications

    NASA Astrophysics Data System (ADS)

    Rybski, D.; Costa, L.; Kropp, J.

    2011-12-01

    Although developing countries are called to participate on the efforts of reducing CO2 emissions in order to avoid dangerous climate change, the implications of CO2 reduction targets in human development standards of developing countries remain a matter of debate. We find positive and time dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Based on this empirical relation, extrapolated HDI, and three population scenarios extracted from the Millennium Ecosystem Assessment report, we estimate future cumulative CO2 emissions. If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8) as defined in the United Nations Human Development Report 2009. In particular, we estimate that at least 300Gt of cumulative CO2 emissions between 2000 and 2050 are necessary for the development of developing countries in the year 2000. This value represents 30% of a previously calculated CO2 budget yielding a 75% probability of limiting global warming to 2°C. Since human development has been proved to be time and country dependent, we plead for future climate negotiations to consider a differentiated CO2 emissions reduction scheme for developing countries based on the achievement of concrete development goals.

  18. Bio-Inspired Catalyst for CO2 Reduction

    NASA Astrophysics Data System (ADS)

    Bovell, Adonis; Warncke, Kurt

    2010-03-01

    A catalytic device for high specificity recognition and light-driven reduction of CO2 to energy rich biofuels is being developed by using the robust TIM barrel fold of the EutB subunit of the enzyme, ethanolamine-ammonia lyase (from Salmonella typhimurium), as a scaffold. The cobalt(I) form of the native cobalamin serves as the catalytic center. Results show that cobalamins bind with optimal micromolar affinity to purified EutB, and undergo reductive activation. Molecular biology techniques have been used to generate histidine-tagged EutB subunit for high throughput mutagenesis studies. Rational active site modifications of EutB have been made to satisfy the criteria of specific CO2 binding, reduction, and proton delivery.

  19. Development of a preprototype sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1980-01-01

    A preoprototype Sabatier CO2 Reduction Subsystem was successfully designed, fabricated and tested. The lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical (equivalent to 5 persons steady state). The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  20. Development of an advanced Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Cusick, R. J.

    1981-01-01

    A preprototype Sabatier CO2 reduction subsystem was successfully designed, fabricated and tested. The lightweight, quick starting (less than 5 minutes) reactor utlizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a simple, passively controlled reactor design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with process flows equivalent to a crew size of up to five persons. The subsystem requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation.

  1. Emission scenario of non-CO2 gases from energy activities and other sources in China.

    PubMed

    Jiang, Kejun; Hu, Xiulian

    2005-09-01

    This paper gives a quantitative analysis on the non-CO(2) emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO(2) emission reduction effect. The research shows that the future non-CO(2) emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO(2) emissions is a problem as challenging and pressing as that of CO(2) emissions. This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO(2) emissions control and mitigation. PMID:20549450

  2. Emission scenario of non-CO2 gases from energy activities and other sources in China.

    PubMed

    Jiang, Kejun; Hu, Xiulian

    2005-12-01

    This paper gives a quantitative analysis on the non-CO2 emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO2 emission reduction effect. The research shows that the future non-CO2 emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO2 emissions is a problem as challenging and pressing as that of CO2 emissions. This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO2 emissions control and mitigation. PMID:16512217

  3. Refined estimate of China's CO2 emissions in spatiotemporal distributions

    NASA Astrophysics Data System (ADS)

    Liu, M.-M.; Wang, H.-K.; Wang, H.-M.; Oda, T.; Zhao, Y.; Yang, X.-H.; Zhang, R.-R.; Zhang, B.; Bi, J.; Chen, J.-M.

    2013-07-01

    Being the largest contributor to the global source of fossil-fuel CO2 emissions, China's emissions need to be accurately quantified and well understood. Previous studies have usually focused on the amount of national emissions and rarely discussed their spatiotemporal distributions, which are also crucial for both carbon flux and carbon management. In this study, we calculated China's CO2 emissions from fossil fuel use and industrial processes using provincial statistics and then mapped those emissions at 0.25° resolution on monthly basis. Several key steps have been implemented to gain a better understanding of the spatiotemporal distributions, including (1) development and application of China's CO2 emission inventories using provincial statistics; (2) separate calculations of emissions from large point sources and accurate identification of their geographical locations; (3) development of 1 km×1 km gridded population and GDP data for China from 2000 to 2009 and application of them as dynamic spatial proxies to allocate emissions; and (4) monthly variation curves of CO2 emissions from various sectors were developed for each province and applied to our inventory. China's total CO2 emission from fossil fuel and industrial process have increased from 3.6 billion tons in 2000 to 8.6 billion tons in 2009, which may be off by 14-18% and are enough to skew global totals. And the resulting spatiotemporal distributions of our inventories also differed greatly in several ways from those derived using national statistics and population-based approach for the various economic development levels, industrial and energy structures, and even large point emissions sources within China and each province.

  4. Refined estimate of China's CO2 emissions in spatiotemporal distributions

    NASA Astrophysics Data System (ADS)

    Liu, M.; Wang, H.; Wang, H.; Oda, T.; Zhao, Y.; Yang, X.; Zang, R.; Zang, B.; Bi, J.; Chen, J.

    2013-11-01

    Being the largest contributor to the global source of fossil-fuel CO2 emissions, China's emissions need to be accurately quantified and well understood. Previous studies have usually focused on the amount of national emissions and rarely discussed their spatiotemporal distributions, which are also crucial for both carbon flux and carbon management. In this study, we calculated China's CO2 emissions from fossil fuel use and industrial processes using provincial statistics and then mapped those emissions at 0.25° resolution on a monthly basis. Several key steps have been implemented to gain a better understanding of the spatiotemporal distributions, including (1) development and application of China's CO2 emission inventories using provincial statistics; (2) separate calculations of emissions from large point sources and accurate identification of their geographical locations; (3) development of 1 km × 1 km gridded population and GDP (gross domestic product) data for China from 2000 to 2009 and application of them as dynamic spatial proxies to allocate emissions; and (4) monthly variation curves of CO2 emissions from various sectors that were developed for each province and applied to our inventory. China's total CO2 emission from fossil fuels and industrial processes has increased from 3.6 billion tons in 2000 to 8.6 billion tons in 2009, which may be off by 14-18% and is enough to skew global totals. The resulting spatiotemporal distributions of our inventories also differed greatly in several ways from those derived using a national statistics and population-based approach for the various economic development levels, industrial and energy structures, and even large point emission sources within China and each province.

  5. Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.

    PubMed

    Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A

    2015-04-01

    Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted. PMID:25618308

  6. Partitioning of Urban CO2ff Emissions By Source Sector: Results from the Influx Project

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Karion, A.; Sweeney, C.; Newberger, T.; Lehman, S.; Davis, K. J.; Lauvaux, T.; Miles, N. L.; Richardson, S.; Shepson, P. B.; Cambaliza, M. O. L.; Gurney, K. R.; Patarasuk, R.; Whetstone, J. R.

    2014-12-01

    Urban areas contribute ~75% of fossil fuel CO2 (CO2ff) emissions, and city governments are often leading the way in emission reduction efforts. As emissions are regulated and assigned a price, there is an increasing need to independently evaluate the reported bottom-up emissions and to attribute them to specific source sectors (e.g. electricity production, industry, vehicles). We demonstrate how multispecies atmospheric observations can be used to achieve this. The Indianapolis Flux Experiment (INFLUX) aims to develop and evaluate methods for detection and attribution of urban GHG fluxes. The INFLUX observation network includes twelve towers measuring in situ CO2 and CO and flask measurements of another 50 species. 14CO2 measurements have shown that in winter, the total CO2 enhancement over Indianapolis approximates the CO2ff added. This somewhat surprising result allows us to use the wintertime in situ total CO2 and CO measurements to determine the observed CO:CO2ff ratio (RCO) at high resolution. First, we demonstrate that the USEPA CO inventory for Indianapolis overestimates CO emissions by a factor of about 2.5. Then we use the Hestia bottom-up CO2ff data product and revised characteristic RCO values for each CO2ff source sector to predict the diurnal cycle in RCO for Indianapolis. The tower observations and bottom-up RCO estimates are consistent during the daytime, but the observed RCO is significantly higher than the bottom-up estimate during the night. We show how the bottom-up and top-down methods can be used together to determine the cause of this discrepancy and improve CO2ff estimates from both methods.

  7. Quantifying anthropogenic greenhouse gas emissions using atmospheric 14CO2

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Lehman, S.; Montzka, S.; Sweeney, C.; Tans, P.; Turnbull, J.

    2008-12-01

    Δ14C, the ratio of radiocarbon to total carbon, is a theoretically ideal tracer for recently added fossil fuel CO2, because fossil fuel is 14C-free. In contrast, all other carbon reservoirs that exchange CO2 with the atmosphere, like the terrestrial biosphere and the oceans, are relatively rich in 14C. Since 2004, NOAA/ESRL and the University of Colorado Institute for Arctic and Alpine Research (INSTAAR) Radiocarbon Laboratory have worked together to make high precision (< 2 ‰) Δ14C measurements. Our two sites in the eastern USA, Portsmouth, NH (NHA) and Cape May, NJ (CMA) exhibit large CO2 signals from anthropogenic and biogenic fluxes. Using Δ14C, however, we are able to quantitatively partition the boundary layer CO2 signal into biogenic and fossil fuel components (Cbio and Cff). Cff exhibits correlations with many anthropogenic species, including many HFCs and HCFCs, which are measured from the same air samples. Furthermore, our preliminary data show many emission ratios changing seasonally. Atmospheric correlations of a given gas to Cff can simply be multiplied by the well-known emissions of fossil fuel-CO2 to give direct emission estimates of the correlated gas. In this presentation we will show calculated emissions of a variety of HFCs and HCFCs for the northeastern U.S.A. in which "footprints" from the FLEXPART Lagrangian particle dispersion model are used to link atmospheric correlations to specific areas.

  8. Electrochemical reduction of CO 2 in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang; Zhao, Lin

    This paper describes results on the electrochemical reduction of carbon dioxide using the same device as the typical planar nickel-YSZ cermet electrode supported solid oxide fuel cells (H 2-CO 2, Ni-YSZ|YSZ|LSCF-GDC, LSCF, air). Operation in both the fuel cell and the electrolysis mode indicates that the electrodes could work reversibly for the charge transfer processes. An electrolysis current density of ≈1 A cm -2 is observed at 800 °C and 1.3 V for an inlet mixtures of 25% H 2-75% CO 2. Mass spectra measurement suggests that the nickel-YSZ cermet electrode is highly effective for reduction of CO 2 to CO. Analysis of the gas transport in the porous electrode and the adsorption/desorption process over the nickel surface indicates that the cathodic reactions are probably dominated by the reduction of steam to hydrogen, whereas carbon monoxide is mainly produced via the reverse water gas shift reaction.

  9. Interpreting trade-related CO2 emission transfers

    NASA Astrophysics Data System (ADS)

    Jakob, Michael; Marschinski, Robert

    2013-01-01

    Most industrialized countries are net importers of carbon emissions, that is, they release fewer emissions for the production of their total exported goods and services than the amount generated (by their trading partners) for producing their total imported goods and services. But what do such carbon trade-deficits imply in terms of global CO2 emissions and the design of carbon trade-policies? Drawing on trade theory, this Perspective argues that a deeper understanding of these observed net emission transfers is required to assess how international trade affects global emissions and proposes a method to disentangle the underlying determinants of such transfers.

  10. A Bio-Inspired Catalyst for CO2 Reduction

    NASA Astrophysics Data System (ADS)

    Bovell, Adonis; Warncke, Kurt

    2009-11-01

    Efficient storage of solar energy is critical for the next generation of solar energy conversion systems. Herein is described a catalytic module, using the robust TIM barrel fold of the EutB subunit of ethanolamine-ammonia lyase (EAL), for high specificity recognition and light-driven reduction of CO2 to energy rich biofuels. EAL catalyzes the deamination of ethanolamine via a free radical mechanism, by using an adenosylcobalamin (AdoCbl) cofactor. Our aim is to use the reducing power of the cobalt(I) form of the cofactor to drive the reduction of CO2. Molecular biology techniques have been used to generate histidine-tagged EutB subunits of EAL for high throughput protein purification. The binding of cobalamins to EutB was probed by using tryptophan fluorescence quenching. The Hill constant (KH) and coefficient (nH) for AdoCbl-EutB binding were determined as 33 μM and 1.3, respectively. The results show that cob(III)alamin binds to isolated EutB, and suggest that Co(II) and Co(I) states will also bind. Rational active site modifications of EutB will be made to facilitate specific CO2-Co(I) binding and to introduce a proton delivery network. The results will give insight into the challenging task of rational enzyme design.

  11. Kinetics of CO2 Reduction over Nonstoichiometric Ceria

    PubMed Central

    2015-01-01

    The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ pCO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed. PMID:26693270

  12. Evaluation of CO2 Emissions from End-use Heat and Power Supplying Systems

    NASA Astrophysics Data System (ADS)

    Kiho, Mariko; Endo, Yasuyuki; Ito, Akito

    It is required for the energy systems to satisfy simultaneous solutions to the problems, such as cost reduction, global warming, assurance of energy security, and resource conservation. To evaluate optimal end-use energy systems from the stand point of CO2 emissions, we apply a comprehensive approach based on the life cycle assessment. Several combinations of electricity and heat supplying systems are compared. They include the electricity driven heat pump, gas engine co-generation, absorption refrigeration and so on. Calculations represent total CO2 emission by energy consumption of several operation patterns, based on the actual data of energy demand, CO2 intensity of the grid electricity and the equipment specifications. The results indicate that CO2 emissions can be minimized by maximum utilization of electricity from the grid.

  13. CO2 emission mitigation by geothermal development - especially with geothermal heat pumps

    NASA Astrophysics Data System (ADS)

    Rybach, L.

    2009-04-01

    Geothermal technologies for power generation or direct use operate with little or no greenhouse gas emissions. Since no burning processes are involved they are low in CO2 emissions. Geothermal energy development has thus great CO2 emission reduction potential when substituting fossil sources of energy. Geothermal heat pumps (GHP) represent the fastest growing branch of geothermal technology; they use the ubiquitous shallow geothermal resource. GHPs are electricity consumers, nevertheless they can contribute to the fight against climatic warming. Such systems are now increasingly used for space heating, cooling, and to provide domestic hot water. With heat pump systems the use of fossil primary energy sources can be avoided, thus GHPs contribute to energy security: many countries must rely in their space heating systems on imported fossil fuels. The degree of dependence on these can be reduced. Since heat pumps are usually driven by electric components the origin of the electricity and the corresponding CO2 emission must be considered. A compilation shows that there are great differences in this respect from country to country. The same (=electricity need with CO2 emission consequences) applies to GHPs too. This means that by new geothermal heat pumps only additional CO2 emission can be avoided ("saving"), not a reduction of actual emissions. When GHPs are installed in refurbishment (to replace fossil-fueled systems) actual emission reduction can be achieved. Emission reduction is also evident when electric heater/cooler installations, driven by fossil-based electricity, are replaced by GHP systems. Numerical examples are presented about saving and reduction.

  14. Atmospheric verification of anthropogenic CO2 emission trends

    NASA Astrophysics Data System (ADS)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  15. Estimates of CO2 traffic emissions from mobile concentration measurements

    NASA Astrophysics Data System (ADS)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  16. Mechanism of acid reduction at low and high overpotential metal electrodes in the presence and absence of CO2: Implications for CO2 reduction by N-heterocycles

    NASA Astrophysics Data System (ADS)

    Zeitler, Elizabeth L.

    Carbon dioxide reduction is of public interest to synthesize useful materials from CO2 and for storage of renewable energy in a carbon-constrained world. Scientifically, CO2 reduction is of fundamental interest to understand the activation of small molecules and stable chemical bonds. Pyridinium catalysts have been observed to lower the overpotential for reduction of CO2 to methanol at platinum and p-GaP electrodes. In this study, the reduction of pyridinium at a variety of metal electrode surfaces was explored along with its interaction with CO2. The reduction of any weak acid analyte on platinum was found to proceed via a one-electron, proton-coupled process forming H2. The reduction potential could be predicted entirely by acid pKa. Equilibrium and kinetic isotope effects supported this assignment. A prepeak feature observed for acid reductions was examined. Reduction forming a pi-radical was observed for 4,4'-bipyridinium at platinum, gold and glassy carbon via spectroelectrochemistry. Only a small increase in radical decay was observed in the presence of CO 2. Pyridinium reduction at gold was found to occur via proton reduction. Protonated and unprotonated N-heterocycle reductions on glassy carbon can best be explained via pi-reduction. The interaction of CO2 with pyridine was examined. Current in the presence of CO2 was enhanced at slow scan rates due to the slow hydration of CO2 into carbonic acid, leading to pyridinium protonation and is not diagnostic of CO2 reduction. A variety of weak acid analytes showed current enhancement, with greater pKa values leading to greater enhancement. Solution buffering at the electrode interface by CO2 was examined. Current enhancement of pyridinium under CO2 was greater than the sum of the currents for background CO2 reduction and pyridinium reduction, indicating pyridine enhanced CO2 hydration.

  17. Basin scale controls on CO2 and CH4 emissions from the Upper Mississippi River

    NASA Astrophysics Data System (ADS)

    Crawford, John T.; Loken, Luke C.; Stanley, Emily H.; Stets, Edward G.; Dornblaser, Mark M.; Striegl, Robert G.

    2016-03-01

    The Upper Mississippi River, engineered for river navigation in the 1930s, includes a series of low-head dams and navigation pools receiving elevated sediment and nutrient loads from the mostly agricultural basin. Using high-resolution, spatially resolved water quality sensor measurements along 1385 river kilometers, we show that primary productivity and organic matter accumulation affect river carbon dioxide and methane emissions to the atmosphere. Phytoplankton drive CO2 to near or below atmospheric equilibrium during the growing season, while anaerobic carbon oxidation supports a large proportion of the CO2 and CH4 production. Reductions of suspended sediment load, absent of dramatic reductions in nutrients, will likely further reduce net CO2 emissions from the river. Large river pools, like Lake Pepin, which removes the majority of upstream sediments, and large agricultural tributaries downstream that deliver significant quantities of sediments and nutrients, are likely to persist as major geographical drivers of greenhouse gas emissions.

  18. The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies.

    PubMed

    Azam, Muhammad; Khan, Abdul Qayyum; Bin Abdullah, Hussin; Qureshi, Muhammad Ejaz

    2016-04-01

    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare. PMID:26620862

  19. Reconstruction of historic fossil CO2 emissions using radiocarbonmeasurements from tree rings

    NASA Astrophysics Data System (ADS)

    Norris, M. W.; Turnbull, J. C.; Trimble, M.; Keller, E. D.; Baisden, W. T.; Renwick, J. A.

    2014-12-01

    This project aims to reconstruct historic fossil CO2 emissions from a point source. As a test case we use the Vector gas processing plant in Taranaki New Zealand which has emitted 0.1Tg C yr-1 (as CO2) since 1970. Previous work using air samples found 2-5 ppm mole fraction CO2ff 600m downwind of the plant; this study extends the data set back 30 years using radiocarbon measurements in tree rings. Trees incorporate CO2 from the local atmosphere into their cellulose which is laid down in annual growth rings during photosynthesis. To relate this to the fossil CO2 content of the air we measure 14C in annual tree rings at a local clean air site and compare this to measurements of 14C in the annual ring for the same year at our test site. Fossil CO2 is devoid of 14C so addition of CO2ff will cause an observed decrease in14C in samples directly related to the amount of CO2ff present. Trees growing immediately downwind of the Vector plant and from clean air locations in Taranaki and Wellington were cored. Annual rings were counted and cut into one year growth increments. Testing was performed on two cellulose extraction methods to confirm removal of contaminating material before the cellulose component was chemically isolated, combusted, graphitised and 14C measured by Accelerator Mass Spectrometry. We will present initial results of the data; showing that Wellington tree and Taranaki clean air trees compare well with the Wellington atmospheric record whereas trees growing downwind of the Vector plant demonstrate lower 14C content consistent with fossil CO2 addition. We compare historic CO2ff emissions as sampled by the trees with reported emissions from the Vector plant to quantify and evaluate the ability of the technique to monitor changes in fossil CO2 emissions. We demonstrate how this technique could be applied alongside complimentary methods to evaluate fossil CO2 emissions at point sources worldwide to determine compliance of CO2 emitters with emission reduction

  20. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    NASA Astrophysics Data System (ADS)

    Nassar, R.; Jones, D. B. A.; Suntharalingam, P.; Chen, J. M.; Andres, R. J.; Wecht, K. J.; Yantosca, R. M.; Kulawik, S. S.; Bowman, K. W.; Worden, J. R.; Machida, T.; Matsueda, H.

    2010-12-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth's carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (~0.19 Pg C yr-1), 3-D spatially-distributed emissions from aviation (~0.16 Pg C yr-1), and 3-D chemical production of CO2 (~1.05 Pg C yr-1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May-June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (~3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (~10%) with a complex spatial structure

  1. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure

  2. A "carbonizing dragon": China's fast growing CO2 emissions revisited.

    PubMed

    Minx, Jan C; Baiocchi, Giovanni; Peters, Glen P; Weber, Christopher L; Guan, Dabo; Hubacek, Klaus

    2011-11-01

    China's annual CO(2) emissions grew by around 4 billion tonnes between 1992 and 2007. More than 70% of this increase occurred between 2002 and 2007. While growing export demand contributed more than 50% to the CO(2) emission growth between 2002 and 2005, capital investments have been responsible for 61% of emission growth in China between 2005 and 2007. We use structural decomposition analysis to identify the drivers for China's emission growth between 1992 and 2007, with special focus on the period 2002 to 2007 when growth was most rapid. In contrast to previous analysis, we find that efficiency improvements have largely offset additional CO(2) emissions from increased final consumption between 2002 and 2007. The strong increases in emissions growth between 2002 and 2007 are instead explained by structural change in China's economy, which has newly emerged as the third major emission driver. This structural change is mainly the result of capital investments, in particular, the growing prominence of construction services and their carbon intensive supply chain. By closing the model for capital investment, we can now show that the majority of emissions embodied in capital investment are utilized for domestic household and government consumption (35-49% and 19-36%, respectively) with smaller amounts for the production of exports (21-31%). Urbanization and the associated changes in lifestyle are shown to be more important than other socio-demographic drivers like the decreasing household size or growing population. We argue that mitigation efforts will depend on the future development of these key drivers, particularly capital investments which dictate future mitigation costs. PMID:21888374

  3. Soda-fuel metallurgy: Metal ions for carbon neutral CO2 and H2O reduction

    NASA Astrophysics Data System (ADS)

    Neelameggham, Neale R.

    2009-04-01

    The role of minerals in biomass formation is understood only to a limited extent. When the term “photosynthesis—CO2 and H2O reduction of sugars, using solar energy”—is used, one normally thinks of chlorophyll as a compound containing magnesium. Alkali and alkaline earth metals present in leaf cells in the form of ions are equally essential in this solar energy bioconversion coupled with nitrogen fixation. Application of some of these principles can lead to artificial carbon-neutral processes on an industrial scale close to the concentrated CO2 emission sources.

  4. Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Heping; Zhang, Qianyu; Katul, Gabriel G.; Cole, Jonathan J.; Chapin, F. Stuart, III; MacIntyre, Sally

    2016-06-01

    CO2 emissions from inland waters are commonly determined by indirect methods that are based on the product of a gas transfer coefficient and the concentration gradient at the air water interface (e.g., wind-based gas transfer models). The measurements of concentration gradient are typically collected during the day in fair weather throughout the course of a year. Direct measurements of eddy covariance CO2 fluxes from a large inland water body (Ross Barnett reservoir, Mississippi, USA) show that CO2 effluxes at night are approximately 70% greater than those during the day. At longer time scales, frequent synoptic weather events associated with extratropical cyclones induce CO2 flux pulses, resulting in further increase in annual CO2 effluxes by 16%. Therefore, CO2 emission rates from this reservoir, if these diel and synoptic processes are under-sampled, are likely to be underestimated by approximately 40%. Our results also indicate that the CO2 emission rates from global inland waters reported in the literature, when based on indirect methods, are likely underestimated. Field samplings and indirect modeling frameworks that estimate CO2 emissions should account for both daytime–nighttime efflux difference and enhanced emissions during synoptic weather events. The analysis here can guide carbon emission sampling to improve regional carbon estimates.

  5. Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir

    DOE PAGESBeta

    Liu, Heping; Zhang, Qianyu; Katul, Gabriel G.; Cole, Jonathan J.; Chapin, III, F. Stuart; MacIntyre, Sally

    2016-05-24

    CO2 emissions from inland waters are commonly determined by indirect methods that are based on the product of a gas transfer coefficient and the concentration gradient at the air water interface (e.g., wind-based gas transfer models). The measurements of concentration gradient are typically collected during the day in fair weather throughout the course of a year. Direct measurements of eddy covariance CO2 fluxes from a large inland water body (Ross Barnett reservoir, Mississippi, USA) show that CO2 effluxes at night are approximately 70% greater than those during the day. At longer time scales, frequent synoptic weather events associated with extratropicalmore » cyclones induce CO2 flux pulses, resulting in further increase in annual CO2 effluxes by 16%. Therefore, CO2 emission rates from this reservoir, if these diel and synoptic processes are under-sampled, are likely to be underestimated by approximately 40%. Our results also indicate that the CO2 emission rates from global inland waters reported in the literature, when based on indirect methods, are likely underestimated. Field samplings and indirect modeling frameworks that estimate CO2 emissions should account for both daytime-nighttime efflux difference and enhanced emissions during synoptic weather events. Furthermore, the analysis here can guide carbon emission sampling to improve regional carbon estimates.« less

  6. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    NASA Astrophysics Data System (ADS)

    Nassar, R.; Jones, D. B. A.; Suntharalingam, P.; Chen, J. M.; Andres, R. J.; Wecht, K. J.; Yantosca, R. M.; Kulawik, S. S.; Bowman, K. W.; Worden, J. R.; Machida, T.; Matsueda, H.

    2010-07-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth's carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 simulation with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (~0.19 Pg C/yr), 3-D spatially-distributed emissions from aviation (~0.16 Pg C/yr), and 3-D chemical production of CO2 (~1.05 Pg C/yr). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of carbon precursor as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May-June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (~3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (~10%) with a complex spatial

  7. GOSAT specific observation targeting urban CO2 emissions

    NASA Astrophysics Data System (ADS)

    Imasu, R.; Inoue, G.; Kondo, H.; Niwa, Y.; Matsueda, H.; Machida, T.; Matsumi, Y.; Kawasaki, M.; Nakayama, T.; Hayashi, Y.; Inagoya, A.; Saitoh, N.; Yokota, T.

    2010-12-01

    One important step to estimate total carbon dioxide (CO2) emissions from a mega-sized city is to monitor concentrations at sufficiently numerous observation sites and thereby cover all regions of the city. The greenhouse gas observing satellite (GOSAT) has functioned normally since its launch on 23 January 2009. Although its main purpose is the measurement of greenhouse gases globally to reduce the estimation error of source/sink strength in a sub-continental size region, it can measure gas concentrations at multiple targets on a regional scale during one orbital over-flight. The science team of the project has initiated and conducted special observations to demonstrate the usefulness of intensive observations for quantifying urban CO2 emissions. The main sensor of the satellite, the “thermal and near infrared sensor for carbon observation Fourier transform spectrometer (TANSO-FTS)”, has been operated in a “specific operation mode” to measure carbon dioxide, methane, and tropospheric ozone at 4 × 4 (totally 16) mesh points over the Kanto Plain, the center of which is Tokyo. This specific observation covers about 100 km × 100 km of the plain. To validate the satellite observations and to measure the vertical structure of the atmospheric condition, in situ and remote sensing measurements were conducted. Collocating the satellite over-path, a group from Nagoya University released CO2 sondes from three sites. Furthermore, a group from Kyoto University measured the vertical profile of CO2 concentration using a fiber etalon spectrometer. One satellite observation footprint is very close to Narita International Airport, where CO2 data are most frequently obtained by the CONTRAIL project. These observational data will be analyzed using CO2 transport models. The AIST meso-scale model (AIST-MM), whose highest spatial resolution is 1 km, is used to evaluate CO2 emissions from the urban area. Boundary conditions in a large area outside the regional target are

  8. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution

    PubMed Central

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun

    2014-01-01

    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  9. Misrepresentation of the IPCC CO2 emission scenarios

    SciTech Connect

    Manning, Martin; Edmonds, James A.; Emori, S.; Grubler, Arnulf; Hibbard, Kathleen A.; Joos, Fortunat; Kainuma, M.; Keeling, Ralph; Kram, Tom; Manning, Andrew; Meinhausen, Malte; Moss, Richard H.; Nakicenovic, Nebojsa; Riahi, Keywan; Rose, Steven K.; Smith, Steven J.; Swart, Robert; Van Vuuren, Detlef

    2010-06-01

    Estimates of recent fossil fuel CO2 emissions have been compared with the IPCC SRES (Special Report on Emission Scenarios) emission scenarios that had been developed for analysis of future climate change, impacts and mitigation. In some cases this comparison uses averages across subgroups of SRES scenarios and for one category of greenhouse gases (industrial sources of CO2). That approach can be misleading and cause confusion as it is inconsistent with many of the papers on future climate change projections that are based on a specific subset of closely scrutinized SRES scenarios, known as illustrative marker scenarios. Here, we show that comparison between recent estimates of fossil fuel emissions trends and the SRES illustrative marker scenarios leads to the conclusion that recent trends are not outside the SRES range. Furthermore, the recent economic downturn appears to have brought actual emission back toward the middle of the SRES illustrative marker scenarios. We also note that SRES emission scenarios are designed to reflect potential alternative long-term trends in a world without climate policy intervention and the trend in the resulting climate change is not sensitive to short-term fluctuations.

  10. A growing commitment to future CO2 emissions

    NASA Astrophysics Data System (ADS)

    Damon Matthews, H.

    2014-11-01

    The construction of new fossil fuel energy infrastructure implies a commitment to burn fossil fuels and therefore produce CO2 emissions for several decades into the future. The recent letter by Davis and Socolow (2014 Environ. Res. Lett. 9 084018) highlights the current and growing commitment to future emissions, and argues that this emission commitment should be accounted for at the time of new construction. The idea of accounting for future committed emissions associated with current energy policy decisions is compelling and could equally be applied to other aspects of the fossil fuel supply chain, such as investing in the development of new fossil fuel reserves. There is evidence, for example, that oil reserves are growing faster that the rate of extraction, implying a growing future emissions commitment that is likely incompatible with climate mitigation targets.

  11. Evaluation of energy recovery and CO2 reduction potential in Japan through integrated waste and utility management.

    PubMed

    Horio, M; Shigeto, S; Shiga, M

    2009-07-01

    This paper examines the potential of integrated waste and utility power management over the mid-term planning horizon in Japan. Energy recovery and CO(2) emission reduction were estimated under two situations: (1) energy recovery efforts within the current waste management/power generation framework and (2) integrated waste management with sewage treatment systems and electric power industries. Scenario simulation results showed that under the current policy framework it is not feasible to achieve large energy recovery and CO(2) emission reduction, while the integrated waste management scenarios show the potential of large energy recovery which is equivalent to about an 18 million t-CO(2) emission reduction. The utilization of dry wastes for power generation at existing fossil power stations is significant in achieving the result. We also consider the effects of the 'CO(2) emission per GW generated' for electric power generation on the total CO(2) emission reduction because it varies by country and assumptions selected. Although this research did not include an economic analysis, based on estimated CO(2) emissions and energy recovery, the integrated scenarios indicate a large potential in countries that have high dependence of fossil power generation and relatively low power generation efficiency. PMID:19272763

  12. 40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring...

  13. 40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring...

  14. Atmospheric inversion for cost effective quantification of city CO2 emissions

    NASA Astrophysics Data System (ADS)

    Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.

    2015-11-01

    uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the inversion can meet this requirement. As for major sectoral CO2 emissions, the uncertainties in the inverted emissions using 70 stations are reduced significantly over that obtained using 10 stations by 32 % for commercial and residential buildings, by 33 % for road transport and by 18 % for the production of energy by power plants, respectively. With 70 stations, the uncertainties from the inversion become of 15 % 2-sigma annual uncertainty for dispersed building emissions, and 18 % for emissions from road transport and energy production. The inversion performance could be further improved by optimal design of station locations and/or by assimilating additional atmospheric measurements of species that are co-emitted with CO2 by fossil fuel combustion processes with a specific signature from each sector, such as carbon monoxide (CO). Atmospheric inversions based on continuous CO2 measurements from a large number of cheap sensors can thus deliver a valuable quantification tool for the monitoring and/or the verification of city CO2 emissions (baseline) and CO2 emission reductions (commitments).

  15. Study of Pyridine-Mediated Electrochemical Reduction of CO2 to Methanol at High CO2 Pressure.

    PubMed

    Rybchenko, Sergey I; Touhami, Dalila; Wadhawan, Jay D; Haywood, Stephanie K

    2016-07-01

    The recently proposed highly efficient route of pyridine-catalyzed CO2 reduction to methanol was explored on platinum electrodes at high CO2 pressure. At 55 bar (5.5 MPa) of CO2 , the bulk electrolysis in both potentiostatic and galvanostatic regimes resulted in methanol production with Faradaic yields of up to 10 % for the first 5-10 C cm(-2) of charge passed. For longer electrolysis, the methanol concentration failed to increase proportionally and was limited to sub-ppm levels irrespective of biasing conditions and pyridine concentration. This limitation cannot be removed by electrode reactivation and/or pre-electrolysis and appears to be an inherent feature of the reduction process. In agreement with bulk electrolysis findings, the CV analysis supported by simulation indicated that hydrogen evolution is still the dominant electrode reaction in pyridine-containing electrolyte solution, even with an excess CO2 concentration in the solution. No prominent contribution from either a direct or coupled CO2 reduction was found. The results obtained suggest that the reduction of CO2 to methanol is a transient process that is largely decoupled from the electrode charge transfer. PMID:27253886

  16. Detecting small scale CO2 emission structures using OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen

    2016-04-01

    Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology

  17. CO2 Emissions Generated by a Fall AGU Meeting

    NASA Astrophysics Data System (ADS)

    osborn, G.; Malowany, K. S.; Samolczyk, M. A.

    2011-12-01

    The process of reporting on and discussing geophysical phenomena, including emissions of greenhouse gases, generates more greenhouse gases. At the 2010 fall meeting of the AGU, 19,175 delegates from 81 countries, including, for example, Eritrea, Nepal, and Tanzania, traveled a total of 156,000,000 km to congregate in San Francisco for five days. With data on home bases of participants provided by AGU, we estimated the CO2 emissions generated by travel and hotel stays of those participants. The majority of the emissions from the meeting resulted from air travel . In order to estimate the footprint of such travel, (a) distances from the largest airport in each country and American state (except Canada and California) to San Francisco were tabulated , (b) basic distances were converted to emissions using the TerraPass (TRX Travel Analytics) carbon calculator, (c) it was assumed that half the California participants would fly and half would drive, (d) it was assumed that half of Canadians would fly out of Toronto and half out of Vancouver, and (e) a fudge factor of 10% was added to air travel emissions to account for connecting flights made by some participants to the main airports in the respective countries (connecting flights are disproportionately significant because of high output during takeoff acceleration). Driving impacts were estimated with a Transport Direct/RAC Motoring Services calculator using a 2006 Toyota Corolla as a standard car. An average driving distance of 50 km to the departure airport, and from the airport upon return, was assumed. Train impacts were estimated using the assumption that all flying participants would take BART from SFO. Accomodation impacts were estimated using an Environmental Protection Agency calculator, an assumed average stay of 3 nights, and the assumption that 500 participants commuted from local residences or stayed with friends. The above assumptions lead to an estimate, which we consider conservative, of 19 million kg of

  18. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    SciTech Connect

    Erickson, D; Mills, R; Gregg, J; Blasing, T J; Hoffman, F; Andres, Robert Joseph; Devries, M; Zhu, Z; Kawa, S

    2008-01-01

    Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model atmospheric CO2 concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO2 in and near those regions where anthropogenic CO2 is released to the atmosphere. Local variations of 2-6 ppmv CO2 in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO2 emissions.

  19. Climate, CO2, and demographic impacts on global wildfire emissions

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Jiang, L.; Arneth, A.

    2015-09-01

    Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO2 fertilization of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation. Here, we present a series of 124 simulations with the LPJ-GUESS-SIMFIRE global dynamic vegetation - wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire weather, fuel continuity and human population density. The simulations comprise Climate Model Intercomparison Project 5 (CMIP5) climate predictions from eight Earth system models using two Representative Concentration Pathways (RCPs) and five scenarios of future human population density based on the series of Shared Socioeconomic Pathways (SSPs), sensitivity tests for the effect of climate and CO2, as well as a sensitivity analysis using two alternative parameterisations of the semi-empirical burned-area model. Contrary to previous work, we find no clear future trend of global wildfire emissions for the moderate emissions and climate change scenario based on the RCP 4.5. Only historical population change introduces a decline by around 15 % since 1900. Future emissions could either increase for low population growth and fast urbanisation, or

  20. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution.

    PubMed

    Weng, Zhe; Jiang, Jianbing; Wu, Yueshen; Wu, Zishan; Guo, Xiaoting; Materna, Kelly L; Liu, Wen; Batista, Victor S; Brudvig, Gary W; Wang, Hailiang

    2016-07-01

    Exploration of heterogeneous molecular catalysts combining the atomic-level tunability of molecular structures and the practical handling advantages of heterogeneous catalysts represents an attractive approach to developing high-performance catalysts for important and challenging chemical reactions such as electrochemical carbon dioxide reduction which holds the promise for converting emissions back to fuels utilizing renewable energy. Thus, far, efficient and selective electroreduction of CO2 to deeply reduced products such as hydrocarbons remains a big challenge. Here, we report a molecular copper-porphyrin complex (copper(II)-5,10,15,20-tetrakis(2,6-dihydroxyphenyl)porphyrin) that can be used as a heterogeneous electrocatalyst with high activity and selectivity for reducing CO2 to hydrocarbons in aqueous media. At -0.976 V vs the reversible hydrogen electrode, the catalyst is able to drive partial current densities of 13.2 and 8.4 mA cm(-2) for methane and ethylene production from CO2 reduction, corresponding to turnover frequencies of 4.3 and 1.8 molecules·site(-1)·s(-1) for methane and ethylene, respectively. This represents the highest catalytic activity to date for hydrocarbon production over a molecular CO2 reduction electrocatalyst. The unprecedented catalytic performance is attributed to the built-in hydroxyl groups in the porphyrin structure and the reactivity of the copper(I) metal center. PMID:27310487

  1. Partial pressure of CO2 and CO2 emission in a monsoon-driven hydroelectric reservoir (Danjiangkou Reservoir), China

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Zhang, Q. F.

    2013-06-01

    Hydroelectric reservoirs have been under sampled to establish them as sources or sinks of the atmospheric carbon dioxide (CO2). Such poor coverage is well known for subtropic, particularly monsoon driven reservoirs in China. Our study presented the spatiotemporal changes of the carbonate system and CO2 flux in a hydroelectric reservoir (Dangjiankou Reservoir) locating in a subtropical monsoon climate region. Our 21 filed surveys conducted during 2004-2011 revealed significantly spatial and monthly variations of surface water partial pressure of CO2 (pCO2) in the Reservoir. pCO2, showing higher concentrations in the wet and warm seasons, averaged 595 ± 545 µatm (ranging from 53-3751 µatm) in the reservoir surface, while substantially higher pCO2 (1132 ± 1220 µatm) was observed in the river downstream the dam. A clear pCO2 drawdown in the reservoir as water flows demonstrated a significantly descending order of Dan Reservoir > site close to dam > Han Reservoir. This spatial contrast can also be seen in the distributions of dissolved inorganic carbon and total alkalinity. Pronounced seasonality in pCO2 was controlled by seasonal monsoon rainfall, while photosynthetic CO2 uptake dominated spatial patterns and dry-month variability of pCO2. We further related pCO2 to water chemical properties and indicated that pCO2 had strong positive correlations with Si, TP and DOC, negative correlations with DO saturation, TN and Chl a, while weak correlations with other variables including biogenic elements. CO2 flux from the Reservoir surface showed a bottom average of 9 mmol m-2 d-2 in comparison with other hydroelectric reservoir in China. River downstream the dam had quite high flux of CO2 (119 mmol m-2 d-2), which was intermediate between temperate rivers and compared to global rivers' average. This means that water releasing from reservoir would be an important channel for atmospheric CO2 sources. The annual CO2 emission from the Danjiangkou Reservoir was estimated to be

  2. Impacts of potential CO2-reduction policies on air quality in the United States.

    PubMed

    Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G

    2015-04-21

    Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities. PMID:25811418

  3. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China.

    PubMed

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO2 emissions in China, using data for the period 1990-2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic policies in

  4. CO2 Emissions from Air Travel by AGU and ESA Conference Attendees

    NASA Astrophysics Data System (ADS)

    Scott, B.; Plug, L. J.

    2003-12-01

    Air travel by scientists is one contributor to rising concentrations of CO2 and other greenhouse gases in the atmosphere. To assess the magnitude of this contribution in per-capita and overall terms, we calculated emissions derived from air travel for two major scientific conferences held in 2002: the western meeting of the American Geophysical Union (AGU) in San Francisco and the Ecological Society of America meeting in Tucson (ESA). Round trip travel distance for sampled attendees is 7971 +/- 6968 km (1 sigma range given, n=337) for AGU and 5452 +/- 5664 km for ESA (n=263), conservatively assuming great circle routes were followed. Using accepted CO2 production rates for commercial aircraft, mean AGU emissions are 1.3 tonnes per attendee and 12351 tonnes total and for ESA 0.9 tonnes per attendee and 3140 tonnes total. Although small compared to total anthropogenic emissions (2.275 x 1010 tonnes y-1 in 1999), per attendee emissions are significant compared to annual per-capita emissions; CO2 emission per AGU and ESA attendee exceeds the per capita annual emission of 42% and 19% of Earth's population, respectively. Per attendee AGU emissions are ≈6% of U.S. and ≈14% of British and Japanese per capita annual emission. Relocation of AGU and ESA to cities which minimize travel distances, Denver and Omaha respectively, would result in modest emission reductions of 8% and 14% (assuming 2002 attendee composition). To form a preliminary estimate of annual CO2 emissions for scientists in academia, we surveyed Earth Science faculty at our home institution. Mean annual air travel distance for professional activities was 38064 km y-1 (7 respondents). The consequent release of 6.1 tonnes y-1 of CO2 is 30% of annual per capita emissions in North America, and exceeds global per capita average of 4 tonnes y-1 by 150%. Society and the environment often benefit from scientific enquiry which is facilitated by travel. These benefits, however, might be balanced against the

  5. Reduction of CO2 by pyridine monoimine molybdenum carbonyl complexes: Cooperative metal-ligand binding of CO2

    PubMed Central

    Sieh, Daniel; Lacy, David C.; Peters, Jonas C.

    2015-01-01

    ArPMI-Mo(CO)4 complexes (PMI = pyridine monoimine; Ar = Ph, 2,6-di-iso-propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC). The complexes exhibit a reduction at more positive potentials than the related bipyridine-Mo(CO)4 complex, which is ligand based according to IR-SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand-bound carboxylate, [iPr2PhPMI-Mo(CO)3(CO2)]2−, by NMR spectroscopic methods. The CO2 adduct [iPr2PhPMI-Mo(CO)3(CO2)]2− could not be isolated and fully characterized. However, the assignment of the C-C coupling between the CO2 molecule and the PDI ligand was confirmed by X-ray crystallography of one of the decomposition products of [iPr2PhPMI-Mo(CO)3(CO2)]2−. PMID:25924730

  6. Reduction of CO2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal-Ligand Binding of CO2.

    PubMed

    Sieh, Daniel; Lacy, David C; Peters, Jonas C; Kubiak, Clifford P

    2015-06-01

    [((Ar) PMI)Mo(CO)4 ] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6-di-iso-propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4 ] complex, which is ligand based according to IR-SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand-bound carboxylate, [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) , by NMR spectroscopic methods. The CO2 adduct [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) could not be isolated and fully characterized. However, the C-C coupling between the CO2 molecule and the PDI ligand was confirmed by X-ray crystallographic characterization of one of the decomposition products of [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) . PMID:25924730

  7. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-02-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2 / N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7)‰ for 13C during CO destruction. The N2O : CO2 average ratio of (1.8 ± 0.2) × 10-2 ppb:ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic converter technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb:ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm:ppm are very close to the expected, theoretically calculated values of O2 depletion per CO2 enhancement.

  8. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    PubMed

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization. PMID:16190250

  9. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry.

    PubMed

    Anand, Shalini; Vrat, Prem; Dahiya, R P

    2006-06-01

    A system dynamics model based on the dynamic interactions among a number of system components is developed to estimate CO(2) emissions from the cement industry in India. The CO(2) emissions are projected to reach 396.89 million tonnes by the year 2020 if the existing cement making technological options are followed. Policy options of population growth stabilisation, energy conservation and structural management in cement manufacturing processes are incorporated for developing the CO(2) mitigation scenarios. A 42% reduction in the CO(2) emissions can be achieved in the year 2020 based on an integrated mitigation scenario. Indirect CO(2) emissions from the transport of raw materials to the cement plants and finished product to market are also estimated. PMID:16307842

  10. Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Gurney, Kevin R.; Rayner, Peter; Baker, David; Liu, Yu-ping

    2016-02-01

    Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from -1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.

  11. Photocatalytic Reduction of CO2 with Re-Pyridyl-NHCs.

    PubMed

    Huckaba, Aron J; Sharpe, Emily Anne; Delcamp, Jared H

    2016-01-19

    A series of Re(I) pyridyl N-heterocyclic carbene (NHC) complexes have been synthesized and examined in the photocatalytic reduction of CO2 using a simulated solar spectrum. The catalysts were characterized through NMR, UV-vis, cyclic voltammetry under nitrogen, and cyclic voltammetry under carbon dioxide. The complexes were compared directly with a known benchmark catalyst, Re(bpy) (CO)3Br. An electron-deficient NHC substituent (PhCF3) was found to promote catalytic activity when compared with electron-neutral and -rich substituents. Re(PyNHC-PhCF3) (CO)3Br was found to exceed the CO production of the benchmark Re(bpy) (CO)3Br catalyst (51 vs 33 TON) in the presence of electron donor BIH and photosensitizer fac-Ir(ppy)3. Importantly, Re(PyNHC-PhCF3) (CO)3Br was found to function without a photosensitizer (32 TON) at substantially higher turnovers than the benchmark catalyst Re(bpy) (CO)3Br (14 TON) under a solar simulated spectrum. PMID:26703758

  12. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively. PMID:25229670

  13. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO : CO2, N2O : CO2, CH4 : CO2, O2 : CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2013-09-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the highway tunnel Islisberg (Switzerland). The CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb : ppm, are lower than reported by previous studies, pointing to a reduction in CO emissions from traffic. The 13C in CO2 reflects the isotopic composition of the fuel. 18O in CO2 is slightly depleted compared to the 18O in atmospheric O2, and shows significant variability. In contrast, the δ13C values of CO show that significant fractionation takes place during CO destruction in the catalytic converter. 13C in CO is enriched by 3 ‰ compared to the 13C in the fuel burnt, while the 18O content is similar to that of atmospheric O2. We compute a fractionation constant of (-2.7 ± 0.7) ‰ for 13C during CO destruction. The N2O : CO2 average ratio (1.8 ± 0.2) × 10-2 ppb : ppm is significantly lower than in past studies, showing a reduction in N2O emissions likely related to improvements in the catalytic technology. We also observed small CH4 emissions, with an average CH4 : CO2 ratio of (4.6 ± 0.2) × 10-2 ppb : ppm. The O2 : CO2 ratios of (-1.47 ± 0.01) ppm : ppm are very close to the expected, theoretically calculated values.

  14. Links between phytoplankton, CO2 emissions and water properties

    NASA Astrophysics Data System (ADS)

    Oliveira, A. P.; Cabeçadas, L.

    2009-04-01

    estimated an amount of ~5 tons of CaCO3 produced in the upper 30 m of water resulting in a emission of CO2 of 7.4 mmol m-2 d-1, which indicates that the calcification process constitutes an additional source of CO2 to the water and, eventually, to the atmosphere. Our findings illustrate the sensitivity of the phytoplankton species composition in the shelf system under study to climate variations and also its importance in the carbon cycle. Thus, if phytoplankton community is vulnerable to this type of perturbations, one may expect impacts on higher trophic levels that involve specific trophic links.Please fill in your abstract text.

  15. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria.

    PubMed

    Ali, Hamisu Sadi; Law, Siong Hook; Zannah, Talha Ibrahim

    2016-06-01

    The objective of this paper is to examine the dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria based on autoregressive distributed lags (ARDL) approach for the period of 1971-2011. The result shows that variables were cointegrated as null hypothesis was rejected at 1 % level of significance. The coefficients of long-run result reveal that urbanization does not have any significant impact on CO 2 emissions in Nigeria, economic growth, and energy consumption has a positive and significant impact on CO 2 emissions. However, trade openness has negative and significant impact on CO 2 emissions. Consumption of energy is among the main determinant of CO 2 emissions which is directly linked to the level of income. Despite the high level of urbanization in the country, consumption of energy still remains low due to lower income of the majority populace and this might be among the reasons why urbanization does not influence emissions of CO 2 in the country. Initiating more open economy policies will be welcoming in the Nigerian economy as the openness leads to the reduction of pollutants from the environment particularly CO 2 emissions which is the major gases that deteriorate physical environment. PMID:26983914

  16. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( < 3 %) of the world's land surface directly release to the atmosphere about 44 % of global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be

  17. The TEA CO2-Lasers with High Output Emission Intensity

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Losev, V. F.; Puchikin, А. V.; Jun, Yao

    2014-03-01

    TEA CO2-lasers generating short pulse radiation and operating in a pulse-periodic mode with the repetition rate up to 10 Hz have been developed. It is shown that the addition of nitrogen up to 8% in the mixture of molecular gases СО2:H2 = 500:50 at a total pressure of P = 0.6 bar enhances the peak emission power maintaining the temporary pulse shape. An output beam intensity of 12.3 MW/cm2 was obtained for the 30 ns pulse at a laser efficiency of 2.8%. In a compact TEA СО2-laser with an active medium volume of 6 cm3, a beam with an output intensity of 24 MW/cm2 at pulse duration of 70 ns was obtained.

  18. 40 CFR Table U-1 to Subpart U of... - CO2 Emission Factors for Common Carbonates

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CO2 Emission Factors for Common.... 98, Subpt. U, Table U-1 Table U-1 to Subpart U of Part 98—CO2 Emission Factors for Common Carbonates Mineral name—carbonate CO2 emission factor(tons CO2/ton carbonate) Limestone—CaCO3 0.43971...

  19. Wavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Ray, J.; Yadav, V.; Van Bloemen Waanders, B.; Michalak, A. M.

    2012-12-01

    We present a method to estimate spatially resolved fossil-fuel CO2 (ffCO2) emissions from sparse measurements of time-varying CO2 concentrations. It is based on the wavelet-modeling of the strongly non-stationary spatial distribution of ffCO2 emissions. The dimensionality of the wavelet model is first reduced using images of nightlights, which identify regions of human habitation. Since wavelets are a multiresolution basis set, most of the reduction is accomplished by removing fine-scale wavelets, in the regions with low nightlight radiances. The (reduced) wavelet model of emissions is propagated through an atmospheric transport model (WRF) to predict CO2 concentrations at a handful of measurement sites. The estimation of the wavelet model of emissions i.e., inferring the wavelet weights, is performed by fitting to observations at the measurement sites. This is done using Staggered Orthogonal Matching Pursuit (StOMP), which first identifies (and sets to zero) the wavelet coefficients that cannot be estimated from the observations, before estimating the remaining coefficients. This model sparsification and fitting is performed simultaneously, allowing us to explore multiple wavelet-models of differing complexity. This technique is borrowed from the field of compressive sensing, and is generally used in image and video processing. We test this approach using synthetic observations generated from emissions from the Vulcan database. 35 sensor sites are chosen over the USA. FfCO2 emissions, averaged over 8-day periods, are estimated, at a 1 degree spatial resolutions. We find that only about 40% of the wavelets in emission model can be estimated from the data; however the mix of coefficients that are estimated changes with time. Total US emission can be reconstructed with about ~5% errors. The inferred emissions, if aggregated monthly, have a correlation of 0.9 with Vulcan fluxes. We find that the estimated emissions in the Northeast US are the most accurate. Sandia

  20. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  1. Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector

    NASA Technical Reports Server (NTRS)

    Blinge, Magnus

    2003-01-01

    This paper presents cost effective measures to reduce CO2 emissions in the air freight sector. One door-to-door transport chain is studied in detail from a Scandinavian city to a city in southern Europe. The transport chain was selected by a group of representatives from the air freight sector in order to encompass general characteristics within the sector. Three different ways of shipping air cargo are studied, i.e., by air freighter, as belly freight (in passenger aircrafts) and trucking. CO2 emissions are calculated for each part of the transport chain and its relative importance towards the total amount CO2 emitted during the whole transport chain is shown. It is confirmed that the most CO2 emitting part of the transport chain is the actual flight and that it is in the take-off and climbing phases that most fuel are burned. It is also known that the technical development of aircraft implies a reduction in fuel consumption for each new generation of aircraft. Thus, the aircraft manufacturers have an important role in this development. Having confirmed these observations, this paper focuses on other factors that significantly affects the fuel consumption. Analyzed factors are, e.g., optimization of speed and altitude, traffic management, congestion on and around the airfields, tankering, "latest acceptance time" for goods and improving the load factor. The different factors relative contribution to the total emission levels for the transport chain has been estimated.

  2. Dynamic Reduction Effect of CO2 Gas Discharge in Introducing Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Inaba, Tsuginori

    For this study, the dynamic reduction effect of CO2 gas discharge for change from internal combustion engines to electric vehicles, EVs, was investigated quantitatively. The Japanese power generation status, which shows characteristics of electricity generation, and optimized adjustment to electricity demand, load and environment was examined. Based on a CO2 gas discharge basic unit, the estimated reduction quantity of CO2 gas discharge from EVs was calculated. The reduction effect of CO2 gas discharge is expected to be 52% by changing gas-fuelled vehicles to EVs. However, the dynamic differential is only 19% reduction by using the thermal power and -2% if only the coal thermal power is used.

  3. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets

    DOE PAGESBeta

    Calderón, Silvia; Alvarez, Andres Camilo; Loboguerrero, Ana Maria; Arango, Santiago; Calvin, Katherine; Kober, Tom; Daenzer, Kathryn; Fisher-Vanden, Karen

    2015-06-03

    In this paper we investigate CO2 emission scenarios for Colombia and the effects of implementing carbon taxes and abatement targets on the energy system. By comparing baseline and policy scenario results from two integrated assessment partial equilibrium models TIAM-ECN and GCAM and two general equilibrium models Phoenix and MEG4C, we provide an indication of future developments and dynamics in the Colombian energy system. Currently, the carbon intensity of the energy system in Colombia is low compared to other countries in Latin America. However, this trend may change given the projected rapid growth of the economy and the potential increase inmore » the use of carbon-based technologies. Climate policy in Colombia is under development and has yet to consider economic instruments such as taxes and abatement targets. This paper shows how taxes or abatement targets can achieve significant CO2 reductions in Colombia. Though abatement may be achieved through different pathways, taxes and targets promote the entry of cleaner energy sources into the market and reduce final energy demand through energy efficiency improvements and other demand-side responses. The electric power sector plays an important role in achieving CO2 emission reductions in Colombia, through the increase of hydropower, the introduction of wind technologies, and the deployment of biomass, coal and natural gas with CO2 capture and storage (CCS). Uncertainty over the prevailing mitigation pathway reinforces the importance of climate policy to guide sectors toward low-carbon technologies. This paper also assesses the economy-wide implications of mitigation policies such as potential losses in GDP and consumption. As a result, an assessment of the legal, institutional, social and environmental barriers to economy-wide mitigation policies is critical yet beyond the scope of this paper.« less

  4. Performance analysis of CO(2) emissions and energy efficiency of metal industries in China.

    PubMed

    Shao, Chaofeng; Guan, Yang; Wan, Zheng; Chu, Chunli; Ju, Meiting

    2014-02-15

    Nonferrous metal industries play an important role in China's national economy and are some of the country's largest energy consumers. To better understand the nature of CO(2) emissions from these industries and to further move towards low-carbon development in this industry sector, this study investigates the CO(2) emissions of 12 nonferrous metal industries from 2003 to 2010 based on their life-cycle assessments. It then classifies these industries into four "emission-efficiency" types through cluster analysis. The results show that (1) the industrial economy and energy consumption of China's nonferrous metal industries have grown rapidly, although their recent energy consumption rate shows a declining trend. (2) The copper, aluminum, zinc, lead, and magnesium industries, classified as high-emission industries, are the main contributors of CO(2) emissions. The results have implications for policy decisions that aim to enhance energy efficiency, particularly for promoting the transformation of low-efficiency industries to high-efficiency ones. The study also highlights the important role of policy development in technological innovations, optimization, and upgrades, the reduction of coal proportion in energy consumption, and the advancement of new energy sources. PMID:24463733

  5. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, Gesa A.; Kosten, Sarian; Wallin, Marcus B.; Tranvik, Lars J.; Jeppesen, Erik; Roland, Fabio

    2015-12-01

    Annual CO2 emissions from lakes and other inland waters into the atmosphere are estimated to almost entirely compensate the total annual carbon uptake by oceans. CO2 supersaturation in lakes, which results in CO2 emissions, is frequently attributed to CO2 produced within the lake. However, lateral inorganic carbon flux through watersheds can also be sizeable. Here we calculated lake surface water CO2 concentrations and emissions using lake pH, alkalinity and temperature from a compilation of data from 5,118 boreal lakes. Autumn surface water CO2 concentrations and CO2 emissions from the 5,118 lakes co-varied with lake internal autumn CO2 production. However, using a mass balance approach we found that CO2 emission in the majority of lakes was sustained by inorganic carbon loading from the catchment rather than by internal CO2 production. Small lakes with high dissolved organic carbon and phosphorus concentrations, shorter retention times and longer ice-free seasons had the highest CO2 concentrations. CO2 emissions from these small lakes was twice that of comparable lakes in colder regions, and similar to emissions from subtropical and tropical lakes. We conclude that changes in land use and climate that increase dissolved inorganic carbon may cause emission levels from boreal lakes to approach those of lakes in warmer regions.

  6. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  7. Mapping of the CO2 and anthropogenic heat emission under spatially explicit urban land use scenarios

    NASA Astrophysics Data System (ADS)

    Nakamichi, K.; Yamagata, Y.; Seya, H.

    2010-12-01

    The serious further efforts on CO2 and other green house gases emission reduction by global climate change mitigation remain as an urgent global issue to be solved. From the viewpoint of urban land use measures, the realization of low-carbon city is the key to change people’s behavior to reduce CO2 emission. In this respect, a lot of studies aimed at realizing low-carbon city are progressing on a number of fronts, including city planning and transportation planning. With respect to the low-carbon city, compact city is expected to reduce CO2 emission from transportation sector. Hence many studies have been conducted with scenario analysis considering modal share change, for instance, increase of public transportation use and reduction of trip length by car. On the other hand, it is important that CO2 emission from not only transportation sector but also residential sector can be reduced by a move from a detached house to a condominium, the change of family composition types and so on. In regard to residential sector, it has been founded that CO2 emission units differ among family composition types, for example, the single-person household emit more CO2 in general. From the viewpoint of an urban climate prediction, the possible range of future land use change should be recognized as the input parameters for the climate models. In addition to CO2 emission, the anthropogenic heat emission is also important as an input data of climate models in order to evaluate the social and economic impacts of urban land use change. The objective of this study is to demonstrate a compact city scenario and a dispersion scenario in Tokyo metropolitan area, which is the largest metropolitan area in the world, and to examine future climate change mitigation policies including land use for realization of low-carbon city. We have created two scenarios of population distribution by using an urban economic model. In these scenarios we have assumed extreme cases in order to show the

  8. [Spatial temporal differentiation of product-based and consumption-based CO2 emissions and balance in the Beijing-Tianjin-Hebei region: an economic input- output analysis].

    PubMed

    Wang, Hao; Chen, Cao-cao; Pan, Tao; Liu, Chun-lan; Chen, Long; Sun, Li

    2014-09-01

    Distinguishing product-based and consumption-based CO2 emissions in the open economic region is the basis for differentiating the emission responsibility, which is attracting increasing attention of decision-makers'attention. The spatial and temporal characteristics of product-based and consumption-based CO2 emissions, as well as carbon balance, in 1997, 2002 and 2007 of JING- JIN-JI region were analyzed by the Economic Input-Output-Life Cycle Assessment model. The results revealed that both the product- based and consumption-based CO2 emissions in the region have been increased by about 4% annually. The percentage of CO2 emissions embodied in trade was 30% -83% , to which the domestic trading added the most. The territorial and consumption-based CO2 emissions in Hebei province were the predominant emission in JING-JIN-JI region, and the increasing speed and emission intensity were stronger than those of Beijing and Tianjin. JING-JIN-JI region was a net inflow region of CO2 emissions, and parts of the emission responsibility were transferred. Beijing and Tianjin were the net importers of CO2 emissions, and Hebei was a net outflow area of CO2 emissions. The key CO2 emission departments in the region were concentrated, and the similarity was great. The inter-regional mechanisms could be set up for joint prevention and control work. - Production and distribution of electricity, gas and water and smelting and pressing of metals had the highest reliability on CO2 emissions, and took on the responsibility of other departments. The EIO-LCA model could be used to analyze the product-based and consumption-based CO2 emissions, which is helpful for the delicate management of regional CO2 emissions reduction and policies making, and stimulating the reduction cooperation at regional scale. PMID:25518687

  9. Reducing U.S. residential energy use and CO2 emissions: how much, how soon, and at what cost?

    PubMed

    Lima Azevedo, Inês; Morgan, M Granger; Palmer, Karen; Lave, Lester B

    2013-03-19

    There is growing interest in reducing energy use and emissions of carbon dioxide from the residential sector by deploying cost-effectiveness energy efficiency measures. However, there is still large uncertainty about the magnitude of the reductions that could be achieved by pursuing different energy efficiency measures across the nation. Using detailed estimates of the current inventory and performance of major appliances in U.S. homes, we model the cost, energy, and CO2 emissions reduction if they were replaced with alternatives that consume less energy or emit less CO2. We explore trade-offs between reducing CO2, reducing primary or final energy, or electricity consumption. We explore switching between electricity and direct fuel use, and among fuels. The trade-offs between different energy efficiency policy goals, as well as the environmental metrics used, are important but have been largely unexplored by previous energy modelers and policy-makers. We find that overnight replacement of the full stock of major residential appliances sets an upper bound of just over 710 × 10(6) tonnes/year of CO2 or a 56% reduction from baseline residential emissions. However, a policy designed instead to minimize primary energy consumption instead of CO2 emissions will achieve a 48% reduction in annual carbon dioxide emissions from the nine largest energy consuming residential end-uses. Thus, we explore the uncertainty regarding the main assumptions and different policy goals in a detailed sensitivity analysis. PMID:23398047

  10. Development of a preprototype Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1981-01-01

    A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  11. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    NASA Astrophysics Data System (ADS)

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.; Baker, David; Conway, Thomas J.; Chung, Y. S.; Gregg, Jay; Miller, John B.; Southon, John R.; Zhou, Ling-Xi

    2011-12-01

    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2 (CO2ff, derived from Δ14CO2observations). The five-year TAP record shows high CO2ff when local air comes from the Korean Peninsula. Most samples, however, reflect air masses from Northeastern China with lower CO2ff. Our small set of SDZ samples from winter 2009/2010 have strongly elevated CO2ff. Biospheric CO2 contributes substantially to total CO2variability at both sites, even in winter when non-fossil CO2 sources (including photosynthesis, respiration, biomass burning and biofuel use) contribute 20-30% of the total CO2 enhancement. Carbon monoxide (CO) correlates strongly with CO2ff. The SDZ and TAP far-field (China influenced) samples have CO: CO2ff ratios (RCO:CO2ff) of 47 ± 2 and 44 ± 3 ppb/ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low RCO:CO2ffof 13 ± 3 ppb/ppm, slightly higher than bottom-up inventories, but consistent with emission ratios for other developed nations. We compare our CO2ff observations with modeled CO2ff using the FLEXPART Lagrangian particle dispersion model convolved with a bottom-up CO2ff emission inventories. The modeled annual mean CO2ff mole fractions are consistent with our observations when the model inventory includes the reported 63% increase in Chinese emissions from 2004 to 2010, whereas a model version which holds Chinese emissions flat is unable to replicate the observations.

  12. Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value-Added Chemicals.

    PubMed

    Guo, Ling-Ju; Wang, Yan-Jie; He, Tao

    2016-08-01

    Photoreduction of CO2 , which utilizes solar energy to convert CO2 into hydrocarbons, can be an effective means to overcome the increasing energy crisis and mitigate the rising emissions of greenhouse gas. This article covers recent advances in the CO2 photoreduction over heterostructure-based photocatalysts. The fundamentals of CO2 photoreduction and classification of the heterostructured photocatalysts are discussed first, followed by the latest work on the CO2 photoreduction over heterostructured photocatalysts in terms of the classification of the coupling semiconductors. Finally, a brief summary and a perspective on the challenges in this area are presented. PMID:27276171

  13. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    PubMed

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  14. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen

    PubMed Central

    Niinemets, Ülo; Sun, Zhihong

    2015-01-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol–1 or elevated [CO2] of 780 μmol mol–1. The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  15. Satellite-based estimates of reduced CO and CO2 emissions due to traffic restrictions during the 2008 Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Worden, Helen M.; Cheng, Yafang; Pfister, Gabriele; Carmichael, Gregory R.; Zhang, Qiang; Streets, David G.; Deeter, Merritt; Edwards, David P.; Gille, John C.; Worden, John R.

    2012-07-01

    During the 2008 Olympics, the Chinese government made a significant effort to improve air quality in Beijing, including restrictions on traffic. Here we estimate the reductions in carbon monoxide (CO) and carbon dioxide (CO2) emissions resulting from the control measures on Beijing transportation. Using MOPITT (Measurements Of Pollution In The Troposphere) multispectral satellite observations of near-surface CO along with WRF-Chem (Weather Research and Forecasting model with Chemistry) simulations for Beijing during August, 2007 and 2008, we estimate changes in CO due to meteorology and transportation sector emissions. Applying a reported CO/CO2 emission ratio for fossil fuels, we find the corresponding reduction in CO2, 60 ± 36 Gg[CO2]/day. As compared to emission scenarios being considered for the IPCC AR5 (Intergovernmental Panel on Climate Change, 5th Assessment Report), this result suggests that urban traffic controls on the Beijing Olympics scale could play a significant role in meeting target reductions for global CO2 emissions.

  16. FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES

    SciTech Connect

    Liu, Changzheng; Greene, David L; Bunch, Dr David S.

    2012-01-01

    Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliance flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.

  17. Peak CO2? China's Emissions Trajectories to 2050

    SciTech Connect

    Zhou, Nan; Fridley, David G.; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-05-01

    As a result of soaring energy demand from a staggering pace of economic growth and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both short-term energy intensity reduction goal for 2006 to 2010 as well as long-term carbon intensity reduction goal for 2020. This study focuses on a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. In the past years, LBNL has established and significantly enhanced the China End-Use Energy Model based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not likely be the case because of saturation effects in appliances, residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that the 2020 goals can be met and underscore the significant role that policy-driven energy efficiency

  18. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  19. Does winter warming enhance cold CO2 emission from temperate continental soils?

    NASA Astrophysics Data System (ADS)

    Kurganova, Irina; Lopes de Gerenyu, Valentin; Khoroshaev, Dmitry

    2016-04-01

    revealed during the early spring FTC. They corresponded to a rapid thawing of frozen soils due to the customary rise of air temperature at the beginning of March. These CO2 emission pulses during early spring contributed between 43% and 70% to the total cold CO2 fluxes from frozen soils ('Ref" and "NoSn" variants). The contribution of spring fluxes from unfrozen soils ("NoFr" treatment) to the total cold CO2 emission was about 25%. Our findings produce evidence that winter warming in temperate continental regions has resulted in a reduction in the permanent snow pack, an increase in the frequency of freezing-thawing events and can be followed by a prolongation of the period when soils remain frozen. Soil respiration fluxes were greatly reduced owing to an increase in frost stress both for plants and for the soil microbial community. Therefore, winter warming in temperate continental areas decreases cold CO2 emissions from soils into the atmosphere and is expected thereby to lead to a rise in the annual carbon sink in ecosystems. This study was supported by the Russian Science Foundation (14-14-00625) and the Russian Foundation for Basic Research (project 15-04-05156a).

  20. Fraction of natural area as main predictor of net CO2 emissions from cities

    NASA Astrophysics Data System (ADS)

    Nordbo, Annika; Järvi, Leena; Haapanala, Sami; Wood, Curtis R.; Vesala, Timo

    2012-10-01

    Cities account for most anthropogenic greenhouse-gas emissions, CO2 being most important. We evaluate the net urban contribution to CO2 emissions by performing a meta-analysis of all available 14 annual CO2 budget studies. The studies are based on direct flux measurements using the eddy-covariance technique which excludes all strong point sources. We show that the fraction of natural area is the strongest predictor of urban CO2 budgets, and this fraction can be used as a robust proxy for net urban CO2 emissions. Up-scaling, based on that proxy and satellite mapping of the fraction of natural area, identifies urban hotspots of CO2 emissions; and extraction of 56 individual cities corroborates their inventory-based estimates. Furthermore, cities are estimated as carbon-neutral when the natural fraction is about 80%. This fresh view on the importance of cities in climate change treats cities as urban ecosystems: incorporating natural areas like vegetation.

  1. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  2. U.S. policy on CO2 reduction criticized

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    In a recent Congressional hearing, members of the House Science, Space, and Technology Committee criticized the United States for failing to take action to reduce emissions of carbon dioxide, despite scientific evidence that the greenhouse gas contributes to global warming. The Committee met July 17 to review technologies and strategies for addressing global warming.Following close on the heels of a pronouncement by British environment secretary Michael Heseltine, reported in the July 14 issue of the Washington Post, that Britain will no longer automatically side with the United States on the global warming issue, committee chairman George E. Brown, Jr. (D-Calif.) said that “while many industrialized nations have adopted specific targets and timetables for curbing carbon dioxide emissions, the United States has resisted such an approach, which has resulted in a degree of isolation between our government and other major industrialized nations.”

  3. Isoprene leaf emission under CO2 free atmosphere: why and how?

    NASA Astrophysics Data System (ADS)

    Garcia, S.

    2015-12-01

    Isoprene (C5H8) is a reactive hydrocarbon gas emitted at high rates by tropical vegetation, which affects atmospheric chemistry and climate and, in the leaf level, is a very important agent against environmental stress. Under optimal conditions for photosynthesis, the majority of carbon used for isoprene biosynthesis is a direct product from recently assimilated atmospheric CO2. However, the contribution of 'alternate' carbon sources, that increase with leaf temperature, have been demonstrated and emissions of isoprene from 'alternate' carbon sources under ambient CO2 below the compensation point for photosynthesis have been observed. In this study, we investigated the response of leaf isoprene emissions under 450 ppm CO2 and CO2 free atmosphere as a function of light and leaf temperature. At constant leaf temperature (30 °C) and CO2 free atmospheres, leaves of the tropical species Inga edulis showed net emissions of CO2 and light-dependent isoprene emissions which stagnated at low light levels (75 µmol m-2 s-1 PAR) and account for 25% of that observed with 450 ppm CO2. Under constant light (1000 µmol m-2 s-1 PAR) and CO2 free atmospheres, a increase of leaf temperatures from 25 to 40 °C resulted in net emissions of CO2 and temperature-dependent isoprene emissions which reached values up to 17% of those under 450 ppm CO2. Our observations suggest that, under environmental stress, as high light/temperature and drought (when the stomata close and the amount of internal CO2 decreases), the 'alternate' carbon can maintain photosynthesis rates resulting in the production of isoprene, independent of atmospheric CO2, through the re-assimilation of internal released CO2 as an 'alternate' carbon sources for isoprene.

  4. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 234 225 33,000 CH4 or N2O standards apply under this section. See 40 CFR part... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust emission standards for CO2 for... and Related Requirements § 1037.105 Exhaust emission standards for CO2 for vocational vehicles....

  5. Elevated CO2 and O3 modify N turnover rates, but not N2O emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to predict and mitigate future climate change, it is essential to understand effects of elevated CO2 (eCO2) and O3 (eO3) on N-cycling, including N2O emissions, due to plant mediated changes. This is of particular interest for agroecosystems, since N-cycling and N2O emissions are responsive ...

  6. Prototype Bosch CO2 reduction subsystem for the RLSE experiment

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Wynveen, R. A.; Schubert, F. H.

    1977-01-01

    Requirements for the Bosch carbon dioxide reduction subsystem were established in a study of regenerative life support evaluation experiments. A detailed design is presented including a schematic, components list and characteristics, requirements summaries, and complete definition of life systems' advanced control/monitor instrumentation applied to the Bosch subsystem. Design information needed to proceed with the final design and fabrication of a preprototype system is presented.

  7. Effects of temperature and moisture variability on soil CO2 emissions in European land ecosystems

    NASA Astrophysics Data System (ADS)

    Gritsch, Christine; Zechmeister-Boltenstern, Sophie

    2014-05-01

    Soil respiration is one of the largest terrestrial fluxes of carbon dioxide (CO2) to the atmosphere. Hence, small changes in soil respiration rates could have large effects on atmospheric CO2. In order to assess CO2 emissions from diverse European soils under different land use and climate (soil moisture and temperature) we conducted a laboratory incubation experiment. Therefore, we incubated soil cores (Ø 7 cm; height 7 cm) from nine European sites which are spread all over Europe; from the United Kingdom (west) to the Ukraine (east) and Italy (south) to Finland (north). In addition these sites can be clearly distinguished between their land use into forests, arable lands, grasslands and one peat land. Soil cores were incubated in a two-factorial experimental design at 5 different temperatures (5, 10, 15, 20, and 25° C) and 6 different moisture contents (5, 20, 40, 60, 80, and 100 % water filled pore space (WFPS)). An automated laboratory incubation measurement system was used to measure CO2 emissions. Results show that highest CO2 emissions occurred with intermediate moisture content (40% to 60%) over all sites. We found that the relationship between CO2 emissions and temperature could be well described by the equation PIC (R2 ranges from 0.98 to 1) over all sites. In general CO2 emissions were strongly related with both variables temperature and moisture. However, temperature sensitivity of soil respiration was strongly declined under very dry and very wet conditions (5 and >80 % WFPS moisture content). Moisture sensitivity of CO2 emissions was positive related to temperature, although at low temperatures (5-10° C) moisture content had almost no effect on CO2 emissions. In summary our results indicate that the variability in soil temperature and moisture decisively controls soil CO2 emissions, while land use had only a minor impact and describe the effect and dependencies of temperature and moisture on the development of CO2 emissions.

  8. Effects of elevated CO 2 and temperature on monoterpene emission of Scots pine ( Pinus sylvestris L.)

    NASA Astrophysics Data System (ADS)

    Räisänen, Tommi; Ryyppö, Aija; Kellomäki, Seppo

    2008-06-01

    The aim of this study was to evaluate the long-term (5 years) effects of elevated CO2 concentration (doubling of ambient CO2 concentration) and temperature (2-6 °C elevation) on the monoterpene emission of Scots pine (Pinus sylvestris L.) saplings (ca. 20 years old) grown in closed-top environmental chambers. The chamber treatments included: (1) ambient temperature and CO2, (2) ambient temperature and elevated CO2, (3) elevated temperature and ambient CO2, and (4) elevated temperature and elevated CO2. The variability of emissions during and after tree shoot growth was studied, and additionally the total cumulative emission of monoterpenes through a growing period (May-September) was estimated. When compared to the controls, the combination of elevated CO2 and temperature significantly increased normalized monoterpene emission rate for the whole growing period (+23%), whereas elevated CO2 had no significant effect (-4%), and elevated temperature even decreased (-41%) the emission rate. The increasing effect of the combination of elevated CO2 and temperature was strongest during shoot growth (+54%). After shoot growth, no significant differences in emission rate were found among the treatments. Emission modeling showed that the total amount of monoterpenes emitted from May to September was 2.38 mg gdw-1 in ambient conditions. The total emission in elevated CO2 was 5% greater and in elevated temperature 9% lesser than in ambient conditions. The combination of elevated CO2 and temperature increased the amount of emitted monoterpenes over the growing period by 126% compared to the total emission in ambient conditions.

  9. Peatland CO2 emissions: Using 13C to quantify responses to land use change

    NASA Astrophysics Data System (ADS)

    Snell, Helen; Robinson, David; Midwood, Andrew J.

    2013-04-01

    Soil is the largest terrestrial carbon reservoir and annually soils emit about 98 billion tonnes of CO2which is derived from plant root and rhizosphere respiration (autotrophically fuelled by photosynthesis) and microbial degradation of soil organic carbon (heterotrophic respiration). These two processes are intrinsically linked by complex physical and biochemical interactions. In order to meet its GHG reductions targets the Scottish Government plans to increase woodland cover from 17 to 25% by the second half of this century which will inevitably lead to significant tree planting on peatland soils. Tree roots and associated mycorrhiza will alter physical and biological conditions in the soil which may affect the heterotrophic contribution to CO2 emissions and consequently the long term landscape-scale carbon balance since the difference between net primary productivity and heterotrophic respiration defines the terrestrial CO2 sink. Significant uncertainties surround the response of peatlands to tree planting and predicted climate changes. At a field site in eastern Scotland we used natural abundance stable isotopes of carbon to partition soil CO2 efflux into its heterotrophic and autotrophic components to determine whether young Scots pine plantations affect heterotrophic respiration rates in peatland soil. Rate and isotopic composition of soil CO2 efflux was measured in plantation areas and in unforested heather moorland; soil and roots were then excavated and separately incubated to establish the isotopic end members of a simple linear mixing model. Isotopic composition of soil efflux varies temporally and spatially across the site; young Scots pine trees do not increase the heterotrophic flux from soil and therefore do not lead to a net loss of soil carbon from these landscapes.

  10. Photoelectrochemical CO2 reduction on 3C-SiC photoanode in aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Jun Tae; Iwasaki, Takayuki; Hatano, Mutsuko

    2015-04-01

    Photoelectrochemical (PEC) carbon dioxide (CO2) reduction on a 3C-SiC photoanode is demonstrated in aqueous solution with Pt and Ag counter electrodes. It is demonstrated that 3C-SiC has sufficient potential for CO2 reduction by confirming the band-edge structure. Then, the CO2 reduction is realized by connecting the 3C-SiC photoanode with the counter electrode. As the products of the PEC reaction with an applied bias of 1 V (vs counter electrode) to the 3C-SiC photoanode, hydrogen (H2) and carbon monoxide (CO) were analyzed by highly sensitive micro-gas chromatography, by which the time dependence of the gas products can be analyzed. Under light illumination of the 3C-SiC photoanode, CO2 reduction occurred while producing 2.5 and 9 nmol of CO gas with the Pt and Ag counter electrodes, respectively, after the reaction for 3000 s.

  11. Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics

    NASA Astrophysics Data System (ADS)

    Kwon, Min Jung; Heimann, Martin; Kolle, Olaf; Luus, Kristina A.; Schuur, Edward A. G.; Zimov, Nikita; Zimov, Sergey A.; Göckede, Mathias

    2016-07-01

    With increasing air temperatures and changing precipitation patterns forecast for the Arctic over the coming decades, the thawing of ice-rich permafrost is expected to increasingly alter hydrological conditions by creating mosaics of wetter and drier areas. The objective of this study is to investigate how 10 years of lowered water table depths of wet floodplain ecosystems would affect CO2 fluxes measured using a closed chamber system, focusing on the role of long-term changes in soil thermal characteristics and vegetation community structure. Drainage diminishes the heat capacity and thermal conductivity of organic soil, leading to warmer soil temperatures in shallow layers during the daytime and colder soil temperatures in deeper layers, resulting in a reduction in thaw depths. These soil temperature changes can intensify growing-season heterotrophic respiration by up to 95 %. With decreased autotrophic respiration due to reduced gross primary production under these dry conditions, the differences in ecosystem respiration rates in the present study were 25 %. We also found that a decade-long drainage installation significantly increased shrub abundance, while decreasing Eriophorum angustifolium abundance resulted in Carex sp. dominance. These two changes had opposing influences on gross primary production during the growing season: while the increased abundance of shrubs slightly increased gross primary production, the replacement of E. angustifolium by Carex sp. significantly decreased it. With the effects of ecosystem respiration and gross primary production combined, net CO2 uptake rates varied between the two years, which can be attributed to Carex-dominated plots' sensitivity to climate. However, underlying processes showed consistent patterns: 10 years of drainage increased soil temperatures in shallow layers and replaced E. angustifolium by Carex sp., which increased CO2 emission and reduced CO2 uptake rates. During the non-growing season, drainage

  12. Stratospheric ozone response to a solar irradiance reduction in a quadrupled CO2 environment

    NASA Astrophysics Data System (ADS)

    Jackman, Charles H.; Fleming, Eric L.

    2014-07-01

    We used the Goddard Space Flight Center (GSFC) global two-dimensional (2D) atmospheric model to investigate the stratospheric ozone response to a proposed geoengineering activity wherein a reduced top-of-atmosphere (TOA) solar irradiance is imposed to help counteract a quadrupled CO2 atmosphere. This study is similar to the Geoengineering Model Intercomparison Project (GeoMIP) Experiment G1. Three primary simulations were completed with the GSFC 2D model to examine this possibility: (A) a pre-industrial atmosphere with a boundary condition of 285 ppmv CO2 (piControl); (B) a base future atmosphere with 1140 ppmv CO2 (abrupt4xCO2); and (C) a perturbed future atmosphere with 1140 ppmv CO2 and a 4% reduction in the TOA total solar irradiance (G1). We found huge ozone enhancements throughout most of the stratosphere (up to 40%) as a result of a large computed temperature decrease (up to 18 K) when CO2 was quadrupled (compare simulation abrupt4xCO2 to piControl). Further, we found that ozone will additionally increase (up to 5%) throughout most of the stratosphere with total ozone increases of 1-2.5% as a result of a reduction in TOA total solar irradiance (compare simulation G1 to abrupt4xCO2). Decreases of atomic oxygen and temperature are the main drivers of this computed ozone enhancement from a reduction in TOA total solar irradiance.

  13. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff

  14. An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme.

    PubMed

    Schneider, Camille R; Shafaat, Hannah S

    2016-08-01

    The development of an artificial metalloenzyme for CO2 reduction is described. The small-molecule catalyst [Ni(II)(cyclam)](2+) has been incorporated within azurin. Selectivity for CO generation over H(+) reduction is enhanced within the protein environment, while the azurin active site metal impacts the electrochemical overpotential and photocatalytic activity. The enhanced catalysis observed for copper azurin suggests an important role for intramolecular electron transfer, analogous to native CO2 reducing enzymes. PMID:27406946

  15. PHOTOCHEMICAL CO2 REDUCTION BY RHENUIM AND RUTHENIUM COMPLEXES.

    SciTech Connect

    FUJITA,E.; MUCKERMAN, J.T.; TANAKA, K.

    2007-11-30

    Photochemical conversion of CO{sub 2} to fuels or useful chemicals using renewable solar energy is an attractive solution to both the world's need for fuels and the reduction of greenhouse gases. Rhenium(I) and ruthenium(II) diimine complexes have been shown to act as photocatalysts and/or electrocatalysts for CO{sub 2} reduction to CO. We have studied these photochemical systems focusing on the identification of intermediates and the bond formation/cleavage reactions between the metal center and CO{sub 2}. For example, we have produced the one-electron-reduced monomer (i.e. Re(dmb)(CO){sub 3}S where dmb = 4,4'-dimethy-2,2'-bipyridine and S = solvent) either by reductive quenching of the excited states of fac-[Re(dmb)(CO){sub 3}(CH{sub 3}CN)]PF{sub 6} or by photo-induced homolysis of [Re(dmb)(CO){sub 3}]{sub 2}. We previously found that: (1) the remarkably slow dimerization of Re(dmb)(CO){sub 3}S is due to the absence of a vacant coordination site for Re-Re bond formation, and the extra electron is located on the dmb ligand; (2) the reaction of Re(dmb)(CO){sub 3}S with CO{sub 2} forms a CO{sub 2}-bridged binuclear species (CO){sub 3}(dmb)Re-CO(O)-Re(dmb)(CO){sub 3} as an intermediate in CO formation; and (3) the kinetics and mechanism of reactions are consistent with the interaction of the CO{sub 2}-bridged binuclear species with CO{sub 2} to form CO and CO{sub 3}{sup 2-}.

  16. Integrated model for assessing the cost and CO2 emission (IMACC) for sustainable structural design in ready-mix concrete.

    PubMed

    Hong, Taehoon; Ji, Changyoon; Park, Hyoseon

    2012-07-30

    Cost has traditionally been considered the most important factor in the decision-making process. Recently, along with the consistent interest in environmental problems, environmental impact has also become a key factor. Accordingly, there is a need to develop a method that simultaneously reflects the cost and environmental impact in the decision-making process. This study proposed an integrated model for assessing the cost and CO(2) emission (IMACC) at the same time. IMACC is a model that assesses the cost and CO(2) emission of the various structural-design alternatives proposed in the structural-design process. To develop the IMACC, a standard on assessing the cost and CO(2) emission generated in the construction stage was proposed, along with the CO(2) emission factors in the structural materials, based on such materials' strengths. Moreover, using the economic and environmental scores that signify the cost and CO(2) emission reduction ratios, respectively, a method of selecting the best design alternative was proposed. To verify the applicability of IMACC, practical application was carried out. Structural designs were assessed, each of which used 21, 24, 27, and 30 MPa ready-mix concrete (RMC). The use of IMACC makes it easy to verify what the best design is. Results show the one that used 27 MPa RMC was the best design. Therefore, the proposed IMACC can be used as a tool for supporting the decision-making process in selecting the best design alternative. PMID:22436837

  17. Final report : CO2 reduction using biomimetic photocatalytic nanodevices.

    SciTech Connect

    Garcia, Robert M.; Shelnutt, John Allen; Medforth, Craig John; Song, Yujiang; Wang, Zhongchun; Miller, James Edward; Wang, Haorong

    2009-11-01

    Nobel Prize winner Richard Smalley was an avid champion for the cause of energy research. Calling it 'the single most important problem facing humanity today,' Smalley promoted the development of nanotechnology as a means to harness solar energy. Using nanotechnology to create solar fuels (i.e., fuels created from sunlight, CO{sub 2}, and water) is an especially intriguing idea, as it impacts not only energy production and storage, but also climate change. Solar irradiation is the only sustainable energy source of a magnitude sufficient to meet projections for global energy demand. Biofuels meet the definition of a solar fuel. Unfortunately, the efficiency of photosynthesis will need to be improved by an estimated factor of ten before biofuels can fully replace fossil fuels. Additionally, biological organisms produce an array of hydrocarbon products requiring further processing before they are usable for most applications. Alternately, 'bio-inspired' nanostructured photocatalytic devices that efficiently harvest sunlight and use that energy to reduce CO{sub 2} into a single useful product or chemical intermediate can be envisioned. Of course, producing such a device is very challenging as it must be robust and multifunctional, i.e. capable of promoting and coupling the multi-electron, multi-photon water oxidation and CO{sub 2} reduction processes. Herein, we summarize some of the recent and most significant work towards creating light harvesting nanodevices that reduce CO{sub 2} to CO (a key chemical intermediate) that are based on key functionalities inspired by nature. We report the growth of Co(III)TPPCl nanofibers (20-100 nm in diameter) on gas diffusion layers via an evaporation induced self-assembly (EISA) method. Remarkably, as-fabricated electrodes demonstrate light-enhanced activity for CO{sub 2} reduction to CO as evidenced by cyclic voltammograms and electrolysis with/without light irradiation. To the best of our knowledge, it is the first time to

  18. Quantification of anthropogenic CO2 emissions in a tropical urban environment

    NASA Astrophysics Data System (ADS)

    Kumar, M. Kishore; Shiva Nagendra, S. M.

    2016-01-01

    Indian cities are the hotspots of human population with population densities as high as 66,135 persons/sq km and are hence emerging as one of the significant CO2 emitters on par with cities of the developed nations. In this regard, quantification of Indian urban CO2 emissions at a finer resolution of space and time is becoming a crucial prerequisite for the implementation of India's National Action Plan on Climate Change. This paper presents the quantification of CO2 emissions of Chennai city at a fine spatial (1 km × 1 km) and temporal (diurnal, weekday-weekend, seasonal) resolution. In the present study, data sets of residential, industrial, commercial, traffic and waste management sectors were considered and bottom up approach was used for quantifying the CO2 emissions. Results indicated that the total annual CO2 emission of Chennai city was 2.12 Mt. Domestic (45.7%) and transportation (29.7%) sectors were identified as the larger CO2 emitters followed by power generation sector (17.4%). The average grid wise anthropogenic CO2 emission was found to be 0.01 ± 0.02 Mt/yr with peak CO2 emissions observed from the grids with point sources and minimal CO2 emissions from the grids overlaying on the urban forest of the city. The average per capita CO2 emission of Chennai was found to be 0.45 tons/yr which is less than the national per capita CO2 emission of 1.6 tons/year. The estimated CO2 fluxes due to anthropogenic emissions were in the range of 0-8.5 × 10-6 kg/m2/s with an average flux of 0.36 × 10-6 kg/m2/s. CO2 emissions during weekdays and weekends in summer season (5862.6 and 6235.58 tons/day) were slightly higher than in winter season (5540.8 and 5929.6 tons/day). Grids overlaying on commercial and residential zones showed higher CO2 emissions during morning (07:00-10:00 AM) and evening rush hours (07:00-09:00 PM) of a day.

  19. Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data

    PubMed Central

    Wang, Shaojian

    2015-01-01

    This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China’s CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995–2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions. PMID:26397373

  20. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions.

    PubMed

    Nagelkerken, Ivan; Connell, Sean D

    2015-10-27

    Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth's heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems. PMID:26460052

  1. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions

    PubMed Central

    Nagelkerken, Ivan; Connell, Sean D.

    2015-01-01

    Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth’s heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems. PMID:26460052

  2. Electrochemical CO2 Reduction - A Critical View on Fundamentals, Materials and Applications.

    PubMed

    Durst, Julien; Rudnev, Alexander; Dutta, Abhijit; Fu, Yongchun; Herranz, Juan; Kaliginedi, Veerabhadrarao; Kuzume, Akiyoshi; Permyakova, Anastasia A; Paratcha, Yohan; Broekmann, Peter; Schmidt, Thomas J

    2015-01-01

    The electrochemical reduction of CO(2) has been extensively studied over the past decades. Nevertheless, this topic has been tackled so far only by using a very fundamental approach and mostly by trying to improve kinetics and selectivities toward specific products in half-cell configurations and liquid-based electrolytes. The main drawback of this approach is that, due to the low solubility of CO(2) in water, the maximum CO(2) reduction current which could be drawn falls in the range of 0.01-0.02 A cm(-2). This is at least an order of magnitude lower current density than the requirement to make CO(2)-electrolysis a technically and economically feasible option for transformation of CO(2) into chemical feedstock or fuel thereby closing the CO(2) cycle. This work attempts to give a short overview on the status of electrochemical CO(2) reduction with respect to challenges at the electrolysis cell as well as at the catalyst level. We will critically discuss possible pathways to increase both operating current density and conversion efficiency in order to close the gap with established energy conversion technologies. PMID:26842328

  3. Tracking and verifying anthropogenic CO2 emissions over the Swiss Plateau

    NASA Astrophysics Data System (ADS)

    Oney, Brian; Brunner, Dominik; Henne, Stephan; Leuenberger, Markus

    2013-04-01

    The Swiss Plateau is the densely populated and industrialized part of Switzerland producing more than 90% of the country's total greenhouse gas emissions. Verification of the efficacy of emission mitigation measures in a post Kyoto Protocol era will require several levels of scrutiny at local and regional scales. We present a measurement and modeling system, which quantifies anthropogenic CO2 emissions at a regional scale using the Lagrangian particle dispersion model FLEXPART driven by output from a high-resolution regional scale atmospheric model (COSMO) and observations from two tall tower sites. These rural measurement sites are situated between the largest cities of Switzerland (Zürich, Geneva, Basel and Bern). We present methods used to discretize the anthropogenic CO2 signal from atmospheric CO2 measurements. First, we perform high resolution, time-inverted simulations of air transport combined with a new high quality Swiss CO2 emissions inventory to determine a model-estimated anthropogenic portion of the measured CO2. Second, we assess the utility of CO measurements and the relationship between CO2 and CO in combustion processes as a proxy to quantify the anthropogenic CO2 fraction directly from the measurements. We then compare these two methods in their ability to determine the anthropogenic portion of CO2 measurements at a high temporal resolution (hours). Finally, we assess the quality of the simulated atmospheric transport by comparing CO concentrations obtained with the same atmospheric transport model and a high resolution CO emission inventory with the measured CO concentrations. This comparison of methods for determining anthropogenic CO2 emissions provides information on how to independently certify reported CO2 emissions. This study is a first step towards a prototype GHG monitoring and verification system for the regional scale in a complex topographic setting, which constitutes a necessary component of emissions reporting.

  4. Use of Chia Plant to Monitor Urban Fossil Fuel CO2 Emission: An Example From Irvine, CA in 2010

    NASA Astrophysics Data System (ADS)

    Xu, X.; Stills, A.; Trumbore, S.; Randerson, J. T.; Yi, J.

    2011-12-01

    Δ14CO2 is a unique tracer for quantifying anthropogenic CO2 emissions. However, monitoring 14CO2 change and distribution in an urban environment is challenging because of its large spatial and temporal variations. We have tested the potential use of a chia plant (Salvia hispanica) as an alternative way to collect a time-integrated CO2 sample for radiocarbon analysis. The results show that Δ14C of the new growth of chia sprouts and chia leaves are consistent with the Δ14C of air samples collected during the growing period, indicating the new growth has no inherited C from seeds and thus records atmospheric 14CO2. Time-integrated air samples and chia leaf samples significantly reduced the noises of Δ14CO2 in an urban environment. We report here an example of monitoring 14CO2 change in Irvine, CA from Mar 2010 to Mar 2011 utilizing such a method. The results showed a clear seasonal cycle with high (close to remote air background level) Δ14C in summer and low Δ14C in winter months in this urban area. Excess (above remote air background) fossil fuel CO2 was calculated to be closed to 0 ppm in June to about 16 ppm from November 2010 to February 2011. Monthly mean Δ14CO2 was anti-correlated with monthly mean CO mixing ratio, indicating Δ14CO2 is mainly controlled by fossil fuel CO2 mixing with clean on-shore marine air. In summary, this study has shown encouraging result that chia plant can be potentially used as a convenient and inexpensive sampling method for time-integrated atmospheric 14CO2. Combined with other annual plants this provides the opportunity to map out time-integrated fossil fuel-derived CO2 in major cities at low cost. This in turn can be used to: 1) establish a baseline for fossil fuel emissions reductions in cities in the future; 2) provide invaluable information for validating emission models.

  5. [Impact of Phosphogypsum Wastes on the Wheat Growth and CO2 Emissions and Evaluation of Economic-environmental Benefit].

    PubMed

    Li, Ji; Wu, Hong-sheng; Gao, Zhi-qiu; Shang, Xiao-xia; Zheng, Pei-hui; Yin, Jin; Kakpa, Didier; Ren, Qian-qi; Faustin, Ogou Katchele; Chen, Su-yun; Xu, Ya; Yao, Tong-yan; Ji, Wei; Qian, Jing-shan; Ma, Shi-jie

    2015-08-01

    Phosphogypsum is a phosphorus chemical waste which has not been managed and reused well, resultantly, causing environmental pollution and land-occupation. Phosphogypsum wastes were used as a soil amendment to assess the effect on wheat growth, yield and CO2 emissions from winter wheat fields. Its economic and environmental benefits were analyzed at the same time. The results showed that wheat yield was increased by 37.71% in the treatment of phosphogypsum of 2 100 kg x hm(-2). Compared with the control treatment, throughout the wheat growing season, CO2 emission was accumulatively reduced by 3% in the treatment of phosphogypsum waste of 1050 kg x hm(-2), while reduced by 8% , 10% , and 6% during the jointing stage, heading date and filling period of wheat, respectively; while CO2 emission was accumulatively reduced by 7% in the treatment of phosphogypsum waste of 2 100 kg x hm(-2) throughout the wheat growing season, as reduced by 11% , 4% , and 12% during the reviving wintering stage, heading date and filling period of wheat, respectively. It was better for CO2 emission reduction in the treatment of a larger amount of phosphogypsum waste. In the case of application of phosphogypsum waste residue within a certain range, the emission intensity of CO2 ( CO2 emissions of per unit of fresh weight or CO2 emissions of per unit of yield) , spike length, fresh weight and yield showed a significantly negative correlation--the longer the ear length, the greater fresh weight and yield and the lower the CO2 emissions intensity. As to the carbon trading, phosphogypsum utilization was of high economic and environmental benefits. Compared with the control, the ratio of input to output changed from 1: 8.3 to 1: 10.7, which in the same situation of investment the output could be increased by 28.92% ; phosphogypsum as a greenhouse gas reducing agent in the wheat field, it could decrease the cost and increase the environmental benefit totally about 290 yuan per unit of ton. The

  6. Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite observations

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Buchwitz, M.; Hilboll, A.; Richter, A.; Schneising, O.; Hilker, M.; Heymann, J.; Bovensmann, H.; Burrows, J. P.

    2014-11-01

    At present, global CO2 emission inventories are mainly based on bottom-up estimates that rely, for example, on reported fossil fuel consumptions and fuel types. The associated uncertainties propagate into the CO2-to-NOx emission ratios that are used in pollution prediction and monitoring, as well as into biospheric carbon fluxes derived by inverse models. Here we analyse simultaneous and co-located satellite retrievals from SCIAMACHY (ref. ; SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) of the column-average dry-air mole fraction of CO2 (refs , ) and NO2 (refs , , ) for the years 2003-2011 to provide a top-down estimate of trends in emissions and in the ratio between CO2 and NOx emissions. Our analysis shows that the CO2-to-NOx emission ratio has increased by 4.2 +/- 1.7% yr-1 in East Asia. In this region, we find a large positive trend of CO2 emissions (9.8 +/- 1.7% yr-1), which we largely attribute to the growing Chinese economy. This trend exceeds the positive trend of NOx emissions (5.8 +/- 0.9% yr-1). Our findings suggest that the recently installed and renewed technology in East Asia, such as power plants, transportation and so on, is cleaner in terms of NOx emissions than the old infrastructure, and roughly matches relative emission levels in North America and Europe.

  7. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  8. Sensory neuron response to emission from a CO2 laser

    NASA Astrophysics Data System (ADS)

    Gorobets, V. A.; Petukhov, V. O.; Yachnev, I. L.; Penniyainen, V. A.; Lopatina, E. V.; Podzorova, S. A.; Krylov, B. V.

    2010-07-01

    We have built a wavelength-tunable CO2 laser meeting the requirements for low-intensity laser therapy. At λ = 10.57 μm and 9.24 μm, we observe a physiological effect detectable from the change in the extent of neurite outgrowth from sensory neurons. This makes it possible to study molecular mechanisms for interaction of low-intensity radiation with tissues in a living body. The ATP molecule is considered as the specific molecular target for the action of the radiation.

  9. Photocatalytic CO2 reduction in N,N-dimethylacetamide/water as an alternative solvent system.

    PubMed

    Kuramochi, Yusuke; Kamiya, Masaya; Ishida, Hitoshi

    2014-04-01

    N,N-Dimethylacetamide (DMA) was used for the first time as the reaction solvent in the photocatalytic reduction of CO2. DMA is highly stable against hydrolysis and does not produce formate even if it is hydrolyzed. We report the catalytic activities of [Ru(bpy)2(CO)2](PF6)2 (bpy = 2,2'-bipyridine) in the presence of [Ru(bpy)3](PF6)2 as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor in DMA/water. In the photochemical CO2 reduction, carbon monoxide (CO) and formate are catalytically produced, while dihydrogen (H2) from the reduction of water is scarcely evolved. We verified that BNAH is oxidized to afford BNA dimers during the photocatalyses in DMA/water. The plots of the production for the CO2 reduction versus the water content in DMA/water show that the 10 vol % water content gives the highest amount of the reduction products, whose reaction quantum yields (Φ') are determined to be 11.6% and 3.2% for CO and formate, respectively. The results are compared with those in the N,N-dimethylformamide (DMF)/water system, which has been typically used as the solvent system for the CO2 reduction. PMID:24628681

  10. A constraint satisfaction method applied to the problem of controlling the CO2 emission in the Legal Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Gherardi, Douglas Francisco Marcolino; Yoneyama, Takashi

    2013-11-01

    Socioeconomic-driven processes such as deforestation, forest degradation, forest fires, overgrazing, overharvesting of fuelwood and slash-and-burn practices constitute the primary sources of Greenhouse Gases (GHG) emissions in developing countries. Climate policies can induce the development of clean technology and offer incentives to accelerate reforestation. The Brazilian government has already acknowledged the urgency to invest in policies to reduce anthropogenic CO2 emissions in the Legal Brazilian Amazon (BA). In this work, we propose a scheme to estimate the required investments in clean technology and reforestation to achieve a prescribed short term target value for the atmospheric CO2 emission. Initially, a mathematical model is fitted to the available data to allow forecasting the values of the short term emissions of CO2 under a combination of investments in clean technology and reforestation. The investments to reduce the emissions of CO2 below a target value (400 million tons/year, starting at the initial value of 450) in 3 years’ time are proportional to the regional GDP. Using computer simulation it is possible to generate a range of possible investment values in clean technology and reforestation, so that the prescribed emission reduction is achieved without hindering economic growth. This strategy provides the necessary investment flexibility for the implementation of realistic climate policies.

  11. Pruning removal from orchards for energetic use: impacts on SOC and CO2-emissions

    NASA Astrophysics Data System (ADS)

    Germer, Sonja; Lanza, Giacomo; Schleicher, Sarah; Bischoff, Wolf-Anno; Gomez Palermo, Maider; Nogues, Fernando Sebastian; Kern, Jürgen

    2016-04-01

    Prunings of orchards are usually burnt or left on the soil for nutrient and organic carbon recycling. Recently the interest rose to remove prunings for energetic use. Effects of pruning removal on soil physical and chemical characteristics are expected rather in the long term. Under certain circumstances, however, soil characteristics as organic carbon content and greenhouse gas emissions might change on the short term as our literature review revealed. The main objective of this research was to determine if pruning removal from orchards changes soil organic carbon content and CO2-emission from soils in the short-term. We compared six different study sites in Spain, France and Germany in terms of impacts on soil chemistry (total and organic carbon) and four sites for impacts on CO2-emissions during 2 years. A block design was set up over two rows each with two parcels where we removed prunings and two parcels where prunings were chipped and left on the soil (n=4). As soil characteristics may vary between tree rows and interrows of orchards, we sampled both positions separately. To assess the relative contribution of CO2 emissions from carbonate and organic material, the isotopic signature of CO2 (δ 13CO_2) was analyzed for one orchard. Our results show that pruning removal could significantly decrease soil organic carbon in the tree row after 2 years of pruning removal, as found for one German orchard. No treatment effects were detected on CO2-emissions. We found, however, differences in CO2 emissions according to the sampling position in tree rows and interrows. More CO2 emission was found for that row position per orchard with higher soil organic carbon. Isotopic CO2 signature indicated that elevated CO2 emissions were rather linked to higher microbial decomposition or root respiration than to the release from carbonates. As no pruning wood decomposition effect on CO2 emissions were apparent, but soil with higher organic carbon released more CO2, it is expected

  12. Catalytic reduction of CN−, CO and CO2 by nitrogenase cofactors in lanthanide-driven reactions**

    PubMed Central

    Lee, Chi Chung

    2014-01-01

    Nitrogenase cofactors can be extracted into an organic solvent and added in an adenosine triphosphate (ATP)-free, organic solvent-based reaction medium to catalyze the reduction of cyanide (CN−), carbon monoxide (CO) and carbon dioxide (CO2) when samarium (II) iodide (SmI2) and 2,6-lutidinium triflate (Lut-H) are supplied as a reductant and a proton source, respectively. Driven by SmI2, the cofactors not only catalytically reduce CN− or CO to C1-C4 hydrocarbons, but also catalytically reduce CO2 to CO and C1-C3 hydrocarbons. The observation of C-C coupling from CO2 reveals a unique, Fischer-Tropsch-like reaction with an atypical carbonaceous substrate; whereas the achievement of catalytic turnover of CN−, CO and CO2 by isolated cofactors suggests the possibility to develop nitrogenase-based electrocatalysts for hydrocarbon production from these carbon-containing compounds. PMID:25420957

  13. Catalytic reduction of CN-, CO, and CO2 by nitrogenase cofactors in lanthanide-driven reactions.

    PubMed

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2015-01-19

    Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN(-)), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6-lutidinium triflate (Lut-H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN(-) or CO to C1-C4 hydrocarbons, and CO2 to CO and C1-C3 hydrocarbons. The C-C coupling from CO2 indicates a unique Fischer-Tropsch-like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN(-), CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase-based electrocatalysts for the production of hydrocarbons from these carbon-containing compounds. PMID:25420957

  14. Spatial Disaggregation of CO2 Emissions for the State of California

    SciTech Connect

    de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

    2008-06-11

    This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel

  15. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  16. Eddy Covariance Method for CO2 Emission Measurements: CCS Applications, Principles, Instrumentation and Software

    NASA Astrophysics Data System (ADS)

    Burba, George; Madsen, Rod; Feese, Kristin

    2013-04-01

    and technical papers. A free open-source software package with a user-friendly interface was developed accordingly for computing final fully corrected CO2 emission numbers [10]. The presentation covers highlights of the eddy covariance method, its application to geological carbon sequestration, key requirements, instrumentation and software, and reviews educational resources particularly useful for carbon sequestration research. References: [1] Aubinet, M., T. Vesala, and D. Papale (Eds.), 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer-Verlag, 442 pp. [2] Foken T., 2008. Micrometeorology. Springer-Verlag, 308 pp. [4] Finley, R., 2009. An Assessment of Geological Carbon Sequestration in the Illinois Basin Overview of the Decatur-Illinois Basin Site. MGSC, http://www.istc.illinois.edu/info/govs_awards_docs/2009-GSA-1100-Finley.pdf [5] Liu, G. (Ed.), 2012. Greenhouse Gases: Capturing, Utilization and Reduction. Intech, 338 pp. [6] LI-COR Biosciences, 2011. Surface Monitoring for Geologic Carbon Sequestration Monitoring: Methods, Instrumentation, and Case Studies. LI-COR Biosciences, Pub. 980-11916, 15 pp. [7] Benson, S., 2006. Monitoring carbon dioxide sequestration in deep geological formations for inventory verification and carbon credits, SPE-102833, Presentation [8] Lewicki, J., G. Hilley, M. Fischer, L. Pan, C. Olden-burg, C. Dobeck, and L. Spangler, 2009.Eddy covariance observations of leakage during shallow subsurface CO2 releases. Journal of Geophys Res, 114: D12302 [9] Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences, 328 pp. [10] LI-COR Biosciences, 2012. EddyPro 4.0: Help and User's Guide. Lincoln, NE, 208 pp.

  17. Photogeneration of Hydride Donors and Their Use Toward CO2 Reduction

    SciTech Connect

    Fujita,E.; Muckerman, J.T.; Polyansky, D.E.

    2009-06-07

    Despite substantial effort, no one has succeeded in efficiently producing methanol from CO2 using homogeneous photocatalytic systems. We are pursuing reaction schemes based on a sequence of hydride-ion transfers to carry out stepwise reduction of CO2 to methanol. We are using hydride-ion transfer from photoproduced C-H bonds in metal complexes with bio-inspired ligands (i.e., NADH-like ligands) that are known to store one proton and two electrons.

  18. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    SciTech Connect

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regions or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.

  19. How Uncertain Are Estimates of CO2 Emissions

    SciTech Connect

    Marland, Gregg; Hamal, Khrystyna; Jonas, Matthias

    2009-02-01

    Can satellite or other remotely sensed data provide independent estimates - or even confirmation of existing estimates - for emissions from power plants, highways, projects, cities, countries, or groups of countries? The answer for now is no; estimates of emissions from fossil fuels are actually one of the best constrained pieces of data in analyzing the global carbon cycle.

  20. Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2 O Dark Cathode with Improved Selectivity for Carbonaceous Products.

    PubMed

    Chang, Xiaoxia; Wang, Tuo; Zhang, Peng; Wei, Yijia; Zhao, Jiubing; Gong, Jinlong

    2016-07-25

    Photocatalytic reduction of CO2 to produce fuels is a promising way to reduce CO2 emission and address the energy crisis. However, the H2 evolution reaction competes with CO2 photoreduction, which would lower the overall selectivity for carbonaceous products. Cu2 O has emerged as a promising material for suppressing the H2 evolution. However, it suffers from poor stability, which is commonly regarded as the result of the electron-induced reduction of Cu2 O. This paper describes a simple strategy using Cu2 O as a dark cathode and TiO2 as a photoanode to achieve stable aqueous CO2 reduction with a high Faradaic efficiency of 87.4 % and a selectivity of 92.6 % for carbonaceous products. We have shown that the photogenerated holes, instead of the electrons, primarily account for the instability of Cu2 O. Therefore, Cu2 O was used as a dark cathode to minimize the adverse effects of holes, by which an improved stability was achieved compared to the Cu2 O photocathode under illumination. Additionally, direct exposure of the Cu2 O surface to the electrolyte was identified as a critical factor for the high selectivity for carbonaceous products. PMID:27199242

  1. The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Brooks, B. J.; Hoffman, F. M.; Mills, R. T.; Erickson, D. J.; Blasing, T. J.

    2009-12-01

    A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO2 by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO2 flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO2 flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO2 seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO2 emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA‧ (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO2 concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO2 between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO2 seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO2 concentrations depend strongly on the natural sources and sinks of CO2, but also on the strength of local anthropogenic CO2 emissions and geographic position. This work further

  2. Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111).

    PubMed

    Ertem, Mehmed Z; Konezny, Steven J; Araujo, C Moyses; Batista, Victor S

    2013-03-01

    Recent breakthroughs in electrochemical studies have reported aqueous CO2 reduction to formic acid, formaldehyde, and methanol at low overpotentials (-0.58 V versus SCE), with a Pt working electrode in acidic pyridine (Pyr) solutions. We find that CO2 is reduced by H atoms bound to the Pt surface that are transferred as hydrides to CO2 in a proton-coupled hydride transfer (PCHT) mechanism activated by pyridinium (PyrH(+)), CO2 + Pt-H + PyrH(+) + e(-) → Pyr + Pt + HCO2H. The surface-bound H atoms consumed by CO2 reduction is replenished by the one-electron reduction of PyrH(+) through the proton-coupled electron transfer (PCET), PyrH(+) + Pt + e(-) → Pyr + Pt-H. Pyridinium is essential to establish a high concentration of Brønsted acid in contact with CO2 and with the Pt surface, much higher than the concentration of free protons. These findings are particularly relevant to generate fuels with a carbon-neutral footprint. PMID:26281929

  3. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction.

    PubMed

    Loiudice, Anna; Lobaccaro, Peter; Kamali, Esmail A; Thao, Timothy; Huang, Brandon H; Ager, Joel W; Buonsanti, Raffaella

    2016-05-01

    Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non-monotonic size-dependence of the selectivity in cube-shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR. PMID:27059162

  4. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (<1%) to pre-production CO 2

  5. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development

    PubMed Central

    Wagner, Liam; Ross, Ian; Foster, John; Hankamer, Ben

    2016-01-01

    The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature ‘well below 2°C’ and to ‘aim to limit the increase to 1.5°C’. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international ‘pro-growth’ strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve ‘sustainable development’ goals. PMID:26959977

  6. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    PubMed

    Wagner, Liam; Ross, Ian; Foster, John; Hankamer, Ben

    2016-01-01

    The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals. PMID:26959977

  7. Temporal Variability of Surface CO2 Emissions at the Horseshoe Lake Tree Kill, Mammoth Mountain, CA

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Rogie, J. D.; Hilley, G. E.; Fischer, M. L.; Tosha, T.; Aoyagi, R.; Benson, S. M.; Yamamoto, K.

    2006-12-01

    Mammoth Mountain is a dacitic volcano located on the southwestern rim of Long Valley caldera in eastern California. An eleven-month-long seismic swarm occurred beneath Mammoth in 1989 and was followed in 1990 by CO2 emissions around the flanks of the volcano, resulting in the formation of large areas of tree kill associated with high soil CO2 concentrations. Carbon dioxide emissions have persisted at Mammoth to the present day, allowing Mammoth to serve as a natural analogue for short-to-long-term CO2 leakage from geologic carbon storage sites. The Horseshoe Lake tree kill is the largest on the volcano and numerous investigations have been conducted here to quantify CO2 emission rates, determine spatial and temporal variability, and understand effects on the near-surface environment. In particular, continuous monitoring of soil CO2 fluxes (accumulation chamber method) and meteorological parameters at a point location was carried out along with repeat flux measurements along a grid in the tree-kill area in 1998-2000. Results showed large temporal variations in both point CO2 fluxes and total aerial CO2 emission rates driven primarily by fluctuations in wind and atmospheric pressure, rather than deep subsurface processes. We will build on previous studies of CO2 emissions at the Horseshoe Lake tree kill and present results of an investigation of CO2 emissions using the eddy covariance and accumulation chamber methods carried out in September-October, 2006. Spatially and temporally averaged net CO2 fluxes (eddy covariance method) will be used in conjunction with repeat point measurements of soil CO2 fluxes along a grid (accumulation chamber method) to quantify present-day CO2 emission, its temporal variability on half- hour to monthly time scales, and the physical controls on this variability. Implications of CO2 emissions at Mammoth Mountain for geologic carbon storage projects will be discussed. This work was supported in part by the Ernest Lawrence Berkeley

  8. Quantification and modelling of on-road CO2 emissions and its impacts on ambient CO2 concentrations in an Indian coastal city

    NASA Astrophysics Data System (ADS)

    Madhipatla, K. K.

    2015-12-01

    This paper presents the results of CO2 emission inventory, monitoring of CO2 concentrations and modelling of on road CO2 emissions in an Indian coastal city. Bottom up approach was adopted for quantifying the grid wise on road CO2 emissions of Chennai city at a finer resolution of 1Km x 1Km using the real time traffic data of 56 major roads. In addition, monitoring of ground level CO2 concentrations and vehicular traffic were carried out at a residential site in Chennai to understand the impact of vehicular emissions on the ambient CO2 levels. Further, AERMOD, a US EPA regulatory model, was deployed to find the spatial variation of CO2 concentrations due to the emissions from 38 major corridors of Chennai. Results indicated that a total emission of 0.65 Tg/year of CO2 was emitted by the vehicular traffic from the major roads of Chennai. Cars were identified as the larger emitters of CO2 with a contribution of 25% of the total emissions followed by three wheelers (21%), trucks (16%), buses (15%), two wheelers (13%) and Light Commercial Vehicles (9%). Ground level CO2 concentrations at the study area were in the range 391.52 to 666.37 ppm, with a mean hourly concentration of 448 ± 33.45 ppm. It was observed that the CO2 concentrations were high during the morning and evening peak hours and low during the afternoons and further vehicular emissions were found to have a significant effect on the ambient CO2 concentrations during the morning peak hours (R2=0.78) and afternoons (R2=0.50). But, contrastingly, a weak correlation was observed between the vehicular emissions and CO2 concentrations during the evening peak hours (R2=0.02). In addition, night time CO2 concentrations were observed higher in the weekends corresponding to high vehicular traffic during the late evenings. From the modelling results, it was found that the considered 38 major corridors contribute 0.12 ppm of CO2 per year to the ambient atmosphere.

  9. Allowable CO2 emissions based on projected changes in regional extremes and related impacts

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sonia I.; Donat, Markus; Pitman, Andy; Knutti, Reto; Wilby, Robert

    2016-04-01

    Global temperature targets, such as the widely accepted 2°C and 1.5° limits, may fail to communicate the urgency of reducing CO2 emissions. Translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because they resonate better with national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean. Linking cumulative CO2 emission targets to regional consequences, such as changing climate extremes, would be of particular benefit for political decision making, both in the context of climate negotiations and adaptation.

  10. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhou, Jing; Lv, Weixin; Fang, Hailin; Wang, Wei

    2016-01-01

    Sn/f-Cu electrode has been prepared by electrodeposition Sn on a Cu foam substrate in aqueous plating solution, which has been used as the cathode for electrochemical reduction of carbon dioxide (CO2) in aqueous KHCO3 solution. Here, we have explored the effects of the deposition time and the electrolysis potential on the Faradaic efficiency for producing formate. The results demonstrate that maximum Faradaic efficiency of 83.5% is obtained at -1.8 V vs. Ag/AgCl when the Sn/f-Cu electrode is prepared by electrodeposition for 35 min. The Sn/f-Cu electrode exhibits excellent catalytic activity for CO2 reduction compared with the Cu foam electrode and the Sn plate electrode. The average current density and the production rate of formate for the Sn/f-Cu electrode are more than twice those for the Sn plate electrode during electrochemical reduction of CO2.

  11. Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts

    PubMed Central

    Neaţu, Ştefan; Maciá-Agulló, Juan Antonio; Garcia, Hermenegildo

    2014-01-01

    The reduction of carbon dioxide to useful chemicals has received a great deal of attention as an alternative to the depletion of fossil resources without altering the atmospheric CO2 balance. As the chemical reduction of CO2 is energetically uphill due to its remarkable thermodynamic stability, this process requires a significant transfer of energy. Achievements in the fields of photocatalysis during the last decade sparked increased interest in the possibility of using sunlight to reduce CO2. In this review we discuss some general features associated with the photocatalytic reduction of CO2 for the production of solar fuels, with considerations to be taken into account of the photocatalyst design, of the limitations arising from the lack of visible light response of titania, of the use of co-catalysts to overcome this shortcoming, together with several strategies that have been applied to enhance the photocatalytic efficiency of CO2 reduction. The aim is not to provide an exhaustive review of the area, but to present general aspects to be considered, and then to outline which are currently the most efficient photocatalytic systems. PMID:24670477

  12. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures.

    PubMed

    Xie, Shunji; Zhang, Qinghong; Liu, Guodong; Wang, Ye

    2016-01-01

    The development of efficient artificial photocatalysts and photoelectrocatalysts for the reduction of CO2 with H2O to fuels and chemicals has attracted much attention in recent years. Although the state-of-the-art for the production of fuels or chemicals from CO2 using solar energy is still far from practical consideration, rich knowledge has been accumulated to understand the key factors that determine the catalytic performances. This Feature article highlights recent advances in the photocatalytic and photoelectrocatalytic reduction of CO2 with H2O using heterogeneous semiconductor-based catalysts. The effects of structural aspects of semiconductors, such as crystalline phases, particle sizes, morphologies, exposed facets and heterojunctions, on their catalytic behaviours are discussed. The roles of different types of cocatalysts and the impact of their nanostructures on surface CO2 chemisorption and reduction are also analysed. The present article aims to provide insights into the rational design of efficient heterogeneous catalysts with controlled nanostructures for the photocatalytic and photoelectrocatalytic reduction of CO2 with H2O. PMID:26540265

  13. Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts.

    PubMed

    Neațu, Stefan; Maciá-Agulló, Juan Antonio; Garcia, Hermenegildo

    2014-01-01

    The reduction of carbon dioxide to useful chemicals has received a great deal of attention as an alternative to the depletion of fossil resources without altering the atmospheric CO2 balance. As the chemical reduction of CO2 is energetically uphill due to its remarkable thermodynamic stability, this process requires a significant transfer of energy. Achievements in the fields of photocatalysis during the last decade sparked increased interest in the possibility of using sunlight to reduce CO2. In this review we discuss some general features associated with the photocatalytic reduction of CO2 for the production of solar fuels, with considerations to be taken into account of the photocatalyst design, of the limitations arising from the lack of visible light response of titania, of the use of co-catalysts to overcome this shortcoming, together with several strategies that have been applied to enhance the photocatalytic efficiency of CO2 reduction. The aim is not to provide an exhaustive review of the area, but to present general aspects to be considered, and then to outline which are currently the most efficient photocatalytic systems. PMID:24670477

  14. Comparison of soil CO2 emission in poorly and well-drained mineral soil at a small agricultural hillside scale

    NASA Astrophysics Data System (ADS)

    TETE, Emmanuel; Viaud, Valerie; Flechard, Chris; Walter, Christian

    2014-05-01

    The increase of greenhouse gases (GHG) in the atmosphere and the climate change which results from it, will have major effects in the 21th century. In agricultural landscapes and others ecosystems, soil CO2 emissions are controlled by thermal and hydrological regimes, but their relative importance seems to be dependant of soil drainage conditions. The purpose of this study was to measure and model soil CO2 emissions at the scale of a hillslope presenting a gradient of soil drainage conditions. The studied hillslope is located in the Kervidy-Naizin headwater catchment (Brittany, France, 48°00'N 2°50W) and corresponds to an agricultural field cropped in a maize / winter wheat rotation. Soil CO2 emissions were measured once per week from February 2013 to March 2014, in two locations contrasting by soil drainage condition: (1) well-drained mineral (WDM) soil classified as Cambisol in upslope position, (2) poorly-drained mineral (PDM) soil classified as Haplic Albeluvisol and which undergoes continuous or periodic saturation and reduction conditions in downslope position. The measurement sites of 9m2 were equipped for continuous measurement of soil water content (TDR probes) and soil temperature. Soil CO2 emissions were measured with the infrared gas analyzer (IRGA) Li-8100A (Li-Cor, Lincoln, USA) until now. Results showed that PDM soils were waterlogged in winter and autumn inducing a low CO2 emission (average of 1.1±0.2µmol.m-2.s-1) which was two times lower than CO2 emissions in WDM soil. A shift of soil moisture to field capacity leading to an availability of oxygen in soil in the spring and summer induced an increase of soil CO2 emissions in PDM soil with a maximum of 5.03±0.5µmol.m-2.s-1 at the end of July. In WDM soil, CO2 emissions were high at the end of spring (average of 7µmol.m-2.s-1) and decreased of 65% at the end of summer because of the drought conditions. The modeling of temporal variability of soil CO2 emission by temperature and moisture

  15. Quantification of Volcanic CO2 Emissions Using the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Hilley, G. E.; Dobeck, L.; Fischer, M. L.; Mcling, T. L.

    2012-12-01

    Eddy covariance (EC) is a micrometeorological technique proposed as a method to measure passive volcanic CO2 emissions from soil, vent, groundwater, and surface water sources. EC provides an automated, semi-continuous, and time and space-averaged CO2 flux measurement. Also, the measurement's "intermediate" spatial scale (m2-km2) has the potential to bridge the gap between relatively small-scale ground-based measurements (e.g., using the accumulation chamber, AC, method) and relatively large-scale satellite-based observations. We deployed and tested an EC system during two studies in an area of diffuse volcanic CO2 emissions on Mammoth Mountain, CA and near a bubbling spring in Soda Springs, ID. Half-hourly EC CO2 fluxes were measured on Mammoth Mountain during September-October 2006 and ranged from 218 to 3500 g m-2 d-1. Maps of surface CO2 flux were simulated based on AC measurements made repeatedly on a grid over a ten-day period. Large meteorologically driven variations in surface flux distributions and emission rates (16 to 52 t d-1) were observed. Using source weight function modeling, we compared EC to AC measurements of CO2 flux. Half-hour EC CO2 fluxes were moderately correlated (R2 = 0.42) with AC fluxes, whereas average-daily EC and AC fluxes were well correlated (R2 = 0.70). We then made EC measurements of CO2 flux on Mammoth Mountain during September-October 2010, which ranged from 85 to 1766 g m-2 d-1. Three AC soil CO2 flux surveys during this time were used to simulate maps of soil CO2 flux and estimate total emission rates. An inversion of measured EC CO2 fluxes and corresponding modeled source weight functions was carried out and recovered 58 to 77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes within a 0.01 km2 area. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R2 = 0.36 to 0.70). In September-October 2011, we deployed an EC system near a

  16. Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring, 2010

    NASA Astrophysics Data System (ADS)

    Newman, S.; Jeong, S.; Fischer, M. L.; Xu, X.; Haman, C. L.; Lefer, B.; Alvarez, S.; Rappenglueck, B.; Kort, E. A.; Andrews, A. E.; Peischl, J.; Gurney, K. R.; Miller, C. E.; Yung, Y. L.

    2012-02-01

    Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin. During CalNex-LA, local fossil fuel combustion contributed up to ~50 % of the observed CO2 enhancement overnight, and ~100 % during midday. This suggests midday column observations over LA, such as those made by satellites relying on reflected sunlight, can be used to track anthropogenic emissions.

  17. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. PMID:27005790

  18. Determinants of CO2 emissions in ASEAN countries using energy and mining indicators

    NASA Astrophysics Data System (ADS)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Ismail, Siti Fatimah; Hamzah, Khairum; Halim, Bushra Abdul; Kun, Sek Siok

    2015-05-01

    Carbon dioxide (CO2) is the main greenhouse gas emitted from human activities. Industrial revolution is one of the triggers to accelerate the quantity of CO2 in the atmosphere which lead to undesirable changes in the cycle of carbon. Like China and United States which are affected by the economic development growth, the atmospheric CO2 level in ASEAN countries is expected to be higher from year to year. This study focuses on energy and mining indicators, namely alternative and nuclear energy, energy production, combustible renewables and waste, fossil fuel energy consumption and the pump price for diesel fuel that contribute to CO2 emissions. Six ASEAN countries were examined from 1970 to 2010 using panel data approach. The result shows that model of cross section-fixed effect is the most appropriate model with the value of R-squared is about 86%. Energy production and fossil fuel energy consumption are found to be significantly influenced to CO2 emissions.

  19. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    SciTech Connect

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil

  20. High-resolution emissions of CO2 from power generation in the USA

    NASA Astrophysics Data System (ADS)

    PéTron, Garielle; Tans, Pieter; Frost, Gregory; Chao, Danlei; Trainer, Michael

    2008-12-01

    Electricity generation accounts for close to 40% of the U.S. CO2 emissions from fossil fuel burning, making it the economic sector with the largest source of CO2. Since the late 1990s, the Environmental Protection Agency Clean Air Markets Division (EPA CAMD) has kept a repository of hourly CO2 emission data for most power plants in the conterminous United States. In this study, the CAMD CO2 data are used to derive a high spatiotemporal resolution CO2 emissions inventory for the electricity generation sector (inventory available on request). Data from 1998 to 2006 have been processed. This unique inventory can be used to improve the understanding of the carbon cycle at fine temporal and spatial scales. The CAMD data set provides the first quantitative estimates of the diurnal and seasonal cycles of the emissions as well as the year to year variability. Emissions peak in the summertime owing to the widespread use of air conditioning. Summertime emissions are in fact highly correlated with the daily average temperature. In conjunction with the EPA Emissions and Generation Resource Integrated Database (eGRID), we have derived high-resolution maps of CO2 emissions by fossil fuel burned (coal, gas, oil) for the year 2004. The CAMD data set also reflects regional anomalies in power generation such as the August 2003 blackout in the northeastern United States and the 2000-2001 increase in production in California. We recommend that all sectors of the economy report similar high-resolution CO2 emissions because of their great usefulness both for carbon cycle science and for greenhouse gases emissions mitigation and regulation.

  1. Biophysical and economic limits to negative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Smith, Pete; Davis, Steven J.; Creutzig, Felix; Fuss, Sabine; Minx, Jan; Gabrielle, Benoit; Kato, Etsushi; Jackson, Robert B.; Cowie, Annette; Kriegler, Elmar; van Vuuren, Detlef P.; Rogelj, Joeri; Ciais, Philippe; Milne, Jennifer; Canadell, Josep G.; McCollum, David; Peters, Glen; Andrew, Robbie; Krey, Volker; Shrestha, Gyami; Friedlingstein, Pierre; Gasser, Thomas; Grübler, Arnulf; Heidug, Wolfgang K.; Jonas, Matthias; Jones, Chris D.; Kraxner, Florian; Littleton, Emma; Lowe, Jason; Moreira, José Roberto; Nakicenovic, Nebojsa; Obersteiner, Michael; Patwardhan, Anand; Rogner, Mathis; Rubin, Ed; Sharifi, Ayyoob; Torvanger, Asbjørn; Yamagata, Yoshiki; Edmonds, Jae; Yongsung, Cho

    2016-01-01

    To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.

  2. Photocatalytic CO2 reduction in metal-organic frameworks: A mini review

    NASA Astrophysics Data System (ADS)

    Wang, Chong-Chen; Zhang, Yan-Qiu; Li, Jin; Wang, Peng

    2015-03-01

    Photocatalytic reduction of CO2 for value-added chemicals is an attractive process to address both energy and environmental issues. This mini review paper presents two different conversion processes, namely conversion to organic chemicals (like CH4, CH3OH, HCOOH and so on) and being split into CO, in metal-organic frameworks (MOFs). The reported examples are collected and analyzed; and the reaction mechanism, the influence of various factors on the photocatalytic performance, the involved challenges, and the prospects are discussed and estimated. It is clear that MOFs have a bright prospect in the field of photocatalytic reduction of CO2.

  3. Photocatalytic CO2 reduction of BaCeO3 with 4f configuration electrons

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Huang, Chunxiang; Chen, Xianliu; Zhang, Haitao; Li, Zhaosheng; Zou, Zhigang

    2015-12-01

    The perovskite-type photocatalyst BaCeO3, prepared by a Pechini method, was investigated for CO2 reduction under UV light irradiation. The prepared samples were characterized by X-ray diffraction, BET surface area measurement, UV-vis reflectance spectroscopy, scanning electron microscopy, and transmission electron microscopy, and the flat band potential was confirmed by Mott-Schottky measurements. The effects of various cocatalyst nanoparticles (Ag, Au, Pt, CuO, and RuO2) on the photocatalytic activities of BaCeO3 were also discussed. Among these cocatalysts, Ag nanoparticles exhibited the best performance for improving the photocatalytic activities of CO2 reduction.

  4. Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst.

    PubMed

    Liang, Weibin; Church, Tamara L; Zheng, Sisi; Zhou, Chenlai; Haynes, Brian S; D'Alessandro, Deanna M

    2015-12-14

    A porous organic polymer incorporating [(α-diimine)Re(CO)3Cl] moieties was produced and tested in the photocatalytic reduction of CO2, with NEt3 as a sacrificial donor. The catalyst generated both H2 and CO, although the Re moiety was not required for H2 generation. After an induction period, the Re-containing porous organic polymer produced CO at a stable rate, unless soluble [(bpy)Re(CO)3Cl] (bpy=2,2'-bipyridine) was added. This provides the strongest evidence to date that [(α-diimine)Re(CO)3Cl] catalysts for photocatalytic CO2 reduction decompose through a bimetallic pathway. PMID:26538203

  5. The contribution of aquatic metabolism to CO2 emissions from New Hampshire streams

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Snyder, L. E.; McDowell, W. H.; Hunt, C. W.

    2015-12-01

    Fluvial networks represent a significant source of carbon dioxide (CO2) to the atmosphere. Recent evidence has highlighted the ubiquity of CO2 supersaturation in streams, rivers, and lakes worldwide, yet our understanding of how the source of this CO2 flux (e.g. in situ aquatic production versus soil and groundwater sources within the catchment) varies in time and across different aquatic systems remains limited. In this study we used continuous, high-frequency measurements of dissolved oxygen (DO) and CO2 to model stream metabolism and CO2 emissions for five stream sites across New Hampshire that vary in size, nutrient loading, and landscape context, with the goal of quantitatively partitioning the aquatic CO2 flux into catchment and aquatic sources, respectively. Spectral analysis of the DO and CO2 time series indicates that these gases often deviated from the pure inverse behavior that would be expected if CO2 flux originated solely from in-stream biological activity. Across all streams, the estimated contribution of aquatic net ecosystem production (NEP) to stream CO2 flux varied from approximately 0% to 50%. For each site, the proportion of CO2 flux supported by aquatic NEP was lower at higher discharge, perhaps due to increased CO2 transport from soils to streams during wetter periods, and/or due to effects of scouring flows and carbon removal on stream metabolism. Our data provides evidence that catchment sources represent substantial contributions to aquatic CO2 flux across temperate streams, but that the proportion of CO2 flux originating from net in situ production and carbon transformation is variable throughout the growing season.

  6. LA Megacity: An Integrated Land-Atmosphere System for Urban CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Feng, S.; Lauvaux, T.; Newman, S.; Rao, P.; Patarasuk, R.; o'Keefe, D.; Huang, J.; Ahmadov, R.; Wong, C.; Song, Y.; Gurney, K. R.; Diaz Isaac, L. I.; Jeong, S.; Fischer, M. L.; Miller, C. E.; Duren, R. M.; Li, Z.; Yung, Y. L.; Sander, S. P.

    2015-12-01

    About 10% of the global population lives in the word's 20 megacities (cities with urban populations greater than 10 million people). Megacities account for approximately 20% of the global anthropogenic fossil fuel CO2 (FFCO2) emissions, and their proportion of emissions increases monotonically with the world population and urbanization. Megacities range in spatial extent from ~1000 - 10,000 km2 with complex topography and variable landscapes. We present here the first attempt at building an integrated land-atmosphere modeling system for megacity environments, developed and evaluated for urban CO2 emissions over the Los Angeles (LA) Megacity area. The Weather Research and Forecasting (WRF) - Chem model was coupled to a ~1.3-km FFCO2 emission product, "Hestia-LA", to simulate the transport of CO2 across the LA magacity. We define the optimal model resolution to represent both the spatial variability of the atmospheric dynamics and the spatial patterns from the CO2 emission distribution. In parallel, we evaluate multiple configurations of WRF with various physical schemes, using meteorological observations from the CalNex-LA campaign of May-June 2010. Our results suggest that there is no remarkable difference between the medium- (4-km) and high- (1.3-km) resolution simulations in terms of atmospheric model performance. However, the high-resolution modeled CO2 mixing ratios clearly outperform the results at medium resolution for capturing both the spatial distribution and the temporal variability of the urban CO2 signals. We compare the impact of physical representation errors and emission aggregation errors on the modeled CO2 mixing ratios across the LA megacity. Finally, we present a novel approach to evaluate the design of the current surface network over the LA megacity using the modeled spatial correlations. These results reinforce the importance of using high-resolution emission products over megacities to represent correctly the large spatial gradients in

  7. Low-dimensional models for the estimation of anthropogenic CO2 emissions from atmospheric observations

    NASA Astrophysics Data System (ADS)

    van Bloemen Waanders, B.; Ray, J.; McKenna, S. A.; Yadav, V.; Michalak, A. M.

    2011-12-01

    The estimation of anthropogenic fossil fuel emissions using atmospheric observations of CO2 has recently attracted increasing interest due to its relevance to monitoring of CO2 mitigation treaties and programs. To date, techniques to perform large-scale inversions had primarily been developed within the context of understanding biospheric and oceanic fluxes. Such fluxes tend to vary relatively smoothly in space and time, making it possible to use multiGaussian models to parameterize and regularize such inversions, predicated on limited measurements of CO2 concentrations. However, the spatial distribution of anthropogenic emissions is non-stationary and multiscale, and therefore makes the use of multiGaussians models less suitable. Thus, a need exists to identify how anthropogenic emissions may be represented in a low-dimensional manner (i.e., with few parameters), for use in top-down estimation. Certain aspects of the spatial extent of anthropogenic emissions can be represented using easily measurable proxies such as nightlights, population density and GDP; in fact, fossil fuel inventories regularly use them to disaggregate regional emission budgets to finer spatial resolutions. However, such proxies can also be used to construct a priori models for anthropogenic emissions, which can then be updated, with data, through inverse modeling. In this presentation, we compare 3 low-dimensional parameterizations to characterize anthropogenic sources. The models are derived from images of nightlights over the continental USA, but adopt different arguments to achieve their dimensionality reduction. In the first model, we threshold nightlights and fit bivariate Gaussian kernels over clusters to represent emission sources; the emission field is modeled as a weighted sum of the kernels. The second approach models emissions as a weighted superposition of a filtered nightlight-distribution and a multiresolution defect, modeled with Haar wavelet. The nightlight-based methods

  8. Method for reducing CO2, CO, NOX, and SOx emissions

    DOEpatents

    Lee, James Weifu; Li, Rongfu

    2002-01-01

    Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

  9. Remote estimation of net CO2 emission from boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Rogers, C. A.; Strachan, I. B.

    2010-12-01

    Hydroelectricity is the main source of power in the province of Quebec, Canada. While hydroelectricity is considered to be a relatively green source of energy, reservoir creation is a land use change that involves flooding terrestrial ecosystems and thus a loss of greenhouse gas (GHG) uptake as well as direct GHG emission from decomposing vegetation. Both the lost sink for GHGs and direct emission from the reservoir surface must be included in estimating the net GHG emission attributable to the reservoir’s construction. These emissions can be determined using techniques such as eddy covariance, however, such methods are often costly and time consuming, and require frequent access to remote locations. Remote sensing is able to provide spatially continuous data over large areas, minimizing the need for ground based measurements. We tested the ability of the photochemical reflectance index (PRI) and normalized difference vegetation index (NDVI) to predict fluxes of carbon dioxide in areas representative of boreal forests and peatlands flooded by the Eastmain 1 hydroelectric reservoir in the James Bay region of Quebec, Canada. We collected spectral measurements from hand-held and helicopter-based platforms, as well as continuously monitored the indices PRI and NDVI from tower-mounted sensors at a forest and peatland site. We then compared the vegetation indices to net fluxes of carbon dioxide measured by eddy covariance at each site. PRI was related to fluxes at both the forest and peatland sites, suggesting it is possible to remotely estimate carbon dioxide uptake by vegetation in boreal forests and peatlands and thus greenhouse gas emissions resulting from land use changes in boreal regions, such as reservoir inundation.

  10. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. PMID:23897802