Science.gov

Sample records for coal fired plants

  1. DEVELOPMENTS IN PARTICULATE CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses recent developments in particulate control for coal-fired power plants. The developments are responding to a double challenge to conventional coal-fired power plant emissions control technology: (1) lower particulate emissions require more efficient control de...

  2. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  3. Nitrogen oxide emissions from coal fired MHD plants

    SciTech Connect

    Chapman, J.N.

    1996-03-01

    In this topical report, the nitrogen oxide emission issues from a coal fired MHD steam combined cycle power plant are summarized, both from an experimental and theoretical/calculational viewpoint. The concept of staging the coal combustion to minimize NO{sub x} is described. The impact of NO{sub x} control design choices on electrical conductivity and overall plant efficiency are described. The results of the NO{sub x} measurements in over 3,000 hours of coal fired testing are summarized. A chemical kinetics model that was used to model the nooks decomposition is described. Finally, optimum design choices for a low nooks plant are discussed and it is shown that the MHD Steam Coal Fired Combined Cycle Power Plant can be designed to operate with nooks emissions less than 0.05 lbm/MMBTU.

  4. Corrosion protection pays off for coal-fired power plants

    SciTech Connect

    Hansen, T.

    2006-11-15

    Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

  5. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  6. Carbon dioxide capture from existing coal-fired power plants

    SciTech Connect

    2006-12-15

    During 1999-2001 ALSTOM Power Inc.'s Power Plant Laboratories and others evaluated the feasibility of alternate CO{sub 2} capture technologies applied to an existing US coal-fired electric power plant. The power plant analysed was the Conesville No. 5 unit, operated by AEP of Columbus, Ohio. This unit is a nominal 450 MW, pulverized coal-fired, subcritical pressure steam plant. One of the CO{sub 2} capture concepts investigated was a post-combustion system, which used the Kerr-McGee/ABB Lummus Global, Inc.'s commercial MEA process. More than 96% of CO{sub 2} was removed, compressed, and liquefied for usage or sequestration from the flue gas. Based on results from this study a follow-up study is investigating the post-combustion capture systems with amine scrubbing as applied to the Conesville No. 5 unit. The study evaluated the technical and economic impacts of removing CO{sub 2} from a typical existing US coal-fired electric power plant using advanced amine-based post combustion CO{sub 2} capture systems. The primary impacts are quantified in terms of plant electrical output reduction, thermal efficiency, CO{sub 2} emissions, retrofit investment costs, and the incremental cost of generating electricity resulting from the addition of the CO{sub 2} capture systems. An advanced amine CO{sub 2} scrubbing system is used for CO{sub 2} removal from the flue gas stream. Four (90%, 70%, 50%, and 30%) CO{sub 2} capture levels were investigated in this study. These results indicate that the advanced amine provided significant improvement to the plant performance and economics. Comparing results with recent literature results for advanced amine based capture systems (Econamine FG{sup +} and KS-1) as applied to utility scale coal fired power plants shows very similar impacts.

  7. Coal fired power plant with pollution control and useful byproducts

    SciTech Connect

    Marten, J.H.; Lloyd, G.M.

    1990-04-17

    This patent describes a coal fired power plant. It comprises: coal gasification means for heating coal in the presence of an oxidant-lean atmosphere under partial coal-gasifying conditions; means for separating sulfur-containing compounds from the crude gas stream; means for converting the sulfur compound containing stream into elemental sulfur; energy-conversion means for burning a portion of the combustible gas stream and a portion of the carbonaceous char; flue gas desulfurization means for contacting the SO{sub 2}-containing flue gas with lime and limestone; gypsum desulfurization means for heating the gypsum and the remaining portion of carbonaceous char under reducing conditions utilizing burning of the remaining portion of the combustible gas stream; means for recycling the SO{sub 2}-containing gas stream to the coal gasification means.

  8. Emissions of sulfur trioxide from coal-fired power plants.

    PubMed

    Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R

    2004-06-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist. PMID:15242154

  9. Controlling mercury emissions from coal-fired power plants

    SciTech Connect

    Chang, R.

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  10. Tracking new coal-fired power plants: coal's resurgence in electric power generation

    SciTech Connect

    2007-05-01

    This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

  11. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  12. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  13. Potential of Co-firing of Woody Biomass in Coal Fired Power Plant

    NASA Astrophysics Data System (ADS)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    Taking the distributing woody biomass supply into account, this paper assesses the potential of a co-firing of woody biomass in utility's coal power plant from the both energy-saving and economical view points. Sawmill wastes, trimming wastes from fruit farms and streets, and thinning residues from forests in Aichi Prefecture are taken into account. Even though transportation energy is required, almost all of woody biomass can be more efficiently used in co-firing with coal than in a small-scale fuel cell system with gasification as a distributed utilization. When the capital cost of fuel cell system with 25% of total efficiency, including preprocess, gasification and power generation, is higher than 170× 103yen/kW, almost all of thinning residues can be more economically used in co-firing. The cost of woody biomass used in co-firing is also compared with the transaction cost of renewable power in the current RPS scheme. The result suggests the co-firing of woody biomass in coal fired power plant can be feasible measure for effective utilization of woody biomass.

  14. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type

  15. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power

  16. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  17. Dose assessment for various coals in the coal-fired power plant

    SciTech Connect

    Antic, D.; Sokcic-Kostic, M. )

    1993-01-01

    The radiation exposure of the public in the vicinity of a coal-fired power plant has been studied. The experimental data on uranium, thorium, and potassium content in selected coals from Serbia and Bosnia have been used to calculate the release rates of natural radionuclides from the power plant. A generalized model for analysis of radiological impact of an energy source that includes the two-dimensional version of the cloud model simulates the transport of radionuclides released to the atmosphere. The inhalation dose rates are assessed for various meteorological conditions.

  18. EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...

  19. CHARACTERIZATION OF ASH FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The report summarizes existing data on the chemical and physical characteristics of ashes produced by the burning of coal in steam-electric generating plants. It summarizes several recent coal or ash characterization studies, emphasizing the elemental chemical composition, partic...

  20. MAGNESIA SCRUBBING APPLIED TO A COAL-FIRED POWER PLANT

    EPA Science Inventory

    The report gives results of a full-size demonstration of the magnesia wet-scrubbing system for flue gas desulfurization (FGD) on a coal-fired utility boiler. The system was designed to desulfurize half the flue gas from a 190-MW rated capacity generating unit firing 3.5% sulfur c...

  1. Testing of a coal-fired diesel power plant

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. , Inc., Cambridge, MA ); Rao, K.; Schaub, F. ); Kimberley, J. ); Itse, D. )

    1993-01-01

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  2. Testing of a coal-fired diesel power plant

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E.; Rao, K.; Schaub, F.; Kimberley, J.; Itse, D.

    1993-01-01

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  3. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  4. EVALUATION OF NOX EMISSIONS FROM TVA COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley authority (TVA) coal-fired power plants. urrent EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emission...

  5. New technology tackles coal-fired power plant emissions

    SciTech Connect

    Prachi Patel-Predd

    2006-05-01

    Tests conducted at three coal-fired power plants show that a new technology can reduce mercury emissions at higher rates and lower costs than current methods, according to its developers, Chem-Mod LLC. The Chem-Mod system is able to capture Hg{sup 0} by using a liquid sorbent to oxidize it to Hg{sup 2+} or trap it on its surface. A second, powder sorbent captures SO{sub 2} and heavy metals. The two sorbents combine to trap the emissions in a ceramic-like matrix that is locked into the fly ash. The technology removed up to 98%, 90%, and 86% of the mercury in week-long tests with different bituminous and subbituminous grades of coals. In addition, the system cut SO{sub 2} emissions by 40-75% and those of arsenic, chloride, and heavy metals by 75-90%. A full-scale commercial facility using the technology is expected to start soon.

  6. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.

    PubMed

    Hicks, Jeffrey; Yager, Janice

    2006-08-01

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m3 to 96 mg/m3 (mean of 1.8 mg/m3). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m3 (mean value of 0.048 mg/m3). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 microm and 8 microm. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected. As compared with air samples, bulk samples from the same work areas consistently yielded lower relative amounts of quartz. Controls to limit coal fly ash exposures are indicated during some normal plant operations and during episodes of short term, but high concentrations of dust that may be encountered during maintenance activities, especially in areas where ash accumulations are present

  7. Repowering a small coal-fired power plant

    SciTech Connect

    Miell, R.

    2007-11-15

    The Arkansas River Power Authority (ARPA) Lamar Repowering Project is moving forward. The new generator, capable of producing 18 MW of electricity, is scheduled to be online in June 2008 bringing the total generation to 43 MW. New coal handling equipment, with infrared fire detectors, is almost complete. The new 18 MW steam turbine will be cooled by an air-cooled condenser. Coal will be delivered in a railroad spur to an unloading site then be unloaded onto a conveyor under the tracks and conveyed to two storage domes each holding 6000 tons of coal. It will be drawn out of these through an underground conveyor system, brought into a crusher, conveyed through overhead conveyors and fed into the new coal- fired fluidized bed boilers. 1 photo.

  8. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  9. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  10. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash

    SciTech Connect

    Hicks, J.; Yager, J.

    2006-08-15

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m{sup 3} to 96 mg/m{sup 3} (mean of 1.8 mg/m{sup 3}). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m{sup 3} (mean value of 0.048 mg/m{sup 3}). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 {mu}m and 8 {mu}m. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected.

  11. Status of NO sub x control for coal-fired power plants

    NASA Technical Reports Server (NTRS)

    Teixeira, D. P.

    1978-01-01

    The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.

  12. Mercury emission from coal-fired power plants in Poland

    NASA Astrophysics Data System (ADS)

    Glodek, Anna; Pacyna, Jozef M.

    The paper reviews the current state of knowledge regarding sources of mercury emission in Poland. Due to the large quantities of coal burned at present, as well as taking into account existing reserves, coal remains the main energy source of energy in Poland. The data on coal consumption in Poland in the past, at present and in the future are discussed in the paper. Information on the content of mercury in Polish coals is presented. Coal combustion processes for electricity and heat production are the main source of anthropogenic mercury emission in Poland. It is expected that the current emissions will decrease in the future due to implementation of efficient control measures. These measures for emission reduction are described in the paper. Results of estimated mercury emission from coal-fired power station situated in the Upper Silesia Region, Poland are investigated. A relationship between mercury emission to the air and the mercury content in the consumed coal in power station equipped with the electrostatic precipitators (ESPs) is discussed.

  13. Correlates of mental health in nuclear and coal-fired power plant workers.

    PubMed

    Parkinson, D K; Bromet, E J

    1983-08-01

    The mental health of 104 nuclear workers at the Three Mile Island plant was compared with that of 122 workers from another nuclear plant and 151 workers from two coal-fired generating plants. The coal-fired plant workers were somewhat more symptomatic than the nuclear plant workers. Assessments of work environments showed that the coal-fired plant workers perceived less stress but more problems with workplace exposures than the nuclear plant workers. Negative perceptions of work and marital stress were both strongly and independently related to mental distress. Overall, the results suggest that the Three Mile Island accident did not engender long-term psychological difficulties in workers evaluated 2.5 years after the accident. PMID:6635612

  14. CHARACTERIZATION AND MANAGEMENT OF RESIDUES FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) determined on December 15, 2000, that regulations are needed to control the risks of mercury air emissions from coal-fired power plants. The thrust of these new regulations is to remove mercury from the air stream of fossil-fuel-fire...

  15. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M.; Gould, L.; Botros, P.

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  16. A Coal-Fired Power Plant with Zero Atmospheric Emissions

    SciTech Connect

    Martinez-Frias, J; Aceves, S M; Smith, J R; Brandt, H

    2003-05-27

    This paper presents the thermodynamic analysis of a coal-based zero-atmospheric emissions electric power plant. The approach involves an oxygen-blown coal gasification unit. The resulting synthetic gas (syngas) is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed almost entirely of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured. A stream of carbon dioxide then results that can be used for enhanced oil recovery, or for sequestration. This analysis is based on a 400 MW electric power generating plant that uses turbines that are currently under development by a U.S. turbine manufacturer. The power plant has a net thermal efficiency of 42.6%. This efficiency is based on the lower heating value of the coal, and includes the energy necessary for coal gasification, air separation and for carbon dioxide separation and sequestration. The paper also presents an analysis of the cost of electricity (COE) and the cost of conditioning carbon dioxide for sequestration for the 400 MW power plant. Electricity cost is compared for three different gasification processes (Texaco, Shell, and Koppers-Totzek) and two types of coals (Illinois No.6 and Wyodak). Cost of electricity ranges from 5.16 {cents}/kWhr to 5.42 {cents}/kWhr, indicating that the cost of electricity varies by 5% for the three gasification processes considered and the two coal types used.

  17. Exergy efficiency of small coal-fired power plants as a criterion of their wide applicability

    SciTech Connect

    O.V. Afanas'eva; G.R. Mingaleeva

    2009-02-15

    The applicability of small coal-fired power plants as an independent and reliable power supply source was considered. The advantages of using small thermal power plants were given, and the classification characteristics of small coal-fired power plants were put forward. The exergy method was chosen as a versatility indicator for the operating efficiency of a flowsheet in question. The exergy efficiency factor of the flowsheet was 32%. With the manufacture of by-products, such as activated carbons, the exergy efficiency of the flowsheet increased to 35%. The studies undertaken substantiated the wide applicability of small coal-fired power plants for the development of decentralized power supply. 7 refs., 2 tabs.

  18. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers

    PubMed Central

    Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, KC

    2013-01-01

    Background: Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. Aim: The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. Material and Methods: The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. Result: MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Conclusion: Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities. PMID:24083143

  19. Dispersion modeling of mercury emissions from coal-fired power plants at Coshocton and Manchester, Ohio

    SciTech Connect

    Lee, S.; Keener, T.C.

    2009-09-15

    Mercury emissions from coal-fired power plants are estimated to contribute to approximately 46% of the total US anthropogenic mercury emissions and required to be regulated by maximum achievable control technology (MACT) standards. Dispersion modeling of mercury emissions using the AERMOD model and the industrial source complex short term (ISCST3) model was conducted for two representative coal-fired power plants at Coshocton and Manchester, Ohio. Atmospheric mercury concentrations, dry mercury deposition rates, and wet mercury deposition rates were predicted in a 5 x 5 km area surrounding the Coonesville and JM Stuart coal-fired power plants. In addition, the analysis results of meteorological parameters showed that wet mercury deposition is dependent on precipitation, but dry mercury deposition is influenced by various meteorological factors. 8 refs., 5 figs., 3 tabs.

  20. NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...

  1. UNIVERSITY OF WASHINGTON ELECTROSTATIC SCRUBBER TESTS AT A COAL-FIRED POWER PLANT

    EPA Science Inventory

    The report gives results of tests of a 1700 cu m/hr University of Washington Electrostatic Spray Scrubber pilot plant on a coal-fired boiler to demonstrate its effectiveness for controlling fine particle emissions. The multiple-pass, portable pilot plant combines oppositely charg...

  2. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    SciTech Connect

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued an

  3. Behavior of fluorine and chlorine in Spanish coal fired power plants with pulverized coal boilers and fluidized bed boiler.

    PubMed

    López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2003-06-01

    Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases). PMID:12868523

  4. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.

    PubMed

    Papastefanou, Constantin

    2010-03-01

    Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of (40)K and of (238)U, (232)Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y(-1)), the major part of which (99%) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg(-1) for (238)U, from 44 to 255 Bq kg(-1) for (226)Ra, from 59 to 205 Bq kg(-1) for (210)Pb, from 9 to 41 Bq kg(-1) for (228)Ra ((232)Th) and from 59 to 227 Bq kg(-1) for (40)K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg(-1) for (238)U, from 142 to 605 Bq kg(-1) for (226)Ra, from 133 to 428 Bq kg(-1) for (210)Pb, from 27 to 68 Bq kg(-1) for (228)Ra ((232)Th) and from 204 to 382 Bq kg(-1) for (40)K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5man-Sv(GWa)(-1) for typical old and modern coal-fired power plants, respectively. PMID:20005612

  5. Co-combustion of solid recovered fuels in coal-fired power plants.

    PubMed

    Thiel, Stephanie; Thomé-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO₂ allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011. PMID:22143900

  6. Options for reducing a coal-fired plant's carbon footprint, Part II

    SciTech Connect

    Zachary, J.

    2008-07-15

    Part 1 of this article detailed and quantified the impacts of postcoming CO{sub 2} capture on a coal plant's net output and efficiency. Part II deals with four other CO{sub 2} reduction techniques: oxy-fuel combustion, using higher-temperature and higher-pressure boilers, cofiring biomass, and replacing some coal-fired capacity with renewable capacity. 4 figs., 3 tabs.

  7. McHuchuma/Katewaka coal fired power plant feasibility study. Final report. Export trade information

    SciTech Connect

    1996-11-22

    This study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility for the development of a new coal fueled power plant in Tanzania at the Mchuchuma/Katewaka coal concession area. Volume 3, the Main Report, is divided into the following sections: (1.0) Introduction; (2.0) Power System Development Studies; (3.0) Conceptual Design Summary of the Mchuchuma Coal Fired Power Plant; (4.0) Fuel Supply Evaluation; (5.0) Transmission System Evaluation; (6.0) Power Plant Site and Infrastructure Evaluation; (7.0) Environmental Impact Assessment; (8.0) Institutional Aspects; (9.0) Financial Evaluation and Benefit Analysis; (10.0) Sources of Finance; Appendix (A) Preliminary Design of Mchuchuma Coal Plant.

  8. Radionuclide emissions from a coal-fired power plant.

    PubMed

    Amin, Y M; Khandaker, Mayeen Uddin; Shyen, A K S; Mahat, R H; Nor, R M; Bradley, D A

    2013-10-01

    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of (226)Ra, (232)Th and (40)K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Raeq) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively. PMID:23891979

  9. Coal-fired plant meets strict standards from air to aesthetics. [New York

    SciTech Connect

    Not Available

    1985-04-01

    The 625 MW coal-fired Somerset power station in New York State is the first plant to be constructed and operated under new, strict siting laws. More than one-third of the capital cost was required for environmental controls, and these are outlined.

  10. ICE FOG ABATEMENT AND POLLUTION REDUCTION AT A SUBARCTIC COAL-FIRED HEATING PLANT

    EPA Science Inventory

    An experimental cooler-condenser system was constructed at the coal-fired heating and electric plant on the Fairbanks campus of the University of Alaska to evaluate its potential to reduce ice fog and other pollutant stack emissions in a subarctic environment. This experiment adv...

  11. DOE/NETL's field tests of mercury control technologies for coal-fired power plants

    SciTech Connect

    Thomas Feeley; James Murphy; Lynn Brickett; Andrew O'Palko

    2005-08-01

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research and development program directed at advancing the performance and economics of mercury control technologies for coal-fired power plants. This article presents results from ongoing full-scale and slipstream field tests of several mercury control technologies. 15 refs., 4 figs., 3 tabs.

  12. Study of coal-fired power plants in Japan. Final report

    SciTech Connect

    Cahn, A.L.; Falkenberg, R.C.

    1985-06-01

    This is a study of the Japanese utility industry by a team of senior US utility representatives. The objectives of the study were to evaluate and compare Japanese coal-fired power plant design, construction, procurement, operation, and maintenance practices with those of the United States; to assess related Japanese technological innovations; and to verify the reported costs, performance, and reliability of Japan's coal-fired power plants. In addition, Japanese plans for developing and adding new coal-fired generating capacity were to be confirmed. The principal source of information was a detailed set of responses from the Japanese utilities to six comprehensive questionnaires developed by the US study team. This information was supplemented with data gathered by the study team during a two-week visit to representative Japanese power plants and manufacturing facilities, and with material developed in meetings with both private and government groups in Japan. The study presents efficiency and availability data indicating excellent performance of the modern Japanese coal-fired power plants. Differences in institutional and cultural factors, along with government and utility priorities, are among the items identified as contributing to these results. A detailed comparison is made of the utility industries of Japan and the United States.

  13. CHANGES IN TERRESTRIAL ECOLOGY RELATED TO A COAL-FIRED POWER PLANT: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    This report summarizes the effects of a coal-fired power plant on terrestrial plants and animals. Research was conducted from 1971 through 1977 at the Columbia Generating Station in the eastern flood-plain of the Wisconsin River in south-central Wisconsin. Initial studies were la...

  14. Downstream component corrosion in coal-fired MHD power plants

    SciTech Connect

    White, M. K.

    1980-06-01

    Results are given to date of corrosion probe studies conducted to evaluate the nature and severity of degradation of oiler and superheater materials in coal-fired MHD power generation systems. Tests were conducted with two air or nitrogen cooled probes in Cell III of the UTSI MHD facility. One probe had carbon steel samples subjected to metal temperatures of from 547K to 719K and reducing (SR = 0.85) gas conditions to simulate boiler tube conditions. The exposure time to date on these samples is 240 minutes. The other probe had samples of carbon steel, chromium-molybdenum steels and stainless steels subjected to temperatures ranging from 811K to 914K with oxidizing (SR = 1.15) gas conditions. The total run time on these samples was 70 minutes. The boiler probe samples were found to undergo predominantly pitted type corrosion beneath a deposit of ash/seed material having approximately 34% K/sub 2/SO/sub 4/. Weight loss rates varied from about 1.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the cool end of the probe to about 5.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the hot end. This loss is attributed primarily to sulfidation by hydrogen sulfide. Resistance to scaling of superheater materials increased progressively with the degree of alloying. Attack appeared to be in the form of surface scales containing mixtures of oxides and is attributed to either gaseous oxidation or to the presence of complex potassium trisulfates.

  15. Small, modular, low-cost coal-fired power plants for the international market

    SciTech Connect

    Zauderer, B.; Frain, B.; Borck, B.; Baldwin, A.L.

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  16. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    SciTech Connect

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  17. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.

    PubMed

    Wang, Shuxiao; Zhang, Lei; Wu, Ye; Ancora, Maria Pia; Zhao, Yu; Hao, Jiming

    2010-06-01

    China's 11th 5-yr plan has regulated total sulfur dioxide (SO2) emissions by installing flue gas desulfurization (FGD) devices and shutting down small thermal power units. These control measures will not only significantly reduce the emission of conventional pollutants but also benefit the reduction of mercury emissions from coal-fired power plants. This paper uses the emission factor method to estimate the efficiencies of these measures on mercury emission abatement. From 2005 to 2010, coal consumption in power plants will increase by 59%; however, the mercury emission will only rise from 141 to 155 t, with an increase of 10%. The average emission rate of mercury from coal burning will decrease from 126 mg Hg/t of coal to 87 mg Hg/t of coal. The effects of the three desulfurization measures were assessed and show that wet FGD will play an important role in mercury removal. Mercury emissions in 2015 and 2020 are also projected under different policy scenarios. Under the most probable scenario, the total mercury emission in coal-fired power plants in China will decrease to 130 t by 2020, which will benefit from the rapid installation of fabric filters and selective catalytic reduction. PMID:20564998

  18. Summary report: Trace substance emissions from a coal-fired gasification plant

    SciTech Connect

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  19. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    NASA Astrophysics Data System (ADS)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  20. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  1. ECONOMICS OF NITROGEN OXIDES, SULFUR OXIDES, AND ASH CONTROL SYSTEMS FOR COAL-FIRED UTILITY POWER PLANTS

    EPA Science Inventory

    The report gives results of an EPA-sponsored economic evaluation of three processes to reduce NOx, SO2, and ash emissions from coal-fired utility power plants: one based on 3.5% sulfur eastern bituminous coal; and the other, on 0.7% sulfur western subbituminous coal. NOx control ...

  2. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  3. Radiological characterization around the Afsin-Elbistan coal-fired power plant in Turkey

    SciTech Connect

    Ugur Cevik; Nevzat Damla; Bahadir Koz; Selim Kaya

    2008-01-15

    A radiological characterization of soil samples around the Afsin-Elbistan coal-fired thermal power plant in the Mediterranean region of Turkey was carried out. Moreover, activity concentrations and chemical analyses of coal samples used in this power plant and fly ash and slag samples originating from coal combustion were measured. For this purpose, coal, fly ash, slag, and soil samples were collected from this region. The analysis shows that the samples include relevant natural radionuclides such as {sup 226}Ra, {sup 232}Th and {sup 40}K. The mean activity concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K were 167, 44, and 404 Bq.kg{sup -1}, respectively. Obtained values shows that the average radium equivalent activity, air-absorbed dose rate, annual effective dose, and external hazard index for all samples are 258 Bq.kg{sup -1}, 121 nGy.h{sup -1}, 148 {mu}Sv.y{sup -1}, and 0.7, respectively. The environmental effect of natural radionuclides caused by coal-fired power plants was considered to be negligible because the Ra{sub eq} values of the measured samples are generally lower than the limit value of 370 Bq.kg{sup -1}, equivalent to a gamma dose of 1.5 mSv.y{sup -1}. A comparison of the concentrations obtained in this work with other parts of the world indicates that the radioactivity content of the samples is not significantly different. 20 refs., 1 fig., 5 tabs.

  4. Integrated coal-fired gas turbine power plant

    SciTech Connect

    Giles, W.B.; Lipstein, N.J.

    1986-02-11

    This patent describes an apparatus for the utilization of coal. This apparatus consists of: 1.) a coal combustion system including a pressurized fluidized bed gasifier; 2.) a gas cleanup segment in flow communication with the pressurized fluidized bed gasifier; 3.) an expansion turbine in flow communication with the gas cleanup segment; 4.) a mechanism for substantially isothermally producing a pressurized fluid at a temperature below about 650/sup 0/F. This mechanism is in flow communication with the coal combustion system, including a hydraulic compressor and a regenerator connected intermediately with the hydraulic compressor and the coal combustion system. The regenerator has a heat exchange relationship with the exhaust of the expansion turbine. 5.) a supply of cooling fluid flows from the pressurized fluid producing a flow to the gas cleanup segment; 6.) a gas cleanup segment consisting of an alkali scrubber system for circulating the flow of cooling fluid.

  5. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].

    PubMed

    Yu, Chao; Wang, Shu-xiao; Hao, Ji-ming

    2010-07-01

    A multi-level assessment index system was established to quantitatively and comprehensively evaluate the performance of typical nitrogen oxide control technologies for coal-fired power plants. Comprehensive fuzzy evaluation was conducted to assess six NO, control technologies, including low NO, burner (LNB), over the fire (OFA), flue gas reburning (Reburning), selective catalyst reduction (SCR), selective non-catalyst reduction (SNCR) and hybrid SCR/SNCR. Case studies indicated that combination of SCR and LNB are the optimal choice for wall-fired boilers combusting anthracite coal which requires NO, removal efficiency to be over 70%, however, for W-flame or tangential boilers combusting bituminous and sub-bituminous coal which requires 30% NO, removal, LNB and reburning are better choices. Therefore, we recommend that in the developed and ecological frangible regions, large units burning anthracite or meager coal should install LNB and SCR and other units should install LNB and SNCR. In the regions with environmental capacity, units burning anthracite or meager coal shall install LNB and SNCR, and other units shall apply LNB to reduce NO, emissions. PMID:20825011

  6. IMPACTS OF COAL-FIRED POWER PLANTS ON LOCAL GROUND-WATER SYSTEMS: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    Quantitative techniques for simulating the impacts of a coal-fired power plant on the ground-water system of a river flood-plain wetland were developed and tested. Effects related to the construction and operation of the cooling lake and ashpit had the greatest impact. Ground-wat...

  7. Feasibility Study for Bioethanol Co-Location with a Coal Fired Power Plant: 29 November 2001--28 July 2002

    SciTech Connect

    Not Available

    2002-12-01

    This study looks at the feasibility of co-locating 30, 50, and 70 million gallon per year bioethanol facilities with coal fired power plants in Indiana and Nebraska. Corn stover is the feedstock for ethanol production in both cases.

  8. [Determination and Emission of Condensable Particulate Matter from Coal-fired Power Plants].

    PubMed

    Pei, Bing

    2015-05-01

    The sampling-analysis method for CPM of stationary source was established and the sampling device was developed. The determination method was compared with EPA method 202 and applied in real-world test in coal-fired power plants. The result showed the average CPM emission concentration in the coal-fired power plant was (21.2 ± 3.5) mg · m(-3) while the FPM was (20.6 ± 10.0) mg · m(-3) during the same sampling period according to the method in the national standard. The high-efficiency dust removal device could efficiently reduce FPM emission but showed insignificant effect on CPM. The mass contribution of CPM to TPM would rise after high-efficiency dust removal rebuilding project, to which more attention should be paid. The condensate contributed 68% to CPM mass while the filter contributed 32%, and the organic component contributed little to CPM, accounting for only 1%. PMID:26314098

  9. Hazard rating of ash and slag dumps of thermal power plants firing Kuznetskii coal

    SciTech Connect

    E.P. Dik; A.N. Soboleva

    2006-03-15

    Results of a study of the degree of toxicity and of the hazard rating of ash and slag waste due to firing Kuznetskii coals at thermal power plants are presented. Computation shows and biological tests prove that the waste belongs to the fifth hazard class, i.e., is virtually safe. Comparison of the results obtained with foreign data shows that the waste in question belongs to the safe category in accordance with foreign standards as well.

  10. MERCURY CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    There are many sources of natural and anthropogenic mercury emissions, but combustion of coal is known to be the major anthropogenic source of mercury (Hg) emissions in the U.S. and world wide. To address this, EPA has recently promulgated the Clean Air Mercury Rule to reduce Hg ...

  11. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    SciTech Connect

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following

  12. The net climate impact of coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.; Faluvegi, G.

    2009-10-01

    Coal-fired power plants influence climate via both the emissions of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. For steadily increasing emissions without substantial pollution controls, we find that the net global mean climate forcing ranges from near zero to a substantial negative value, depending on the magnitude of aerosol indirect effects, due to aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. The long-term forcing from stable (constant) emissions is positive regardless of pollution controls, with larger values in the case of pollutant controls. The results imply that historical emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic carbon dioxide emissions, likely contributed little net global mean climate forcing during that period. Those emissions likely led to weak cooling at Northern Hemisphere mid-latitudes and warming in the Southern Hemisphere, however. Subsequent imposition of pollution controls and the switch to low-sulfur coal in some areas kept global SO2 emissions roughly level from 1970 to 2000. Hence during that period, RF due to emissions during those decades and CO2 emitted previously was strongly positive and likely contributed to rapid global and regional warming. Most recently, construction of coal-fired power plants in China and India has been increasing rapidly with minimal application of pollution controls. Continuation of high-growth rates for another 30 years would lead to near zero to negative global mean climate forcing in the absence of expanded pollution controls, but severely degraded air quality. However, following the Western pattern of high coal usage followed by imposition of pollution controls could lead to accelerated global warming in the future.

  13. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  14. Mercury capture by native fly ash carbons in coal-fired power plants.

    PubMed

    Hower, James C; Senior, Constance L; Suuberg, Eric M; Hurt, Robert H; Wilcox, Jennifer L; Olson, Edwin S

    2010-08-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  15. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  16. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content

  17. AIR POLLUTION STUDIES NEAR A COAL-FIRED POWER PLANT. WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    Concentrations of dry deposition of sulfur dioxide were investigated near a new 540-MW coal-fired generating station located in a rural area 25 miles north of Madison, Wisconsin. Monitoring data for 2 yr before the start-up in July 1975 and for the year 1976 were used to assess t...

  18. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  19. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values

  20. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  1. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  2. Feasibility study for Mindanao coal-fired power plant. Final report. Export trade information

    SciTech Connect

    1995-04-01

    The report covers the results of a feasibility study conducted for the installation of a 2 x 100 MW coal-fired power plant at the Naga site on Sibuguey Bay. An overview of the powersector in the Philippines and a review of the environmental standards for the plan design are included in the report. The study is divided into the following sections: (1) Introduction; (2) Overview of Electric Power Sector; (3) Environmental Standards Review; (4) Project Description; (5) Plant Design; (6) Project Schedule; (7) Project Cost Estimates; (8) Operations and Maintenance Plan; (9) Economic Analysis. Appendices A-H follows.

  3. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  4. Study of energy efficient supercritical coal-fired power plant dynamic responses and control strategies

    NASA Astrophysics Data System (ADS)

    Mohamed, Omar R. Ibrahim

    The world is facing the challenge of global warming and environment protection. On the other hand, the demand of electricity is growing fast due to economic growth and increase in population. Since the growth in demand is also a heavy factor in energy equations, then the renewable energy alone is not able to generate enough electricity to fill the gap within a short time of period. Therefore, fossil fuel such as coal fired power plants cannot be ruled out immediately due to their generation capacity and flexibility in load following. However, any new coal fired stations should be cleaner compared with traditional power plants. Supercritical power plants are one of the most suitable choices for environmental enhancement and higher efficiency. However, there has been an issue of whether or not to adopt this technology in the UK because it is not clear whether the performance for SC plants can satisfy the British Grid Code requirement. This thesis reports a study of dynamic responses of SC power plants through mathematical modelling, and simulation for Grid Code compliance. It also presents a new control strategy based on an alternative configuration of generalized predictive control for power plant control..

  5. Analysis of mercury in rock varnish samples in areas impacted by coal-fired power plants.

    PubMed

    Nowinski, Piotr; Hodge, Vernon F; Gerstenberger, Shawn; Cizdziel, James V

    2013-08-01

    Rock varnish is a manganese-iron rich coating that forms on rocks, most often in arid climates. To assess its utility as an environmental monitor of mercury contamination, cold vapor atomic absorption spectrometry (CVAAS) was used for analysis. Samples were collected in the fallout patterns of two coal-fired power plants in southern Nevada: the defunct Mohave Power Plant (MPP) and the operating Reid Gardner Power Plant (RGPP). The resultant Hg concentrations in rock varnishes were plotted as a function of the distance from each power plant. The highest concentrations of Hg occurred at locations that suggest the power plants are the main source of pollutants. In addition, past tracer plume studies carried out at MPP show that the highest tracer concentrations coincide with the highest rock varnish Hg concentrations. However, additional samples are required to further demonstrate that power plants are indeed the sources of mercury in varnishes. PMID:23669462

  6. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  7. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2009-11-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  8. CONTROL OF WASTE AND WATER POLLUTION FROM COAL-FIRED POWER PLANTS: SECOND R AND D REPORT

    EPA Science Inventory

    Flue gas cleaning waste treatment, utilization, and disposal, as well as water reuse technology for coal-fired utility power plants are discussed. Significant areas treated include: coal-pile drainage; ash characterization and disposal; chemical and physical properties and leachi...

  9. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants

    SciTech Connect

    Ajmal, M.; Khan, M.A.

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were alkaline in nature. The scrubber and bottom ash effluent contained large amounts of solids and had high biochemical and chemical oxygen demands. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both crops when irrigation was done with cooling tower effluent. Germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. Samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of effluents on canal water and its subsequent effect on crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained in both cases, the growth of plants irrigated with the downstream canal water was slightly reduced.

  10. Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Wang, Siwen; Zhang, Qiang; Martin, Randall V.; Philip, Sajeev; Liu, Fei; Li, Meng; Jiang, Xujia; He, Kebin

    2015-11-01

    To evaluate the real reductions in sulfur dioxide (SO2) emissions from coal-fired power plants in China, Ozone Monitoring Instrument (OMI) remote sensing SO2 columns were used to inversely model the SO2 emission burdens surrounding 26 isolated power plants before and after the effective operation of their flue gas desulfurization (FGD) facilities. An improved two-dimensional Gaussian fitting method was developed to estimate SO2 burdens under complex background conditions, by using the accurate local background columns and the customized fitting domains for each target source. The OMI-derived SO2 burdens before effective FGD operation were correlated well with the bottom-up emission estimates (R = 0.92), showing the reliability of the OMI-derived SO2 burdens as a linear indicator of the associated source strength. OMI observations indicated that the average lag time period between installation and effective operation of FGD facilities at these 26 power plants was around 2 years, and no FGD facilities have actually operated before the year 2008. The OMI estimated average SO2 removal equivalence (56.0%) was substantially lower than the official report (74.6%) for these 26 power plants. Therefore, it has been concluded that the real reductions of SO2 emissions in China associated with the FGD facilities at coal-fired power plants were considerably diminished in the context of the current weak supervision measures.

  11. Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2010-08-01

    The aim of this work was to apply the LIBS technique for the analysis of fly ash and bottom ash resulting from the coal combustion in a coal fired power plant. The steps of presented LIBS analysis were pelletizing of powdered samples, firing with laser and spectroscopic detection. The analysis "on tape" was presented as an alternative fast sampling approach. This procedure was compared with the usual steps of normalized chemical analysis methods for coal which are coal calcination, fluxing in high temperature plasma, dilution in strong acids and analyzing by means of ICP-OES and/or AAS. First, the single pulse LIBS approach was used for determination and quantification of elemental content in fly ash and bottom ash on the exit of the boiler. For pellet preparation, ash has to be mixed with proper binder to assure the sample resistance. Preparation of the samples (binder selection and pressing/pelletizing conditions) was determined and LIBS experimental conditions optimized. No preparation is necessary in "on tape" sampling. Moreover, double-pulse approach in orthogonal reheating configuration was applied to enhance the repeatability and precision of the LIBS results and to surpass the matrix effect influencing the calibration curves in case of some elements. Obtained results showed that LIBS responses are comparable to the normalized analytical methods. Once optimized the experimental conditions and features, application of LIBS may be a promising technique for combustion process control even in on-line mode.

  12. Cost analysis of a coal-fired power plant using the NPV method

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.

    2015-06-01

    The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.

  13. A steam-water distribution matrix equation of the whole thermal system for coal-fired power plant and its general construction regulations

    SciTech Connect

    Zhang Chunfa; Yan Shunlin; Fan Hansong; Cao Xianchang; Wu Chunsheng

    1999-07-01

    In this paper the authors provide a steam-water distribution equation of the whole thermal system for coal-fired power plant and its general construction regulations. The use of the equation may simplify traditional thermal calculation of coal-fired power plant. And the equation's analytic character provides a strict base of theory and a new method for energy conservation of coal-fired power plant and especially for the research of local ration analysis for thermal system's energy conservation potential.

  14. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants.

    PubMed

    Senior, Constance L

    2006-01-01

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420 degrees C, with space velocities varying from 1900 to 5000 hr(-1). Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. PMID:16499143

  15. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  16. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved

  17. The fate and behavior of mercury in coal-fired power plants.

    PubMed

    Meij, Ruud; Vredenbregt, Leo H J; te Winkel, Henk

    2002-08-01

    For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 +/- 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 +/- 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%. On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only -3 microg/m3(STP) at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing. Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%. PMID:12184689

  18. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements. PMID:26006077

  19. Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada.

    PubMed

    Mazur, Maxwell; Mintz, Rachel; Lapalme, Monique; Wiens, Brian

    2009-12-20

    The Lake Wabamun area, in Alberta, is unique within Canada as there are four coal-fired power plants within a 500 km(2) area. Continuous monitoring of ambient total gaseous mercury (TGM) concentrations in the Lake Wabamun area was undertaken at two sites, Genesee and Meadows. The data were analyzed in order to characterise the effect of the coal-fired power plants on the regional TGM. Mean concentrations of 1.57 ng/m(3) for Genesee and 1.50 ng/m(3) for Meadows were comparable to other Canadian sites. Maximum concentrations of 9.50 ng/m(3) and 4.43 ng/m(3) were comparable to maxima recorded at Canadian sites influenced by anthropogenic sources. The Genesee site was directly affected by the coal-fired power plants with the occurrence of northwest winds, and this was evident by episodes of elevated TGM, NO(x) and SO(2) concentrations. NO(x)/TGM and SO(2)/TGM ratios of 21.71 and 19.98 microg/ng, respectively, were characteristic of the episodic events from the northwest wind direction. AERMOD modeling predicted that coal-fired power plant TGM emissions under normal operating conditions can influence hourly ground-level concentrations by 0.46-1.19 ng/m(3)(.) The effect of changes in coal-fired power plant electricity production on the ambient TGM concentrations was also investigated, and was useful in describing some of the episodes. PMID:19875156

  20. The Net Climate Impact of Coal-Fired Power Plant Emissions

    NASA Technical Reports Server (NTRS)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  1. ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: ISSUES IN ATMOSPHERIC PROCESSES.

    SciTech Connect

    LIPFERT, F.; SULLIVAN, T.; RENNINGER, S.

    2004-03-28

    The rationale for regulating air emissions of mercury from U.S. coal-fired power plants largely depends on mathematical dispersion modeling, including the atmospheric chemistry processes that affect the partitioning of Hg emissions into elemental (Hg{sub 0}) and the reactive (RGM) forms that may deposit more rapidly near sources. This paper considers and evaluates the empirical support for this paradigm. We consider the extant experimental data at three spatial scales: local (< 30 km), regional (< {approx}300 km), and national (multi-state data). An additional issue involves the finding of excess Hg levels in urban areas.

  2. CO sub 2 emissions from coal-fired and solar electric power plants

    SciTech Connect

    Keith, F.; Norton, P.; Brown, D.

    1990-05-01

    This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

  3. Methodology Used in the Radiological Assessment of a Coal-Fired Power Plant

    NASA Astrophysics Data System (ADS)

    Mora, Juan C.; Corbacho, Jose A.; Robles, Beatriz; Baeza, Antonio; Cancio, David; Suañez, Ana M.

    2008-08-01

    A radiological assessment of the workers and the public potentially affected by the operation of the Teruel Coal-fired Power Plant (the UPT Teruel), was performed under realistic assumptions. This assessment is part of a wider study to characterize the potential radiological impact of Naturally Occurring Radioactive Materials (NORM), in which our team, integrated by University of Extremadura and CIEMAT, is carrying out the study on coal-fired power plants sponsored by the Spanish Nuclear Safety Council (CSN). The study comprises the four biggest coal-fired power plants in Spain. Taking into account the working conditions and the plant specifications, six groups of workers were defined, established considering the 17 working tasks that could be of any importance for this assessment. For the public, considering that the area is barely inhabited, two different recreational scenarios were defined. Therefore, in-plant and outside measurements, needed for the assessment of each scenario, were carried out. Where experimental data were not available or measurements ranged within the natural background radiation values, modelling has been used. Every measured or estimated activity concentration in coal and other used materials or in the by-products generated in the power plant, for every radionuclide in the natural chains of 238U, 232Th and 40K, were below 0.32 Bq g-1. Those values are under the 0.5 Bq g-1 reference value for exemption and clearance of 238U, 232Th and 226Ra and the 5 Bq g-1 for 40K recommended in Europe. In the dose evaluations for six groups of workers, a maximum of 21 μSv a-1 was obtained (mainly due to the inhalation of resuspended particles). For both considered scenarios for the public, all the evaluated doses were below 4.3 μSv a-1. These results are considered negligible from a radiological point of view. In this work the models and assumptions used for the evaluation of workers and public doses, the assessment, as well as the most relevant

  4. Best practices in environmental monitoring for coal-fired power plants: lessons for developing Asian APEC economies

    SciTech Connect

    Holt, N.; Findsen, J.

    2008-11-15

    The report assesses environmental monitoring and reporting by individual coal-fired power plants, makes recommendations regarding how monitoring should be applied, and evaluates the interrelationship of monitoring and regulation in promoting CCTs. Effective monitoring is needed to ensure that power plants are performing as expected, and to confirm that they are complying with applicable environmental regulations. Older coal-fired power plants in APEC economies often have limited monitoring capabilities, making their environmental performance difficult to measure. 585 refs., 5 figs., 85 tabs.

  5. CO2 post-combustion capture in coal-fired power plants integrated with solar systems

    NASA Astrophysics Data System (ADS)

    Carapellucci, R.; Giordano, L.; Vaccarelli, M.

    2015-11-01

    The majority of the World's primary energy consumption is still based on fossil fuels, representing the largest source of global CO2 emissions. According to the Intergovernmental Panel on Climate Change (IPCC), such emissions must be significantly reduced in order to avoid the dramatic consequences of global warming. A potential way to achieve this ambitious goal is represented by the implementation of CCS (Carbon Capture and Storage) technologies. However, the significant amount of energy required by the CCS systems still represents one the major barriers for their deployment. Focusing on post-combustion capture based on amine absorption, several interesting options have been investigated to compensate the energy losses due to solvent regeneration, also using renewable energy sources. One of the most promising is based on the use of concentrating solar power (CSP), providing a part of the energy requirement of the capture island. In this study the integration of a CSP system into a coal-fired power plant with CO2 postcombustion capture is investigated. Basically, a CSP system is used to support the heat requirement for amine regeneration, by producing saturated steam at low temperature. This allows to reduce or even eliminate the conventional steam extraction from the main power plant, affecting positively net power production and efficiency. The energy analysis of the whole system is carried out using the GateCycle software to simulate the coal-fired power plant and ChemCad platform for the CO2 capture process based on amine absorption.

  6. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  7. Comprehensive assessment of toxic emissions from coal-fired power plants

    SciTech Connect

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.

  8. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    SciTech Connect

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  9. Control of fan erosion in coal-fired power plants, Phase 2: Final report

    SciTech Connect

    Sverdrup, E.F.; Albertin, L.; Chamberlin, R.M.; D'Amico, N.J.; El Masri, M.A.; Glasser, A.D.; Menguturk, M.; Rane, A.; Racki, R.; Petlevich, W.J.

    1988-11-01

    The Electric Power Research Institute contracted with Westinghouse to address the problems electric utilities experience caused by fan erosion. The objective of this phase of the research program was to understand how to control erosion damage to coal-fired power plant fans by: Developing fan design modifications that raise the tolerance of fans to fly-ash erosion and that simultaneously improve fan performance. Understanding why fly ashes vary in their erosivities and developing the ability to predict the erosivity of the fly ash from core borings of the fuel to be fired; Evaluating the performance of erosion protection systems we have installed on a number of fans suffering severe fly-ash erosion damage; Developing a method to armor centrifugal fans against fly-ash erosion while providing for easy field replacement of the blade liners; and Developing a computer model that calculates particle trajectories through the inlet box of a fan. 18 refs., 74 figs., 18 tabs.

  10. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.

    PubMed

    Wang, Juan; Wang, Wenhua; Xu, Wei; Wang, Xiaohao; Zhao, Song

    2011-01-01

    The mercury removals by existing pollution control devices and the mass balances of mercury in four coal-fired power plants of China were carried out based on a measurement method with the aluminum matrix sorbent. All the plants are equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series. During the course of coal stream, the samples, such as coal, bottom ash, fly ash, gypsum and flue gas, were collected. The Hg concentrations in coals were measured by CVAAS after appropriate preparation and acid digestion. Other solid samples were measured by the RA-915+ Zeeman Mercury Spectrometer. The vapor phase Hg was collected by a sorbent trap from flue gas and then measured using CVAAS followed by acid leaching. The mercury mass balances were estimated in this study were 91.6%, 77.1%, 118% and 85.8% for the four power plants, respectively. The total Hg concentrations in the stack gas were ranged from 1.56-5.95 microg/m3. The relative distribution of Hg in bottom ash, ESP, WFGD and stack discharged were ranged between 0.110%-2.50%, 2.17%-23.4%, 2.21%-87.1%, and 21.8%-72.7%, respectively. The distribution profiles were varied with the coal type and the operation conditions. The Hg in flue gas could be removed by ESP and FGD systems with an average removal efficiency of 51.8%. The calculated average emission factor was 0.066 g/ton and much lower than the results obtained ten years ago. PMID:22432308

  11. WATER RECYCLE/REUSE ALTERNATIVES IN COAL-FIRED STEAM-ELECTRIC POWER PLANTS; VOLUME II. APPENDIXES

    EPA Science Inventory

    The report gives results of an investigation of water recycle/treatment/reuse alternatives in coal-fired power plants. Five power plants from representative U.S. regions were studied. The major water systems encountered were cooling, ash sluicing, and SO2/particulate scrubbers. R...

  12. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg

  13. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    PubMed

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions. PMID:26545153

  14. Rock magnetic finger-printing of soil from a coal-fired thermal power plant.

    PubMed

    Gune, Minal; Harshavardhana, B G; Balakrishna, K; Udayashankar, H N; Shankar, R; Manjunatha, B R

    2016-05-01

    We present seasonal rock magnetic data for 48 surficial soil samples collected seasonally around a coal-fired thermal power plant on the southwest coast of India to demonstrate how fly ash from the power plant is transported both spatially and seasonally. Sampling was carried out during pre-monsoon (March), early-monsoon (June), monsoon (September) and post-monsoon (December) seasons. Low- and high-frequency magnetic susceptibility (χlf and χhf), frequency-dependent magnetic susceptibility (χfd), χfd %, isothermal remanent magnetization (IRM), "hard" IRM (HIRM), saturation IRM (SIRM) and inter-parametric ratios were determined for the samples. Scanning electron microscopy (SEM) was used on limited number of samples. NOAA HYSPLIT MODEL backward trajectory analysis and principal component analysis were carried out on the data. Fly ash samples exhibit an average HIRM value (400.07 × 10(-5) Am(2) kg(-1)) that is comparable to that of soil samples. The pre- and post-monsoon samples show a consistent reduction in the concentration of magnetically "hard" minerals with increasing distance from the power plant. These data suggest that fly ash has indeed been transported from the power plant to the sampling locations. Hence, HIRM may perhaps be used as a proxy for tracking fly ash from coal-fired thermal power plants. Seasonal data show that the distribution of fly ash to the surrounding areas is minimum during monsoons. They also point to the dominance of SP magnetite in early-monsoon season, whereas magnetic depletion is documented in the monsoon season. This seasonal difference is attributable to both pedogenesis and anthropogenic activity i.e. operation of the thermal power plant. PMID:27056477

  15. Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant.

    PubMed

    Senior, Constance L; Tyree, Corey A; Meeks, Noah D; Acharya, Chethan; McCain, Joseph D; Cushing, Kenneth M

    2015-12-15

    Selenium has unique fate and transport through a coal-fired power plant because of high vapor pressures of oxide (SeO2) in flue gas. This study was done at full-scale on a 900 MW coal-fired power plant with electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. The first objective was to quantify the partitioning of selenium between gas and condensed phases at the scrubber inlet and outlet. The second objective was to determine the effect of scrubber operation conditions (pH, mass transfer, SO2 removal) on Se removal in both particulate and vapor phases. During part of the testing, hydrated lime (calcium hydroxide) was injected upstream of the scrubber. Gas-phase selenium and particulate-bound selenium were measured as a function of particle size at the inlet and outlet of the scrubber. The total (both phases) removal of Se across the scrubber averaged 61%, and was enhanced when hydrated lime sorbent was injected. There was evidence of gas-to-particle conversion of selenium across the scrubber, based on the dependence of selenium concentration on particle diameter downstream of the scrubber and on thermodynamic calculations. PMID:26554426

  16. Radiation impact from lignite burning due to 226Ra in Greek coal-fired power plants.

    PubMed

    Papastefanou, C

    1996-02-01

    Lignite contains naturally occurring radionuclides arising from the uranium and thorium series as well as from 40K. Lignite burning is, therefore, one of the sources of technologically enhanced exposure to humans from natural radionuclides. Emissions from thermal power stations in gaseous and particulate form contain radioisotopes, such as 226Ra, that are discharged into the environment causing radiation exposures to the population. About 11,672 MBq y-1 of 226Ra are discharged into the environment from four coal-fired power plants totalling 3.62 GW electrical energy in the Ptolemais Valley, Northern Greece, in which the combustion of 1.1 x 10(10) kg of lignite is required to produce an electrical energy of 1 GW y. The collective committed equivalent dose to lung tissue per unit power generated resulting from atmospheric releases of 226Ra was estimated to be 1.1 x 10(-2) person Sv (GW y)-1; i.e. more than 15 times higher than the average value for a modern type coal-fired power plant according to the UNSCEAR 1988 data. PMID:8567285

  17. Isotopic Variations of Mercury Emitted by Coal Fired Power Plant Gases

    NASA Astrophysics Data System (ADS)

    Khawaja, S. N.; Odom, L.; Landing, W.

    2010-12-01

    Emission of mercury from the burning of coal is considered one of the important anthropogenic sources of atmospheric mercury. Along with current measurements of the isotopic composition of atmospheric mercury being conducted in our laboratory, we have analyzed mercury emitted from a coal fired power plant. Previously Biswas and others (2008) had reported variations in the isotopic composition of mercury in a number of samples of coal deposits. Since the combustion of coal is expected to release virtually all of its mercury, we anticipated comparable isotopc patterns in coal and total emmited mercury. The emitted mercury exists in various physical and chemical forms, each possessing distinct properties that affect atmospheric transport, and sampling methods. Flue gas has been sampled in the stack of a coal fired electric power plant. The Ontario Hydro method was used to trap mercury in flue gases. The method uses oxidant solutions (KCl, H2O2-HNO3 and KMnO4-H2SO4) in its sampling train. This method is the modification of EPA method 29 with the use of KCl in the sampling train. Hg (II) is captured in the KCl impingers, while Hg (0) is captured in H2O2-HNO3 and KMnO4-H2SO4 impingers that oxidize elemental to Hg (ll) (EPA Draft, 1999). In addition gaseous reactive mercury was sampled downwind in large volume rain samples. Mercury (Hg+2) in sample solutions was reduced with SnCl2, and the generated Hg(0) vapor carried by Ar gas into the source of a NEPTUNE ICPMS-MC. Isotope ratios were measured by standard-sample bracketing and reported as permil deviations from the SRM NIST-3133 values. The measurement shows a small range of values of odd isotopes for mass independent fractionation which is negligible, However it displays the wide range of mass dependent fractionation (δ198 Hg -1.239 to 2.294). We found that samples in KCl impingers are light isotope enriched and depleted in heavy isotopes, while in KMnO4 impingers these are reverse.

  18. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    PubMed

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. PMID:26141885

  19. Coal-fired power-plant-capital-cost estimates. Final report. [Mid-1978 price level; 13 different sites

    SciTech Connect

    Holstein, R.A.

    1981-05-01

    Conceptual designs and order-of-magnitude capital cost estimates have been prepared for typical 1000-MW coal-fired power plants. These subcritical plants will provide high efficiency in base load operation without excessive efficiency loss in cycling operation. In addition, an alternative supercritical design and a cost estimate were developed for each of the plants for maximum efficiency at 80 to 100% of design capacity. The power plants will be located in 13 representative regions of the United States and will be fueled by coal typically available in each region. In two locations, alternate coals are available and plants have been designed and estimated for both coals resulting in a total of 15 power plants. The capital cost estimates are at mid-1978 price level with no escalation and are based on the contractor's current construction projects. Conservative estimating parameters have been used to ensure their suitability as planning tools for utility companies. A flue gas desulfurization (FGD) system has been included for each plant to reflect the requirements of the promulgated New Source Performance Standards (NSPS) for sulfur dioxide (SO/sub 2/) emissions. The estimated costs of the FGD facilities range from 74 to 169 $/kW depending on the coal characteristics and the location of the plant. The estimated total capital requirements for twin 500-MW units vary from 8088 $/kW for a southeastern plant burning bituminous Kentucky coal to 990 $/kW for a remote western plant burning subbituminous Wyoming coal.

  20. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Trevor Ley

    2003-07-01

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, ongoing tests and analysis on samples from Powerton and Valley to yield waste characterization results for the COHPAC long-term tests were conducted. A draft final report for the sorbent evaluations at Powerton was submitted. Sorbent evaluations at Valley Power Plant were completed on April 24, 2003. Data analysis and reporting for the Valley evaluations are continuing. A statement of work for sorbent evaluations at We Energies' Pleasant Prairie Power Plant was submitted and approved. Work will begin late August 2003. A no cost time extension was granted by DOE/NETL.

  1. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    PubMed

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system. PMID:10680354

  2. Soil as an archive of coal-fired power plant mercury deposition.

    PubMed

    Rodríguez Martín, José Antonio; Nanos, Nikos

    2016-05-01

    Mercury pollution is a global environmental problem that has serious implications for human health. One of the most important sources of anthropogenic mercury emissions are coal-burning power plants. Hg accumulations in soil are associated with their atmospheric deposition. Our study provides the first assessment of soil Hg on the entire Spanish surface obtained from one sampling protocol. Hg spatial distribution was analysed with topsoil samples taken from 4000 locations in a regular sampling grid. The other aim was to use geostatistical techniques to verify the extent of soil contamination by Hg and to evaluate presumed Hg enrichment near the seven Spanish power plants with installed capacity above 1000 MW. The Hg concentration in Spanish soil fell within the range of 1-7564 μg kg(-1) (mean 67.2) and 50% of the samples had a concentration below 37 μg kg(-1). Evidence for human activity was found near all the coal-fired power plants, which reflects that metals have accumulated in the basin over many years. Values over 1000 μg kg(-1) have been found in soils in the vicinity of the Aboño, Soto de Ribera and Castellon power plants. However, soil Hg enrichment was detectable only close to the emission source, within an approximate range of only 15 km from the power plants. We associated this effect with airborne emissions and subsequent depositions as the potential distance through fly ash deposition. Hg associated with particles of ash tends to be deposited near coal combustion sources. PMID:26808251

  3. ASSESING THE IMPACTS OF LOCAL DEPOSITION OF MERCURY ASSOCIATED WITH COAL-FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.; BOWERMAN, B.; ADAMS, J.; OGEKA, C.; LIPFERT, F.; RENNINGER, S.

    2004-03-28

    Mercury emissions from coal fired plants will be limited by regulations enforced by the Environmental Protection Agency. However, there is still debate over whether the limits should be on a plant specific basis or a nationwide basis. The nationwide basis allows a Cap and Trade program similar to that for other air pollutants. Therefore, a major issue is the magnitude and extent of local deposition. Computer modeling suggests that increased local deposition will occur on a local (2 to 10 Km) to regional scale (20 to 50 Km) with the increase being a small percentage of background deposition on the regional scale. The amount of deposition depends upon many factors including emission rate, chemical form of mercury emitted (with reactive gaseous mercury depositing more readily than elemental mercury), other emission characteristics (stack height, exhaust temperature, etc), and meteorological conditions. Modeling suggests that wet deposition will lead to the highest deposition rates and that these will occur locally. Dry deposition is also predicted to deposit approximately the same amount of mass as wet deposition, but over a much greater area. Therefore, dry deposition rates will contribute a fraction of total deposition on the regional scale. The models have a number of assumptions pertaining to deposition parameters and there is uncertainty in the predicted deposition rates. A key assumption in the models is that the mixture of reactive gaseous mercury (RGM) to elemental mercury Hg(0) is constant in the exhaust plume. Recent work suggests that RGM converts to Hg(0) quickly. Deposition measurements around coal-fired power plants would help reduce the uncertainties in the models. A few studies have been performed to examine the deposition of mercury around point sources. Measurement of soil mercury downwind from chlor-alkali plants has shown increased deposition within a few Km. Studies of soils, sediments, and wet deposition around coal plants typically find some

  4. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  5. Detecting moving fires on coal conveyors

    SciTech Connect

    1995-09-01

    To comply with certain elements of the Clean Air Act Amendments of 1990, a number of utilities operating coal fired power plants have switched to low-rank bituminous and semi-bituminous coals as an alternative to other fuels like natural gas. Power plants firing and handling this variety of coal may be extremely prone to fires nd explosions as the coal is conveyed from storage on to the boilers due to a phenomenon known as spontaneous combustion. The American Society of Testing for Materials ranks coals by their tendency to oxidize. The lower the coal`s rank, the greater its tendency to absorb oxygen and, consequently, the greater its tendency to spontaneously combust. This unique property creates a new type of fire and explosion hazard not previously experienced by many coal-fired plants. Fires involving coal crushers, storage silos, conveyors, bunkers and pulverizer mills generally occur as a result of two ignition sources: spontaneous combustion (self-heating) of coal and frictional heating of the coal`s conveyance system.

  6. A study of toxic emissions from a coal-fired gasification plant. Final report

    SciTech Connect

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  7. Atmospheric emissions and pollution from the coal-fired thermal power plants in India

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2014-08-01

    In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.

  8. Environmental impact of natural radionuclides from a coal-fired power plant in Spain.

    PubMed

    Charro, Elena; Peña, Víctor

    2013-01-01

    This paper is a study of the radiological impact of a coal-fired power plant in Spain. Activity concentrations of six natural radionuclides were determined in coal, ash, mine wastes and sediments by gamma-ray spectrometry. The average activity concentrations of (238)U, (226)Ra, (224)Ra, (210)Pb, (232)Th and (40)K in coal were 24, 30, 28, 41, 23 and 242 Bq kg(-1)  and in ash were 103, 128, 101, 124, 88 and 860 Bq kg(-1), respectively. The enrichment factor, radium equivalent activity and alpha index in the ash sample have been estimated. For the five waste pile samples, the absorbed dose rate was higher than the world average dose rate (60 nGy h(-1)). The dependence of radionuclide concentration on the grain size of nine sediments was also studied. The analysis of the radionuclides in waste and sediment samples will demonstrate the distribution and mobility of these elements through the environment, where a potential risk of contamination can be detected. PMID:22807496

  9. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  10. Health and environmental effects of coal-fired electric power plants

    SciTech Connect

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.

  11. Coal-fired power plant and its emission reduction in Indonesia

    SciTech Connect

    Kuntjoro, D.

    1994-12-31

    Power generation availability is one important key to the rapid growth of Indonesia`s industrial sector. To secure future national energy needs, coal-fired power generation has been set up as a primary energy source. There are environmental concerns related to the emission of gases, particulates, and ash resulting from coal combustion. This paper discusses emission controls from burning high calorie, low sulfur coal and the national strategy to reduce emissions.

  12. Current status and prediction of major atmospheric emissions from coal-fired power plants in Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Xiong, Tianqi; Jiang, Wei; Gao, Weidong

    2016-01-01

    Shandong is considered to be the top provincial emitter of air pollutants in China due to its large consumption of coal in the power sector and its dense distribution of coal-fired plants. To explore the atmospheric emissions of the coal-fired power sector in Shandong, an updated emission inventory of coal-fired power plants for the year 2012 in Shandong was developed. The inventory is based on the following parameters: coal quality, unit capacity and unit starting year, plant location, boiler type and control technologies. The total SO2, NOx, fine particulate matter (PM2.5) and mercury (Hg) emissions are estimated at 705.93 kt, 754.30 kt, 63.99 kt and 10.19 kt, respectively. Larger units have cleaner emissions than smaller ones. The coal-fired units (≥300 MW) are estimated to account for 35.87% of SO2, 43.24% of NOx, 47.74% of PM2.5 and 49.83% of Hg emissions, which is attributed primarily to the improved penetration of desulfurization, LNBs, denitration and dust-removing devices in larger units. The major regional contributors are southwestern cities, such as Jining, Liaocheng, Zibo and Linyi, and eastern cities, such as Yantai and Qindao. Under the high-efficiency control technology (HECT) scenario analysis, emission reductions of approximately 58.61% SO2, 80.63% NOx, 34.20% PM2.5 and 50.08% Hg could be achieved by 2030 compared with a 2012 baseline. This inventory demonstrates why it is important for policymakers and researchers to assess control measure effectiveness and to supply necessary input for regional policymaking and the management of the coal-fired power sector in Shandong.

  13. RETROFIT COSTS OF SO2 AND NOX CONTROL AT 200 U.S. COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper gives results of a study to improve engineering applying cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2 emitting coal-fired utility plants in the U.S. To accomplish this objective, procedures were d...

  14. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME I - INTRODUCTION AND METHODOLOGY

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  15. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia

  16. Aged particles derived from emissions of coal-fired power plants: The TERESA field results

    PubMed Central

    Kang, Choong-Min; Gupta, Tarun; Ruiz, Pablo A.; Wolfson, Jack M.; Ferguson, Stephen T.; Lawrence, Joy E.; Rohr, Annette C.; Godleski, John; Koutrakis, Petros

    2013-01-01

    The Toxicological Evaluation of Realistic Emissions Source Aerosols (TERESA) study was carried out at three US coal-fired power plants to investigate the potential toxicological effects of primary and photochemically aged (secondary) particles using in situ stack emissions. The exposure system designed successfully simulated chemical reactions that power plant emissions undergo in a plume during transport from the stack to receptor areas (e.g., urban areas). Test atmospheres developed for toxicological experiments included scenarios to simulate a sequence of atmospheric reactions that can occur in a plume: (1) primary emissions only; (2) H2SO4 aerosol from oxidation of SO2; (3) H2SO4 aerosol neutralized by gas-phase NH3; (4) neutralized H2SO4 with secondary organic aerosol (SOA) formed by the reaction of α-pinene with O3; and (5) three control scenarios excluding primary particles. The aged particle mass concentrations varied significantly from 43.8 to 257.1 μg/m3 with respect to scenario and power plant. The highest was found when oxidized aerosols were neutralized by gas-phase NH3 with added SOA. The mass concentration depended primarily on the ratio of SO2 to NOx (particularly NO) emissions, which was determined mainly by coal composition and emissions controls. Particulate sulfate (H2SO4 + neutralized sulfate) and organic carbon (OC) were major components of the aged particles with added SOA, whereas trace elements were present at very low concentrations. Physical and chemical properties of aged particles appear to be influenced by coal type, emissions controls and the particular atmospheric scenarios employed. PMID:20462390

  17. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  18. Significant radioactive contamination of soil around a coal-fired thermal power plant.

    PubMed

    Papp, Z; Dezso, Z; Daróczy, S

    2002-01-01

    Soil samples were collected around a coal-fired power plant from 81 different locations. Brown coal, unusually rich in uranium, is burnt in this plant that lies inside the confines of a small industrial town and has been operational since 1943. Activity concentrations of the radionuclides 238U, 226Ra, 232Th, 137Cs and 40K were determined in the samples. Considerably elevated concentrations of 238U and 226Ra have been found in most samples collected within the inhabited area. Concentrations of 235U and 226Ra in soil decreased regularly with increasing depth at many locations, which can be explained by fly-ash fallout. Concentrations of 235U and 226Ra in the top (0-5 cm depth) layer of soil in public areas inside the town are 4.7 times higher, on average, than those in the uncontaminated deeper layers, which means there is about 108 Bq kg(-1) surplus activity concentration above the geological background. A high emanation rate of 222Rn from the contaminated soil layers and significant disequilibrium between 238U and 226Ra activities in some kinds of samples have been found. PMID:11900206

  19. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010. PMID:26883032

  20. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  1. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  2. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  3. A study of toxic emissions from a coal-fired gasification plant

    SciTech Connect

    Williams, A.; Behrens, G.

    1995-11-01

    Toxic emissions were measured in the gaseous, solid and aqueous effluent streams in a coal-fired gasification plant. Several internal process streams were also characterized to assess pollution control device effectiveness. The program, consisted of three major phases. Phase I was the toxics emission characterization program described above. phase II included the design, construction and shakedown testing of a high-temperature, high-pressure probe for collecting representative trace composition analysis of hot (1200{degrees}F) syngas. Phase III consisted of the collection of hot syngas samples utilizing the high-temperature probe. Preliminary results are presented which show the emission factors and removal efficiencies for several metals that are on the list of compounds defined by the Clean Air Act Amendments of 1990.

  4. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  5. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-04-30

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

  6. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Trevor Ley

    2003-10-01

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Tests and analysis on samples from Powerton and Valley to yield waste characterization results for the COHPAC long-term tests were conducted. A draft final report for the sorbent evaluations at Valley was submitted. Presentations of the results for this program were given at two conferences. A test plan for sorbent evaluations at We Energies' Pleasant Prairie Power Plant was drafted. Work will begin mid October 2003. A no cost time extension for work to be completed by December 31, 2003 was granted by DOE/NETL.

  7. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-10-29

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  8. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no

  9. Should a coal-fired power plant be replaced or retrofitted?

    PubMed

    Patiño-Echeverri, Dalia; Morel, Benoit; Apt, Jay; Chen, Chao

    2007-12-01

    In a cap-and-trade system, a power plant operator can choose to operate while paying for the necessary emissions allowances, retrofit emissions controls to the plant, or replace the unit with a new plant. Allowance prices are uncertain, as are the timing and stringency of requirements for control of mercury and carbon emissions. We model the evolution of allowance prices for SO2, NOx, Hg, and CO2 using geometric Brownian motion with drift, volatility, and jumps, and use an options-based analysis to find the value of the alternatives. In the absence of a carbon price, only if the owners have a planning horizon longer than 30 years would they replace a conventional coal-fired plant with a high-performance unit such as a supercritical plant; otherwise, they would install SO2 and NOx, controls on the existing unit. An expectation that the CO2 price will reach $50/t in 2020 makes the installation of an IGCC with carbon capture and sequestration attractive today, even for planning horizons as short as 20 years. A carbon price below $40/t is unlikely to produce investments in carbon capture for electric power. PMID:18186326

  10. Mercury emissions and coal-fired power plants: Understanding the problems and identifying solutions

    SciTech Connect

    Davis, S.E.

    1997-12-31

    Electric utility emissions contribute to an array of air quality concerns, most notably ground-level ozone, acid deposition, global warming, and fine particulate pollution. More recently, electric utility emissions of air toxics such as mercury have been linked to serious ecological health effects, especially in fish-eating birds. Another issue that is gaining attention is that of eutrophication in marine waters from nitrogen oxide emissions. Coal-fired power plants warrant special consideration, particularly in regards to mercury. Coal-fired power plants currently represent over 30% of controllable anthropogenic emissions in the US and are expected to emit nearly half of all anthropogenic emissions in the US by 2010. However, because the human health threshold for mercury is not known with certainty and mercury control technologies such as activated carbon injection are extremely expensive, mercury emissions from electric utilities have not been addressed in the US through either regulation or voluntary initiatives. The Center is beginning to evaluate the viability of no- or low-regrets measures that may be more consistent with the current state of the science on human and ecological health effects. The Center is also looking at options to reduce eutophication. Specifically, the Center has: hosted a workshop to assess the viability of low-cost mercury control options for electric utilities, developed a proposal to undertake a mercury banking initiative, worked to reduce compliance costs associated with multiple and conflicting regulations, and investigated the potential benefits and workability of NOx trading between air and water sources These activities are described in greater detail in the Center`s paper.

  11. The leaching behavior of cadmium, arsenic, zinc, and chlorine in coal and its ash from coal-fired power plant

    SciTech Connect

    Zhao, F.H.; Peng, S.P.; Zheng, B.S.; Tang, Y.G.; Cong, Z.Y.; Ren, D.Y.

    2006-01-15

    The leaching experiment of feed coal (c) and its laboratory high-temperature ash (HA), fly ash (FA), and bottom ash (BA) from a Chinese coal-fired power plant were carried out using column leaching under different pH conditions (pH = 2.0, 4.0, 6.0, and 7.5, respectively) and different leaching durations (up to 80 h). The leaching behaviors of As, Cd, Zn, and Cl were investigated. The results showed that the elements occurring in water-soluble, ion-exchangeable, and Fe-Mn oxide phases are potentially leachable, whereas those in association with organic matter and silicate are less likely to be leached. The cumulative percent of Zn, As, Cl, and Cd leached from C and ash samples increase with decrease in pH. The leaching rate of As and Cl in C and ash samples are higher in comparison with Zn and Cd. However, the maximum concentrations of Cd in the leachate from C, HA, FA, and BA are in excess of or very close to the maximum standard concentrations permitted in the Chinese Standards for Drinking Water and Surface Water. The ultimate concentrations of As, Cd, and Cl in the leachates did not attain equilibrium after the leaching of 80 h; therefore, longer leaching experiments are necessary to evaluate the impact of these hazardous trace elements on aqueous environment.

  12. Coal-fired diesel generator

    SciTech Connect

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  13. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    SciTech Connect

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  14. An assessment of mercury emissions and health risks from a coal-fired power plant

    SciTech Connect

    Fthenakis, V.M.; Lipfert, F.; Moskowitz, P.

    1994-12-01

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

  15. The study of electron beam flue gas treatment for coal-fired thermal plant in Japan

    NASA Astrophysics Data System (ADS)

    Namba, Hideki; Tokunaga, Okihiro; Tanaka, Tadashi; Ogura, Yoshimi; Aoki, Shinji; Suzuki, Ryoji

    1993-10-01

    The fundamental research work with simulated coal-fired flue gas was performed in JAERI to get basic data for electron beam treatment of flue gas from thermal power plants in Japan. The standard condition of the experiments was set to be the same as that of next large scale pilot test in Nagoya. The concentrations of NO x and SO x were 225 ppm and 800 ppm, respectively. The temperature of the system was 65°C. The effect of multiple irradiation was observed for NO x removal. The target SO x and NO x removals (94% and 80%, respectively) with low NH 3 leakage (less than 10 ppm) were achieved at 9 kGy irradiation with 0.9 NH 3 stoichiometry during 7 hours continuous operation. The facility for the pilot plant (12,000 Nm 3/hr) has just built at the site of Shin-Nagoya power plant of Chubu Electric Power Company and will be started in full operation in November 1992.

  16. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior; Temi Linjewile

    2003-07-25

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Ceramics GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, analysis of the coal, ash and mercury speciation data from the first test series was completed. Good agreement was shown between different methods of measuring mercury in the flue gas: Ontario Hydro, semi-continuous emission monitor (SCEM) and coal composition. There was a loss of total mercury across the commercial catalysts, but not across the blank monolith. The blank monolith showed no oxidation. The data from the first test series show the same trend in mercury oxidation as a function of space velocity that has been seen elsewhere. At space velocities in the range of 6,000-7,000 hr{sup -1} the blank monolith did not show any mercury oxidation, with or without ammonia present. Two of the commercial catalysts clearly showed an effect of ammonia. Two other commercial catalysts showed an effect of ammonia, although the error bars for the no-ammonia case are large. A test plan was written for the second test series and is being reviewed.

  17. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007.

    PubMed

    Tian, Hezhong; Wang, Yan; Xue, Zhigang; Qu, Yiping; Chai, Fahe; Hao, Jiming

    2011-07-15

    Over half of coal in China is burned directly by power plants, becoming an important source of hazardous trace element emissions, such as mercury (Hg), arsenic (As), and selenium (Se), etc. Based on coal consumption by each power plant, emission factors classified by different boiler patterns and air pollution control devices configuration, atmospheric emissions of Hg, As, and Se from coal-fired power plants in China are evaluated. The national total emissions of Hg, As, and Se from coal-fired power plants in 2007 are calculated at 132 t, 550 t, and 787 t, respectively. Furthermore, according to the percentage of coal consumed by units equipped with different types of PM devices and FGD systems, speciation of mercury is estimated as follows: 80.48 t of Hg, 49.98 t of Hg(2+), and 1.89 t of Hg(P), representing 60.81%, 37.76%, and 1.43% of the totals, respectively. The emissions of Hg, As, and Se in China's eastern and central provinces are much higher than those in the west, except for provinces involved in the program of electricity transmission from west to east China, such as Sichuan, Guizhou, Yunnan, Shaanxi, etc. PMID:21621816

  18. WATER RECYCLE/REUSE ALTERNATIVES IN COAL-FIRED STEAM-ELECTRIC POWER PLANTS: VOLUME I. PLANT STUDIES AND GENERAL IMPLEMENTATION PLANS

    EPA Science Inventory

    The report gives results of an investigation of water recycle/treatment/reuse alternatives in coal-fired power plants. Five power plants from representative U.S. regions were studied. The major water systems encountered were cooling, ash sluicing, and SO2/particulate scrubbers. R...

  19. Low level measurements of natural radionuclides in soil samples around a coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Rosner, G.; Bunzl, K.; Hötzl, H.; Winkler, R.

    1984-06-01

    To detect a possible contribution of airborne radioactivity from stack effluents to the soil radioactivity, several radionuclides in the soil around a coal-fired power plant have been determined. A plant situated in a rural region of Bavaria was selected to minimize contributions from other civilisatory sources. The soil sampling network consisted of 5 concentric circles with diameters between 0.4 and 5.2 km around the plant, 16 sampling points being distributed regularly on each circle. Radiochemical analysis techniques for 210Pb and 210Po in soil samples of several grams had to be developed. They include a wet dissolution procedure, simultaneous precipitation of lead and polonium as the sulfides, purification via lead sulfate, counting of the lead as the chromate in a low-level beta counter and alpha spectrometric determination of the 210Po in a gridded ionization chamber. The 238U, 226Ra, 232Th and 40K were counted by low level gamma spectrometry. Specific activities found were in the range of 0.7 to 2.0 pCi g -1 for 210Pb and 0.3 to 1.6 pCi g -1 for 226Ra. The distribution patterns of 210Po and 210Pb around the plant were found to be similar. They were different, however, from that of 226Ra. The highest 210Pb/ 226Ra activity ratio was 3.9 at a distance of 0.76 km SSE from the plant. Nevertheless, the evidence is not considered to be sufficient to attribute these observations unambiguously to plant releases.

  20. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  1. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan.

    PubMed

    Lin, Long-Full; Lee, Wen-Jhy; Li, Hsing-Wang; Wang, Mao-Sung; Chang-Chien, Guo-Ping

    2007-08-01

    The objectives of the present study were to quantify (1) the emission factors of a variety of dioxin emission sources; (2) the overall dioxin emission inventory in Taiwan as well as in a major metropolitan (KC area); and (3) the contribution of power plants to the overall PCDD/F emission. To achieve these goals, a total of 95 flue gas samples were collected and analyzed for 17 PCDD/Fs from 20 sources to develop emission factors. The emission factor of PCDD/Fs from coal-fired power plants (0.62 microgI-TEQton(-1)) obtained in this study is considerably higher than the values reported from different countries including UK, USA, and Spain by a factor of 2-265. It means that the air pollution control devices in certain power plants need to be more efficient. The emission data showed that there is a total annual release to air of 6.1 and 95gI-TEQ from major sources in the KC area and Taiwan, respectively. The dominant sources of PCDD/Fs in the KC area are the coal-fired power plants, secondary aluminum smelting, electric arc furnaces, and open burning of rice straw, which contributed for 56%, 17%, 13%, and 3.3% to the total, respectively. However, in Taiwan, the dominant sources of PCDD/Fs are the iron ore sintering, coal-fired power plants, electric arc furnaces, and open burning of rice straw, which contributed for 32%, 28%, 23%, and 8.1% to the total, respectively. The results of this study showed that coal-fired power plants are very significant sources of PCDD/Fs and also provide an important database to assist the decision makers for formulating policies to alleviate dioxin concerns. PMID:17509649

  2. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    SciTech Connect

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity

  3. Conceptual design of a coal-fired MHD retrofit plant. Topical report, Seed Regeneration System Study 2

    SciTech Connect

    Not Available

    1992-11-01

    Westinghouse Advanced Energy Systems (WAES), through Contract No. DE-AC22-87PC79668 funded by US DOE/PETC, is conducting a conceptual design study to evaluate a coal-fired magnetohydrodynamic (MHD) retrofit of a utility plant of sufficient size to demonstrate the technical and future economic viability of an MHD system operating within an electric utility environment. The objective of this topical report is to document continuing seed regeneration system application studies and the definition of will system integration requirements for the Scholz MHD retrofit plant design. MHD power plants require the addition of a seeding material in the form of potassium to enhance the ionization of the high temperature combustion gas in the MHD channel. This process has an added environmental advantage compared to other types of coal-fired power plants in that the potassium combines with the naturally occurring sulfur in the coal to form a potassium sulfate flyash (K{sub 2}SO{sub 4}) which can be removed from the process by appropriate particulate control equipment. Up to 100% of the Sulfur in the coal can be removed by this process thereby providing environmentally clean power plant operation that is better than required by present and anticipated future New Source Performance Standards (NSPS).

  4. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    SciTech Connect

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be

  5. [Major Air Pollutant Emissions of Coal-Fired Power Plant in Yangtze River Delta].

    PubMed

    Ding, Qing-qing; Wei, Wei; Shen, Qun; Sun, Yu-han

    2015-07-01

    The emission factor method was used to estimate major air pollutant emissions of coal-fired power plant in the Yangtze River Delta (YRD) region of the year 2012. Results showed that emissions of SO2, NOx, dust, PM10, PM2.5 were respectively 473 238, 1 566 195, 587 713, 348 773 and 179 820 t. For SO2 and NOx, 300 MW and above class units made contributions of 85% and 82% in emission; while in the respect of dust, PM10 and PM2.5 contribution rates of 100 MW and below class units were respectively 81%, 53% and 40%. Considering the regional distribution, Jiangsu discharged the most, followed by Zhejiang, Shanghai. According to discharge data of several local power plants, we also calculated and made a comparative analysis of emission factors in different unit levels in Shanghai, which indicated a lower emission level. Assuming an equal level was reached in whole YRD, SO2 emission would cut down 55. 8% - 65. 3%; for NOx and dust emissions were 50. 5% - 64. 1% and 3. 4% - 11. 3%, respectively. If technologies and pollution control of lower class units were improved, the emission cuts would improve. However, according to the pollution realities of YRD, we suggested to make a multiple-cuts plan, which could effectively improve the reaional atmospheric environment. PMID:26489303

  6. Ice fog abatement and pollution reduction at a subarctic coal-fired heating plant. Final report

    SciTech Connect

    Leonard, L.E.; Seifert, R.; Zarling, J.; Johnson, R.

    1981-02-01

    An experimental cooler-condenser system was constructed at the coal-fired heating and electric plant on the Fairbanks campus of the University of Alaska to evaluate its potential to reduce ice fog and other pollutant stack emissions in a subarctic environment. This experiment advanced the work began by Porteous and Wallis (1965) to a stage of field evaluation for a less than full scale system. Flue gas was diverted from the existing power plant stack through the experimental system for test purposes. A cold water spray was directed into the muzzle of the experimental stack counter-current to the direction of flue gas flow to cool the gas, condense combustion-produced water vapor and scrub the gas stream of potential pollutants before they were released to the atmosphere. Because of several factors, the system at this stage of development proved ineffective for its main function of ice fog reduction. Some of the problems could be prevented by changes in the design of the system and some remain inconclusive and not well understood. Results show that the scrubbing function was more successful. Environmental considerations such as process water treatment and disposal presented no major obstacles, however, the potential to recover waste from the system does not appear favorable.

  7. EPA Research Highlights: Minimizing SO3 Emissions from Coal-Fired Power Plants

    EPA Science Inventory

    There have been substantial reductions in emissions of particulate matter, nitrogen oxides, and sulfur dioxide through the application of control technologies and strategies. The installation of control technologies has added to the complexity of coal-fired boilers and their ope...

  8. FUNDAMENTAL SCIENCE AND ENGINEERING OF MERCURY CONTROL IN COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses the existing knowledge base applicable to mercury (Hg) control in coal-fired boilers and outlines the gaps in knowledge that can be filled by experimentation and data gathering. Mercury can be controlled by existing air pollution control devices or by retrofit...

  9. EMISSIONS OF VAPOR-PHASE FLUORINE AND AMMONIA FROM THE COLUMBIA COAL-FIRED POWER PLANT

    EPA Science Inventory

    Gaseous fluorine and ammonia emissions from two pulverized-coal power plants were measured over a 6-month period. In one unit, emissions contained a median 1.5 mg/scm (standard cubic meter) NH3 and 1.9 mg/scm F (86% of available F in coal). For the other unit lower levels were fo...

  10. COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION

    EPA Science Inventory

    The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...

  11. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant

    SciTech Connect

    Yan Liu; David J.A. Kelly; Hongqun Yang; Christopher C.H. Lin; Steve M. Kuznicki; Zhenghe Xu

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250{sup o}C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400{sup o}C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC. 38 refs., 6 figs.

  12. Characterization of Fly Ash from Coal-Fired Power Plant and Their Properties of Mercury Retention

    NASA Astrophysics Data System (ADS)

    He, Ping; Jiang, Xiumin; Wu, Jiang; Pan, Weiguo; Ren, Jianxing

    2015-12-01

    Recent research has shown that fly ash may catalyze the oxidation of elemental mercury and facilitate its removal. However, the nature of mercury-fly ash interaction is still unknown, and the mechanism of mercury retention in fly ash needs to be investigated more thoroughly. In this work, a fly ash from a coal-fired power plant is used to characterize the inorganic and organic constituents and then evaluate its mercury retention capacities. The as-received fly ash sample is mechanically sieved to obtain five size fractions. Their characteristics are examined by loss on ignition (LOI), scanning electron microscope (SEM), energy dispersive X-ray detector (EDX), X-ray diffraction (XRD), and Raman spectra. The results show that the unburned carbon (UBC) content and UBC structural ordering decrease with a decreasing particle size for the five ashes. The morphologies of different size fractions of as-received fly ash change from the glass microspheres to irregular shapes as the particle size increases, but there is no correlation between particle size and mineralogical compositions in each size fraction. The adsorption experimental studies show that the mercury-retention capacity of fly ash depends on the particle size, UBC, and the type of inorganic constituents. Mercury retention of the types of sp2 carbon is similar to that of sp3 carbon.

  13. Mercury Emission Ratios from Coal-Fired Power Plants in the Southeastern United States during NOMADSS.

    PubMed

    Ambrose, Jesse L; Gratz, Lynne E; Jaffe, Daniel A; Campos, Teresa; Flocke, Frank M; Knapp, David J; Stechman, Daniel M; Stell, Meghan; Weinheimer, Andrew J; Cantrell, Christopher A; Mauldin, Roy L

    2015-09-01

    We use measurements made onboard the National Science Foundation's C-130 research aircraft during the 2013 Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) experiment to examine total Hg (THg) emission ratios (EmRs) for six coal-fired power plants (CFPPs) in the southeastern U.S. We compare observed enhancement ratios (ERs) with EmRs calculated using Hg emissions data from two inventories: the National Emissions Inventory (NEI) and the Toxics Release Inventory (TRI). For four CFPPs, our measured ERs are strongly correlated with EmRs based on the 2011 NEI (r(2) = 0.97), although the inventory data exhibit a -39% low bias. Our measurements agree best (to within ±32%) with the NEI Hg data when the latter were derived from on-site emissions measurements. Conversely, the NEI underestimates by approximately 1 order of magnitude the ERs we measured for one previously untested CFPP. Measured ERs are uncorrelated with values based on the 2013 TRI, which also tends to be biased low. Our results suggest that the Hg inventories can be improved by targeting CFPPs for which the NEI- and TRI-based EmRs have significant disagreements. We recommend that future versions of the Hg inventories should provide greater traceability and uncertainty estimates. PMID:26161912

  14. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Trevor Ley

    2004-01-01

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Novel sorbent evaluations at We Energies' Pleasant Prairie Power Plant (P4) Unit 1 (no SCR in place) have been completed. Nineteen sorbents were evaluated for mercury control. A batch injection rate of 1 lb/Mmacf for 1 hour was conducted for screening purposes at a temperature of 300 F. Four sorbents were further evaluated at three injection rates and two temperatures. The multi-pollutant control test system (PoCT) was installed on P4's Unit 2 (with an SCR) and sorbent evaluations are continuing. Evaluations will continue through the end of January 2004. Tests and analysis on samples from Powerton and Valley to yield waste characterization results for the COHPAC long-term tests are continuing. A no-cost time extension for work to be completed by March 31, 2004 was granted by DOE/NETL.

  15. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  16. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    EPA Science Inventory

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  17. Zinc Isotope Variability in Three Coal-Fired Power Plants: A Predictive Model for Determining Isotopic Fractionation during Combustion.

    PubMed

    Ochoa Gonzalez, R; Weiss, D

    2015-10-20

    The zinc (Zn) isotope compositions of feed materials and combustion byproducts were investigated in three different coal-fired power plants, and the results were used to develop a generalized model that can account for Zn isotopic fractionation during coal combustion. The isotope signatures in the coal (δ(66)ZnIRMM) ranged between +0.73 and +1.18‰, values that fall well within those previously determined for peat (+0.6 ±2.0‰). We therefore propose that the speciation of Zn in peat determines the isotope fingerprint in coal. All of the bottom ashes collected in these power plants were isotopically depleted in the heavy isotopes relative to the coals, with δ(66)ZnIRMM values ranging between +0.26‰ and +0.64‰. This suggests that the heavy isotopes, possibly associated with the organic matter of the coal, may be preferentially released into the vapor phase. The fly ash in all of these power plants was, in contrast, enriched in the heavy isotopes relative to coal. The signatures in the fly ash can be accounted for using a simple unidirectional fractionation model with isotope fractionation factors (αsolid-vapor) ranging between 1.0003 and 1.0007, and we suggest that condensation is the controlling process. The model proposed allows, once the isotope composition of the feed coal is known, the constraining of the Zn signatures in the byproducts. This will now enable the integration of Zn isotopes as a quantitative tool for the source apportionment of this metal from coal combustion in the atmosphere. PMID:26422061

  18. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    PubMed

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-01

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand. PMID:26023722

  19. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    NASA Astrophysics Data System (ADS)

    >Liyana Yahya, Muhammad Nazry Chik, Mohd Asyraf Mohd Azmir Pang,

    2013-06-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive - observed by increases in optical densities, number of cells and weights - in the presence of actual coal-fired flue gas containing on average 4.08 % O2, 200.21 mg/m3 SO2, 212.29 mg/m3 NOx, 4.73 % CO2 and 50.72 mg/m3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  20. Fluorine concentration in snow cover within the impact area of aluminium production plant (Krasnoyarsk city) and coal and gas-fired power plant (Tomsk city)

    NASA Astrophysics Data System (ADS)

    Talovskaya, A. V.; Osipova, N. A.; Filimonenko, E. A.; Polikanova, S. A.; Samokhina, N. P.; Yazikov, E. G.; Matveenko, I. A.

    2015-11-01

    The fluorine contents in snow melt water find in the impact areas of aluminum production plant and coal and gas-fired power plant are compared. In melt water, soluble fluoride is found in the form of fluoride ion, the content of which was determined by the potentiometric method using ion-selective electrode. According to the measurements of 2013-2014, fluoride content in melt water ranges 10.6-15.4 mg/dm3 at the distance 1-3 km from the borders of Krasnoyarsk aluminum plant with the mean value 13.1 mg/dm3. Four-year monitoring from 2012 to 2015 in the impact area of Tomsk coal and gas-fired power plant showed that fluoride content in melt water in vicinity of the thermal power plant is significantly lower than in the samples from the impact area of the aluminum plant. But higher content of fluoride ion (0.2 - 0.3 mg/dm3) in snow samples in vicinity of coal and gas-fired power plant was revealed in winter of 2015. Intake of soluble fluoride is mostly explained by dust-aerosol emissions of study plants and deposition of fluorine compounds from air.

  1. Comparing the effectiveness of heat rate improvements in different coal-fired power plants utilizing carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Walsh, Martin Jeremy

    New Congressional legislation may soon require coal-fired power generators to pay for their CO2 emissions and capture a minimum level of their CO2 output. Aminebased CO2 capture systems offer plants the most technically proven and commercially feasible option for CO2 capture at this time. However, these systems require a large amount of heat and power to operate. As a result, amine-based CO2 capture systems significantly reduce the net power of any units in which they are installed. The Energy Research Center has compiled a list of heat rate improvements that plant operators may implement before installing a CO2 capture system. The goal of these improvements is to upgrade the performance of existing units and partially offset the negative effects of adding a CO2 capture system. Analyses were performed in Aspen Plus to determine the effectiveness of these heat rate improvements in preserving the net power and net unit heat rate (NUHR) of four different power generator units. For the units firing high-moisture sub-bituminous coal, the heat rate improvements reduced NUHR by an average of 13.69% across a CO 2 capture level range of 50% to 90%. For the units firing bituminous coal across the same CO2 capture range, the heat rate improvements reduced NUHR by an average of 12.30%. Regardless of the units' coal or steam turbine cycle type, the heat rate improvements preserved 9.7% to 11.0% of each unit's net power across the same CO2 capture range. In general, the heat rate improvements were found to be most effective in improving the performance of units firing high-moisture sub-bituminous. The effect of the CO2 capture system on these units and the reasons for the improvements' greater effectiveness in them are described in this thesis.

  2. Sunflower seed hulls as supplementary fuel to coal-fired power plants

    SciTech Connect

    Brudenell, W.N.; Holland, R.J.

    1981-01-01

    The use of biomass as a supplementary fuel to fossil-fuel power plants is gaining increasing attention due to escalating energy costs. The design of a sunflower seed hulls combustion system for an existing lignite-fired power plant is presented in this paper. 5 refs.

  3. Effects of a coal-fired power plant on the rock lichen Rhizoplaca melanophthalma: chlorophyll degradation and electrolyte leakage

    USGS Publications Warehouse

    Belnap, Jayne; Harper, Kimball T.

    1990-01-01

    Chlorophyll degradation and electrolyte leakage were measured for the umbilicate desert lichen Rhizoplaca melanophthalma (Ram.) Leuck. & Poelt in the vicinity of a coal-fired power plant near Page, Arizona. Patterns of lichen damage indicated by chlorophyll degradation were similar to those indicated by electrolyte leakage. Regression analyses of chlorophyll degradation as well as electrolyte leakage on distance from the power plant were significant (p < 0.001), suggesting that lichen damage decreased with increasing distance from the power plant. Mean values for both variables at the two sites closest to the power plant (7 and 12 km) differed significantly from values for the two sites farthest from the plant (21 and 42 km; p < 0.001). Mean values within each group (7 and 12 km; 21 and 42 km) do not differ significantly for either parameter. It is suggested that effluents from the power plant combine with local weather factors to produce the observed levels of damage.

  4. Biological processes for the treatment of waste water from coal-fired power plants

    SciTech Connect

    Vredenbregt, L.H.J.; Potma, A.A.; Enoch, G.D.

    1998-07-01

    In The Netherlands, all coal-fired power stations are equipped with a wet lime(stone)-gypsum flue gas desulfurization (FGD) installation, in order to meet the SO{sub 2} emission requirements. During wet desulfurization a waste water stream is produced containing among others suspended solids, heavy metals, nitrate and in some cases ammonia. Besides, the chemical oxygen demand (COD) of the waste water is increased if the FGD process is optimized by application of organic buffers. The traditional waste water treatment plant (WWTP) does not remove nitrate, ammonia and COD, and only poorly removes the anions of oxygenated metals such as selenium. In a previous research it was demonstrated that nitrate and ammonia can be removed biologically, even at the relatively extreme conditions of FGD waste water, which is characterized by a high chloride concentration (5 and 40 g/l) and relatively high temperatures (typically 35--50 C). However, the removal is no longer solely focused on nitrogen components, but also on COD removal and for the anions of some oxygenated metals target values are expected in the near future. In this paper attention is focused on two biological processes. One process is the combined removal of nitrate and COD in a fluid-bed reactor which can be applied upstream of the traditional WWTP. The application of this process was successfully demonstrated at a bench-scale fluid bed reactor. The optimal process conditions were determined in activated-sludge reactors on a laboratory scale. The second biological process is the combined removal of COD and metals from FGD waste water. An upflow sludge blanket reactor was successfully tested on laboratory scale at a wide range of process conditions with actual waste water. The possible advantages and disadvantages of the biological removal processes are discussed and compared with the well known chemical precipitation process.

  5. Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. The source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their diurnal

  6. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior; Temi Linjewile

    2003-10-31

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

  7. A study of toxic emissions from a coal-fired power plant utilizing an ESP/wet FGD system. Final report, Volume 2 of 2 - appendices

    SciTech Connect

    Not Available

    1994-07-01

    This volume contains the appendices for a coal-fired power plant toxic emissions study. Included are Process data log sheets from Coal Creek, Auditing information, Sampling protocol, Field sampling data sheets, Quality assurance/quality control, Analytical protocol, and Uncertainty analyses.

  8. FULL-SCALE FIELD EVALUATION OF WASTE DISPOSAL FROM COAL-FIRED ELECTRIC GENERATING PLANTS. VOLUME 6. APPENDICES G THROUGH I

    EPA Science Inventory

    The six-volume report summarizes results of a 3-year study of current coal ash and flue gas desulfurization (FGD) waste disposal practices at coal-fired electric generating plants. The study involved characterization of wastes, environmental data gathering, evaluation of environm...

  9. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2004-03-01

    The injection of sorbents upstream of a particulate control device is one of the most promising methods for controlling mercury emissions from coal-fired utility boilers with electrostatic precipitators and fabric filters. Studies carried out at the bench-, pilot-, and full-scale have shown that a wide variety of factors may influence sorbent mercury removal effectiveness. These factors include mercury species, flue gas composition, process conditions, existing pollution control equipment design, and sorbent characteristics. The objective of the program is to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Prior to injection testing, a number of sorbents were tested in a slipstream fixed-bed device both in the laboratory and at two field sites. Based upon the performance of the sorbents in a fixed-bed device and the estimated cost of mercury control using each sorbent, seventeen sorbents were chosen for screening in a slipstream injection system at a site burning a Western bituminous coal/petcoke blend, five were chosen for screening at a site burning a subbituminous Powder River Basin (PRB) coal, and nineteen sorbents were evaluated at a third site burning a PRB coal. Sorbents evaluated during the program were of various materials, including: activated carbons, treated carbons, other non-activated carbons, and non-carbon material. The economics and performance of the novel sorbents evaluated demonstrate that there are alternatives to the commercial standard. Smaller enterprises may have the opportunity to provide lower price mercury sorbents to power generation customers under the right set of circumstances.

  10. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    SciTech Connect

    Not Available

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  11. Life assessment and emissions monitoring of Indian coal-fired power plants

    SciTech Connect

    Not Available

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  12. Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants

    SciTech Connect

    Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

    2001-01-01

    One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

  13. ANALYSIS OF RADIOACTIVE CONTAMINANTS IN BY-PRODUCTS FROM COAL-FIRED POWER PLANT OPERATIONS

    EPA Science Inventory

    The major radionuclides detected in fossil fuel power plant operations have been identified and quantified. Samples of coal, fly ash, bottom ash, and scrubber sludge were collected from different regions in the U.S. and analyzed for radium, thorium, and uranium. The standard radi...

  14. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation

    SciTech Connect

    Clack, H.L.

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions represent the mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies. 26 refs., 5 figs., 1 tab.

  15. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    PubMed

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies. PMID:19350920

  16. Coal-fired power materials - Part II

    SciTech Connect

    Viswanathan, V.; Purgert, R.; Rawls, P.

    2008-09-15

    Part 1 discussed some general consideration in selection of alloys for advanced ultra supercritical (USC) coal-fired power plant boilers. This second part covers results reported by the US project consortium, which has extensively evaluated the steamside oxidation, fireside corrosion, and fabricability of the alloys selected for USC plants. 3 figs.

  17. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    SciTech Connect

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  18. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    PubMed

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. PMID:26950639

  19. Coal-fired power plant ash utilization in the TVA region. Final report

    SciTech Connect

    Church, R.L.; Weeter, D.W.; Davis, W.T.

    1980-10-01

    The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported methods of coal ash use, emphasizing potential markets in the TVA system; and (3) to recommend potential R and D for coal ash use in the TVA system. Uses discussed include: concrete mixtures, mineral and magnetite recovery, lightweight aggregate, wastewater treatment, sanitary landfill liners, cenosphere reuse, agriculture, mineral wool insulation, and bituminous paving mixtures. The TVA region's predominant historical use of fly ash has been as a concrete additive; however, extensive pilot scale development is underway to advance ash use in the TVA region in such areas as mineral and magnetite recovery, and mineral wool insulaton. Recommended studies include: (1) the feasibility of converting existing wet fly ash collection systems to dry collection and storage; (2) mechanical properties of ash to learn how to separate nonfloating cenospheres from ash; (3) other mineral recovery process choices (in addition to the one with Mineral Gas Co.); and (4) the potential uses, markets, generation points, transportation, and feasibility of extensive coal ash utilization in the TVA area.

  20. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    SciTech Connect

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim; Meira Castro, Ana Cristina

    2013-07-01

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

  1. A high-resolution emission inventory for coal-fired power plants in China, 1990-2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; He, K.; Zhang, Q.; Lei, Y.

    2012-12-01

    A new emission inventory of China's coal-fired power plants with high spatial and temporal resolution is developed for the period of 1990-2010, based on detailed unit-level information, including capacity, technology, fuel consumption, location, and the time it came into operation and shut down. The high-resolution emission inventory allows a close examination of temporal and spatial variations of power plant emissions in China and their driving forces during last two decades, and contributes to improvement of chemical transport model simulations and satellite retrieval. Emissions from China's coal-fired power plants in 2010 were estimated as follows: 8.00 Tg SO2, 9.00 Tg NOx, 3091 Tg CO2, 0.89 Tg PM2.5 and 1.39 Tg PM10, representing a growth of 92%, 306% and 484%, and a decline of 18% and 16% from 1990, respectively, compared to 558% growth of power generation during the same period. SO2 emissions were peaked in 2005 at 16.62 Tg, and then decreased by 52% between 2005 and 2010, as the subsequence of installation of flue-gas desulfurization (FGD) equipment. Although low-NOx burners (LNB) have been widely installed in power plants after 2006, it failed to curb the increase trend of NOx emissions. CO2 emissions kept increasing, but carbon emission intensity declined induced by the optimization of unit size structure. PM emissions fluctuated during the past 20 years, as a result of the interaction between emission control equipment and increased coal usage. An anomaly of monthly variations in emissions was detected during 2008-2010, reflecting the abnormity of economy and energy activity, such as financial crisis.

  2. Adapting sustainable low-carbon techologies to reduce carbon dioxide emissions from coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Kuo, Peter Shyr-Jye

    1997-09-01

    The scientific community is deeply concerned about the effect of greenhouse-gases (GHGs) on global climate change. A major climate shift can result in tragic destruction to our world. Carbon dioxide (COsb2) emissions from coal-fired power plants are major anthropogenic sources that contribute to potential global warming. The People's Republic of China, with its rapidly growing economy and heavy dependence on coal-fired power plants for electricity, faces increasingly serious environmental challenges. This research project seeks to develop viable methodologies for reducing the potential global warming effects and serious air pollution arising from excessive coal burning. China serves as a case study for this research project. Major resolution strategies are developed through intensive literature reviews to identify sustainable technologies that can minimize adverse environmental impacts while meeting China's economic needs. The research thereby contributes technological knowledge to the field of Applied Sciences. The research also integrates modern power generation technologies with China's current and future energy requirements. With these objectives in mind, this project examines how China's environmental issues are related to China's power generation methods. This study then makes strategic recommendations that emphasize low-carbon technologies as sustainable energy generating options to be implemented in China. These low-carbon technologies consist of three options: (1) using cleaner fuels converted from China's plentiful domestic coal resources; (2) applying high-efficiency gas turbine systems for power generation; and (3) integrating coal gasification processes with energy saving combined cycle gas turbine systems. Each method can perform independently, but a combined strategy can achieve the greatest COsb2 reductions. To minimize economic impacts caused by technological changes, this study also addresses additional alternatives that can be implemented in

  3. Uncertainty and variability in health-related damages from coal-fired power plants in the United States

    SciTech Connect

    Levy, J.I.; Baxter, L.K.; Schwartz, J.

    2009-07-15

    The health-related damages associated with emissions from coal-fired power plants can vary greatly across facilities as a function of plant, site, and population characteristics, but the degree of variability and the contributing factors have not been formally evaluated. In this study, we modeled the monetized damages associated with 407 coal-fired power plants in the United States, focusing on premature mortality from fine particulate matter (PM2.5). We applied a reduced-form chemistry-transport model accounting for primary PM2.5 emissions and the influence of sulfur dioxide (SO{sub 2}) and nitrogen oxide (NOx) emissions on secondary particulate formation. Outputs were linked with a concentration-response function for PM2.5-related mortality that incorporated nonlinearities and model uncertainty. We valued mortality with a value of statistical life approach, characterizing and propagating uncertainties in all model elements. At the median of the plant-specific uncertainty distributions, damages across plants ranged from $30,000 to $500,000 per ton of PM2.5, $6,000 to $50,000 per ton of SO{sub 2}, $500 to $15,000 per ton of NOx, and $0.02 to $1.57 per kilowatt-hour of electricity generated. Variability in damages per ton of emissions was almost entirely explained by population exposure per unit emissions (intake fraction), which itself was related to atmospheric conditions and the population size at various distances from the power plant. Variability in damages per kilowatt-hour was highly correlated with SO{sub 2} emissions, related to fuel and control technology characteristics, but was also correlated with atmospheric conditions and population size at various distances.

  4. Study of seed reporcessing systems for open cycle coal fired MHD power plants

    SciTech Connect

    Not Available

    1980-07-01

    If open-cycle coal-fired MHD power generation is to be commercially competitive, a large fraction of the potassium seed must be recycled. Cost of processing the seed for recycle must not be excessive and must be less than the cost of make up seed. A preliminary evaluation of the following processes was performed: PERC; formate; aqueous carbonate; modified tampella; scrubber, with and without removal of ash from spent seed; Tomlinson - Tampella; and electrodialysis and electrodialysis - deionization. Criteria considered in the evaluation included cost, state of development, seed loss, power requirements, availability, durability, key component risk, environmental impact, safety, controllability, and impurities buildup. None of the processes is fully proven for this type recycle operation. All require some degree of development. Results are presented in detail, and recommendations are included. (WHK)

  5. Comprehensive assessment of toxic emissions from coal-fired power plants

    SciTech Connect

    1996-09-01

    The 1990 Clean Air Act Amendments (CAAA) have two primary goals: pollution prevention and a market-based least-cost approach to emission control. To address air quality issues as well as permitting and enforcement, the 1990 CAAA contain 11 sections or titles. The individual amendment titles are as follows: Title I - National Ambient Air Quality Standards Title II - Mobile Sources Title III - Hazardous Air Pollutants Title IV - Acid Deposition Control Title V - Permits Title VI - Stratospheric Ozone Protection Chemicals Title VII - Enforcement Title VIII - Miscellaneous Provisions Title IX - Clean Air Research Title X - Disadvantaged Business Concerns Title XI - Clean Air Employment Transition Assistance Titles I, III, IV, and V will change or have the potential to change how operators of coal-fired utility boilers control, monitor, and report emissions. For the purpose of this discussion, Title III is the primary focus.

  6. Cytogenetic damage in workers from a coal-fired power plant.

    PubMed

    Celik, Mustafa; Donbak, Lale; Unal, Fatma; Yüzbasioglu, Deniz; Aksoy, Hüseyin; Yilmaz, Serkan

    2007-03-01

    The aim of this study was to investigate the genotoxic risk to workers occupationally exposed to coal combustion products in Afsin-Elbistan A power plant, located in south-eastern Turkey. We analysed chromosomal aberrations (CAs), polyploidy, sister-chromatid exchanges (SCEs), and micronuclei (MN) in 48 male workers without a history of smoking, tobacco chewing, or alcohol consumption. The results were compared with a control group of 30 healthy male individuals without exposure to any known genotoxic agents. The mean frequencies of CA, polyploidy, SCEs (P<0.01), and MN (P<0.05) were significantly higher in workers than in the control group, by the Mann-Whitney U-test. Spearman's rho correlation analysis revealed a significant increase in the frequency of CA and MN with increasing years of exposure (P<0.05). However, there was no significant effect of age on the cytogenetic markers analysed in both groups (P>0.05). The data obtained from this study clearly showed chromosomal hazard in the peripheral lymphocytes of workers exposed to coal combustion products in Afsin-Elbistan A power plant for several years. This cytogenetic damage might be attributed to the cumulative effects of several substances due to chemical complexity of the coal ash and gaseous emissions rather than a specific substance. PMID:17178253

  7. Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants.

    PubMed

    Raja, R; Nayak, A K; Shukla, A K; Rao, K S; Gautam, Priyanka; Lal, B; Tripathi, R; Shahid, M; Panda, B B; Kumar, A; Bhattacharyya, P; Bardhan, G; Gupta, S; Patra, D K

    2015-11-01

    Thermal power stations apart from being source of energy supply are causing soil pollution leading to its degradation in fertility and contamination. Fine particle and trace element emissions from energy production in coal-fired thermal power plants are associated with significant adverse effects on human, animal, and soil health. Contamination of soil with cadmium, nickel, copper, lead, arsenic, chromium, and zinc can be a primary route of human exposure to these potentially toxic elements. The environmental evaluation of surrounding soil of thermal power plants in Odisha may serve a model study to get the insight into hazards they are causing. The study investigates the impact of fly ash-fugitive dust (FAFD) deposition from coal-fired thermal power plant emissions on soil properties including trace element concentration, pH, and soil enzymatic activities. Higher FAFD deposition was found in the close proximity of power plants, which led to high pH and greater accumulation of heavy metals. Among the three power plants, in the vicinity of NALCO, higher concentrations of soil organic carbon and nitrogen was observed whereas, higher phosphorus content was recorded in the proximity of NTPC. Multivariate statistical analysis of different variables and their association indicated that FAFD deposition and soil properties were influenced by the source of emissions and distance from source of emission. Pollution in soil profiles and high risk areas were detected and visualized using surface maps based on Kriging interpolation. The concentrations of chromium and arsenic were higher in the soil where FAFD deposition was more. Observance of relatively high concentration of heavy metals like cadmium, lead, nickel, and arsenic and a low concentration of enzymatic activity in proximity to the emission source indicated a possible link with anthropogenic emissions. PMID:26450689

  8. [Characteristics of Water-Soluble Inorganic Ions in PM2.5 Emitted from Coal-Fired Power Plants].

    PubMed

    Ma, Zi-zhen; Li, Zhen; Jiang, Jing-kun; Ye, Zhi-xiang; Deng, Jian-guo; Duan, Lei

    2015-07-01

    To characterize the primary PM2.5 emission from coal-fired power plants in China, and to quantitatively evaluate the effects of flue gas denitrification and desulfurization on PM2.5 emission, a pulverized coal fired (PC) power plant and a circulating fluidized bed (CFB) plant were selected for measuring the mass concentration and water-soluble ion composition of PM2.5 in flue gas. The results showed that the mass concentration of PM2.5 generated from the CFB was much higher than that from the PC, while the mass concentrations of PM2.5 emitted from these two plants were very similar, because the CFB was equipped with an electrostatic-bag precipitator (EBP) with higher PM2.5 removal efficiency than the common electrostatic precipitator (ESP). Although the total concentration of water-soluble ions in PM2.5 generated from the PC was lower than that from the CFB, the total concentration of water-soluble ions in PM2.5 emitted from the PC was much higher than that from the CFB, which implied that PM2.5 emission from the PC was greatly affected by the flue gas treatment installations. For example, the flue gas denitrification system produced H2SO4 mist, part of which reacted with the excessive NH3 in the flue gas to form NH4HSO4 in PM2.5 and to increase the acidity of PM2.5. In addition, the escaping of desulfurization solution during the flue gas desulfurization process could also introduce NH4+ and SO2- into PM2.5. Therefore, although the main water-soluble ions in PM2.5 generated from both of the plants were Ca2+ and SO(4)2-, the major cation was changed to NH4+ when emitted from PC. PMID:26489299

  9. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view. PMID:26422409

  10. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    SciTech Connect

    Benson, Steven; Srinivasachar, Srivats; Laudal, Daniel; Browers, Bruce

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  11. Dust pollution of the atmosphere in the vicinity of coal-fired power plant (Omsk City, Russia)

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Raputa, Vladimir F.; Litay, Victoriya V.; Yazikov, Egor G.; Yaroslavtseva, Tatyana V.; Mikhailova, Kseniya Y.; Parygina, Irina A.; Lonchakova, Anna D.; Tretykova, Mariya I.

    2015-11-01

    The article shows the results of dust pollution level of air in the vicinity of coal-fired power plant of Omsk city on the base of study snow cover pollution. The samples were collected west-, east- and northeastwards at a distance of 0,75-6 km from the chimney for range-finding of dust emission transfer. The research findings have shown the dust load changes from 53 till 343 mg•(m2·day)-1 in the vicinity of power plant. The ultimate dust load was detected at a distance of 3-3,5 km. On the basis of asymptotics of equation solution for impurity transfer, we have made numerical analysis of dust load rate. With the usage of ground-based facilities and satellites we have determined the wind shifts in the atmospheric boundary layer have a significant impact on the field forming of long-term dustfall.

  12. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  13. PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor

    SciTech Connect

    Peltier, R.

    2007-08-15

    The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

  14. Firing of pulverized solvent refined coal

    DOEpatents

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  15. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    SciTech Connect

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  16. Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation.

    PubMed

    Jayasekher, T

    2009-06-01

    Industrial processes discharge fine particulates containing organic as well as inorganic compounds into the atmosphere which are known to induce damage to cell and DNA, both in vitro and in vivo. Source and area specific studies with respect to the chemical composition, size and shape of the particles, and toxicity evaluations are very much limited. This study aims to investigate the trace elements associated with the aerosol particles distributed near to a coal burning thermal power plant and to evaluate their toxicity through Comet assay. PM(10) (particles determined by mass passing an inlet with a 50% cut-off efficiency having a 10-microm aerodynamic diameter) samples were collected using respirable dust samplers. Twelve elements (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Se, Hg, and As) were analyzed using ICP-AES. Comet assay was done with the extracts of aerosols in phosphate buffered saline (PBS). Results show that Fe and Zn were found to be the predominant elements along with traces of other analyzed elements. Spherical shaped ultrafine particles of <1 microm aerodynamic diameter were detected through scanning electron microscope. PM(10) particles near to the coal burning power plant produced comets indicating their potential to induce DNA damage. DNA damage property is found to be depending upon the chemical characteristics of the components associated with the particles besides the physical properties such as size and shape. PMID:19264341

  17. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    NASA Technical Reports Server (NTRS)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  18. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.

    PubMed

    Li, Ya-Ru; Gibson, Jacqueline MacDonald

    2014-09-01

    We analyzed sulfur dioxide (SO2) emissions and fine particulate sulfate (PM2.5 sulfate) concentrations in the southeastern United States during 2002-2012, in order to evaluate the health impacts in North Carolina (NC) of the NC Clean Smokestacks Act of 2002. This state law required progressive reductions (beyond those mandated by federal rules) in pollutant emissions from NC's coal-fired power plants. Although coal-fired power plants remain NC's leading SO2 source, a trend analysis shows significant declines in SO2 emissions (-20.3%/year) and PM2.5 sulfate concentrations (-8.7%/year) since passage of the act. Emissions reductions were significantly greater in NC than in neighboring states, and emissions and PM2.5 sulfate concentration reductions were highest in NC's piedmont region, where 9 of the state's 14 major coal-fired power plants are located. Our risk model estimates that these air quality improvements decreased the risk of premature death attributable to PM2.5 sulfate in NC by about 63%, resulting in an estimated 1700 (95% CI: 1500, 1800) deaths prevented in 2012. These findings lend support to recent studies predicting that implementing the proposed federal Cross-State Air Pollution Rule (recently upheld by the U.S. Supreme Court) could substantially decrease U.S. premature deaths attributable to coal-fired power plant emissions. PMID:25046689

  19. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME III - SITE SPECIFIC STUDIES FOR IN, KY, MA, MD, MI, MN

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  20. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME V - SITE SPECIFIC STUDIES FOR PA, SC, TN, VA, WI, WV

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  1. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME II - SITE SPECIFIC STUDIES FOR AL, DE. FL, GA, IL

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  2. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME IV - SITE SPECIFIC STUDIES FOR MO, MS, NC, NH, NJ, NY, OH

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  3. Comparative analysis of optimisation methods applied to thermal cycle of a coal fired power plant

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Łukasz; Elsner, Witold

    2013-12-01

    The paper presents a thermodynamic optimization of 900MW power unit for ultra-supercritical parameters, modified according to AD700 concept. The aim of the study was to verify two optimisation methods, i.e., the finding the minimum of a constrained nonlinear multivariable function (fmincon) and the Nelder-Mead method with their own constrain functions. The analysis was carried out using IPSEpro software combined with MATLAB, where gross power generation efficiency was chosen as the objective function. In comparison with the Nelder-Mead method it was shown that using fmincon function gives reasonable results and a significant reduction of computational time. Unfortunately, with the increased number of decision parameters, the benefit measured by the increase in efficiency is becoming smaller. An important drawback of fmincon method is also a lack of repeatability by using different starting points. The obtained results led to the conclusion, that the Nelder-Mead method is a better tool for optimisation of thermal cycles with a high degree of complexity like the coal-fired power unit.

  4. Coal-fired ships reappear

    SciTech Connect

    Not Available

    1983-09-01

    A situation now exists where, in many countries, coal prices are almost half those of oil, and indications point toward this trend continuing. It is not surprising, therefore, that many shipowners are planning and building the next generation of steamships with coal-fired propulsion units. Six new coal-fired ships, the first for over 25 years, are now being built in Italy, Japan, and Spain. In the forefront in technology and systems for handling coal and ash is the British company Macawber Engineering. It has developed on-board systems responding to the problems created by coal handling on a modern steamship, problems that formed a major reason for the universal changeover to oil firing in the 1950s and 1960s. The traditional method of handling coal uses mechanical systems such as belt and draglink conveyors, and bucket elevators. These methods have disadvantages that make their use on ships far from satisfactory. Pneumatic conveying systems, due to their totally enclosed construction and relative simplicity, overcome these problems. The type of pneumatic system chosen, however, has to accommodate several other constraints imposed by on-board handling of coal. (SC)

  5. Mercury Removal with Activated Carbon in Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Rapperport, J.; Sasmaz, E.; Wilcox, J.

    2010-12-01

    Coal is both the most abundant and the dirtiest combustible energy source on earth. In the United States, about half of the country’s electricity comes from coal combustion and the industry is rapidly expanding all over the world. Among many of coal’s flaws, its combustion annually produces roughly 50 tones in the U.S. and 5000 tons worldwide of mercury, a carcinogen and highly toxic pollutant. Certain sorbents and processes are used to try to limit the amount of mercury that reaches the atmosphere, a key aspect of reducing the energy source’s harmful environmental impact. This experiment’s goal is to discover what process occurs on a sorbent surface during mercury’s capture while also determining sorbent effectiveness. Bench-scale experiments are difficult to carry out since the focus of the experiment is to simulate mercury capture in a power plant flue gas stream, where mercury is in its elemental form. The process involves injecting air, elemental mercury and other components to simulate a coal exhaust environment, and then running the stream through a packed-bed reactor with an in-tact sorbent. While carrying out the reactor tests, the gas-phase is monitored for changes in mercury oxidation and following these gas-phase studies, the mercury-laden sorbent is analyzed using x-ray photoelectron spectroscopy. Conclusions that can be drawn thus far are that brominated activated carbon shows very high mercury capture and that mercury is found in its oxidized form on the surface of the sorbent. The speciation, or conclusions drawn on the process and bonding sites on the surface, cannot be determined at this point simply using the current spectroscopic analysis.

  6. Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants

    SciTech Connect

    Elliott, Jeannine

    2013-08-31

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

  7. Integrated knowledge framework (IKF) for coal-fired power plants -- An analysis of the data, information, and knowledge requirements for the economic operation and maintenance of coal-fired power plants: Volume 1. Final report

    SciTech Connect

    1996-03-01

    This project produced an integrated knowledge framework (IKF) that describes the management and operational functions as a generic, coal-fired power plant. This IKF identifies and controls the flow of data, information, and knowledge required for important fossil power plant functions. In addition, the IKF provides a benchmark for comparing existing plant practices and implementing improvements to those practices. The complete IKF is contained in a three volume report. Volumes 2 and 3, packaged as a single separate product requiring a licensing agreement, contain all model diagrams and tables in printed form. Volume 2 also contains a diskette with the IKF Rational Rose{trademark} model file. This file, when used with the Rational Rose{trademark} software, allows a user to modify the diagrams and specifications in the IKF for a specific plant and/or to expand and implement them in software. The tabular material is also included as editable text files on the diskette. The first volume, which is packaged separately and does not require a licensing agreement, is a summary and overview intended to help potential users decide whether the complete model would be useful to them.

  8. Determination of trace elements in dairy milk collected from the environment of coal-fired power plant.

    PubMed

    Ramamurthy, N; Thillaivelavan, K

    2005-01-01

    In the present study the environmental effects on herbivores mammals in and around Coal-fired power plant were studied by collecting the various milk samples of Cow and Buffalo in clean polyethylene bottles. Milk samples collected at five different locations along the banks of the Paravanaru river in and around Neyveli area. These samples were prepared for trace metal determination. The concentration of trace metals (Cu, Zn, Ni, Cd, Cr, Mn, Co and Hg) were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Cold Vapour Atomic Absorption Spectrometry (CVAAS). It is observed that the samples contain greater amounts of trace metals than that in the unexposed areas. Obviously the milk samples are contaminated with these metals due to fly ash released in such environment. PMID:16669336

  9. The adsorption behavior of mercury on the hematite (1-102) surface from coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Jung, J. E.; Jew, A. D.; Rupp, E.; Aboud, S.; Brown, G. E.; Wilcox, J.

    2014-12-01

    One of the biggest environmental concerns caused by coal-fired power plants is the emission of mercury (Hg). Worldwide, 475 tons of Hg are released from coal-burning processes annually, comprising 24% of total anthropogenic Hg emissions. Because of the high toxicity of Hg species, US Environmental Protection Agency (EPA) proposed a standard on Hg and air toxic pollutants (Mercury and Air Toxics Standards, MATS) for new and existing coal-fired power plants in order to eliminate Hg in flue gas prior to release through the stack. To control the emission of Hg from coal-derived flue gas, it is important to understand the behavior, speciation of Hg as well as the interaction between Hg and solid materials, such as fly ash or metal oxides, in the flue gas stream. In this study, theoretical investigations using density functional theory (DFT) were carried out in conjunction with experiments to investigate the adsorption behavior of oxidized Hg on hematite (α-Fe2O3), an important mineral component of fly ash which readily sorbes Hg from flue gas. For DFT calculation, the two α-Fe2O3 (1-102) surfaces modeled consisted of two different surface terminations: (1) M2-clean, which corresponds to the oxygen-terminated surface with the first layer of cations removed and with no hydroxyl groups and (2) M2-OH2-OH, which has bihydroxylated top oxygen atoms and a second layer of hydroxylated oxygen atoms. These surface terminations were selected because both surfaces are highly stable in the temperature range of flue gases. The most probable adsorption sites of Hg, Cl and HgCl on the two α-Fe2O3 surface terminations were suggested based on calculated adsorption energies. Additionally, Bader charge and projected density of states (PDOS) analyses were conducted to characterize the oxidation state of adsorbates and their bonding interactions with the surfaces. Results indicate that oxidized Hg physically adsorbs on the M2-clean surface with a binding energy of -0.103 eV and that

  10. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    PubMed Central

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. Images Figure 1. A Figure 1. B Figure 2. PMID:9347899

  11. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    PubMed

    Yager, J W; Hicks, J B; Fabianova, E

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. PMID:9347899

  12. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-12-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO2, NOx, and CO2, respectively, and decreased by 23 and 27 % for PM2.5 and PM10 respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  13. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20 year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335 and 442 % for SO2, NOx and CO2, respectively, and decreased by 23 % for PM2.5. Driven by the accelerated economy growth, large power plants were constructed throughout the country after 2000, resulting in dramatic growth in emissions. Growth trend of emissions has been effective curbed since 2005 due to strengthened emission control measures including the installation of flue-gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination for temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  14. Physics-Related Problems of Coal-Fired Power Plant Pollution.

    ERIC Educational Resources Information Center

    Devaney, Joseph J.

    1978-01-01

    Provides facts which dispel widely held fallacies about the consequences of coal-burning, most of which are physics-related. Concentrates on air pollution as the major contributor to the public hazard from coal-burning. (GA)

  15. Advanced intelligent coordinated control of coal fired power plant based on fuzzy reasoning and auto-tuning

    SciTech Connect

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H.

    2004-07-01

    The load following operation of coal-fired boiler-turbine unit in power plants can lead to changes in operating points, and it results in nonlinear variations of the plant variables and parameters. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. PID-type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. Moreover, PID-type controllers can be auto-tuned to achieve a better control performance in the whole operating range and to reject the unmeasurable disturbances. A special subclass of fuzzy inference systems, namely the Gaussian partition system with evenly spaced midpoints, is also proposed to auto-tune the PID controller in the main steam pressure loop based on the error signal and its first difference to overcome uncertainties caused by changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors, etc. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process.

  16. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    SciTech Connect

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  17. Acute respiratory symptoms in patients with chronic obstructive pulmonary disease and in other subjects living near a coal-fired plant

    SciTech Connect

    Pershagen, G.

    1984-01-01

    Daily symptom rates in patients with chronic obstructive pulmonary disease and in other subjects with presumed high sensitivity to air pollution who lived near a coal-fired power plant were compared with 24 h ambient air concentrations of NO/SUB/2, SO/SUB/2, soot and suspended particles, as well as with emissions from the plant. The mean concentrations of each of the pollutants during the 4-month study period were below 30GAMMA/m/SUP/3, and no single 24h concentration exceeded 100GAMMA/m/SUP/3. There were no consistent associations between plant emissions and pollutant levels, or between these two variables and daily symptom rates. The results indicate that the coal-fired plant was not of major importance for the occurrence of acute respiratory symptoms in the surrounding population.

  18. Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant

    SciTech Connect

    Peltier, G.L.; Wright, M.S.; Hopkins, W.A.; Meyer, J.L.

    2009-07-15

    Lentic organisms exposed to coal-fired power plant (CFPP) discharges can have elevated trace element concentrations in their tissues, but this relationship and its potential consequences are unclear for lotic organisms. To explore these patterns in a lotic environment, we transplanted Corbicula fluminea from a reference stream to a stream receiving CFPP discharge. We assessed trace element accumulation and glutathione concentration in clam tissue, shell growth, and condition index at five sites along a contamination gradient. Clams at the most upstream and contaminated site had the highest growth rate, condition index, glutathione concentrations, and concentrations of arsenic (7.85 {+-} 0.25 {mu} g/g (dry mass)), selenium (17.75 {+-} 0.80 {mu} g/g), and cadmium (7.28 {+-} 0.34 {mu} g/g). Mercury concentrations declined from 4.33 {+-} 0.83 to 0.81 {+-} 0.11 {mu} g/g (dry mass) in clams transplanted into the selenium-rich environment nearest the power plant, but this effect was not as evident at less impacted, downstream sites. Even though dilution of trace elements within modest distances from the power plant reduced bioaccumulation potential in clams, long-term loading of trace elements to downstream depositional regions (e.g., slow moving, silty areas) is likely significant.

  19. Elemental characteristics of aerosols emitted from a coal-fired heating plant

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.

    1978-01-01

    Size differentiated aerosols were collected downstream from a heating plant fueled with eastern coal and analyzed using particle induced X-ray emission technique. Based on aerosol masses collected in various size ranges, the aerosol size distribution is determined to be trimodal, with the three peaks centered at 0.54 microns, 4.0 microns, and 11.0 microns, respectively. Of the various trace elements present in the aerosols, sulphur is the only element that shows very strong concentration in the smallest size group. Iron is strongly concentrated in the 4.0 micron group. Potassium, calcium, and titanium also exhibit stronger concentration in the 4.0 micron group than any other group. Other trace elements - vanadium, chromium, manganese, nickel, copper, and barium - are equally divided between the 0.54 microns and the 4.0 microns groups. Apparently, all of the trace elements - except S - enter aerosols during the initial formation and subsequent condensation phases in the combustion process. Excess concentration of sulphur in the 0.54 microns group can only be accounted for by recondensation of sulphur vapors on the combustion aerosols and gas-to-particle phase conversion of sulfate vapors at the stack top.

  20. The impact of flue gas cleaning technologies in coal-fired power plants on the CCN distribution and cloud properties in Germany

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Vogel, B.; Junkermann, W.; Brachert, L.; Schaber, K.

    2013-05-01

    Gas-cleaning technologies used in modern coal-fired power plants cause an unintended nucleation of H2SO4 aerosol droplets during the cleaning process. As a result, high concentrations of ultra-fine aerosol droplets are emitted into the atmosphere. In this study, the impact of these emissions on the atmospheric aerosol distribution, on the cloud condensation nuclei number concentration, and consequently on cloud properties is investigated. Therefore, a sophisticated modeling framework is used combining regional simulations of the atmospheric aerosol distribution and its impact on cloud properties with detailed process simulations of the nucleation during the cleaning process inside the power plant. Furthermore, the simulated aerosol size distributions downwind of the coal-fired power plants are compared with airborne aerosol measurements performed inside the plumes.

  1. Determinants of contract duration: further evidence from coal-fired power plants

    SciTech Connect

    Kozhevnikova, M.; Lange, I.

    2009-05-15

    Transactions cost theory predicts that the availability of alternatives is one of the determinants of contract duration. Over the last 20 years, the coal market has seen many regulatory changes that have generally increased the number of alternatives in the process of procuring coal. In this paper data from long-term coal contracts for electricity generation signed before 1999 are used to estimate the effect of increasing alternatives on contract duration. Empirical results tend to match transactions cost theory that increased alternatives reduces contract duration.

  2. Exploring links between innovation and diffusion: adoption of NOx control technologies at U.S. coal-fired power plants

    SciTech Connect

    Popp, D.

    2006-03-15

    While many studies have looked at innovation and adoption of technologies separately, the two processes are linked. Advances (and expected advances) in a single technology should affect both its adoption rate and the adoption of alternative technologies. Moreover, advances made abroad may affect adoption differently than improvements developed domestically. This paper combines plant-level data on US coal-fired electric power plants with patent data pertaining to NOx pollution control techniques to study these links. It is shown that technological advances, particularly those made abroad, are important for the adoption of newer post-combustion treatment technologies, but have little effect on the adoption of older combustion modification techniques. Moreover, it provides evidence that adaptive R&D by US firms is necessary before foreign innovations are adopted in the US. Expectations of future technological advances delay adoption. Nonetheless, as in other studies of environmental technologies, the effect of other explanatory variables is dominated by the effect of environmental regulations, demonstrating that the mere presence of environmental technologies is not enough to encourage its usage.

  3. DEVELOPMENT OF COST-EFFECTIVE NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea and active additives such as elemental mercury (Hg0) vapor at coal-fired utility ...

  4. ECOLOGICAL STUDIES OF FISH NEAR A COAL-FIRED GENERATING STATION AND RELATED LABORATORY STUDIES. WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    Construction of a coal-fired electric generating station on wetlands adjacent to the Wisconsin River has permanently altered about one-half of the original 1,104-ha site. Change in the remaining wetlands continues as a result of waste heat and ashpit effluent produced by the stat...

  5. Biomonitoring of metals in the vicinity of Soma coal-fired power plant in western Anatolia, Turkey using the epiphytic lichen, Xanthoria parietina.

    PubMed

    Gür, Filiz; Yaprak, Günseli

    2011-01-01

    In this study, epiphytic lichen Xanthoria parietina was applied as the biomonitor of air pollution to determine the environmental influence in the vicinity of Soma coal-fired power plant. Thalli of lichen Xanthoria parietina growing on olive, oak and poplar trees were collected with their substrate in 2004-2006. They were taken from 44 different stations located in 3×3 km grids within an area of 30 km in diameter around the Soma power plant near the town of Soma. Lichen samples were analyzed by using the ICP-MS for As, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, Se, Th, U, V and Zn elements and their concentrations were mapped. The sample analyses results were evaluated by using the statistical software (SPSS 11). Average element contents of samples were, in descending order, Fe > Zn > V > Pb > Cr > Cu > Ni > As > Co > U > Th > Se > Cd > Hg. Results obtained in the current study were generally found to be higher than the data reported in literature although some lower values exist for Cd, Co, Hg, Ni, Pb elements. The most polluted areas were found to be those in the vicinity of the coal-fired power plant, particularly along the direction of predominant wind and in the corridor which runs from west to southeast direction due to topographic conditions. We believe that this research which is conducted around a coal-fired power plant will shed light on future research on pollution. PMID:21992698

  6. How to address data gaps in life cycle inventories: a case study on estimating CO2 emissions from coal-fired electricity plants on a global scale.

    PubMed

    Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J

    2014-05-01

    One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity. PMID:24749645

  7. Subtask 4.27 - Evaluation of the Multielement Sorbent Trap (MEST) Method at an Illinois Coal-Fired Plant

    SciTech Connect

    Pavlish, John; Thompson, Jeffrey; Dunham, Grant

    2014-09-30

    Owners of fossil fuel-fired power plants face the challenge of measuring stack emissions of trace metals and acid gases at much lower levels than in the past as a result of increasingly stringent regulations. In the United States, the current reference methods for trace metals and halogens are wet-chemistry methods, U.S. Environmental Protection Agency (EPA) Methods 29 and 26 or 26A, respectively. As a possible alternative to the EPA methods, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (MEST) method to be used to sample for trace elements and/or halogens. Sorbent traps offer a potentially advantageous alternative to the existing sampling methods, as they are simpler to use and do not require expensive, breakable glassware or handling and shipping of hazardous reagents. Field tests comparing two sorbent trap applications (MEST-H for hydrochloric acid and MEST-M for trace metals) with the reference methods were conducted at two power plant units fueled by Illinois Basin bituminous coal. For hydrochloric acid, MEST measured concentrations comparable to EPA Method 26A at two power plant units, one with and one without a wet flue gas desulfurization scrubber. MEST-H provided lower detection limits for hydrochloric acid than the reference method. Results from a dry stack unit had better comparability between methods than results from a wet stack unit. This result was attributed to the very low emissions in the latter unit, as well as the difficulty of sampling in a saturated flue gas. Based on these results, the MEST-H sorbent traps appear to be a good candidate to serve as an alternative to Method 26A (or 26). For metals, the MEST trap gave lower detection limits compared to EPA Method 29 and produced comparable data for antimony, arsenic, beryllium, cobalt, manganese, selenium, and mercury for most test runs. However, the sorbent material produced elevated blanks for cadmium, nickel, lead, and chromium at levels

  8. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    PubMed

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning

  9. Coal-fired open-cycle liquid-metal magnetohydrodynamic topping cycle for retrofit of steam power plants. [Two-phase working fluid composed of coal combustion products and liquid copper

    SciTech Connect

    Pierson, E. S.; Herman, H.; Petrick, M.; Boom, R. W.; Carlson, L.; Cohen, D.; Dubey, G.; Grammel, S. J.; Schreiner, F.; Snyder, B. K.; Zinneman, T.

    1980-12-01

    The application of the new, coal-fired open-cycle liquid-metal MHD (OC-LMMHD) energy-conversion system to the retrofit of an existing, oil- or gas-fired conventional steam power plant is evaluated. The criteria used to evaluate the retrofit are the new plant efficiency and the cost benefit relative to other options, i.e., continuing to burn oil, a conventional retrofit to burn coal (if possible), and an over-the-fence gasifier for boilers that cannot burn coal directly. The OC-LMMHD cycle and the existing steam plant used in the study are discussed, and a detailed description of the retrofit plant is presented. The latter includes plant drawings, description of the coupling of the OC-LMMHD topping cycle and the steam boiler, drawings and descriptions of the major components in the retrofit plant, and costs. The unique capability of the OC-LMMHD cycle to control the pollutants normally associated with burning coal is discussed. The net plant output powers and efficiencies are calculated, with allowances for the required auxiliary powers and component inefficiencies, and a plant lifetime economic analysis performed by an architect/engineer. The efficiency and cost results are compared with the values for the other options.

  10. Large volume waste disposal for new and existing coal-fired plants

    SciTech Connect

    Knight, R.G.; Golden, P.M.

    1982-06-01

    The solid wastes resulting from coal combustion are bottom ash, or slag, fly ash, and, in some cases, flue gas desulphurization residues (FGD). The sources of these wastes, in boiler, in dust collectors, and the sulphurization process are determined. The properties of each waste by grain size distribution, moisture content, density, compressibility, and permeability, are listed. The problem of quantity has become more so due to increase of coal use, stringent particulate removal requirements, and the advent of FGD systems. Finally, disposal routes, consisting of inplant processing, transport, and throwaway (or utilization) for each waste, are schematized and described.

  11. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-fired Power Plants

    EPA Science Inventory

    For geological sequestration of CO2 separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This s...

  12. Use of outpatient clinics as a health indicator for communities around a coal-fired power plant.

    PubMed Central

    Goren, A I; Hellmann, S; Glaser, E D

    1995-01-01

    The permit to operate the first coal fired power plant in Israel was issued with the condition that a comprehensive network to monitor its effects on the environment, health, and agriculture must be installed and operated around the plant. The health monitoring system consists of four studies, which started 1 year prior to the operation of the plant and were carried out for 10 years. In the framework of the health monitoring system, a study of requests for health services was carried out. In this survey, 8 clinics of the Sick Fund, served by 16 physicians, were followed up. The clinics were located as near as possible to air pollution monitoring stations and represent expected different levels of pollution. A health recorder summarized each day's visits to each physician and tabulated the total visits for each day and the visits due to respiratory tract complaints. Multivariate stepwise regressions on total as well as on respiratory complaints were carried out. The independent variables in the regressions were sulfur dioxide, meteorological parameters (such as temperature and humidity), and flu epidemics. Temperature was almost always significantly correlated with respiratory complaints, but less correlated with total visits among, adults and children. Sulfur dioxide, most meterological parameters and flu epidemics were not meaningful explanatory factor in the regressions. Ambient air pollution levels did not exceed the Israeli air quality or the more stringent local air quality standards, the monthly and annual average sulfur dioxide and nitrogen oxides values were very low. Images p1110-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. PMID:8747016

  13. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  14. Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.

    PubMed

    Lee, Joo-Youp; Ju, Yuhong; Keener, Tim C; Varma, Rajender S

    2006-04-15

    Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degrees C and/or 140 degrees C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K 10 showed a moderate adsorption capacity at 70 degrees C, which can be used for sorbent injection prior to the wet FGD system. PMID:16683613

  15. Follow-up of schoolchildren in the vicinity of a coal-fired power plant in Israel

    SciTech Connect

    Goren, A.I.; Hellmann, S.; Brenner, S. ); Goldsmith, J.R. )

    1991-08-01

    This study was carried out in the framework of a health monitoring system set up in the vicinity of a 1400 megawatt coal-fired power plant in Israel. Second- and fifth-grade schoolchildren were followed up every 3 years; they performed pulmonary function tests (PFT), and their parents filled out American Thoracic Society-National Heart and Lung Institute health questionnaires. Among the cohort of second graders (in 1983) living in the area expected to be most polluted, a significant increase in the prevalence of part of the respiratory symptoms was evident in 1986. The prevalence of asthma among fifth graders in this area doubled compared with prevalence when they were second graders. Among the children from the older cohort (fifth graders in 1983) living in this community, a similar although milder trend could be observed, especially in regard to an increased prevalence of asthma in 1986 compared with 1983. Annual increases in PFT in the four groups of children (boys and girls from both cohorts) were found to be higher in the community expected to be polluted (especially in the younger cohort) compared with the two other communities. The discrepancy between the increased prevalence of respiratory symptoms and diseases and the higher annual increase in PET among children from the expected more polluted community may be partly attributable to differential annual increase in height and to different distribution of background variables in the three communities.

  16. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  17. Development of cost-effective noncarbon sorbents for Hg{sup 0} removal from coal-fired power plants

    SciTech Connect

    Joo-Youp Lee; Yuhong Ju; Tim C. Keener; Rajender S. Varma

    2006-04-15

    Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg{sup 0}) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine-silica gel, urea-silica gel, thiol-silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70{sup o}C and/or 140{sup o}C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg{sup 0}control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K 10 showed a moderate adsorption capacity at 70{sup o}C, which can be used for sorbent injection prior to the wet FGD system. 31 refs., 5 figs., 4 tabs.

  18. Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution.

    PubMed

    Ćujić, Mirjana; Dragović, Snežana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan

    2015-07-01

    Primordial radionuclides, (238)U, (232)Th and (40)K were determined in soil samples collected at two depths (0-10 and 10-20 cm) in the vicinity of the largest coal-fired power plant in Serbia, and their spatial distribution was analysed using ordinary kriging. Mean values of activity concentrations for these depths were 50.7 Bq kg(-1) for (238)U, 48.7 Bq kg(-1) for (232)Th and 560 Bq kg(-1) for (40)K. Based on the measured activity concentrations, the radiological hazard due to naturally occurring radionuclides in soil was assessed. The value of the mean total absorbed dose rate was 76.3 nGy h(-1), which is higher than the world average. The annual effective dose due to these radionuclides ranged from 51.4 to 114.2 μSv. Applying cluster analysis, correlations between radionuclides and soil properties were determined. The distribution pattern of natural radionuclides in the environment surrounding the coal-fired power plant and their enrichment in soil at some sampling sites were in accordance with dispersion models of fly ash emissions. From the results obtained, it can be concluded that operation of the coal-fired power plant has no significant negative impact on the surrounding environment with regard to the content of natural radionuclides. PMID:25716901

  19. Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids

    NASA Astrophysics Data System (ADS)

    Cohen, Stuart M.; Chalmers, Hannah L.; Webber, Michael E.; King, Carey W.

    2011-04-01

    This work analyses the carbon dioxide (CO2) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO2 (USD/tCO2). CO2 capture flexibility is investigated by comparing inflexible CO2 capture systems to flexible ones that can choose between full- and zero-load CO2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO2 prices are high. In GB, higher overall coal prices mean that CO2 prices must be slightly higher than in ERCOT before the emissions savings of CO2 capture offset capture energy costs. However, once CO2 capture is economical, operating CO2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.

  20. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    SciTech Connect

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  1. Current and Potential Future Bromide Loads from Coal-Fired Power Plants in the Allegheny River Basin and Their Effects on Downstream Concentrations.

    PubMed

    Good, Kelly D; VanBriesen, Jeanne M

    2016-09-01

    The presence of bromide in rivers does not affect ecosystems or present a human health risk; however, elevated concentrations of bromide in drinking water sources can lead to difficulty meeting drinking water disinfection byproduct (DBP) regulations. Recent attention has focused on oil and gas wastewater and coal-fired power plant wet flue gas desulfurization (FGD) wastewater bromide discharges. Bromide can be added to coal to enhance mercury removal, and increased use of bromide at some power plants is expected. Evaluation of potential increases in bromide concentrations from bromide addition for mercury control is lacking. The present work utilizes bromide monitoring data in the Allegheny River and a mass-balance approach to elucidate bromide contributions from anthropogenic and natural sources under current and future scenarios. For the Allegheny River, the current bromide is associated approximately 49% with oil- and gas-produced water discharges and 33% with coal-fired power plants operating wet FGD, with 18% derived from natural sources during mean flow conditions in August. Median wet FGD bromide loads could increase 3-fold from 610 to 1900 kg/day if all plants implement bromide addition for mercury control. Median bromide concentrations in the lower Allegheny River in August would rise to 410, 200, and 180 μg/L under low-, mean-, and high-flow conditions, respectively, for the bromide-addition scenario. PMID:27538590

  2. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2004 through February 2005. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. The major experimental achievement this project period was the characterization of the mercury and fine particle emissions from two modern, large, commercial pulverized coal boilers. This testing completes the field work component of the Source Characterization Activity. This report highlights results from mercury emission measurements made using a dilution sampler. The measurements clearly indicate that mercury is being transformed from an oxidized to an elemental state within the dilution. However, wall effects are significant making it difficult to determine whether or not these changes occur in the gas phase or due to some interaction with the sampler walls. This report also presents results from an analysis that uses spherical aluminum silicate (SAS) particles as a marker for primary PM{sub 2.5} emitted from coal combustion. Primary emissions from coal combustion contribute only a small fraction of the PM{sub 2.5} mass (less than 1.5% in the summer and less than 3% in the winter) at the Pittsburgh site. Ambient SAS concentrations also appear to be reasonably spatially homogeneous. Finally, SAS emission factors measured at pilot-scale are consistent with measurements made at full-scale. This report also presents results from applying the Unmix and PMF models to estimate the contribution of different sources to the PM{sub 2.5} mass concentrations in Pittsburgh using aerosol composition information. Comparison of the two models shows similar source composition and contribution for five factors: crustal material, nitrate, an Fe, Mn, and Zn factor, specialty steel production, and a cadmium factor. PMF found several additional factors. Comparison between source contributions

  3. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2003 through February 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include chemical fractionation of the organic fraction to quantify the ratio of organic mass to organic carbon (OM/OC). The average OM/OC ratio for the 31 samples analyzed so far is 1.89, ranging between 1.62 and 2.53, which is consistent with expectations for an atmospherically processed regional aerosol. Analysis of the single particle data reveals that a on a particles in Pittsburgh consist of complex mixture of primary and secondary components. Approximately 79% of all particles measured with the instrument containing some form of carbon, with Carbonaceous Ammonium Nitrate (54.43%) being the dominant particle class. PMCAMx predictions were compared with data from more than 50 sites of the STN network located throughout the Eastern United States for the July 2001 period. OC and sulfate concentrations predicted by PMCAMx are within {+-}30% of the observed concentration at most of these sites. Spherical Aluminum Silicate particle concentrations (SAS) were used to estimate the contribution of primary coal emissions to fine particle levels at the central monitoring site. Primary emissions from coal combustion contribute on average 0.44 {+-} 0.3 {micro}g/m{sup 3} to PM{sub 2.5} at the site or 1.4 {+-} 1.3% of the total PM{sub 2.5} mass. Chemical mass balance analysis was performed to apportion the primary organic aerosol. About 70% of the primary OC emissions are from vehicular sources, with the gasoline contribution being on average three times greater than the diesel emissions in the summer.

  4. MERCURY DISTRIBUTION IN SOIL AROUND A LARGE COAL-FIRED POWER PLANT

    EPA Science Inventory

    Seventy soil samples were collected on a radial grid employing sixteen evenly spaced radii and five logarithmically spaced circles, concentric around the Four Corners power plant. The soil samples were analyzed for total mercury using a Zeeman Atomic Absorption spectrophotometer....

  5. Coal fire extinguishing and prevention

    SciTech Connect

    Greene, J.S.

    1988-02-16

    This patent describes a formulation for use in extinguishing coal fires, without generation of substantial gases toxic to humans, for metering to the fire at about a 6-10 percent dilution rate to water. The formulation consists essentially of a mixture of: a linear alkylbenzolyate sulfonate, non-ionic detergent and lauric superamide detergent mixture comprising about 50 percent by volume of the formulation; vitamin B-6 in the amount of about 0.5-3 percent by weight of the detergent mixture; bicarbonate of soda in the amount of about 3-18 percent by weight of the detergent mixture; and water comprising about 37-47 percent by volume of the total formulation.

  6. Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in Spain.

    PubMed

    Charro, Elena; Pardo, Rafael; Peña, Víctor

    2013-10-01

    Coal-fired power-plants (CFPP) can be a source of contamination because the coal contains trace amounts of natural radionuclides, such as (40)K and (238)U, (232)Th and their decay products. These radionuclides can be released as fly ash from the CFPP and deposited from the atmosphere on the nearby top soils, therefore modifying the natural radioactivity background levels, and subsequently increasing the total radioactive dose received for the nearby population. In this paper, an area of 64 km(2) around the CFPP of Velilla del Río Carrión (Spain) has been studied by collecting 67 surface soil samples and measuring the activities of one artificial and six natural radionuclides by gamma spectrometry. The found results are similar to the background natural levels and ranged from 0 to 209 for (137)Cs, 11 to 50 for (238)U, 14 to 67 for (226)Ra, 29 to 380 for (210)Pb, 15 to 68 for (232)Th, 17 to 78 for (224)Ra, 97 to 790 for (40)K (all values in Bq kg(-1)). Besides the classical radiochemical tools, Analysis of Variance (ANOVA), Principal Component Analysis (PCA), Hierarchical Clustering Analysis (HCA), and kriging mapping have been used to the experimental dataset, allowing us to find the existence of two different models of spatial distribution around the CFPP. The first, followed by (238)U, (226)Ra, (232)Th, (224)Ra and (40)K can be assigned to 'natural background radioactivity', whereas the second model, followed by (210)Pb and (137)Cs, is based on 'atmospheric fallout radioactivity'. The main conclusion of this work is that CFPP has not influence on the radioactivity levels measured in the studied area, with has a mean annual outdoor effective dose E = 71 ± 22 μSv, very close to the average UNSCEAR value of 70 μSv, thus confirming the almost non-existent radioactive risk posed by the presence of the CFPP. PMID:23680923

  7. Characterization of inorganic components of size-segregated particles in the flue gas of a coal-fired power plant

    SciTech Connect

    Hai Lin Wang; Zheng Ping Hao; Ya Hui Zhuang; Wei Wang; Xiao Yu Liu

    2008-05-15

    Particulate matter (PM) in the range of 0.03-10 {mu}m were collected with a 13-stage cascade impactor sampler at the outlet of an electrostatic precipitator (ESP) of a 100 MW lignite-fired power plant and were characterized by number and mass size distributions, element, and ion measurements. The number size distribution in the whole range of 0.03-10 {mu}m appeared to be bimodal with peaks at 0.06 and 0.835 {mu}m. The mass size distribution over 13 size-segregated fractions was also bimodal with peaks at 0.06 and 1.8 {mu}m. Four out of 13 fractions (namely, 0.03 < Dp < 0.06 {mu}m, 0.06 < Dp < 0.1 {mu}m, 0.7 < Dp < 1.1 {mu}m, and 1.8 < Dp < 2.7 {mu}m) were selected to represent the nano, ultrafine, submicron, and fine particles in this research, respectively. In general, the highest concentrations of elements were found in the fine fraction, in which Al and Ca were the most abundant elements, followed by S, Fe, and Na. In the nano fraction, Na and S were found with the highest levels. Enrichment coefficients of pollution elements (As, Pb, S, Se, Sb, and Cd) and some trace metal elements (Zn, Cr, Ni, Cu, V, and Co) suggested that these elements were enriched in the particles with smaller size. pH measurements showed that these flue gas samples were acidic and the acidity became weaker with larger particle size. Sulfate was the most predominant anion and remained at rather high levels due to the lack of desulfurization equipment. The high sulfate/nitrate ratios could be taken as a rudimentary indicator of such coal combustion sources. 27 refs., 5 figs., 3 tabs.

  8. Follow-up of schoolchildren in the vicinity of a coal-fired power plant in Israel.

    PubMed Central

    Goren, A I; Goldsmith, J R; Hellmann, S; Brenner, S

    1991-01-01

    This study was carried out in the framework of a health monitoring system set up in the vicinity of a 1400 megawatt coal-fired power plant in Israel. Second- and fifth-grade school children were followed up every 3 years; they performed pulmonary function tests (PFT), and their parents filled out American Thoracic Society-National Heart and Lung Institute health questionnaires. Among the cohort of second graders (in 1983) living in the area expected to be most polluted, a significant increase in the prevalence of part of the respiratory symptoms (such as cough and sputum, wheezing with and without cold and wheezing accompanied by shortness of breath) was evident in 1986. The prevalence of asthma among fifth graders in this area doubled (p = 0.0273) compared with prevalence when they were second graders. Among the children from the older cohort (fifth graders in 1983) living in this community, a similar although milder trend could be observed, especially in regard to an increased prevalence of asthma in 1986 compared with 1983 (13.9% versus 8.1%). Annual increases in PFT in the four groups of children (boys and girls from both cohorts) were found to be higher in the community expected to be polluted (especially in the younger cohort) compared with the two other communities. The discrepancy between the increased prevalence of respiratory symptoms and diseases and the higher annual increase in PFT among children from the expected more polluted community may be partly attributable to differential annual increase in height and to different distribution of background variables (such as socioeconomic status, passive smoking, heating, and respiratory diseases among parents) in the three communities. PMID:1954918

  9. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    PubMed

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. PMID:27155100

  10. Assessment of Greenhouse Gas Retrofit Issues for Coal Fired Power Plants

    EPA Science Inventory

    Several studies have been published on carbon capture technology as an independent island. In contrast, this evaluation considered the impact on the existing plant and the potential improvements to ease the retrofit of a carbon capture process. This paper will provide insight i...

  11. Utilization of coal-fired power plant combustion by-products in surface mine reclamation

    SciTech Connect

    Wendell, R.R.

    1992-01-01

    A three year study investigated the suitability of a mixture of fly ash and flue gas desulfurization sludge, termed fly ash scrubber sludge (FASS), for use in surface mine reclamation. Objectives were: characterization of FASS physical and chemical properties; effects on soil properties; effects of soil/FASS mixtures on crop plants; and development of recommendations for utilization of FASS in surface mine reclamation practices. Elemental data were divided into: major elements (Al, Ca, Cl, Fe, K, Mg and Na), comprising greater than 0.1% of the total weight; minor elements (B, Mn, Pb and Zn), present in amounts between 100 mg/kg and 0.1%; and trace elements (As, Ba, Co, Cr, Cu, Ni, Se and Sr), present at less than 100 mg/kg. The feasibility of near-surface disposal of FASS in reclamation was investigated and its potential evaluated as a soil amendment for forage and row crops. Boron and Cl were of primary importance to both crop plants and water quality. Chloride was not attenuated by soils and was readily leached to depths below plant rooting volumes. Plant-available B was markedly decreased after the first year by leaching and immobilization. Incorporation of 15% FASS in the surface soil reduced fatal boron toxicity in soybeans and a 22% reduction in alfalfa forage yield in 1989. Additional treatments included: 50% FASS mixed with glacial till subsoil; and 100% FASS located below a 30cm topsoil layer. Fly ash scrubber sludge added below the topsoil reduced soybean grain yield by 81% and alfalfa forage yield by 48%. Severe B toxicity symptoms occurred, and the grain and forages produced were unuseable. Toxicity symptoms were most severe during periods of low rainfall, and subsided with favorable soil moisture conditions. Leaching and weathering resulted in markedly reduced toxicity symptoms and enrichment of elements in plant tissues in 1990. Boron was considered the limiting factor in determining application amounts.

  12. A model-based analysis of SO2 and NO2 dynamics from coal-fired power plants under representative synoptic circulation types over the Iberian Peninsula.

    PubMed

    Valverde, Víctor; Pay, María T; Baldasano, José M

    2016-01-15

    Emissions of SO2 and NO2 from coal-fired power plants are a significant source of air pollution. In order to typify the power plants' plumes dynamics and quantify their contribution to air quality, a comprehensive characterisation of seven coal-fired power plant plumes has been performed under six representative circulation types (CTs) identified by means of a synoptic classification over the Iberian Peninsula. The emission and the transport of SO2 and NO2 have been simulated with the CALIOPE air quality forecasting system that couples the HERMES emission model for Spain and WRF and CMAQ models. For the facilities located in continental and Atlantic areas (As Pontes, Aboño, and Compostilla) the synoptic advection controls pollutant transport, however for power plants located along the Mediterranean or over complex-terrains (Guardo, Andorra, Carboneras, and Los Barrios), plume dynamics are driven by a combination of synoptic and mesoscale mountain-valley and sea-land breezes. The contribution of power plants to surface concentration occurs mainly close to the source (<20 km) related to a fumigation process when the emission injection takes place within the planetary boundary layer reaching up to 55 μg SO2 m(-3) and 32 μg NO2 m(-3). However, the SO2 and NO2 plumes can reach long distances (>250 km from the sources) especially for CTs characterised by Atlantic advection. PMID:26433330

  13. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Technical report, January 1, 1993--March 31, 1993

    SciTech Connect

    Solomon, P.R.; Zhao, Y.; Buggeln, R.C.; Shamroth, S.J.

    1993-04-01

    The overall objective of this project is to prove the feasibility of AFR`s concepts for a high efficiency coal-fired generating plant using the REACH/Exchanger concept to power an externally fired gas turbine. The computational REACH reactor was modeled with PCGC-2. The reactor geometry, inlet flow rates and configurations were investigated via modeling in order to get an optimum operation condition, with which a thorough coal and gas mixture and a required coal particle dispersion can both be achieved. This is to ensure the efficiencies of both coal combustion and aerodynamic cleaning. The aerodynamic cleaning effect of the tertiary air injection was modeled with CELMINT. Various injection schemes investigated show the dramatic impact of the tertiary air and the injection positions on the overall air flow pattern in the reactor which is one of the major influencing factors on the particle dispersion. It is clearly demonstrated that an optimum tertiary injection scheme with a reasonable flow rate is able to keep the heat exchange tubes from particle fouling.

  14. A new coordinated control strategy for boiler-turbine system of coal-fired power plant

    SciTech Connect

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H.

    2005-11-01

    This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

  15. Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: potential risks to ecology and children's health.

    PubMed

    Tang, Quan; Liu, Guijian; Zhou, Chuncai; Zhang, Hong; Sun, Ruoyu

    2013-11-01

    One hundred and twelve soil samples were collected from residential areas surrounding a coal-fired power plant at Huainan City, Anhui Province, China. The concentrations of environmentally sensitive elements (ESEs As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V and Zn) in soil samples were determined, and their potential ecological and health risks were assessed. Mean concentrations of ESEs in the downwind soils of the power plant are relatively higher than those in the upwind soils, pointing to a potential ESEs input from coal combustion. The calculated ecological risk of ESEs in soils indicates a relatively low ecological risk. Hazard quotient (HQ) of ESEs in downwind soils is 1.5, suggesting a potential health risk for children. However, the carcinogenic risk values of ESEs in soils are within the acceptable non-hazardous range of 1E-06-1E-04. PMID:24091246

  16. Chemical interactions in isolated coal-fired power plant plumes: conversion of sulfur dioxide to sulfate aerosols. Volume II. Data supplement

    SciTech Connect

    Meagher, J.F.; Bailey, E.M.; Stockburger, L. III

    1981-03-01

    The Tennessee Valley Authority (TVA) has conducted several field experiments to examine the chemical interactions in isolated coal-fired power plant plumes, Particularly the conversion of sulfur dioxide (SO/sub 2/) to sulfate (SO/sub 4//sup 2 -/) aerosols. Six field studies have been conducted at three TVA power plants - Cumberland, paradise, and Colbert Steam Plants - each of which has a different boiler configuration. Studies were conducted during all seasons of the year. Samples were usually collected between sunrise and noon; however, at Cumberland and Paradise Steam Plants, samples were also collected in the afternoon and after sunset. The effect of several meteorological parameters on the conversion rate was investigated from the results of these studies. During one study at Cumberland Steam Plant, samples were taken during periods of reduced and normal electrostatic precipitator (ESP) operation; results from this study were used to investigate the effect of particle loading in the plume on the conversion rate.

  17. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and

  18. Auditing of sampling methods for air toxics at coal-fired power plants

    SciTech Connect

    Agbede, R.O.; Clements, J.L.; Grunebach, M.G.

    1995-11-01

    Advanced Technology Systems, Inc. (ATS) with subcontract assistance from international Technology Corporation (IT) has provided external audit activities for Phase II of the Department of Energy-Pittsburgh Energy Technology Center`s air emission test program. The objective of the audits is to help ensure that the data obtained from the emission tests are precise, accurate, representative, scientifically sound and legally defensible. This paper presents the criteria that were used to perform the external audits of the emission test program. It also describes the approach used by ATS and It in performing their audits. Examples of findings of the audits along with the actions take to correct problems and the subsequent effect of those actions on the test data are presented. The results of audit spikes performed at the Plant 1 test site are also discussed.

  19. Reaching an agreement to build a new coal-fired power plant near a national park by mitigating potential environmental impacts

    SciTech Connect

    Miller, R.L.; Ruppel, T.C.; Evans, E.W.; Heintz, S.J.

    1994-12-31

    This paper presents an interesting example of compromise through comprehensive environmental analysis and intensive negotiation to build a coal-fired power plant near an environmentally sensitive area. In December 1993, the US Department of Energy (DOE) completed the final environmental impact statement (EIS) for the Healy clean Coal Project (HCCP), a proposed demonstration project that would be cost- shared by DOE and the Alaska Industrial Development and Export Authority (AIDEA). The HCCP would be built adjacent to the existing coal-fired Golden Valley Electric Association, Inc. (GVEA) Unit No. 1 in Healy, Alaska, about 4 miles north of Denali National Park and Preserve (DNPP). In response to US Department of the Interior (DOI) concerns about potential air quality related impacts on DNPP, DOE facilitated negotiations among DOE, AIDEA, and GVEA which overcame a ``stalemate`` situation. A Memorandum of Agreement was signed by all four parties, enabling DOI to withdraw its objections. The cornerstone of the Agreement is the planned retrofit of Unit No. 1 to reduce emissions of sulfur dioxide and oxides of nitrogen. If the demonstration technologies operate as expected, combined emissions from the Healy site would increase by only about 8% but electrical generation would triple. The Agreement is a ``win/win`` outcome: DOE can demonstrate the new technologies, AIDEA can build a new power plant for GVEA to operate, and DOE can safeguard the pristine environment DNPP.

  20. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants

    SciTech Connect

    Joo-Youp Lee; Tim C. Keener; Y. Jeffery Yang

    2009-06-15

    This study estimated the flue gas impurities to be included in the CO{sub 2} stream separated from a CO{sub 2} control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO{sub 2}) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO{sub 2} and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO{sub 2} could be included in the separated CO{sub 2} stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO{sub 2} of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO{sub 2} concentration below 40 ppmw in the separated CO{sub 2} stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO{sub 2} streams. In addition to SO{sub 2}, mercury, and other impurities in separated CO{sub 2} streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning, engineering, and management. 63 refs., 1 fig., 3 tabs.

  1. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  2. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  3. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    SciTech Connect

    Dai, L.J.; Wei, H.Y.; Wang, L.Q.

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of Ra-226, Th-232, and K-40 in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.

  4. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    SciTech Connect

    Dai Lijun; Wei Haiyan . E-mail: yuxidlj@stu.snnu.edu.cn; Wang Lingqing

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.

  5. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [June 1, 1989--September 30, 1989

    SciTech Connect

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  6. A study of toxic emissions from a coal-fired power plant utilizing an ESP while demonstrating the ICCT CT-121 FGD Project. Final report

    SciTech Connect

    Not Available

    1994-06-16

    The US Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the US Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for Potential health risks. The resulting data will be furnished to EPA utility power plants and health risk determinations. The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous Pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the Concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system. Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

  7. Modeling of integrated environmental control systems for coal-fired power plants: Conventional froth flotation for the IEC coal cleaning plant model

    SciTech Connect

    Rubin, E.S.

    1989-01-01

    This report describes the addition of a conventional froth flotation circuit into the FORTRAN coal cleaning module of the Integrated Environmental Control (IEC) model. The purpose of this modification is to include froth flotation as an option to clean the coal fines. The current model has three beneficiation: levels (2, 3, and 4) in which different streams are washed by specific gravity equipment. Level 2 washes only the coarse stream. Level 3 washes the coarse and medium streams. Level 4 washes the coarse, medium, and fine streams. This modification adds a fifth level, which uses specific gravity equipment to wash the coarse and medium streams and froth flotation equipment for the fine stream. The specific size fractions in each stream are specified by the model user. As before, the model optimizes the yield of each circuit in order to achieve a target coal quality for the cleaned coal product.

  8. ENGINEERING FEASIBILITY AND ECONOMICS OF CO2 SEQUESTRATION/USE ON AN EXISTING COAL-FIRED POWER PLANT: A LITERATURE REVIEW

    SciTech Connect

    Carl R. Bozzuto; Nsakala ya Nsakala

    2000-01-31

    The overall objective of this study is to evaluate the technical feasibility and the economics of alternate CO{sub 2} capture and sequestration/use technologies for retrofitting an existing pulverized coal-fired power plant. To accomplish this objective three alternative CO{sub 2} capture and sequestration systems will be evaluated to identify their impact on an existing boiler, associated boiler auxiliary components, overall plant operation and performance and power plant cost, including the cost of electricity. The three retrofit technologies that will be evaluated are as follows: (1) Coal combustion in air, followed by CO{sub 2} separation from flue gas with Kerr-McGee/ABB Lummus Global's commercial MEA-based absorption/stripping process. (2) Coal combustion in an O{sub 2}/CO{sub 2} environment with CO{sub 2} recycle. (3) Coal combustion in air with oxygen removal and CO{sub 2} captured by tertiary amines In support of this objective and execution of the evaluation of the three retrofit technologies a literature survey was conducted. It is presented in an ''annotated'' form, consistent with the following five sections: (1) Coal Combustion in O{sub 2}/CO{sub 2} Media; (2) Oxygen Separation Technologies; (3) Post Combustion CO{sub 2} Separation Technologies; (4) Potential Utilization of CO{sub 2}; and (5) CO{sub 2} Sequestration. The objective of the literature search was to determine if the three retrofit technologies proposed for this project continue to be sound choices. Additionally, a review of the literature would afford the opportunity to determine if other researchers have made significant progress in developing similar process technologies and, in that context, to revisit the current state-of-the-art. Results from this literature survey are summarized in the report.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  11. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs.

    PubMed

    Wang, Ruwei; Liu, Guijian; Zhang, Jiamei

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM10- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM10 and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM10 and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM10 surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. PMID:26298851

  12. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    SciTech Connect

    Not Available

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  13. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations.

    PubMed

    Contini, Daniele; Cesari, Daniela; Conte, Marianna; Donateo, Antonio

    2016-08-01

    The evaluation of the contribution of coal-fired thermo-electrical power plants to particulate matter (PM) is important for environmental management, for evaluation of health risks, and for its potential influence on climate. The application of receptor models, based on chemical composition of PM, is not straightforward because the chemical profile of this source is loaded with Si and Al and it is collinear with the profile of crustal particles. In this work, a new methodology, based on Positive Matrix Factorization (PMF) receptor model and Si/Al diagnostic ratio, specifically developed to discriminate the coal-fired power plant contribution from the crustal contribution is discussed. The methodology was applied to daily PM10 samples collected in central Italy in proximity of a large coal-fired power plant. Samples were simultaneously collected at three sites between 2.8 and 5.8km from the power plant: an urban site, an urban background site, and a rural site. Chemical characterization included OC/EC concentrations, by thermo-optical method, ions concentrations (NH4(+), Ca(2+), Mg(2+), Na(+), K(+), Mg(2+), SO4(2-), NO3(-), Cl(-)), by high performances ion chromatography, and metals concentrations (Si, Al, Ti, V, Mn, Fe, Ni, Cu, Zn, Br), by Energy dispersive X-ray Fluorescence (ED-XRF). Results showed an average primary contribution of the power plant of 2% (±1%) in the area studied, with limited differences between the sites. Robustness of the methodology was tested inter-comparing the results with two independent evaluations: the first obtained using the Chemical Mass Balance (CMB) receptor model and the second correlating the Si-Al factor/source contribution of PMF with wind directions and Calpuff/Calmet dispersion model results. The contribution of the power plant to secondary ammonium sulphate was investigated using an approach that integrates dispersion model results and the receptor models (PMF and CMB), a sulphate contribution of 1.5% of PM10 (±0.3%) as

  14. Effects of Environmental Temperature Change on the Efficiency of Coal- and Natural Gas-Fired Power Plants.

    PubMed

    Henry, Candise L; Pratson, Lincoln F

    2016-09-01

    Modeling studies predict that droughts and hotter water and air temperatures caused by climate warming will reduce the efficiency (η) of thermoelectric plants by 0.12-0.45% for each 1 °C of warming. We evaluate these predictions using historical performance data for 39 open- and closed-loop coal and natural gas plants from across the U.S., which operated under daily and seasonal temperature fluctuations multiples greater than future average warming projections. Seven to 14 years of hourly water (Tw), dry-bulb air (Ta), and wet-bulb air (Twb) temperature recordings collected near each plant are regressed against efficiency to attain estimates of Δη per 1 °C increase. We find reductions in η with increased Tw (for open-loop plants) up to 1 order of magnitude less than previous estimates. We also find that changes in η associated with changes in Ta (open-loop plants) or Twb (closed-loop plants) are not only smaller than previous estimates but also variable; i.e., η rises with Ta or Twb for some plants and falls for others. Our findings suggest that thermoelectric plants, particularly closed-loop plants, should be more resilient to climate warming than previously expected. PMID:27478941

  15. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  16. An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Sengupta, D.

    2006-11-01

    Combustion of coals in thermal power plants is one of the major sources of environmental pollution due to generation of huge amounts of ashes, which are disposed off in large ponds in the vicinity of the thermal power plants. This problem is of particular significance in India, which utilizes coals of very high ash content (˜55 wt%). Since the thermal power plants and the ash ponds are located in densely populated areas, there is potential chance for contamination of soil and groundwater of the surrounding areas from the toxic trace elements in the ash. An attempt has been made to study the extent of soil contamination around one of the largest thermal power plants of India located at Kolaghat, West Bengal India. Chemical analysis of the top soils and the soils collected from the different depth profiles surrounding the ash ponds, show that the top soils are enriched in the trace elements Mo, As, Cr, Mn, Cu, Ni, Co, Pb, Be, V, Zn, which show maximum enrichment (2-5) in the top soils collected from all the soil profiles. These elements are also enriched in the pond ash. Since there are no other sources of industrial effluents, it can be said that the enrichment of the trace elements (Mn, Co, Mo, Cr, Cu, Pb, Zn, As, Ni, Be, V) is attributed to their input from ash from the disposal pond. The study has been further strengthened by log-normal distribution pattern of the elements.

  17. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  18. Diagnostic instrumentation development program for the heat recovery/seed recovery system of the open-cycle, coal-fired magnetohydrodynamic power plant

    SciTech Connect

    Murphree, D.L.; Cook, R.L.; Bauman, L.E.

    1981-01-01

    Highly efficient and environmentally acceptable, the coal-fired MHD power plant is an attractive facility for producing electricity. The design of its downstream system, however, presents technological risks which must be corrected if such a plant is to be commercially viable before the end of the century. The heat recovery/seed recovery system (HRSR) at its present stage is vulnerable to corrosion on the gas side of the radiant furnace, the secondary superheater, and the intermediate temperature air heater. Slagging and fouling of the heat transfer surface have yet to be eliminated. Gas chemistry, radiant heat transfer, and particulate removal are other problematic areas which are being researched in a DOE development program whose test activities at three facilities are contributing to an MHD/HRSR data base. In addition, a 20 MWt system to study HRSR design, is being now assembled in Tennessee.

  19. Longitudinal study of respiratory conditions among schoolchildren in Israel: interim report of an epidemiological monitoring program in the vicinity of a new coal-fired power plant

    SciTech Connect

    Goren, A.I.; Helman, S.; Goldsmith, J.R.

    1988-03-01

    Second and fifth grade schoolchildren living within 19 km of a 1400 megawatt coal-fired power plant were followed-up. The children were first studied in 1980, before the power plant went into operation, and in 1983 after two units were operating. They performed pulmonary function tests (PFT), and their parents filled out American Thoracic Society-National Heart and Lung Institute health questionnaires. In the younger cohort, respiratory symptoms and pneumonia and measles were more common in 1983 than in 1980, while in the older cohort pneumonia and measles showed higher prevalence in 1983 but most respiratory symptoms became less common. Temporal changes in prevalence of respiratory symptoms and diseases and annual increases in PFT within three communities in the region with different expected levels of pollution were analyzed. It appears that effects of age, epidemics, and background variables rather than environmental pollution are responsible for the observed differences.

  20. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    SciTech Connect

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  1. Firing of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  2. The Magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect

    Not Available

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  3. THE LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS ON HUMAN HEALTH RISK. PROGRESS REPORT FOR THE PERIOD OF MARCH 2003 - MARCH 2003.

    SciTech Connect

    SULLIVAN,T.M.LIPFERT,F.D.MORRIS,S.M.

    2003-05-01

    This report presents a follow-up to previous assessments of the health risks of mercury that BNL performed for the Department of Energy. Methylmercury is an organic form of mercury that has been implicated as the form of mercury that impacts human health. A comprehensive risk assessment report was prepared (Lipfert et al., 1994) that led to several journal articles and conference presentations (Lipfert et al. 1994, 1995, 1996). In 2001, a risk assessment of mercury exposure from fish consumption was performed for 3 regions of the U.S (Northeast, Southeast, and Midwest) identified by the EPA as regions of higher impact from coal emissions (Sullivan, 2001). The risk assessment addressed the effects of in utero exposure to children through consumption of fish by their mothers. Two population groups (general population and subsistence fishers) were considered. Three mercury levels were considered in the analysis, current conditions based on measured data, and hypothetical reductions in Hg levels due to a 50% and 90% reduction in mercury emissions from coal fired power plants. The findings of the analysis suggested that a 90% reduction in coal-fired emissions would lead to a small reduction in risk to the general population (population risk reduction on the order of 10{sup -5}) and that the population risk is born by less than 1% of the population (i.e. high end fish consumers). The study conducted in 2001 focused on the health impacts arising from regional deposition patterns as determined by measured data and modeling. Health impacts were assessed on a regional scale accounting for potential percent reductions in mercury emissions from coal. However, quantitative assessment of local deposition near actual power plants has not been attempted. Generic assessments have been performed, but these are not representative of any single power plant. In this study, general background information on the mercury cycle, mercury emissions from coal plants, and risk assessment are

  4. Emission characterization and δ(13)C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants.

    PubMed

    Wang, Ruwei; Yousaf, Balal; Sun, Ruoyu; Zhang, Hong; Zhang, Jiamei; Liu, Guijian

    2016-11-15

    The objective of this study was to characterize parent polycyclic aromatic hydrocarbons (pPAHs) and their nitrated derivatives (NPAHs) in coarse (PM2.5-10), intermediate (PM1-2.5) and fine (PM1) particulate matters emitted from coal-fired power plants (CFPPs) in Huainan, China. The diagnostic ratios and the stable carbon isotopic approaches to characterize individual PAHs were applied in order to develop robust tools for tracing the origins of PAHs in different size-segregated particular matters (PMs) emitted CFPP coal combustion. The concentrations of PAH compounds in flue gas emissions varied greatly, depending on boiler types, operation and air pollution control device (APCD) conditions. Both pPAHs and NPAHs were strongly enriched in PM1-2.5 and PM1. In contrary to low molecular weight (LMW) PAHs, high molecular weight (HMW) PAHs were more enriched in finer PMs. The PAH diagnostic ratios in size-segregated PMs are small at most cases, highlighting their potential application in tracing CFPP emitted PAHs attached to different sizes of PMs. Yet, substantial uncertainty still exists to directly apply PAH diagnostic ratios as emission tracers. Although the stable carbon isotopic composition of PAH molecular was useful in differentiating coal combustion emissions from other sources such as biomass combustion and vehicular exhausts, it was not feasible to differentiate isotopic fractionation processes such as low-temperature carbonization, high-temperature carbonization, gasification and combustion. PMID:27450341

  5. Behavior of mercury emissions from a commercial coal-fired power plant: the relationship between stack speciation and near-field plume measurements.

    PubMed

    Landis, Matthew S; Ryan, Jeffrey V; ter Schure, Arnout F H; Laudal, Dennis

    2014-11-18

    The reduction of divalent gaseous mercury (Hg(II)) to elemental gaseous mercury (Hg(0)) in a commercial coal-fired power plant (CFPP) exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S. EPA, EPRI, EERC, and Southern Company. In-stack continuous emission monitoring data were used to establish the CFPP's real-time mercury speciation and plume dilution tracer species (SO2, NOX) emission rates, and an airship was utilized as an airborne sampling platform to maintain static position with respect to the exhaust plume centerline for semicontinuous measurement of target species. Varying levels of Hg(II) concentration (2.39-3.90 μg m(-3)) and percent abundance (∼ 87-99%) in flue gas and in-plume reduction were observed. The existence and magnitude of Hg(II) reduction to Hg(0) (0-55%) observed varied with respect to the types and relative amounts of coals combusted, suggesting that exhaust plume reduction occurring downwind of the CFPP is influenced by coal chemical composition and characteristics. PMID:25325168

  6. Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants

    SciTech Connect

    2010-07-01

    IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

  7. Sulfur-bearing coatings on fly ash from a coal-fired power plant: Composition, origin, and influence on ash alteration

    USGS Publications Warehouse

    Fishman, N.S.; Rice, C.A.; Breit, G.N.; Johnson, R.D.

    1999-01-01

    Fly ash samples collected from two locations in the exhaust stream of a coal-fired power plant differ markedly with respect to the abundance of thin (???0.1 ??m) sulfur-rich surface coatings that are observable by scanning electron microscopy. The coatings, tentatively identified as an aluminum-potassium-sulfate phase, probably form upon reaction between condensed sulfuric acid aerosols and glass surfaces, and are preferentially concentrated on ash exposed to exhaust stream gases for longer. The coatings are highly soluble and if sufficiently abundant, can impart an acidic pH to solutions initially in contact with ash. These observations suggest that proposals for ash use and predictions of ash behavior during disposal should consider the transient, acid-generating potential of some ash fractions and the possible effects on initial ash leachability and alteration. ?? 1998 Elsevier Science Ltd.

  8. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-01

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation. PMID:26967583

  9. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  10. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (ESTSC)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal.« less

  11. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (ESTSC)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal. The IBM PC version contains two auxiliary programs, DATAPREP and FORLIST. DATAPREP is an interactive preprocessor for creating and editing COALPREP input data. FORLIST converts carriage-control characters in FORTRAN output data to ASCII line-feed (X''0A'') characters.« less

  12. Mercury accumulation in sediment cores from three Washington state lakes: evidence for local deposition from a coal-fired power plant.

    PubMed

    Furl, Chad V; Meredith, Callie A

    2011-01-01

    Mercury accumulation rates measured in age-dated sediment cores were compared at three Washington state lakes. Offutt Lake and Lake St. Clair are located immediately downwind (18 and 28 km, respectively) of a coal-fired power plant and Lake Sammamish is located outside of the immediate area of the plant (110 km). The sites immediately downwind of the power plant were expected to receive increased mercury deposition from particulate and reactive mercury not deposited at Lake Sammamish. Mercury accumulation in cores was corrected for variable sedimentation, background, and sediment focusing to estimate the anthropogenic contribution (Hg(A,F)). Results indicated lakes immediately downwind of the power plant contained elevated Hg(A,F) levels with respect to the reference lake. Estimated fluxes to Lake Sammamish were compared to measured values from a nearby mercury wet deposition collector to gauge the efficacy of the core deconstruction techniques. Total deposition calculated through the sediment core (20.7 μg/m²/year) fell just outside of the upper estimate (18.9 μg/m²/year) of total deposition approximated from the wet deposition collector. PMID:20437040

  13. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of

  14. Coal-fired generation staging a comeback. 2nd ed.

    SciTech Connect

    2007-07-01

    The report is an overview of the renewed U.S. market interest in coal-fired power generation. It provides a concise look at what is driving interest in coal-fired generation, the challenges faced in implementing coal-fired generation projects, and the current and future state of coal-fired generation. Topics covered in the report include: An overview of coal-fired generation including its history, the current market environment, and its future prospects; An analysis of the key business factors that are driving renewed interest in coal-fired generation; An analysis of the challenges that are hindering the implementation of coal-fired generation projects; A description of coal-fired generation technologies; A review of the economic drivers of coal-fired generation project success; An evaluation of coal-fired generation versus other generation technologies; A discussion of the key government initiatives supporting new coal-fired generation; and A listing of planned coal-fired generation projects. 13 figs., 12 tabs., 1 app.

  15. Spatial Variability of PAHs and Microbial Community Structure in Surrounding Surficial Soil of Coal-Fired Power Plants in Xuzhou, China.

    PubMed

    Ma, Jing; Zhang, Wangyuan; Chen, Yi; Zhang, Shaoliang; Feng, Qiyan; Hou, Huping; Chen, Fu

    2016-01-01

    This work investigated the spatial profile and source analysis of polycyclic aromatic hydrocarbons (PAHs) in soil that surrounds coal-fired power plants in Xuzhou, China. High-throughput sequencing was employed to investigate the composition and structure of soil bacterial communities. The total concentration of 15 PAHs in the surface soils ranged from 164.87 to 3494.81 μg/kg dry weight. The spatial profile of PAHs was site-specific with a concentration of 1400.09-3494.81 μg/kg in Yaozhuang. Based on the qualitative and principal component analysis results, coal burning and vehicle emission were found to be the main sources of PAHs in the surface soils. The phylogenetic analysis revealed differences in bacterial community compositions among different sampling sites. Proteobacteria was the most abundant phylum, while Acidobacteria was the second most abundant. The orders of Campylobacterales, Desulfobacterales and Hydrogenophilales had the most significant differences in relative abundance among the sampling sites. The redundancy analysis revealed that the differences in bacterial communities could be explained by the organic matter content. They could also be explicated by the acenaphthene concentration with longer arrows. Furthermore, OTUs of Proteobacteria phylum plotted around particular samples were confirmed to have a different composition of Proteobacteria phylum among the sample sites. Evaluating the relationship between soil PAHs concentration and bacterial community composition may provide useful information for the remediation of PAH contaminated sites. PMID:27598188

  16. Levels and patterns of polycyclic aromatic hydrocarbons in coal-fired power plant bottom ash and fly ash from Huainan, China.

    PubMed

    Ruwei, Wang; Jiamei, Zhang; Jingjing, Liu; Liu, Guijian

    2013-08-01

    Fly ash and bottom ash samples were collected from a coal-fired power plant located in Anhui province, China. Mineral phases and morphologies of the samples were determined by X-ray diffraction and scanning electron microscopy, respectively. Sixteen polycyclic aromatic hydrocarbon (PAH; 16 compounds specified in United States Environmental Protection Agency Method 610) properties in ash samples were investigated. In fly ashes, ∑16PAH (total amount of 16 PAHs) and ∑CPAH (total amount of 8 carcinogenic PAHs) levels varied from 0.93 to 2.08 μg/g and from 0.26 to 0.87 μg/g, respectively. In bottom ashes, ∑16PAH and ∑CPAH levels varied from 2.83 to 5.32 and 1.76 to 3.76 μg/g, respectively. Fly ashes were dominated by medium molecular-weight PAHs and low molecular-weight PAHs, whereas bottom ashes were abundant in 5- and 6-ring PAH species. The CPAHs levels of some ashes, especially bottom ashes, are greater than the limits regulated by several countries, indicating that this type of coal combustion product requires special treatment before landfill. PAH levels and patterns in fly ash were evidently affected by particle size, and total organic content had a closer correlation with PAH content than particle size in bottom and fly ash, which may be due to unburned carbon existing in bottom ash. PMID:23591765

  17. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  18. Byproducts can make coal plants green

    SciTech Connect

    McIlvaine, B.

    2007-07-15

    Co-locating ethanol plants at coal-burning sites, along with the use of biomass gasification to boost coal-fired plant output, can have positive economic and environmental benefits. Adding a biomass gasifier to an older coal-fired plant would inject gas with up to 10% of the fuel value in the coal and increase steam generation by the same amount. Sawdust can be injected as a reburn fuel without the need for gasification. A pre-scrubber would be added before the existing SO{sub 2} scrubber and waste heat from the boiler in the form of low-pressure steam would be sent to a co-located ethanol plant. This would lead to a decrease in emissions of NOx, mercury and SO{sub 2}, less mercury in the gypsum, a large greenhouse gas reduction, reduced net fuel cost, and revenue from hydrochloric acid by- product and from selling low-pressure steam to the ethanol plant. The Blue Flint Ethanol facility uses waste heat from Grand River Energy's 1,100 MW Coal Creek Station in South Jordan, Utah. The new generation of US ethanol plants is likely to use switchgrass and other cellulosic materials as feedstock. Straw and other forms of biomass have high chlorine content. PVC waste can be added to optimise the chlorine content of the scrubber. A chlorine pre-scrubber before the SO{sub 2} scrubber would capture HCl. 1 fig., 1 photo.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-07-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  20. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  1. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  3. Compacting biomass waste materials for co-firing with coal

    SciTech Connect

    Graham, J.; Kiesler, J.; Morgan, A.; Liu, H.; Marrero, T.R.

    1999-07-01

    The purpose of this study is to develop a process that allows for the optimum compaction of various biomass waste materials to form fuels that can be co-fired with coal in conventional coal-fired power plants. Previous studies have shown that the use of biomass fuels in conjunction with coal in power plants is beneficial for several reasons. The use of biomass fuels reduces the amount of harmful gases that are emitted into the atmosphere by the firing of coal alone. In addition, the biomass used is primarily waste products that would be placed in a municipal landfill. By using this waste material as a fuel, the volume of waste being disposed of in landfills can be decreased significantly. However, in an uncompacted state these biomass wastes are bulky and costly to handle and transport. Compacting the biomass will increase its density and decrease the difficulty in handling and shipping costs. Four biomass products, wood chips, sawdust, low quality waste paper, and tree trimmings were compacted at various pressures into 1.91-inch diameter logs. After compaction, the logs were subjected to ASTM standard tests for unconfined compressive strength and splitting tensile strength. Tumbling tests and drop tests were also performed according to ASTM standards. The logs were also subjected to a water absorption test. Finally, each log will be tested to determine its thermal characteristics, such as the heating value and the gases each log produces when burned.

  4. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    PubMed

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time. PMID:17395362

  5. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    NASA Astrophysics Data System (ADS)

    Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; Hillamo, Risto; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka; Rönkkö, Topi

    2016-06-01

    Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200-300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation) concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.

  6. Case studies on recent fossil-fired plants

    SciTech Connect

    Henderson, C.

    2007-12-31

    The article summarises the findings of case studies on fossil-fired power plants carried out by the IEA Clean Coal Centre for the IEA at the request of world leaders at the Gleneagles G8 Summit in July 2005. The studies compared the cost, efficiency and emissions of eight recently constructed coal-fired plants using pulverized coal combustion with subcritical, supercritical or ultra-supercritical steam turbine cycles. Also included was a review of IGCC developments. A case study of a natural gas combined-cycle plant was included for comparison. The full report has been published by the IEA. 1 tab.

  7. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  8. A study of toxic emissions from a coal-fired power plant: Niles Station Boiler No. 2. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect

    Not Available

    1994-06-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for US Department of Energy, Pittsburgh Energy Technology Center (DOE-PETC) during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electrical utilities. The results of this study will be used by the US Environmental Protection Agency to evaluate whether regulation of HAPs emissions from utilities is warranted. This report is organized in two volumes. Volume 1: Sampling/Results/Special Topics describes the sampling effort conducted as the basis for this study, presents the concentration data on toxic chemicals in the several power plant streams, and reports the results of evaluations and calculations conducted with those data. The Special Topics section of Volume 1 reports on issues such as comparison of sampling methods and vapor/particle distributions of toxic chemicals. Volume 2: Appendices include field sampling data sheets, quality assurance results, and uncertainty calculations. The chemicals measured at Niles Boiler No. 2 were the following: five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); ammonia and cyanide; elemental carbon; radionuclides; volatile organic compounds (VOC); semivolatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH), and polychlorinated dioxins and furans; and aldehydes.

  9. Energy from waste via coal/waste co-firing

    SciTech Connect

    Winslow, J.; Ekmann, J.; Smouse, S.; Ramezan, M.; Harding, S.

    1996-12-31

    The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

  10. A mineralogical and geochemical investigation of street sediment near a coal-fired power plant in Hamilton, Ohio: an example of complex pollution and cause for community health concerns.

    PubMed

    LeGalley, Erin; Krekeler, Mark P S

    2013-05-01

    The Hamilton Municipal Electric Plant is a 125 MW coal-fired power plant, owned and operated by the City of Hamilton in Butler County, Ohio. The plant is located within 110 m of 50 homes. Bulk chemical investigation of street sediment near these homes indicates average concentrations of 25 ppm Cr, 40 ppm Cu, 15 ppm Ni, 215 ppm Pb, and 500 ppm Zn. Lead and Zn have maximum concentrations of 1207 ppm and 1512 ppm, respectively. Scanning electron microscopy indicates coal ash spherules are present in the street sediment as well as a variety of Pb, Ni, Cr, W, and BaSO4 particulates. Transmission electron microscopy indicates heavy metals are sorbed onto clay particles with some preference for illite over chlorite. This investigation shows bulk chemistry and electron microscopy approaches are very effective tools to investigate particulate pollutants and identify contexts in complex urban settings involving coal pollution. PMID:23395990

  11. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  12. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks.

    PubMed

    Reash, Robin J; Brown, Lauren; Merritt, Karen

    2015-07-01

    Many coal-fired electric generating facilities in the United States are discharging higher loads of Hg, Se, and other chemicals to receiving streams due to the installation of flue gas desulfurization (FGD) air pollution control units. There are regulatory concerns about the potential increased uptake of these bioaccumulative trace elements into food webs. We evaluated the concentrations of As, total Hg (THg), methylmercury (MeHg), and Se in Ohio River fish collected proximal to coal-fired power plants, of which 75% operate FGD systems. Fillet samples (n = 50) from 6 fish species representing 3 trophic levels were analyzed. Geometric mean fillet concentrations of THg (wet wt), MeHg (wet wt), and Se (dry wt) in 3 species were 0.136, 0.1181, and 3.19 mg/kg (sauger); 0.123, 0.1013, and 1.56 mg/kg (channel catfish); and 0.127, 0.0914, and 3.30 mg/kg (hybrid striped bass). For all species analyzed, only 3 fillet samples (6% of total) had MeHg concentrations that exceeded the US Environmental Protection Agency (USEPA) human health criterion (0.3 mg/kg wet wt); all of these were freshwater drum aged ≥ 19 y. None of the samples analyzed exceeded the USEPA proposed muscle and whole body Se thresholds for protection against reproductive effects in freshwater fish. All but 8 fillet samples had a total As concentration less than 1.0 mg/kg dry wt. Mean Se health benefit values (HBVSe ) for all species were ≥ 4, indicating that potential Hg-related health risks associated with consumption of Ohio River fish are likely to be offset by adequate Se concentrations. Overall, we observed no measurable evidence of enhanced trace element bioaccumulation associated with proximity to power plant FGD facilities, however, some enhanced bioaccumulation could have occurred in the wastewater mixing zones. Furthermore, available evidence indicates that, due to hydraulic and physical factors, the main stem Ohio River appears to have low net Hg methylation potential. PMID:25586716

  13. Optimized Solvent for Energy-Efficient, Environmentally-Friendly Capture of CO{sub 2} at Coal-Fired Power Plants

    SciTech Connect

    Farthing, G. A.; Rimpf, L. M.

    2014-04-30

    The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. While previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It

  14. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect

    Not Available

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  15. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    SciTech Connect

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the

  16. Performance and risks of advanced pulverized-coal plants

    SciTech Connect

    Nalbandian, H.

    2009-07-01

    This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

  17. Design and Feasibility Assessment of a Retrospective Epidemiological Study of Coal-Fired Power Plant Emissions in the Pittsburgh Pennsylvania Region

    SciTech Connect

    Richard A. Bilonick; Daniel Connell; Evelyn Talbott; Jeanne Zborowski; Myoung Kim

    2006-12-20

    Eighty-nine (89) percent of the electricity supplied in the 35-county Pittsburgh region (comprising parts of the states of Pennsylvania, Ohio, West Virginia, and Maryland) is generated by coal-fired power plants making this an ideal region in which to study the effects of the fine airborne particulates designated as PM{sub 2.5} emitted by the combustion of coal. This report demonstrates that during the period from 1999-2006 (1) sufficient and extensive exposure data, in particular samples of speciated PM{sub 2.5} components from 1999 to 2003, and including gaseous co-pollutants and weather have been collected, (2) sufficient and extensive mortality, morbidity, and related health outcomes data are readily available, and (3) the relationship between health effects and fine particulates can most likely be satisfactorily characterized using a combination of sophisticated statistical methodologies including latent variable modeling (LVM) and generalized linear autoregressive moving average (GLARMA) time series analysis. This report provides detailed information on the available exposure data and the available health outcomes data for the construction of a comprehensive database suitable for analysis, illustrates the application of various statistical methods to characterize the relationship between health effects and exposure, and provides a road map for conducting the proposed study. In addition, a detailed work plan for conducting the study is provided and includes a list of tasks and an estimated budget. A substantial portion of the total study cost is attributed to the cost of analyzing a large number of archived PM{sub 2.5} filters. Analysis of a representative sample of the filters supports the reliability of this invaluable but as-yet untapped resource. These filters hold the key to having sufficient data on the components of PM{sub 2.5} but have a limited shelf life. If the archived filters are not analyzed promptly the important and costly information they

  18. Executive roundtable on coal-fired generation

    SciTech Connect

    2009-09-15

    Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, the magazine's Associate Editor, was the moderator. 6 photos.

  19. Geophysics and clean development mechanisms (CDM) - Applications to coal fires

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Chen-Brauchler, D.; Schlömer, S.; Kus, J.; Lambrecht, A.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    The largest hard coal resources worldwide are found in the coal belt through Northern China and Inner Mongolia. Because of still existing technological problems and a steeply rising demand of coal in this region the most coal fires occur. Once established, coal fires are difficult to extinguish, destroy large amounts of coal and are major challenge to the environment. The Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" conducts field investigations, laboratory measurements and experiments as well as numerical modelling of coal fires in close co-operation with Chinese coal fire fighting departments. A special task within this project is to help the Chinese partners to develop methodologies and project designs to extinguish coal fires under the frame of the Kyoto protocol. In practise, this task requires a robust method to estimate the CO2 baseline of coal fires including fire detection and monitoring. In order to estimate the fire volume, fire propagation and the resulting CO2 exhaust gas volume, different types of geophysical measurements are necessary as near surface temperature and gas measurements, ground penetrating radar etc. Three different types of CO2 exhaust gas estimations from coal fires are discussed: the energy approach, the volume approach and the direct approach. The energy approach highly depends on accurate near surface and gas temperature plus the gas flux data. The volume approach is based on radar and near surface geomagnetic surveying and monitoring. The direct approach relies on the exact knowledge of gas fluxes and volumes. All approaches need reference data as regional to local weather data and petrological parameters of the burning coal. The approaches are evaluated for their use in CO2 baseline estimations and thus for clean development mechanisms.

  20. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, C.L.; Foote, J.P.

    1995-07-04

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  1. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, Charles L.; Foote, John P.

    1995-01-01

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  2. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain).

    PubMed

    Nóvoa-Muñoz, J C; Pontevedra-Pombal, X; Martínez-Cortizas, A; García-Rodeja Gayoso, E

    2008-05-15

    This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: wood

  3. Improving growth rate of microalgae in a 1191m(2) raceway pond to fix CO2 from flue gas in a coal-fired power plant.

    PubMed

    Cheng, Jun; Yang, Zongbo; Huang, Yun; Huang, Lei; Hu, Lizuo; Xu, Donghua; Zhou, Junhu; Cen, Kefa

    2015-08-01

    CO2 fixation between microalgal biomass and culture solution and the weight ratio of biomass consumption at nighttime to biomass growth at daytime were compared in an open raceway pond aerated with flue gas from a coal-fired power plant. Average daytime sunlight intensity and solution temperature were optimized to improve microalgal growth rate and to enhance the efficiency of CO2 fixation. When the average daytime solution temperature increased from 12 to 26°C, the rate of biomass consumption due to microalgal respiration at nighttime increased from 6.0 to 7.9g/m(2)/d, which was approximately 25% of the biomass growth rate at daytime. Furthermore, when the average daytime sunlight intensity increased from 39,900 to 88,300lux, CO2 fixation rate in the microalgal biomass increased from 18.4 to 40.7g/m(2)/d, which was approximately 1/3 of CO2 removal rate from flue gas by the microalgal culture system. PMID:25958147

  4. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    SciTech Connect

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  5. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    SciTech Connect

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  6. Long-term carcinogenicity study in Syrian golden hamster of particulate emissions from coal- and oil-fired power plants

    SciTech Connect

    Persson, S.A.; Ahlberg, M.; Berghem, L.; Koenberg, E.N.; Nordberg, G.F.; Bergman, F.

    1988-04-01

    Male Syrian golden hamsters were given 15 weekly intratracheal instillations with suspensions of coal fly ash or oil fly ash. Controls were instilled with saline containing gelatine (0.5 g/100 mL) or to check particle effects with suspensions of hematite (Fe/sub 2/O/sub 3/). The common weekly dose was 4.5 mg/hamster. In addition, one subgroup of hamsters was treated with oil fly ash at a weekly dose of 3.0 mg/hamster and another with coal fly ash at a weekly dose of 6.0 mg/hamster. Other groups of hamsters were treated with suspensions of benzo(a)pyrene (BaP) or with suspensions on coal fly ash, oil fly ash, or Fe/sub 2/O/sub 3/ coated with BaP. The mass median aerodynamic diameters of the coal and oil fly ashes were 4.4 microns and 28 microns, respectively. Hamsters treated with oil fly ash showed a higher frequency of bronchiolar-alveolar hyperplasia than hamsters in the other treatment groups. Squamous dysplasia and squamous metaplasia were most frequent in animals treated with suspensions of BaP or BaP-coated particles. The earliest appearance of a tumor, the highest incidence of tumors, and the highest incidence of malignant tumors were observed in hamsters treated with oil fly ash coated with BaP. Squamous cell carcinoma and adenosquamous carcinoma were the most frequent malignant tumors. No malignant tumors and only few benign tumors were observed in hamsters instilled with suspensions of fly ash not coated with BaP. The present study gives no indication that coal fly ash could create more serious health problems than oil fly ash.

  7. Long-term carcinogenicity study in Syrian golden hamster of particulate emissions from coal- and oil-fired power plants.

    PubMed Central

    Persson, S A; Ahlberg, M; Berghem, L; Könberg, E; Nordberg, G F; Bergman, F

    1988-01-01

    Male Syrian golden hamsters were given 15 weekly intratracheal instillations with suspensions of coal fly ash or oil fly ash. Controls were instilled with saline containing gelatine (0.5 g/100 mL) or to check particle effects with suspensions of hematite (Fe2O3). The common weekly dose was 4.5 mg/hamster. In addition, one subgroup of hamsters was treated with oil fly ash at a weekly dose of 3.0 mg/hamster and another with coal fly ash at a weekly dose of 6.0 mg/hamster. Other groups of hamsters were treated with suspensions of benzo[a]pyrene (BaP) or with suspensions on coal fly ash, oil fly ash, or Fe2O3 coated with BaP. The mass median aerodynamic diameters of the coal and oil fly ashes were 4.4 microns and 28 microns, respectively. Hamsters treated with oil fly ash showed a higher frequency of bronchiolar-alveolar hyperplasia than hamsters in the other treatment groups. Squamous dysplasia and squamous metaplasia were most frequent in animals treated with suspensions of BaP or BaP-coated particles. The earliest appearance of a tumor, the highest incidence of tumors, and the highest incidence of malignant tumors were observed in hamsters treated with oil fly ash coated with BaP. Squamous cell carcinoma and adenosquamous carcinoma were the most frequent malignant tumors. No malignant tumors and only few benign tumors were observed in hamsters instilled with suspensions of fly ash not coated with BaP. The present study gives no indication that coal fly ash could create more serious health problems than oil fly ash. Images FIGURE 3. FIGURE 4. PMID:3383816

  8. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    SciTech Connect

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha; Farmer, Justin; Mobley, Paul; Tanthana, Jak; Wang, Dongxiang; Wang, Xiaoxing; Song, Chunshan

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  9. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. PMID:25284768

  10. Engineering Development of Coal-Fired High Performance Power Systems

    SciTech Connect

    2000-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47% NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input all solid wastes benign cost of electricity {le}{le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.2 HITAF Air Heaters

  11. Fate and aqueous transport of mercury in light of the Clean Air Mercury Rule for coal-fired electric power plants

    NASA Astrophysics Data System (ADS)

    Arzuman, Anry

    Mercury is a hazardous air pollutant emitted to the atmosphere in large amounts. Mercury emissions from electric power generation sources were estimated to be 48 metric tons/year, constituting the single largest anthropogenic source of mercury in the U.S. Settled mercury species are highly toxic contaminants of the environment. The newly issued Federal Clean Air Mercury Rule requires that the electric power plants firing coal meet the new Maximum Achievable Mercury Control Technology limit by 2018. This signifies that all of the air-phase mercury will be concentrated in solid phase which, based on the current state of the Air Pollution Control Technology, will be fly ash. Fly ash is utilized by different industries including construction industry in concrete, its products, road bases, structural fills, monifills, for solidification, stabilization, etc. Since the increase in coal combustion in the U.S. (1.6 percent/year) is much higher than the fly ash demand, large amounts of fly ash containing mercury and other trace elements are expected to accumulate in the next decades. The amount of mercury transferred from one phase to another is not a linear function of coal combustion or ash production, depends on the future states of technology, and is unknown. The amount of aqueous mercury as a function of the future removal, mercury speciation, and coal and aquifer characteristics is also unknown. This paper makes a first attempt to relate mercury concentrations in coal, flue gas, fly ash, and fly ash leachate using a single algorithm. Mercury concentrations in all phases were examined and phase transformation algorithms were derived in a form suitable for probabilistic analyses. Such important parameters used in the transformation algorithms as Soil Cation Exchange Capacity for mercury, soil mercury selectivity sequence, mercury activity coefficient, mercury retardation factor, mercury species soil adsorption ratio, and mercury Freundlich soil adsorption isotherm

  12. Numerical Modelling by FLAC on Coal Fires in North China

    NASA Astrophysics Data System (ADS)

    Gusat, D.; Drebenstedt, C.

    2009-04-01

    Coal fires occur in many countries all over the world (e.g. Australia, China, India, Indonesia, USA and Russia) in underground and on surface. In China the most coal fires occur especially in the North. Economical and environmental damages are the negative effects of the coal fires: coal fires induce open fractures and fissures within the seam and neighbouring rocks. So that these are the predominant pathways for oxygen flow and exhaust gases from a coal fire. All over northern China there are a large number of coal fires, which cause and estimated yearly coal loss of between 100 and 200 million tons ([1], [2], [3]). Spontaneous combustion is a very complicated process and is influenced by number of factors. The process is an exothermic reaction in which the heat generated is dissipated by conduction to the surrounding environment, by radiation, by convection to the ventilation flow, and in some cases by evaporation of moisture from the coal [4]. The coal fires are very serious in China, and the dangerous extent of spontaneous combustion is bad which occupies about 72.9% in mining coal seams. During coal mining in China, the coal fires of spontaneous combustion are quite severity. The dangerous of coal spontaneous combustion has been in 56% of state major coalmines [5]. The 2D and 3D-simulation models describing coal fire damages are strong tools to predict fractures and fissures, to estimate the risk of coal fire propagation into neighbouring seams, to test and evaluate coal fire fighting and prevention methods. The numerical simulations of the rock mechanical model were made with the software for geomechanical and geotechnical calculations, the programs FLAC and FLAC3D [6]. To fight again the coal fires, exist several fire fighting techniques. Water, slurries or liquefied nitrogen can be injected to cool down the coal or cut of air supply with the backfill and thereby extinct the fire. Air supply also can be cut of by covering the coal by soil or sealing of the

  13. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  14. How new coal plants help achieve environmental goals

    SciTech Connect

    McIlvaine, B.

    2009-03-15

    A compelling case can be made for building more coal plants to reduce CO{sub 2}. If all the existing coal-fired power plants are replaced by new ultra-supercritical plants, there would be a reduction in coal use and greenhouse gases of 30% and the US could easily meet the 2020 goals. If coal plants co-fired 15% biomass, the total reduction would be 45%. If the waste heat is efficiently utilized there is another 20% gain. This is even before you consider the use of electricity to replace gasoline in cars or carbon capture and sequestration. When you add it all together there is a strong case that coal can contribute to a big reduction in CO{sub 2}. The author advocates that it can be part of the solution and not the problem. 3 figs., 3 tabs.

  15. The potential leaching and mobilization of trace elements from FGD-gypsum of a coal-fired power plant under water re-circulation conditions.

    PubMed

    Córdoba, Patricia; Castro, Iria; Maroto-Valer, Mercedes; Querol, Xavier

    2015-06-01

    Experimental and geochemical modelling studies were carried out to identify mineral and solid phases containing major, minor, and trace elements and the mechanism of the retention of these elements in Flue Gas Desulphurisation (FGD)-gypsum samples from a coal-fired power plant under filtered water recirculation to the scrubber and forced oxidation conditions. The role of the pH and related environmental factors on the mobility of Li, Ni, Zn, As, Se, Mo, and U from FGD-gypsums for a comprehensive assessment of element leaching behaviour were also carried out. Results show that the extraction rate of the studied elements generally increases with decreasing the pH value of the FGD-gypsum leachates. The increase of the mobility of elements such as U, Se, and As in the FGD-gypsum entails the modification of their aqueous speciation in the leachates; UO2SO4, H2Se, and HAsO2 are the aqueous complexes with the highest activities under acidic conditions. The speciation of Zn, Li, and Ni is not affected in spite of pH changes; these elements occur as free cations and associated to SO4(2) in the FGD-gypsum leachates. The mobility of Cu and Mo decreases by decreasing the pH of the FGD-gypsum leachates, which might be associated to the precipitation of CuSe2 and MoSe2, respectively. Time-of-Flight mass spectrometry of the solid phase combined with geochemical modelling of the aqueous phase has proved useful in understanding the mobility and geochemical behaviour of elements and their partitioning into FGD-gypsum samples. PMID:26040733

  16. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    PubMed

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete. PMID:26803257

  17. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    NASA Astrophysics Data System (ADS)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be

  18. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  19. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  20. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Final report

    SciTech Connect

    Solomon, P.R.; Zhao, Y.; Pines, D.; Buggeln, R.C.; Shamroth, S.J.

    1993-11-01

    Significant improvements in efficiency for the conversion of coal into electricity can be achieved by cycles which employ a high temperature gas turbine topping cycle. The objective of this project is the development of an externally fired gas turbine system. The project computationally tested a new concept for a High Temperature Advanced Furnace (HITAF) and high temperature heat exchanger with a proprietary design to reduce the problems associated with the harsh coal environment. The program addressed two key technology issues: (1) the HITAF/heat exchanger heat transfer through a 2-D computer analysis of the HITAF configuration; (2) 3-D Computational Fluid Dynamics (CFD) model application to simulate the exclusion of particles and corrosive gases from the heat exchanger surface. The basic concept of this new combustor design was verified through the 2D and 3D modeling. It demonstrated that the corrosion and erosion of the exchanger material caused by coal and ash particles can be largely reduced by employing a specially designed firing scheme. It also suggested that a proper combustion geometry design is necessary to maximize the cleaning effect.

  1. Geology of coal fires: case studies from around the world

    SciTech Connect

    Glenn B. Stracher

    2008-01-15

    Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products of combustion destroy floral and faunal habitats while polluting the air, water, and soil. This volume includes chapters devoted to spontaneous combustion and greenhouse gases, gas-vent mineralogy and petrology, paralavas and combustion metamorphic rocks, geochronology and landforms, magnetic signatures and geophysical modeling, remote-sensing detection and fire-depth estimation of concealed fires, and coal fires and public policy.

  2. Combustion characterization of the blend of plant coal and recovered coal fines

    SciTech Connect

    Singh, Shyam.

    1991-01-01

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples' combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter's progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

  3. NOx technology for power plant emissions selection of catalysts and type of SCR for process for gas and coal fired power stations

    SciTech Connect

    Ghoreski, D.F.; Negrea, S.

    1993-12-31

    The paper will discuss the basic principle under which SCR system suppliers select the catalyst type and system appropriate for their project. A discussion of temperature, materials, contamination risks and activation properties will be covered for various types of catalysts. The presentation for the selection of type of SCR in the High Dust, Low Dust and Tail gas positions will also be discussed. Further covered is the decision making process to ascertain if an in-duct or conventional SCR system is to be considered. The paper uses examples of pricing for various arrangements in 2,500 MW of gas fired boilers in Southern California a 420 MW coal fired boiler in Florida.

  4. Cryogenic separation of CO{sub 2} from the fluegas of conventional coal-fired power plants

    SciTech Connect

    Brockmeier, N.F.; Jody, B.J.; Wolsky, A.M.; Daniels, E.J.

    1995-02-01

    The reduction of CO{sub 2} emissions to the atmosphere is under study because such emissions are believed to contribute to undesired global warming via the greenhouse effect. Several conceptual processes for the capture of CO{sub 2} from power-plant flue gas are listed, with an emphasis on refrigeration and compression as a promising process to compete with amine absorption. At conditions that are industrially achievable (temperature of 170 K and pressure of 5 bar), CO{sub 2} forms a nearly pure solid on cooling from an impure mixed vapor. This study relies on this freezing and purification process to remove 90% or more of the CO{sub 2} from flue gas. Thermal and mechanical integration are used in the conceptual flow sheet to achieve better efficiency. A computerized process simulator, Aspen Plus with Model Manager{reg_sign}, is used to rigorously calculate the material and energy balances for the conceptual process. Key parameters are regressed from the component physical properties of the flue gas and used by the computer in the Peng-Robinson equation of state to quantify the required phase changes of CO{sub 2} solid between vapor and liquid states. Results of process evaluation are given over a range of operating conditions: pressures from 2 to 25 bar and temperatures from 150 to 220 K. This CO{sub 2} separation is shown to be technically feasible by using relatively simple and compact heat-exchange and compression equipment, with an energy requirement of 0.54 kWh/kg CO{sub 2}, even without optimization. For comparison, the energy used by state-of-the-art amine absorption is 0.43 kWh/kg. In spite of the 25% higher energy requirement for a cryogenic separation plant, the expectation is that it should have a 4% lower cost per tonne of avoided CO{sub 2} because it is estimated to require a much lower capital investment than amine absorption.

  5. Production of sulfate aerosols in the plume of a coal-fired power plant under normal and reduced precipitator operation

    SciTech Connect

    Meagher, J.F.; Bailey, E.M.; Stockburger, L. III

    1981-12-01

    A series of field experiments were conducted at TVA's Cumberland Steam Plant to examine the effect of primary aerosol on sulfate aerosol production. Plume measurements were made using an instrumented helicopter and flue gas analyses were performed on each of the two stacks. The plume particle loading was increased during four of the experiments through a reduction in the electrostatic precipitator (ESP) capacity. The average rate of oxidation of SO/sub 2/ to SO/sub 4//sup 2 -/ in the plume was found to be 0.014 +- 0.015 h/sup -1/. The average rate measured for daytime and normal ESP operation was 0.019 +- 0.015 h/sup -1/. The average nighttime rate was also 0.019 +- 0.021 h/sup -1/. The average rate measured during periods of reduced ESP operation was 0.007 +- 0.01 h/sup -1/. The relatively high night-time rates were measured just after sunset and may result from delayed reactions of free radical precursors which were produced during the day-light hours. The difference between extrapolated intercepts from aircraft measurements and flue gas sampling indicates that a region of rapid SO/sub 2/ oxidation must exist for the first few minutes after the flue gas is emitted from the stacks.

  6. Conversion rates in power plant plumes based on filter pack data. Part I. Coal-fired Cumberland plume

    SciTech Connect

    Forrest, J; Garber, R W; Newman, L

    1980-01-01

    The TVA Cumberland Steam Plant plume was monitored during the August 1978 Tennessee Plume Study of Project STATE. Samples were obtained by employing a triple screen high-volume assembly which contained: (1) a quartz filter for collecting particulate SO/sub 4//sup 2 -/, NO/sub 3//sup -/ and NH/sub 4//sup +/, (2) two NaCl-impregnated cellulose filters for collecting gaseous nitrate, and (3) two K/sub 2/CO/sub 3/-impregnated cellulose filters for collecting SO/sub 2/. Formation rates of sulfate and nitrate in the atmosphere were calculated by using total sulfur as a conservative tracer. Conversion of SO/sub 2/ to SO/sub 4//sup 2 -/ varied from approx. 0.1 to 0.8% h/sup -1/ during night and early morning hours; late morning and afternoon rates ranged from approx. 1 to 4% h/sup -1/. Rate of formation of NO/sub 3//sup -/ from NO was approx. 0.1 to 3% h/sup -1/ and approx. 3 to 12% h/sup -1/ for similar time periods. Particulate NH/sub 4//sup +/ concentrations generally increased with plume age, but rates of formation varied widely. Mole ratios of NH/sub 4//sup +//SO/sub 4//sup 2 -/ fell within 1 to 3.

  7. Onversion rates in power plant plumes based on filter pack data: The coal-fired cumberland plume

    NASA Astrophysics Data System (ADS)

    Forrest, Joseph; Garber, Robert W.; Newman, Leonard

    The TVA Cumberland Steam Plant plume was monitored during the August 1978 Tennessee Plume Study of Project STATE. Samples were obtained by employing a triple screen high-volume assembly which contained (1) a quartz filter for collecting particulate SO 42-, NO 3- and NH 4+, (2) two NaCl-impregnated cellulose filters for collecting gaseous nitrate and (3) two K 2CO 3-impregnated cellulose filters for collecting SO 2. Formation rates of sulfate and nitrate in the atmosphere were calculated by using total sulfur as a conservative tracer. Conversion of SO 2 to SO 42- varied from ~0.-0.8%h -1 during night and early morning hours; late morning and afternoon rates ranged from ~1-4% h -1'. Plumes were tracked to distances of 200 km and 9 h duration. Rate of formation of NO 3-from NO was ~0.1-3%h -1 and ~3-12%h -1 for similar time periods. Particulate NH 4+ concentrations generally increased with plume age, but rates of formation varied widely. Mole ratios of NH 4+/SO 42- fell within 1-3.

  8. CO(2), CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA.

    PubMed

    O'Keefe, Jennifer M K; Henke, Kevin R; Hower, James C; Engle, Mark A; Stracher, Glenn B; Stucker, J D; Drew, Jordan W; Staggs, Wayne D; Murray, Tiffany M; Hammond, Maxwell L; Adkins, Kenneth D; Mullins, Bailey J; Lemley, Edward W

    2010-03-01

    Carbon dioxide (CO(2)), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400t CO(2)/yr and 16kg Hg/yr resulting from a coal combustion rate of 450-550t/yr. The sum of CO(2) emissions from seven vents at the Ruth Mullins fire is 726+/-72t/yr, suggesting that the fire is consuming about 250-280t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21+/-1.8t/yr and >840+/-170g/yr, respectively. The CO(2) emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9x10(6)t CO(2)/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO(2) and Hg emissions from coal-fires in the U.S. are estimated at 1.4x10(7)-2.9x10(8)t/yr and 0.58-11.5t/yr, respectively. This initial work indicates that coal fires may be an important source of CO(2), CO, Hg and other atmospheric constituents. PMID:20071005

  9. Compliance testing of Grissom Air Force Base Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom Air Force Base, Indiana. Final technical report, 3-21 Feb 92

    SciTech Connect

    Cintron-Ocasio, R.A.

    1992-06-01

    A source emission testing for particulate matter and visible emissions was conducted on coal-fired boilers at the Grissom AFB Central Heating Plant during 3-21 February 1992 by the Air Quality Function of Armstrong Laboratory. The survey was conducted to determine compliance with regard to Indiana Administration Code, Title 325 Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. All boilers were tested through the bypass stack. Results indicated that boilers 3 and 4 met applicable, visible, and particulate matter emissions standards. Boiler 5 exceeded the particulate standard.

  10. Estimate of the dose-increment due to outdoor exposure to gamma rays from uranium progeny deposited on the soil around a coal-fired power plant in Ajka Town, Hungary.

    PubMed

    Papp, Z; Dezsö, Z

    2003-06-01

    Brown coal unusually rich in uranium is burnt in a coal-fired power plant that lies inside the confines of a small industrial town named Ajka, Hungary, and has been operational since 1943. The 238U (226Ra) activity discharged to the atmosphere per unit electrical energy produced was about 330-400 GBq (GW y)(-1), which is 66-80 times more than that was estimated by UNSCEAR (1988) as a characteristic value for old type coal-fired power plants [5 GBq (GW y)(-1)]. The objective of this study was the experimentally established assessment of the artificial increment in the dose from external exposure to gamma rays of terrestrial radionuclides outdoors. Soil samples were collected in and near Ajka from 81 locations. The samples were investigated by Ge(Li) gamma spectrometry. Considerably elevated concentrations of uranium and its progeny have been measured in most of the samples that were collected near to the plant. Concentrations of 238U and 226Ra in the top (0-5 cm depth) layer of undisturbed soil at public areas inside town were 4.7 times higher, on average, than those in the uncontaminated deeper layers. Dose rate in air (air kerma) from external exposure to terrestrial gamma rays outdoors at a height of 1 m and effective doses were estimated from the measured activity concentrations using some relevant literature data. The estimated artificial increment in the dose rate in air was, on average, 32.8, 10.3, and 102.1 nGy h(-1) at public areas, vegetable gardens, and backyards, respectively. The mean artificial increment in the annual per caput effective dose from external exposure to terrestrial radionuclides outdoors is 21.8 microSv y(-1). The collective dose commitment per unit energy generated from outdoor exposure to the deposited uranium progeny is about 8.0-9.1 person Sv (GW y)(-1), which is 67-76 times more than that evaluated by UNSCEAR (1988) for a typical "old" coal-fired power plant [0.12 person Sv (GW y)(-1)]. Ajka is a suitable place for studying the

  11. Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.

  12. New coal technology to flourish at Kentucky plant

    SciTech Connect

    Blankinship, S.

    2007-08-15

    Within four years a 76 MW (net) advanced supercritical coal unit, TC2, will go into service at the Trimble County power plant on the Ohio River near Louiseville, KY, USA. The unit is designed to burn a blend of eastern bituminous and western sub-bituminous Powder River Basin coals. TC2 is one of four US power plants to receive a $125 m tax credit under the 2005 EPACT Qualifying Advanced Coal Program for high efficiency and low emission generating units. Trimble County is owned and operated by E.ON US subsidiaries Kentucky Utilities and Louiseville Gas & Electric. It was originally designed to accommodate four 500 MW coal-fired units fired by bituminous coal from the Illinois Basin. 1 photo.

  13. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  14. Control of mercury emissions from coal fired electric uitlity boilers: An update

    EPA Science Inventory

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  15. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  16. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-08-01

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

  17. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  18. Defeat the dragon: coal fires between self ignition and fire fighting

    SciTech Connect

    Manfred W. Wuttke; Stefan Wessling; Winfried Kessels

    2007-01-15

    Spontaneous coal fires in near surface coal seams are a worldwide recognized problem. They are destroying coal resources and emit climate relevant gases both in considerable amounts. While the extinction of such fires is a most desirable goal, the estimation of the actual input of greenhouse gases into the atmosphere is of great interest especially in the context of the Kyoto protocol as such values are needed as baseline for the Clean Development Mechanism (CDM) policies. Under the framework of the Sino-German coal-fire research project we are developing numerical models of such coal fires for the operational use in fire fighting campaigns. Based on our understanding of the governing physical and chemical processes that are relevant for the whole combustion process we simulate the coal fire spreading along the seams for typical situations. From these scenario calculations we deduce information needed to support the CDM baseline estimation and to assess the progress of fire extinguishing efforts like water injection and surface covering to dissipate the heat and suffocate the fire. We present case studies using the finite-element-code ROCKFLOW applied to realistic geometries based on field observations in the Shenhua Group Coal Mining Area Wuda (Inner Mongolia, PR China).

  19. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2005-03-31

    This is the nineteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Refurbished corrosion probes were installed at Plant Gavin and operated for approximately 1,300 hours. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ lab, and includes the first results from a model suitable for comprehensive simulation codes for describing catalyst performance. The SCR slipstream reactor at Plant Gadsden operated for approximately 100 hours during the quarter because of ash blockage in the inlet probe.

  20. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  1. Underground Coal-Fires in Xinjiang, China: Assessment of Fire Dynamics from Surface Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.; Zeng, Qiang; Tanner, David C.; Halisch, Matthias; Cai, Zhong-yong; Wang, Chunli

    2013-04-01

    Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. The Xinjiang Coalfield Fire Fighting Bureau (XJCFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. In this contribution we describe the latest results from a new conjoint project between China and Germany where on the basis of field investigations and laboratory measurements realistic dynamical models of fire-zones are constructed to increase the understanding of particular coal-fires, to interpret the surface signatures of the coal-fire in terms of location and propagation and to estimate the output of hazardous exhaust products to evaluate the economic benefit of fire extinction. For two exemplary fire-locations, coarse digital terrain models have been produced. These models serve as basis for a detailed surface exploration by terrestrial laser scanning which shall deliver a detailed fracture inventory. Samples of rock and coal have been taken in the field and are characterized in LIAG's petrophysical laboratory in terms of transport properties. All these data serve as input for our detailed numerical fire models. Repeated measurements of the surface changes together with thermal images reveal the dynamics of fire propagation. The numerical models are calibrated by such data and can later be used to quantify the emissions from such a fire zone.

  2. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  3. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power. Environmental Science and Technology

    EPA Science Inventory

    Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...

  4. SOURCE ASSESSMENT: DRY BOTTOM INDUSTRIAL BOILERS FIRING PULVERIZED BITUMINOUS COAL

    EPA Science Inventory

    The report describes and assesses the potential impact of air emissions, wastewater effluents, and solid wastes from the operation of dry bottom industrial boilers firing pulverized bituminous coal. Air emissions were characterized by a literature survey and field sampling. Signi...

  5. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

  6. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  7. Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.

    PubMed

    Lu, Xi; McElroy, Michael B; Chen, Xinyu; Kang, Chongqing

    2014-12-16

    Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a nondispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton. PMID:25409413

  8. The magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect

    Not Available

    1991-07-01

    In this quarterly technical progress report, UTSI summarizes the results of a multi-task research and development project directed toward the development of the technology for the commercialization of the steam bottoming plant for the MHD steam combined cycle power plant. The report covers the final test in a 2000-hour proof-of-concept (POC) test series on eastern coal, the plans and progress for the facility modifications and the conduct of the POC tests to be conducted with western coal. Results summarized in the report include chloride emissions from the particle removal (ESP/BH) processes, nitrogen and sulfur oxide emissions for various tests conditions, measurements of particulate control efficiency and management of the facility holding ponds during testing. Activities relating to corrosion and deposition probe measurements during testing and the fouling of heat transfer tubes and interaction with sootblowing cycles are summarized. The performance of both UTSI and Mississippi State University (MSU) advanced diagnostic systems is reported. Significant administrative and contractual actions are included. 2 refs., 28 figs., 7 tabs.

  9. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    SciTech Connect

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  10. Radiological impact of power plants: coal vs nuclear

    SciTech Connect

    Styron, C.E.

    1981-12-23

    A definitive comparison of the radiological impact of coal power plants with that of (normally operating) nuclear power plants is quite difficult because of (1) insufficient data on both types of plants; (2) the diversity in design and performance of coal-fired plants and emission control systems; and (3) the relatively low concentrations of radionuclides to be measured. Radiation doses to the public estimated for coal and normally operating nuclear power plants are quite small when compared to natural background, and the level of uncertainty associated with estimates of radiological impact is so large that it is not possible at this time to demonstrate a significant difference between radiological risks of coal and nuclear power.

  11. COSTEAM expansion and improvements: design of a coal-fired atmospheric fluidized bed submodel, an oil-fired submodel and input/output improvements

    SciTech Connect

    Reierson, James D.; Rosenberg, Joseph I.; Murphy, Mary B.; Lethi, Minh- Triet

    1980-10-01

    COSTEAM is an interactive computer model designed to estimate the cost of industrial steam produced by various steam plant technologies. At the end of Phase I development, the COSTEAM model included only one submodel to calculate the capital and operating costs of a conventional coal-fired boiler plant with environmental control systems. This report describes the results of Phase II development. Two new submodels are added which calculate costs for steam produced by coal-fired atmospheric fluidized bed boilers and by oil-fired boilers. COSTEAM input/output capabilities are also improved.

  12. Development of technical solutions on a coal-fired boiler for a power plant unit of 800 MW with steam parameters of 35 MPa and 700/720°C

    NASA Astrophysics Data System (ADS)

    Shvarts, A. L.; Verbovetsky, E. Kh.; Somova, E. V.; Smolin, A. V.

    2015-12-01

    Development of a coal-fired boiler for a power plant unit of 800 MW with advanced ultra-supercritical steam parameters of 35 MPa and 700/720°C is presented. The main technical solutions providing the reliability, profitability, and low emissions of harmful substances in the atmosphere are given. The fuel is the black coal of (Taldinskoye field, Kuznetsk basin). The gross efficiency of the boiler is 94%. The U-shaped configuration of a boiler is chosen, which allows the reduction of the capital expenditure for steam turbine piping made of expensive nickel alloys. The horizontal connection flue of the boiler, where the primary and reheat steam screens are located, is equipped with two cold funnels. The upper section of the convection shaft is separated with a vertical screen wall into two parallel "split tail" flues, which allows one to control the reheat steam temperature by redistributing the flue gas between the gas flues. The URS screens are two-stage with a lifting motion of the medium and a partial bypassing of the first stage. The lower radiant section is two-stage. To reduce the temperature of screen walls at the fire chamber outlet, the lowering motion of the working medium and combustion gases is used. The hydrodynamics of the screens with the lowering motion of the medium for preventing the aperiodic instability in the start regimes is analyzed. Besides the stepwise combustion of coal dust providing the improved environmental parameters, the boiler plant is equipped with a selective catalytic reduction (SCR) system, an ash collector (an electric filter combined with a filter bag), and a desulphurization device.

  13. Coal fired powerhouse wastewater pressure filtration

    SciTech Connect

    Martin, H.L.; Diener, G.A.

    1994-05-01

    The Savannah River Site`s permit for construction of an industrial wastewater treatment facility to remove solids from the boiler blow-down and wet ash scrubber effluent of the A-Area coal fired powerhouse was rejected. Conventional clarification technology would not remove arsenic from the combined effluent sufficient to achieve human health criteria in the small receiving surface stream. Treatability studies demonstrated that an existing facility, which will no longer be needed for metal finishing wastewater, can very efficiently process the powerhouse wastewater to less than 35 {mu}g/L arsenic. Use of cationic and anionic polymers to flocculate both the wastewater and filter aid solids formed a ``bridged cake`` with exceptionally low resistance to flow. This will double the capacity of the Oberlin pressure filters with the Tyvek T-980 sub micron filter media. The affects of high sheer agitation and high temperature in the raw wastewater on the filtration process were also studied and adequate controls were demonstrated.

  14. PATHOLOGIC CHANGES INDUCED BY COAL-FIRED FLY ASH IN HAMSTER TRACHEAL GRAFTS

    EPA Science Inventory

    The toxicity of fly ash from a coal-fired power plant for respiratory tract epithelium was studied in heterotropic tracheal grafts. Hamster tracheal grafts were continuously exposed to beeswax-cholesterol pellets containing 100, 1000 and 5000 micrograms fly ash and evaluated at 1...

  15. Coal-fired boiler costs for industrial applications

    SciTech Connect

    Kurzius, S.C.; Barnes, R.W.

    1982-04-01

    Several of the current sources of information provide data on coal-fired steam boiler costs. As published, these data give widely varying and possibly inconsistent conclusions. This study was undertaken to determine the extent to which the differences in the various sets of published data bases could be resolved and, if possible, to arrive at more reliable cost correlations to be used in Oak Ridge Energy Demand Models. Our principal finding is that it is indeed possible to restate the costs within each data base on a more consistent basis. When this is done, reasonable engineering correlations of all the cost data versus steam plant capacity can be made over the 10,000 to 5000,000 lb/hr range.

  16. Engineering development of advanced coal-fired low-emission boiler system

    SciTech Connect

    Not Available

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  17. Investigating dynamic underground coal fires by means of numerical simulation

    NASA Astrophysics Data System (ADS)

    Wessling, S.; Kessels, W.; Schmidt, M.; Krause, U.

    2008-01-01

    Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative `Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,' a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an `operator-splitting' approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation

  18. Empire strikes back. [Empire Coal Co. coal desulfurization plant

    SciTech Connect

    Wright, A.

    1984-11-01

    Empire Coal Co. in eastern Ohio mines high-sulphur coal which in the past was supplied direct to a local power station. In 1982, restrictions on power plant emissions meant that Empire would have to install a preparation plant if it were to continue to supply the coal. The 500,000 ton/year jig-froth flotation plant which was built is described.

  19. The ELSAM strategy of firing biomass in CFB power plants

    SciTech Connect

    Rasmussen, I.; Clausen, J.C.

    1995-12-31

    The Danish power pool ELSAM has launched a program for developing a coal and biomass-fired CFB concept for future power plants, as an option to achieve a substantial reduction of CO{sub 2} emissions associated with energy generation. The general development of CFB technology abroad and domestic experience gained from small-scale coal and straw firing form the basis for this program. Since January 1992 MIDTKRAFT Power Company has been operating an 80 MWth CFB cogeneration plant located at Grenaa. This plant is fired with a mixture of hard coal and surplus straw from farming. The share of straw ranges from 0-60% on an energy basis. Straw contains much larger amounts of chlorine and potassium than normal fossil fuels, which implies a higher potential of superheater corrosion and combustor fouling. This paper reviews the experience gained during the first 3 years of operation of the CFB plant. The record includes early superheater corrosion and fouling incidents, a heat surface modification and its impact on subsequent plant operation. Apart from operational experience the paper will review the results of the R and D activities executed at the Grenaa plant for further CFB development. Based on the specific experience from Grenaa and the general evolution of the CFB technology ELSAM has initiated a program for development of a 250 MWe CFB power plant concept, firing up to 60% biomass (wood waste and a limited amount of annular crops). USC steam conditions are adopted for the novel concept, implying an expected plant efficiency of 45% (LHV-based). Special emphasis is attached to plant operational flexibility with a view to fulfilling general power plant requirements.

  20. Modeling of integrated environmental control systems for coal-fired power plants: Conventional froth flotation for the IEC coal cleaning plant model. Quarterly progress report, [October 1, 1988--December 31, 1988

    SciTech Connect

    Rubin, E.S.

    1989-01-01

    This report describes the addition of a conventional froth flotation circuit into the FORTRAN coal cleaning module of the Integrated Environmental Control (IEC) model. The purpose of this modification is to include froth flotation as an option to clean the coal fines. The current model has three beneficiation: levels (2, 3, and 4) in which different streams are washed by specific gravity equipment. Level 2 washes only the coarse stream. Level 3 washes the coarse and medium streams. Level 4 washes the coarse, medium, and fine streams. This modification adds a fifth level, which uses specific gravity equipment to wash the coarse and medium streams and froth flotation equipment for the fine stream. The specific size fractions in each stream are specified by the model user. As before, the model optimizes the yield of each circuit in order to achieve a target coal quality for the cleaned coal product.

  1. Properties and utilization aspects of fly ash from a anthracite coal-fired power plant in northwestern Henan Province, P. R. China

    SciTech Connect

    Sun Junmin; Li Yuqiong

    1998-12-31

    Jiaozuo power plant, located in northwestern Henan province, is one of the largest plants in the power network of central China. It is equipped with 6{times}200MW generating sets fed by the anthracite coal from Shanxi province. Up to 0.8 million tons of fly ash, bottom ash, and boiler slag are produced annually and less than 20% of them was used beneficially. Fly ash is separated into floating spheres, magnetic spheres, settling spheres and unburnt carbon; the contents of the fractions are 0.7%, 0.62%, 91.68% and 7%, respectively. Bottom ash and separated fly ash were analyzed with SEM, XRD and wet chemical method. Morphologically, floating spheres are large cenospheres. Settling spheres are spheroids with smooth surfaces, most of them are less than 10 {micro}m in diameter. Magnetic spheres present rough surfaces with intergrowth of hematite and magnetite crystals. Unburnt carbon is predominantly infusible char, reflecting the high coalification degree of the feed coal. Mineralogically, the content and crystal size of mullite in bottom ash are greater than in floating and settling spheres. Chemically, floating spheres contain more Al{sub 2}O{sub 3} and SiO{sub 2} and less Fe{sub 2}O{sub 3}, CaO, MgO, K{sub 2}O in comparison with bottom ash and settling spheres, which indicates that floating spheres are originated from the minerals with high melting point and viscosity. To date, fly ash from this power plant has been used in sticky soil amendment, brick production by mixing with coal waste; highway pavement; railway tunnel construction and thermal insulation material production using floating spheres. Other applications must be developed to recycle the high fly ash output. Small settling spheres, especially those less than 10{micro}m in diameter, have great potential in concrete and functional filling, so the separation and utilization of very small settling spheres should be emphasized. Additionally, bottom ash may be used for synthesis of mullite.

  2. Opportunities to expedite the construction of new coal-based power plants

    SciTech Connect

    Thomas G. Kraemer; Georgia Nelson; Robert Card; E. Linn Draper, Jr.; Michael J. Mudd

    2004-07-01

    US Secretary of Energy Spencer Abraham requested that the National Coal Council prepare a study identifying 'which opportunities could expedite the construction of new coal-fired electricity generation.' He also requested that the Council 'examine opportunities and incentives for additional emissions reduction including evaluating and replacing the oldest portion of our coal-fired power plant fleet with more efficient and lower emitting coal-fired plants.' A study group of experts who conducted the work can be found in Appendix D. The National Coal Council found the following: Coal is the fuel of choice now, and will remain so into the future; Natural gas has been the dominant fuel for new power plants in the last decade; Coal provides a pathway for greater energy independence; There is renewed interest in using coal to fuel new power plants; Generators are expected to remain credit worthy; Permitting delays have been an impediment to building new coal plants; Environmental regulatory approaches have been an impediment to building new coal plants; Uncertainty about CO{sub 2} emission reductions has been an impediment to the construction of new coalbased power plants; Incentives are still needed to facilitate the construction of advanced coal-based power plants; Lack of a regional planning approach has been an impediment to the construction of new coal-based power plants; and Infrastructure hurdles are impediments to the construction of new coal-based power plants. The Council's recommendations include: Streamline the permitting process; Recognize the strategic importance of integrated gasification combined cycle (IGCC) technology; Recognize the importance of other coal-based technologies; Encourage regional planning; Continue with meaningful R&D and with technology demonstration; Provide meaningful incentives for the commercialization and deployment of new advanced coal-based technologies. 7 apps.

  3. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-07-28

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.

  4. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  5. Aspects and Strategies of Numerical Modelling of Underground Coal Fires

    NASA Astrophysics Data System (ADS)

    Wuttke, M. W.; Han, J.; Liu, G.; Kessels, W.; Schmidt, M.; Gusat, D.; Fischer, Chr.; Hirner, A.; Meyer, U.

    2009-04-01

    Numerical modelling of underground coal fires has become a valuable tool even for practical fire extinction work. The approaches, methods and finally codes that are used depend on the targets that are aimed at by the particular modelling task. The most general one is to fully understand the processes that sustain or suppress the fire. Another purpose is to produce realistic data for regions that are not accessible (e . g. underneath a burning coal seam) or couldn't be investigated (e.g due to limited resources) to estimate the complete energy budget of the fire. Last but not least one would like to forecast the fire dynamics to predict the future damage or to assess the effectivenees of extinction work. These purposes require the consideration of all aspects with respect to thermal, hydraulic, mechanical and chemical (THMC) processes. At the moment there is no single code that completely covers all these aspects with every degree of complexity. Within the Sino-German project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in North China" we apply existing codes with different foci with respect to THMC processes and try to combine all codes to one comprehensive model. Besides the sophisticated academic modelling approach we also pursue the concept of "Onsite" modelling to enable fire fighting personnel to perform simplified modelling tasks even by means of web-based applications.

  6. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  7. Economic comparison of nuclear and coal-fired generation. [Monograph

    SciTech Connect

    Corey, G.R.

    1980-01-01

    This paper compares the current and historic operating performance of 12 large nuclear and coal-fired units now operated by Commonwealth Edison Co., and provides specific comparisons of busbar costs of electricity generated by those units in recent years. It also provides cost comparisons for future nuclear and coal-fired units, and attempts to deal realistically with the effect of future inflation upon these comparisons. The paper deals with the problem of uncertainty, the effect of future developments on present-day comparisons, and how published comparisons have varied over the past four or five years. 9 tables.

  8. Upgrades and enhancements for competitive coal-fired boiler systems

    SciTech Connect

    Kitto, J.B. Jr.; Bryk, S.A.; Piepho, J.M.

    1996-12-31

    Deregulation of the electric utility industry is resulting in significant opportunities and challenges for US power generators. Existing coal-fired capacity potentially offers the lowest variable cost power production option if these units are upgraded to optimize capacity, operating cost (including fuel), efficiency, and availability while also meeting today`s stringent emissions control requirements. This paper highlights a variety of boiler system upgrades and enhancements which are being utilized to make aging coal-fired boilers low cost competitors in the 1990s.

  9. Risk assessment of mortality for all-cause, ischemic heart disease, cardiopulmonary disease, and lung cancer due to the operation of the world's largest coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Kuo, Pei-Hsuan; Tsuang, Ben-Jei; Chen, Chien-Jen; Hu, Suh-Woan; Chiang, Chun-Ju; Tsai, Jeng-Lin; Tang, Mei-Ling; Chen, Guan-Jie; Ku, Kai-Chen

    2014-10-01

    Based on recent understanding of PM2.5 health-related problems from fossil-fueled power plants emission inventories collected in Taiwan, we have determined the loss of life expectancy (LLE) and the lifetime (75-year) risks for PM2.5 health-related mortalities as attributed to the operation of the world's largest coal-fired power plant; the Taichung Power Plant (TCP), with an installed nominal electrical capacity of 5780 MW in 2013. Five plausible scenarios (combinations of emission controls, fuel switch, and relocation) and two risk factors were considered. It is estimated that the lifetime (75-y) risk for all-cause mortality was 0.3%-0.6% for males and 0.2%-0.4% for females, and LLE at 84 days in 1997 for the 23 million residents of Taiwan. The risk has been reduced to one-fourth at 0.05%-0.10% for males and 0.03%-0.06% for females, and LLE at 15 days in 2007, which was mainly attributed to the installation of desulfurization and de-NOx equipment. Moreover, additional improvements can be expected if we can relocate the power plant to a downwind site on Taiwan, and convert the fuel source from coal to natural gas. The risk can be significantly reduced further to one-fiftieth at 0.001%-0.002% for males and 0.001% for females, and LLE at 0.3 days. Nonetheless, it is still an order higher than the commonly accepted elevated-cancer risk at 0.0001% (10-6), indicating that the PM2.5 health-related risk for operating such a world-class power plant is not negligible. In addition, this study finds that a better-chosen site (involving moving the plant to the leeward side of Taiwan) can reduce the risk significantly as opposed to solely transitioning the fuel source to natural gas. Note that the fuel cost of using natural gas (0.11 USD/kWh in 2013) in Taiwan is about twice the price of using coal fuel (0.05 USD/kWh in 2013).

  10. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  11. Characterization of air toxics from a laboratory coal-fired combustor

    SciTech Connect

    1995-04-03

    Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

  12. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    SciTech Connect

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through

  13. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, September 1--November 30, 1991

    SciTech Connect

    Singh, Shyam

    1991-12-31

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter`s progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

  14. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  15. Applicability of the mixture of bituminous coal and anthracite to conventional pulverized coal firing boiler

    SciTech Connect

    Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro

    1994-12-31

    In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties of the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.

  16. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  18. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  19. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  20. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  1. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  3. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

    2003-04-21

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  8. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  9. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  10. Now you see it, now you don't: impact of temporary closures of a coal-fired power plant on air quality in the Columbia River Gorge National Scenic Area

    NASA Astrophysics Data System (ADS)

    Jaffe, D. A.; Reidmiller, D. R.

    2009-06-01

    We have analyzed 14 years of aerosol data spanning 1993-2006 from the IMPROVE site at Wishram, Washington (45.66° N, 121.00° W; 178 m above sea level) in the Columbia River Gorge (CRG) National Scenic Area (http://www.fs.fed.us/r6/columbia/) of the Pacific Northwest of the US. Two types of analyses were conducted. First, we examined the transport for days with the highest fine mass concentrations (particulate matter with diameter <2.5μm or, PM2.5) using HYSPLIT back-trajectories. We found that the highest PM2.5 concentrations occurred during autumn and were associated with easterly flow, down the CRG. Such flow transports emissions from a large coal power plant and a large agricultural facility into the CRG. This transport was found on 20 out of the 50 worst PM2.5 days and resulted in an average daily concentration of 20.1 μg/m3, compared with an average of 18.8 μg/m3 for the 50 highest days and 5.9 μg/m3 for all days. These airmasses contain not only high PM2.5 concentrations but also elevated aerosol NO3- concentrations. These results suggest that emissions from large industrial and agricultural sources on the east end of the CRG, including the coal-fired power plant at Boardman, Oregon, have a significant impact on air quality in the region. In the second analysis, we examined PM2.5 concentrations in the CRG during periods when the Boardman power plant was shut down due to repairs and compared these values with concentrations when the facility was operating at near full capacity. We also examined this relationship on the days when trajectories suggested the greatest influence from the power plant on air quality in the CRG. From this analysis, we found significantly higher PM concentrations when the power plant was operating at or near full capacity. We use these data to calculate that the contribution to PM2.5 mass in the CRG from the Boardman plant was 0.90 μg/m3 averaged over the entire

  11. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    PubMed

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane. PMID:26387296

  12. SO2 ABATEMENT FOR COAL-FIRED BOILERS IN JAPAN

    EPA Science Inventory

    The report is a compilation of information on the current status of SO2 abatement technologies for coal-fired boilers in Japan, where strict ambient air quality standards for SO2 and NOx mandate the use of various air pollution control technologies. It focuses on flue gas desulfu...

  13. Controlling the Furnace Process in Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Shatil', A. A.; Klepikov, N. S.; Smyshlyaev, A. A.; Kudryavtsev, A. V.

    2008-01-01

    We give an outline of methods using which the furnace process in coal-fired boilers can be controlled to expand the range of loads, reduce the extent to which the furnace is contaminated with slag and the amount of harmful substances is emitted, and when a change is made to another kind of fuel.

  14. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  15. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  16. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing; Tang, Xiaofei; Xi, Dongdong

    2016-02-01

    Coal fires are severe hazards to environment, health and safety throughout the world. Efficient and economical extinguishing of these fires requires that the extent of the subsurface coal fires should be delineated. Electrical and electromagnetic methods have been used to detect coal fires in recent years. However, the resistivity change of coal-bearing rocks at high temperature is rarely investigated. The resistivity characteristics of coal fires at different temperatures and depths are seldomly researched as well. In this paper, we present the results of measurements of several coal-bearing rocks' resistivity and permeability under high temperature. Two major causes for the change in resistivity with increasing temperature are recognized, there are the increase of charge carriers and thermal fracturing, of which the first one is probably the dominant cause. A set of 2-D simulations is carried out to compare the relation of resolution and efficiency of coal fires detection to temperature and depth when adopting the electrical resistance tomography. The simulation results show that the resolution and efficiency decrease with the decrease of temperature and the increase of depth. Finally, the electrical resistance tomography is used to delineate coal fires in the Anjialing Open Pit Mine. Most low-resistivity regions are verified as coal-fire areas according to the long-term monitoring of borehole temperature. The results indicate that the electrical resistance tomography can be used as a tool for the detection of coal fires.

  17. Conceptual design of a coal-fired MHD retrofit. Final technical report

    SciTech Connect

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  18. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.

  19. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    SciTech Connect

    Eskinazi, D.; Tavoulareas, E.S.

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  20. Combustion characterization of the blend of plant coal and recovered coal fines. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-12-31

    The overall objective of this proposed research program was to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples were prepared as 100% plant coal, 90% plant coal/10% fines, 85% plant coal/15% fines, and 80% plant coal /20% fines with a particle size distribution of 70% passing through {minus}200 mesh size. The plant coal and recovered coal fines were obtained from the Randolph Preparation Plant of Peabody Coal Co., Marissa, IL. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace was used mainly to measure the emissions and ash deposition study, while the drop tube furnace was used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Combustion emissions of these samples were determined in the down-fired combustor, while relative ignition temperatures were determined in the drop tube furnace. Chemical composition of ashes were analyzed to establish a correlation with their respective ash fusion temperatures. Overall study of these samples suggested that the blended samples had combustion properties similar to the original plant coal. In other words, flames were stable under identical firing rates of approximately 200,000 Btu`s/hr and 25% excess air. CO, NO{sub x}, and SO{sub x}, were similar to each other and within the experimental error. Combustion efficiency of 99{sup +}% was achievable. Ash chemical analysis of each sample revealed that slagging and fouling should not be different from each other.

  1. Florida CFB demo plant yields low emissions on variety of coals

    SciTech Connect

    2005-07-01

    The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

  2. Technical and Economic Aspects of Biomass Co-Firing in Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Dzikuć, M.; Łasiński, K.

    2014-11-01

    The article presents the analysis of the potential of using biomass and coal co-firing in the Polish electro energetic system and shows the benefits resulting from an increase of biomass amount in electricity production in one of the largest Polish power stations. The paper discusses the most often used technologies for biomass co-firing and the potential of using biomass in electricity production in Poland. It also emphasises the fact that biomass co-firing allows a reduction of greenhouse gases emissions to the atmosphere and helps decrease consumption of energy resources. The article also emphasises the economic meaning of increasing the share of renewable energy resources in energy balance, including biomass, due to costs related to greenhouse gases emissions charges. Finally, conclusions from using biomass and coal co-firing in electricity production are presented

  3. Natural radionuclide of Po210 in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia

    PubMed Central

    2011-01-01

    Background Po210 can be accumulated in various environmental materials, including marine organisms, and contributes to the dose of natural radiation in seafood. The concentration of this radionuclide in the marine environment can be influenced by the operation of a coal burning power plant but existing studies regarding this issue are not well documented. Therefore, the aim of this study was to estimate the Po210 concentration level in marine organisms from the coastal area of Kapar, Malaysia which is very near to a coal burning power plant station and to assess its impact on seafood consumers. Methods Concentration of Po210 was determined in the edible muscle of seafood and water from the coastal area of Kapar, Malaysia using radiochemical separation and the Alpha Spectrometry technique. Results The activities of Po210 in the dissolved phase of water samples ranged between 0.51 ± 0.21 and 0.71 ± 0.24 mBql-1 whereas the particulate phase registered a range of 50.34 ± 11.40 to 72.07 ± 21.20 Bqkg-1. The ranges of Po210 activities in the organism samples were 4.4 ± 0.12 to 6.4 ± 0.95 Bqkg-1 dry wt in fish (Arius maculatus), 45.7 ± 0.86 to 54.4 ± 1.58 Bqkg-1 dry wt in shrimp (Penaeus merguiensis) and 104.3 ± 3.44 to 293.8 ± 10.04 Bqkg-1 dry wt in cockle (Anadara granosa). The variation of Po210 in organisms is dependent on the mode of their life style, ambient water concentration and seasonal changes. The concentration factors calculated for fish and molluscs were higher than the recommended values by the IAEA. An assessment of daily intake and received dose due to the consumption of seafood was also carried out and found to be 2083.85 mBqday-1person-1 and 249.30 μSvyr-1 respectively. These values are comparatively higher than reported values in other countries. Moreover, the transformation of Po210 in the human body was calculated and revealed that a considerable amount of Po210 can be absorbed in the internal organs. The calculated values of life time

  4. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  5. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  6. Direct firing of coal for power production

    NASA Technical Reports Server (NTRS)

    Papay, L. T.

    1978-01-01

    The use of new technology and advanced emission control hardware to reduce emissions from the direct combustion of coal to produce electricity in California is considered. The technical feasibilty of a demonstration project on an existing 81-MW boiler is demonstrated.

  7. MHD generator performance comparisons between coal + ash firing. [Coal versus fuel oil with ashes added

    SciTech Connect

    Petty, S.; Enos, G.; Kessler, R.; Swallom, D.

    1983-08-01

    A two-stage slagging coal combustor developed by TRW Corporation, was successfully integrated with an MHD generator developed by the Avco Corporation, when the two companies cooperated in an operational demonstration of a coal fired MHD power train under the sponsorship of DOE. The experimental components, rated at a nominal 20 MW thermal input, are the engineering prototypes of 50 MW /SUB th/ hardware to be supplied by the contractors to the recently commissioned Component Development and Integration Facility (CDIF), a federal MHD test site in Butte, Montana. A second series of tests was conducted in which the same channel and operating parameters were employed with an oil-fired ash-injected combustor (AIC) to provide performance comparisons. The only significant performance variation uncovered in the comparison tests was attributable to a non-optimum method and location for seed injection in the coal-fired combustor. The corrective measures are deemed to be relatively straightforward.

  8. The coal-fired gas turbine locomotive - A new look

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  9. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-09-30

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. The corrosion probe task is proceeding: Two plant visits were made to prepare for field testing and shakedown tests for the probes were conducted at the University of Utah''s L1500 furnace. Corrosion probes will be installed at the Gavin Plant site in the next quarter. Laboratory studies of SCR catalyst continued this quarter. FTIR studies of catalyst sulfation and of adsorption of NH3 and NO were continued at BYU. NO activities have been measured for a number of samples of BYU catalyst and insights have been gained from the results. Plans are being detailed to test monolith and plate catalysts exposed in the field. In this quarter, the catalysts in the slipstream reactor at AEP's Rockport plant were exposed to the dusty flue gas for 1695 hours. Thus the cumulative catalyst exposure to flue gas rose from 980 hours last quarter to 2677 hours in this quarter. Loss of catalyst activity was noted between April (when the catalysts were fresh) and August. Further analysis of activity data will be needed.

  10. Suppressing pollutant emissions from boilers firing stone coal

    SciTech Connect

    Kolat, P.

    1994-12-31

    Industrial plants are often unaware that simple adjustment of the combustion process can significantly reduce the NO{sub x}, SO{sub 2}, and fly ash emissions. A systematic approach to the problem indicates that the character and adjustment of the combustion process not only can create favorable conditions for binding solid combustion residues and minimizing their amounts at the point of combustion, but can also modify their physical, chemical, and/or electrical properties to make them easier to trap in electrostatic precipitators. Similarly, gaseous pollutants such as SO{sub 2}, NO{sub x}, F, Cl{sub 2}, HCl, and HF, as well as heavy metals and simple hydrocarbons, can be bound more easily by aerodynamic interventions, which also allow further reductions of pollutant emissions by suitably dosed additions of limestone and dolomite. This work covered the measurement methods employed in the furnaces, mathematical three-dimensional modeling of the furnaces, and isothermal two-component modeling of the burners. In order to cover as many types of pollution-generating combustion equipment as possible and to define the fundamental measures needed to limit their contaminating effect to a bare minimum, the work was divided into four areas: stroke-fired boilers, fluid bed boilers, pulverized coal boilers, and flue gas cleaning.

  11. Pulverizer tramp iron problems affect coal switching at Union Electric`s Labadie Plant

    SciTech Connect

    Fife, P.A.; Mahr, D.

    1997-07-01

    Union Electric`s Labadie Plant, is a 2400 MWe (4 x 600) coal-fired power generating plant. It is located 35 miles west of St. Louis. The four units were commissioned between 1970 and 1973. Major plant equipment is summarized. Coal is delivered via unit-trains and stacked by two tower style, radial stackers. The plant annually consumes approximately six million tons of coal. In 1981, a coal blending system was retrofitted to the plant. This system features a traveling stacker on an elevated berm and rotary plow reclaimers. The coal blending system feeds all four units. Bins weigh feeders, and belt scales precisely control blending proportions. The blending system has served the plant, increasing fuel flexibility in the types and blends of coal that can be used.

  12. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  13. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  14. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  15. Mutagenicity in emissions from coal- and oil-fired boilers.

    PubMed Central

    Alfheim, I; Bergström, J G; Jenssen, D; Møller, M

    1983-01-01

    The mutagenicity of emission samples from three oil-fired and four coal-fired boilers have been compared by using the Salmonella/microsome assay. Very little or no mutagenic activity was observed in samples from five of these boilers. The sample from one oil-fired boiler showed mutagenic activity of about 500 revertants/MJ, and the sample from a coal-fired fluidized bed combustor had an activity of 58,000 revertants/MJ measured with strain TA 98 in the absence of metabolic activation. All samples contained substances that were cytotoxic to the test bacteria, thus making it difficult to obtain linear dose-response curves. Mutagenic activity at low levels may remain undetected due to this toxicity of the samples. Samples with mutagenic activity below the detection limit in the Salmonella test have also been tested for forward mutations at the HGPRT locus in V79 hamster cells. Weak mutagenic effects were detected in two of the samples, whereas the sample from one oil-fired boiler remained negative. In this test, as well as in the Salmonella test, a strong cytotoxic effect could be observed with all samples. PMID:6825617

  16. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  17. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  18. GEOPHYSICAL METHODS FOR COAL FIRE DETECTION AND MONITORING

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Gundelach, V.; Vasterling, M.; Lambrecht, A.; Rueter, H.; Lindner, H.

    2009-12-01

    Within the framework of the Sino-German research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" a number of different geophysical methods have been applied to determine their use on coal fire detecting, accompanying the extinguishing processes, controlling of the extinction and finally monitoring the extinction success. It is known that the heating of coal resp. coal host rocks changes its electrical resistivity and magnetic susceptibility. Hence the methods of choice are airborne magnetics and frequency electromagnetics (AEM) for surveying large and inaccessible areas and ground based magnetics, transient electromagnetics (TEM), ground penetrating radar (GPR) and temperature measurements to obtain detailed local information. Ground based and airborne magnetics show positive anomalies on coal fire areas. Susceptibility of sandstone, coal and (burnt) clay samples were determined in-situ. The magnetisation was strikingly high for thermally altered clay and slightly increased for thermally influenced sandstone. They get remanently magnetised according to the earth’s recent magnetic field when cooling down below Curie temperature as the fire propagates. Additionally, at a certain temperature non-magnetic minerals like pyrite chemically react to magnetic minerals like magnetite. Thus the observed magnetic anomalies indicate burnt areas. From ground based magnetics the anomalies were more distinct whereas using an airborne system a larger area and also inaccessible terrain can be surveyed. Performing TEM measurements a change in data curves can be observed where the profiles cross the hot burning zone. Heat and fluid transport included in the burning processes presumably change the permittivity of the rock. The electrical resistivity of thermally influenced coal is strongly decreased. Furthermore, the condensed mineralised process water in the rocks above the burning seams forms a layer of low resistivity

  19. The low moisture eastern coal processing system at the UTSI-DOE Coal Fired Flow Facility

    SciTech Connect

    Evans, B.R.; Washington, E.S.; Sanders, M.E.

    1993-10-01

    A low moisture, eastern coal processing system was constructed at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, to provide a metered and regulated supply of seeded, pulverized coal to support magnetohydrodynamic (MHD) power generation research. The original system configuration is described as well as major modifications made in response to specific operational problems. Notable among these was the in-house development of the Moulder flow control valve which exhibited marked improvement in durability compared to previous valves used with pulverized coal. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

  20. Assessment of PCDD/F and PBDD/F Emissions from Coal-fired Power Plants during Injection of Brominated Activated Carbon for Mercury Control

    EPA Science Inventory

    The effect of the injection of brominated powdered activated carbon (Br-PAC) on the emission of brominated and chlorinated dioxins and furans in coal combustion flue gas has been evaluated. The tests were performed at two U.S. Department of Energy (DOE) demonstration sites where ...

  1. COAL/D-RDF (DENSIFIED REFUSE DERIVED FUEL) CO-FIRING PROJECT, MILWAUKEE COUNTY, WISCONSIN

    EPA Science Inventory

    A Research and Development Project was carried out to mix a densified refuse derived fuel with coal at the fuel receiving point and to co-fire the mixture in a spreader-stoker fired boiler. Two basic series of test runs were conducted. For the first series, coal was fired to esta...

  2. The high moisture western coal processing system at the UTSI-DOE Coal Fired Flow Facility. Topical report

    SciTech Connect

    Sanders, M.E.

    1996-02-01

    The original eastern coal processing system at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, was modified to pulverize and dry Montana Rosebud, a western coal. Significant modifications to the CFFF coal processing system were required and the equipment selection criteria are reviewed. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

  3. Coal log pipeline pilot plant study

    SciTech Connect

    Liu, H.; Lenau, C.W.; Burkett, W.

    2000-07-01

    After 8 years of extensive R and D in the new technology of coal log pipeline (CLP), a pilot plant is being built to demonstrate and test a complete CLP system for coal transportation. The system consists of a coal log fabrication plant, a 3,000-ft-length, 6-inch-diameter underground pipeline loop to transport 5.4-inch diameter coal logs, a log injection/ejection system, a pump bypass, a reservoir that serves as both the intake and the outlet of the CLP systems, an instrumentation system that includes pressure transducers, coal log sensors, and flowmeters, and an automatic control system that includes PLCs and a central computer. The pilot plant is to be completed in May of Year 2000. Upon completion of construction, the pilot plant will be used for running various types of coal, testing the degradation rate of drag reduction in CLP using Polyox (polyethylene oxide), testing the reliability of a special coal log sensor invented at the University of Missouri, testing the reliability and the efficiency of the pump-bypass system for pumping coal log trains through the pipe, and testing various hardware components and software for operating the pilot plant. Data collected from the tests will be used for designing future commercial systems of CLP. The pilot plant experiments are to be completed in two years. Then, the technology of CLP will be ready for commercial use.

  4. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Roy, Priyom; Guha, Arindam; Kumar, K. Vinod

    2015-07-01

    Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.

  5. Advanced coal-fired slagging combustor for the low-emission boiler system

    SciTech Connect

    Diehl, R.C.; Eppich, H.M.; Stankevics, J.O.A.; Reich, J.E.; Beittel, R.; Ake, T.R.

    1994-12-31

    The Department of Energy, Pittsburgh Energy Technology Center has recently initiated a major engineering development program called {open_quotes}Combustion 2000{close_quotes} which is geared toward advanced coal-fired electric utility plants. The Riley Stoker Corp. is leading one of three teams developing a Low-Emission coal-fired Boiler System (LEBS), which will be commercial by the end of this decade. The Riley team includes Textron Defense Systems, Reaction Engineering, International, Sargent & Lundy Engineers, Research Cottrell, and Tecogen. In LEBS advanced pollution control goals will lower SOx and NOx emissions to 1/3 current New Source Performance Standards (NSPS) and particulate emissions to 1/2 current NSPS. Riley`s LEBS has selected the 4500 psi 1100{degrees}F double reheat cycle, which will include a high efficiency, once through supercritical Benson boiler.

  6. 2200 MW SCR installation on new coal-fired utility project

    SciTech Connect

    Tonn, D.P.; Uysal, T.A.

    1998-12-31

    NO{sub x} regulations in Germany and Japan in the mid-1980s resulted in the mandatory retrofit of Selective Catalytic Reduction (SCR) technology on many utility installations. The early 1990s brought SCR technology to small, single unit new coal fired installations around the world. This paper describes the application of high NO{sub x} reduction SCR technology to the first large scale, coal fired, multiple unit new installation. By integrating the SCR design into the initial boiler equipment arrangement and design, significant simplification of equipment arrangement resulted in project cost savings. The four 550 MW units at Taiwan Power`s Taichung 5--8 Power Plant were installed, commissioned (Unit 8 went on line in early 1997), and tested demonstrating the low NO{sub x} emission capabilities of SCR technology.

  7. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  8. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  9. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  10. Discussion on 'characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption' by Lu et al.

    SciTech Connect

    James C. Hower; Bruno Valentim; Irena J. Kostova; Kevin R. Henke

    2008-03-15

    Mercury capture by coal-combustion fly ash is a function of the amount of Hg in the feed coal, the amount of carbon in the fly ash, the type of carbon in the fly ash (including variables introduced by the rank of the feed coal), and the flue gas temperature at the point of ash collection. In their discussion of fly ash and Hg adsorption, Lu et al. (Energy Fuels 2007, 21, 2112-2120) had some fundamental flaws in their techniques, which, in turn, impact the validity of analyzed parameters. First, they used mechanical sieving to segregate fly ash size fractions. Mechanical sieving does not produce representative size fractions, particularly for the finest sizes. If the study samples were not obtained correctly, the subsequent analyses of fly ash carbon and Hg cannot accurately represent the size fractions. In the analysis of carbon forms, it is not possible to accurately determine the forms with scanning electron microscopy. The complexity of the whole particles is overlooked when just examining the outer particle surface. Examination of elements such as Hg, present in very trace quantities in most fly ashes, requires careful attention to the analytical techniques. 36 refs., 3 figs., 1 tab.

  11. Engineering development of coal-fired high-performance power systems. Technical report, July - September 1996

    SciTech Connect

    1996-11-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, AlliedSignal Aerospace Equipment Systems, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase I of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). It is a pulverized fuel-fired boiler/airheater where steam and gas turbine air are indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and then a pilot plant with integrated pyrolyzer and char combustion systems will be tested. In this report, progress in the pyrolyzer pilot plant preparation is reported. The results of extensive laboratory and bench scale testing of representative char are also reported. Preliminary results of combustion modeling of the char combustion system are included. There are also discussions of the auxiliary systems that are planned for the char combustion system pilot plant and the status of the integrated system pilot plant.

  12. Evaluation of coal-gasification - combustion-turbine power plants emphasizing low water consumption

    SciTech Connect

    Cavazo, R.; Clemmer, A.B.; de la Mora, J.A.; Grisso, J.R.; Klumpe, H.W.; Meissner, R.E.; Musso, A.; Roszkowski, T.R.

    1982-01-01

    A cost and performance study was made of several integrated power plants using coal gasification technology now in advanced development and combustion turbines for power generation. The principal emphasis was placed on studying plants using air cooling and comparing costs and performance of those plants with water-cooled coal gasification-combined-cycle (GCC) and conventional coal-fired power plants. The major objective was to determine whether cost and performance penalties would be prohibitive for air-cooled plants that use yet-to-be-developed coal gasifiers and commercially available combustion turbines for topping cycle power. The results indicate the following: air-cooled GCC plants using conceptual designs of either the Texaco or the British Gas Corporation (BGC) slaging gasifier could have coal-to-net electric power efficiencies equivalent to that of a water-cooled conventional coal-fired plant; the air-cooled GCC plants could produce electricity at busbar cost 1 to 3 mills per kWh (1980 dollars) less than busbar cost in a water-cooled conventional plant and only up to 2 mills per kWh higher than busbar cost in a water-cooled Texaco GCC plant; and even a simple-cycle regenerative combustion turbine plant fueled with gas from the BGC gasifier could have a coal-to-net electric power efficiency of over 30% and a busbar cost competitive with that in a water cooled conventional plant. The principal reason that air-cooled power plants using combustion turbines could be competitive with conventional water-cooled, coal-fired steam plants is that a majority of net power is produced by the combustion turbines, which require no cooling water. This, in turn, leads to a reduced cost and performance penalty when bottoming steam-cycle condensers are air-cooled.

  13. Application of a boiler performance model to evaluate low-rank coal fired subcritical and supercritical boilers

    SciTech Connect

    Ahn, Y.K.; Buchanan, T.L.; Zaharchuk, R.

    1995-12-31

    A number of thermal drying processes that could be used to dry and upgrade Low-Rank Coals (LRCs) are under development. G/C evaluated these processes and selected the SynCoal process as the optimum process to dry the LRC. Initially, the evaluation was made on the basis of the cost of dried LRC, delivered to Korea, and later the evaluation was made on a cost-of-electricity (COE) basis. Two cases were evaluated: firing the dried LRC in an existing subcritical PC plant and in a new supercritical boiler. For the existing PC plant, Korea Electric Power Corporation`s (KEPCO`s) 270 MWe Honam plant was selected. A Boiler Performance Model (BPM) was used to evaluate performances of both subcritical and supercritical units for firing various coals. The results showed that upgraded Usibelli coal was marginally competitive due to its high mine-mouth cost, but Rosebud coal was very competitive due to its low mine-mouth cost. In these cases the coals were upgraded by using the SynCoal process. This report investigates the impact of tax incentives resulting from the Energy Policy Act of 1992 on the competitiveness of the upgraded Alaska Usibelli and Montana Rosebud coals for application to PC plants. The SynCoal process has been qualified by the Internal Revenue Service for tax benefits derived from the Energy Policy Act. The economic analyses include costs and sensitivity analyses for alternative ways of selling fines produced during the SynCoal process: briquetting fines and adding them to the finished product, or cooling fines and selling them to users at the same price as SynCoal product in the domestic market. These analyses included the effects of tax incentive when applicable.

  14. Oil-fired cycling station converted to base-loaded, coal-burning operation

    SciTech Connect

    Hunt, J.; Steinbach, P.

    1982-04-01

    The Baltimore Gas and Electric Company has been able to modify its oil-fired Brandon Shores plant while under construction to a base-loaded plant able to burn either oil or coal. Utility planners had the foresight prior to the 1973 embargo to see advantages in a dual-fuel capability. Brandon Shores has experienced the same financing and fluctuating load problems as other projects, but it has evolved into a facility suited for the 1980s and 90s. The original plan included space to handle coal and wastes as well as specifying dual-fuel equipment throughout to minimize future modifications. During one construction delay, the utility initiated a preventative-maintenance program comparable to that of a nuclear plant that has been continued. Extensive environmental planning and interaction with the public have avoided other costly delays. (DCK)

  15. Fire reduces morphospace occupation in plant communities.

    PubMed

    Pausas, Juli G; Verdú, Miguel

    2008-08-01

    The two main assembly processes claimed to structure plant communities are habitat filtering and competitive interactions. The set of species growing in fire-prone communities has been filtered in such a way that species without fire-persistence traits have not successfully entered the community. Because plant traits are evolutionarily conserved and fire traits are correlated with other plant traits, communities under high fire frequency should not include all possible trait combinations, and thus the morphospace occupation by species in these communities should be lower than expected by chance (underoccupied). In contrast, communities under low fire frequency would lack the filtering factor, and thus their underoccupation of the morphospace is not expected. We test this prediction by comparing the morphospace occupation by species in communities located in the western Mediterranean Basin, five of them subject to high fire frequency (HiFi) and four to low fire frequency (LowFi). We first compile a set of morphological and functional traits for the species growing on the nine sites, then we compute the morphospace occupation of each site as a convex hull volume, and finally, to assert that our results are not a product of a random branching pattern of evolution, we simulate our traits under a null model of neutral evolution and compare the morphospace occupation of the simulated traits with the results from the empirical data. The results suggest that, as predicted, there is a clear differential morphospace occupation between communities under different fire regimes in such a way that the morphospace is underoccupied in HiFi communities only. The simulation of a neutral evolutionary model does not replicate the observed pattern of differential morphospace occupation, and thus it should be attributed to assembly processes. In conclusion, our results suggest that fire is a strong community assembling process, filtering the species that have fire-persistent traits and

  16. Co-firing coal in municipal waste combustors may reduce dioxin/furan formation

    SciTech Connect

    1995-03-01

    While dioxin/furan emissions from municipal waste combustors (MWCs) are a serious concern, coal-fired utility boilers generally do not emit significant amounts of these toxic substances. This difference in emission profiles has led researchers to the hypothesis that co-firing coal and municipal waste could reduce dioxin/furan emissions from MWCs. The hypothesis has proven correct in several studies. Investigators recently studied coal co-firing during pilot-scale tests. The study evaluated the effect of sulfur and investigated specific mechanisms for inhibiting dioxin/furan formation. The experiments substantiated the possibility of reducing MWC dioxin/furan emissions with coal co-firing. However, as noted in the experimental results, coal co-firing under certain conditions may actually increase dioxin/furan formation. Coal type, the ratio of municipal waste to coal, and other operating parameters must be selected carefully to ensure dioxin/furan inhibition. 1 ref., 1 fig.

  17. The extent of the influence and flux estimation of volatile mercury from the aeration pool in a typical coal-fired power plant equipped with a seawater flue gas desulfurization system.

    PubMed

    Sun, Lumin; Feng, Lifeng; Yuan, Dongxing; Lin, Shanshan; Huang, Shuyuan; Gao, Liangming; Zhu, Yong

    2013-02-01

    Before being discharged, the waste seawater from the flue gas desulfurization system of coal-fired power plants contains a large amount of mercury, and is treated in aeration pools. During this aeration process, part of the mercury enters the atmosphere, but only very limited impact studies concerning this have been carried out. Taking a typical Xiamen power plant as an example, the present study targeted the elemental mercury emitted from the aeration pool. Concentrations of dissolved gaseous mercury as high as 1.14 ± 0.17 ng·L(-1) were observed in the surface waste seawater in the aeration pool, and gaseous elemental mercury (GEM) as high as 10.94 ± 1.89 ng·m(-3) was found in the air above the pool. To investigate the area affected by this GEM through air transfer, the total mercury in the dust and topsoil samples around the aeration pool were analyzed. Much higher values were found compared to those at a reference site. Environmental factors other than solar radiation had limited influence on the concentrations of the mercury species in the pool. A simulation device was built in our laboratory to study the flux of mercury from the aeration pool into the air. The results showed that more than 0.59 kg of mercury was released from the aeration pool every year, occupying 0.3% of the total mercury in the waste seawater. The transfer of mercury from water to air during the aeration pool and its environmental influence should not be ignored. PMID:23305917

  18. Designing and upgrading plants to blend coal

    SciTech Connect

    McCartney, R.H.

    2006-10-15

    Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

  19. Engineering development of advanced coal-fired low-emissions boiler systems. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    1997-12-31

    This progress report is on the project by Babcock and Wilcox Company to develop an advanced coal-fired low-emissions boiler system. The topics of the report include project management, the NO{sub x} subsystem, the SO{sub 2}/particulate/air toxics/solid by-product subsystem, boiler subsystem, balance of plant subsystem, and controls and sensors subsystems.

  20. CONTROLLING SO2 EMISSIONS FROM COAL-FIRED STEAM-ELECTRIC GENERATORS: WATER POLLUTION IMPACT. VOLUME II. TECHNICAL DISCUSSION

    EPA Science Inventory

    The report gives results of one task in a comprehensive program to review the New Source Performance Standard (NSPS) for SO2 emissions from coal-fired steam-electric generating plants. The results compare two alternative standards to the existing NSPS (1.2 lb SO2/million Btu of h...

  1. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT (EPA/600/R-01/109)

    EPA Science Inventory

    In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. This report, produced by EPA fs Office of Research and Development (ORD), National Risk Management Resea...

  2. CONTROLLING SO2 EMISSIONS FROM COAL-FIRED STEAM-ELECTRIC GENERATORS: WATER POLLUTION IMPACT. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    The report gives results of one task in a comprehensive program to review a New Source Performance Standards (NSPS) for SO2 emissions from coal-fired steam-electric generating plants. The results compare two alternative standard to the existing NSPS (1.2 lb SO2/million Btu of hea...

  3. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility. January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported in developing technology for steam bottoming cycle of the coal-fired MHD Steam Combined Cycle Power Plant. During this period, no testing was scheduled in the DOE Coal-Fired Flow Facility. The report covers facilities modification and maintenance in preparation for a 225 hour POC test that is scheduled for early next quarter. The modifications to the dry ESP to replace the electrodes with smaller diameter wires is discussed. Continued work on the rotary vacuum filter, which is designed to separate the more soluble potassium carbonate from the potassium sulfate and fly ash, is reported. Environmental activities for the quarter are summarized.

  4. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  5. Evaluation of electricity generation from underground coal fires and waste banks

    SciTech Connect

    Chiasson, A.D.; Yavuzturk, C.; Walrath, D.E.

    2007-06-15

    A temperature response factors model of vertical thermal energy extraction boreholes is presented to evaluate electricity generation from underground coal fires and waste banks. Sensitivity and life-cycle cost analyses are conducted to assess the impact of system parameters on the production of 1 MW of electrical power using a theoretical binary-cycle power plant. Sensitivity analyses indicate that the average underground temperature has the greatest impact on the exiting fluid temperatures from the ground followed by fluid flow rate and ground thermal conductivity. System simulations show that a binary-cycle power plant may be economically feasible at ground temperatures as low as 190 {sup o}C.

  6. FIREDATA. Nuclear Power Plant Fire Database

    SciTech Connect

    Wheelis, W.T.

    1986-08-01

    FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean `and` or `or` logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name or calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information.

  7. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  8. Engineering development of coal-fired high performance