Science.gov

Sample records for coal gasification process

  1. Coal gasification cogeneration process

    SciTech Connect

    Marten, J.H.

    1990-10-16

    This patent describes a process for the coproduction of a combustible first gas stream usable as an energy source, a sulfur-dioxide-containing second gas stream usable as a source for oxidant in the gasification of coal and a sulfur-dioxide-containing third gas stream usable as a feedstock for the production of sulfuric acid. It comprises: reacting coal in a coal gasification zone in the presence of an oxidant under partial coal-gasifying conditions to produce carbonaceous char and a crude gas stream; separating sulfur-containing compounds from the crude gas stream in a sulfur recovery zone to produce a combustible first gas stream and elemental sulfur; reacting the carbonaceous char and gypsum in a reaction zone in proportions such that the non-gypsum portion of the carbonaceous char and gypsum mixture contains sufficient reducing potential to reduce sulfur in the gypsum to gaseous compounds of sulfur in a +4 or lower oxidation state under reducing conditions to produce first a sulfur-dioxide-containing second gas stream which contains weaker SO{sub 2} produced in an early stage of the reaction zone and removed from the reaction zone, and then a sulfur-dioxide-containing third gas stream which contains concentrated SO{sub 2} recovered from a later stage of the reaction zone.

  2. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  3. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  4. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  5. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  6. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  7. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, Marvin W.

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  8. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  9. Process for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  10. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  11. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  12. Coal Gasification (chapter only)

    SciTech Connect

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2002-11-15

    Coal gasification is presented in terms of the chemistry of coal conversion and the product gas characteristics, the historical development of coal gasifiers, variations in the types and performance of coal gasifiers, the configuration of gasification systems, and the status and economics of coal gasification. In many ways, coal gasification processes have been tailored to adapt to the different types of coal feedstocks available. Gasification technology is presented from a historical perspective considering early uses of coal, the first practical demonstration and utilization of coal gasification, and the evolution of the various processes used for coal gasification. The development of the gasification industry is traced from its inception to its current status in the world economy. Each type of gasifier is considered focusing on the process innovations required to meet the changing market needs. Complete gasification systems are described including typical system configurations, required system attributes, and aspects of the industry's environmental and performance demands. The current status, economics of gasification technology, and future of gasification are also discussed.

  13. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  14. Cyclic flow underground coal gasification process

    DOEpatents

    Bissett, Larry A.

    1978-01-01

    The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

  15. Ammonia production from coal by utilization of Texaco coal gasification process

    SciTech Connect

    Watson, J.R.; McClanhan, T.S.; Weatherington, R.W.

    1983-12-01

    Operating data will be presented for the coal gasification and gas purification unit which has been retrofitted to the front end of an existing ammonia plant. The plant uses 200 tons per day of coal and produces 135 tons per day of ammonia. The plant uses the Texaco coal gasification process, Haldor-Topsoe catalyst systems, Selexol acid gas removal process, and the Holmes-Stretford sulfur recovery process.

  16. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  17. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect

    Calderon, A.; Madison, E.; Probert, P.

    1992-01-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  18. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect

    Calderon, A.; Madison, E.; Probert, P.

    1992-11-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  19. Integrated coal drying and steam gasification process

    SciTech Connect

    Nahas, N.C.

    1981-08-18

    Carbonaceous solids slurried in an aqueous solution, which preferably contains catalyst constituents having gasification activity, are dried by contacting the slurry with superheated steam in a fluid bed slurry dryer and the resultant dried solids are subsequently gasified with steam generated in the dryer.

  20. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  1. Separation of products from mild coal gasification processes

    SciTech Connect

    Wallman, P.H.

    1991-09-11

    The primary mild coal gasification product mixture containing noncondensible gas, high-boiling hydrocarbon vapors and entrained fines is difficult to process into the desired pure products: gas, liquids, and dry solids. This challenge for mild coal gasification process development has been studied by surveying the technical literature for suitable separations processes and for similar issues in related processes. The choice for a first-stage solids separation step is standard cyclones, arranged in parallel trains for large-volume applications in order to take advantage of the higher separation efficiency of smaller cyclones. However, mild gasification pilot-plant data show entrainment of ultrafine particles for which standard cyclones have poor separation efficiency. A hot secondary solids separation step is needed for the ultrafine entrainment in order to protect the liquid product from excessive amounts of contaminating solids. The secondary solids separation step is similar to many high-temperature flue-gas applications with an important complicating condition: Mild gasifier vapors form coke on surfaces in contact with the vapors. Plugging of the filter medium by coke deposition is concluded to be the main product separation problem for mild gasification. Three approaches to solution of this problem are discussed in the order of preference: (1) a barrier filter medium made of a perforated foil that is easy to regenerate, (2) a high-efficiency cyclone coupled with recycle of a solids-containing tar fraction for coking/cracking in the gasifier, and (3) a granular moving bed filter with regeneration of the bed material. The condensation of oil vapors diluted by noncondensible gas is analyzed thermodynamically, and the conclusion is that existing commercial oil fractionator designs are adequate as long as the vapor stream does not contain excessive amounts of solids. 34 refs., 4 figs.

  2. The BGL coal gasification process -- Applications and status

    SciTech Connect

    Davies, H.S.; Vierrath, H.E.; Johnson, K.S.; Kluttz, D.E.

    1994-12-31

    In 1991 British Gas completed a 15 year program for the development and demonstration of the BGL gasification process for Substitute Natural Gas and power generation. The final two objectives in this program at the Westfield Development Centre of British Gas were to demonstrate the suitability of the BGL gasifier for power generation under utility load requirements using typical UK power station coals and to operate the gasifier at pressures up to 65 bar. The first part of the program was an $18 million joint demonstration with National Power and PowerGen and supported by British Coal, the UK Department of Energy and the European Community which confirmed conclusively in tests spanning 40 days of operation that the full range of available UK power station coals can be gasified at very high efficiency in the BGL Gasifier. The development program then concluded with tests on a new, purpose designed, high pressure gasifier to determine the effect of pressure on gasification performance and operability. The use of the new ABB GT 24/26 gas turbines in BGL IGCC plant is explored and the BGL IGCC project in the US Clean Coal Technology Programme (CCTV) is described briefly.

  3. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  4. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  5. Thermodynamic analysis of the process of formation of sulfur compounds in oxygen gasification of coal

    SciTech Connect

    G.Ya. Gerasimov; T.M. Bogacheva

    2001-05-15

    A thermodynamic approach to the description of the behavior of the system fuel-oxidizer in oxygen gasification of coal is used to reveal the main mechanisms of the process of capture of sulfur by the mineral part of the coal and to determine the fundamental possibility of the process for coals from different coal fields.

  6. Integrated coal liquefaction, gasification and electricity production process

    SciTech Connect

    Cheng, S.

    1986-06-10

    A method is described for the physical and operational integration of a carbonaceous gasification plant, a gas fuel synthesis plant and a power generation station to economically produce synfuel and electric power consisting of: (a) producing synthesis gas comprising carbon monoxide and hydrogen from carbonaceous raw materials in a gasification unit under endothermic reaction conditions wherein the gasification unit utilizes exhaust steam from step (f) effective to provide at least a portion of the endothermic heat of reaction necessary for the reaction and wherein the gas from the gasification unit is passed to a coal liquefaction stage; (b) liquefying and hydrogenating coal under exothermic reaction conditions with the synthesis gas from the gasification unit as a source of hydrogen thereby producing a synthetic hydrocarbonaceous fuel and tail gases; (c) providing water to the liquefaction stage in an indirect heat exchange relationship to remove at least a portion of the exothermic heat of reaction from the coal liquefaction stage by generating high pressure steam from the water and passing the high pressure steam to a power generation unit; (d) continuously purging the tail gases from the liquefaction stage, feeding the tail gases to the power generation unit and burning the tail gases with or without additional fuel sources to superheat the high pressure steam; (e) passing the superheated steam to a turbine-generator means within the power generating unit to produce electricity and exhaust steam; and (f) feeding at least a portion of the exhaust steam from the power generating unit to the gasification unit.

  7. Process for control of pollutants generated during coal gasification

    DOEpatents

    Frumerman, Robert; Hooper, Harold M.

    1979-01-01

    The present invention is directed to an improvement in the coal gasification process that effectively eliminates substantially all of the environmental pollutants contained in the producer gas. The raw producer gas is passed through a two-stage water scrubbing arrangement with the tars being condensed essentially water-free in the first stage and lower boiling condensables, including pollutant laden water, being removed in the second stage. The pollutant-laden water is introduced into an evaporator in which about 95 percent of the water is vaporized and introduced as steam into the gas producer. The condensed tars are combusted and the resulting products of combustion are admixed with the pollutant-containing water residue from the evaporator and introduced into the gas producer.

  8. Costs and technical characteristics of environmental control processes for low-Btu coal gasification plants

    SciTech Connect

    Singh, S.P.N.; Salmon, R.; Fisher, J.F.; Peterson, G.R.

    1980-06-01

    Technical characteristics and costs of 25 individual environmental control processes that can be used for treating low-Btu coal gas are given. These processes are chosen from a much larger array of potential environmental control processes because of their likely applicability to low-Btu coal gasification operations and because of the limited scope of this study. The selected processes cover gas treating, by-product recovery, wastewater treating, and particulate recovery operations that are expected to be encountered in coal gasification operations. Although the existence of the Resource Conservtion and Recovery Act of 1976 is recognized, no treatment schemes for solid wastes are evaluated because of the paucity of information in this area. The potential costs of emission controls (by using eight integrated combinations of these 25 environmental control processes) in conceptual low-Btu coal gasification plants are given in an adjunct report titled Evaluation of Eight Environmental Control Systems for Low-Btu Coal Gasification Plants, ORNL-5481.

  9. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  10. Instrumentation for optimizing an underground coal-gasification process

    NASA Astrophysics Data System (ADS)

    Seabaugh, W.; Zielinski, R. E.

    1982-06-01

    While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

  11. Carbon formation and metal dusting in advanced coal gasification processes

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  12. Fundamental research on novel process alternatives for coal gasification: Final report

    SciTech Connect

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  13. The Texaco coal gasification process for manufacture of medium BTU gas

    NASA Technical Reports Server (NTRS)

    Schlinger, W. G.

    1978-01-01

    The development of the Texaco coal gasification process is discussed with particular emphasis on its close relationship to the fully commercialized Texaco synthesis gas generation process for residual oil gasification. The end uses of the product gas are covered, with special attention to electric power generation via combined cycle technology. Control of SO2, NOx, and particulate emissions in the power generating mode is also covered. The application of this technology in a proposed Texaco-Southern California Edison demonstration project is mentioned. Investment information released for a 1000-megawatt advanced combined cycle gasification facility, is also reviewed.

  14. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  15. Evaluation of US coal performance in the shell coal gasification process (SCGP). Volume 1. Texas lignite. Final report

    SciTech Connect

    Heitz, W.L.; McCullough, G.R.; Gierman, H.; van Kessel, M.M.

    1984-02-01

    The Shell Coal Gasificaton Process was included in the EPRI evaluation of the more promising gasification technologies. This report evaluates the performance of Texas lignite in the SCGP. A companion report (RP2094-1) evaluates the performance of an Illinois No. 5 seam coal. Tests were conducted in the Shell Internationale Research Maatschappij B.V. Amsterdam laboratory process development unit (6 metric ton per day nominal throughput). Shell also has a 150 metric ton per day gasification process development unit at Deutsche Shell's Harburg Refinery, Federal Republic of Germany. These initial tests indicate that Texas lignite is as suitable for the Shell Coal Gasification Process as any bituminous coal previously tested and that only moderate conditions are required for gasification. Process variables included oxygen/MAF (moisture and ash free) coal ratios of 0.82 to 0.96 kg/kg, throughputs of 74 to 207 kg MAF coal/hr, and pressures of 2.1 to 2.8 MPa (1 MPa = 10 bar or 145 psia). Extensive environmental sampling programs were carried out with 50% of normal bleed water recycled to the process via an evaporating venturi. Carbon conversion was nearly complete (99+ %) at reactor outlet temperatures as low as 1250/sup 0/C; at a pressure of 2.1 MPa, a maximum thermal efficiency (76% of LHV-coal) was obtained at an oxygen/MAF coal ratio of 0.90 kg/kg. Process results were only marginally influenced by variations in coal throughput but an increase in pressure at constant throughput increased the cold gas efficiency by two percentage points to 78% of LHV coal (mainly through a reduction in heat loss). In a test on load-following characteristics of the process, the unit pressure remained constant and the flow of product gas responded within one minute to a stepwise change in coal feed rate.

  16. Coal gasification 2006: roadmap to commercialization

    SciTech Connect

    2006-05-15

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  17. Development of biological coal gasification (MicGAS process)

    SciTech Connect

    Not Available

    1992-10-30

    Laboratory scale studies examining biogasification of Texas lignite at various coal solids loadings have been completed. Bench scale bioreactors are currently being used to scale up the biogasification process to higher coal solids loadings (5% and 10%) Specific observations reported this quarter are that methane production was not curtailed when B-vitamin solution was not added to the biogasification medium and that aeration of Mic-1 did not sufficiently oxidize the medium to eliminate strict anaerobic bacteria including methanogens.

  18. POLLUTION CONTROL CONSIDERATIONS FOR LOW- AND MEDIUM-BTU COAL GASIFICATION PROCESSES

    EPA Science Inventory

    The report contains a summary and an analysis of data collected by the U.S. EPA from 1977 to 1981, which relate to the characteristics of controlled and uncontrolled waste streams from low- and medium-Btu coal gasification processes. The analysis focuses on the key waste streams ...

  19. Steam gasification of coal, project prototype plant nuclear process heat: Report at the end of the reference phase

    NASA Astrophysics Data System (ADS)

    Vanheek, K. H.

    1982-05-01

    The work carried out in the field of steam gasification of coal is described. On the basis of the status achieved to date, it can be stated that the mode of operation of the gas generator developed, including the direct feeding of caking high volatile coal, is technically feasible. Moreover, throughput can be improved by 65% at minimum by using catalysts. On the whole, industrial application of steam gasification, using nuclear process heat, stays attractive compared with other gasification processes. Not only coal is conserved, but also the costs of the gas manufactured are favorable. As confirmed by recent economic calculations, these are 20 to 25% lower.

  20. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  1. Improving process performances in coal gasification for power and synfuel production

    SciTech Connect

    M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana

    2008-11-15

    This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

  2. Development of biological coal gasification (MicGAS Process)

    SciTech Connect

    Walia, D.S.; Srivastava, K.C.

    1994-10-01

    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  3. Mild coal gasification: Product separation

    SciTech Connect

    Wallman, P.H.; Singleton, M.F.

    1992-08-04

    Our general objective is to further the development of efficient continuous mild coal gasification processes. The research this year has been focused on product separation problems and particularly the problem of separating entrained ultra-fine particles from the chemically reactive environment of the product gas stream. Specifically, the objective of the present work has been to study candidate barrier filters for application to mild coal gasification processes. Our approach has been to select the most promising existing designs, to develop a design of our own and to test the designs in our bench-scale gasification apparatus. As a first step towards selection of the most promising barrier filter we have determined coking rates on several candidate filter media.

  4. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  5. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  6. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  7. Plasma gasification of coal in different oxidants

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  8. Process wastewater treatability study for Westinghouse fluidized-bed coal gasification

    SciTech Connect

    Winton, S.L.; Buvinger, B.J.; Evans, J.M.; French, W.E.; Page, G.C.; Rhodes, W.J.

    1983-11-01

    In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health, and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.

  9. Bi-flow rotary kiln coal gasification process

    SciTech Connect

    Garside, P.G.

    1983-02-22

    A process is disclosed for gasifying solid coal particles in a rotary kiln that produces simultaneously and continuously two distinctly different fuel gas streams from the opposite ends of a single kiln. A relatively low temperature gas is discharged from the solids inlet end of the kiln, which contains substantially all tars produced by the process. A second of the gas streams is discharged from the solids discharge end of the kiln at approximately 1,900* F. And substantially tar-free. Heat is recovered from this tar-free gas after only a simple cleaning of particulate matter, as may be provided by a cyclone separator. The discharge of gas out the solids inlet end of the kiln and the gas discharged out the solids discharge end of the kiln, is adjustably proportioned relative to each other so that at least some high temperature tar-free gas will mix inside the kiln with the lower temperature tar-containing gas, in an amount sufficient to keep such mixed gases at a temperature high enough to avoid the tars condensing on equipment surfaces. Several process parameters are disclosed for adjusting the proportion of the gas flows out each end of the kiln to maintain the aforesaid condition of both gas streams.

  10. Fundamental aspects of catalysed coal char gasification

    NASA Astrophysics Data System (ADS)

    Gangwal, S. K.; Truesdale, R. S.

    1980-06-01

    A brief review of the basic aspects of catalysed coal char gasification is presented. Kinetics and mechanisms of catalysed and uncatalysed gasification reactions of coal char with steam, carbon dioxide and hydrogen are discussed. Mass transport effects and internal structure of coals are shown to be important in determining rates of these reactions. The importance of the type of catalyst used is also discussed. Such factors as catalyst cations and anions, the method by which the catalyst is contacted with the coal char, and physical and chemical states of the catalyst both prior to and during reaction are shown to be important in the gasification process. Finally, research instruments and equipment used recently for studies in catalysed gasification are reviewed. These include various types of reactor systems for following the course of these reactions and analytical instruments for assessing the physical and/or chemical state of the catalysts and/or coal char both prior to and during the gasification reactions.

  11. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

    2008-05-15

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  12. Development of biological coal gasification (MicGAS) process

    SciTech Connect

    Walia, D.S.; Srivastava, K.C.; Barik, S.

    1992-01-01

    Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

  13. Development of biological coal gasification (MicGAS) process

    SciTech Connect

    Walia, D.S.; Srivastava, K.C.; Barik, S.

    1992-11-01

    Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

  14. Development of biological coal gasification (MicGAS Process)

    SciTech Connect

    Not Available

    1992-07-28

    This report describes progress on three fronts of the project. First in studies to elucidate optimal growing conditions for the consortia of coal degraders employed indicates that best growth occurs with 0. 2% w/v Shefton T. Secondly in comparing the biodegradative properties of the coal degraders, isolates identified as Mic-1 and Mic-4 were the best performers. And lastly bioreactors studies in batch mode are related.

  15. Gasification process

    SciTech Connect

    Woldy, P.N.; Kaufman, H.C.; Dach, M.M.; Beall, J.F.

    1981-02-03

    This version of Texaco's gasification process for high-ash-content solids is not extended to include the production of superheated steam, as described in US Patent 4,247,302. The hot, raw gas stream passes through fewer coolers, producing a high-pressure steam instead of a superheated steam.

  16. PNNL Coal Gasification Research

    SciTech Connect

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  17. High Temperature Electrochemical Polishing of H(2)S from Coal Gasification Process Streams.

    SciTech Connect

    Winnick, J.

    1997-12-31

    An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

  18. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  19. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    SciTech Connect

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  20. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    SciTech Connect

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  1. Toxicologic studies of emissions from coal gasification process. I. Subchronic feeding studies.

    PubMed

    Kostial, K; Kello, D; Blanusa, M; Maljković, T; Rabar, I; Bunarević, A; Stara, J F

    1980-09-01

    The increasing use of new sources of energy may result in additional contamination of the human environment with inorganic and organic pollutants which are not yet adequately investigated with regard to their potential impact on human health. However, some evidence exists that several trace inorganic and organic contaminants found in coal processing residues may constitute potential health problems. Therefore, the comparative biological hazards of solid wastes and effluents from a Lurgi coal gasification plant were initially evaluated using acute and chronic feeding experiments in male and female rats. In the subchronic experiment, six-week old animals were fed diets wih various levels of ash (slag) additive (0.5%, 1%, and 5%) for period of 16 weeks. Following exposure, blood samples were taken and 22-hour urine samples were collected. Livers and kidneys, and testicles in males, were taken for trace element analysis or histologic examination. The urinary values, erythrocyte and leucocyte count, hemoglobin, packed cell volume, and concentration of trace elements in exposed animals were determined. The addition of ash (slag) to the diet in concentrations much higher than expected in conditions of environmental contamination had no measurable health effects. Although these initial results obtained in relatively short-term experiments cannot be directly extrapolated to human health effects, particularly not for carcinogenic assessment, there is an indication that exposure to solid wastes from the coal gasification plant may not be toxic. PMID:7462912

  2. Underground Coal Gasification Program

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  3. Brazing as a Means of Sealing Ceramic Membranes for use in Advanced Coal Gasification Processes

    SciTech Connect

    Weil, K. Scott; Hardy, John S.; Rice, Joseph P.; Kim, Jin Yong Y.

    2006-01-02

    Coal is potentially a very inexpensive source of clean hydrogen fuel for use in fuel cells, turbines, and various process applications. To realize its potential however, efficient, low-cost gas separation systems are needed to provide high purity oxygen to enhance the coal gasification reaction and to extract hydrogen from the resulting gas product stream. Several types of inorganic membranes are being developed for hydrogen or oxygen separation, including porous alumina, transition metal oxide perovskites, and zirconia. One of the key challenges in developing solid-state membrane based gas separation systems is in hermetically joining the membrane to the metallic body of the separation device. In an effort to begin addressing this issue, a new brazing concept has been developed, referred to as reactive air brazing. This paper discusses the details of this joining technique and illustrates its use in bonding a wide variety of materials, including alumina, lanthanum strontium cobalt ferrite, and yttria stabilized zirconia.

  4. Brazing as a Means of Sealing Ceramic Membranes for Use in Advanced Coal Gasification Processes

    SciTech Connect

    Weil, K. Scott; Hardy, John S.; Rice, Joseph P.; Kim, Jin Yong

    2006-01-31

    Coal is a potentially a very inexpensive source of clean hydrogen fuel for use in fuel cells, turbines, and various process applications. To realize its potential however, efficient, low-cost gas separation systems are needed to provide high purity oxygen to enhance the coal gasification reaction and to extract hydrogen from the resulting gas product stream. Several types of inorganic membranes are being developed for hydrogen or oxygen separation, including porous alumina, transition metal oxide perovskites, and zirconia. One of the key challenges in developing solid-state membrane based gas separation systems is in hermetically joining the membrane to the metallic body of the separation device. In an effort to begin addressing this issue, a new brazing concept has been developed, referred to as reactive air brazing. This paper discusses the details of this joining technique and illustrates its use in bonding a wide variety of materials, including alumina, lanthanum strontium cobalt ferrite, and yttria stabilized zirconia.

  5. State of the art of biological processes for coal gasification wastewater treatment.

    PubMed

    Zhao, Qian; Liu, Yu

    2016-01-01

    The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge. PMID:27364381

  6. Control technology assessment for coal gasification and liquefaction processes, coal gasification facility, Caterpillar Tractor Company, York, Pennsylvania. Report for the site visit of May 1981. Final report

    SciTech Connect

    Telesca, D.R.

    1982-04-01

    A control technology survey was conducted at the coal gasification facility of the Caterpillar Tractor Company (SIC-5161), in York, Pennsylvania on August 18, 1980 and May 7, 1981, in conjunction with an industrial hygiene characterization study. Potential hazards included coal dust, noise, fire, carbon-monoxide (630080) (CO), polynuclear aromatics, hydrogen sulfide (7783064), phenols, and flammable and explosive gases. Preemployment physicals were given to employees including complete medical histories, physical examinations, and skin examination. Examinations were given annually for the first 5 years and semiannually thereafter. The most hazardous activities were poking, cleaning, inspection of process equipment, and equipment maintenance. Coal dust emissions were effectively reduced by enclosure and venting. Venturi steam injectors in the gasifier pokeholes prevented gas emissions during poking. Ash dust was controlled by removal and handling while it was wet. An audible and visual alarm was used for CO monitoring. The ventilation system in the building effectively prevented accumulation of gases. The author recommends separate lockers for contaminated and clean clothing; a clean area for eating; escape pack respirators located in the rectifier room, control room, and coal bunker; and supplied air respirators in dangerous areas. Disposal of off gas from the feeding system should be addressed.

  7. Toxicity studies of underground coal gasification and tarsands processes. Progress report, February 1, 1982-January 31, 1983

    SciTech Connect

    Not Available

    1983-01-01

    Process waters were obtained from trial coal gasification experiments at Hanna, Wyoming and Vernal, Utah. Samples were assayed for toxicity using the Ames test and the Paramecium bioassay. Results indicate that both the Paramecium and Ames bioassays show sporadic genotoxic response to the process waters. (DMC)

  8. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  9. Underground coal gasification using oxygen and steam

    SciTech Connect

    Yang, L.H.; Zhang, X.; Liu, S.

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  10. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    1980-08-04

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  11. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  12. Coal properties and system operating parameters for underground coal gasification

    SciTech Connect

    Yang, L.

    2008-07-01

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  13. Beluga Coal Gasification - ISER

    SciTech Connect

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  14. Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report

    SciTech Connect

    Prausnitz, J.M.

    1980-05-01

    This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

  15. Solar coal gasification - Plant design and economics

    NASA Astrophysics Data System (ADS)

    Aiman, W. R.; Thorsness, C. B.; Gregg, D. W.

    A plant design and economic analysis is presented for solar coal gasification (SCG). Coal pyrolysis and char gasification to form the gasified product are reviewed, noting that the endothermic gasification reactions occur only at temperatures exceeding 1000 K, an energy input of 101-136 kJ/mol of char reformed. Use of solar heat offers the possibility of replacing fuels needed to perform the gasification and the oxygen necessary in order to produce a nitrogen-free product. Reactions, energetics, and byproducts from the gasification of subbituminous coal are modeled for a process analysis code used for the SCG plant. Gas generation is designed to occur in a unit exposed to the solar flux focus from a heliostat field. The SCG gas would have an H2 content of 88%, compared to the 55% offered by the Lurgi process. Initial capital costs for the SCG plant are projected to be 4 times those with the Lurgi process, with equality being achieved when coal costs $4/gJ.

  16. Engineering support services for the DOE/GRI coal-gasification research program. Technical and economic assessment of the Westinghouse fluidized-bed coal gasification process

    SciTech Connect

    Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Ethridge, T.R.

    1981-04-01

    Kellogg was requested by DOE/GRI to perform a technical and economic assessment of the Westinghouse fluidized bed coal gasification process as applied to production of SNG equivalent to 250 billion BTU/day from Pittsburgh No. 8 coal. Based on operating experiences in the PDU, where most of the key variables have been demonstrated during 5+ years of testing, Westinghouse provided process data for the gasifier area. Kellogg selected the overall processing sequence and established design bases for the balance of the plant. This work was subsequent to a previous (1979) screening evaluation of Westinghouse by Kellogg: comparison of the two designs reveals the following: The 1980 gasifier design basis, while more detailed, is almost identical to that of 1979. The gas treatment and sulfur recovery schemes were significantly changed: Combined shift/methanation was substituted for stand-alone reaction units; independent Selexol units for removal of H/sub 2/S and CO/sub 2/ replaced a non-selective Benfield unit; and a Claus-SCOT combination replaced Stretford units and significantly improved the flue gas desulfurization. Key results of the current efforts are compared with those of the screening evaluation. The reductions in efficiencies in the new calculations are attributed to a more realistic evaluation of plant energy requirements and to lack of optimization of individual plant section designs. The economic data indicate that a noteworthy reduction in gas cost was accomplished by a reduction in the capital cost of the plant, such that Kellogg concludes, as previously for the screening evaluation, that the Westinghouse process appears to be superior to existing processes (i.e., Lurgi) and at least competitive with other processes evaluated under the DOE/GRI joint program.

  17. Simultaneous removal of H{sub 2}S and NH{sub 3} in coal gasification processes. Final report

    SciTech Connect

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1996-11-01

    Nitrogen (N{sub 2}) occurs in coal in the form of tightly bound organic ring compounds, typically at levels of 1 to 2 wt.% on a dry-ash-free basis. During gasification, this fuel-bound nitrogen is released principally as ammonia. The formation of NH{sub 3} in coal gasification processes is a function of the coal N{sub 2} content and the gasifier operating conditions.During the use of coal gas to generate electricity in gas-fired turbines or molten carbonate fuel cells, fuel bound N{sub 2} is converted to nitrogen oxides (NO{sub x}), which are difficult to remove and are highly undesirable as atmospheric pollutants. Thus it is desirable to remove NH{sub 3} from coal gas in addition to other major contaminants such as hydrogen sulfide (H{sub 2}S) and particulates. The objective of this study was to develop a successful sorbent-catalyst combination of an NH{sub 3} decomposition catalyst with a zinc-based mixed-metal oxide H{sub 2}S sorbent with stable NH{sub 3} decomposition and H{sub 2}S removal efficiency under cyclic sulfidation-regeneration conditions in the temperature range of 500 to 700 C. Combining the NH{sub 3} and H{sub 2}S removal steps is expected to reduce capital and operating costs in an integrated gasification combined cycle (IGCC) power plant.

  18. Coal gasification: New challenge for the Beaumont rotary feeder

    NASA Technical Reports Server (NTRS)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  19. Continuous Removal of Coal-Gasification Residue

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

    1986-01-01

    Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

  20. Combination air-blown and oxygen-blown underground coal gasification process

    SciTech Connect

    Puri, R.; Arri, L.E.; Gash, W.

    1987-05-05

    A method is described of underground coal gasification in a coal seam between linked injection and production wells comprising igniting coal located between the wells, injecting steam and oxygen into the coal seam through the injection well to maintain combustion between the wells thereby producing a medium-Btu gas. The Btu content of the gas is gradually decreased, switching to air injection into the coal seam through the injection well when the Btu content has reached a predetermined point thereby continuing combustion with the production of a low-Btu content gas suitable for consumption at facilities located on the surface in the vicinity of the seam for the production of utilities required at the seam.

  1. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  2. Development of biological coal gasification (MicGAS process); 14th Quarterly report

    SciTech Connect

    1993-01-28

    Reported here is the progress on the Development of Biological Coal Gasification for DOE contract No. DE-AC21-90MC27226 MOD A006. Task 1, NEPA Compliance and Updated Test Plan has been completed. Progress toward Task 2, Enhanced Methane Production, is reported in the areas of bacterial strain improvement, addition of co-substrates, and low cost nutrient amendment. Conclusions reached as a result of this work are presented. Plans for future work are briefly outlined.

  3. THEORETICAL INVESTIGATION OF SELECTED TRACE ELEMENTS IN COAL GASIFICATION PLANTS

    EPA Science Inventory

    The report gives results of a theoretical investigation of the disposition of five volatile trace elements (arsenic, boron, lead, selenium, and mercury) in SNG-producing coal gasification plants. Three coal gasification processes (dry-bottom Lurgi, Koppers-Totzek, and HYGAS) were...

  4. Geosphere in underground coal gasification

    SciTech Connect

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  5. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

  6. Apparatus and method for solar coal gasification

    DOEpatents

    Gregg, David W.

    1980-01-01

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  7. Coal gasification using solar energy

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.

    1983-01-01

    An economic evaluation of conventional and solar thermal coal gasification processes is presented, together with laboratory bench scale tests of a solar carbonization unit. The solar design consists of a heliostat field, a central tower receiver, a gasifier, and a recirculation loop. The synthetic gas is produced in the gasifier, with part of the gas upgraded to CH4 and another redirected through the receiver with steam to form CO and H2. Carbonaceous fuels are burned whenever sunlight is not available. Comparisons are made for costs of Lurgi, Bi-gas, Hygas, CO2 Acceptor, and Peat Gas processes and hybrid units for each. Solar thermal systems are projected to become economical with 350 MWt output and production of 1,420,000 cu m of gas per day. The laboratory bench scale unit was tested with Montana rosebud coal to derive a heat balance assessment and analyse the product gas. Successful heat transfer through a carrier gas was demonstrated, with most of the energy being stored in the product gas.

  8. Coal gasification for power generation. 2nd ed.

    SciTech Connect

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  9. ANALYTICAL METHODS FOR HAZARDOUS ORGANICS IN LIQUID WASTES FROM COAL GASIFICATION AND LIQUEFACTION PROCESSES

    EPA Science Inventory

    This study was conducted by the University of Southern California group to provide methods for the analysis of coal liquefaction wastes from coal conversion processing plants. Several methods of preliminary fractionation prior to analysis were considered. The most satisfactory me...

  10. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2015-07-01

    Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application. PMID:26141873

  11. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory A.; Gerdes, Kirk; Song, Xueyan; Chen, Yun; Shutthanandan, Vaithiyalingam; Engelhard, Mark; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-01

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm-2 degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm-2 degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  12. Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process

    SciTech Connect

    Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

    2012-01-01

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  13. ENCOAL mild coal gasification project. Annual report

    SciTech Connect

    Not Available

    1993-10-01

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  14. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  15. Coal gasification. Quarterly report, July-September 1979

    SciTech Connect

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  16. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  17. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  18. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  19. Development of solar coal gasification technology

    SciTech Connect

    Adinberg, R.; Epstein, M.

    1996-12-31

    This paper describes an approach to the development and characterization of a solar-assisted coal gasification plant. Two solar receivers for steam coal gasification, both on a sub pilot scale, have been designed and set up at the Weizmann Institute`s solar facilities for tests under the conditions of highly concentrated solar radiation. In spite of the fact that chemical reactors of different types, one-tubular and the second-volumetric, have been installed in each of these receivers, they have in common the integration of a reactor and associated steam generator into one complex solar thermal system. The receiver constructed of a reaction tube coupled with a superheated steam generator provides processing of grained carbonaceous materials at temperature as high as 900--950 C with a sufficiently high rate of the syngas yield. Results from a series of the windowed reactor/receiver tests are also successful, demonstrating the suitability of this reactor for operating in a wide range of conditions required for coal gasification. Being designed in a certain degree of simplicity, that is adequate to the present stage of problem initiation, the receivers employed need to be optimized in order to achieve considerable efficiency of solar thermal power conversion into the energy of product gas. Results show that the temperature of process steam can strongly influence the system performance.

  20. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  1. High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Winnick, J.

    1996-03-01

    Coal may be used to generate electrical energy by any of several processes, most of which involve combustion or gasification. Combustion in a coal-fired boiler and power generation using a steam-cycle is the conventional conversion method; however total energy conversion efficiencies for this type of process are only slightly over 30%. Integration of a gas-cycle in the process (combined cycle) may increase the total conversion efficiency to 40%. Conversion processes based on gasification offer efficiencies above 50%. H{sub 2}S is the predominant gaseous contaminant in raw coal gas. This process is concerned with the removal of H{sub 2} from coal gas through an electrochemical membrane technology.

  2. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    SciTech Connect

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  3. Hydrogen manufacture by Lurgi gasification of Oklahoma coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advantages and disadvantages of using the Lurgi gasification process to produce hydrogen from Oklahoma coal are listed. Special attention was given to the production of heat for the process; heat is generated by burning part of pretreated coal in the steam generator. Overall performance of the Lurgi process is summarized in tabular form.

  4. Development of biological coal gasification (MicGAS process). Nineth quarterly report, [July--September 1992

    SciTech Connect

    Not Available

    1992-10-30

    Laboratory scale studies examining biogasification of Texas lignite at various coal solids loadings have been completed. Bench scale bioreactors are currently being used to scale up the biogasification process to higher coal solids loadings (5% and 10%) Specific observations reported this quarter are that methane production was not curtailed when B-vitamin solution was not added to the biogasification medium and that aeration of Mic-1 did not sufficiently oxidize the medium to eliminate strict anaerobic bacteria including methanogens.

  5. Coal gasification burner

    SciTech Connect

    Sternling, C.V.

    1988-10-04

    This patent describes a process for burning hydrocarbon in a combustion zone, comprising: introducing combustion oxygen and the hydrocarbon into a combustion chamber as a central gas flow; surrounding the combustion oxygen with a transpiration gas; and passing at least some of the transpiration gas through a porous metal passage surrounding the combustion oxygen and having a non-constricted part of lower porosity metal next to the combustion zone, the porous metal comprising a compressed powdered metal.

  6. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    SciTech Connect

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  7. Modeling of the coal gasification processes in a hybrid plasma torch

    SciTech Connect

    Matveev, I.B.; Serbin, S.I.

    2007-12-15

    The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

  8. Start-up method for coal gasification plant

    SciTech Connect

    Farnia, K.; Petit, P.J.

    1983-04-05

    A method is disclosed for initiating operation of a coal gasification plant which includes a gasification reactor and gas cleansing apparatus fabricated in part from materials susceptible to chloride induced stress corrosion cracking the presence of oxygen. The reactor is preheated by combusting a stoichiometric mixture of air and fuel to produce an exhaust gas which is then diluted with steam to produce product gas which contains essentially no free oxygen. The product gas heats the reactor to a temperature profile necessary to maintain autothermic operation of the gasification process while maintaining air oxygen-free environment within the plant apparatus while chlorine is liberated from coal being gasified.

  9. Coal gasification tests at TVA (Tennessee Valley Authority): Final report

    SciTech Connect

    Crim, M.C.; Williamson, P.C.

    1987-02-01

    This report presents the results obtained from the EPRI cofunded tests conducted at TVA's 200 tpd Texaco coal gasification facility equipped with a water quench gasifier. Four US coals were tested at TVA: (1) Utah coal from the SUFCO mine, (2) Illinois No. 6 coal from the Amax Delta mine, (3) Pittsburgh No. 8 coal from the Blacksville No. 2 mine and (4) a high ash-fusion Maryland coal. The TVA tests were of short term duration totaling approximately 10 to 20 days of cumulative operation on each coal. The gasification behavior of each coal was tested under a wide range of process conditions and feed characteristics. All four coals produced carbon conversion of 92% or higher. Utah and Illinois No. 6 coals achieved carbon conversions of 95 to 97%. The high heating value Pittsburgh No. 8 coal had lower carbon conversion because the maximum allowable gasifier temperature was reached at relatively low O/C ratios. The high-ash fusion Maryland coal was gasified with a fluxing agent at temperatures within the design limit of the TVA gasifier. The gasification behavior of the coals was similar to that observed from tests at other Texaco gasifiers. However, earlier experiments at Texaco's Montebello Research Laboratories showed higher values for both carbon conversion and coal gas efficiency. 27 figs., 35 tabs.

  10. Numerical analysis of the process of combustion and gasification of the polydisperse coke residue of high-ash coal under pressure in a fluidized bed

    SciTech Connect

    A.Y. Maistrenko; V.P. Patskov; A.I. Topal; T.V. Patskova

    2007-09-15

    A numerical analysis of the process of 'wet' gasification of high-ash coal under pressure in a low-temperature fluidized bed has been performed. The applicability of the previously developed computational model, algorithm, and program for the case under consideration has been noted. The presence of 'hot spots' (short-time local heatings) at different points of the bed has been confirmed.

  11. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    PubMed

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. PMID:25724695

  12. EFFECT OF UNDERGROUND COAL GASIFICATION ON GROUNDWATER

    EPA Science Inventory

    The potential effect of underground coal gasification on groundwater has been examined in a laboratory study. The study was directed at Fruitland Formation subbituminous coal of the San Juan Basin and at the groundwater found in this coal seam. Two wells were drilled into the coa...

  13. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  14. COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS

    EPA Science Inventory

    The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

  15. Apparatus for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  16. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  17. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

  18. Shell coal gasification plant (SCGP-1) environmental performance results

    SciTech Connect

    Bush, W.V.; Baker, D.C.; Tijm, P.J.A. )

    1991-07-01

    Environmental studies in slip-stream process development units at SCGP-1, Shell's advanced coal gasification demonstration plant, located near Houston, Texas, have demonstrated that the gas and water effluents from the Shell Coal Gasification Process (SCGP) are environmentally benign on a broad slate of coals. This report presents the results of those environmental studies. It contains two major subjects, which describe, respectively, the experiments on gas treating and the experiments on water treating. Gas treatment focused on the performance of aqueous methyldiethanolamine (MDEA) and sulfinol-M. 8 refs., 24 figs., 13 tabs.

  19. Beluga coal gasification feasibility study

    SciTech Connect

    Robert Chaney; Lawrence Van Bibber

    2006-07-15

    The objective of the study was to determine the economic feasibility of developing and siting a coal-based integrated gasification combined-cycle (IGCC) plant in the Cook Inlet region of Alaska for the co-production of electric power and marketable by-products. The by-products, which may include synthesis gas, Fischer-Tropsch (F-T) liquids, fertilizers such as ammonia and urea, alcohols, hydrogen, nitrogen and carbon dioxide, would be manufactured for local use or for sale in domestic and foreign markets. This report for Phase 1 summarizes the investigation of an IGCC system for a specific industrial setting on the Cook Inlet, the Agrium U.S. Inc. ('Agrium') fertilizer plant in Nikiski, Alaska. Faced with an increase in natural gas price and a decrease in supply, the Agrium is investigating alternatives to gas as feed stock for their plant. This study considered all aspects of the installation and infrastructure, including: coal supply and cost, coal transport costs, delivery routes, feedstock production for fertilizer manufacture, plant steam and power, carbon dioxide (CO{sub 2}) uses, markets for possible additional products, and environmental permit requirements. The Cook Inlet-specific Phase 1 results, reported here, provided insight and information that led to the conclusion that the second study should be for an F-T plant sited at the Usibelli Coal Mine near Healy, Alaska. This Phase 1 case study is for a very specific IGCC system tailored to fit the chemical and energy needs of the fertilizer manufacturing plant. It demonstrates the flexibility of IGCC for a variety of fuel feedstocks depending on plant location and fuel availability, as well as the available variety of gas separation, gas cleanup, and power and steam generation technologies to fit specific site needs. 18 figs., 37 tabs., 6 apps.

  20. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    PubMed

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  1. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  2. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  3. Pyrolysis and gasification of coal at high temperatures

    SciTech Connect

    Zygourakis, K.

    1992-02-10

    The macropore structure of chars is a major factor in determining their reactivity during the gasification stage. The major objectives of this contract were to (a) quantify by direct measurements the effect of pyrolysis conditions of the macropore structure, and (b) establish how the macropores affected the reactivity pattern, the ignition behavior and the fragmentation of the char particles during gasification in the regime of strong diffusional limitations. Results from this project provide much needed information on the factors that affect the quality of the solid products (chars) of coal utilization processes (for example, mild gasification processes). The reactivity data will also provide essential parameters for the optimal design of coal gasification processes. (VC)

  4. Novel Low-Cost Process for the Gasification of Biomass and Low-Rank Coals

    SciTech Connect

    Thomas Barton

    2009-03-05

    Farm Energy envisaged a phased demonstration program, in which a pilot-scale straw gasifier will be installed on a farm. The synthesis gas product will be used to initially (i) generate electricity in a 300 kW diesel generator, and subsequently (ii) used as a feedstock to produce ethanol or mixed alcohols. They were seeking straw gasification and alcohol synthesis technologies that may be implemented on farm-scale. The consortium, along with the USDA ARS station in Corvallis, OR, expressed interest in the dual-bed gasification concept promoted by WRI and Taylor Energy, LLC. This process operated at atmospheric pressure and employed a solids-circulation type oxidation/reduction cycle significantly different from traditional fluidized-bed or up-draft type gasification reactors. The objectives of this project were to perform bench-scale testing to determine technical feasibility of gasifier concept, to characterize the syngas product, and to determine the optimal operating conditions and configuration. We used the bench-scale test data to complete a preliminary design and cost estimate for a 1-2 ton per hour pilot-scale unit that is also appropriate for on-farm scale applications. The gasifier configuration with the 0.375-inch stainless steel balls recirculating media worked consistently and for periods up to six hours of grass feed. The other principle systems like the boiler, the air pump, and feeder device also worked consistently during all feeding operations. Minor hiccups during operation tended to come from secondary systems like the flare or flammable material buildup in the exit piping. Although we did not complete the extended hour tests to 24 or 48 hours due to time and budget constraints, we developed the confidence that the gasifier in its current configuration could handle those tests. At the modest temperatures we operated the gasifier, slagging was not a problem. The solid wastes were dry and low density. The majority of the fixed carbon from the grass

  5. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  6. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  7. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  8. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  9. Prediction and measurement of entrained flow coal gasification processes. Interim report, September 8, 1981-September 7, 1983

    SciTech Connect

    Hedman, P.O.; Smoot, L.D.; Fletcher, T.H.; Smith, P.J.; Blackham, A.U.

    1984-01-31

    This volume reports interim experimental and theoretical results of the first two years of a three year study of entrained coal gasification with steam and oxygen. The gasifier facility and testing methods were revised and improved. The gasifier was also modified for high pressure operation. Six successful check-out tests at elevated pressure were performed (55, 75, 100, 130, 170, and 215 psig), and 8 successful mapping tests were performed with the Utah bituminous coal at an elevated pressure of 137.5 psig. Also, mapping tests were performed at atmospheric pressure with a Utah bituminous coal (9 tests) and with a Wyoming subbituminous coal (14 tests). The LDV system was used on the cold-flow facility to make additional nonreactive jets mixing measurements (local mean and turbulent velocity) that could be used to help validate the two-dimensional code. The previously completed two-dimensional entrained coal gasification code, PCGC-2, was evaluated through rigorous comparison with cold-flow, pulverized coal combustion, and entrained coal gasification data. Data from this laboratory were primarily used but data from other laboratories were used when available. A complete set of the data used has been compiled into a Data Book which is included as a supplemental volume of this interim report. A revised user's manual for the two-dimensional code has been prepared and is also included as a part of this interim report. Three technical papers based on the results of this study were published or prepared. 107 references, 57 figures, 35 tables.

  10. Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993

    SciTech Connect

    Srivastava, K.C.

    1993-06-01

    Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

  11. Coal processing and utilization

    NASA Astrophysics Data System (ADS)

    Schilling, H.-D.

    1980-04-01

    It is noted that the rising price of oil as well as supply concerns have lead to an increase in the use of coal. It is shown that in order for coal to take a greater role in energy supply, work must commence now in the areas of coal extraction and processing. Attention is given to new technologies such as coke production, electricity and heat generation, coal gasification, and coal liquifaction. Also covered are a separator for nitrogen oxides and active coal regeneration. Finally, the upgrading of coal is examined.

  12. Fixed-bed gasification research using US coals. Volume 15. Gasification of ''fresh'' Rosebud subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-09-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fifteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Rosebud subbituminous coal, from June 17, 1985 to June 24, 1985. 4 refs., 20 figs., 15 tabs.

  13. Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

  14. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  15. Evaluation of the genotoxicity of process stream extracts from a coal gasification system

    SciTech Connect

    Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

    1984-01-01

    Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays (CHO/HGPRT and Ames). The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems.

  16. High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams. Quarterly progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Winnick, J.

    1996-09-01

    Coal may be used to generate electrical energy by any of several processes, most of which involve combustion or gasification. Combustion in a coal-fired boiler and power generation using a steam- cycle is the conventional conversion method; however, total energy conversion efficiencies for this type of process are only slightly over 30{percent}. Integration of a gas-cycle in the process (combined cycle) may increase the total conversion efficiency to 40{percent}. Conversion processes based on gasification offer efficiencies above 50{percent}. H{sub 2}S is the predominant gaseous contaminant in raw coal gas. Problems arise due to the corrosive nature of H{sub 2}S on metal components contained in these cycles. Because of this, H{sub 2}S concentrations must be reduced to low levels corresponding to certain power applications. An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed using funds from this grant. Past experiments using this concept dealt with identifying removal of 1-2{percent} H{sub 2}S from gases containing only H{sub 2}S in N{sub 2}, simulated natural gas, and simulated coal gas. Other goals include optimization of cell materials capable of improving cell performance. Once cell materials are defined, cell experiments determining maximum removal capabilities and current efficiencies will be conducted. Also, a model theoretically describing the preferred reduction of H{sub 2}S, the transport of S{sup 2{minus}}, and the competing transport of CO{sub 2} will be investigated. The model should identify the maximum current efficiency for H{sub 2}S removal, depending on variables such as flow rate, temperature, current application, and the total cell potential. 21 refs., 10 figs., 9 tabs.

  17. Separating hydrogen from coal gasification gases with alumina membranes

    SciTech Connect

    Egan, B.Z. ); Fain, D.E.; Roettger, G.E.; White, D.E. )

    1991-01-01

    Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

  18. Indirect liquefaction of coal. [Coal gasification plus Fischer-Tropsch, methanol or Mobil M-gasoline process

    SciTech Connect

    1980-06-30

    The most important potential environmental problems uniquely associated with indirect liquefaction appear to be related to the protection of occupational personnel from the toxic and carcinogenic properties of process and waste stream constituents, the potential public health risks from process products, by-products and emissions and the management of potentially hazardous solid wastes. The seriousness of these potential problems is related partially to the severity of potential effects (i.e., human mortality and morbidity), but even more to the uncertainty regarding: (1) the probable chemical characteristics and quantities of process and waste streams; and (2) the effectiveness and efficiencies of control technologies not yet tested on a commercial scale. Based upon current information, it is highly improbable that these potential problems will actually be manifested or pose serious constraints to the development of indirect liquefaction technologies, although their potential severity warrants continued research and evaluation. The siting of indirect liquefaction facilities may be significantly affected by existing federal, state and local regulatory requirements. The possibility of future changes in environmental regulations also represents an area of uncertainty that may develop into constraints for the deployment of indirect liquefaction processes. Out of 20 environmental issues identified as likely candidates for future regulatory action, 13 were reported to have the potential to impact significantly the commercialization of coal synfuel technologies. These issues are listed.

  19. Development of biological coal gasification (MicGAS Process). Eighth quarterly report

    SciTech Connect

    Not Available

    1992-07-28

    This report describes progress on three fronts of the project. First in studies to elucidate optimal growing conditions for the consortia of coal degraders employed indicates that best growth occurs with 0. 2% w/v Shefton T. Secondly in comparing the biodegradative properties of the coal degraders, isolates identified as Mic-1 and Mic-4 were the best performers. And lastly bioreactors studies in batch mode are related.

  20. Coal gasification: Direct applications and syntheses of chemicals and fuels: A research needs assessment

    SciTech Connect

    Penner, S.S.; Alpert, S.B.; Beer, J.M.; Denn, M.; Haag, W.; Magee, R.; Reichl, E.; Rubin, E.S.; Solomon, P.R.; Wender, I.

    1987-06-01

    The DOE Working Group for an Assessment of Coal-Gasification Research Needs (COGARN - coal gasification advanced research needs) has reviewed and evaluated US programs dealing with coal gasification for a variety of applications. Cost evaluations and environmental-impact assessments formed important components of the deliberations. We have examined in some depth each of the following technologies: coal gasification for electricity generation in combined-cycle systems, coal gasification for the production of synthetic natural gas, coal gasifiers for direct electricity generation in fuel cells, and coal gasification for the production of synthesis gas as a first step in the manufacture of a wide variety of chemicals and fuels. Both catalytic and non-catalytic conversion processes were considered. In addition, we have constructed an orderly, long-range research agenda on coal science, pyrolysis, and partial combustion in order to support applied research and development relating to coal gasification over the long term. The COGARN studies were performed in order to provide an independent assessment of research needs in fuel utilization that involves coal gasification as the dominant or an important component. The findings and research recommendations of COGARN are summarized in this publication.

  1. Evaluation of the genotoxicity of process stream extracts from a coal gasification system.

    PubMed

    Shimizu, R W; Benson, J M; Li, A P; Henderson, R F; Brooks, A L

    1984-01-01

    Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays (CHO/HGPRT and Ames). The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. Coke oven main extract produced fewer revertants in bacteria than the raw gas sample. However, the coke oven main extract was more genotoxic in the two eukaryotic systems (CHL/SCE and CHO/HGPRT) than was the raw gas sample. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems. PMID:6389110

  2. Evaluation of the genotoxicity of process stream extracts from a coal gasification system

    SciTech Connect

    Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

    1984-01-01

    Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays. The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. Coke oven main extract produced fewer revertants in bacteria than the raw gas sample. However, the coke oven main extract was more genotoxic in the two eukaryotic systems (CHL/SCE and CHO/HGPRT) than was the raw gas sample. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems. 24 references, 3 figures, 2 tables.

  3. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  4. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    SciTech Connect

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  5. Prediction and measurement of optimum operating conditions for entrained coal gasification processes. Quarterly technical progress report, No. 1, 1 November 1979-31 January 1980

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Smith, P.J.

    1980-02-15

    This report summarizes work completed to predict and measure optimum operating conditions for entrained coal gasifications processes. This study is the third in a series designed to investigate mixing and reaction in entrained coal gasifiers. A new team of graduate and undergraduate students was formed to conduct the experiments on optimum gasification operating conditions. Additional coal types, which will be tested in the gasifier were identified, ordered, and delivered. Characterization of these coals will be initiated. Hardware design modifications to introduce swirl into the secondary were initiated. Minor modifications were made to the gasifier to allow laser diagnostics to be made on an independently funded study with the Los Alamos Scientific Laboratory. The tasks completed on the two-dimensional model included the substantiation of a Gaussian PDF for the top-hat PDF in BURN and the completion of a Lagrangian particle turbulent dispersion module. The reacting submodel is progressing into the final stages of debug. The formulation of the radiation submodel is nearly complete and coding has been initiated. A device was designed, fabricated, and used to calibrate the actual Swirl Number of the cold-flow swirl generator used in the Phase 2 study. Swirl calibrations were obtained at the normal tests flow rates and at reduced flow rates. Two cold-flow tests were also performed to gather local velocity data under swirling conditions. Further analysis of the cold-flow coal-dust and swirl test results from the previous Phase 2 study were completed.

  6. COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: LOW- AND MEDIUM-BTU WASTEWATERS

    EPA Science Inventory

    The report is a compilation of environmental characterization data for wastewaters from low- and medium-Btu coal gasification facilities. Fixed-bed, entrained-bed, and ash-agglomerating fluidized-bed coal gasification processes were examined. The fixed-bed gasifiers are the Chapm...

  7. Modeling of contaminant transport in underground coal gasification

    SciTech Connect

    Lanhe Yang; Xing Zhang

    2009-01-15

    In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

  8. Shell Coal Gasification Project. Final report on eighteen diverse feeds

    SciTech Connect

    Phillips, J.N.; Kiszka, M.B.; Mahagaokar, U.; Krewinghaus, A.B.

    1993-07-01

    This report summarizes the overall performance of the Shell Coal Gasification Process at SCGP-1 in Deer Park, Texas. It covers the four year demonstration and experimental program jointly conducted by Shell oil and Shell Internationale Research Maatschappij, with support from the Electric Power Research Institute. The report describes coal properties and gasification results on eighteen feeds which include seventeen diverse coals from domestic and international markets, and petroleum coke. Comparisons between design premises and actual performance on two key feeds, Illinois No. 5 coal and Texas lignite demonstrate that the plant met and exceeded design targets on all key process parameters. Equipment performance results are discussed for all areas of the plant based on periodic interim inspections, and the final inspection conducted in April 1991 after the end of operations. The report describes process control tests conducted in gasifier lead and turbine lead configurations, demonstrating the ability of the process to meet utility requirements for load following. Environmental result on the process for a wide variety of feedstocks are documented. These results underscore the inherent strength of the SCGP technology in meeting and exceeding all environmental standards for air, water and solids. The excellent applicability of the Shell Coal Gasification Process in integrated combined cycle power generation systems is described in view of the high efficiency derived from this process.

  9. Gasification of New Zealand coals: a comparative simulation study

    SciTech Connect

    Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

    2008-07-15

    The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

  10. Coal gasification. Quarterly report, April-June 1979

    SciTech Connect

    1980-04-01

    In DOE's program for the conversion of coal to gaseous fuels both high-and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. High-Btu natural gas has a heating value of 950 to 1000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to High-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties, depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. A number of the processes for converting coal to high-Btu gas have reached the pilot plant Low-Btu gas, with a heating value of up to 350 Btu per standard cubic foot, is an economical fuel for industrial use as well as for power generation in combined gas-steam turbine power cycles. Because different low-Btu gasification processes are optimum for converting different types of coal, and because of the need to provide commercially acceptable processes at the earliest possible date, DOE is sponsoring the concurrent development of several basic types of gasifiers (fixed-bed, fluidized-bed, and entrained-flow).

  11. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  12. Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

  13. Fixed-bed gasification research using US coals. Volume 5. Gasification of Stahlman Stoker bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fifth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Stahlman Stoker bituminous coal from Clarion County, PA. The period of the gasification test was April 30 to May 4, 1983. 4 refs., 16 figs., 10 tabs.

  14. Thermophysical models of underground coal gasification and FEM analysis

    SciTech Connect

    Yang, L.H.

    2007-11-15

    In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

  15. DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.

    EPA Science Inventory

    The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

  16. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  17. Coal gasification developments in Europe -- A perspective

    SciTech Connect

    Burnard, G.K.; Sharman, P.W.; Alphandary, M.

    1994-12-31

    This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

  18. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  19. Coal gasification players, projects, prospects

    SciTech Connect

    Blankinship, S.

    2006-07-15

    Integrated gasification combined cycle (IGCC) technology has been running refineries and chemical plants for decades. Power applications have dotted the globe. Two major IGCC demonstration plants operating in the United States since the mid-1900s have helped set the stage for prime time, which is now approaching. Two major reference plant designs are in the wings and at least two major US utilities are poised to build their own IGCC power plants. 2 figs.

  20. Development of biological coal gasification (MicGas process): 12th Quarterly report

    SciTech Connect

    Not Available

    1993-07-29

    Several experiments were conducted to study the efficiency of granulated sludge consortium (GSC) on the biomethanation of Texas lignite (TxL). With an aim of obtaining a better culture than Mic-1, GSC was used as inoculum at different concentrations. The first experiment was conducted under anaerobic conditions in 60-mL vials containing 40 mL 0.01% SNTM + 1% TxL + 10% GSC. Methane production was measured periodically in the vial headspace and after 20 days of incubation, methane was found to be up to 67 mole%. The second experiment was conducted to determine whether methane production was from biogasification of coal or from substrates used for growing the GSC. The effect of two different anaerobic conditions on biomethanation of Texas lignite was also studied.

  1. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li

    2008-05-15

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  2. Underground coal gasification field experiment in the high-dipping coal seams

    SciTech Connect

    Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W.

    2009-07-01

    In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

  3. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  4. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  5. Science and Technology Gaps in Underground Coal Gasification

    SciTech Connect

    Upadhye, R; Burton, E; Friedmann, J

    2006-06-27

    Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid

  6. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  7. Steam supply system for superposed turbine and process chamber, such as coal gasification

    SciTech Connect

    Menger, W.M.

    1986-08-26

    A steam supply system is described for a process chamber consuming superheated steam at a pressure of about 600 psi or below which is driven by a boiler operating at a pressure of about 2000 psi, a pressure range above that needed by the process chamber for also driving a superposed turbine. The system consists of: (a) a high pressure boiler feed pump for supplying highly purified water to the boiler; (b) a condensing reboiler connected to receive steam from the superposed turbine in a high pressure side; (c) the condensing reboiler also having a low pressure side, essentially isolated from fluid contact with the high pressure side, for receiving water for use in the lower operating pressure steam processes; (d) the condensing reboiler further comprising integral superheating means for heating the water received in the low pressure side into superheated low pressure steam with the steam received in the high pressure side; (e) means for conveying fluid from the high pressure side of the condensing reboiler to the boiler feed pump; and (f) means for conveying the low pressure superheated steam from the condensing reboiler to the process chamber.

  8. Modelling of Underground Coal Gasification Process Using CFD Methods / Modelowanie Procesu Podziemnego Zgazowania Węgla Kamiennego Z Zastosowaniem Metod CFD

    NASA Astrophysics Data System (ADS)

    Wachowicz, Jan; Łączny, Jacek Marian; Iwaszenko, Sebastian; Janoszek, Tomasz; Cempa-Balewicz, Magdalena

    2015-09-01

    The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine "Barbara" and Coal Mine "Wieczorek" and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent

  9. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  10. The role of high-Btu coal gasification technology

    NASA Astrophysics Data System (ADS)

    German, M. I.

    An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

  11. Method for in situ gasification of a subterranean coal bed

    DOEpatents

    Shuck, Lowell Z.

    1977-05-31

    The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

  12. Method for control of subsurface coal gasification

    DOEpatents

    Komar, Charles A.

    1976-12-14

    The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

  13. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  14. Wabash River coal gasification repowering project: Public design report

    SciTech Connect

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  15. Status of health and environmental research relative to coal gasification 1976 to the present

    SciTech Connect

    Wilzbach, K.E.; Reilly, C.A. Jr.

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  16. FUGITIVE EMISSION TESTING AT THE KOSOVO COAL GASIFICATION PLANT

    EPA Science Inventory

    The report summarizes results of a test program to characterize fugitive emissions from the Kosovo coal gasification plant in Yugoslavia, a test program implemented by the EPA in response to a need for representative data on the potential environmental impacts of Lurgi coal gasif...

  17. Encoal mild coal gasification project: Final design modifications report

    SciTech Connect

    1997-07-01

    The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

  18. Coal gasification. Quarterly report, January-March 1979. [US DOE supported

    SciTech Connect

    1980-01-01

    Progress in DOE-supported coal gasification pilot plant projects is reported: company, location, contract number, funding, process description, history and progress in the current quarter. Two support projects are discussed: preparation of a technical data book and mathematical modeling of gasification reactors. (LTN)

  19. Application and development of coal gasification technologies in China

    SciTech Connect

    Xu, Z.; Tian, B.; Jiang, L.

    1997-12-31

    Coal gasification is the precursor of coal conversion and utilization as an effective option to utilize coal resources reasonably and as a important component of clean coal technology. At present, coal accounts for over three fourths of primary energy production and consumption in China, and the dominate position of coal in the energy mix can not be substituted for a long time in the future. Therefore, coal gasification has a bright prospect of utilization in China. Atmospheric fixed bed coal gasification technologies using lump coal as feedstock have been used widely in different industrial subsectors. The future development of coal gasification are the fixed bed technologies using briquette as feedstock and steam/air enriched with oxygen as agent, fluidized bed technologies using pulverized coal as feedstock and entrained bed technologies using coal water mixture (coal slurry) or dry fine coal as feedstock, with the emphasis on using local coal resources and enhancing conversion and utilization of coals near coal mine areas, so that considerable social, environmental and economic benefits can be achieved.

  20. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    SciTech Connect

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  1. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective

  2. High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams. Quarterly progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Winnick, J.

    1995-12-31

    An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is made economically attractive by the lack of need for a Claus process for sulfur recovery. Membrane manufacturing coupled with full-cell experimentation was the primary focus this quarter. A tape-casted zirconia membrane was developed and utilized in one full-cell experiment (run 25); run 24 utilized a fabricated membrane purchased from Zircar Corporation. Results are discussed.

  3. Coking and gasification process

    DOEpatents

    Billimoria, Rustom M.; Tao, Frank F.

    1986-01-01

    An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

  4. Chicken-Bio Nuggets Gasification process

    SciTech Connect

    Sheth, A.C.

    1996-12-31

    With the cost of landfill disposal skyrocketing and land availability becoming scarce, better options are required for managing our nation`s biomass waste. In response to this need, the University of Tennessee Space Institute (UTSI) is evaluating an innovative idea (described as Chicken-Bio Nuggets Gasification process) to gasify waste products from the poultry industry and industrial wood/biomass-based residues in {open_quotes}as-is{close_quotes} or aggregate form. The presence of potassium salts in the poultry waste as well as in the biomass can act as a catalyst in reducing the severity of the thermal gasification. As a result, the mixture of these waste products can be gasified at a much lower temperature (1,300-1,400{degrees}F versus 1,800-2,000{degrees}F for conventional thermal gasification). Also, these potassium salts act as a catalyst by accelerating the gasification reaction and enhancing the mediation reaction. Hence, the product gas from this UTSI concept can be richer in methane and probably can be used as a source of fuel (to replace propane in hard reach remote places) or as a chemical feed stock. Exxon Research and Engineering Company has tested a similar catalytic gasification concept in a fluid-bed gasifier using coal in a one ton/day pilot plant in Baytown, Texas. If found technically and economically feasible, this concept can be later on extended to include other kinds of waste products such as cow manure and wastes from swine, etc.

  5. Recent technology advances in the KRW coal gasification development program

    SciTech Connect

    Haldipur, G.B.; Bachovchin, D.; Cherish, P.; Smith, K.J.

    1984-08-01

    This paper presents an update of the technological advances made at the coal gasification PDU during 1982 and 1983. These process improvements have resulted in higher carbon conversion efficiency, greater operational simplicity and enhanced potential for low grade or highly reactive feedstocks such as subbituminous coals and lignites. Process and component performance data are presented on the following topics: Application of advanced non-mechanical fines recycle techniques in a pressurized fluidized bed process, Demonstration of fines consumption and 95+% carbon conversion in recent tests, including results of a successful 15 day process feasibility test; and, Techniques to produce low carbon containing (less than 5%) ash agglomerates from highly reactive feedstocks, such as Wyoming subbituminous coal and North Dakota lignite.

  6. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  7. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  8. Carbon dioxide sorption capacities of coal gasification residues.

    PubMed

    Kempka, Thomas; Fernández-Steeger, Tomás; Li, Dong-Yong; Schulten, Marc; Schlüter, Ralph; Krooss, Bernhard M

    2011-02-15

    Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three hard coals of different rank from German mining districts were gasified in a laboratory-scale reactor (200 g of coal at 800 °C subjected to 10 L/min air for 200 min). High-pressure CO2 excess sorption isotherms determined before and after gasification revealed an increase of sorption capacity by up to 42%. Thus, physical sorption represents a feasible option for CO2 storage in underground gasification cavities. PMID:21210659

  9. BI-GAS coal-gasification program. Final report, November 1979-August 1982

    SciTech Connect

    McIntosh, M.J.

    1983-01-31

    The primary purpose of this report is to cover in detail activities at the BI-GAS Coal-Gasification Pilot Plant from November 1979 through August 1982. During this period Stearns-Roger Incorporated was the prime contractor for the project. Volume 2 contains topical reports which describe the operation of the gasifier and each of the auxiliary process areas as well as heat and material balance data, computer simulation, gasification of Pittsburgh seam coal and materials evaluation.

  10. Enriched-air and oxygen gasification of Illinois No. 6 coal in a Texaco coal-gasification unit

    SciTech Connect

    Crouch, W.B.; Richter, G.N.; Dillingham, E.W.

    1982-02-01

    Four runs were made with Illinois No. 6 coal, from Peabody Coal Company River King Mine at Freeburg, Illinois, to demonstrate technology to integrate the Texaco Coal Gasification Process in an environmentally acceptable manner with gas turbines for combined cycle electric power generation. Operability and response of the gasifier and a Selexol acid gas removal unit were demonstrated during load changes utilizing both oxygen and enriched air as oxidants (transient runs). Steady state performance data on the gasifier, Selexol unit and gas turbine combustor were obtained at a variety of oxygen to coal ratios at different production rates utilizing each oxidant (steady state runs). Essentially no effect of charge rate on the syngas quality was noted. Environmental base line data were gathered for both oxidants. Results of the environmental tests and the turbine combustor tests are reported separately.

  11. High temperature electrochemical separation of H{sub 2}S from coal gasification process streams. Quarterly progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Winnick, J.

    1994-07-01

    An electrochemical membrane separation system for removing H{sub 2}S from coal gasification product steams is the subject of this investigation. The high operating temperature, flow-through design, and capability of selective H{sub 2}S removal and direct production of elemental sulfur offered by this process provide several advantages over existing and developmental H{sub 2}S removal technologies. Two experiments (Run {number_sign}17 & {number_sign}18) examining the removal capability of the EMS with cobalt cathode were performed this quarter. The focus dealt with H{sub 2}S removal as well as impeding hydrogen cross-over from the process gas side (cathode) of the membrane to the sweep gas side (anode).

  12. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  13. A summary report on combustion and gasification processes

    SciTech Connect

    Rath, L.K.; Lee, G.T.

    1996-08-01

    Six poster papers regarding combustion and gasification were reviewed. These six papers address various different technology subjects: (1) underground coal gasification modeling, (2) wood gasification kinetics, (3) heat transfer surface pretreatment by iron implantation, (4) coal water slurry stabilization technology, (5) coal log pipeline technology, and (6) nuclear reactor decontamination. Summaries and comments of the following papers are presented: Characterization of Flow and Chemical Processes in an Underground Gasifier at Great Depth; Model for Reaction Kinetics in Pyrolysis of Wood; Development of a Stainless Steel Heat Transfer Surface with Low Scaling Tendency; Storage and Transportation of Coal Water Mixtures; Coal Log Pipeline: Development Status of the First Commercial System; and Decontamination of Nuclear Systems at the Grand Gulf Nuclear Station.

  14. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  15. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  16. Gasification coprocessing of Illinois Basin coal and RDF

    SciTech Connect

    Choudhry, V.; Kwan, S.; Pisupati, S.; Klima, M.; Banerjee, D.D.

    1998-12-31

    Gasification coprocessing of refuse-derived fuel (RDF) with coal was investigated with the objective of increasing the utilization of high-sulfur Illinois Basin coals and municipal solid waste (MSW) in an environmentally acceptable manner. MSW is a major recurring solid waste whose disposal entails tipping fees of $30--$40/ton, and poses long-term environmental problems. MSW is routinely processed to recover plastics, aluminum, and other metals as part of state-mandated recycling requirements. Following removal of noncombustibles, the remaining material, primarily paper and food wastes, is shredded to produce RDF fluff which has an as-received calorific value of {approximately} 6,000 Btu/lb. The research addressed the problems of size reduction of RDF fluff (an essential step in making a gasifier feed slurry) and production of a pumpable slurry using additives to maximize coal and RDF solids loading. Gasification evaluation of a 60% solids coal/RDF slurry was conducted in an entrained-flow, oxygen-blown, atmospheric pressure, 0.5 million Btu/h research gasifier. High carbon conversion was achieved, and the product gases contained no furans.

  17. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    SciTech Connect

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  18. Method for using fast fluidized bed dry bottom coal gasification

    DOEpatents

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  19. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Richards, George

    2016-01-01

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygen carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  20. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  1. POLLUTANTS FROM SYNTHETIC FUELS PRODUCTION: COAL GASIFICATION SCREENING TEST RESULTS

    EPA Science Inventory

    Coal gasification test runs have been conducted in a semibatch, fixed-bed laboratory gasifier in order to evaluate various coals and operating conditions for pollutant generation. Thirty-eight tests have been completed using char, coal, lignite, and peat. Extensive analyses were ...

  2. Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 250 citations and includes a subject term index and title list.)

  3. Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1997-06-01

    The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 250 citations and includes a subject term index and title list.)

  5. Vaporization, condensation, and emission of trace elements from coal gasification

    SciTech Connect

    Helble, J.J.; Senior, C.L.; Morency, J.R.

    1995-12-31

    The emissions of many trace elements found in coal are regulated under the provisions of the 1990 Clean Air Act Amendments. Because the emission of an element is related to its volatility, minimization of trace element emissions from coal gasification systems requires a thorough understanding of the volatilization and condensation processes. Choosing Illinois No. 6 bituminous coal as a standard, entrained flow gasification experiments were conducted in a laboratory flow reactor under different oxidant-to-fuel ratios. Fly ash particles generated during gasification were sampled, nitrogen-quenched at approximately 10{sup 4} K/s, and size-segregated on-line using a cascade impactor and polycarbonate filter. A carbon trap was used to retain any residual vapors. Examination of the concentration of trace elements in the ash as a function of fly ash particle size revealed the differing extent of volatilization for different elements. For example, greater than 20% of the Se, Zn, and As vaporized under these conditions. In contrast, less than 1% of the U and Cr vaporized. Using these experimental data to define initial conditions, equilibrium calculations were conducted to identify the most probable gas-phase species for the elements Zn, As, and Se. These results were, in turn, sued to set input conditions for experiments designed to assess the feasibility of capturing these three elements with a sorbent at 550--650 C, temperatures associated with high-temperature sulfur removal. These experiments indicated that all three elements could be removed from the gas stream with silicate sorbents, suggesting that coal ash might be an effective sorbent material.

  6. INITIAL ENVIRONMENTAL TEST PLAN FOR SOURCE ASSESSMENT OF COAL GASIFICATION

    EPA Science Inventory

    The report describes an initial source assessment environmental test plan, developed to investigate the fate of various constituents during coal gasification. The plan is an approach to the problems associated with sampling point selection, sample collection, and sample analysis ...

  7. Combustion front propagation in underground coal gasification

    SciTech Connect

    Dobbs, R.L. II; Krantz, W.B.

    1990-10-01

    Reverse Combustion (RC) enhances coal seam permeability prior to Underground Coal Gasification. Understanding RC is necessary to improve its reliability and economics. A curved RC front propagation model is developed, then solved by high activation energy asymptotics. It explicitly incorporates extinction (stoichiometric and thermal) and tangential heat transport (THT) (convection and conduction). THT arises from variation in combustion front temperature caused by tangential variation in the oxidant gas flux to the channel surface. Front temperature depends only weakly on THT; front velocity is strongly affected, with heat loss slowing propagation. The front propagation speed displays a maximum with respect to gas flux. Combustion promoters speed front propagation; inhibitors slow front propagation. The propagation model is incorporated into 2-D simulations of RC channel evolution utilizing the boundary element method with cubic hermetian elements to solve the flow from gas injection wells through the coal to the convoluted, temporally evolving, channel surface, and through the channel to a gas production well. RC channel propagation is studied using 17 cm diameter subbituminous horizontally drilled coal cores. Sixteen experiments at pressures between 2000 and 3600 kPa, injected gas oxygen contents between 21% and 75%, and flows between 1 and 4 standard liters per minute are described. Similarity analysis led to scaling-down of large RC ({approx}1 m) to laboratory scale ({approx}5 cm). Propagation velocity shows a strong synergistic increase at high levels of oxygen, pressure, and gas flow. Char combustion is observed, leaving ash-filled, irregularly shaped channels. Cracks are observed to penetrate the char zone surrounding the channel cores. 69 refs., 54 figs., 4 tabs.

  8. High temperature electrochemical polishing of H{sub 2}S from coal gasification process stream. Quarterly progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Winnick, J.

    1995-08-01

    An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is made economically attractive by the lack of need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation. Past experiments using this concept dealt with identifying removal of 1--2% H{sub 2}S from gases containing only H{sub 2}S in N{sub 2}, simulated natural gas, and simulated coal gas. Data obtained from these experiments resulted in extended studies into electrode kinetics and electrode stability in molten melts. The most recent experiments evaluated the polishing application (removal Of H{sub 2}S below 10 ppm) using the Electrochemical Membrane Separator (EMS). H{sub 2}S removal efficiencies over 90% were achieved at these stringent conditions of low H{sub 2}S concentrations proving the technologies polishing capabilities. Other goals include optimization of cell materials capable of improving cell performance. Once cell materials are defined, cell experiments determining maximum removal capabilities and current efficiencies will be conducted. Also, a model theoretically describing the preferred reduction of H{sub 2}S, the transport of S{sup 2{minus}}, and the competing transport of CO{sub 2} will be investigated. The model should identify the maximum current efficiency for H{sub 2}S removal, depending on variables such as flow rate, temperature, current application, and the total cell potential.

  9. Wabash River coal gasification repowering project -- first year operation experience

    SciTech Connect

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  10. Underground coal gasification: a brief review of current status

    SciTech Connect

    Shafirovich, E.; Varma, A.

    2009-09-15

    Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

  11. Lock hopper values for coal gasification plant service

    NASA Technical Reports Server (NTRS)

    Schoeneweis, E. F.

    1977-01-01

    Although the operating principle of the lock hopper system is extremely simple, valve applications involving this service for coal gasification plants are likewise extremely difficult. The difficulties center on the requirement of handling highly erosive pulverized coal or char (either in dry or slurry form) combined with the requirement of providing tight sealing against high-pressure (possibly very hot) gas. Operating pressures and temperatures in these applications typically range up to 1600 psi (110bar) and 600F (316C), with certain process requirements going even higher. In addition, and of primary concern, is the need for reliable operation over long service periods with the provision for practical and economical maintenance. Currently available data indicate the requirement for something in the order of 20,000 to 30,000 open-close cycles per year and a desire to operate at least that long without valve failure.

  12. Advanced coal gasification system for electric power generation. Third quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    1980-07-25

    The operation, maintenance and modifications to the Westinghouse gasification process development unit during the quarter are reviewed. The tests of the gasifier-agglomerator included direct coal feed as well as oxygen-blown gasification of a char or coal bed. Then the whole system was tested in single and double stage operation. Laboratory support involved fluidized bed test facilities at ambient temperature and at design temperature for devolatilization and gasification studies. Other laboratory systems were related to thermal analysis and pressurized high temperature studies of gasification and gas cleaning. (LTN)

  13. A continuous two stage solar coal gasification system

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  14. Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

  15. ENCOAL Mild Coal Gasification Demonstration Project. Annual report, October 1993--September 1994

    SciTech Connect

    1995-03-01

    ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining Company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The LFC technology uses a mild pyrolysis or mild gasification process which involves heating the coal under carefully controlled conditions. The process causes chemical changes in the feed coal in contrast to conventional drying, which leads only to physical changes. Wet subbituminous coal contains considerable water, and conventional drying processes physically remove some of this moisture, causing the heating value to increase. The deeper the coal is physically dried, the higher the heating value and the more the pore structure permanently collapses, preventing resorption of moisture. However, deeply dried Powder River Basin coals exhibit significant stability problems when dried by conventional thermal processes. The LFC process overcomes these stability problems by thermally altering the solid to create PDF and CDL. Several of the major objectives of the ENCOAL Project have now been achieved. The LFC Technology has been essentially demonstrated. Significant quantities of specification CDL have been produced from Buckskin coal. Plant operation in a production mode with respectable availability (approaching 90%) has been demonstrated.

  16. Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the sixth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of delayed petroleum coke from Pine Bend, MN. The period of the gasification test was June 1-17, 1983. 2 refs., 15 figs., 22 tabs.

  17. Pyrolysis and gasification of coal at high temperatures

    SciTech Connect

    Zygourakis, K.

    1988-01-01

    Particles from two parent coals (Illinois [number sign]6 and lignite) were pyrolyzed in a nitrogen atmosphere using a captive sample microreactor capable of achieving heating rates as high as 1000[degrees]C/s. Direct measurements on digitized image of char particle cross-sections and a stereological model were used to characterize the macropore structure of chars. Macroporosites, pore size distributions and surface areas were accurately measured allowing us to quantify the effects of pyrolysis heating rates and coal particle size. We have paid particular attention to the development of image analysis software that has allowed us to analyze for the first time the shape or bounary tortuosity of the macropores. Tortuous pore boundaries result in higher values for the true macropore surface areas and should enhance the reactivity of the char samples. Another contribution of the current research program is the development of probabilisitic gasification models that work on computational grids obtained from digitized images of actual cross-sections of char particles. These digital images are accurate discrete approximations of a slice of the actual reacting solid. The incorporation of sophisticated image processing technique is perhaps the most attractive feature of the new simulation approach. Preliminary results indicate that the probabilistic models can accurately account for the opening of closed porosity and fragmentation phenomena occurring during gasification at high temperatures.

  18. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view.

    PubMed

    Kronbauer, Marcio A; Izquierdo, Maria; Dai, Shifeng; Waanders, Frans B; Wagner, Nicola J; Mastalerz, Maria; Hower, James C; Oliveira, Marcos L S; Taffarel, Silvio R; Bizani, Delmar; Silva, Luis F O

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO₃ versus Al₂O₃ determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. PMID:23584038

  19. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  20. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    PubMed

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. PMID:25934578

  1. Low/medium Btu coal-gasification assessment program for potential users in New Jersey. Final report

    SciTech Connect

    Bianco, J.; Schavlan, S.; Ku, W. S.; Piascik, T. M.; Hynds, J. A.; West, A.

    1981-01-01

    In order to evaluate the potential for coal utilization, a preliminary technical and economic assessment of district coal gasification in New Jersey was conducted. This evaluation addressed the possibility of installing a coal gasification plant to use a high sulfur eastern coal to produce a medium Btu content gas (MBG) having a heating value of approximately 300 Btu/SCF. In addition, the work also appraised the regulatory, environmental and marketing, and financial considerations of such a facility. The preliminary study evaluation has manifested an overall technical and economic feasibility for producing a medium Btu quality gas (MBG) from coal at PSE and G's Sewaren Generating Station in New Jersey. The production of MBG for use in on-site power plant boilers or for distribution to industrial customers appears to be economically attractive. The economic attractiveness of MBG is very dependent on the location of sufficient numbers of industrial customers near the gasification facilities and on high utilization of the gasification plant. The Sewaren Generating Station was identified as potentially the most suitable site for a gasification plant. The Texaco Coal Gasification Process was selected as the gasifier type due to a combination of efficiency and pilot plant experience. It is projected that a nominal 2000 tons-per-day coal gasification plant would supply supplemental utility boiler fuel, fuel grade methanol and some by-products.

  2. Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification

    SciTech Connect

    Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

    2009-10-05

    This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships

  3. Gas core reactors for coal gasification

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H2 and CO in the reactor cavity, indicating a 98% conversion of water and coal at only 1500 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H2O to CO2 and H2. Furthermore, it is shown the H2 obtained per pound of carbon has 23% greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H2, fresh water and sea salts from coal.

  4. Corrosion performance of alumina scales in coal gasification environments

    SciTech Connect

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  5. Development program to support industrial coal gasification. Quarterly report 1

    SciTech Connect

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  6. Gasification Characteristics of Coal/Biomass Mixed Fuels

    SciTech Connect

    Mitchell, Reginald

    2013-09-30

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  7. Corrosion and mechanical behavior of materials for coal gasification applications

    SciTech Connect

    Natesan, K.

    1980-05-01

    A state-of-the-art review is presented on the corrosion and mechanical behavior of materials at elevated temperatures in coal-gasification environments. The gas atmosphere in coal-conversion processes are, in general, complex mixtures which contain sulfur-bearing components (H/sub 2/S, SO/sub 2/, and COS) as well as oxidants (CO/sub 2//CO and H/sub 2/O/H/sub 2/). The information developed over the last five years clearly shows sulfidation to be the major mode of material degradation in these environments. The corrosion behavior of structural materials in complex gas environments is examined to evaluate the interrelationships between gas chemistry, alloy chemistry, temperature, and pressure. Thermodynamic aspects of high-temperature corrosion processes that pertain to coal conversion are discussed, and kinetic data are used to compare the behavior of different commercial materials of interest. The influence of complex gas environments on the mechanical properties such as tensile, stress-rupture, and impact on selected alloys is presented. The data have been analyzed, wherever possible, to examine the role of environment on the property variation. The results from ongoing programs on char effects on corrosion and on alloy protection via coatings, cladding, and weld overlay are presented. Areas of additional research with particular emphasis on the development of a better understanding of corrosion processes in complex environments and on alloy design for improved corrosion resistance are discussed. 54 references, 65 figures, 24 tables.

  8. Evaluation of coal pretreatment prior to co-processing

    SciTech Connect

    Guffey, F.D.; Barbour, F.A.; Blake, R.F.

    1991-12-01

    The Western Research Institute is currently developing a mild gasification process for the recovery of a stabilized char product for use as a fuel. A liquid product of limited value is produced during the mild gasification process that may be suited as a co-processing vehicle for coal-oil co-processing. Research was conducted to evaluate co-processing of this mild gasification liquid with coal. The two major areas of research discussed in this report are: (1) coal pretreatment with a coal-derived liquid to induce coal swelling and promote catalyst dispersion and (2) co-processing coal that has been thermally pretreated in the presence of the mild gasification liquid. The results of the investigation to evaluate co-processing of coal that has been thermally pretreated in the presence of the mild gasification liquid indicate that the thermal pretreatment adversely affected the coal-oil co-processing under hydrogen pressure. Thermally pretreated coals co-processed under a hydrogen atmosphere and without benefit of catalyst exhibited about 86 wt % conversion as compared to 96 wt % for coal that was only thermally dried. The addition of the iron pentacarbonyl catalyst precursor to the thermally pretreated coals did improve the conversion to near that of the dried coal. Results from analysis of the product obtained from co-processing the Illinois No. 6 coal showed it was upgraded in terms of oxygen content and hydrogen to carbon atomic ratio when compared to the mild gasification liquid.

  9. The calculation of gasification from coal in a fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Hoersgen, B.; Koehne, H.

    1980-11-01

    A one dimension, two phase model for the transfer of coal into gas through the Lurgi pressure gasification process is discussed. Calculations for drying, devolatilization, and gasification are presented along with energy and mass transport operations. The heterogeneous chemical reactions of carbon with hydrogen, water vapor, and carbon dioxide, and the homogeneous reaction between carbon monoxide and water vapor are described by kinetic equations, that take into account deviations from thermodynamic equilibrium as the driving potential of the chemical reaction. Data from different types of coal and different gas compositions were used to test the model.

  10. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    SciTech Connect

    Stephens, D.R.; Clements, W.

    1981-11-09

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  11. Second stage gasifier in staged gasification and integrated process

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  12. Fixed-bed gasification research using US coals. Volume 12. Gasification of Absaloka/Robinson subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial particpants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the twelfth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. this specific reports describes the gasification of Absaloka/Robinson subbituminous coal. This volume covers the test period June 18, 1984 to June 30, 1984. 4 refs., 20 figs., 18 tabs.

  13. Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-12-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

  14. Fixed-bed gasification research using US coals. Volume 3. Gasification of Rosebud sub-bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the third volume in a series of documents prepared by Black, Sivalls and Bryson, Incorporated and describes the gasification of Rosebud subbituminous coal during the time period November 2-20, 1982. Test results and data are presented for the gasification of the coal and the operation of a slipstream tar scrubber to cool the gas and remove condensed tar. 5 refs., 29 figs., 18 tabs.

  15. Development of biological coal gasification (MicGAS Process). Fifteenth quarterly report, [January 1, 1994--March 31, 1994

    SciTech Connect

    Srivastava, K.C.

    1994-04-26

    Maximum methane production was obtained in the experimental vials that contained 0.2% SNTM supplemented with 10 mM sodium citrate and 1% TxL (144 cc), while in the control vials CH{sub 4} production was only 58 cc. The conversion efficiency was 24%. This clearly shows citrate to be an important mediator for the formation of acetate (main precursor for CH{sub 4} formation) in the glyoxylate cycle, on the one hand, and as a sequestering agent, on the other. These results further indicate that citrate can, be successfully used as co-substrate for enhancement of the TxL biogasification process. The results obtained reconfirmed our hypothesis that the metals (such as Fe{sup 3+}, Mn{sup 2+}, Mg{sup 2+}, CO{sup 2+}, Zr{sup 2+}, etc., present in the coal structure) are chelated/sequestered by the addition of citrate. Mass balance calculations show that this increase in CH{sup 4} production is due to the biomethanation of TxL and not because of the chemical conversion of co-substrate(s) to CH{sub 4} (Table 1). The effect of sodium citrate on biomethanation of TXL from the first experiment ``Effect of co-substrate addition No. 1`` was reconfirmed in this experiment. The peak in acetate concentration (1317 ppm) on day 7 was followed by a rapid conversion of this precursor to CH{sub 4} (Figure 16). The VFA data obtained from both experiments (``Effect of co-substrate addition No. 1 and No. 2``) confirms the hypothesis that citrate and methanol can significantly enhance the biomethanation of TxL (Figure 17).

  16. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single

  17. Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Mistry, D. K.; Chen, T. N.

    1977-01-01

    A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

  18. Proceedings of the ninth annual underground coal gasification symposium

    SciTech Connect

    Wieber, P.R.; Martin, J.W.; Byrer, C.W.

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  19. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    SciTech Connect

    Not Available

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  20. Low/medium Btu coal gasification assessment program for potential users in New Jersey: executive summary

    SciTech Connect

    Not Available

    1981-05-01

    This preliminary study evaluation has manifested an overall technical and economic feasibility for producing a medium Btu quality gas (MBG) from coal at PSE and G's Sewaren Generating Station in New Jersey. The production of MBG for use as a fuel gas for on-site power plant boilers or for distribution to industrial customers appears to be economically attractive. The economic attractiveness of MBG is very dependent on the location of sufficient numbers of industrial customers near the gasification facilities and on high utilization of the gasification plant. The Sewaren Generating Station was identified as potentially the most suitable site for a gasification plant. The Texaco Coal Gasification Process (TCGP) was selected as the gasifier type due to a combination of efficiency and pilot plant experience. Further, it has the advantage of being a pressurized process, capable of supplying the gas without downstream compression which is required if the gas is to be transported to industrial consumers. The TCGP can handle the high sulfur eastern coals chosen as a feedstock. All equipment downstream of the gasifier is commercially proven. For maximum efficiency and flexibility, it would be desirable to consider the integration of the gasification process with a methanol synthesis plant, consuming up to 25% of the MBG produced. Such a combination scheme would allow storage of MBG when its demand is low and thereby increasing the gasifier capacity factor and minimizing its turndown requirements.

  1. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    SciTech Connect

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    2005-06-01

    The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbents was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude

  2. Utilization of lightweight materials made from coal gasification slags

    SciTech Connect

    1996-07-08

    Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra- lightweight aggregates from slags left as solid by-products from the coal gasification process. These aggregates are produced by controlled heating of the slags to temperatures ranging between 1600 and 1900{degrees}F. Over 10 tons of expanded slag lightweight aggregates (SLA) were produced using a direct-fired rotary kiln and a fluidized bed calciner with unit weights varying between 20 and 50 lb/ft{sup 3}. The slag-based aggregates are being evaluated at the laboratory scale as substitutes for conventional lightweight aggregates in making lightweight structural concrete, roof tiles, blocks, insulating concrete, and a number of other applications. Based on the laboratory data, large-scale testing will be performed and the durability of the finished products evaluated. Conventional lightweight aggregates made from pyroprocessing expansible shales or clays are produced for $30/ton. The net production costs of SLA are in the range of $22 to $24/ton for large systems (44 t/d) and $26-$30/ton for small systems (220 t/d). Thus, the technology provides a good opportunity for economic use of gasification slags.

  3. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  4. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  5. Creating power, technology and products: the role of coal gasification in Ohio's economy and energy future

    SciTech Connect

    2007-12-15

    The study examines how coal gasification (CG) combined with Carbon Capture and Sequestration (CCS) technology could play a role in Ohio's economy and energy future - particularly in Northeast Ohio, a major center of manufacturing in the U.S. This working paper focuses primarily on opportunities for gasification projects to augment Ohio's economy. It examines economic activity factors related to coal gasification and how the location of a number of key support industries in Ohio could provide the state with a competitive advantage in this area. The study focuses on a polygeneration facility that would supply electricity and some other products as an example of the type of gasification facility that could, if a sufficient number of similar facilities were located in the area, serve as the stimulus for a new or expanded industry cluster. Although not further discussed in this paper, any Ohio gasification facility would be in close proximity to oil and gas fields that can serve as sites for sequestering the carbon dioxide separated out from the coal-gasification process. The potential economic impact of locating a polygeneration gasifier in Northeast Ohio is large. A significant portion of the inputs required for one $1.1+ billion facility can be supplied either within northeastern Ohio or from elsewhere in the state. Operation of the facility is estimated to increase annual statewide personal income by $39 million and Ohio output by $161 million. The Northeast Ohio region will account for 98 percent of the operational benefits. The report suggests several possible steps to convert this research to an action plan to build support for, and interest in, a coal-gasification industry cluster in Northeast Ohio. Outreach should focus on engaging industry leaders, foundations, and state and regional economic development leaders. 16 tabs., 3 apps.

  6. Differential optical absorption techniques for diagnostics of coal gasification. Technical progress report, April-June 1983

    SciTech Connect

    Not Available

    1983-08-01

    The application of differential optical absorption (DOA) techniques for the in-situ determination of the chemical composition of coal gasification process streams is investigated. Absorption spectra of relevant molecular species and the temperature and pressure effects on DOA-determined spectral characteristics of these species will be determined and cataloged. A system will be configured, assembled, and tested. 10 references, 1 figure.

  7. VAPOR-PHASE CRACKING AND WET OXIDATION AS POTENTIAL POLLUTANT CONTROL TECHNIQUES FOR COAL GASIFICATION

    EPA Science Inventory

    The report gives results of an investigation of two techniques (hydrocracking of heavy organics in the raw gas prior to quency, and wet oxidation of the gasifier condensate) for pollutant control in coal gasification processes. Bench-scale experiments were used to determine rates...

  8. Production of hydrogen by direct gasification of coal with steam using nuclear heat

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Problems related to: (1) high helium outlet temperature of the reactor, and (2) gas generator design used in hydrogen production are studied. Special attention was given to the use of Oklahoma coal in the gasification process. Plant performance, operation, and environmental considerations are covered.

  9. Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994

    SciTech Connect

    1997-07-01

    Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.

  10. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char

    SciTech Connect

    Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao

    2008-11-15

    In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivity than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.